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Abstract

The goal of this thesis is to develop a general framework for lattice statics analysis of defects in

ferroelectric Perovskites. The techniques presented here are general and can be easily applied to

other systems as well. We present all the calculations and numerical examples for two technologically

important ferroelectric materials, namely, PbTiO3 and BaTiO3. We use shell potentials, that are

derived using quantum mechanics calculations, and analyze three types of defects: (i) 180◦ and 90◦

domain walls, (ii) free surfaces and (iii) steps in 180◦ domain walls. Our formulation assumes that an

interatomic potential is given. In other words, there is no need to have the force constants or restrict

the number of nearest neighbor interactions a priori. Depending on the defect and symmetry, the

discrete governing equations are reduced to those for representatives of some equivalence classes. The

idea of symmetry reduction in lattice statics calculations is one of the contributions of this thesis. We

call our formulation of lattice statics ‘inhomogeneous lattice statics’ as we consider the fact that close

to defects force constants (stiffness matrices) change. For defects with one-dimensional symmetry

reduction we solve the discrete governing equations directly using a novel method in the setting of

the theory of difference equations. This will be compared with the solutions obtained using discrete

Fourier transform. For defects with two-dimensional symmetry reduction we solve the discrete

governing equations using discrete Fourier transform. We calculate the fully nonlinear solutions

using modified Newton-Raphson iterations and call the method ‘inhomogeneous anharmonic lattice

statics’. This work is aimed to fill the gap between quantum mechanics ab initio calculations and

continuum models (based on Landau-Ginzberg-Devonshire theory) of ferroelectric domain walls.
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1

Chapter 1

Introduction

In this chapter we review the previous attempts in understanding the structure of ferroelectric

domain walls. Following that the method of lattice statics will be reviewed. We reformulate lattice

statics in a form analogous to continuum mechanics. Restrictions put on the form of interatomic

potentials by material frame indifference and a discrete version of Green-Naghdi-Rivilin theorem are

contributions of this chapter.

1.1 Ferroelectrics

Piezoelectrics are those materials that can be polarized by applying mechanical stress. Piezoelec-

tricity is a linear phenomenon, i.e., the relation between Cauchy stress tensor σ and the electric

displacement D is linear.

D = dσ or Di = dijkσjk (1.1)

where d is the tensor of piezoelectric coefficients. Pyroelectric (polar) materials are those materials

that are polarized even in the absence of an external electric field or external mechanical stress. Fer-

roelectrics are polar crystals whose spontaneous polarization vector can be switched by an applied

electric field or an external mechanical stress (see Fig. 1.1). These materials have many potential ap-

plications in micro-actuators and micro-sensors. The phenomenon of ferroelectricity was discovered

in 1921 (Valasek, 1921) and since then has been the subject of many theoretical and experimental

investigations. Ferroelectricity is a result of the fairly complicated competition of short-range repul-

sive forces that favor the paraelectric state (high symmetry cubic phase) and long-range Coulombic

forces that favor the ferroelectric state (low symmetry phase) (Cohen and Krakauer, 1992). Re-

cent applications of ferroelectrics, especially MEMS applications, have attracted much attention in

understanding the fundamentals of ferroelectrics. For recent reviews see Damjanovic (1998) and

Kamlah (2001). It is known that many properties of ferroelectrics are controlled by the motion of

domain walls, which are two-dimensional defects in ferroelectrics. This is not surprising as most of
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Figure 1.1: Piezoelectrics, pyroelectrics and ferroelectrics.

the interesting properties of solids, in general, are controlled by defects and their evolution. Macro-

scopically, a domain wall can be understood as a surface of discontinuity in polarization (polarization

per unit volume) and deformation gradient. In the framework of continuum mechanics, motion of

such a surface of discontinuity is caused by the driving (configurational) force on the domain wall

and the normal velocity of the wall is related to the driving force through a (phenomenological)

kinetic equation. Ideally, such a phenomenological kinetic equation should be based on an atomistic

model of the domain wall. Therefore, understanding the atomic structure of ferroelectric domain

walls and their energetics can play an important role in understanding the motion of domain walls

and developing physically sound continuum models for them.

Ferroelectric crystals undergo a phase transition at the Curie temperature from a high temper-

ature high symmetry to a low temperature lower symmetry configuration. In the case of BaTiO3

and PbTiO3 the phase transition is from cubic (high symmetry) at high temperature to tetragonal

(low symmetry) at the room temperature. In this latter phase, there are six energetically equivalent

polarization directions. There is no reason to expect a uniform polarization in a ferroelectric solid.

Instead, polarization is not uniform but only uniform locally, i.e., it is uniform in subdomains of the

body. Each of these regions is called a domain. The boundaries between domains are called domain

walls (see Fig. 1.2). It has been experimentally observed that a ferroelectric solid usually has a

complicated microstructure which consists of regions of different shapes with different orientations

of (uniform) spontaneous polarization. Domains are formed to reduce the total free energy of the

ferroelectric solid. Formation of domain walls is a result of competition between several energies,

namely electric field energy, elastic energy and domain wall energy. Having domains with different

uniform polarization reduces the energy of the electric field in the expense of domain wall energy.

The equilibrium configuration can be obtained by minimizing the total energy.

Characteristics of domain boundaries (domain walls) have important effects on the performance of

ferroelectric devices, like their fatigue, etc. The thickness of domain walls and the interfacial energy

of ferroelectric domain walls are important in studying fatigue and switching kinetics of ferroelectric
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solids. Domain wall characteristics such as profile of polarization across the domain wall, energetics

and mobility can be determined after having the atomic structure of the ferroelectric domain wall.

It is known that one mechanism of polarization switching in BaTiO3 and PbTiO3 are motion of

180◦ domain walls (antiparallel domains). This means that a thorough theoretical understanding of

ferroelectricity of BaTiO3 and PbTiO3 requires a detailed analysis of domain wall structure, energy

of the domain walls and their dynamics. Ferroelectric domain walls have been studied in different

scales by different researchers. BaTiO3 and PbTiO3 are two well-known and well-studied ferro-

electric materials. BaTiO3 has a Curie temperature of 120◦C and undergoes a cubic to tetragonal

phase transformation below its Curie temperature. BaTiO3 belongs to the class of Perovskite-type

structures ABO3. Fig. 1.3 shows the displacements of atoms of a unit cell of BaTiO3 from the

cubic reference configuration. Actually, BaTiO3 undergoes a series of phase transitions: cubic to

tetragonal at 120◦C, tetragonal to orthorhombic at 5◦C and finally orthorhombic to rhombohedral

at -90◦C. For the bulk crystal, spontaneous polarization is measured as dipole moment per unit vol-

ume. The value of spontaneous polarization is 26 × 10−6C/cm2 for BaTiO3 at room temperature.

PbTiO3 is cubic above its Curie temperature Tc = 490◦C and tetragonal below the Curie tempera-

ture. The value of spontaneous polarization is 75× 10−6C/cm2. For early works on domain walls in

BaTiO3 the reader should see (Merz, 1952),(Merz, 1954), (Little, 1955), (Kinase, 1955). The early

experimental studies of domain walls in BaTiO3 were done by Merz (1952, 1954) and Little (1955).

There are two types of domain walls in the tetragonal ABO3: 90◦ and 180◦ domain walls. Examples

are shown in Fig. 1.2. Note that the 90◦ domain walls shown in this figure are head-to-tail. This

means that the domain wall is free of surface charges. In this thesis, we study only head-to-tail

90◦ domain walls as they have a lower energy compared to other types of 90◦ domain walls. For

more details on different properties of BaTiO3 the reader may refer to Jona and Shirane (1993) and

Kanzig (1957).

The structure of ferroelectric domain walls in the continuum scale has been investigated using

Landau-Ginzburg-Devonshire theory (LGD) (see Cao and Cross (1991), Zhirnov (1959), Huang et al.

(1997) and references therein). In LGD theory, the free energy is a function of the order parameter

(usually macroscopic polarization in the case of ferroelectrics), gradient of the order parameter,

lattice strain and dipole-dipole interactions. The free energy usually has a polynomial form. The

coefficients of the polynomial have to be given to the continuum theory. Most of these coefficients

can be determined from the knowledge of bulk properties like elastic, dielectric and electrostrictive

bulk properties. However, the coefficients of the gradient terms are related to the domain wall energy

and thickness and have to be determined from the knowledge of structure and energetics of domain

walls. It turns out that in the LGD theory, the polarization and the strain across a domain wall

can be described by soliton-type solutions, e.g. Cao and Cross (1991). Zhirnov (1959) estimated

the thickness of 180◦ and 90◦ domain walls for BaTiO3 to be 5− 20 Å and 50− 100 Å, respectively.
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Huang et al. (1997), utilizing LGD theory, showed that in tetragonal BaTiO3 there are two types of

180◦ domain walls: Ising-type and Bloch-type domain walls. They observed that the width of the

Bloch walls are much larger than those of Ising walls. They showed that at low temperatures, the

Bloch walls are stable while at high temperatures, the Ising walls are stable. They also observed that

the Bloch domain walls are more mobile than the Ising domain walls. LGD theory has also been used

in modelling the evolution of 180◦ and 90◦ domain walls (see Hu and Chen (1997), Hu and Chen

(1998) and Yang and Chen (1995)). Hu and Chen (1998), using the LGD theory, numerically studied

the evolution of 180◦ and 90◦ ferroelectric domain walls. Hu and Chen (1998) in their numerical

examples observed that the depolarization energy is responsible for formation of 180◦ domain walls

as a configuration with vanishing average polarization is energetically favorable and dipole-dipole

interactions favor head to tail domain walls.

Phase field models, though useful for keeping track of the evolution of domain walls, are ques-

tionable in capturing the structure of ferroelectric domain walls if ferroelectric domain walls are

atomically sharp. This implies that one should have more physics in their model and the atomic

interactions should somehow be taken into account. The other problem with phase field models is

that their macroscopic parameters are not easy to find using the available experimental data.

Lawless (1968) performed an atomistic analysis of 180◦ domain walls in BaTiO3 using a point-

dipole model by making a series of simplifying assumptions. It was assumed that the elastic energy

(due to changes in lattice parameters) is negligible. Only Ti-Oa (Oa in Slater’s notation∗) bonds

are considered as they have the dominant energy. Finally it is assumed that across the domain

wall only the magnitude of the polarization vector varies and polarization vectors do not rotate.†.

He considered the 180◦ domain walls perpendicular to the experimentally observed 〈100〉 and 〈110〉
directions. He analyzed four possible domain walls two of which are Ba-centered and the other two

are Ti-centered. Finally, he showed that the Ba-centered wall (100) has the minimum energy.

First-principles (ab initio) calculations are on the other extreme side of the spectrum of modelling

ferroelectric domain walls. To date there have been several ab initio analyses of ferroelectric domain

walls (see Meyer and Vanderbilt (2001), Padilla et al. (1996), Pöykkö and Chadi (1999), Pöykkö

and Chadi (2000) and references therein). For a recent review of different first-principle simulations

of ferroelectrics see Resta (2003). Recently, Meyer and Vanderbilt (2001) performed an interesting

first-principle calculation of 180◦ and 90◦ domain walls in the tetragonal PbTiO3. They showed that

these domain walls have comparable widths and that energy barrier for movement of 90◦ domain

walls is extremely small. They discussed different possibilities for 180◦ and 90◦ domain walls. There

are two types of 180◦ domain walls: Pb-centered and Ti-centered, which result from twinning on

PbO- and TiO2-planes, respectively. They showed that a Pb-centered domain wall has a lower
∗Oa is O3 in our notation.
†Our model does not have such restrictive assumptions and everything will come out of the energy minimization.
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energy than a Ti-centered domain wall and hence it is the preferred wall structure.‡ For 90◦ domain

walls there are two possibilities: Pb-Ti-O- or O-O-centered domain walls. Here by an O-O-centered

domain wall we mean that the reference (starting) configuration is obtained by twinning on an O-O

type (101) plane. Meyer and Vanderbilt observed that the relaxed configuration lies between these

two limits. They obtained the profiles of polarization change across the domain wall and calculated

the domain wall energies. They also observed that the energy of a 90◦ domain wall is one-forth

of that of a 180◦ domain wall. In their computations, Meyer and Vanderbilt had to consider a

completely periodic system in order to be able to perform their quantum mechanical calculations.

This is a serious drawback of these types of computations. The same superficial periodicity is

assumed in all the existing molecular dynamics simulations of ferroelectrics. It is well known that in

any mechanical system, constraints, in general, introduce forces of constraint and these forces might

introduce artifacts that do not reflect the true physical properties of the system. What one should

analyze is a single domain wall in an infinite solid body.

Among the recent experimental studies of ferroelectric domain walls in PbTiO3 and BaTiO3 we

can mention Shilo et al. (2004), Burcsu et al. (2000), Burcsu et al. (2004), Stemmer et al. (1995),

Floquet et al. (1997), Li et al. (1992), and Krishnan et al. (2000). Burcsu et al. (2000) using a suitable

coupled electromechanical loading showed that BaTiO3 can generate strains as high as 0.8% (see

Fig. 1.4 in which domain wall patterns in BaTiO3 measured using polarized light microscopy are

shown). This shows the potential of BaTiO3 and similar ferroelectrics in applications that need

large actuation strains. Fig. 1.5 shows 90◦ domain patterns in the ferroelectric PbTiO3 obtained by

using polarized light microscopy (this is view from the top) in Professor Ravichandran’s laboratory

at Caltech. The area imaged is about 2.5 mm× 1.2 mm. Stemmer et al. (1995) measured the width

of 90◦ domain walls in tetragonal PbTiO3 to be 1.0 ± 0.3 nm and the energy per unit area of the

wall to be 50 mJm−2. Floquet et al. (1997) measured the width of 90◦ domain walls in tetragonal

BaTiO3 to be 4−6 nm. Foeth et al. (1999) measured the thickness of 90◦ domain walls in PbTiO3 to

be 1.5± 0.3 nm and 2.1± 0.7 nm using HREM and WBTEM, respectively. For other experimental

results on domain walls in BaTiO3 see Arlt and Sasko (1980) and Hu et al. (1986). Krishnan et al.

(2000) discussed the possibility of having domain walls with free charges. One reason for this is the

existence of curved domain walls, for example, around the intersection point (line) of three or more

90◦ domain walls. They also mentioned that ‘the precise wall structure in virtually all ferroelectric

materials in still unknown’. This thesis aims to at least partially clarify this problem. It seems that

there is not an agreement on the thickness of ferroelectric domain walls in the literature. The reason

is believed to be the presence of other defects and in particular point defects (Shilo et al., 2004).

Recently, Shilo et al. (2004) used an interesting technique to experimentally study the structure of

90◦ domain walls in PbTiO3. Their idea is to use atomic force microscopy data and fit the thickness
‡Our lattice statics calculations are in agreement with this.
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parameter of the soliton-type solution of LGD theory. Using this technique they observed that the

domain wall thickness is about 1.5 nm but with a wide scatter. They associated this scatter to point

defects.

Figure 1.2: 180◦ and 90◦ domain walls.

1.2 Theory and Applications of Harmonic Lattice Statics

In this section we review the theory of harmonic lattice statics and some of its applications. The

method of lattice statics was introduced by Matsubara (1952) and Kanazaki (1957). This method

was used for point defects by Flocken and Hardy (1969) and Flocken (1972) for cracks by Hsieh and

Thomson (1973) and Esterling (1978) and for dislocations by Maradudin (1958), Boyer and Hardy

(1971), Esterling (1978), Esterling and Moriarty (1978), Shenoy et al. (1999) and Tewary (2000). For

more details and history the reader may refer to Born and Huang (1988), Flocken and Hardy (1970)

Boyer and Hardy (1971), Tewary (1973), Bullough and Tewary (1979), Flocken and Hardy (1969),

Maradudin et al. (1971), Ortiz and Phillips (1999), Shenoy et al. (1999) and references therein. We

present this in a language as close to continuum mechanics as possible.

Consider a collection of atoms L interacting with one another through some interatomic potential.

The simplest possible interaction is when the effective potential is pairwise and quadratic, i.e.,

the force between atoms depends on their pairwise distances and has a linear relation with the

corresponding displacements. This means that the collection of atoms can be modelled as a collection

of point masses connected to each other with some linear springs. This would be a discrete analogue
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Figure 1.3: Tetragonal BaTiO3 and its distortion from the cubic phase. PbTiO3 has a similar
tetragonal structure

of a linear elastic solid.§ The advantage of having such a model is that it would be possible to solve

the resulting system of linear difference equations analytically. One might object to the harmonic

approximation for problems that are highly nonlinear. Although this is a reasonable objection,

harmonic approximation is a fine approximation as long as the reference configuration is close to a

local minimum of the energy. This is of course problem dependent and one has to be careful with

such a simplifying assumption. This approximation has proved useful for studying many problems

in solid state physics, e.g., studying dislocation core structure (Ortiz and Phillips (1999), Shenoy

et al. (1999)). As an example the force-free reference configuration¶ could be a Bravais lattice L,

i.e.,

L =
{
X ∈ R3 | X = l1e1 + l2e2 + l3e3, l1, l2, l3 ∈ Z

}
(1.2)

where ei are lattice vectors.‖ Deformation of a crystal is a discrete mapping ϕ : L → R3 (see Fig.

1.6). Here, we have assumed that the ambient space is R3 and this seems to be general enough for the

applications we have in mind. In terms of the atom position vectors in the deformed and undeformed

configurations, x = ϕ(X). We assume that the total energy of the lattice has the following forms,

§Note that linear elasticity is richer than pairwise interactions.
¶The problem we will study for ferroelectric crystals will require us to start from a reference configuration that is

not force-free (not relaxed).
‖Note that, from an abstract algebra point of view, a lattice is a module over the ring (Z, +, .).
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Figure 1.4: Domain walls in Tetragonal BaTiO3.

Etot = Etot[ϕ] = Etot
({xi}i∈L

)
(1.3)

where xi is the position of atom i after relaxation. In other words, energy is a functional on the

space of discrete deformation mappings. Note that this is not the most general form of energy. For

example, for a ferroelectric crystal the total energy depends on the atomic charges as well. But

the form expressed in Eq. (1.3) would be general enough for the purposes of illustration of the

main ideas.∗∗ Note that i ∈ L is a material point (atom). Here L is the discrete material manifold

and {Xi}i∈L is an embedding of the discrete material body and is called the reference configuration.

Similar to continuum mechanics, material points (atoms) can be identified with their position vectors

in the reference configuration. Suppose there is a discrete vector filed of body forces,

F : L → R3. (1.4)

Discrete body forces could be due to external fields like an external electric field or may represent

a distribution of defects. Euler-Lagrange equations governing the equilibrium of the crystal are
∗∗Another example is a system of unit cells with their position vectors and polarization vectors as independent

variables. In this case, Etot = Etot
�{xi,pi}i∈L

�
.
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Figure 1.5: 90◦ domain patterns in PbTiO3 obtained by using polarized light microscopy. The area
imaged is about 2.5 mm × 1.2 mm.

(ignoring the dynamic effects),††

−∂Etot

∂xi
+ Fi = 0 ∀ i ∈ L. (1.5)

Any given crystal has a symmetry group S which is a group of rotations that map the lattice

back into itself. The total energy of the crystal should be invariant under the symmetry group. Here

we assume that Etot has such a property, i.e.,

Etot
({ϕ(RXi)}i∈L

)
= Etot

({ϕ(Xi)}i∈L
) ∀ R ∈ S. (1.6)

A crystal is the discrete analogue of a homogenous solid. For an arbitrary collection of atoms L,

energies of two atoms i 6= j are different, in general. This is similar to Eshelby’s idea of assuming

explicit dependence of strain energy density on X to describe material inhomogeneities (defects) in

his theory of force on a defect (Eshelby, 1951), (Eshelby, 1975).

The other requirement is material-frame-indifference, which means that the energy of the crystal

should be invariant under isometries of R3, i.e., rigid rotations and rigid translations. In other words,

Etot
({xi}i∈L

)
= Etot

({Qxi + c}i∈L
) ∀ Q ∈ SO(3), c ∈ R3. (1.7)

††This is the balance of linear momentum in the absence of inertial forces. It will be shown in the sequel that
if balance of linear momentum is satisfied for a system governed by pairwise interactions then balance of angular
momentum would be satisfied trivially. This is similar to analysis of a truss in structural mechanics where one does
not need to worry about equilibrium of moments.
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Figure 1.6: Deformation of a collection of atoms viewed as a discrete mapping between two config-
urations.

Similar to the arguments used in continuum mechanics, it is easy to show that this implies that

Etot
({xi}i∈L

)
= Ê ({(xi − xj

) · (xk − xl
)}i,j,k,l∈L

)
(1.8)

where {(xi − xj
)·(xk − xl

)}i,j,k,l∈L is the discrete analogue of the right Cauchy-Green strain tensor.

Note also that a pairwise potential satisfies the requirement of material-frame-indifference.

What we are interested in is the discrete deformation mapping that maps the reference config-

uration to the equilibrium configuration. This is the discrete analogue of the deformation mapping

in continuum mechanics. Let,

xi = Xi + ui i ∈ L (1.9)

where ui is the displacement of atom i from its position in the reference configuration, i.e., u is the

discrete vector field of displacements. Now let us expand ∂Etot

∂xi in a Taylor series about the reference

configuration.
∂Etot

∂xi
=

∂Etot

∂xi
(X) +

∑

j∈L

∂2Etot

∂xi∂xj
(X) (xj −Xj) + .... (1.10)

Substituting (1.10) into (1.5) and taking only the first two terms yields

−∂Etot

∂xi
(X)−

∑

j∈L

∂2Etot

∂xi∂xj
(X) uj + Fi = 0. (1.11)

Note that for a force-free reference configuration,

∂Etot

∂xi
(X) = 0. (1.12)
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However, if the reference configuration is not force-free this term would be a part of the forcing

term. We call this term the discrete field of unbalanced forces. In this thesis we consider three

types of defects in ferroelectrics: (i) domain walls, (ii) free surfaces, and (iii) steps. The nominal

configurations of these defects are schematically shown in terms of macroscopic polarization in

Figs.1.7, 1.8 and 1.9. Our interatomic potentials are explicit functions of some position vectors (core

and shell position vectors) and thus one needs to interpret these reference configurations carefully.

This will be discussed in subsequent chapters. To see the connection of our formulation with the

Figure 1.7: Nominal 90◦ and 180◦ domain walls in the tetragonal phase.

Figure 1.8: Nominal free surfaces in the tetragonal phase.
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Figure 1.9: Nominal 180◦ step in the tetragonal phase.

classical treatments, the linearized equilibrium equations are now written as

∑

j∈L
Φ(i, j;X) uj = f i ∀ i ∈ L (1.13)

where

f i = Fi − ∂Etot

∂xi
(X), Φ(i, j;X) =

∂2Etot

∂xi∂xj
(X). (1.14)

Here Φ(i, j;X) ∈ R3×3 are called the stiffness constants. These constants have the following prop-

erties for a bulk crystal (Ortiz and Phillips, 1999),

Φ(i, j;X)rs = Φ(j, i;X)sr, (1.15)

Φ(i + k, j + k;X) = Φ(i, j;X) ∀ k ∈ L, (1.16)

Φ(I,J;X) = QΦ(i, j;X)QT , xI = Qxi, xJ = Qxj, Q ∈ S, (1.17)
∑

j∈L
Φ(i, j;X) = 0, (1.18)

∑

j∈L

(
Φ(i, j;X)rsxj

p −Φ(i, j;X)rpxj
s

)
= 0. (1.19)

where (1.15) is a direct consequence of the definition of Φ(i, j;X), (1.16) is a consequence of transla-

tion invariance of the crystal, (1.17) is the restriction imposed on stiffness constants by the symmetry

group, and (1.18) and (1.19) follow from the invariance of the energy under rigid body translations

and rotations of the lattice. The property (1.18) implies that

Φ(i, j;X) = Φ̃(i− j;X). (1.20)
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The total energy in the harmonic approximation can now be written as

Etot
harm =

1
2

∑

i,j∈L
Φ̃(i− j;X)ui · uj = −1

4

∑

i,j∈L
Φ̃(i− j;X)(ui − uj) · (ui − uj). (1.21)

In some applications, the problem is solved by starting from the most general possible form of force

constants for a given crystal and a given number of nearest neighbor interactions that come from the

abovementioned properties (see Ortiz and Phillips (1999) and Shenoy et al. (1999) and references

therein). In this work, we choose a more general approach and start from a potential and find the

governing equations directly. This means that we will not need to worry about the symmetries

of the stiffness constants, i.e., starting from a potential that respects the crystal symmetries and

material-frame-indifference, stiffness constants will all have the abovementioned properties. We will

verify this statement in the sequel.

It is seen that the harmonic energy (1.21) is convex and not able to model defective crystals.

One way to go around this is to introduce eigendistortions (Mura, 1977), (King and Mura, 1991a)

and (Gallego and Ortiz, 1993; Ortiz and Phillips, 1999). The idea is very similar to that of defining

eigenstrains and eigenstresses in the continuum theory of defects (Mura, 1982). The main idea is to

replace the problem of a defective crystal in the harmonic approximation to that of a perfect lattice

with a distribution of forces that represent the effect of the defect(s)(see Mura (1977) and King and

Mura (1991b)).‡‡ Similar to what is common in elasticity, one can define a discrete field of strains

B : L × L → R3×3 such that

ui − uj = B(i, j)(xi − xj). (1.22)

Note that

uj − ui = B(j, i)(xj − xi) = −B(i, j)(xi − xj). (1.23)

Thus

B(j, i) = B(i, j). (1.24)

Now let us call β(i, j) = B(i, j)(xi − xj) the total distortion field. Part of this distortion field is

elastic. A distortion field β is called compatible if there is a discrete displacement field u such that

β(i, j) = ui − uj. (1.25)

It is easy to show that a discrete distortion field is compatible if and only if

β(i, j) + β(j,k) + β(k, i) = 0 ∀ i, j,k ∈ L. (1.26)

‡‡We will numerically compare the harmonic solutions obtained using this approximation with the harmonic solu-
tions obtained from our inhomogeneous lattice statics for 180◦ domain walls in Chapter 4.
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Obviously the elastic and non-elastic distortions need not be compatible in general. This is very

similar to incompatibility of elastic and plastic deformation gradients in finite plasticity. Having

incompatible distortions the harmonic energy of the lattice can be written as

Etot
harm = −1

4

∑

i,j∈L
Φ̃(i− j;X)

[
β(i, j)− βE(i, j)

] · [β(i, j)− βE(i, j)
]
, (1.27)

where β(i, j) − βE(i, j) is the discrete elastic distortion and βE(i, j) is the discrete eigendistortion

field. It should be noted that the eigendistortions leave the energy of the lattice unchanged. Now

the harmonic energy can be written in terms of eigendistortions and the discrete displacement field

as (Ortiz and Phillips, 1999),

Etot
harm = −1

4

∑

i,j∈L
Φ̃(i− j;X)

[
ui − uj − βE(i, j)

] · [ui − uj − βE(i, j)
]
. (1.28)

This energy is now nonconvex in the discrete displacement field. Eigendistortions represent defects

and minimizing the above energy with respect to discrete displacements yields the following governing

equations for the defective lattice,

∑

j∈L
Φ̃(i− j;X)uj = FE

i ∀ i ∈ L, (1.29)

where

FE
i =

∑

j∈L
Φ̃(i− j;X)βE(j, i) ∀ i ∈ L. (1.30)

It is seen that problem of analysis of a defective crystal is transformed to that of a perfect lattice

with a distribution of forces.

We will not use this approach in this work as we start from an interatomic potential and not

the force constants. As we will see in our formulation the defect forces are calculated exactly. Let

us briefly explain how our approach is related to the idea of eigendistortions. In the method of

eigendistortions there are two approximations: (i) it is assumed that force constants close to the

defect are equal to the bulk force constants, (ii) unbalanced forces are approximately calculated using

force constants. We will take a more general approach in this work. We assume that we are given

a set of interatomic potentials that describe the interactions between different atoms. This way we

will be able to find the unbalanced forces exactly. For domain walls (which have a 1-D symmetry

reduction as we will see in the sequel) we can take into account the fact that force constants close

to the defect are different from the bulk force constants. However, for more complicated defects like

steps, we will have to homogenize the force constants.
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1.2.1 Discrete Balance of Energy

In this subsection we look at balance of energy for an arbitrary collection of atoms L and prove

a discrete version of Green-Naghdi-Rivilin (GNR) Theorem. For the sake of simplicity, ignoring

thermal effects the balance of energy for L can be written as

d

dt

∑

i∈L

(
E i +

1
2
miẋi · ẋi

)
=

∑

i∈L
Fi · ẋi. (1.31)

Assuming two-body interactions the first term in the left hand side of Eq. (1.31) can be written as

d

dt

∑

i∈L
E i

({xi}i∈L
)

=
1
2

d

dt

∑

i,j∈L
j 6=i

Φ
(|xi − xj|)

=
1
2

∑

i,j∈L
j 6=i

Φ′
(|xi − xj|) xi − xj

|xi − xj| ·
(
ẋi − ẋj

)

=
1
2

∑

i,j∈L
j 6=i

fij ·
(
ẋi − ẋj

)
(1.32)

where

fij = Φ′
(|xi − xj|) xi − xj

|xi − xj| . (1.33)

Note that

fji = −fij. (1.34)

Using this property, it can be easily shown that

d

dt

∑

i∈L
E i

({xi}i∈L
)

= −
∑

i,j∈L
j 6=i

fij · ẋi. (1.35)

Therefore the balance of energy for L can be written as

−
∑

i,j∈L
j 6=i

fij · ẋi +
∑

i∈L
miẍi · ẋi =

∑

i∈L
Fi · ẋi. (1.36)

Now let us try to write the balance of energy for an arbitrary subset M ⊂ L. We start with the

following definition.

Definition 1. Atom energy E i for i ∈ M is defined to be one half of the sum of the energies of

atomic bonds between i and all the other atoms in M.
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Balance of energy for M is written as

d

dt

∑

i∈M

(
E i +

1
2
miẋi · ẋi

)
=

∑

i∈M
Fi · ẋi +

∑

i∈M

∑

j∈L\M
fij · ẋi. (1.37)

This can be rewritten as

d

dt

∑

i∈M

(
E i +

1
2
miẋi · ẋi

)
=

∑

i∈M
Fi · ẋi +

∑

i∈M
ti · ẋi (1.38)

where

ti =
∑

j∈L\M
fij (1.39)

is a ‘discrete traction’ for atom i. Balance of energy is now simplified to

−
∑

i,j∈M
j 6=i

fij · ẋi +
∑

i∈M
miẍi · ẋi =

∑

i∈M
Fi · ẋi +

∑

i∈M
ti · ẋi. (1.40)

A very special subset would be the set M = {i} for which the balance of energy simplifies to

miẍi · ẋi = (Fi + ti) · ẋi ∀i ∈ L (1.41)

where

ti =
∑

i,j∈M
j 6=i

fij ∀i ∈ L. (1.42)

Note that for this discrete system conservation of mass states that

∑

i∈M
mi = constant ∀M ⊂ L. (1.43)

Choosing M = {i} this reads

mi = constant ∀i ∈ L. (1.44)

Here we have implicitly assumed that no chemical reactions are involved in the process of deforma-

tion.

1.2.1.1 Discrete Green-Naghdi-Rivilin Theorem

Green, Naghdi and Rivilin (Green and Rivilin, 1964) realized that conservation of mass and balance

of linear and angular momenta can be obtained by postulating balance of energy under isometries

of R3. Here we present a discrete version of this theorem. Consider a discrete collection of atoms L
and suppose it deforms under the discrete deformation mapping ϕ and the balance of energy holds
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for any subset M ⊂ L. First, let us consider a rigid translation of the deformed configuration, i.e.,

ϕ′t = ξt ◦ ϕt, where

ξt(xi) = xi + (t− t0)c (1.45)

where c is a time independent vector. Let us postulate that discrete energy balance is invariant

under ξt, i.e.,

−
∑

i,j∈M
j6=i

f ′ij · ẋ′
i
+

∑

i∈M
m′

iẍ′
i · ẋ′i =

∑

i∈M
F′i · ẋ′

i
+

∑

i∈M
t′i · ẋ′

i
. (1.46)

Note that at t = t0

f ′ij = fij, t′i = ti, ẋ′
i
= ẋi + c, m′

i = mi (1.47)

and (see Marsden and Hughes (1983))

F′i −m′
iẍ′

i
= Fi −miẍi. (1.48)

Thus subtracting the balance of energy for M from that of ξt(M) at time t = t0 we obtain

−
∑

i,j∈M
j 6=i

fij · c +
∑

i∈M
miẍi · c =

∑

i∈M
Fi · c +

∑

i∈M
ti · c. (1.49)

Since c is arbitrary we have

−
∑

i,j∈M
j 6=i

fij +
∑

i∈M
miẍi =

∑

i∈M
Fi +

∑

i∈M
ti. (1.50)

Or

∑

i∈M


Fi −miẍi +

∑

j∈M
j 6=i

fij


 = 0. (1.51)

This is the discrete balance of linear momentum. In particular when M = {i} we have

miẍi = Fi + ti ∀i ∈ L. (1.52)

Or

miẍi = Fi +
∑

i,j∈L
j 6=i

fij ∀i ∈ L. (1.53)

Now let us consider a time-dependent rigid rotation in the ambient space, i.e.,

ξt(xi) = e(t−t0)Ωxi (1.54)
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for some skew-symmetric matrix Ω. Note that at t = t0

ẋ′
i
= ẋi + Ωxi (1.55)

and

F′i −m′
iẍ′

i
= Fi −miẍi. (1.56)

Let us now postulate that the discrete balance of energy is invariant under the spatial isometry ξt,

i.e.,

−
∑

i,j∈M
j6=i

f ′ij · ẋ′
i
+

∑

i∈M
m′

iẍ′
i · ẋ′i =

∑

i∈M
F′i · ẋ′

i
+

∑

i∈M
t′i · ẋ′

i
. (1.57)

Note that at t = t0

f ′ij = fij, t′i = ti, m′
i = mi. (1.58)

Subtracting the balance of energy for M from that of ξt(M) at t = t0 we obtain

−
∑

i,j∈M
j 6=i

fij ·Ωxi −
∑

i∈M

(
Fi −miẍi

) ·Ωxi =
∑

i∈M
ti ·Ωxi. (1.59)

Or

∑

i∈M




∑

j∈M
j 6=i

fij +
(
Fi −miẍi

)
+ ti


 ·Ωxi = 0. (1.60)

But the expression inside the bracket can be simplified to

∑

j∈L
j6=i

fij +
(
Fi −miẍi

)
= 0. (1.61)

This shows that the balance of angular momentum is satisfied trivially when atomic interactions are

pairwise.

1.2.2 Harmonic/Anharmonic Energy Partition Method

In harmonic lattice statics one assumes that energy can be approximated by the first two terms of

its Taylor series expansion. In other words, it is assumed that the lattice is lightly distorted and the

energy can be approximated by a quadratic potential. However, harmonic approximation cannot be

valid in regions of the lattice where displacements are large. This can happen in regions very close to

defects, for example, near dislocation cores. This also applies to our model of a ferroelectric domain

wall, which is an example of a planar defect. This means that the harmonic approximation may not
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capture the correct structure of the domain wall. Anharmonic lattice statics is a natural modification

of harmonic lattice statics in which one uses harmonic lattice statics far from defects and uses the

full nonlinear potential in localized regions around the defects. This idea was first proposed by

Flocken (1972) and Esterling (1978) and was later used by Gallego and Ortiz (1993) in the analysis

of dislocations. We now briefly explain how this method should be implemented in our formulation

of lattice statics. This method is in fact nothing but a modified Newton-Raphson iteration. We first

start from the harmonic lattice statics with the forces that reflect the nonequilibrium nature of the

reference configuration. The linear solution is obtained by solving the discrete governing equations.

We can then calculate the forces on the distorted lattice and apply these new forces to the original

harmonic lattice, i.e., we keep the stiffness matrices constant in all the steps. This is not as fast as

the usual Newton-Raphson (actually it has linear convergence) but is very simple to use. As we will

observe, the relaxed lattice is distorted in a highly localized region close to a domain wall and a few

lattice spacings away from the domain displacements are zero (or a constant rigid translation). This

means that the nonlinear effects are highly localized.

1.2.3 Motivation for Lattice Static Analysis of Ferroelectric Defects

As was mentioned in the Introduction, there have been theoretical, numerical and experimental

studies of ferroelectric domain walls in the literature. Theoretical works are in the continuum scale

and do not give one any information regarding the detailed structure of the domain walls and other

defects. Quantum mechanics calculations are valuable and give us a lot of information about the

structure and energetics of domain walls. However, these analyses are purely numerical in nature.

The other problem with these methods is that they cannot be used for more complicated defects,

e.g., steps. What is missing in the literature is a semi-analytical analysis of ferroelectric domain

walls. There are several recent works on analysis of solids in the lattice scale. Most of these models

are highly idealized and their results are only qualitatively valuable. The other drawback of almost

all the existing theoretical lattice-scale calculations is the fact that they are restricted to one and two

dimensions. In this work, we start from a physically realistic potential that is derived from quantum

mechanics calculations. This potential is used for analysis of a single ferroelectric domain wall in an

infinite solid (and some other defects). Our semi-analytical technique enables us to freely work with

the parameter space and study the effect of, for example, different potentials on the domain wall

structure. The potentials used in this work are examples and given similar potentials many relevant

problems can be studied in the lattice scale. We reformulate lattice statics and will try to exploit

the similarities with continuum mechanics. We hope that this work give some structure to lattice

scale calculations and helps us in doing analytic atomistic calculations more systematically. We can

summarize our motivation for the lattice statics calculations of ferroelectric defects as follows.
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• To have an analytic tool for comparing different interatomic potentials in terms of the defect

structure and energy that they predict.

• To have an analytic verification tool for numerical techniques like quasi-continuum method.

• To develop a systematic theory for lattice-scale calculations.

1.3 Organization of The Thesis

This thesis is organized as follows. Chapter 2 reviews shell potentials and the linearized governing

equations for an arbitrary collection of atoms are obtained. Formulations are made as abstract as

possible in order to be applicable to other similar systems. Multi-lattice of ABO3 Perovskites are

treated abstractly and some issues like defining polarization in the lattice scale are discussed. This

follows by a detailed discussion on long-range forces and a careful numerical study of Wolf et al.

(1999)’s summation method for shell potentials of BaTiO3 and PbTiO3. The chapter is ended by

a discussion on structure optimization of tetragonal PbTiO3 and stability of local minima of the

energy surface.

Chapter 3 presents a formal method of obtaining discrete governing equations for an arbitrary

collection of atoms. The main contribution of this chapter is the systematic derivation of governing

equations for defective crystals and the idea of 1-D and 2-D symmetry reductions. Another contri-

bution of this chapter is putting the discrete governing equations in a form familiar in the theory

of difference equations. This is very useful as one can see the discrete governing equations in a

structured form for any given system.

Chapter 4 presents a systematic lattice statics analysis of 180◦ domain walls. The discrete gov-

erning equations are reduced to a vector-valued ordinary difference equation (ODE) on Z. Because

of a symmetry relation between the right and left sides of the domain wall, the governing ODE is

further reduced to an ODE on N. A novel solution technique taking into account the variability

of the stiffness matrices close to the domain wall is developed for solving the governing ODE. The

chapter ends with a formulation of anharmonic lattice statics and some numerical examples for

BaTiO3 and PbTiO3. Chapters 5 and 6 extend the calculations of Chapter 4 to 90◦ domain walls

and free surfaces.

Chapter 7 presents a lattice statics analysis of steps in 180◦ domain walls in PbTiO3. We first

reduce the discrete governing equations to a vector-valued partial difference equation in two discrete

independent variables and then solve the governing equations using discrete Fourier transform. In

obtaining anharmonic solutions use is made of the fully-nonlinear solutions of 180◦ domain walls.

Conclusions and future directions are given in Chapter 8.
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Appendix A presents a detailed review and discussion on summing conditionally convergent

lattice sums and in particular the mathematical foundations of Ewald method. Appendix B contains

several independent topics. Theory of ordinary and partial difference equations is briefly reviewed.

Discrete Fourier transform and its application in solving linear difference equations is explained. A

novel method for solving a general class of partial difference equations is presented. We end the

appendix by solving a simple 2-D lattice problem under two loading systems. We found this simple

example helpful in developing intuition for solving the more complicated problems studied in this

thesis.
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Chapter 2

Total Energy of a Ferroelectric
Solid

2.1 Shell Models and Polarizability

The Coulomb energy is the leading term in a series of different moments of charge density. The second

term represents the dipole (first moment of charge densities), and the tendency of the electronic

charge to poses a dipole is called polarizability. One way of taking into account the polarizability

is to use shell models. The classical shell model was originally developed by Dick and Overhauser

(1964). Ferroelectric materials are now usually modelled by shell models in molecular dynamics

simulations. It should be noted that modelling ionic interactions by two-body Coulombic potentials

is just an approximation (rigid ion approximation). To correct this approximation and take into

account the many-body interaction nature of electrostatic interactions, usually shell models are used.

Shell models are more accurate models as they assume a uniform distribution of electrons on a sphere

that can move independently of the core. Such a model is used in modelling ferroelectrics in this

work. In these models it is assumed that an atom is composed of a core which consists of the nucleus

and the inner electrons and a shell, which consists of the valence electrons. A classical shell potential

has the following three parts,

E = Elong-range + Eshort-range + Ecore-shell (2.1)

The long-range energy is the classical Coulombic electrostatic energy between cores and shells ex-

cluding the core-shell interaction in the same atom. Fig. 2.1 shows the interaction graph for cores

and shells of atoms i and j. The short-range interactions are between the massless shells and in

general not all shells contribute to this energy. The third part of the energy is the energy of inter-

action of core and shell of the same atom. The core-shell coupling is anharmonic but isotropic with
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the following form,

VI(xIi
c,xIi

s) =
1
2
c2I |xIi

c − xIi
s|2 +

1
24

c4I |xIi
c − xIi

s|4 (2.2)

where I refers to the atom type and i is the unit cell index.

Figure 2.1: (a) Core and shell position vectors for atoms i and j, (b) the interaction graph.

The potential we use for PbTiO3 is a classical shell model developed by Sepliarsky and Cohen

(2002) and Sepliarsky et al. (2004). In Sepliarsky et al. (2004)’s potential (we call it SC potential

from now on) the short-range interactions are between shells of pairs Pb-O, Pb-Ti and O-O, with

the following forms,

Pb− Ti, Pb−O, T i−O : VIJ(r) = (aIJ + bIJr) e
− r

ρIJ (2.3)

O −O : V33(r) = a33e
− r

ρ33 +
c33

r6
(2.4)

The first potential is called Rydberg potential and the second one is Buckingham’s potential. The

parameters of these potentials are given in Table 2.1. The short-range energy is usually chosen

such that it contains terms that describe both the Pauli repulsion at short distances and dispersive

interaction at longer distances. In ionic crystals the most long-ranged part of energy is due to

Coulombic interactions. The second most long-ranged part is the dispersion term. Dispersion

energy is the result of interaction of fluctuating electron charge moments of different orders. This

part of energy can be written as

Edispersion = −
∑

i,j∈L

∞∑
n=3

C2n|xi − xj |−2n (2.5)
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Table 2.1: Parameters of short-range energy in SC potential.
I J a(eV ) b(Å−1eV ) c(Å6eV ) ρ(Å)
1 2 0.096 -12.5665 2.420131
1 3 6766.270 127.7793 0.273805
2 3 1130.010 -160.8363 0.359723
3 3 3634.861 331.6058 0.314424

Table 2.2: Core and shell charges and masses for PbTiO3 in SC potential.
I Qc(e) Qs(e) mc

1 4.9580 -2.7850 207.2000
2 8.8200 -5.1580 47.9000
3 0.5630 -2.5080 16.0000

The first term represents the interaction of instantaneous dipole-instantaneous dipole energy, for

example (Gale and Rohl, 2003). Usually, only the first term is considered as is seen in the form

of the Buckingham potential above. The core and shell charges for different atom types are given

in Table 2.2. Finally the parameters of core-shell interaction is given in Table 2.3. The optimized

structure is given in Table 2.9. For this structure polarization is Ps = 76.2336× 10−6C/cm2 which

is very close to the experimental value of Ps = 75× 10−6C/cm2.The ground state is tetragonal and

we do all the calculations at T = 0.

After an extensive literature review and studying different interatomic potentials for ferro-

electrics, we discovered that all the existing potentials are stable only under some constraints. We

used both GULP (Gale, 1997), (Gale and Rohl, 2003) and our Mathematica code for stability anal-

ysis of the optimized structure and in all the tests they agreed. SC potential is stable under the

constraint that all the perturbations are in the tetragonal c-direction (for fixed values of lattice

parameters a = 3.9053Å, c = 4.1514Å). We studied other possibilities like allowing perturbations

to be in ac plane. In all these cases the ground state was unstable. Therefore, we had to do all

the numerical calculations by constraining core and shell displacements to be in the c-direction.

However, the techniques developed here and all the implementations are general and can handle

stable potentials in three dimensions. We have been unable to find a completely stable interatomic

potential but if there is one we could repeat all the calculations with no constraints.

Table 2.3: Parameters of core-shell interaction energy for PbTiO3 in SC potential.
Elm c2(Å−2eV ) c4(Å−4eV )
Pb 119.48 17968.50
Ti 1428.59 36411.00
O 23.29 4514.70
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Table 2.4: Parameters of the van der Waals energy.
I J DIJ αIJ RIJ(Å)
3 3 0.0905 7.1579 3.9975
1 2 0.9777 7.8754 3.3868

Table 2.5: Parameters of the pure repulsion energy.
I J AIJ mIJ

3 1 2.5841 6.2615
3 2 1.6163 8.4430

2.1.1 Polarizable Charge Equilibrium Force Field

Another potential that we use in this thesis is a modified shell potential that is derived from quantum

mechanics ab initio calculations of BaTiO3 performed by Goddard and his co-workers (Goddard

et al., 2003) and it is called Polarizable Charge Equilibrium Force Field (PCEFF). From now on we

will refer to this potential as PCEFF potential. In the so-called ReaxFF (Goddard et al., 2003),

each atom has a fixed core charge and a variable shell charge both with Gaussian distributions. This

potential reflects the fact that in every atom the shell charge can move with respect to the core and

variability of shell charges represents the charge transfer between atoms. In this section we briefly

explain the structure and parameters of this potential.

The short-range part of the potential for a pair of two anions or two cations is a van der Waals

energy which is modelled by a Morse potential. This potential has exponential repulsion for short

distances and exponential attraction for long distances. The form of this energy is shown below,

Evdw
I(i)J(j) = DIJ

{
exp

[αIJ

2
(1− rij

RIJ
)
]
− 1

}2

−DIJ (2.6)

where rij = |xIi − xJj |. The parameters of this part of the energy are given in Table 2.4. For a

pair of an anion and a cation, the short-range energy has a power repulsive form and describes the

Pauli repulsion. This potential has the following form,

Epr
I(i)J(j) = (AIJ)m

IJr−mIJ
ij (2.7)

The parameters of this potential are given in Table 2.5. Self energy has the following form,

EIself
i = EI + χI(QIc + QIi

s) +
JI

2
(QIc + QIi

s)
2 (2.8)

where χ is electronegativity (V) and J is electronegativity hardness (V/e). Parameters of self-energy

for different species are given in Table 2.6. Note that the values of EI do not affect the governing

equilibrium equations. The core and shell charges are assumed to have the following Gaussian
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Table 2.6: Parameters of the self energy.
I χI(V ) JI(V/e) QIc(e)
1 -5.0992 12.7457 2.0000
2 2.0369 11.3415 4.0000
3 9.3877 15.9439 2.0000

Table 2.7: Parameters of the interaction energy.
Elm Rc(Å) Rs(Å)
Ba 0.1632 0.8021
Ti 0.4255 0.5404
O 0.2618 0.4238

distributions (see Fig. 2.2),

ρIi
c =

(ηI
c

π

) 3
2

QIc exp(−ηI
c |x− xIi|2), ρIi

s =
(ηI

s

π

) 3
2

QIi
s exp(−ηI

s |x− xIi
s|2) (2.9)

where,

ηI
c =

1
4RI2

c

, ηI
s =

1
4RI2

s

and where RIc and RIs are core and shell radii for specie I and are given in Table 2.7. There is a

Figure 2.2: Core and shell charge distributions.

fourth-order correction term that has the following form,

Ecorrection
I(i)J(j) = KI(rij)4 (2.10)

where KBa = KTi = 1.0 eV Å−4 and KO = 2000.0 eV Å−4. The interaction part of the Coulombic
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energy has the following form,

Ψ
(
|xIi − xJj

s |, QIc, QJj
s

)
=

QIc QJj
s

|xIi − xJj
s |

erf

(√
ηI

cηJ
s

ηI
c + ηJ

s

|xIi − xJj
s |

)
(2.11)

where erf(.) is the error function and is defined as

erf(x) =
2√
π

∫ x

0

e−t2dt

All the other five terms of the interaction energy are defined similar to Eq. (2.11). This is nothing

but the Coulombic interaction between two distributed charges with the Gaussian distributions

shown in Fig. 2.2.

2.1.2 Discrete Governing Equations for an Abstract Shell Potential

Consider the ith I atom in a multi-lattice L with three species, where i ∈ {1, 2, 3, ...} is the unit cell

index and I ∈ {1, 2, 3, 4, 5} refers to the sublattice number. Here, without loss of generality, we have

assumed that L has five sublattices. Suppose this atom has core position vector xIi, shell position

vector xIi
s and core and shell charges QIi

c and QIi
s, respectively. It is assumed that all the core

charges for species I are the same. The total energy of the system is assumed to have the following

form,

E = Eshort−range + Elong−range. (2.12)

It is assumed that the short-range energy is pairwise and is equal to Φ(|xIi − xJj |) for atoms I(i)

and J(j) for some given scaler-valued function Φ. Thus, the total short-range energy of the system

can be written as

Eshort−range =
1
4

5∑

I,J=1

∑

i,j

Φ(|xIi − xJj |). (2.13)

Note that because of the short-range nature of the above energy i and j belong to a finite index set.

The long-range energy is assumed to have two parts, self-energy and interaction energy, i.e,

Elong−range = Eself + Einteraction (2.14)

where self-energy is only a function of core and shell charges and the interaction energy is Coulombic

energy and is a function of both charges and core positions (see Fig. 2.3). Thus

Eself =
5∑

I=1

∑

i

Υ(QIc, QIi
s). (2.15)
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And,

Einteraction =
1
4

3∑

I,J=1

∑

i,j

{C(cI(i), sI(i)) + C(cI(i), cJ(j)) + C(cI(i), sJ(j))

+ C(sI(i), cJ(j)) + C(sI(i), sJ(j)) + C(cJ(j), sJ(j))}

=
1
4

3∑

I,J=1

∑

i,j

{Ψ(|xIi − xJj
s |, QIc, QJj

s ) + Ψ(|xIi − xIj |, QIc, QJc)

+ Ψ(|xIi − xIj
s |, QIc, QJj

s ) + Ψ(|xIi
s − xIj |, QIi

s, QJc)

+ Ψ(|xIi
s − xIj

s |, QIi
s, QJj

s ) + Ψ(|xJ i − xIj
s |, QJc, QJj

s )} (2.16)

Therefore, the total energy can be written as

E =
1
4

3∑

I,J=1

∑

i,j

Φ(|xIi − xJj |) +
3∑

I=1

∑

i

Υ(QIc, QIi
s)

+
1
4

3∑

I,J=1

∑

i,j

{
Ψ(|xIi − xJj

s |, QIc, QJj
s ) + Ψ(|xIi − xJj |, QIc, QIc) + Ψ(|xIi − xIj

s |, QIc, QIj
s )

+ Ψ(|xIi
s − xJj |, QIi

s, QJc) + Ψ(|xIi
s − xJj

s |, QIi
s, QJj

s ) + Ψ(|xJ i − xJj
s |, QJc, QJj

s )
}

The graph of interaction of PCEFF potential is shown in Fig. 2.3. Note that this energy should be

minimized subject to charge conservation constraint, which reads,

∑

I

∑

i

(
QIc + Qi

s

)
= 0. (2.17)

Throughout this work we assume that all charges are fixed.

2.1.2.1 Governing Equilibrium Equations

Here, we obtain the governing equilibrium equations for xIi, xIi
s and QIi

s. This is done by minimizing

the energy with respect to these two (vector and scalar) variables. Our governing equilibrium

equations are

δE
({xIi,xIi

s, QIi
s}

)
= 0 ⇒ D1E = D2E = 0, (2.18)

Or,

f(xIi,xIi
s, QIi

s) = 0 ∀ i = 1, 2, ..., I = 1, 2, 3 (2.19)

g(xIi,xIi
s, QIi

s) = 0 ∀ i = 1, 2, ..., I = 1, 2, 3 (2.20)
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Figure 2.3: (a) Atoms I(i) and J(j) and their position vectors, (b) Four Coulombic interactions
between atoms I(i) and J(j). Note that cI(i) − sI(i) interaction should not be counted more than
once.

where

f(xIi,xIi
s, QIi

s) = D1Ẽ(xIi,xIi
s, QIi

s),

g(xIi,xIi
s, QIi

s) = D2Ẽ(xIi,xIi
s, QIi

s).

2.1.2.2 Linearized Equilibrium Equations

We now linearize the governing equations (2.19) about a reference configuration B0 = (xIi
0,xIi

s0, QIi
s0

)

as follows,

f(xIi
0,xIi

s0, QIi
s0

) + D1f(xIi
0,xIi

s0, QIi
s0

) · (xIi − xIi
0)

+ D2f(xIi
0,xIi

s0, QIi
s0

) · (xIi − xIi
0)

+ o
(‖xIi − xIi

0‖, ‖xIi
s − xIi

s0‖, |QIi
s −QIi

s0
|) = 0. (2.21)

Thus

D1f(xIi
0,xIi

s0, QIi
s0

) · uIi + D2f(xIi
0,xIi

s0, QIi
s0

) · uIi
s = −F(xIi

0,xIi
s0, QIi

s0
) (2.22)
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where

uIi = xIi − xIi
0, uIi

s = xIi
s − xIi

s0. (2.23)

Similarly,

D1g(xIi
0,xIi

s0, QIi
s0

) · uIi + D2g(xIi
0,xIi

s0, QIi
s0

) · uIi
s = −G(xIi

0,xIi
s0, QIi

s0
) (2.24)

and

D1h(xIi
0,xIi

s0, QIi
s0

) · uIi + D2h(xIi
0,xIi

s0, QIi
s0

) · uIi
s = −H(xIi

0,xIi
s0, QIi

s0
). (2.25)

For a given reference configuration, the above equations give a system of linear difference equations

for the discrete fields of core and shell position vectors. In the sequel, we will simplify the above

equations for a given potential. It will be seen that for a given geometry there are many important

details in deriving the governing system of difference equations.

2.2 Energy and Force in Systems Governed by Pairwise In-

teractions

In this section we explicitly explain some facts about calculating energy and force in a collection of

atoms and study the effect of periodicity in calculation of force. In a system governed by pairwise

interactions, the potential between two atoms with position vectors Xi and Xj is Φ(|Xi−Xj |). The

atom energy is defined formally by

Ei =
1
2

∑

j∈L
j 6=i

Φ(|Xi −Xj |). (2.26)

Note that the 1
2 factor shows up because each atomic bond is shared by two atoms in the lattice. For

now let us assume that the potential is short-ranged and hence all the lattice sums are absolutely

convergent.∗ Consider two systems: (i) A non-periodic system, i.e., an arbitrary collection of atoms

L. We are interested in having an expression giving the force on atom i ∈ L, (ii) We assume that

the system is periodic, i.e., one can group the atoms into unit cells with N atoms in each unit cell

and repeat the unit cell periodically. In this case we want to have an expression for force on atom i

in the unit cell n = 0 ∈ L. We consider the above two cases separately.
∗In Appendix A we review some known results on convergence of lattice sums as we need to have a good under-

standing of different types of convergence for lattice sums in this thesis.
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(i) (Non-periodic System) Energy is defined as

Enp =
1
2

∑

k,j∈L
k 6=j

Φ(|Xj −Xk|). (2.27)

Thus

fnp
i = − ∂

∂Xi
Enp = −1

2

∑

k,j∈L
k 6=j

∂

∂Xi
Φ(|Xj −Xk|). (2.28)

Note that

∂

∂Xi
Φ(|Xj −Xk|) = Φ′(|Xj −Xk|) Xj −Xk

|Xj −Xk| (δij − δik) (no summation) (2.29)

Therefore,

fnp
i = −1

2

∑

k,j∈L
k 6=j

Φ′(|Xj −Xk|) Xj −Xk

|Xj −Xk| δij +
1
2

∑

k,j∈L
k 6=j

Φ′(|Xj −Xk|) Xj −Xk

|Xj −Xk| δik

= −1
2

∑

k∈L
k 6=i

Φ′(|Xi −Xk|) Xi −Xk

|Xj −Xk| +
1
2

∑

j∈L
j 6=i

Φ′(|Xj −Xi|) Xj −Xi

|Xj −Xi|

=
∑

j∈L
j 6=i

Φ′(|Xj −Xi|) Xj −Xi

|Xj −Xi| . (2.30)

(ii) (Periodic System) In this case energy can be written as

Ep =
1
2

N∑

j,k=1

′∑

n∈L
Φ(|rj − rk + n|). (2.31)

Thus

fp
i = − ∂

∂ri
Ep = −1

2

N∑

j,k=1

′∑

n∈L

∂

∂ri
Φ(|rj − rk + n|). (2.32)

But,

∂

∂ri
Φ(|rj − rk + n|) = Φ′(|rj − rk + n|) rj − rk + n

|rj − rk + n| (δij − δik) (no summation). (2.33)

Therefore,

fp
i = −1

2

N∑

j,k=1

′∑

n∈L
Φ′(|rjk + n|) rjk + n

|rjk + n| δij +
1
2

N∑

j,k=1

′∑

n∈L
Φ′(|rjk + n|) rjk + n

|rjk + n| δik

= −1
2

N∑

k=1

′∑

n∈L
Φ′(|rik + n|) rik + n

|rik + n| +
1
2

N∑

j=1

′∑

n∈L
Φ′(|rji + n|) rji + n

|rji + n| . (2.34)
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Note that

−
N∑

k=1

′∑

n∈L
Φ′(|rik + n|) rik + n

|rik + n| =
N∑

k=1

′∑

n∈L
Φ′(|rki − n|) rki − n

|rki − n|

=
N∑

k=1

′∑

n∈L
Φ′(|rki + n|) rki + n

|rki + n| . (2.35)

where use has been made of the fact that if m ∈ L then −m ∈ L by definition of a Bravais

lattice. Therefore,

fp
i =

N∑

j=1

′∑

n∈L
Φ′(|rji + n|) rji + n

|rji + n| . (2.36)

Note that ∑

n∈L
n6=0

Φ′(|n|) n
|n| = 0. (2.37)

Thus

fp
i =

N∑

j=1
j 6=i

∑

n∈L
Φ′(|rji + n|) rji + n

|rji + n| . (2.38)

Lemma 2. For a collection of atoms governed by a pairwise potential,

fnp
i = fp

i . (2.39)

Proof: Noting that rji + n = (rj + n)− ri = Xj −Xi one can rewrite (2.36) as

fp
i =

∑

j∈L
j 6=i

Φ′(|Xj −Xi|) Xj −Xi

|Xj −Xi| ¤ (2.40)

Physically this is because the only difference in the definition of the two forces is in that in the

periodic case all the atoms equivalent to i move with it and hence do not contribute to the force. In

the nonperiodic case each equivalent atom exerts a force on i but because the collection of all the

equivalent atoms is a Bravais lattice the sum of these forces is zero.

2.3 Multi-Lattices of ABO3 Perovskites

In an ABO3 crystal there are three species. ABO3 multi-lattice has five simple sublattices. Through-

out this analysis we adopt the following identification,

A = 1, B = 2, O1 = 3, O2 = 4, O3 = 5
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Table 2.8: Relative position vectors and charges for L− half lattice of BaTiO3.
ID Elm core/shell x1 x3 x2 q(e)
1 Ba c 0.0000 0.0000 0.0000 2.0000
1 Ba s 0.0000 0.0000 -0.0032 -0.3746
1 Ti c 1.9952 1.9952 2.1197 4.0000
1 Ti s 1.9952 1.9952 2.0846 -2.2702
1 O c 1.9952 0.0000 1.9610 2.00000
1 O s 1.9952 0.0000 1.9592 -3.1025
2 O c 0.0000 1.9952 1.9610 2.00000
2 O s 0.0000 1.9952 1.9592 -3.1025
3 O c 1.9952 1.9952 -0.1596 2.00000
3 O s 1.9952 1.9952 -0.2317 -3.1503

where O1, O2 and O3 are the three simple lattices of Oxygen. BaTiO3 and PbTiO3 are studied

in their tetragonal phases with lattice parameters a = b = 3.9904 Å , c = 4.1030 Å and a = b =

3.9053 Å , c = 4.1514 Å, respectively. The coordinates of atoms in a unit cell and atomic charges

in the tetragonal phase are given in Table 2.8 for BaTiO3 and in Table 2.9 (see also Fig. 1.3). Note

that this unit cell has P = (0, 0,−Ps).† For a tetragonal unit cell with P = (0, 0, Ps) the relative

displacements of cores and shells in the x3 for BaTiO3 are,

δBac = 0.0000 Å, δT ic = 0.0682 Å, δO3c = −0.1596 Å, δO1c = δO2c = −0.0905 Å

δBas = −0.0032 Å, δT is = 0.0331 Å, δO3s = −0.2317 Å, δO1s = δO2s = −0.0923 Å

and for PbTiO3,

δPbc = 0.0000 Å, δT ic = 0.185696 Å, δO3c = 0.455469 Å, δO1c = δO2c = 0.552926 Å

δPbs = 0.0826173 Å, δT is = 0.207228 Å, δO3s = 0.577246 Å, δO1s = δO2s = 0.535008 Å

Note that the above tetragonal structures have been obtained for T = 0 and these are just local

minima for energies with multiple wells. The multi-lattice of ABO3 can be defined as

L =
{
x = ν1e1 + ν2e2 + ν3e3 + pi, ν1, ν2, ν3 ∈ Z, i = 1, ..., 5

}
(2.41)

where ei, pi are lattice and shift vectors, respectively. For tetragonal ABO3,

e1 =




a

0

0


 , e2 =




0

c

0


 , e3 =




0

0

a


 (2.42)

†At the end of this section we will explain how one can calculate Ps for a given unit cell configuration.
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and,

p1 =




0

0

0


 , p2 =




a
2

c
2

a
2


 , p3 =




a
2

c
2

0


 , p4 =




0
c
2

a
2


 , p5 =




a
2

0
a
2


 . (2.43)

Fig. 2.4 shows a unit cell with its shift vectors and atom numbers. In this work we will use a shell

Figure 2.4: A unit cell of ABO3 with its shift vectors and atom numbers.

model, in which every atom has a core and a shell of electrons that can move independently. This

means that for defining the multilattice of cores and shells one needs ten shift vectors. We use the

following identification,

{Ac, As, ..., O3c, O3s} = {1, 2, ..., 9, 10}. (2.44)
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Table 2.9: Fractional coordinates and core and shell charges for L− half lattice of PbTiO3.
ID Elm core/shell x1/a x3/a x2/c
1 Pb c 0.0000 0.0000 0.0000
1 Pb s 0.0000 0.0000 0.0199
1 Ti c 0.5000 0.5000 0.5447
1 Ti s 0.5000 0.5000 0.5499
1 O c 0.5000 0.0000 0.6332
1 O s 0.5000 0.0000 0.6289
2 O c 0.0000 0.5000 0.6332
2 O s 0.0000 0.5000 0.6289
3 O c 0.5000 0.5000 0.1097
3 O s 0.5000 0.5000 0.1390

Thus considering an A core site as the origin the shift vectors are,

p1 =




0

0

0


 , p2 =




0

δAs − δAc

0


 , p3 =




a
2

c
2 + δBc − δAc

a
2


 , p4 =




a
2

c
2 + δBs − δAc

a
2


 ,

p5 =




a
2 + δO1c − δAc

c
2

0


 , p6 =




a
2

c
2 + δO1s − δAc

a
2


 , p7 =




0
c
2 + δO2c − δAc

a
2


 , (2.45)

p8 =




0
c
2 + δO2s − δAc

a
2


 , p9 =




0

δO3c − δAc

a
2


 , p10 =




0

δO3s − δAc

a
2


 .

When origin is at a B site one would have similar shift vectors.

2.3.1 Nearest Neighbors in a Multi-Lattice

A given simple Bravais lattice L is in a one-to-one correspondence with the unit cubic lattice L0,

i.e., ϕ : L → L0, where ϕ is a bijection. Points of the unit cubic lattice lie on a sequence of spheres

with radii {Rk}∞k=1 =
{
1,
√

2,
√

3, 2,
√

5,
√

6,
√

8, 3, ...
}
. The set of kth nearest neighbors of x0 ∈ L0

is defined by

N k
0 (x0) = {y ∈ L0 : |y| = Rk} . (2.46)

The set of kth nearest neighbors of a point x ∈ L can be defined by

N k(x) = N k
0 (ϕ(x)). (2.47)
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Consider a multilattice L composed of m simple lattices. This lattice is the disjoint union of m

translates of a simple lattice L1, i.e.,

L =
m⋃

j=1

Lj =
m⋃

j=1

(L1 + pj) (2.48)

where ps’s are the shift vectors and p1 = 0. The set of kth nearest neighbors of x ∈ Li is defined by

i = 1 : N k
i (x) =

m⋃

j=1

N k
(
x + pj − pi;Lj

) ⋃ {
x + p1 − pi, ..., x̂, ...,x + pm − pi

}
(2.49)

i > 1 : N k
i (x) =

m⋃

j=1

N k
(
x + pj − pi;Lj

)
(2.50)

where N k
(
x + pj −pi;Lj

)
is the set of kth nearest neighbors of the point x + pj −pi in the simple

lattice Lj and the hat in x̂ means that x is not considered in the union. Fig. 2.5 shows the set of

first three nearest neighbors for point x in a two-dimensional multi-lattice with m = 2. We will see

in the sequel that because of the discrete translation symmetry in defect-free 180◦ and 90◦ domain

walls (and also free surfaces and steps) one may reduce the governing equations. For the reduced

system, there will not be any ambiguity in defining nearest neighbors.

Figure 2.5: The set of first three neighbors for the atom x.
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2.3.2 Macroscopic Polarization

Macroscopic polarization is an important quantity that is directly seen in Maxwell’s equations. This

quantity is not well-defined for an infinite crystal. Macroscopic polarization cannot be defined as

the dipole moment of the unit cell. The reason is that infinitely many unit cells can define the same

lattice and, in general, the dipole moments of different unit cells of the same crystal are different.

Example 3. Let us consider a simple 1-D periodic distribution of electric charge with the following

charge distribution,

q(x) = q0 sin
2πx

a
(2.51)

We can have the following one-parameter family of unit cells,

[ε, ε + a) ε ∈ [0, a] (2.52)

The unit cell dipole is

p =
∫ ε+a

ε

xq(x)dx (2.53)

It can be easily shown that
dp

dε
= q0a sin

2πx0

a
6= 0 (2.54)

This means that the unit cell dipole depends on ε, i.e., the unit cell dipole explicitly depends on the

unit cell.

It turns out that macroscopic polarization has a quantum mechanical nature (see King-Smith and

Vanderbilt (1989) and Resta (2003)). The well-defined macroscopic quantity is ∆P, i.e., difference

of P for two given states of the crystal and only this difference is an observable (can be measured).

Saying that macroscopic polarization in the cubic phase of ABO3 is zero is just a convention because

the absolute bulk polarization has never been experimentally measured (Resta, 1994). The macro-

scopic polarization of the tetragonal phase is defined as the difference of macroscopic polarizations

of the tetragonal and cubic phases. For the tetragonal ABO3 in the bulk polarization is defined as

P := ∆P (cubic, tetragonal) =
10∑

i=1

Qi(ri − r0
i ) (2.55)

where ri is the position vector of the charge Qi in the tetragonal unit cell (for example, the Ba-

centered tetragonal unit cell given in Table. 2.8). r0
i is the corresponding position vector in the sym-

metric tetragonal configuration. Using the identification {Ac, As, Bc, Bs, O1c, O1s, O2c, O2s, O3c, O3s} =
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{1, ..., 10} we have

r0
1 = r0

2 = {0, 0, 0}
r0
3 = r0

4 =
{a

2
,
c

2
,
a

2

}

r0
5 = r0

6 =
{a

2
,
c

2
, 0

}
(2.56)

r0
7 = r0

8 =
{

0,
c

2
,
a

2

}

r0
9 = r0

10 =
{a

2
, 0,

a

2

}

Defining polarization near a domain wall (or any other defect) in the lattice scale is always ambiguous

and there are different possibilities for choosing the unit cells that support the polarization. We will

come back to this when we solve the 180◦ and 90◦ domain wall problems.

2.4 Long-Range Forces

These are forces that come from Coulombic interactions. The usual practice is to first assume a

periodic system and find an expression for energy of a unit cell using Ewald summation technique and

then find the force vectors by taking the appropriate partial derivatives. We are interested in energy

(and forces) of the reference configuration (forces that push the unrelaxed reference configuration to

relax). It is known that the unit cell should be charge neutral to get a finite energy (de Leeuw et al.,

1980). We choose a unit cell centered at an A core site and containing N=10 charges (five cores and

five charges). This unit cell is charge neutral as can be directly checked from the data in Table 2.8,

for example. Assuming that each unit cell is a lattice site, we will have a simple tetragonal lattice

of unit cells and denote it by L. It should be noted that, for a 180◦ domain wall, this lattice has

three types of unit cells in terms of internal coordinates rij of charges in each unit cell. These are

unit cells on the right side of the domain wall, unit cell on the domain wall and unit cells on the left

side of the domain wall. This can be expressed by the following partitioning of L,

L = L+ t L0 t L− (2.57)

We are interested in calculating f i = − ∂E
∂xi (B0), where E is the electrostatic energy of the unit cell

containing the atom i. We know that

SC potetial : E =
1
2

∑

n∈L

′
N∑

j,k=1

QjQk

|rjk(n) + n| (2.58)

PCEFF potebtial : E =
1
2

∑

n∈L

′
N∑

j,k=1

QjQkerf(βjk|rjk(n) + n|)
|rjk(n) + n| (2.59)
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Thus

SC potetial :
∂E
∂xi

=
1
2

∑

n∈L

′
N∑

j=1

QiQj
∂

∂xi

QjQk

|rij(n) + n| (2.60)

PCEFF potebtial :
∂E
∂xi

=
1
2

∑

n∈L

′
N∑

j=1

QiQj
∂

∂xi

QjQkerf(βjk|rjk(n) + n|)
|rij(n) + n| (2.61)

Note that the unit-cell energy as defined above does not make sense. In other words, the lattice

sums defining the unit-cell energy are conditionally convergent. This means that some information

is missing and simply having the position of charges in an indefinite system is not enough for

calculating the unit-cell energy unambiguously. The appearance of conditionally convergent lattice

sums in energy calculations is due to surface charges.

2.4.1 Wolf’s Method for PCEFF-Potential

In a recent paper, Wolf et al. (Wolf et al., 1999) studied the Madelung problem by direct summation.

Earlier Wolf (Wolf, 1992),(Wolf, 1995) had observed that the effective Coulombic potential of ions

in condensed systems is short-ranged and falls off as r−5. Based on this and similar observations

by others, Wolf et al. (1999) developed a numerical method for calculating the Madelung energy

by direct summation in direct space. Their idea is to consider spherical shells of increasing radii

and calculate the electrostatic energy of corresponding neutralized spherical balls. It is assumed

that the total charge of a given spherical ball is concentrated on its boundary sphere instead of in

a layer of thickness equal to the length of the shift vector (for a multilattice of two simple lattices

like NaCl). For NaCl lattice, they numerically show that the sequence of energies of the neutralized

spherical balls approaches to the Madelung energy of the infinite lattice in an oscillatory way. They

show that neutralizing a spherical ball is equivalent to radially projecting every charge inside the

ball on the boundary sphere with the opposite charge. However, they do not mention the fact that

their projection is not unique and putting the neutralizing charges anywhere on the sphere gives

the same Madelung energy. The important thing to note is that forces (and higher derivatives of

energy) depend on the position of neutralizing charges and it is not clear to us why Wolf’s projection

should give the correct forces.‡ This method is very attractive as it does not assume any (artificial)

periodicity. However, this method ignores the effect of surface charge distribution.

The shortcoming of Wolf et al.’s (Wolf et al., 1999) work is that it is tested only for simple

multi-lattices like NaCl and only for spherical geometry. It is not clear if this method can be used

for an arbitrary multilattice of charges and for other geometries. It would also be interesting to

know what happens if one considers cubic shells instead of spherical shells, for example. The most
‡The numerical tests show that this projection gives the correct forces but the convergence is very poor. This will

be numerically shown for BaTiO3 and PbTiO3 in this chapter.
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serious problem is the lack of a rigorous proof of energy convergence in this method.

Let us first briefly review this method for PCEFF potential. We will compare the results with

full Ewald summation later. Consider a charge i with position vector xi (this could be a core or a

shell charge) and a spherical shell with radius Rc. We consider only those charges that lie inside the

sphere. In general, the collection of charges inside the sphere is not charge neutral. The energy of

ion i for the cut-off radius Rc is

Ei(Rc) =
1
2

∑

j 6=i
|xij |<Rc

QiQj erf(βij |xij |)
|xij | (2.62)

where xij = xi − xj is the relative position vector. It should be noted that this energy does not

converge to the correct Madelung energy as Rc →∞ because of the lack of charge neutrality. Wolf

et al. (1999) resolve this by considering a sequence of charge-neutralized spheres. It is assumed that

the net charge is concentrated on the boundary of the sphere. The neutralized potential can be

written as

Eneut.
i (Rc) =

1
2

∑

j
|xij |<Rc

QiQj erf(βijRc)
Rc

(2.63)

Note that this includes the term i = j. Also note that

∆Qi(Rc) =
∑

j
|xij |<Rc

Qj (2.64)

and each Qj interacts with Qi by a different potential (because of different charge distributions for

different species). Neutralizing a given sphere is equivalent to radially projecting each charge on the

sphere with the opposite sign. To be able to calculate the forces due to the neutralizing potential,

the neutralizing potential should be rewritten as

Eneut.
i (Rc) = lim

|xij |→Rc

1
2

∑

j 6=i
|xij |<Rc

QiQj erf(βij |xij |)
|xij | +

Q2
i erf(βijRc)

2Rc

Therefore the electrostatic energy of the charge i is

Etot.
i (Rc) =

1
2

∑

j 6=i
|xij |<Rc

QiQj erf(βij |xij |)
|xij | − lim

|xij |→Rc

1
2

∑

j 6=i
|xij |<Rc

QiQj erf(βij |xij |)
|xij | − Q2

i erf(βijRc)
2Rc
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Now, for example, force on charge i can be written as

f i = −1
2

∑

j 6=i
|xij |<Rc

∂

∂xi

QiQj erf(βij |xij |)
|xij | + lim

|xij |→Rc

1
2

∑

j 6=i
|xij |<Rc

∂

∂xi

QiQj erf(βij |xij |)
|xij |

2.4.2 Damped Wolf’s Method

We first explain the damped Wolf’s method for the classical Coulombic potential and then generalize

it for PCEFF potential and numerically investigate its validity. We also numerically study the energy

and force convergence for PbTiO3 lattice using the SC classical shell potential. In this method the

complementary error function is used as the damping function. The only reason for choosing this

function, besides the required properties it has, is that this is the same damping function used in

the classical Ewald summation method. The energy of the ith charge can be written as

E i =
1
2

∑

j 6=i

QiQj erfc(α|xij |)
|xij | +

1
2

∑

j 6=i

QiQj erf(α|xij |)
|xij | (2.65)

where α is a damping parameter. Now the idea is to decompose the energy into two parts such that

one part is negligible. The above decomposition does not have this property because the second

term becomes very large for large values of α. However adding the term corresponding to i = j and

subtracting it from the first term would make (2.67) what we need. Thus

E i
sphere(Rc) ≈ 1

2

∑

j 6=i
|xij |<Rc

QiQj erfc(α|xij |)
|xij | − α√

π
Q2

i (2.66)

The neutralizing energy is

E i
neut(Rc) =

1
2

Qi∆Qi(Rc)erfc(αRc)
Rc

=
1
2

lim
|xij |→Rc

∑

j 6=i
|xij |<Rc

QiQj erfc(α|xij |)
|xij | +

erfc(αRc)
2Rc

Q2
i

Therefore, the energy for a cut-off radius Rc is

E i(Rc) =
1
2

∑

j 6=i
|xij |<Rc

[QiQj erfc(α|xij |)
|xij | − lim

|xij |→Rc

QiQj erfc(α|xij |)
|xij |

]
−

(erfc(αRc)
2Rc

+
α√
π

)
Q2

i

Similarly for PCEFF-potential we have

E i =
1
2

∑

j 6=i

QiQj

[
erfc(α|xij |)− erfc(βij |xij |)

]

|xij | +
1
2

∑

j 6=i

QiQj erf(α|xij |)
|xij | (2.67)
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The neutralizing energy for PCEFF potential is

E i
neut(Rc) =

1
2

lim
|xij |→Rc

∑

j 6=i
|xij |<Rc

QiQj [erfc(α|xij |)− erfc(βijRc)]
|xij | +

erfc(αRc)− erfc(βiiRc)
2Rc

Q2
i

(2.68)

Thus

E i(Rc) =
1
2

∑

j 6=i
|xij |<Rc

[QiQj

[
erfc(α|xij |)− erfc(βij |xij |)

]

|xij | − lim
|xij |→Rc

QiQj

[
erfc(α|xij |)− erfc(βij |xij |)

]

|xij |
]

−
(erfc(αRc)− erfc(βiiRc)

2Rc
+

α√
π

)
Q2

i (2.69)

2.4.3 Comparison Between Wolf and Ewald Methods

It is not clear if Wolf’s method agrees with Ewald summation technique for an arbitrary crystal.

Wolf et al. (1999) studied their method carefully for NaCl and a few other simple crystals. We

repeated the same calculations for NaCl and were able to reproduce the same results. To see the

effect of the number of sulattices in a multi-lattice of charges, we calculated the Madelung’s constant

of CaF2 using Wolf and Ewald methods and obtained the same results. It should be noted that in

Ewald’s method the dipole energy is ignored for centrosymmetric crystals (see Deem et al. (1990) for

a theoretical justification). In all our numerical tests (even for the noncentrosymmetric BaTiO3 with

shifted shells) Wolf’s method converges to Ewald energy without the dipole energy term. However,

the convergence is very poor as will be seen shortly.

Assuming that the surrounding medium is a conductor the dipole energy part of Ewald can

be ignored. All the calculations for fitting the energy parameters of BaTiO3 are based on this

assumption (Goddard et al., 2003). It is known that Ewald method corresponds to summing the

conditionally convergent lattice by shells which have zero dipole (Harris, 1975). But it is not clear to

us how this relates to Wolf charge-neutralized spheres. Wolf’s method in its present form makes every

spherical shell charge neutral but not dipole free, in general. One should note that for neutralizing

a given sphere for each charge q inside the sphere a charge −q should be put on the sphere. The

position of the charge −q is immaterial in calculating the Madelung energy. However, position of

the neutralizing charge affects the force values. It is not clear to us why the projection proposed by

Wolf et al. (Wolf et al., 1999) should be the right one.§

Now we present a simple modification of Wolf’s method that makes a spherical shell both charge

neutral and dipole free. Consider a given lattice point with charge q0. We like to calculate the

energy of this charge ( half of the energy of all the bonds that are incident to this charge). Consider

§A rigorous proof is missing here.
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a spherical shell of radius Rc centered at q0. It is again assumed that the net charge is distributed

on the boundary of the sphere. The projection proposed by Wolf et al. (1999) is shown in Fig. 2.6a.

As was explained before, every charge inside the sphere is projected radially on the sphere boundary

and is given the opposite sign. A charge −q0 is also put on an arbitrary point of the boundary of

the sphere. This transformation makes the sphere charge neutral but, in general, not dipole free.

Our modified projection is shown in Fig. 2.6b. Instead of projecting a given charge on one point

on the sphere boundary, we project it to two antipodal points corresponding to the position of the

charge qi and assume that there are two charges αqi and βqi at these two points and find α and β

such that

(α + β)qi + qi = 0, qixi + αqi
Rc

|xi|xi − βqi
Rc

|xi|xi = 0 (2.70)

This gives us

α = −1
2

( |xi|
Rc

+ 1
)
, β =

1
2

( |xi|
Rc

− 1
)

(2.71)

Two charges of magnitude − q0
2 are put on two arbitrary antipodal points. Now, it is clear that the

transformed system of charges is both charge neutral and dipole free. Our numerical tests show that

for a centrosymmetric crystal this modified method gives the same force values as Wolf et al.’s give.

But, for noncentrosymmetric crystals, our modified method does not give the correct forces.¶

We have performed the following numerical tests for tetragonal BaTiO3 and PbTiO3.

• BaTiO3: The convergence of the unit cell energy in the bulk tetragonal phase using Ewald,

Wolf and damped Wolf is shown in Fig. 2.7. The convergence of energy for the usual Wolf

method, i.e., taking charge neutralized spheres is very poor; the cut-off radius should be about

15 lattice spacings to get reasonable results. The damped method (for α < 0.4) converges very

nicely but for α > 0.6 or 0.8, the energy converges to a wrong value. Ewald’s idea is to add and

subtract a distributed charge for each charge in the lattice. Adding a Gaussian distribution of

opposite charge leads to a lattice sum of complementary error functions which can be easily

calculated in the real (direct) space (as it is absolutely convergent with a very good rate of

convergence). The other charge distribution, which has the same sign as the point charges, is

another absolutely convergent lattice sum that is summed in the reciprocal lattice because of

its poor rate of convergence. If α is very small, i.e., if the distributed charges are very flat,

the part in the reciprocal lattice is extremely small and can be ignored. We believe damped

Wolf method is nothing but Ewald without the reciprocal space part. The dependence on α

shows that this method is not robust and should be carefully tested for a given crystal system.

We compared damped Wolf with Ewald without Fourier part and they are almost the same

for cut-off radii larger than 3a. We think the reason is that the contribution of neutralizing
¶This is interesting and should be studied more carefully. One would be interested to see if there is a relation

between this and the Ewald clusters in the direct space.
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charges to energy is O(1/Rc) and becomes very small for large Rc. So, we do not believe

there is anything profound about damped Wolf method but still it can be a useful method if

used carefully. The other thing that we should not forget is that in Ewald method there is a

shape-dependent term that reflects the long-range nature of interactions and also depends on

boundary conditions. Wolf’s method, in its present form, does not have any shape-dependent

and/or boundary condition-dependent terms. An interesting thing to be noted is the fact that

unlike NaCl lattice (that was the case study in Wolf’s papers), convergence is not oscillatory.

This could mean that geometry of the lattice has some effects. A detailed study of electrostatic

Figure 2.6: (a) Wolf projection of charges inside a sphere of radius Rc. (b) A modified projection.

forces in the bulk tetragonal using Ewald and the usual Wolf are shown in Fig. 2.8. All the

shell and core forces are shown. Note that two of the oxygens have the same forces in the bulk

due to symmetry. Again, Wolf’s method has a very poor convergence behavior and even after

taking the cut-off radius of Rc = 16a, forces do not converge to the correct values. The same

study for damped Wolf (α = 0.2) is shown in Fig 2.9. This time convergence is excellent and

taking Rc = 5a is enough. Again, large values of α will lead to incorrect force values.

• PbTiO3: We performed similar numerical tests for PbTiO3. The calculated unit-cell energy

using Wold’s method, Ewald and damped Wolf’s method for different values of the damping

parameter are compared in Fig. 2.10. It is interesting that in damped Wolf’s method energy

is very sensitive to the damping parameter and there is a very small interval of α that gives

the correct energy. The optimum values is α ' 0.01. Similar to BaTiO3, Wolf’s method does

not have a good convergence as the calculated energy does not converge to its correct values

even for Rc = 14a. The other thing to note is that convergence is not oscillatory.

Pb core forces calculated using Wolf, Ewald and damped Wolf are compared in Fig. 2.11. Here

a larger interval of α is acceptable and the optimum value is α ' 0.2. Wolf’s method is very

slowly convergent and hence not practically useful.
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Figure 2.7: Wolf energy convergence for BaTiO3 unit cell.

2.5 Structure Optimization

In this section we explain in some detail how we optimized the structure of tetragonal PbTiO3 given

the shell potential parameters. We also discuss the stability check of the optimized structure.

2.5.1 Molecular Mechanics

Born-Oppenheimer (BO) approximation is implicitly used in molecular mechanics. BO approxi-

mation states that for a molecule the Schrodinger equation can be separated into two parts, one

describing the motion of electrons and one describing the motion of nuclei and that these two sets of

motions can be studied independently. In molecular mechanics electrons are not explicitly examined

and only the motion of nuclei is studied; it is assumed that electrons find an optimum distribution

about the nuclei. The potential energy surface (or Born-Oppenheimer surface) is a manifold that

describes the energy of the molecule in terms of the position of nuclei. In the case of shell models

some average position of electrons is considered too. In molecular mechanics one starts from a set

of empirically derived functions for the potential energy function. This set of potential functions are

called force fields that contain some adjustable parameters, which are optimized to obtain the best

fit of experimental (or quantum-mechanically calculated) properties of the molecules, like structure,

heat of formation, lattice parameters, etc. (see Carlsson (1990) and Gale (1996) for more details).

Many problems are tractable with interatomic potentials but too complex to be treated with
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quantum-mechanical methods. One application of an empirical potential energy function is in finding

the geometry of a molecule that corresponds to a local minimum of the potential energy. The process

of finding local minima of an empirical potential energy function is called molecular mechanics. It

should be noted that the potential energy function refers to a ground state of the molecule. This

means that the potential energy function does not explicitly deal with the electronic structure. Given

a potential energy function, one usually looks for local minima which make sense physically, e.g.,

the ones that are close to the experimental data. In general the energy landscape could be very

complicated and finding the global minimum may be very difficult. Unless the potential energy has

one well, the optimized geometry obtained depends on the starting configuration. Most optimization

codes find the local minima. In some applications one would be even more interested in some local

minima that are not the global minimum. This may be the case in understanding metastable states

or energy barrier for moving from one equilibrium state to another one. For more details on molecular

mechanics and different issues in structure optimization see Burkert and Allinger (1982) and Wales

(2003).

In general the energy of a given collection of atoms L has the following form,

E ({xi}) =
∑

i∈L
φ1(xi) +

1
2

∑

i,j∈L
φ2(xi,xj) +

1
6

∑

i,j,k∈L
φ3(xi,xj ,xk) + ... (2.72)

Considering only the first two terms the resulting potential is called a pair potential. Considering

three-body interactions (or higher interactions) the potential is called a cluster potential (Carlsson,

1990). Note that a cluster potential is not the most general form of the total configurational energy.

One could use environment-dependent potentials in some application (Carlsson, 1990). For many

molecules considering two body interactions is enough. In shell models all the potential functions are

pairwise (two-body) and also isotropic (i.e., explicitly depend on the relative distance between cores

and shells). However, each atom is composed of a core and a shell that interact with other cores

and shells independently. This is somehow a correction for the many body nature of interactions of

charges.

Given a shell model one needs to find the optimized structure of the ground state. We briefly

explain this process for PbTiO3 using the SC potential. For fixed experimental lattice parameters

a = b = 3.9053Å and c = 4.1514Å, the unit cell energy is a function of the variable x ∈ R7 defined

as

x = {δsPb, δT i, δsTi, δO1, δsO1, δO3, δsO3} (2.73)

where the origin is the Pb core and the symmetries δO1 = δO2 and δsO1 = δsO2 have been used.

Thus

Ecell = Ecell(x) (2.74)
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The unit cell energy Ecell has a short-range part and a long-range part. The long-range part is

calculated using the Ewald method. The unit cell force is defined as

fcell = −∂Ecell

∂x
(2.75)

In the optimized structure fcell = 0. We use the Newton-Raphson iteration method for finding the

optimized structure. Starting from an initial guess x0
‖,

xk+1 = xk −H−1
k fk k ≥ 0 (2.76)

where Hk is the Hessian matrix in the kth iteration and is defined as

H =
∂2Ecell

∂x∂y
∈ R7×7 (2.77)

The expressions and the method of derivation of force and Hessian in electrostatic systems are given

in Appendix A. The optimized structure is given in Table 2.9 and agrees with what GULP (Gale,

1997),(Gale and Rohl, 2003) predicts. The Hessian of the optimized structure is positive-definite

with the following eigenvalues (in units of eV

Å2
),

Eigenvalues(H) = {2853.000, 202.402, 133.276, 63.8607, 20.467, 10.849, 0.896} (2.78)

This is the same structure that Sirpiensky et al. (private communication) obtained. The structure

optimization was performed under the tetragonal constraint. We observed that Hessian of the

optimized structure is not positive-definite if arbitrary perturbations are allowed (i.e., when H ∈
R27×27). This means that we have to do all the calculations under the constraint that all the

displacements are in the tetragonal c-direction. We have not been able to find an interatomic

potential that is completely stable. However, all the formulations and implementations are general

and do not need any constraints.

‖In molecular calculations this initial guess is chosen to be close to experimental data if there is any. The reason
is that the energy landscape might be extremely complicated. For PbTiO3 we chose different initial guesses and did
not see any sensitivity to the initial guess.
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Figure 2.8: (a) Ewald and Wolf core electrostatic forces in BaTiO3, (b) Ewald and Wolf shell
electrostatic forces in BaTiO3.
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Figure 2.9: (a) Ewald and damped Wolf (α = 0.2) core electrostatic forces, (b) Ewald and Wolf
(α = 0.2) shell electrostatic forces.
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Figure 2.10: Unit cell electrostatic energy in PbTiO3 using Ewald, Wolf and damped Wolf methods.

Figure 2.11: Pb core force in tetragonal direction in PbTi3.
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Chapter 3

Discrete Governing Equations

In this chapter we discuss the method of construction of the discrete governing equations. We

use Mathematica for the symbolic and numerical calculations. First we find the coefficients of the

governing difference equations for an atom which is far enough from the domain wall (or any other

defect) such that all the interacting neighbors are on one side of the wall. This will give us all the

global governing difference equations. We will find the boundary equations later. Suppose we are

given a collection of atoms L.

Definition 4. Atom energy E i for a given atom i ∈ L is one half of the energy of all those atomic

bonds that are incident to i.

Definition 5. For an atom i ∈ L the neighboring set Si is the set of all the atoms in L that interact

with i. Note that i /∈ Si, i.e., there are no self interactions.

Note that

E i = E i
(
xi, {xj}j∈Si

)
(3.1)

The total energy is a function of the atomic positions (for now we are looking only at short-range

interactions),

E = E ({xj}j∈L
)

(3.2)

Suppose the position of a given atom is xi. Assuming that there are no discrete body forces,

equilibrium of this atom is equivalent to minimizing the total energy with respect to its position, i.e,

∂E
∂xi

= 0 ∀i ∈ L (3.3)

It can be easily shown that this is equivalent to minimizing the energy of the atom E i with respect

to xi, i.e.,
∂E i

∂xi

(
xi, {xj}j∈Si

)
= 0 (3.4)

Suppose we are given a defective crystal for which the reference configuration L can be partitioned
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into some equivalence classes. We assume that for our two-dimensional defect (a domain wall for

example) L can be partitioned into two-dimensional equivalence classes, i.e., infinite sets of atoms

that lie on some planes. This is not the only possibility but is general enough for now.∗ The

neighboring set Si can be partitioned as

Si =
m⋃

α=−m

5⋃

I=1

SIα (3.5)

where SIα is the subset of all the atoms of the same type and index, I ∈ {1, 2, 3, 4, 5} represents the

atom type and α ∈ {−m, ..., m} represents the nearest neighbor index. For the sake of clarity, we

work with m = 2 and then generalize the results. Taylor expansion of the governing equations for

atom i about the reference configuration B0 =
(
xi

0, {xj
0}i∈L

)
, Eq. (3.3) reads,

∂E
∂xi

=
∂E
∂xi

(B0) +
∂2E i

∂xi∂xi
(B0) (xi − xi

0) +
∑

j∈Si

∂2E i

∂xi∂xj
(B0) (xj − xj

0) + ... = 0 (3.6)

Note that

∑

j∈Si

∂2E i

∂xi∂xj

(B0

)
(xj − xj

0) =
2∑

α=−2

′
5∑

I=1

∑

Jβ∈SIα

∂2E i

∂xi∂xJβ
(B0)

(
xJβ − xJβ

0

)
(3.7)

where the prime on the first sum means that the term α = 0, I = i is excluded because by definition

i /∈ Si, i.e., there are no self interactions. Also note that in the above sum each mixed partial

derivative of the energy E i represents only one term, which is nothing but the derivative of the pair

potential representing the interaction of atoms i and j.

Lemma 6. For a system governed by pairwise interactions,

∂2E i

∂xi∂xi
(B0) = −

∑

j∈Si

∂2E i

∂xi∂xj
(B0) (3.8)

Proof: Note that
∂E
∂xi

=
∑

j∈Si

Ψ(xi,xj) (3.9)

where

Ψ(xi,xj) = Φ′(|xi − xj |) xi − xj

|xi − xj | (3.10)

∗Later we will have a 2-D symmetry reduction for a 180◦ step in PbTiO3.
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Thus

∂2E
∂xi∂xi

=
∑

j∈Si

∂

∂xi
Ψ(xi,xj) (3.11)

∂2E
∂xi∂xj

=
∑

j∈Si

∂

∂xj
Ψ(xi,xj) (3.12)

But,

∂

∂xi
Ψ(xi,xj) = Φ′′(|xi − xj |) (xi − xj)⊗ (xi − xj)

|xi − xj |2 +
Φ′(|xi − xj |) 1
|xi − xj |

−Φ′(|xi − xj |) (xi − xj)⊗ (xi − xj)
|xi − xj |3 (3.13)

And,
∂

∂xj
Ψ(xi,xj) = − ∂

∂xi
Ψ(xi,xj) ¤ (3.14)

Linearization of the discrete governing equations about the reference configuration B0 means that

only terms up to quadratic should be kept. This gives us the following system of linear difference

equations,
2∑

α=-2

′
5∑

I=1

KiIαuIα +

(
−

2∑

α=-2

′
5∑

I=1

KiIα

)
ui = fi (3.15)

where

KiIα =
∑

Jβ∈SIα

∂2E i

∂xi∂xJβ
(B0)

fi = −∂E i

∂xi
(B0) (3.16)

uIα = xIα − xIα
0 = xJβ − xJβ

0 ∀ Jβ ∈ SIα

Prime on the second sum in (3.15) means that the term α = 0, I = i is omitted. Note that the

symmetry of 180◦ and 90◦ domain walls implies that atoms of the same type that lie on a plane

parallel to the domain wall are all equivalent. In other words, a planar defect (a 180◦ or 90◦ here)

leaves the translation invariance of the lattice in y and z directions (yz is the plane of the defect)

unchanged. This means that there is a discrete group of translations that partitions the lattice into

equivalence classes. This implies that atoms in the same equivalence class contribute to the same

stiffness matrix. Note also that to calculate KiIα, contributions from atoms of the same type and

index will add up. That is why two summations appear in the Taylor expansion. Also note that

considering first and second nearest neighbors in the reduced 1-D system (for m = 2), there are

twenty five KiIα and twenty five uIα and that ui,uIα, fi ∈ R3 and KiIα ∈ R3×3. In general, for

interactions of order m, there are 5(2m + 1) submatrices and five force vectors.
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Let us define a vector Xn ∈ R15,

Xn =
(

x1n ... x5n

)T

(3.17)

where n is the atomic index (unit cell number) defined above. In the end, we will need to solve a

system of linear difference equations with constant coefficients with the following form.

α=m∑
α=−m

AαXn+α = Fn , |n| ≥ m + 2 (3.18)

where Aα ∈ R15×15, α = −m, ...,m and Fn ∈ R15, ∀n ∈ N. Note that, in general, Aα need not

be symmetric as will be explained shortly. The above system of difference equations is a Volterra

system of difference equations (see Elaydi (1996))†.

The relation between KiIα and, for example, A-1 and A0 of Eq. (3.18) is‡

Ashort
-2 =




K11-2 K12-2 K13-2 K14-2 K15-2

K21-2 K22-2 K23-2 K24-2 K25-2

K31-2 K32-2 K33-2 K34-2 K35-2

K41-2 K42-2 K43-2 K44-2 K45-2

K51-2 K52-2 K53-2 K54-2 K55-2




Ashort
0 =




K110 K120 K130 K140 K150

K210 K220 K230 K240 K250

K310 K320 K330 K340 K350

K410 K420 K430 K440 K450

K510 K520 K530 K540 K550




This can be verified by direct expansion of Eq. (3.15). Also,

Fn =




−fA

−fB

−fO1

−fO2

−fO3




(3.19)

†As will become clearer in the sequel, lattice statics analysis of ferroelectric domain walls will lead to the solution
of vector-valued ordinary difference equations with variable coefficient matrices. Inhomogeneities are localized and
the idea is to treat the inhomogeneous region as boundary and transition regions. This will result in two vector-
valued difference equations with constant coefficient matrices one forward and one backward. In the end, the original
difference equation will be solved by matching the solutions of these two ordinary difference equations.

‡Construction of these stiffness matrices is very much like what is called direct stiffness assembly in structural
mechanics.
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There are some subtleties in calculating the Aα matrices. Some interactions should be ignored.

One is the interaction of an atom of type I and index n with all atoms of type I and index n, i.e., there

are no interactions within a given equivalence class (this is nothing but a restatement of i /∈ Si).

This means that Ashort
0 has a special structure. When position of atom i of type I changes, all its

equivalent atoms, i.e., those with α = 0 undergo the same perturbation. Atoms of the same type as

i do not contribute to energy of i because the potential is pairwise and their relative distances from

the atom i are always the same. This means that

KII0 = −
2∑

α=-2

′
5∑

J=1
J 6=I

KIJα (3.20)

The same thing is true for forcing terms. The reason for this is that the distance between the

equivalent atoms is fixed and the equivalent atoms of i do not contribute to −∂Ei

∂xi and its derivatives.

The other subtlety is the following. Consider atoms with index n and project the whole crystal (with

a domain wall) on a line perpendicular to the domain wall (parallel to x axis). We have the picture

shown in Fig. 3.1 for A and O2 atoms. We consider the interaction of A and O2 atoms with other

Figure 3.1: Nearest neighbors of A and O2 atoms and their indices.

A and O2 atoms of indices {n − m, ..., n + m} (except the one that have already been excluded).

Looking at Fig. 3.1, one can see that symmetry of interactions dictates that interactions of A and O2

atoms with O1, O2 and O3 atoms with index n+m should be ignored. Similarly, consider atoms B,

O2 or O3 with index n and their nearest neighbors as shown in Fig. 3.2. Every atom B (O1 or O3)

interacts with B, O1 and O3 atoms with index {n−m, ..., n + m} (except the one that have already

been excluded). Again, symmetry implies that the interactions of B, O1 and O3 atoms with A and

O2 atoms with index n−m should be ignored. The other interesting subtlety is the symmetry of Aα

matrices. It should be noted that each KiIα is symmetric but the matrices Aα (α = −m, ..., m) are

not symmetric. This can be seen more clearly in a simple 2-D model. Consider a 2-D rectangular

multi-lattice composed of two simple lattices each with lattice parameters a and c and the shift

vector p = (p1, p2). This system has three coefficient matrices A-1,A0,A1 ∈ R4×4. We now compare
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Figure 3.2: Nearest neighbors of B, O1 and O3 atoms and their indices.

K12-1 and K21-1 to see if A-1 is symmetric. It can be easily shown that

K12-1 =
∑

Y {n−1}

∂2E

∂xn−1∂yn−1

(B0

)
(3.21)

K21-1 =
∑

X{n−1}

∂2E

∂yn−1∂xn−1

(B0

)
(3.22)

where X{n− 1} is the set of atoms of type 1 which have index n− 1 relative to the atom n of type

2 (these are the black circles in Fig. 3.3). Similarly, Y {n − 1} is the set of atoms of type 2 which

have index n − 1 relative to the atom n of type 1 (these are the black squares in Fig. 3.3). xn−1

and yn−1 are position vectors of atoms of types 1 and 2 with index n− 1, respectively. As it is seen

in Fig. 3.3, these two matrices are not equal as the length of the corresponding relative position

vectors are not equal. It should be noted that the lose of symmetry in the reduced 1-D system is just

a consequence of symmetry reduction and still the underlying 3-D physical system is symmetric.

As was mentioned earlier, starting from an interatomic potential one does not need to worry

about the symmetries of the force constants. Here we check one of the symmetries. Suppose all the

atoms in the lattice have the same displacements, i.e.,

Xn = C =
(

c c c c c
)T

, c ∈ R3 (3.23)

Using Eq. (3.20), it can be easily shown that

α=m∑
α=−m

AαC = 0 ∀c ∈ R3 (3.24)

i.e.,

Nullity
( α=m∑

α=−m

Aα

)
= 3 (3.25)

as was expected.
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Figure 3.3: Non-symmetry of Ai matrices.

Long-range interactions can be treated similarly. Given an atom i, we want to calculate all the

relevant stiffnesses that come from the interaction energy. In the interaction of atom i with atom j,

four separate interactions should be considered as is schematically shown in Fig. 2.3. In this case

the total energy has the following form,

E = E({xj}, {xj
s}

)
(3.26)

Considering shell charges as variables, stiffness matrices will be of orders O
(

1
r2

)
and O

(
1
r3

)
and this

one order of magnitude difference will lead to extremely ill-conditioned stiffness matrices. In our

lattice statics model, we assume that core and shell charges are fixed. Assuming that there are no

discrete body forces, the system is in equilibrium if and only if

∂E
∂xi

= 0,
∂E
∂xi

s

= 0 ∀ i ∈ L (3.27)

This is equivalent to,
∂E i

∂xi
= 0,

∂E i

∂xi
s

= 0 ∀ i ∈ L (3.28)

where E i is the energy of the atom i, which is one half of the energy of all the atomic bonds that

are incident to i. Note that the Coulombic energy is O( 1
r ) and this means that electrostatic force is

O( 1
r2 ) and the electrostatic stiffness coefficients are O( 1

r3 ). In our calculations, we consider a finite
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range of interaction for stiffness coefficients in order to have a system of difference equations of finite

order.§ However, electrostatic forces are calculated exactly using Ewald summation technique or

direct summation in direct space following Wolf et al. (Wolf et al., 1999). We will have a discussion

on energy and force calculations shortly. Note that each atom should interact with atoms on finitely

many planes (of atoms) in order to have a system of governing difference equations of finite order.

Consider an atom of type i interacting with atoms of type I lying on a plane with index n + 1.

The submatrix KiI1 representing this interaction is defined by summing different contributions of

equivalent atoms on the plane n + 1. This lattice sum is absolutely convergent as the stiffness

coefficients are O( 1
r3 ) and the summation is on a plane with dimension 2¶. This means there is no

ambiguity in calculating electrostatic stiffnesses.‖ The second alternative is to use Ewald’s expression

for energy and then minimize it. The nice thing would be the fact that in this case the energy can

be calculated with a good accuracy taking into account a small number of nearest neighbors (in

real and Fourier spaces). The problem with this method is that Ewald’s energy is valid only for a

completely periodic system. By minimizing Ewald’s energy we would implicitly look for local energy

minimizers only in the class of periodic solutions. This is why we choose not to use this method.∗∗

Linearizing equations (3.28) about a reference configuration B0 =
({xj

0}, {xj
s0}

)
gives us the

following system of linear equations,

∂2E i

∂xi∂xi
(B0)ui +

2∑

α=-2

′
5∑

I=1

∑

Jβ∈SIα

∂2E i

∂xi∂xJβ
(B0)uIα +

2∑

α=-2

′
5∑

I=1

∑

Jβ∈SIα

∂2E i

∂xi∂xJβ
s

(B0)uIα
s = − ∂E

∂xi
(B0)

∂2E i

∂xi
s∂xi

s

(B0)ui
s +

2∑

α=-2

′
5∑

I=1

∑

Jβ∈SIα

∂2E i

∂xi
s∂xJβ

(B0)uIα +
2∑

α=-2

′
5∑

I=1

∑

Jβ∈SIα

∂2E i

∂xi
s∂xJβ

s

(B0)uIα
s = − ∂E

∂xi
s

(B0)

This can be written as

2∑

α=-2

′
5∑

I=1

Kcc
iIαuIα +

2∑

α=-2

′
5∑

I=1

Kcs
iIαuIα

s +
(
−

2∑

α=-2

′
5∑

I=1

[
Kcc

iIα + Kcs
iIα

])
ui = f c

i (3.29)

2∑

α=-2

′
5∑

I=1

Ksc
iIαuIα +

2∑

α=-2

′
5∑

I=1

Kss
iIαuIα

s +
(
−

2∑

α=-2

′
5∑

I=1

[
Ksc

iIα + Kss
iIα

])
ui

s = fs
i (3.30)

§The effect of range of interaction will be numerically studied in the sequel.
¶Note that any lattice sum in Rp with terms O( 1

rp+1 ) is absolutely convergent.
‖However, these absolutely convergent lattice sums converge slowly and one should be careful and take enough

number of lattice points for calculating the substiffness matrices. Our numerical tests show that taking 502 lattice
points in a given plane is enough for accurate calculation of the corresponding substiffness matrix.
∗∗In Appendix A we will discuss some issues on convergence of lattice sums.
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where

Kcc
iIα =

∑

Jβ∈SIα

∂2E i

∂xi∂xJβ
(B0) ∈ R3×3, Kcs

iIα =
∑

Jβ∈SIα

∂2E i

∂xi∂xJβ
s

(B0) ∈ R3×3

Ksc
iIα =

∑

Jβ∈SIα

∂2E i

∂xi
s∂xJβ

(B0) ∈ R3×3, Kss
iIα =

∑

Jβ∈SIα

∂2E i

∂xi
s∂xJβ

s

(B0) ∈ R3×3

f c
i = − ∂E

∂xi
(B0) ∈ R3×1, fs

i = − ∂E
∂xi

s

(B0) ∈ R3×1

Let us define a vector Xn ∈ R30,

Xn =
(

x1n ... x5n x1sn ... x5sn

)T

(3.31)

where n is the atomic index (unit cell number) defined above. In the end, we will need to solve a

system of linear difference equations with the following form.

α=m∑
α=−m

AαXn+α = Fn , |n| ≥ m + 2 (3.32)

where Aα ∈ R30×30, α = −m, ...,m and Fn ∈ R30, ∀n ∈ N. The above governing equations can be

written in terms of a discrete convolution operator as,††

AX = F (3.33)

where X = {Xn}, F = {Fn} and the discrete convolution operator is defined as

AX =
{(

AX
)
n

}
(3.34)

and,

(AX)n =
∞∑

m=0

An−mXm (3.35)

††This is the approach that Babǔska (1959) chooses in his treatment of difference equations. We do not use this
notation in this thesis but it would be useful to know that the discrete governing equations have a discrete convolution
form.
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Matrices A-2 and A0, for example, have the following relation with the substiffness matrices KiIα,

Aint
-2 =




Kcc
11-2 Kcc

12-2 Kcc
13-2 Kcc

14-2 Kcc
15-2 Kcs

11-2 Kcs
12-2 Kcs

13-2 Kcs
14-2 Kcs

15-2

Kcc
21-2 Kcc

22-2 Kcc
23-2 Kcc

24-2 Kcc
25-2 Kcs

21-2 Kcs
22-2 Kcs

23-2 Kcs
24-2 Kcs

25-2

Kcc
31-2 Kcc

32-2 Kcc
33-2 Kcc

34-2 Kcc
35-2 Kcs

31-2 Kcs
32-2 Kcs

33-2 Kcs
34-2 Kcs

35-2

Kcc
41-2 Kcc

42-2 Kcc
43-2 Kcc

44-2 Kcc
45-2 Kcs

41-2 Kcs
42-2 Kcs

43-2 Kcs
44-2 Kcs

45-2

Kcc
51-2 Kcc

52-2 Kcc
53-2 Kcc

54-2 Kcc
55-2 Kcs

51-2 Kcs
52-2 Kcs

53-2 Kcs
54-2 Kcs

55-2

Ksc
11-2 Ksc

12-2 Ksc
13-2 Ksc

14-2 Ksc
15-2 Kss

11-2 Kss
12-2 Kss

13-2 Kss
14-2 Kss

15-2

Ksc
21-2 Ksc

22-2 Ksc
23-2 Ksc

24-2 Ksc
25-2 Kss

21-2 Kss
22-2 Kss

23-2 Kss
24-2 Kss

25-2

Ksc
31-2 Ksc

32-2 Ksc
33-2 Ksc

34-2 Ksc
35-2 Kss

31-2 Kss
32-2 Kss

33-2 Kss
34-2 Kss

35-2

Ksc
41-2 Ksc

42-2 Ksc
43-2 Ksc

44-2 Ksc
45-2 Kss

41-2 Kss
42-2 Kss

43-2 Kss
44-2 Kss

45-2

Ksc
51-2 Ksc

52-2 Ksc
53-2 Ksc

54-2 Ksc
55-2 Kss

51-2 Kss
52-2 Kss

53-2 Kss
54-2 Kss

55-2




Aint
0 =




Kcc
110 Kcc

120 Kcc
130 Kcc

140 Kcc
150 Kcs

110 Kcs
120 Kcs

130 Kcs
140 Kcs

150

Kcc
210 Kcc

220 Kcc
230 Kcc

240 Kcc
250 Kcs

210 Kcs
220 Kcs

230 Kcs
240 Kcs

250

Kcc
310 Kcc

320 Kcc
330 Kcc

340 Kcc
350 Kcs

310 Kcs
320 Kcs

330 Kcs
340 Kcs

350

Kcc
410 Kcc

420 Kcc
430 Kcc

440 Kcc
450 Kcs

410 Kcs
420 Kcs

430 Kcs
440 Kcs

450

Kcc
510 Kcc

520 Kcc
530 Kcc

540 Kcc
550 Kcs

510 Kcs
520 Kcs

530 Kcs
540 Kcs

550

Ksc
110 Ksc

120 Ksc
130 Ksc

140 Ksc
150 Kss

110 Kss
120 Kss

130 Kss
140 Kss

150

Ksc
210 Ksc

220 Ksc
230 Ksc

240 Ksc
250 Kss

210 Kss
220 Kss

230 Kss
240 Kss

250

Ksc
310 Ksc

320 Ksc
330 Ksc

340 Ksc
350 Kss

310 Kss
320 Kss

330 Kss
340 Kss

350

Ksc
410 Ksc

420 Ksc
430 Ksc

440 Ksc
450 Kss

410 Kss
420 Kss

430 Kss
440 Kss

450

Ksc
510 Ksc

520 Ksc
530 Ksc

540 Ksc
550 Kss

510 Kss
520 Kss

530 Kss
540 Kss

550




Similar to the case of short-range interactions, the Aint
0 has the following extra structure.

Kcc
II0 = −

2∑

α=-2

′
5∑

J=1
J 6=I

[
Kcc

IJα + Kcs
IJα

]
and Kss

II0 = −
2∑

α=-2

′
5∑

J=1
J 6=I

[
Ksc

IJα + Kss
IJα

]
(3.36)

Finally, A-2, ...,A2 are obtained by assembling all the stiffness matrices that come from short-range

energy, interaction energy and self energy. Again, it can be easily shown that

Nullity
( m∑

α=-m

Aα

)
= 3 (3.37)

i.e., the governing equations are invariant under a rigid translation as expected. Now let us check

the other force constant properties. Each substiffness matrix is symmetric by definition and hence

(1.15) is satisfied. Property (1.16) is satisfied because the substiffness matrices are independent of

the index n. This is of course only true for bulk unit cells. Property (1.17) is satisfied because
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substiffness matrices are calculated using the relative position of core and shells. Property (1.18)

has already been discussed. Property (1.19) needs the following discussion. Suppose the whole

multi-lattice is rotated by a rotation Q. This means that each Xn is transformed to X′
n which is

related to Xn by

X′
n = Q̃Xn, Q̃ =




Q
. . .

Q


 ∈ R30×30 (3.38)

Now let us left multiply Eq. (3.32) by Q̃.

α=m∑
α=−m

Q̃AαXn+α = Q̃Fn (3.39)

But note that because of the special form of Q̃, Q̃Aα = AαQ̃. Thus

α=m∑
α=−m

Aα

(
Q̃Xn+α

)
=

(
Q̃Fn

)
(3.40)

i.e., the governing equations are invariant under rigid rotations in the deformed configuration (ma-

terial frame indifference).

There is another symmetry relating A−γ to Aγ . It can be easily shown that reciprocity implies

that

KIJ−γ = KJIγ (3.41)

The following are the steps needed for constructing the discrete governing equations:

• Construct the multi-lattice.

• Modify the bulk multi-lattice close to the defect(s).

• For a given unit cell partition the neighboring unit cells into equivalent classes.

• For the given interatomic potential calculate the stiffness and force expressions.

• Calculate stiffness matrices by some appropriate assembling algorithm.

• Calculate the unbalanced forces.

• Solve for the discrete displacement field.
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3.1 Hessian Matrix for the Bulk Crystal

Let us briefly explain how one should calculate the Hessian matrix of a bulk crystal for checking

stability. In the bulk all the unit cells are equivalent. Now an equivalence class is a Bravais lattice.

For ABO3 there are N = 10 equivalence classes. Consider the governing equations for the charge I

in the unit cell n = 0.
∂E
∂xI

= 0 I = 1, ..., 10 (3.42)

Linearization about B0 = {XI} yields

∂2E
∂xI∂xI

(B0)(xI −XI) +
∑

j∈SI

∂2E
∂xI∂xj

(B0)(xj −Xj) + ... = − ∂E
∂xI

(B0) (3.43)

Note that

SI =
10⋃

J=1
J 6=I

LJ (3.44)

Thus
∑

j∈SI

∂2E
∂xI∂xj

(B0)(xj −Xj) =
10∑

J=1
J 6=I

∑

j∈LJ

∂2E
∂xI∂xj

(B0)(xJ −XJ ) (3.45)

Note that because of pairwise nature of interactions,

∂2E
∂xI∂xI

(B0) = −
∑

j∈SI

∂2E
∂xI∂xj

(B0) (3.46)

Therefore the linearized governing equations may be written as

10∑

J=1
J 6=I

KIJuJ +


−

10∑

J=1
J 6=I

KIJ


uI = f I I = 1, ..., 10 (3.47)

where

KIJ =
∑

j∈LJ

∂2E
∂xI∂xj

(B0)

f I = − ∂E
∂xI

(B0) (3.48)

uJ = xJ −XJ = xj −Xj ∀ j ∈ LJ
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The Hessian matrix of the bulk crystal is

H =




K11 K12 . . . K19 K110

K21 K22 . . . K29 K210

...
...

. . .
...

...

K91 K92 . . . K93 K910

K101 K102 . . . K109 K1010




(3.49)

It is important to note that for electrostatic energy, the lattice sum defining KIJ is conditionally

convergent. These substiffness matrices are calculated using Ewald method. The details are given in

Appendix A. Note that because of translation invariance H has a zero eigenvalue with multiplicity

three. Note also that because LI , I = 1, ..., 10 is a Bravais lattice,

∀ j ∈ LI ∃ j′ ∈ LJ s.t. rI − xj = rJ − xj′ (3.50)

Thus
∑

j∈LJ

∂2E
∂xI∂xj

(B0) =
∑

j∈LI

∂2E
∂xJ∂xj

(B0), , i.e., KIJ = KJI (3.51)

Note that the Hessian matrix H always has an eigenvalue λ = 0 with multiplicity three. This

eigenvalue represents the translation invariance of the governing equations in R3.
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Chapter 4

180◦ Domain Walls in BaTiO3 and
PbTiO3

Ferroelectric domain walls are boundaries between regions of uniform polarization. Depending on

the crystalline structure there are different types of domain walls. In the tetragonal phase there are

two types of domain walls: 180◦ and 90◦ domain walls. There is a well established continuum theory

that explains why ferroelectric domain walls exist (Shu and Bhattacharya, 2001). Basically domain

walls lower the total energy. Ferroelectric domain walls have been modelled in different scales. We

can classify these models into the following three groups:

i) Quantum mechanics ab initio calculations are first principle calculations for perfect domain

walls. There are several such calculations in the literature as was explained in the Introduction.

The shortcoming of these calculations is that only systems with at most a few hundred atoms

can be treated quantum mechanically to this date. Thus, only a completely periodic array

of domain walls can be analyzed. However, numerical studies show that the calculations are

insensitive to the supercell size with more than six to eight unit cells for PbTiO3 (Meyer and

Vanderbilt, 2001). More complicated defects are beyond the reach of quantum mechanics at

this time.

ii) Continuum models based on Landau-Ginzberg-Devonshire theory (Devonshire, 1949a), (Devon-

shire, 1949b), (Devonshire, 1954) are attractive models capable of keeping track of the evolution

of domain walls. These phase field theories have been implemented by several groups as was

explained in the Introduction. The problem with these models is that there are several pa-

rameters that need to be fitted to the experimental data. It is also questionable to model an

atomically sharp domain wall by a continuum model. Thus these models cannot be useful for

understanding the structure of ferroelectric domain walls. It should be noted that in these

models a domain wall has a finite thickness across which polarization changes continuously.

iii) Continuum mechanics modelling of ferroelectric domain walls. In continuum mechanics an
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interface is a surface across which some fields have jump discontinuities. A ferroelectric domain

wall is a surface of discontinuity in both deformation gradient F and polarization p. Denoting

a ferroelectric domain wall by sf and Sf in the deformed and undeformed configurations,

respectively, the following compatibility equations should be satisfied,

[[F]] = a⊗N (4.1)

[[p]] · n = 0 (4.2)

where Eq. (4.1) is Hadamard’s compatibility equation and Eq. (4.2) is a consequence of

Maxwell’s equations for a charge-free domain wall. Here n and N are the unit normals on sf

and Sf , respectively. A sharp domain wall is nothing but an idealization of what happens

in smaller scales. For modelling the motion of a domain wall one needs to calculate the

configurational force (normal component of Eshelby’s energy-momentum tensor) and assume

a kinetic equation,

Vn = Φ(f) (4.3)

where f is the configurational (driving) force and Vn is the normal component of the velocity

of the domain wall (the only intrinsic component of the velocity vector). James (2002) has

recently obtained an expression for the configurational force on a ferromagnetic domain wall.

This can immediately be used for a charge-free ferroelectric domain wall. However, this would

not be the correct configurational force for a charged ferroelectric domain wall.

In the lattice scale one can no longer think of the macroscopic fields. What one has in this scale

is the position vector of the nuclei and the electronic distributions. Using the Born-Oppenheimer

approximation one can simplify the electronic effects. In particular, in a shell model the independent

kinematical variables are core and shell position vectors. In shell models there are two contributions

to polarization, one that comes from the relative core-shell displacements in the same atom and

one that comes from the distortion of unit cells. The bulk spontaneous polarization (0, Ps, 0),

for example, is a result of some relative core-shell displacements in the tetragonal c-direction (the

direction (0, 1, 0)). In the lattice scale discontinuity has no meaning as all the fields are discrete.

Discontinuity of macroscopic polarization is a result of sudden changes of sign of the relative core-

shell displacements across a plane, for example.

4.1 Symmetry Reduction in 180◦ Domain Walls

The reference configuration and idea of symmetry reduction is schematically shown in Fig. 4.1 for a

180◦ domain wall. Because of symmetry, it is enough to obtain the atomic displacements only in the
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two planes (a) and (b) as shown in Fig. 4.2. A more detailed structure of reference configuration

in planes (a) and (b) is shown in Fig. 4.3. Governing equilibrium equations for domain walls can

Figure 4.1: Reference configuration used in analysis of a 180◦ domain wall.

be obtained by minimizing the total energy of the crystal. These (nonlinear) governing equations

will be linearized later about different reference configurations. Because of symmetry in both 180◦

and 90◦ domain problems all the atoms of the same type that lie on the same plane parallel to the

domain wall have the same displacements. For a 180◦ domain wall because of symmetry we can

look at only Lr = L0 t L+, the half lattice of ABO3, i.e., the half space of atoms that lie on the

right side of the domain wall including the atoms that lie on the wall. Lr can be partitioned into

ten pairwise disjoint sublattices, i.e.,

Lr =
10⋃

I=1

LI (4.4)

Each LI is partitioned into subsets according to their distance from the domain wall.

LI =
∞⋃

n=0

LI(n) (4.5)

where

LI(n) =
{
x ∈ LI

∣∣ (x− pI) · êx = na′, n ∈ N ∪ {0}
}

(4.6)
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Figure 4.2: Two planes perpendicular to the domain wall and the atomic numbering used in the
lattice static analysis.

where a′ = a and (x− pI) · êx is the component of x− pI perpendicular to the domain wall. For a

90◦ domain wall one has to consider the whole multi-lattice. In this case,

LI =
∞⋃

n=−∞
LI(n) (4.7)

where

LI(n) =
{
x ∈ LI

∣∣ (x− pI) · êx = na′, n ∈ Z}
(4.8)

and a′ = ac√
a2+c2 . Using this symmetry, for each atom type, finding the displacement of atoms on

a half line (or a line in the case of a 90◦ domain wall) perpendicular to the wall would give us the

complete structure of the domain wall. This is why our lattice statics model for domain walls leads

to a system of ordinary (and not partial) difference equations. The system of difference equations

(3.18) can be easily transformed to a first-order equation. For the sake of clarity let us consider the

two cases m = 1 and m = 2 separately and then generalizing the results for an arbitrary range of

interaction m would be straightforward. For those atoms that lie on the domain wall, i.e., for A and

O2 atoms (for an A-centered 180◦ domain wall), the relative shifts of core and shell are assumed to

be zero in the reference configuration.

i) m = 1: The bulk governing equations are,

A-1Xn−1 +A0Xn +A1Xn+1 = Fn n ≥ 3 (4.9)

Boundary equations are the governing equations for the boundary atoms. In this problem, a
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Figure 4.3: Reference configuration for an A-centered 180◦ domain wall shown in the two planes (a)
and (b). Note that the reference configuration is invariant under the transformation x → −x, y →
−y, z → z(or − z).

bulk atom is an atom that does not interact with any atom on the wall or on the left side of

the wall. All the other atoms are boundary and transition atoms. For interactions of order m,

boundary atoms are atoms with indices n ∈ {1, 2, ..., m} and transition atoms are atoms with

index n = m + 1. For the interaction range m = 2, atoms with atomic indices n = 1, 2 are

boundary atoms and transition atoms have index n = 3. Note that for a 180◦ domain wall,

boundary atoms have the same neighbors as the interior atoms do. The only difference is that

atoms on the left side of the domain wall have different reference coordinates. The unit cells

n = 1, 2 should be treated separately as the stiffness matrices close to the domain wall are not

constant. These are the boundary and transition equations and can be expressed as

n = 1 : A(1)
−1X0 +A(1)

0 X1 +A(1)
1 X2 = F1 (4.10)

n = 2 : A(2)
−1X1 +A(2)

0 X2 +A(2)
1 X3 = F2 (4.11)

Treating the boundary unit cells separately is one of the main features of our inhomogeneous

lattice statics. It should also be noted that displacements of the atoms on the left side of the

wall are related to those of their corresponding atoms on the right side of the domain wall.

The form of this dependence is governed by the symmetry of the problem and is discussed in
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the sequel for both A-centered and B-centered 180◦ domain walls.∗ Consider an atom n and

Figure 4.4: Inversion symmetry for displacements in a 180◦ domain wall.

its image on the other side of the wall (see Fig. 4.4). Each such pair of atoms are related by

an inversion symmetry. As it is seen in the figure, all the inversion centers lie on the domain

wall. One possibility is the following symmetry,

un′ = −un, un′
s = −un

s (4.12)

where for A and O2 (atoms that lie on the domain wall) n′ = −n + 2 and for other atoms

n′ = −n+1. We assume that the unit cell index n = 1 corresponds to those unit cells with cores

and shells lying on the domain wall. The other possibilities for core and shell displacements

are the following,

(
un′)

x
= −(

un
)
x

,
(
un′

s

)
x

= −(
un

s

)
x

(4.13)
(
un′)

y
=

(
un

)
y

,
(
un′

s

)
y

=
(
un

s

)
y

,
(
un′)

z
= −(

un
)
z

,
(
un′

s

)
z

= −(
un

s

)
z

(4.14)

And,

(
un′)

x
= −(

un
)
x

,
(
un′

s

)
x

= −(
un

s

)
x

(4.15)
(
un′)

y
=

(
un

)
y

,
(
un′

s

)
y

=
(
un

s

)
y

,
(
un′)

z
=

(
un

)
z

,
(
un′

s

)
z

=
(
un

s

)
z

(4.16)

We call these three symmetries, Type I, Type II and Type III symmetries, respectively. Note
∗Exploiting this symmetry makes the calculations more efficient. However, one can solve the governing difference

equations on Z. The two methods should give the same results and our numerical results confirm this. The method
of solution of governing discrete equations on the whole Z will be discussed in the next chapter for 90◦ domain walls.
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that there are other possibilities but these three seem to be the most reasonable. Our numerical

tests show that Type II and Type III symmetries are equivalent (note that all forces have zero

z-components) and that the energy minimizing configuration is Type I symmetry. We have

the following relation,

X0 = RX1 + R′X2 (4.17)

where the matrices R and R′ have the following forms,

R =


 R̃

R̃


 , R′ =


 R̃′

R̃′


 (4.18)

where for Type I symmetry,

R̃ = diag{0,−I,−I,0,−I}, R̃′ = diag{−I,0,0,−I,0}, I = diag{1, 1, 1} (4.19)

and for Type II symmetry,

R̃ = diag{0, Ī, Ī,0, Ī}, R̃′ = diag{Ī,0,0, Ī,0}, Ī = diag{−1, 1,−1} (4.20)

and for Type III symmetry,

R̃ = diag{0, Ī, Ī,0, Ī}, R̃′ = diag{Ī,0,0, Ī,0}, Ī = diag{−1, 1, 1} (4.21)

For a B-centered 180◦ domain wall a similar symmetry relation holds,

X0 = R′X1 + RX2 (4.22)

The expected displacements for an A-centered 180◦ domain walls is schematically shown in

Fig. 4.5. The boundary and transition equations are now written as


 A(1)

0 +A(1)
−1R A(1)

1 +A(1)
−1R

′ 0

A(2)
−1 A(2)

0 A(2)
1







X1

X2

X3


 =


 F1

F2


 (4.23)

Let us now transform the bulk governing equations to an auxiliary system of first-order

difference equations by defining,

Yn =


 Xn−1

Xn


 n ≥ 3 (4.24)
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Figure 4.5: Expected displacements for an A-centered 180◦ domain wall.

Now the governing equations for Yn would be,

Yn+1 = AYn + Gn n ≥ 3 (4.25)

where

A =


 0 1

−A−1
1 A-1 −A−1

1 A0


 ∈ R60×60 and Gn =


 0

A−1
1 Fn


 ∈ R60 (4.26)

Note that here we have assumed that A1 is invertible. This is not necessarily the case and

should be checked. In our numerical results this matrix is always invertible as roughly speak-

ing we use ‘enough’ number of nearest neighbors. At the end of Appendix B we study the

possible degeneracy in a difference equation for a simplified 2-D model. One can easily show

by induction that the solution has the following explicit form,

Yn = An−3c +
n−1∑

j=3

An−j−1Gj n ≥ 3 (4.27)
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where

c = Y3 =


 X2

X3


 (4.28)

It is difficult to impose the boundedness equations at infinity to the above explicit solution.

However, we can simplify the solution by exploiting the property that unbalanced forces are

nonzero only in a localized region close to the domain wall. Suppose Gn = 0 for |n| > N . As

we will see later, for the shell potentials modelling BaTiO3 and PbTiO3, N is a small integer.

In the case of localized forces the solution is rewritten as

Y4 = Ac + G3

Y5 = A2c +AG3 + G4

...

YN+1 = AN−2c +AN−3G3 + ... + GN = AN−2c + d

YN+2 = A (AN−2c + d
)

...

Yn = An−(N+1)
(AN−2c + d

)
n ≥ N + 1 (4.29)

A physically meaningful solution should be bounded at infinity. The matrix A is not diag-

onalizable because of translation invariance of the governing equations. However, it has the

following Jordan decomposition,

A = XΛX−1 (4.30)

where X is the matrix of generalized eigenvectors and Λ has the following form,

Λ =




Λ1

J

Λ2


 ∈ R60, Λ1,Λ2 ∈ R27 (4.31)

Here Λ1 and Λ2 are diagonal matrices of eigenvalues of modulus greater than and smaller

than 1, respectively and J ∈ R6×6 is the Jordan block corresponding to the eigenvalue λ = 1

with multiplicity six. It is interesting that we see this beautiful structure for both BaTiO3 and

PbTiO3 shell potentials. Now for n ≥ N + 1,

Yn = XΛn−(N+1)
(
ΛN−2X−1c + X−1d

)
(4.32)
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Boundedness equations can be written as

(
ΛN−2X−1c

)
{1,...,30} =

(−X−1d
)
{1,...,30} (4.33)

where (.){1,...,30} means the first thirty rows of the matrix (.). The boundedness and bound-

ary/transition equations can be rewritten as




A(1)
−1R +A(1)

0 A(1)
−1R

′ +A(1)
1 0

A(2)
−1 A(2)

0 A(2)
1

0 D1 D2







X1

X2

X3


 =




F1

F2

FD


 (4.34)

Note that for a translationally-invariant system the above system of equations may not have

a solution. In other words, the coefficient matrix may not be full rank. Here, there is no such

problem as we used the symmetry of the 180◦ domain wall and A and O2 (for an A-centered

domain wall) cores and shells on the domain wall will be fixed. The numerical results confirm

this. It turns out that the matrix A is highly ill-conditioned. The reason is that the stiffness

coefficients fall off as O( 1
r3 ) and this results in a wide spectrum for A. Our direct solution

involves several high-order powers of this matrix which result in serious numerical problems.

This can be resolved as follows. Using the boundedness relations (4.33), the solution can be

written as

Yn = XΛn−(N+1)e (4.35)

where

e =


 0

E


 ∈ R60 (4.36)

and

E =
(
X−1AN−3c + X−1d

)
{31,...,60}

(4.37)

Thus

Yn = X


 0

Λ
n−(N+1)

2 E


 =


 X12Λ

n−(N+1)

2 E

X22Λ
n−(N+1)

2 E


 (4.38)

where

Λ =


 Λ1 0

0 Λ2


 , X =


 X11 X12

X21 X22


 (4.39)

i.e., Λ1 is the part of Λ that corresponds to boundedness equations. Note that we assumed that

all the necessary row permutations have been done for writing the above representation. The

nice thing about the above modified solution is that those eigenvalues with modulus larger than

one are automatically ignored and the effective condition number is reduced considerably. If N
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is not a small number the following method for solving the difference equations may be more

favorable as one does not like to see large matrix powers of Λ in the numerical calculations.

Let us consider the representative unit cells n = 1, ..., N as boundary cells with the following

governing equations,

A(1)
−1X0 +A(1)

0 X1 +A(1)
1 X2 = F1 (4.40)

A(2)
−1X1 +A(2)

0 X2 +A(2)
1 X3 = F2 (4.41)

A−1X2 +A0X3 +A1X4 = F3 (4.42)
...

A−1XN−1 +A0XN +A1XN+1 = FN (4.43)

We know that

Yn+1 = AXn n ≥ N + 1 (4.44)

Thus

Yn = An−Nc, c = YN n ≥ N + 1 (4.45)

Boundedness equations can be written as

(
X−1c

)
{1,...,30} = 0 (4.46)

There are 30×N boundary equations and 30 boundedness equations and solving these equa-

tions we obtain the N + 1 unknown vectors X1, ...,XN+1.

ii) m = 2: The bulk governing equations are,

A−2Xn−2 +A−1Xn−1 +A0Xn +A1Xn+1 +A2Xn+2 = Fn n ≥ 4 (4.47)

The boundary and transition equations are,

n = 1 : A(1)
−2Xn−2 +A(1)

−1Xn−1 +A(1)
0 Xn +A(1)

1 Xn+1 +A(1)
2 Xn+2 = F1 (4.48)

n = 2 : A(2)
−2Xn−2 +A(2)

−1Xn−1 +A(2)
0 Xn +A(2)

1 Xn+1 +A(2)
2 Xn+2 = F2 (4.49)

n = 3 : A(3)
−2Xn−2 +A(3)

−1Xn−1 +A(3)
0 Xn +A(3)

1 Xn+1 +A(3)
2 Xn+2 = F3 (4.50)

where one has the following symmetries,

A-centered : X0 = RX1 + R′X2, X−1 = RX2 + R′X3 (4.51)

B-centered : X0 = R′X1 + RX2, X−1 = R′X2 + RX3 (4.52)
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The bulk governing equations can be transformed into auxiliary first-order difference equations

by defining,

Yn =




Xn−2

Xn−1

Xn

Xn+1



∈ R120 n ≥ 4 (4.53)

The governing equations for Yn are,

Yn+1 = AYn + Gn n ≥ 4 (4.54)

where

A =




0 1 0 0

0 0 1 0

0 0 0 1

−A−1
2 A-2 −A−1

2 A-1 −A−1
2 A0 −A−1

2 A1



∈ R120×120, Gn =




0

0

0

A−1
2 Fn



∈ R120

(4.55)

The general solution can be written as

Yn = An−4c +
n−1∑

j=4

An−j−1Gj n ≥ 4 (4.56)

where c = Y4 = (X2 X3 X4 X5)T is the vector of integration constants. In general for

interactions of order m the solution of the auxiliary first-order equation can be written as

Yn = An−m−2Ym+2 +
n−1∑

j=m+2

An−j−1Gj n ≥ m + 2 (4.57)

where

Yn =
(
Xn−m, ...,Xn+m−1

)T (4.58)
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If Gn = 0 for |n| > N , then,

Y5 = Ac + G4

Y6 = A2c +AG4 + G5

...

YN+1 = AN−3c +AN−4G4 + ... + GN = AN−3c + d

YN+2 = A (AN−3c + d
)

...

Yn = An−(N+1)
(AN−3c + d

)
n ≥ N + 1 (4.59)

Boundedness equations read,

(
ΛN−3X−1c

)
{1,...,60} =

(−X−1d
)
{1,...,60} (4.60)

Or,


 D11 D12 D13 D14

D21 D22 D23 D24







X2

X3

X4

X5




=


 FD1

FD2


 (4.61)

Thus the vector of unknowns can be obtained by solving the following system of linear equa-

tions,




A(1)
−1R +A(1)

0 A(1)
−2R +A(1)

−1R
′ +A(1)

1 A(1)
−2R

′ +A(1)
2 0 0

A(2)
−2R +A(2)

−1 A(2)
−2R

′ +A(2)
0 A(2)

1 A(2)
2 0

A(3)
−2 A(3)

−1 A(3)
0 A(3)

1 A(3)
2

0 D11 D12 D13 D14

0 D21 D22 D23 D24







X1

X2

X3

X4

X5




=




F1

F2

F3

FD1

FD2




(4.62)

Because of symmetry, A and O2 cores and shells (for an A-centered 180◦ domain wall) on

the domain wall will remain on the domain wall after deformation. Again, because of ill-

conditioning of A the solution should be rewritten as

Yn = XΛn−(N+1)e, e =


 0

E


 ∈ R60 (4.63)

where

E =
(
X−1ΛN−3c + X−1d

)
{61,...,120} (4.64)
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Thus

Yn =


 X12Λ̄

n−(N+1)
1 E

X22Λ̄
n−(N+1)
2 E


 , X =


 X11 X12

X21 X22


 ∈ R120×120, Λ =


 Λ̄1 0

0 Λ̄2


 ∈ R120×120

(4.65)

4.1.1 Domain Wall Energy

Domain wall energy is defined to be the difference between energies of a crystal with and without

the domain wall. Because the distortions are localized† one can calculate the domain wall energy

numerically by considering a finite region including the domain wall and calculating its energy.

Energy is defined per unit of the wall area,

EDW = lim
N→∞

1
ac

(
N∑

n=−N

En − 2NEcell

)

where En is the energy of unit cell of index n and Ecell is the energy of the bulk tetragonal unit cell.

4.1.2 A Note on Stiffness Matrices on Left and Right Sides of the Domain

Wall

A major difference of the problem of domain walls with other defects studied in the literature

using the method of lattice statics is the inhomogeneity of the stiffness matrices. For the sake of

clarity we explain this point for 180◦ domain walls in PbTiO3. It would be enough to see the

inhomogeneity of the stiffness matrices for the short-range interactions. Let us denote the multi-

lattice with spontaneous polarization P+ = Psê2 by L+ and the multi-lattice with spontaneous

polarization P− = −Psê2 by L−. The only difference between L− and L− is their shift vectors.

For short-range interactions we only need to look at the Bravais lattices of shells. These have the

following shift vectors for the two multi-lattices,

p+
1 =




0

δsPb

0


 ,p+

2 =




a/2

δsTi

a/2


 ,p+

3 =




a/2

c/2 + δsO1

0


 ,p+

4 =




0

c/2 + δsO2

a/2


 ,p+

5 =




a/2

δsO3

a/2




p−1 =




0

−δsPb

0


 ,p−2 =




a/2

−δsTi

a/2


 ,p−3 =




a/2

c/2− δsO1

0


 ,p−4 =




0

c/2− δsO2

a/2


 ,p−5 =




a/2

−δsO3

a/2




†This will be seen in the numerical examples.
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We know that

K+
iIα =

∑

Jβ∈S+
Iα

∂2E

∂xi∂xJβ
(B+

0 ) (4.66)

K−
iIα =

∑

Jβ∈S−Iα

∂2E

∂xi∂xJβ
(B−0 ) (4.67)

It can be easily shown that

K−
IIα = K+

IIα (4.68)

This can be clearly seen by looking at the example I = 1, α = 1. In this case,

S+
11 =

{
(ν1a, ν2c + δsPb, νa) ∈ R3 : (ν1, ν2, ν3) ∈ Z3

}
(4.69)

S−11 =
{
(ν1a, ν2c− δsPb, ν3a) ∈ R3 : (ν1, ν2, ν3) ∈ Z3

}
(4.70)

For calculating K+
111 the origin is (0, δsPb, 0) and the following relative position vectors are used,

V =
{
(ν1a, ν2c, ν3a) ∈ R3 : (ν1, ν2, ν3) ∈ Z3

}
(4.71)

For calculating K−
111 the origin is (0,−δsPb, 0) and the set of relative position vectors would be

identical to V and hence K−
111 = K+

111. However, in general,

K−
IJα 6= K+

IJα I 6= J (4.72)

To see this let us consider the case I = 1, J = 2, α = 1. For calculating K+
121 the origin is (0, δsPb, 0)

and the following relative position vectors are used,

V+ =
{
(ν1a, ν2c + δsTi− δsPb, ν3a) ∈ R3 : (ν1, ν2, ν3) ∈ Z3

}
(4.73)

and for calculating K−
121 the origin is (0,−δsPb, 0) and the following relative position vectors are

used,

V− =
{
(ν1a, ν2c− (δsTi− δsPb), ν3a) ∈ R3 : (ν1, ν2, ν3) ∈ Z3

}
(4.74)

Obviously V− 6= V+ and hence K−
121 6= K+

121.

4.1.3 An Approximate Solution of the 180◦ Domain Wall Problem

In this subsection we present an approximate solution for the analysis of 180◦ domain walls using

discrete Fourier transform. This method will be used for the 180◦ step problem in the sequel. We

know that on the two sides of the domain wall stiffnesses are different. Let us consider a homogenized
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medium with the average stiffness matrices of the both sides of the domain wall, i.e.,

KIJα =
1
2

(
K+

IJα + K−
IJα

)
(4.75)

where K+
IJα and K−

IJα are the bulk stiffnesses for the multi-lattices L+ and L−, respectively. We

also ignore the local inhomogeneity of the stiffness matrices close to the domain wall. Thus the

following is the governing equations of the homogenized medium,

α=m∑
α=−m

AαXn+α = Fn n ∈ Z (4.76)

where Fn is the exact force vector calculated from the interatomic potential. Applying DFT to the

above equation yields

B(k)X̂n(k) = F̂n(k) k ∈ B = [−π, π] (4.77)

where

B(k) =
α=m∑

α=−m

e−iαkAα (4.78)

Note that B(k) is singular at k = 0 because of translation invariance of the governing equations.

Taking the inverse DFT we obtain,

Xn =
1
2π

∫ π

−π

e−ink
[
B−1(k)− einkD(k)

]
F̂n(k)dk (4.79)

where

D(k) =




U(k) . . . U(k)
...

...

U(k) . . . U(k)


 , U(k) =




d1(k) 0 0

0 d2(k) 0

0 0 d3(k)


 ,

d1(k) =
(
B−1(k)

)
11

, d2(k) =
(
B−1(k)

)
22

, d3(k) =
(
B−1(k)

)
33

Note that

− 1
2π

∫ π

−π

D(k)F̂n(k)dk (4.80)

is a rigid translation that removes the singularity. We will compare the approximate DFT harmonic

displacements with the exacts ones at the end of this chapter.
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4.1.4 Effect of Range of Interaction

In our lattice statics model forces are always calculated exactly. However, to be able to solve the

governing discrete equations for an infinite lattice we need to have a system of difference equations

of finite order. It would be interesting to know how sensitive the solutions are to the range of

interaction of representative unit cells. It will be seen shortly that the solutions for m = 1 and

m = 2 are different by less than 2%. Let us remind ourselves that in a continuum one can have

two displacement fields which are close in some norm but have strain fields that are not close in the

same norm. This cannot happen in a discrete system as will be shown below. The following lemma

shows that two discrete displacement fields that are close in some norm have close discrete strain

fields in the same norm.

Consider a sequence {xn}∞n=−∞ ⊂ R and assume that

inf
n∈Z

|xn+1 − xn| = ` > 0

Consider real-valued functions f and g defined on this sequence. Define,

(∆f)(xn) =
f(xn+1)− f(xn)

xn+1 − xn
, (∆g)(xn) =

g(xn+1)− g(xn)
xn+1 − xn

(4.81)

We have the following lemma.

Lemma 7. Suppose,

sup
n∈Z

|f(xn)− g(xn)| ≤ ε for some positive ε

Then,

sup
n∈Z

|(∆f)(xn)− (∆g)(xn)| ≤ 2ε

`
for some positive ε

Proof:

|(∆f)(xn)− (∆g)(xn)| =
∣∣∣∣
f(xn+1)− g(xn+1)

xn+1 − xn
− f(xn)− g(xn)

xn+1 − xn

∣∣∣∣

≤
∣∣∣∣
f(xn+1)− g(xn+1)

xn+1 − xn

∣∣∣∣ +
∣∣∣∣
f(xn)− g(xn)

xn+1 − xn

∣∣∣∣ (4.82)

≤ |f(xn+1)− g(xn+1)|
`

+
|f(xn)− g(xn)|

`
(4.83)

Thus

sup
n∈Z

|(∆f)(xn)− (∆g)(xn)| ≤ 2ε

`
¤

We will numerically study the effect of range of interaction on discrete displacements at the end
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of this chapter.

4.2 Inhomogeneous Anharmonic Lattice Statics Analysis of

180◦ Domain Walls

Anharmonic lattice statics is based on Newton-Raphson (NR) method for solving nonlinear equa-

tions. The basic idea of NR method is to look at a quadratic approximation to the nonlinear

equations in each step. Suppose f : Rn → Rn is continuously differentiable and that f(x∗) = 0 for

some x∗ ∈ D ⊂ Rn. We know that derivative of f is a linear map defined as

f(x + u) = f(x) + Df(x)u + o(‖u‖) (4.84)

Let us start from an initial guess x0 ∈ D. The linear approximation of f about x0 calculated at a

point x1 ∈ D is

f(x1) ≈ f(x0) + Df(x0)(x1 − x0) (4.85)

Assuming that f(x1) ≈ 0,

x1 = x0 −Df(x0)−1f(x0) (4.86)

Similarly, in the kth step,

xk+1 = xk −Df(xk)−1f(xk) (4.87)

It can be shown that this algorithm has a quadratic convergence (see Dennis and Schnabel (1996)),

i.e.,

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖2 for some positive number C (4.88)

The modified NR method is based on a similar idea. In the kth iteration,

xk+1 = xk −Df(x0)−1f(xk) (4.89)

i.e., the only difference is that in all the steps the derivative of the initial guess is used. This is slower

than the usual NR iteration. By modifying the proof presented in (Dennis and Schnabel, 1996), it

can be easily shown that the convergence of modified NR method is linear, i.e.,

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖ for some positive number C (4.90)

It is important to note that the Hessian at x = x0 should be positive-definite for the modified NR

to converge.
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The idea of anharmonic lattice statics is to find the fully nonlinear solutions by a modified

Newton-Raphson iteration. In modified Newton-Raphson method the Hessian matrix is not updated

in each iteration and the initial Hessian is used. Modified Newton-Raphson is slowly and linearly

convergent and a large number of iterations should be performed to get good results. In our lattice

statics calculations this is an efficient method as the most expensive part of the calculations is the

computation of substiffness matrices (very slowly converging lattice sums). The discrete governing

boundary-value problem for a 180◦ domain wall is





∑m
α=−mAαXn+α = Fn, n ≥ m + 2 (m ∈ N)

∑m
α=−mAα(n)Xn+α = Fn, n = 1, ..., m + 1

‖Xn‖ < ∞ as n →∞
(4.91)

with the following symmetry relations,

Xk = RX−k+1 + R′X−k+2 k = −m + 1, ..., 0 (4.92)

In the governing equations Aα(n) are the boundary stiffness matrices and explicitly depend on n.

For the first iteration the discrete governing boundary-value problem determining X1 =
{
X1

n

}
is





∑m
α=−mAαX1

n+α = F0
n, n ≥ m + 2 (m ∈ N)

∑m
α=−mAα(n)X1

n+α = F0
n, n = 1, ..., m + 1

‖X1
n‖ < ∞ as n →∞

(4.93)

where

F0
n = Fn (B0) (4.94)

and B0 is the starting configuration (reference configuration). For the next step,

B1 = B0 +
{
X1

n

}
, F1

n = Fn (B1) (4.95)

Now the discrete governing boundary-value problem determining X2 =
{
X2

n

}
is





∑m
α=−mAαX2

n+α = F1
n, n ≥ m + 2 (m ∈ N)

∑m
α=−mAα(n)X2

n+α = F1
n, n = 1, ..., m + 1

‖X2
n‖ < ∞ as n →∞

(4.96)
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Similarly, the discrete governing boundary-value problem determining Xk+1 =
{
Xk+1

n

}
is





∑m
α=−mAαXk+1

n+α = Fk
n, n ≥ m + 2 (m ∈ N)

∑m
α=−mAα(n)Xk+1

n+α = Fk
n, n = 1, ..., m + 1

‖Xk+1
n ‖ < ∞ as n →∞

(4.97)

where

Bk = Bk−1 +
{
Xk

n

}
, Fk

n = Fn (Bk) (4.98)

It is to be noted that the matrices Aα and Aα(n) are calculated with reference to B0 and remain

fixed during all the iterations. As we do not have control on the reference configuration it may be

reasonable to update the stiffness matrices to ensure positive-definiteness of the discrete convolution

operator. Because we expect to see localized distortions, the matrices Aα will not change and it

would be enough to update the boundary stiffness matrices. Now the kth iteration would have the

following form, 



∑m
α=−mAαXk+1

n+α = Fk
n, n ≥ m + 2 (m ∈ N)

∑m
α=−mAk

α(n)Xk+1
n+α = Fk

n, n = 1, ..., m + 1

‖Xk+1
n ‖ < ∞ as n →∞

(4.99)

where

Ak
α(n) = Aα(n) (Bk) (4.100)

We will numerically compare the harmonic and anharmonic solutions in the next section.

4.3 Numerical Results

In this section, we report some numerical results for both BaTiO3 and PbTiO3.

i) BaTiO3: The distribution of forces close to a Ba-centered 180◦ domain wall is shown in Fig.

4.6. It is seen that only atoms which have index n = 1 (atoms that are on the wall or are

half a lattice spacing away from the wall) have non-zero forces. This will most likely lead to

a very narrow domain wall. Also note that the only nonzero forces are the ones parallel to

the c-axis (y-components) and perpendicular to the domain wall (x-components). It is also

seen that the x-component of forces are much smaller than the y-components. Similar results

can be observed for Ti-centered 180◦ domain wall in Fig. 4.7. One conclusion here is that the

effective potential is highly localized. Harmonic displacement components of Ba and Ti core

and shells near a Ba-centered 180◦ domain wall are shown in Fig. 4.8. As can be seen all the

displacements approach constant values very quickly and the thickness of the domain wall is
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Figure 4.6: Unbalanced forces in the reference configuration of a Ba-centered 180◦ domain wall.

about 2 nm. It is seen that Ba does not contribute much to polarization in the tetragonal

c-direction (y-component) as the cores and shells displace almost together. The harmonic

displacements of O1, O2 and O3 core and shells are shown in Fig. 4.9. Again, the domain wall

thickness is almost 2 nm and the O1 atoms do not contribute much to the polarization in the

tetragonal c-direction. It is observed that for all the five lattices displacements perpendicular

to the domain wall (x-component) are nonzero. The interesting thing is that (as we will see

shortly) that x-component of displacements do not contribute to polarization and polarization

vector is along the c-direction.

Figs. 4.10 and 4.11 show the distribution of discrete strains, which are defined to be the

normalized backward differences of displacements, for all the five atoms. This gives one an

idea on how thick a ferroelectric domain wall is. Fig. 4.12 shows the polarization distribution

for Ba-centered and Ti-centered domain walls. It should be noted that in the lattice scale
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Figure 4.7: Unbalanced forces in the reference configuration of a Ti-centered 180◦ domain wall.

polarization (a macroscopic quantity) cannot be defined unambiguously. Here, we associate

a polarization vector to each unit cell. For a Ba-centered domain wall, displacements of Ba

and O2 on the two sides of each unit cell are averaged. For a Ti-centered 180◦ domain wall

displacements of Ti, O1 and O3 are averaged.

To understand the effect of the range of interaction of equivalence classes the y-component

of displacements of Ba cores and shells obtained from the second and fourth-order difference

equations (m=1 and 2, respectively) are compared in Fig. 4.13. It is seen that the displace-

ments are very close and this shows that considering the interactions {n−2, n−1, n, n+1, n+2}
should be enough for capturing the structure of the domain wall. This again shows that the

effective potential is highly localized.

To study the effect of displacements perpendicular to the domain wall, we compare the con-
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Figure 4.8: Displacements of Ba and Ti core and shells in a Ba-centered 180◦ domain wall.

strained and unconstrained solutions. By constrained we mean the domain wall in which only

displacements in the tetragonal c-direction are allowed. The unconstrained system is com-

pletely three-dimensional. Fig. 4.14 compares the y-component of displacements for Ba and

Ti atoms for the constrained and unconstrained domain walls. It is seen that the displace-

ments are different. The same comparison for polarization component in the c-direction is

shown in Fig. 4.15. Energy calculations show that a Ti-centered 180◦ has a lower energy and

the energies are an order of magnitude larger than the energy values in the literature. This

may be due to the fact that our calculations are for T = 0 and tetragonal phase is unstable at

this temperature. This can also be an artifact of the potential.

ii) PbTiO3: Fig. 4.16 compares Pb core harmonic displacements in the homogenized lattice for
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Figure 4.9: Displacements of O1, O2 and O3 cores and shells in a Ba-centered 180◦ domain wall.

different ranges of interaction of representative unit cells. It is seen that the shell potential

is extremely localized. In all the numerical calculations we used m = 2. Fig. 4.17 shows

the unbalanced force distribution for a Pb-centered 180◦ domain wall. It is seen that the

unbalanced forces are highly localized. Unbalance force distribution in a Ti-centered 180◦

domain wall is given in Fig. 4.18. Again, the unbalanced forces are localized. Harmonic

and anharmonic displacements of Pb, Ti, O1, O2 and O3 in a Pb-centered 180◦ domain wall

are shown in Figs. 4.19 and 4.20. The anharmonic lattice statics iterations converged after

fifteen iterations. It is seen that the domain wall thickness is about 2 nm in agreement with

the ab initio calculations (Meyer and Vanderbilt, 2001). It is observed that O3 has the most

contribution to polarization. Beyond two lattice spacings away from the domain wall all the
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cores and shells move rigidly and with the same amount, i.e., away from the domain wall the

displacement field is a rigid translation. The harmonic and anharmonic displacements of Pb,

Ti, O1, O2 and O3 in a Ti-centered 180◦ domain wall are given in Figs. 4.21 and 4.22. Again,

the domain wall is about 2 nm wide. We compared the anharmonic lattice statics solutions

for m = 1 and m = 2 and observed that their nonlinear solutions are exactly the same.

Fig. 4.23 compares the approximate DFT displacements with the exact harmonic displace-

ments for Pb cores and shells in a Pb-centered 180◦ domain wall. It is seen that the two

differ by more than 40%. However, the anharmonic displacements obtained by using the DFT

harmonic displacements in each step are exactly the same as the ones obtained using the exact

harmonic displacements in each step.

Harmonic and anharmonic polarization profiles for Pb-centered and Ti-centered 180◦ domain

walls are shown in Fig. 4.24. It is seen that the domain walls are atomically sharp. Of course,

polarization is not defined unambiguously in this scale and we have associated a polarization

to each unit cells. For a Pb-centered domain wall the Pb and O2 displacements are averaged

for each unit cell. For a Ti-centered domain wall the Ti, O1 and O3 displacements are averaged

for each unit cell. Energy calculations show that energies are three orders of magnitude larger

than the ones ab initio calculations predict. A Ti-centered 180◦ domain wall has an energy

about 40% higher than that of a Pb-centered domain wall. Note that ab initio calculations

predict that energy of a Ti-centered domain wall is 30% higher than that of a Pb-centered

domain wall.
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Figure 4.10: Discrete strains of Ba and Ti cores and shells in a Ba-centered 180◦ domain wall.
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Figure 4.11: Discrete strains of O1, O2 and O3 cores and shells in a Ba-centered 180◦ domain wall.
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Figure 4.12: y-component of polarization profile for Ba-centered and Ti-centered 180◦ domain walls.
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Figure 4.13: y-displacements of Ba atoms obtained by considering first nearest neighbor and first
and second nearest neighbors interactions.

Figure 4.14: y-displacements of Ba and Ti cores and shells for constrained and unconstrained Ba-
centered 180◦ domain walls.
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Figure 4.15: y-components of polarization for constrained and unconstrained Ba-centered 180◦ do-
main walls.

Figure 4.16: Comparison of harmonic displacements of Pb cores for different ranges of interactions
for equivalent classes.
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Figure 4.17: Unbalanced forces in the reference configuration of a Pb-centered 180◦ domain wall.
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Figure 4.18: Unbalanced forces in the reference configuration of a Ti-centered 180◦ domain wall.
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Figure 4.19: Harmonic and anharmonic displacements of Pb and O2 cores and shells for a Pb-
centered 180◦ domain wall.
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Figure 4.20: Harmonic and anharmonic displacements of Ti, O1 and O3 cores and shells for a
Pb-centered 180◦ domain wall.
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Figure 4.21: Harmonic and anharmonic displacements of Pb and O2 cores and shells for a Ti-centered
180◦ domain wall.
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Figure 4.22: Harmonic and anharmonic displacements of Ti, O1 and O3 cores and shells for a
Ti-centered 180◦ domain wall.
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Figure 4.23: Comparison of harmonic displacements of Pb cores obtained from inhomogeneous
harmonic lattice statics and homogeneous harmonic lattice statics (DFT solutions).
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Figure 4.24: Harmonic and anharmonic polarization distributions for Pb and Ti-centered 180◦ do-
main walls.
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Chapter 5

90◦ Domain Walls in BaTiO3 and
PbTiO3

This chapter presents a lattice statics analysis of 90◦ domain walls. To our best knowledge, this is

the first lattice statics analysis of 90◦ twins in the literature. The technique developed here can be

used in analyzing twin boundaries in similar systems.

5.1 90◦ Domain Walls in BaTiO3 and PbTiO3

For the 90◦ domain wall problem, again it is enough to have the displacements only in two planes.

Reference configuration in these two planes is shown in Fig. 5.1. It is possible to reduce the governing

equations to a 1-D problem, i.e., for each atom type it is enough to have the displacements of cores

and shells only on a line perpendicular to the domain wall. In this case the distance between planes

of equivalent atoms is

` = c sin θ, θ = tan−1
(a

c

)
(5.1)

All the calculations are similar to the 180◦ problem. The only difference is in the nearest neighbor

classes. The solution procedure is also a little different from that of 180◦ domain walls as will be

seen shortly.

Two obvious possibilities for a 90◦ are A-B-O1-centered and O2-O3-centered domain walls. We

consider the A-B-O1-centered 90◦ domain wall in this work. The reference configuration for A cores

and shells is shown in Fig. 5.2. Note that this is a nominal domain wall and we are interested in

finding the relaxed configuration starting from this reference configuration. As we will see numeri-

cally at the end of this chapter, for a 90◦ domain wall forces decay to zero very rapidly. It will be

seen that the x-components of forces are of the same order as y-components. This means that in

the relaxed configuration the 90◦ domain wall is not centered at an A site. This is consistent with

what Meyer and Vanderbilt Meyer and Vanderbilt (2001) observed in their ab initio calculations
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for PbTiO3. We will observe in our numerical calculations for PbTiO3 that the anharmonic lattice

statics iterations do not converge, i.e., a 90◦ domain wall cannot be A-B-O-centered. It should be

noted that unlike the 180◦ domain wall problem, there is no symmetry relation between forces and

displacements on two sides of the wall. This can be seen in Fig. 5.2. Numerical calculations of the

unbalanced forces will also confirm this. This asymmetry implies that we have to solve the governing

difference equations for n ∈ Z. Here we take advantage of the fact that we can partition the problem

into two half space problems with constant coefficient matrices in the governing equations. The final

solution will be obtained by matching the two solutions. Let us assume that the atoms lying on the

domain wall have the index n = 0. For range of interaction m we have the following bulk governing

equations,

Figure 5.1: Position and numbering of different atoms on the right side of the wall in two parallel
planes.

α=m∑
α=−m

AαXn+α = Fn n ≥ m + 1 (5.2)

α=m∑
α=−m

ĀαXn+α = Fn n ≤ −m− 1 (5.3)

where Aα and Āα are the stiffness matrices of the right and left sides of the domain wall, respectively.

There are 2m + 1 indices (unit cells) for which governing equilibrium equations should be written

separately. For m = 1 and m = 2 these are indices n = −1, 0, 1 and n = −2,−1, 0, 1, 2, respectively.

For the sake of clarity we consider the two cases m = 1 and m = 2 separately and then generalizing

the results for an arbitrary range of interaction m would be straightforward.
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Figure 5.2: Reference configuration of (a) A, B and O1 cores and shells and (b) O2 and O3 cores
and shells for a A-B-O1-centered 90◦ domain wall.

i) m=1: The bulk governing equations are,

A−1Xn−1 +A0Xn +A1Xn+1 = Fn n ≥ 2 (5.4)

Ā−1Xn−1 + Ā0Xn + Ā1Xn+1 = Fn n ≤ −2 (5.5)

The boundary and transition equations are,

n = −1 : A(−1)
−1 X−2 +A(−1)

0 X−1 +A(−1)
1 X0 = F−1 (5.6)

n = 0 : A(0)
−1X−1 +A(0)

0 X0 +A(0)
1 X1 = F0 (5.7)

n = 1 : A(1)
−1X0 +A(1)

0 X1 +A(1)
1 X2 = F1 (5.8)

Let us define,

Yn =


 Xn−1

Xn


 n ≥ 2 (5.9)

Ȳn =


 Xn+1

Xn


 n ≤ 2 (5.10)
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Now the governing equations for Yn and Ȳn are,

Yn+1 = AYn + Gn n ≥ 2 (5.11)

Ȳn−1 = ĀȲn + Ḡn n ≤ −2 (5.12)

where

A =


 0 1

−A−1
1 A−1 −A−1

1 A0


 , Gn =


 0

A−1
1 Fn


 (5.13)

Ā =


 0 1

−Ā−1
1 Ā−1 −Ā−1

1 Ā0


 , Ḡn =


 0

Ā−1
−1Fn


 (5.14)

Assuming that forces are zero for |n| > N , solutions for the bulk unit cells can be written as

Y3 = Ac + G2

Y4 = A2c +AG2 + G3

...

YN+1 = AN−1c +AN−2G2 + ... + GN = AN−1c + d

YN+2 = A (AN−1c + d
)

...

Yn = An−(N+1)
(AN−1c + d

)
n ≥ N + 1 (5.15)

and,

Ȳ−3 = Āc̄ + Ḡ−2

Ȳ−4 = Ā2c̄ + ĀḠ−2 + Ḡ−3

...

Ȳ−N−1 = ĀN−1c̄ + ĀN−2Ḡ−2 + ... + Ḡ−N = ĀN−1c̄ + d̄

Ȳ−N−2 = Ā (ĀN−1c̄ + d̄
)

...

Ȳ−n = Ān−(N+1)
(ĀN−1c̄ + d̄

)
n ≤ −N − 1 (5.16)

where

c = Y2, c̄ = Ȳ−2 (5.17)
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The boundedness equations are,

(
ΛN−1Xc

)
{1,...,30} =

(−X−1d
)
{1,...,30} (5.18)

(
Λ̄N−1X̄c̄

)
{1,...,30} =

(−X̄−1d̄
)
{1,...,30} (5.19)

Or,

D11X−1 + D12X−2 = FD1 (5.20)

D21X1 + D22X2 = FD2 (5.21)

The vector of unknowns is obtained by solving the following system of linear equations,




D11 D12 0 0 0

A(−1)
0 A(−1)

−1 A(−1)
1 0 0

A(0)
−1 0 A(0)

0 A(0)
1 0

0 0 A(1)
−1 A(1)

0 A(1)
1

0 0 0 D21 D22







X−1

X−2

X0

X1

X2




=




FD1

F−1

F0

F1

FD2




(5.22)

Note that the above system of equations does not have a solution as the nullity of the matrix

of coefficients is three (because of translation invariance of the governing equations). In our

calculations we fix the position of the Pb core on the domain wall.

ii) m=2: The bulk equations are,

A−3Xn−2 +A−1Xn−1 +A0Xn +A1Xn+1 +A2Xn+2 = Fn n ≥ 3 (5.23)

Ā−2Xn−2 + Ā−1Xn−1 + Ā0Xn + Ā1Xn+1 + Ā2Xn+2 = Fn n ≤ −3 (5.24)

The boundary and transition equations are,

n = −2 : A(−2)
−2 X−4 +A(−2)

−1 X−3 +A(−2)
0 X−2 +A(−2)

1 X−1 +A(−2)
2 X0 = F−2

n = −1 : A(−1)
−2 X−3 +A(−1)

−1 X−2 +A(−1)
0 X−1 +A(−1)

1 X0 +A(−1)
2 X1 = F−1

n = 0 : A(0)
−2X−2 +A(0)

−1X−1 +A(0)
0 X0 +A(0)

1 X1 +A(0)
2 X2 = F0 (5.25)

n = 1 : A(1)
−2X−1 +A(1)

−1X0 +A(1)
0 X1 +A(1)

1 X2 +A(1)
2 X3 = F1

n = 2 : A(2)
−2X0 +A(2)

−1X1 +A(2)
0 X2 +A(2)

1 X3 +A(2)
2 X4 = F2
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Let us define,

Yn =




Xn−2

Xn−1

Xn

Xn+1




n ≥ 3 (5.26)

(5.27)

Ȳn =




Xn+2

Xn+1

Xn

Xn−1




n ≤ −3 (5.28)

The bulk equations can be written as

Yn+1 = AYn + Gn n ≥ 3 (5.29)

Ȳn−1 = ĀȲn + Ḡn n ≤ −3 (5.30)

where

A =




0 1 0 0

0 0 1 0

0 0 0 1

−A−1
2 A−2 −A−1

2 A−1 −A−1
2 A0 −A−1

2 A1




, Gn =




0

0

0

A−1
2 Fn



(5.31)

(5.32)

Ā =




0 1 0 0

0 0 1 0

0 0 0 1

−Ā−1
−2Ā2 −Ā−1

−2Ā1 −Ā−1
−2Ā0 −Ā−1

−2Ā−1




, Ḡn =




0

0

0

Ā−1
−2Fn



(5.33)
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Solutions for the bulk unit cells can be written as

Y4 = Ac + G3

Y5 = A2c +AG3 + G4

...

YN+1 = AN−1c +AN−3G3 + ... + GN = AN−1c + d

YN+2 = A (AN−1c + d
)

...

Yn = An−(N+1)
(AN−1c + d

)
n ≥ N + 1 (5.34)

and,

Ȳ−4 = Āc̄ + Ḡ−3

Ȳ−5 = Ā2c̄ + ĀḠ−3 + Ḡ−4

...

Ȳ−N−1 = ĀN−1c̄ + ĀN−3Ḡ−3 + ... + Ḡ−N = ĀN−1c̄ + d̄

Ȳ−N−2 = Ā (ĀN−1c̄ + d̄
)

...

Ȳ−n = Ān−(N+1)
(ĀN−1c̄ + d̄

)
n ≤ −N − 1 (5.35)

where

c = Y3, c̄ = Ȳ−3 (5.36)

The boundedness equations are,

(
ΛN−1Xc

)
{1,...,60} =

(−X−1d
)
{1,...,60} (5.37)

(
Λ̄N−1X̄c̄

)
{1,...,60} =

(−X̄−1d̄
)
{1,...,60} (5.38)

Or,

D11X−1 + D12X−2 + D13X−3 + D14X−4 = FD1 (5.39)

D21X1 + D22X2 + D23X3 + D24X4 = FD2 (5.40)
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The vector of unknowns is obtained by solving the following system of linear equations,




D11 D12 D13 D14 0 0 0 0 0

A(−2)
1 A(−2)

0 A(−2)
−1 A(−2)

−2 A(−2)
2 0 0 0 0

A(−1)
0 A(−1)

−1 A(−1)
−2 0 A(−1)

1 A(−1)
2 0 0 0

A(0)
−1 A(0)

−2 0 0 A(0)
0 A(0)

1 A(0)
2 0 0

A(1)
−2 0 0 0 A(1)

−1 A(1)
0 A(1)

1 A(1)
2 0

0 0 0 0 A(2)
−2 A(2)

−1 A(2)
0 A(2)

1 A(2)
2

0 0 0 0 0 D21 D22 D23 D24







X−1

X−2

X−3

X−4

X0

X1

X2

X3

X4




=




FD1

F−2

F−1

F0

F1

F2

FD2




(5.41)

Again the matrix of coefficients of the above system of linear equations is not full rank and Pb

cores on the domain wall are fixed.

5.1.1 Constraint Solution of 90◦ Domain Walls

The potential we have for PbTiO3 is stable only under the tetragonal symmetry. Therefore, in order

to be able to obtain the fully non-linear solutions (if they exist) we have to impose this constraint.

We assume that all the displacements are in the tetragonal c-direction. Let us define two local

coordinates (X, Y, Z) and (X ′, Y ′, Z ′) (see Fig. 5.3 ),




X

Y

Z


 = RR




x

y

z


 ,




X ′

Y ′

Z ′


 = RL




x

y

z


 (5.42)

where

RR =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 , RL =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 , θ = tan−1

( c

a

)
(5.43)

It can be easily shown that the substiffness matrices in coordinates (x, y, z) are related to those in

coordinates (X, Y, Z) and (X ′, Y ′, Z ′) as follows,

KR = RRKRT
R, KL = RLKRT

L (5.44)
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Figure 5.3: Local coordinates of a 90◦ domain wall.

Forces on the left and right sides of the domain wall can be transformed to the corresponding local

coordinates as

FR
n = RRFn n ≥ 0 (5.45)

FL
n = RLFn n < 0 (5.46)

The constrained governing equations are obtained by looking at Y Y and Y ′Y ′ components of the

substiffness matrices and Y and Y ′ components of forces. This results in the following vector-valued

difference equation,
m∑

α=−m

Aα(n)xn = fn (5.47)

where for m = 1,

Aα(n) ∈ R10×10,xn, fn ∈ R10 (5.48)
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For example, force vector and bulk stiffness matrix A0 for the right side of the domain wall have

the following forms,

fn =
(
FR

n

)
{2,5,...,29} , A0 =




(KR11 0)22 . . . (KR110 0)22
...

...

(KR101 0)22 . . . (KR1010 0)22


 (5.49)

For solving the above reduced difference equations we assume that all the cores and shells lying on

the domain wall in the reference configuration remain on the domain wall after relaxation.

5.2 Numerical Results

In this section we present some numerical examples for both BaTiO3 and PbTiO3.

i) BaTiO3: The distribution of unbalanced forces for a BaTiO-centered 90◦ domain wall is

shown in Fig. 5.4. It is seen that forces are nonzero in a highly localized region near the

domain wall. Forces parallel and perpendicular to the domain wall are of the same order. This

again could lead to a very thin domain wall. It is seen that there is no symmetry relation

between forces on two sides of the wall. Displacements of cores and shells are shown in Figs.

5.5 and 5.6. It is seen that the thickness of the 90◦ domain wall is almost 3 nm. This is in

qualitative agreement with ab initio calculations of Meyer and Vanderbilt (2001).

ii) PbTiO3: c-component of unbalanced forces for a Pb-Ti-O1-centered 90◦ domain wall are

shown in Fig. 5.7. It is seen that forces are highly localized. The constrained harmonic

displacements are shown in Fig. 5.8. It is seen that the 90◦ domain wall is almost 3 nm wide.

We see that the anharmonic lattice statics iterations do not converge for this configuration.

This means that there is no constrained solution for a Pb-Ti-O1-centered 90◦ domain wall.

This could be either because of the tetragonal constraint (artifact of the shell potential) or

because the Pb-Ti-O1-centered 90◦ domain wall configuration is not stable.
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Figure 5.4: y and x components of forces on atoms close to a Ba-Ti-O-centered 90◦ domain wall.
n=0 corresponds to the domain wall. z-components of all the forces are zero.
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Figure 5.5: Harmonic displacements of Ba and Ti core and shells in a BaTiO-centered 90◦ domain
wall.
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Figure 5.6: Harmonic displacements of O1, O2 and O3 core and shells in a BaTiO-centered 90◦

domain wall.
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Figure 5.7: c-component of forces on cores and shells close to a Pb-Ti-O-centered 90◦ domain wall.
n=0 corresponds to the domain wall.
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Figure 5.8: Harmonic displacements of cores and shells in a constrained PbTiO1-centered 90◦ domain
wall.
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Chapter 6

Free Surfaces in PbTiO3

The second type of defects we study in this work are free surfaces. Lattice statics has been used in

the past in studying free surfaces (see Gazis and Wallis (1964), Wallis (1975), Benedek (1978) and

references therein). We study the structure of two types of free surfaces: (i) Type c free surfaces in

which the polarization direction is parallel to the free surface and (ii) Type a free surfaces in which

the polarization direction is perpendicular to the free surface. These are schematically shown in Fig.

6.1. Shell model reference configurations of these free surfaces are shown in Figs. 6.2 and 6.3. Note

that here we are looking at PbO-terminated free surfaces. We will see shortly that one can relax

the type c free surface under the tetragonal constraint but this is not possible for the Type a free

surface. This will indicate that there will be some surface reconstruction in the case of Type a free

surfaces.

Figure 6.1: Type a and c free surfaces.
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Figure 6.2: Type a free surface reference configuration.

6.1 Type c Free Surfaces

This is very similar to the 180◦ domain wall problem. Again we partition the half lattice into

equivalence classes of atoms of the same type lying on planes parallel to the free surface. Here the

unit cell index is n ∈ N, with n = 1 corresponding to the unit cell with some atoms lying on the

free surface. The bulk stiffness matrices are the same as those used in the analysis of 180◦ domain

walls. The difference here is in the force distribution, the boundary stiffness matrices and boundary

equations. The force distribution is shown in Fig. 6.4. For ranges of interaction m = 1, 2 the

boundary equations are:

m=1:

n = 1 : A(1)
0 X1 +A(1)

1 X2 = F1

n = 2 : A(2)
−1X1 +A(2)

0 X2 +A(2)
1 X3 = F2 (6.1)
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Figure 6.3: Type c free surface reference configuration.

m=2:

n = 1 : A(1)
0 X1 +A(1)

1 X2 +A(1)
2 X3 = F1

n = 2 : A(2)
−1X1 +A(2)

0 X2 +A(2)
1 X3 +A(2)

2 X4 = F2

n = 3 : A(3)
−2X1 +A(3)

−1X2 +A(3)
0 X3 +A(3)

1 X4 +A(3)
2 X5 = F3 (6.2)

For type c free surface we calculate the displacements under the tetragonal constraint. Unbalanced

force distribution for type c free surface is shown in Fig. 6.4. It is seen that the anharmonic lattice

statics iterations converge. The harmonic and anharmonic displacements are shown in Figs. 6.5, 6.6,

6.7, 6.8, and 6.9. It is seen the type c free surface is atomically sharp. The polarization distribution

is highly localized and is shown in Fig. 6.10.

6.2 Type a Free Surfaces

In this type of free surface the polarization direction is perpendicular to the free surface. The

reference configuration of type a free surface is shown in Fig. 6.1 schematically and in more detail for

the shell potential in Fig. 6.2. The bulk stiffness matrices are different from those used for the 180◦

domain wall. The reason is because the equivalence classes now are planes of atoms perpendicular
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Figure 6.4: Type c free surface force distribution (forces parallel to the tetragonal c-direction).

to the tetragonal c-direction. The dominant unbalanced forces are in the tetragonal c-direction. As

it is seen in Fig. 6.11 unbalanced forces have a fairly long tail and vanish only after n = 7. It is

seen that unbalanced forces are very large compared to that of type c free surface. The harmonic

displacements are very large and are given in Fig. 6.12. The anharmonic lattice statics iterations do

not converge and this shows that there is no local equilibrium near the reference configuration. This

is not surprising as this configuration induces a huge electrostatic field in the empty half space. The

lack of convergence of the iterations indicates that there will be a severe surface reconstruction.
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Figure 6.5: Harmonic and anharmonic Pb core and shell displacements in a type c free surface.

Figure 6.6: Harmonic and anharmonic Ti core and shell displacements in a type c free surface.
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Figure 6.7: Harmonic and anharmonic O1 core and shell displacements in a type c free surface.

Figure 6.8: Harmonic and anharmonic O2 core and shell displacements in a type c free surface.
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Figure 6.9: Harmonic and anharmonic O3 core and shell displacements in a type c free surface.

Figure 6.10: Harmonic and anharmonic polarization profile for a type c free surface.
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Figure 6.11: Type a free surface force distribution (forces parallel to the tetragonal c-direction).
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Figure 6.12: Harmonic core and shell displacements in a type a free surface.
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Chapter 7

Steps in 180◦ Domain Walls in
PbTiO3

In this chapter we investigate the structure of a 180◦ step in tetragonal PbTiO3. Assuming that

the step is centered on two planes passing through some atoms, there are three possibility for the

step: (i) Pb/Pb centered, (ii) Ti/Ti centered and (iii) Pb/Ti (or Ti/Pb) centered. In the first two

cases the distance between the two planes of the step is a and in the third case it is a/2. Here we

study only the first case as the other two would be very similar. The reference configuration of a

Pb/O3/Pb 180◦ step is shown in Fig. 7.1. Clearly, for the step problem there is still translation

invariance in the z-direction. For a 180◦ step the collection of cores and shells can be partitioned

into ten pairwise disjoint sublattices,

L =
10⋃

I=1

LI (7.1)

Now each LI can be further partitioned into equivalence classes according to their position relative

to the step core.

LI =
∞⋃

α,β=−∞
SIαβ (7.2)

where

SIαβ = {x ∈ LI |(x− pI) · êx = αa, (x− pI) · êy = βc, α, β ∈ Z} (7.3)

Linearizing the governing equations about a reference configuration B0 we obtain,

∂2E i

∂xi∂xi
(B0)

(
xi − xi

0

)
+

∑

j∈Si

∂2E i

∂xi∂xj
(B0)

(
xj − xj

0

)
= − ∂E

∂xi
(B0) ∀ i ∈ L (7.4)

Thus
∂2E

∂xi∂xi
(B0)ui +

10∑

J=1

α=m∑
α=−m

′
β=m∑

β=−m

KiJαβuJαβ = f i (7.5)
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Figure 7.1: Reference configuration for a Pb/O3/Pb centered 180◦ step.

where

KiJαβ =
∑

j∈SJαβ

∂2E i

∂xi∂xj
(B0), f i = − ∂E

∂xi
(B0) (7.6)

and prime on the summation means that the term α = β = 0, I = i is excluded. Note that KiJαβ is

defined in terms of an absolutely convergent lattice sum because ∂2Ei

∂xi∂xj (B0) = O
(

1
r3

)
and these are

summed on a one-dimensional manifold. These substiffness matrices are less sensitive to the number

of atoms taken from equivalence classes compared to those of the domain walls. Note that a finite

range of interaction m in both x and y directions has been assumed.

For pairwise interactions we know that

∂2E i

∂xi∂xi
(B0) = −

10∑

J=1

α=m∑
α=−m

′
β=m∑

β=−m

KiJαβ (7.7)

Therefore the linearized governing equations are,

−



10∑

J=1

α=m∑
α=−m

′
β=m∑

β=−m

KiJαβ


ui +

10∑

J=1

α=m∑
α=−m

′
β=m∑

β=−m

KiJαβuJαβ = f i (7.8)
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Figure 7.2: Unit cell numbering for a 180◦ step.

Denoting Xm,n ∈ R30 the vector of displacements for the representative unit cell (m,n), the lin-

earized governing equations can be written more compactly as

α=r∑
α=−r

β=s∑

β=−s

Aαβ(m,n)Xm+α,n+β = Fm,n m,n ∈ Z (7.9)

where ranges of interaction r and s in the respective directions m and n have been assumed. Note

that stiffness matrices explicitly depend on m, n. Far from the step we have

Aαβ(m,n) = A+
αβ m > m0 (7.10)

Aαβ(m,n) = A−αβ m < −m0 (7.11)

For −m0 ≤ m ≤ m0 stiffness matrices vary (boundary stiffnesses). Similar to what we discussed
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for the problem of a 180◦ domain wall, A+
αβ and A−αβ are not equal, in general. To be able to

solve the governing equations (7.9) we make the following two simplifying assumptions: (i) Stiffness

matrices are assumed to be uniform everywhere, i.e., the fact that close to the step stiffnesses vary

and stiffnesses far from the step on the right and left sides are unequal is ignored. (ii) The average

stiffnesses are uses, i.e.,

Aαβ =
1
2

(
A+

αβ +A−αβ

)
(7.12)

Thus it is assumed that the following are the governing equations,

α=r∑
α=−r

β=s∑

β=−s

AαβXm+α,n+β = Fm,n m,n ∈ Z (7.13)

We know from our numerical studies of the 180◦ problem that averaging the stiffnesses is a very

good approximation. The less accurate assumption is assuming that stiffnesses do not vary close to

the step. Note that because of translation invariance,

Nullity




α=r∑
α=−r

β=s∑

β=−s

Aαβ


 = 3 (7.14)

Also note that Aαβ ’s are not symmetric.

Because of the symmetry of the reference configuration, the unbalanced forces in a Pb/O3/Pb-

centered step have the following symmetries for m ≥ 2, n ∈ Z,

Pb : F−m,−n = −Fm−1,n (7.15)

Ti : F−m,−n = −Fm−2,n−1 (7.16)

O1 : F−m,−n = −Fm−2,n−1 (7.17)

O2 : F−m,−n = −Fm−1,n−1 (7.18)

O3 : F−m,−n = −Fm−2,n (7.19)

and for m = 1,

Pb : F−1,−n = −F0,n ∀n ∈ Z (7.20)

Ti : F−1,−n = −F−1,n−1 ∀n ≥ 1 (7.21)

O1 : F−1,−n = −F−1,n−1 ∀n ≥ 1 (7.22)

O2 : F−1,−n = −F0,n−1 ∀n ∈ Z (7.23)

O3 : F−1,−n = −F−1,n ∀n ≥ 1 and F−1,0 = 0 (7.24)
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Our numerical calculations verify these symmetries. We also observe that away from the core of the

step (|n| ≥ 3) the unbalanced forces are exactly the same as those of a Pb-centered 180◦ domain

wall.

Applying discrete Fourier transform to the simplified governing equations (7.12) we obtain,




α=r∑
α=−r

β=s∑

β=−s

Aαβe−i(αk1+βk2)


 X̂m,n(k1, k2) = F̂m,n(k1, k2) (7.25)

Thus

X̂m,n(k1, k2) = B−1(k1, k2)F̂m,n(k1, k2) (7.26)

where

B(k1, k2) =
α=r∑

α=−r

β=s∑

β=−s

e−i(αk1+βk2)Aαβ (7.27)

Therefore the solution can be expressed as

Xm,n =
1

(2π)2

∫ π

−π

∫ π

−π

e−i(mk1+nk2)B−1(k1, k2)F̂m,n(k1, k2)dk1dk2 (7.28)

Note that this would be the solution if the matrix B is invertible for all (k1, k2) ∈ B = [−π, π] ×
[−π, π]. Here we know that the governing discrete equations are translation invariant, i.e., B is not

full rank at (k1, k2) = (0, 0). This is not necessarily the only such point. Our numerical study of B

shows that indeed (0, 0) is the only point at which B is not full rank. This means that there is a

singularity at (0, 0) and the inverse Fourier transform as written above is not a convergent double

integral in general. One way of removing the singularity is to impose a suitable rigid translation.

Of course, not every rigid translation is a suitable choice. The following is a suitable choice,∗

Xm,n =
1

(2π)2

∫ π

−π

∫ π

−π

e−imk1−ink2
[
B−1(k1, k2)− eimk1+ink2D(k1, k2)

]
F̂n,m(k1, k2)dk1dk2 (7.31)

∗An alternative approach to remove the singularity is as follows. Let us first introduce the following change of
variables,

X̄m,n = (−1)nXm,n, F̄mn = (−1)nFmn, Aαβ = (−1)nAαβ (7.29)

The governing equations in terms of the new variables are,

α=rX
α=−r

β=sX
β=−s

AαβX̄m+α,n+β = F̄m,n m, n ∈ Z (7.30)

The above system of difference equations are not translation invariant.
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where

D(k1, k2) =




U(k1, k2) . . . U(k1, k2)
...

...

U(k1, k2) . . . U(k1, k2)


 , U(k1, k2) =




d1(k1, k2) 0 0

0 d2(k1, k2) 0

0 0 d3(k1, k2)


 ,

d1(k1, k2) =
(
B−1(k1, k2)

)
11

, d2(k1, k2) =
(
B−1(k1, k2)

)
22

, d3(k1, k2) =
(
B−1(k1, k2)

)
33

In the step problem practically there is no problem in calculating the inverse DFT as the loads are

symmetric and kill the singularity. This will be explained in some detail in Appendix B.

For the sake of completeness let us look at the discrete Green’s functions, which are solutions of

the following equations,

α=r∑
α=−r

β=s∑

β=−s

Aαβg(j)
m+α,n+β = δmnej m,n ∈ Z , j = 1, ..., p (7.32)

where

δmn = 1 if m = n = 0 and δmn = 0 otherwise (7.33)

and,

ej =




0
...

0

1

0
...

0




∈ Rp (7.34)

where the nonzero entry is the jth component. The discrete Green’s functions can be expressed as

g(j)
m,n =

1
(2π)2

∫ π

−π

∫ π

−π

e−i(mk1+nk2)
[
B−1(k1, k2)− ei(mk1+nk2)

(
B−1(k1, k2)

)
11

1⊗ 1
]
ejdk1dk2

(7.35)

where 1⊗ 1 ∈ Rp×p is a matrix with all entries equal to 1. Note that the rigid translation,

− 1
(2π)2

∫ π

−π

∫ π

−π

(
B−1(k1, k2)

)
11

(1⊗ 1)ej dk1dk2 (7.36)
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removes the singularity at (k1, k2) = (0, 0). Also note that

(1⊗ 1)ej =




1
...

1


 ∀j = 1, ..., p (7.37)

This means that the same rigid translation is used for all j. Now the solution can be written as

Xm,n =
p∑

j=1

∞∑

l1=−∞

∞∑

l2=−∞
(Fl1,l2 · ej)g

(j)
m−l1,n−l2

=
p∑

j=1

∞∑

l1=−∞

∞∑

l2=−∞
(Fm−l1,n−l2 · ej)g

(j)
l1,l2

(7.38)

Or in terms of discrete convolution,

Xm,n =
p∑

j=1

(
(F · ej) ∗ g(j)

)
mn

(7.39)

In our problem p = 10 and forces are nonzero only in the infinite band,†

{(l1, l2) : l1 ∈ {−3,−2,−1, 0, 1, 2}, l2 ∈ Z} (7.40)

In the step problem forces are not concentrated and there are non-zero forces along the step half

planes all the way to ±∞. This makes the direct application of DFT hopeless because the integrands

would be extremely oscillatory. Usually the advantage of using discrete Green’s functions is that one

solves for displacements for a set of unit forces and then solution for an arbitrary force vector can be

reduced to some simple summations. In calculating the discrete Green’s functions one has a nonzero

force only at (m, n) = (0, 0) and using a 100×100 Gaussian quadrature gives displacements accurate

to within 10−4Å in the region |m|, |n| ≤ 10. This is a good accuracy as we expect the displacements

to be localized around the step. However, considering the support of unbalanced forces one needs to

calculate the discrete Green’s functions for very large unit cell indices. This makes the calculations

inaccurate and not practical. We will resolve this issue by making an approximation, which will be

explained in the sequel.

There are several numerical integration schemes for evaluating highly oscillatory integrals in the

literature (see Evans and Webster (1999) and references therein). Our numerical tests show that the

standard Gaussian quadrature is efficient enough for calculating the inverse DFT’s in this work.

For a Pb/O3/Pb centered 180◦ step we have the following symmetries for displacements of cores

†Note that m = 0 and m = −1 are symmetry related.
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and shells for p ≥ 2, q ∈ Z,

Pb : X−p,−q = −Xp−1,q (7.41)

Ti : X−p,−q = −Xp−2,q−1 (7.42)

O1 : X−p,−q = −Xp−2,q−1 (7.43)

O2 : X−p,−q = −Xp−1,q−1 (7.44)

O3 : X−p,−q = −Xp−2,q (7.45)

which can be rewritten as

X−p,−q = R1Xp−1,q +R2Xp−2,q−1 +R3Xp−1,q−1 +R4Xp−2,q p ≥ 2 (7.46)

where

R1 =




−1

0

0

0

0




, R2 =




0

−1

−1

0

0




(7.47)

R3 =




0

0

0

−1

0




, R4 =




0

0

0

0

−1




(7.48)

For p = −1 we have the following symmetries,

Pb : X−1,−q = −X0,q ∀q ∈ Z (7.49)

Ti : X−1,−q = −X−1,q−1 ∀q ≥ 1 (7.50)

O1 : X−1,−q = −X−1,q−1 ∀q ≥ 1 (7.51)

O2 : X−1,−q = −X0,q−1 ∀q ∈ Z (7.52)

O3 : X−1,−q = −X−1,q ∀q ≥ 1 and X−1,0 = 0 (7.53)

We make use of the above symmetries and reduce the number of calculations.

It turns out that using any of the abovementioned methods for solving the partial difference

equations, the solutions are not accurate because forces are nonzero on an infinite band along the
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step. Here we make an approximation and use the solutions of the Pb-centered 180◦ domain wall.

We know that away from the step core the relaxed configuration should be the same as that of a

Pb-centered 180◦ domain wall. The force localization idea is schematically shown in Fig. 7.4. Our

calculations show that unbalanced forces have the following property,

Fmn = FDW (m) n ≥ 3 (7.54)

Fmn = FDW (m + 1) n ≤ −3 (7.55)

where FDW (m) is the domain wall displacement (assuming that atoms lying on the domain wall

have index m = 0). Thus we consider the step forces in the range (m,n) ∈ {−3,−2,−1, 0, 1, 2} ×
{−2,−1, 0, 1, 2}.‡ The solutions obtained from this localized system of forces can be accurately

obtained using DFT. The approximate harmonic solution is then obtained by superposing the do-

main wall solution to this. This would be a reference configuration with the nice property that its

unbalanced forces are localized.

The construction of the localized forces is not trivial and one should be careful with symmetries.

For Ti, O1 and O2 (the atom types that do not lie on the step) we construct the localized force

system as follows.

n ≥ 0 : Flocalized
mn = Fmn − FDW (m) (7.56)

n ≤ −1 : Flocalized
mn = Fmn − FDW (m + 1) (7.57)

and,

Flocalized
mn = 0 |n| ≥ 2 (7.58)

Let us first check the symmetry of the localized forces.

• Ti and O1:

i) m ≥ 2

Flocalized
−m,−n =





F−m,−n − FDW (−m) n ≤ 0

F−m,−n − FDW (−m + 1) n ≥ 1

=




−Fm−2,n−1 + FDW (m− 1) n ≤ 0

Fm−2,n−1 − FDW (m− 2) n ≥ 1
(7.59)

=




−Flocalized

m−2,n−1 n ≤ 0

−Flocalized
m−2,n−1 n ≥ 1

(7.60)

‡Note that the indices m = −1 and m = 0 are symmetry related.
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Thus

Flocalized
−m,−n = −Flocalized

m−2,n−1 ¤ (7.61)

ii) m = 1

Flocalized
−1,−n = F−1,−n−FDW (0) = −F−1,n−1 +FDW (−1) = −Flocalized

−1,n−1 , n ≥ 1 ¤ (7.62)

• O2:

Flocalized
−m,−n =





F−m,−n − FDW (−m) n ≤ 0

F−m,−n − FDW (−m + 1) n ≥ 1

=




−Fm−1,n−1 + FDW (m) n ≤ 0

Fm−1,n−1 − FDW (m− 1) n ≥ 1
(7.63)

=




−Flocalized

m−1,n−1 n ≤ 0

−Flocalized
m−1,n−1 n ≥ 1

(7.64)

Thus

Flocalized
−m,−n = −Flocalized

m−1,n−1 ¤ (7.65)

For Pb and O3 one should be more careful because these atoms lie on the step for n = 0.

• Pb: For n 6= 0 the localized force system is constructed as follows,

Flocalized
m,n =





Fm,n − FDW (m) n > 0

Fm,n − FDW (m + 1) n < 0
(7.66)

For n = 0 the localized forces are,

Flocalized
m,0 = Fm,0 − FDW (m) m ≥ 0 (7.67)

and,

Flocalized
−m,0 = − (Fm−1,0 − FDW (m− 1)) m ≥ 1 (7.68)

This means that the symmetry Flocalized
−m,0 = −Flocalized

m−1,0 is automatically satisfied. The other
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symmetries can be easily checked as follows,

Flocalized
−m,−n =





F−m,−n − FDW (−m) n < 0

F−m,−n − FDW (−m + 1) n > 0

=




−Fm−1,n + FDW (m) n < 0

Fm−1,n − FDW (m− 1) n > 0
(7.69)

=




−Flocalized

m−1,n n < 0

−Flocalized
m−1,n n > 0

= −Flocalized
m−1,n ¤ (7.70)

• O3:

i)m ≥ 2 : For n 6= 0 the localized force system is constructed as follows,

Flocalized
m,n =





Fm,n − FDW (m) n > 0

Fm,n − FDW (m + 1) n < 0
(7.71)

For n = 0 the localized forces are,

Flocalized
m,0 = Fm,0 − FDW (m) m ≥ 0 (7.72)

and,

Flocalized
−m,0 = − (Fm−2,0 − FDW (m− 2)) m ≥ 2 (7.73)

This would mean that the symmetry Flocalized
−m,0 = −Flocalized

m−2,0 is automatically satisfied.

The other symmetries can be easily checked as follows,

Flocalized
−m,−n =





F−m,−n − FDW (−m) n < 0

F−m,−n − FDW (−m + 1) n > 0

=




−Fm−1,n + FDW (m− 1) n < 0

Fm−1,n − FDW (m− 2) n > 0
(7.74)

=




−Flocalized

m−2,n n < 0

−Flocalized
m−2,n n > 0

= −Flocalized
m−2,n ¤ (7.75)

ii)m = 1 :

Flocalized
−1,n = F−1,n − FDW (−1) n > 0 (7.76)

and,

Flocalized
−1,n = −Flocalized

−1,−n n < 0 (7.77)
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The discrete displacement field due to localized forces are denoted by Xlocalized
mn . Our numerical

results show that for |m| > 5 or |n| > 25 the displacement components are less than 10−3Å. Thus

we assume that the localized displacements are zero outside the square {(m,n) : |m| ≤ 5, |n| ≤ 25}.
By ‘harmonic step displacement field’ we mean the following discrete displacement field,

• Pb:

Xharmonic
mn =





Xlocalized
mn + XDW

m n > 0

Xlocalized
mn + XDW

m+1 n < 0

and,

m ≥ 0 : Xharmonic
m,0 = Xlocalized

m,0 + XDW
m (7.78)

m < 0 : Xharmonic
m,0 = −Xharmonic

−m−1,0 (7.79)

where XDW
m is the anharmonic domain wall displacement field.

• Ti,O1,O2:

Xharmonic
mn =





Xlocalized
mn + XDW

m n ≥ 0

Xlocalized
mn + XDW

m+1 n < 0

• O3:

Xharmonic
mn =





Xlocalized
mn + XDW

m n > 0

Xlocalized
mn + XDW

m+1 n < 0

and,

m ≥ 0 : Xharmonic
m,0 = Xlocalized

m,0 + XDW
m (7.80)

m < −1 : Xharmonic
m,0 = −Xharmonic

−m−2,0 (7.81)

and,

Xharmonic
−1,−n = −Xharmonic

−1,n n > 0 (7.82)

7.1 Anharmonic Lattice Statics of steps in 180◦ domain walls

The idea of anharmonic lattice statics for a step is very similar to that of domain walls. The discrete

boundary-value problem (DBVP) is





∑r
α=−r

∑s
β=−sAαβXm+α,n+β = Fm,n (m,n) ∈ Z2

‖Xm,n‖ < ∞ as |m||n| → ∞
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The difference between anharmonic lattice statics of step and domain walls is in the first step. We

start from the reference configuration B′0 and localize the unbalanced forces, calculate the harmonic

localized displacements and superpose it to the domain wall anharmonic solutions as was explained

in the previous section. The resulting configuration is denoted by B0. In the second iteration, one

finds X1 = {X1
m,n} by solving the following DBVP,





∑r
α=−r

∑s
β=−sAαβX1

m+α,n+β = F0
m,n (m,n) ∈ Z2

‖X1
m,n‖ < ∞ as |m||n| → ∞

(7.83)

where, F0
m,n = Fm,n(B0). In the next step,

B1 = B0 + {X1
m,n}, F1

m,n = Fm,n(B0) (7.84)

The governing DBVP for determining Xk+1 = {Xk+1
m,n} is





∑r
α=−r

∑s
β=−sAαβXk+1

m+α,n+β = Fk
m,n (m,n) ∈ Z2

‖Xk+1
m,n‖ < ∞ as |m||n| → ∞

(7.85)

where

Bk = Bk−1 + {Xk
m,n}, Fk

m,n = Fm,n(Bk) (7.86)

It will be seen that away from the step core displacements are small and one can clearly see the

decay of displacement norm as
√

m2 + n2 increases.

7.2 Numerical Results

Unbalanced forces for Pb, Ti and O3 cores are shown in Fig. 7.3 for different values of m as functions

of n. It is seen that for a given m, as n increases forces approach to constant values, which are equal

to Pb-centered 180◦ domain wall unbalanced forces. Localized unbalanced forces for Pb and O3

cores and shells are given in Fig. 7.5. Convergence of displacements for the ranges of interaction

r = s = 1 and r = s = 2 in terms of the number of Gauss points is shown in Fig. 7.6. It is seen that

for r = s = 2 a larger number of Gauss points is necessary as the integrands are more oscillatory

than those of r = s = 1. Fig. 7.7 compares the displacement norms for r = s = 1 and r = s = 2 and

it is seen that the displacement norms are very close. The displacement decay in the multi-lattice

under the localized forces is shown in Fig. 7.8 for Pb and Ti cores and shells. It is seen that for a

fixed m (here m = 0) displacements in n direction are long-tailed. However, for a fixed n (here for

n = 0) displacements in m direction are fairly localized. Harmonic displacements for Pb, Ti, O1,
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O2 and O3 cores are given in Figs.7.9, 7.10, 7.11, 7.12, and 7.13. These displacements are given for

different values of n as functions of m. It is seen that for large n the displacements approach those

of a Pb-centered 180◦ domain wall. The anharmonic solutions are given in Figs. 7.14–7.18.
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Figure 7.3: Force distribution in a Pb/O3/Pb-centered 180◦ step. (a) Pb cores, (b) Ti cores and (c)
O3 cores.



141

Figure 7.4: Localization of the unbalanced forces in a 180◦ step.
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Figure 7.5: Unbalanced forces in the localized reference configuration.
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Figure 7.6: Convergence of displacements due to localized forces in terms of the number of Gaussian
points.
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Figure 7.7: Range of interaction comparison for (r, s) = (1, 1) and (r, s) = (2, 2).
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Figure 7.8: (a) Pb and Ti core and shell displacements for m = 0 as a function of n. (b) Pb and Ti
core and shell displacements for n = 0 as a function of m.
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Figure 7.9: Pb core harmonic displacements of the step.

Figure 7.10: Ti core harmonic displacements of the step.
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Figure 7.11: O1 core harmonic displacements of the step.

Figure 7.12: O2 core harmonic displacements of the step.
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Figure 7.13: O3 core harmonic displacements of the step.

Figure 7.14: Pb core anharmonic displacements of the step.
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Figure 7.15: Ti core anharmonic displacements of the step.

Figure 7.16: O1 core anharmonic displacements of the step.
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Figure 7.17: O2 core anharmonic displacements of the step.

Figure 7.18: O3 core anharmonic displacements of the step.
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Chapter 8

Conclusions

In this thesis we started by looking at interatomic potentials describing two technologically important

ferroelectrics, namely BaTiO3 and PbTiO3. We optimized the tetragonal structure of these two

materials using the corresponding shell potentials. It turns out that all these potentials predict

a stable ground state (rhombohedral for BaTiO3 and tetragonal for PbTiO3) only under some

symmetry constraints. Therefore, we had to perform all the numerical calculations in the stable

submanifold. However, all the developments and implementations are general and can be repeated

for any potential.

We developed a systematic method of lattice statics more general than the available classical

lattice statics. We call this reformulation ‘inhomogeneous lattice statics’. This differs from all the

existing treatments in that it does not apply only to Bravais lattices and does not rely on the

knowledge of force constants. Instead, it can be used for defective lattices and all is needed is an

interatomic potential describing the interaction of atoms. The idea of our inhomogeneous lattice

statics is to start from a reference configuration that is not necessarily in equilibrium and perhaps not

translation invariant. This reference configuration is arbitrary and problem dependent. A desirable

choice could be some nominal defect, i.e., a configuration that resembles the real defect but is not

necessarily relaxed. The discrete (nonlinear) governing equations are linearized about the reference

configuration. This leads to a nonhomogeneous system of linear difference equations with variable

coefficient matrices. The forcing terms are a result of the fact that the reference configuration is

not a local minimum of the energy, in general. We call these forces the unbalanced forces. Our

formulation of lattice statics is more general than other formulations in the literature in the sense

that we base the formulation on an interatomic potential and calculate the force constants using the

potential and geometry of the problem. The idea of symmetry reduction for one and two-dimensional

defects presented in this thesis is novel. Our formulation mimics continuum mechanics and in that

sense is close to what continuum mechanicians are used to. This can be very useful for the solid

mechanics community and can be a base of a rigorous theory of discrete mechanics for crystalline

solids.
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Three different types of defects in ferroelectrics are considered: (i) 180◦ and 90◦ domain walls,

(ii) free surfaces and (iii) steps in 180◦ domain walls. For domain walls the reference configuration

is decomposed into equivalence classes, which are infinite sets of atoms of the same type lying on

a plane parallel to the domain wall. The governing equations are written in terms of interactions

of these equivalence classes and this leads to substiffness matrices defined in terms of lattice sums.

We carefully studied convergence of all these lattice sums. The resulting one-dimensional system of

difference equations is directly solved using a novel method developed here. Our numerical studies

show that shell potentials are extremely localized and this is consistent with the previous theoretical

and experimental studies of ferroelectric domain walls that had suggested atomically sharp domain

walls.

Our next step was to calculate the fully nonlinear solutions using modified Newton-Raphson

iterations. We call this treatment of defects, ‘inhomogeneous anharmonic lattice statics’. The idea

is to keep the initial stiffness matrices and update forces by modifying the reference configuration.

In other words, having the first harmonic solution, one modifies the reference configuration by

superimposing the discrete harmonic displacement field. Then new forces are calculated and this

scheme is repeated until convergence is accomplished. Convergence of this scheme requires a stable

reference configuration. Our reference configurations for both Pb-centered and Ti-centered 180◦

domain walls seem to be stable as the iterations converged. However the anharmonic lattice statics

for constrained 90◦ domain wall did not converge. For BaTiO3, our three-dimensional harmonic

solutions show that the displacements perpendicular to the domain wall are not zero. However,

polarization vector has zero components perpendicular to the tetragonal c-direction. We were not

able to verify this for the nonlinear solutions as the shell potential was not stable.

We studied stiffness matrices in the reference configurations of 180◦ and 90◦ domain walls and

observed that substiffness matrices on the right and left sides of the domain walls are different.

This makes the application of discrete Fourier transformation very difficult. We have also explained

the differences and similarities of our inhomogeneous lattice statics with the method of discrete

eigendistortions. It turns out that the harmonic solutions of a homogenized lattice, i.e., those

obtained using the average stiffness matrices differ from those of the nonhomogeneous lattice by

about forty percent. However, the final nonlinear solutions are exactly the same. This shows that

using the homogenized lattice is a good approximation. We observe very sharp domain walls in the

order of 2− 3 nm. This is in agreement with the ab initio calculations of domain walls in PbTiO3

and also with the recent experimental observations.

We studied two types of free surfaces, one with polarization parallel to the free surface and one

with polarization perpendicular to the free surface. For the former free surface we were able to

relax the reference configuration in the constraint manifold. The latter free surface has very large

unbalanced forces and the anharmonic lattice statics does not converge. This suggests that one
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would expect to see some severe surface reconstruction for this configuration.

The other defect that we studied in this work was a 180◦ step in PbTiO3. There are several types

of steps and we considered a Pb/O3/Pb centered 180◦ step. The symmetry relation on two sides

of the step is more complicated than that of a Pb-centered 180◦ domain wall. Here the equivalence

classes are infinite sets of atoms (cores or shells) of the same type lying on a line parallel to the

z-axis. This is somewhat a perturbation of a Pb-centered 180◦ domain wall. Away from the core

of the step, forces are equal to forces in a Pb-centered 180◦ domain wall. The linearized discrete

governing equations are a set of partial difference equations. A straightforward solution technique

would be to apply DFT to the homogenized reference configuration. The problem with this method

is that the integrands appearing in the inverse of DFT are extremely oscillatory and a large number

of Gauss points is needed, say 200 − 400 points in each direction. This makes the solution very

inefficient and extremely slow. We used a novel method for solving the partial difference equations.

We applied DFT in the direction parallel to the half planes of the step and obtained a system of

ordinary difference equations for the partial DFT’s. This system can be solved analytically on the

whole Z (similar to the 90◦ domain wall problem). Then one needs to apply inverse DFT in one

direction. This semidirect method of solving partial difference equations accelerates the calculations

tremendously. The more practical method is to use the anharmonic 180◦ displacement field away

from the step core and localized the unbalanced forces. We explained in detail how one should do the

force localization consistently. We observed that the deviation from the domain wall displacements

is long-tailed along the half domain walls and is localized perpendicular to the half domain walls.

The lattice statics model presented here can be used as an analytical tool to compare different

interatomic potentials. Unfortunately, at this time we cannot use it for BaTiO3 or PbTiO3 as we

are not aware of second interatomic potentials. However, we believe that lattice statics can be a

good analytic tool to compare interatomic potentials in terms of different mechanical quantities

they predict. This would be of particular interest for mechanical design of small devices. Our lattice

statics model can also be an analytical verification tool for numerical techniques like quasi-continuum

method. They idea would be to run a quasi-continuum code for some simple geometries and compare

the results with those from lattice statics.

8.1 Contributions of The Thesis

Contributions of this thesis can be summarized as follows.

• We have reformulated lattice statics in a form similar to continuum mechanics. This for-

mulation is a generalization of the classical lattice statics, which is only applicable to perfect

crystals. Our inhomogeneous lattice statics formulation is a step forward in developing a theory
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of discrete elasticity. For example, we studied the restriction that material-frame-indifference

puts on the form of an interatomic potential. We have also looked at a discrete balance of

energy. We studied the consequences of invariance of balance of energy under isometries of

R3. This is the discrete version of Green-Rivilin-Naghdi theorem. We believe the techniques

presented in this thesis can be used in studying other defective crystals as well.

• To our best knowledge this is the first lattice statics modelling of Perovskites using shell

potentials.

• We have numerically studied Wolf’s method for shell potentials and have discovered that this

method should be used very carefully. Wolf et al.’s conclusions for NaCl do not seem to be

generic. We have observed that, for example, unit cell energy convergence for PbTiO3 is not

oscillatory.

• We introduced the idea of 1-D and 2-D symmetry reduction for defective crystals. Symmetry

reduction is an old idea in mechanics but to our best knowledge this is the first time it is being

used in the lattice statics calculations.

• We have analyzed defects in an infinite lattice without the periodicity assumption. Starting

from a reference configuration, we relax the infinite lattice and the localization of atomic

distortions would come as part of the solution. This is more general than the usual techniques

in the literature in which a finite number of unit cells are relaxed and the rest are assumed to

be rigid. The advantage and superiority of our formulation over the existing treatments is in

the fact that we have treated the problem of a defective crystal as a discrete boundary-value

problem.

• To our best knowledge this is the first lattice statics analysis of ferroelectric defects. For defec-

tive ferroelectric crystals with 1-D symmetry reduction, e.g., domain walls and free surfaces,

we were able to solve the governing vector-valued ordinary difference equations directly on Z.

Our solution method is simple but yet original.

• During the course of this research we discovered that all the shell potentials that we worked

with have stability issues. All these potentials predict a stable ground state only under some

constraints. This issue of stability forced us to perform all the numerical calculations under

the relevant constraints.

8.2 Future Directions

We can summarize the future directions as follows.
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• Our inhomogeneous lattice statics can be applied to other systems and one direction would be

to analyze defective crystals of materials with better understood interatomic potentials. Ap-

plying this technique to dislocations and cracks would be of interest. This can be a motivation

for developing techniques for solving vector-valued Wiener-Hopf difference equations.

• Understanding surface effects and their relation to conditional convergence of lattice sums that

define some physical quantities is of interest. Our experience with this literature indicates that

still there are open problems that should be solved for a better understanding of the behavior

of ferroelectric devices.

• We believe the solid mechanics community can use the experience with continuum mechanics

and contribute to small-scale mechanics by rationalizing the existing theories and techniques

and developing a structured theory of discrete mechanics.

• Including inertial and finite temperature effects would be of great interest.

• Our lattice calculation were done for a physical system. Most of the existing theoretical lattice-

scale studies are for highly idealized systems. One open problem is derivation of a continuum

kinetic equation using atomistic information.
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Appendix A

Summing Conditionally
Convergent Lattice Sums

In this appendix we review Ewald’s (Ewald, 1921) technique and explain the mathematics behind

it. This is important as we have Coulombic interactions and our system is not periodic.

Definition 8. Fourier transform of f ∈ L2(Rn) is defined as

f̂(k) =
∫

Rn

f(x) e−2πik·xdx (A.1)

and,
∑

k∈Zn

f̂(k) e2πik·x (A.2)

is called the Fourier series of f .

Theorem 9. (The Poisson’s Summation Formula) If f ∈ C(Rn), |f(x)| ≤ C(1+|x|)−n−ε, |f̂(k)| ≤
C(1 + |k|)−n−ε for some C and ε > 0, then,

∑

n∈Zn

f(x + n) =
∑

k∈Zn

f̂(k) e2πik·x (A.3)

In particular, for x = 0, ∑

n∈Zn

f(n) =
∑

k∈Zn

f̂(k) (A.4)

Lemma 10. (Riemann-Lebesgue Lemma) For f ∈ L1(R),

lim
|k|→0

f̂(k) = 0

Theorem 11. If f is n-times differentiable and f (k−1) is absolutely continuous then,

f̂(k) = o(|k|−n) as |k| → ∞ (A.5)
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For more details the reader can refer to Katznelson (2003). We now review some definitions and

results on convergence of a series in R.

Definition 12. A convergent series
∑

an is called absolutely convergent if the series
∑ |an| is also

convergent.

Definition 13. A convergent but not absolutely convergent series is called a conditionally convergent

series.

Definition 14. If
∑

an is absolutely convergent then
∑

an =
∑

aσ(n), where σ(n) is any rearrange-

ment (permutation) of natural numbers.

Theorem 15. If
∑

an is conditionally convergent, then there are rearrangements
∑

aσ(n) of it that

diverge.

Theorem 16. (Riemann’s Theorem) Consider a conditionally convergent series
∑

an. Given

any real number x, there is a rearrangement σ(n) of natural numbers such that
∑

aσ(n) = x.

In dimension d, potentials that decay to zero slower than o(r−d) are called long-range potentials.

Coulombic potential is an example. For the sake of simplicity, we first consider a simple series,

l =
∞∑

n=1

f(n) (A.6)

We assume that this series converges slowly and conditionally to the limit l. This means that

we have to be specific about the order of summation. This is not a problem in 1-D and the above

representation tells us all we need to calculate the series. However, for lattice sums in dimensions two

and three we have to be careful and specify a way of adding up the terms if the sum is conditionally

convergent. For the above simple series we make the following assumptions on the function f ,

(i) limx→∞ f(x) = 0 slowly

(ii) limx→0 f(x) = ∞

Now consider an auxiliary function ξ(x) with the following properties:

(i) limx→∞ξ(x) = 0 rapidly

(ii) limx→0ξ(x) < ∞

(iii) f(x)[1− ξ(x)] is smooth at x = 0.

Eq. (A.6) may be written as

l =
∞∑

n=1

f(n)ξ(n) +
∞∑

n=1

f(n)[1− ξ(n)] (A.7)
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The first term converges rapidly. The second term is a slowly varying (smooth) function of x.

Therefore, its Fourier transform converges rapidly in the reciprocal (Fourier) space. Hence, using

Poisson’s summation formula, (A.7) can be rewritten as

l =
∞∑

n=1

f(n)ξ(n) +
∞∑

k=1

[f(1− ξ)]̂ (k) (A.8)

This idea is schematically shown in Fig. A.1. In our lattice statics model, we have to calculate

Figure A.1: An interpretation of Ewald summation using screening charges. (a) Summation in the
direct space, (b) Summation in the Fourier space.

stiffness matrices that are defined in terms of lattice sums of square matrices. Thus, understanding

convergence properties of lattice sums in Rn is crucial. Let us consider a series
∑

xn in a Banach

space (X, ‖.‖).

Definition 17. A series
∑

xn is absolutely convergent if
∑ ‖xn‖ < ∞.

Theorem 18. An absolutely convergent series in a Banach space is convergent.

Definition 19. A series
∑

xn is unconditionally convergent if it converges for any rearrangements

of its terms.

In general, absolute convergence implies unconditional convergence but the converse in not true.

If X = R, the absolute and unconditional convergence are equivalent.

Definition 20. A series is conditionally convergent if it converges but not unconditionally.

Theorem 21. If
∑

xn converges unconditionally in a Banach space X, then all its rearrangements

converge to the same sum.

Definition 22. A series
∑

xn converges perfectly if the series
∑

αnxn converges for any choice of

αn ∈ {−1, 1}.
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Theorem 23. In a Banach space a series converges perfectly if and only if it converges uncondi-

tionally.

Theorem 24. In a finite-dimensional normed space every unconditionally convergent series is ab-

solutely convergent.

Definition 25. Suppose
∑

xn is a series in the Banach space X. The domain of sums of this series

is defined as

DS( ∞∑
n=1

xn

)
=

{
x ∈ X :

∞∑
n=1

xπ(n) = x for some π : N→ N
}

(A.9)

It is known (as a consequence of Steinitz’s theorem (Kadets and Kadets, 1985)) that in a finite

dimensional Banach space, domain of sums of any conditionally convergent series is at least one-

dimensional. This means that any conditionally convergent series in Rn can converge to infinitely

many points in Rn depending on the summation scheme.

Here we briefly review the mathematical foundation of Ewald and related methods. Ewald

summation is heavily based on transformation properties of theta functions. For details on theta

functions see Bellman (1961). Consider the following improper integral,

h(y, t) =
∫ ∞

−∞
e−tx2+2xydx t, y ∈ C (A.10)

This is an entire function of y and an analytic function of t for Re(t) > 0 (this can be easily proved

using Morera’s theorem). If y and t lie on the real axis,

h(y, t) =
e

y2

t√
t

∫ ∞

−∞
e

(
x− y√

t

)2

dx =
e

y2

t√
t

∫ ∞

−∞
e−x2

dx =
√

π

t
e

y2

t (A.11)

Uniqueness theorem for analytic functions implies that the above representation is valid for all y and

t such that Re(t) > 0. Now consider the function f(x) = e−tx2
, Re(t) > 0. The Poisson’s summation

formula can be applied for this function. Thus

∞∑
n=−∞

e−t(x+n)2 =
∞∑

n=−∞
e2πikx

∫ ∞

−∞
e−tx2

1−2πikx1dx1 =
√

π

t

∞∑

k=−∞
e2πikx−π2k2

t (A.12)

where in arriving at the second line use was made of Eq. (A.11). When x = 0,

∞∑
n=−∞

e−tn2
=

√
π

t

∞∑

k=−∞
e−

π2k2
t (A.13)
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Similarly, it can be shown that

∑

n∈Z3

e−t|x+n|2 =

(
π

t

) 3
2 ∑

k∈Z3

e−
π2|k|2

t +2πik·r (A.14)

Consider an atomic potential φ with the following property,

|φ(r)| ≤ C|r|−3−ε C, ε > 0 (A.15)

Consider the following lattice sum that represents the energy per atom in a crystal,

Ei =
1
2

∑

xj∈L
φ(rij)

where rij = xj − xi. Note that

∣∣∣
∑

φ(r)
∣∣ ≤

∑
|φ(r)| ≤ C

∑
|r|−3−ε (A.16)

Convergence of the last series can be shown using Cauchy’s integral test that says the series and the

following integral have the same convergence properties, i.e., they both converge or both diverge.

∫

R3
|r|−3−εdV ∼

∫ ∞

a

r1−εdr < ∞ (A.17)

Thus the lattice sum converges absolutely and hence can be summed in an arbitrary order.

Definition 26. (Transformation of a lattice sum into a simple sum) Consider the following

lattice sum,
∑

k∈Z3

ak (A.18)

Note that the above sum is meaningless, in general, unless the order of summation is specified. Now

consider a sequence {Ωn} ⊂ R3 such that

Ωn ⊂ Ωn+1,

∞⋃
n=1

Ωn = R3 (A.19)

This sequence induces a transformation F that transforms the lattice sum (A.18) into a simple series

as shown below,

F :
∑

k∈Z3

ak 7→
∞∑

n=1

bn
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where

bn :=
∑

ak∈Ωn+1\Ωn

ak

Note that, in general, depending on the sequence chosen different values will be obtained for

the lattice sum (A.18). For a conditionally convergent lattice sum that represents a well-defined

physical quantity, the sequence(s) corresponding to the right value of the quantity somehow shows

the structure of the system.

A.1 Ewald Summation Technique

We now explain how one should calculate the electrostatic energy per unit cell in a periodic system

using the celebrated Ewald method (Ewald, 1921). Consider a tetragonal lattice L with lattice

spacings a and c. Suppose there are N charges in each unit cell. In our model N=10. It is assumed

that each cell is charge neutral, i.e.,
N∑

i=1

Qi = 0 (A.20)

Within the unit cell centered at lattice site n, charge Qi has position vector ri. The total electrostatic

energy of the cell centered at n = 0 is

Ecell =
1
2

′∑

n∈L

( N∑

i,j=1

QiQj

|rij + n|
)

(A.21)

where rij = ri − rj . The prime on the first sum indicates that when n = 0 the terms i = j are

omitted, i.e., self-energy is not included. It should be noted that the cell energy is defined in terms

of a conditionally convergent lattice sum. We follow de Leeuw et al. (1980) and use a convergence

factor to extract the electrostatic energy from the lattice sum. Define,

E(s) =
1
2

′∑

n∈L
e−s|n|2




N∑

i,j=1

QiQj

|rij + n|


 (A.22)

The convergence factor makes the lattice sum uniformly convergent in s and also Fobini’s theorem

can be used in interchanging the double sums. Now we can write,

E(s) =
1
2

N∑

i,j=1

QiQj

′∑

n∈L

e−s|n|2

|rij + n| =
1
2

N∑

i,j=1

QiQj

(
Ψ(rij , s)−

∑

n∈L
n 6=0

e−s|n|2

|n|
)

(A.23)
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where

Ψ(r, s) =
∑

n∈L

e−s|n|2

|r + n| =
∑

n∈L

e−s|n|2erfc(α|r + n|)
|r + n| +

1√
π

∑

n∈L

∫ α2

0

t−
1
2 e−s|n|2−t|r+n|2dt (A.24)

The first lattice sum converges very rapidly in the direct space. We now need to understand the

structure of the singularity of the second lattice sum, which we call I, for s → 0. This lattice sum

can be rewritten as

I =
∑

n∈L
n 6=0

π

∫ α2

0

1√
t(s + t)3

e−
st|r|2
s+t + 2πn·tr

s+t −π2|n|2
s+t dt + π

∫ α2

0

1√
t(s + t)3

e−
st|r|2
s+t dt = I1 + I2 (A.25)

It can be shown that

I1 =
∑

n∈L
n 6=0

π

∫ α2

0

1√
t(s + t)3

e
t

s(s+t) |πn+isr|2e
−π2|n|2

s dt (A.26)

Using Poisson’s summation formula, it can be shown that for small s, I1 simplifies to,∗

I1 =
∑

n∈L
n6=0

1
π|n|2 e−

π2|n|2
α2 +2πin·r[1 + O(s)] (A.27)

Asymptotic analysis of I2 for small s yields

I2 =
2π

s

(
1 +

s

α2

)− 1
2 − 2π

3
|r|2 + O(s) (A.28)

This means that for small s, Ψ(r, s) can be written as

Ψ(r, s) =
∑

n∈L

e−s|n|2erfc(α|r + n|)
|r + n| +

∑

n∈L
n 6=0

1
π|n|2 e−

π2|n|2
α2 +2πin·r[1+O(s)]+

2π

s

(
1+

s

α2

)− 1
2−2π

3
|r|2+O(s)

(A.29)

Similarly, it can be shown that

∑

n∈L
n 6=0

e−s|n|2

|n| =
∑

n∈L
n 6=0


erfc(α|n|)

|n| +
e−

π2|n|2
α2

π|n|2


− 2α√

π
+

2π

s

(
1 +

s

α2

)− 1
2 + O(s) (A.30)

∗Note that we are considering a cubic lattice with lattice parameter a = 1. For this special lattice the lattice and
reciprocal lattice coincide.
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Note that this was derived for a cubic lattice of unit lattice parameter. For our tetragonal lattice

with lattice vectors Eq. (2.42) we have

n = n1e1 + n2e2 + n3e3 = (an1, cn2, an3) (A.31)

It can be easily shown that for this lattice Eq. (A.14) has the following form,

∑

n∈L
e−t|r+n|2 =

1
a2c

(
π

t

) 3
2 ∑

k∈ bL exp
(
− |k|2

4t
+ ik · r

)
(A.32)

where k = 2π
(

k1
a , k2

c , k3
a

)
, k1, k2, k3 ∈ Z and L̂ is the reciprocal lattice. Therefore,

1√
π

∫ α2

0

∑

n∈L
t−

1
2 exp

(− |r + n|2t) dt =
π

a2c

∑

k∈ bL
∫ α2

0

t−2 exp
(
− |k|2

4t
+ ik · r

)
dt (A.33)

Note that here r cannot be a function of n. Our reference configuration for a 180◦ can be transformed

into a periodic tetragonal lattice. However, the internal coordinates of the unit cells depend on the

position of the unit cell, i.e., rij = rij(n). The above analysis shows that if we can somehow ignore

the reciprocal lattice sum, then the usual Ewald summation technique can be used to find the forces.

It is known that the reciprocal lattice sum can be ignored for an appropriate choice of the parameter

α.†

Now the above sum can be simplified as

π

a2c

∑

k∈ bL
∫ α2

0

t−2 exp
(
− |k|2

4t
+ ik · r

)
dt =

π

a2c

∑

k∈ bL eik·r
∫ α2

0

t−2 exp
(
− |k|2

4t

)
dt

=
1

πa2c

∑

k∈ bL
k 6=0

1
|k|2 exp

(
− |k|2

4α2
+ ik · r

)
+ J(M,P)

where M =
∑N

i=1 Qiri is the unit cell polarization and J(M,P) is a shape dependent term and

depends on the summation geometry P (Smith, 1981) and is the contribution of the term k = 0

(Deem et al., 1990). The direct space lattice sum would be identical to the previous case. For

spherical geometry, i.e., when the energy lattice sum is transformed to a simple series using spherical

shells and the convergence factor e−sN(n)2 is used (and there is no surrounding medium) the shape

dependent term has the following form (de Leeuw et al., 1980),

J(M,S) =
2π

3
|M|2 (A.34)

†This has been shown for large N in Rycerz and Jacobs (1992) but it does not mean that the same conclusions are
valid for small N.
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For an interesting discussion on this term and some other issues in Ewald technique see Fraser et al.

(1996). Note also that for spherical shells N(n) = |n|. The term Ψ0
‡ can be similarly simplified to,

Ψ0 =
∑

n∈L
n 6=0

erfc(α|n|)
|n| +

4π

V

∑

k∈ bL
k 6=0

e−
|k|2
4α2

|k|2 − 2α√
π

(A.36)

Note that here we have again assumed spherical summation with the convergence factor e−sN(n)2 .

Now the cell energy can be written as

Ecell =
∑

1≤i<j≤N

QiQj

∑

n∈L

erfc(α|rij + n|)
|rij + n| +

1
πV

N∑

1≤i<j≤N

QiQj

∑

k∈L̂
k 6=0

4π2

|k|2 e−
|k|2
4α2 cos(k · rij)

+
1
2
Ψ0

N∑

i=1

Q2
i + J(M,P) (A.37)

where V = a2c is the volume of the unit cell. The cell energy can be written as

Ecell = E(r)
cell + E(k)

cell + E(s)
cell + E(d)

cell (A.38)

where

E(r)
cell =

1
2

N∑

i,j=1

QiQj

′∑

n∈L

erfc(α|rij + n|)
|rij + n|

E(k)
cell =

1
2πV

∑

k∈L̂
k 6=0

4π2

|k|2 e−
|k|2
4α2 |ρ(k)|2

E(s)
cell =

1
2

N∑

i=1

Q2
i Ψ0

E(d)
cell = J(M,P)

where

ρ(k) =
N∑

j=1

Qje
−ik·rj

Force on ion i can be calculated as

Fi = −∂Ecell

∂ri
= F(r)

i + F(k)
i + F(d)

i (A.39)

‡We can formally define,

Ψ0 =
X

n∈L\{0}

1

|n| (A.35)
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It can be easily shown that

F(r)
i = Qi

N∑

j=1

Qj

′∑

n∈L

[2α e−α2|rij+n|2
√

π
+

erfc(α|rij + n|)
|rij + n|

] rij + n
|rij + n|2 (A.40)

F(k)
i =

Qi

πV

N∑

j=1

Qj

∑

k∈L̂
k 6=0

4π2k
|k|2 e−

|k|2
4α2 sin(k · rij) (A.41)

F(d)
i = −4πQi

3V

( N∑

j=1

Qjrj

)
(A.42)

Note that because of symmetry of a Bravais lattice the real and reciprocal forces can be simplified

to,

F(r)
i = Qi

N∑

j=1
j 6=i

Qj

∑

n∈L

[
2α e−α2|rij+n|2

√
π

+
erfc(α|rij + n|)

|rij + n|

]
rij + n
|rij + n|2 (A.43)

F(k)
i =

Qi

πV

N∑

j=1
j 6=i

Qj

∑

k∈L̂
k 6=0

4π2k
|k|2 e−

|k|2
4α2 sin(k · rij) (A.44)

Let us now calculate the Hessian of the electrostatic interactions.

A.1.1 Ewald Summation for a Periodic Collection of Distributed Charges

It can be shown that the Ewald-type techniques implicitly introduce a convergence function φ(r)

(Deem et al., 1990) and write the cell energy as

Ecell =
1
2

′∑

n∈L

N∑

i,j=1

QiQj
φ(|rij + n|)
|rij + n| +

1
2

′∑

n∈L

N∑

i,j=1

QiQj
1− φ(|rij + n|)

|rij + n| (A.45)

φ has the same properties of f mentioned earlier. For Coulombic energy, φ is the complementary

error function,

φ(r) = erfc(αr) = 1− erf(αr) (A.46)

where α determines what fraction of the lattice sum should be evaluated in the real (direct) space.

This parameter has a nice physical interpretation (Toukmaji and Board Jr., 1996). See Lee et al.

(1997) for a discussion on finding an optimal partition function. Suppose each point charge is

surrounded by a Gaussian charge distribution of equal magnitude and opposite sign (see Fig. A.1).

The charge distribution has the following form,

ρ(r) = Q
( α√

π

)3

e−α2r2
(A.47)
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Note that this is the same charge distribution used in the PCEFF-potential with α =
√

η. This

charge distribution screens the interactions and makes them short range. The resulting lattice sum

can be evaluated in the direct space. To recover the original lattice sum, for each point charge,

another Gaussian charge distribution with the same magnitude and sign is added. This second

lattice sum is very smooth and can be efficiently computed in the Fourier space.

In PCEFF shell potential charges are assumed to have Gaussian distributions. But still we can

calculate part of the energy and forces in the direct space and part of it in the reciprocal space. The

cell energy can be rewritten as

Ecell =
1
2

N∑

i,j=1

QiQj

′∑

n∈L

erf(βij |rij + n|)
|rij + n|

=
1
2

N∑

i,j=1

QiQj

′∑

n∈L

erfc(α|rij + n|)− erfc(βij |rij + n|)
|rij + n| +

1
2

N∑

i,j=1

QiQj

′∑

n∈L

erf(α|rij + n|)
|rij + n|

where

βij =
√

ηiηj

ηi + ηj
(A.48)

The first lattice sum can be efficiently calculated in the direct space. The second lattice sum simplifies

to,
1

πV

N∑

1≤i<j≤N

QiQj

∑

k∈L̂
k 6=0

4π2

|k|2 e−
|k|2
4α2 cos(k · rij) +

1
2

N∑

i=1

Q2
i Ψ

i
0 + J(M,P) (A.49)

where

Ψi
0 =

∑

n∈L
n 6=0

erfc(α|n|)
|n| +

4π

V

∑

k∈ bL
k 6=0

e−
|k|2
4α2

|k|2 − 2α√
π

(no summation on i) (A.50)

Therefore, the cell energy can be written as

Ecell =
1
2

N∑

i,j=1

QiQj

′∑

n∈L

erfc(α|rij + n|)− erfc(βij |rij + n|)
|rij + n|

+
1

πV

N∑

1≤i<j≤N

QiQj

∑

k∈L̂
k 6=0

4π2

|k|2 e−
|k|2
4α2 cos(k · rij) +

1
2

N∑

i=1

Q2
i Ψ

i
0 + J(M,P) (A.51)

Similar to the classical Coulombic potential, force on the ion i can be written as

Fi = −∂Ecell

∂ri
= F(r)

i + F(k)
i + F(d)

i (A.52)
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where

F(r)
i = Qi

N∑

j=1

Qj

′∑

n∈L

[ 2(α e−α2|rij+n|2 − βij e−β2
ij |rij+n|2)√

π
(A.53)

+
erfc(α|rij + n|)− erfc(βij |rij + n|)

|rij + n|
] rij + n
|rij + n|2 (A.54)

F(k)
i =

Qi

πV

N∑

j=1

Qj

∑

k∈L̂
k 6=0

4π2k
|k|2 e−

|k|2
4α2 sin(k · rij) (A.55)

F(d)
i = −4πQi

3V

( N∑

j=1

Qjrj

)
(A.56)

In PCEFF potential shell charges can change and there is a force corresponding to that. The charge

force can be written as

fi =
∂Ecell

∂Qs
i

= f
(r)
i + f

(k)
i + f

(s)
i + f

(d)
i (A.57)

where

f
(r)
i =

N∑

j=1

Qj

∑

n∈L

erfc(α|rij + n|)− erfc(βij |rij + n|)
|rij + n|

f
(k)
i =

1
πV

N∑

j=1

Qj

∑

k 6=0

4π2

|k|2 e−
|k|2
4α2 cos(k · rij)

f
(s)
i = Ψ0Qi

f
(d)
i =

4π

3
ri ·M (A.58)

A.1.2 Electrostatic Hessian Matrix

Let us first calculate the real part of the Hessian. The real energy is

E(r) =
1
2

N∑

I,J=1

QIQJ

′∑

n∈L
Φ(rIJ + n) (A.59)

where

Φ(x) =
erfc(α|x|)

|x| (A.60)

Thus
∂E
∂rI

=
∑

K=1
K 6=I

∑

n∈L
Φ′(rIK + n)

rIK + n
|rIK + n| (A.61)

Now for J 6= I,
∂2E

∂rI∂rJ
=

∑

K=1
K 6=I

∑

n∈L

∂

∂rJ

(
Φ′(rIK + n)

rIK + n
|rIK + n|

)
(A.62)
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But,

∂

∂rJ

(
Φ′(rIK + n)

rIK + n
|rIK + n|

)
= −Φ′′(rIK + n)

(rIK + n)⊗ (rIK + n)
|rIK + n|2 δJK − Φ′(rIK + n)

1
|rIK + n|δJK

+Φ′(rIK + n)
(rIK + n)⊗ (rIK + n)

|rIK + n|3 δJK (A.63)

Therefore, for J 6= I,

K(r)
IJ =

∑

n∈L
kIJ (n) (A.64)

where

kIJ(n) = −Φ′′(rIJ + n)
(rIJ + n)⊗ (rIJ + n)

|rIJ + n|2 − Φ′(rIJ + n)
1

|rIJ + n|
+Φ′(rIJ + n)

(rIJ + n)⊗ (rIJ + n)
|rIJ + n|3 (A.65)

And,

K(r)
II = −

∑

J=1
J 6=I

K(r)
IJ (A.66)

The reciprocal energy is

E(k) =
N∑

I,J=1

QIQJ

2πV

∑

k∈L
k 6=0

4π2

|k|2 e−
|k|2
4α2 cos(k · rIJ) (A.67)

Thus
∂

∂rI
E(k) = −

N∑

J=1

QIQJ

πV

∑

k∈L
k 6=0

4π2

|k|2 e−
|k|2
4α2 sin(k · rIJ) k (A.68)

Hence for J 6= I,

K(k)
IJ =

∂2

∂rI∂rJ
E(k) =

QIQJ

πV

∑

k∈L
k 6=0

4π2

|k|2 e−
|k|2
4α2 cos(k · rIJ) k⊗ k (A.69)

And,

K(k)
II = −

∑

J=1
J 6=I

K(k)
IJ (A.70)

The total stiffness matrices are defined as

KIJ = K(r)
IJ + K(k)

IJ (A.71)
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A.2 Direct Summation Methods

Evjen (1932) proposed an interesting direct summation method for calculating the Madelung energy.

For cubic crystals, he considered cubic shells and calculated a weighted electrostatic potential. In

each cubic shell each charge has a weight w. For charges inside the shell w = 1, for charges on a

face of the cube, w = 1
2 , for charges on an edge w = 1

4 and for charges on corners w = 1
8 .

In a macroscopically neutral ionic crystal the divergent long-range fields cancel. However, the

details of this cancellation depends strongly on the method used for evaluating the electrostatic

interactions and different methods can lead to different values. The lattice sum defining electrostatic

energy of unit cell in an ionic crystal, like any other conditionally convergent lattice sum, is composed

of two divergent sums with different signs (Knopp, 1956). Harris (1975) gives a simple and interesting

example of a one-dimensional chain of charges and gives several possibilities for defining the unit

cell. In general, for a bulk crystal, any charge-neutral unit cell is acceptable but different unit cells

characterize the crystal surfaces differently. As Harris (1975) explains, Ewald summation method

assumes that all moments of the unit cell (in direct space) up to the second order are zero. This

means that using any unit cell which has a nonzero first or second moment, in general, leads to a

cell energy that is different from that obtained by Ewald technique. The reader may refer to Tosi

(1964) for an interesting review of different direct lattice summation methods.

As a real crystal is finite, the conditional convergence of electrostatic energy implies a shape and

size dependence of energy and forces. One way of direct summation is to group ions of the system

into cells with zero leading multipoles (of orders zero, one and two). As Young (1987) explains the

ambiguity in conditionally convergent lattice sums comes from the surface charges on the boundary

of these cells.



170

Appendix B

Theory of Difference Equations

Difference equations arise in many problems of mathematical physics. They also appear in dis-

cretization of boundary value problems and also in combinatorics. In this appendix we mention a

few facts and theorems from theory of difference equations. For more details see Agarwal (2000);

Elaydi (1996); Lakshmikantham and Trigiante (1988). There are two contributions in this appendix.

One is a discussion on direct solution of a degenerate difference equation. The other one is a semidi-

rect solution method for a class of linear partial difference equations. At the end of this appendix

we study a simple 2-D lattice under two loading systems and develop some intuition.

B.1 Ordinary Difference Equations

An ordinary difference equation is the discrete analogue of an ordinary differential equation. Dif-

ference equations can be defined on bounded or unbounded discrete domains. For us all difference

equations are defined on unbounded domains. Consider a sequence {un}n∈N ⊂ R. A difference

equation in the independent variable n is an equation of the form,

f(n, un, ..., un+p) = 0 (B.1)

The order of a difference equation is the difference between the largest and smallest arguments

explicitly involved in the equation. For example, the following (nonlinear) difference equation is of

order five.

un+2 + nun−1 + 3unun−3 = fn (B.2)

A linear difference equation has the following form,

p∑

j=0

Kj(n)un+j = bn n ∈ N (B.3)
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Here, we are interested in linear difference equations with constant coefficients. These equations show

up in discrete systems with uniform physical properties. Consider a pth order difference equation

with constant coefficients,

un+p + a1un+p−1 + a2un+p−2 + ... + apun = bn (B.4)

First, we solve the corresponding homogeneous equation. Suppose solutions are of the form λn, λ ∈
C. Then,

λp + a1λ
p−1 + ... + ap = 0 (B.5)

This is the characteristic equation of difference equation (B.4). There are several possibilities for

characteristic roots. If all the roots are real and distinct the general solution is of the form,

uc
n = c1λ

n
1 + c2λ

n
2 + ... + c1λ

n
p (B.6)

For details on other possibilities see Elaydi (1996). The general solution of Eq. (B.4) can be written

as

un = uc
n + up

n (B.7)

where up
n is a particular solution of the nonhomogeneous equation.

A system of linear difference equations of first order has the following form,∗

un+1 = A(n)un + bn, un,bn ∈ Rp, A(n) ∈ Rp×p (B.8)

If A does not depend on n the system (B.8) is called a system with constant coefficients.

un+1 = Aun + bn (B.9)

For the homogeneous system with constant coefficients corresponding to (B.9), i.e.,

un+1 = Aun (B.10)

the general solution is

un = Anc, c ∈ Rp, ∀n ∈ N (B.11)

Here, An is called the fundamental matrix of the system (B.9). This is the analogue of eAt in a

linear system of differential equations.

Theorem 27. System of difference equations (B.9) has p linearly independent solutions and the

∗It will be seen in the next section that this is not the most general form of a first order difference equation.
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general solution can be written as

un = Anc + up
n (B.12)

where up
n is a particular solution. Using the method of variation of constants the general solution

can be expressed as

un = Anc +
n−1∑

j=0

An−j−1bj (B.13)

A system of difference equations can be thought of as an ordinary difference equation for a

vector-valued discrete function. Let X : K→ Rp, where K ⊂ Z.

Definition 28. The shift operator E is defined as

EX(n) = X(n + 1) (B.14)

provided that n, n + 1 ∈ K. If n, n + k ∈ K, then,

EkX(n) = X(n + k) (B.15)

Inverse of the shift operator is defined as

E−1X(n) = X(n− 1) (B.16)

assuming that n, n− 1 ∈ K.

Example 29. The ordinary difference equation,

X(n + 1)− 5X(n) + 2X(n− 1) = F(n) n ∈ Z (B.17)

can be rewritten as
(
E − 5I + 2E−1

)
X(n) = F(n) n ∈ Z (B.18)

The solution can be formally written as

X(n) =
(
E − 5I + 2E−1

)−1
F(n) (B.19)

There are methods for calculating inverse of such simple operators but these are not useful for the

applications we have in mind.
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B.2 Degenerate Systems of Difference Equations and Their

Solution

Consider the following first-order system of difference equations for a sequence {Xn} ⊂ RN ,

AXn+1 + BXn = Fn n ≥ 1 (B.20)

and assume that det A = 0. This means that this system cannot be transformed to a canonical

system of first-order equations,

Xn+1 = AXn + Gn (B.21)

We call the system (B.20) degenerate. Here we present a direct method for solving such a degenerate

difference equation.† The matrix A can be diagonalized (it is assumed to be symmetric),

X−1AX = Λ = diag(λ1, ..., λp, 0, ..., 0︸ ︷︷ ︸
N−p copies

) =


 Λ 0

0 0


 (B.22)

where X is the orthogonal matrix of eigenvectors. Thus (B.20) can be written as

ΛX−1Xn+1 + CXn = Gn (B.23)

where C = X−1B and Gn = X−1Fn. We use the following notations,

Z =


 Z

Z


 ∈ RN and Z ∈ Rp, Z ∈ RN−p, A =


 A11 A12

A21 A22


 , C =


 C11 C12

C21 C22




(B.24)

Now Eq. (B.23) can be written as the following two sets of equations,





Λ X−1Xn+1 + CXn = Gn

CXn = Gn

(B.25)

The second equation gives,

Xn = TXn + Hn (B.26)

†We have not seen such an explicit solution for such a degenerate difference equation in the literature.
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where T = −C−1
22 C21 and Hn = C−1

22 Gn. Finally we will have the following nondegenerate system

of equations for the sequence {Xn} ⊂ Rp,

Xn+1 = A Xn + Fn (B.27)

where

A = −
[
Λ

(
(X−1)11 + (X−1)12T

)]−1

(C11 + C12T)

and

Fn =
[
Λ

(
(X−1)11 + (X−1)12T

)]−1(
Gn −Λ(X−1)12Hn+1 −C12Hn

)

Example 30. Consider the following degenerate system,

A =


 2 −2

−1 1


 , B =


 1 0

2 3


 , Fn =


 0

0


 , Xn =


 un

vn




It can be easily shown that

T =
(
− 5

6

)
, A =

(
− 3

11

)

Thus

vn = −5
6
un, un =

(
− 3

11

)n

c n ≥ 1

This derivation for a first-order equation should be enough to convince the reader that the situation

would become much more complicated for higher-order degenerate difference equations. A more

practical solution would be to avoid degenerate systems of equations, especially for a large problem

like our lattice statics model of ferroelectrics. At the end of this chapter we will show an example

of a physical system that leads to a degenerate ordinary difference equation.

B.3 Partial Difference Equations

Partial difference equations are discrete analogues of partial differential equations. Let Zp be the

set of all p-tuples of integers (p ≥ 2). A linear partial difference equation has the following form,

LXα =
∑

β∈Ω

A(β)Xα+β = Fα (B.28)

where Ω ⊂ Zp, α, β ∈ Zp and,

X,F : Ω → Rq, A : Ω → Rq × Rq (B.29)
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For p = 2, a linear partial difference equation has the following form,

∑

(r,s)∈Z2

ArsXm+r,n+s = Fmn (m,n) ∈ Ω (B.30)

Let X : L→ Rp, where L ⊂ Z× Z. partial shift operators E1 and E2 are defined as

E1X(m,n) = X(m + 1, n) (B.31)

E2X(m,n) = X(m,n + 1) (B.32)

provided that (m,n), (m + 1, n), (m,n + 1) ∈ L. The inverse partial shift operators are defined as

E−1
1 X(m,n) = X(m− 1, n) (B.33)

E−1
2 X(m,n) = X(m,n− 1) (B.34)

provided that (m,n), (m− 1, n), (m,n− 1) ∈ L.

Example 31. The partial difference equation,

1∑
α=−1

2∑

β=−2

AαβX(m + α, n + β) = F(m,n) (B.35)

can be written as
1∑

α=−1

2∑

β=−2

AαβEα
1 Eβ

2 X(m,n) = F(m, n) (B.36)

Formally, the solution can be written as

X(m, n) =




1∑
α=−1

2∑

β=−2

AαβEα
1 Eβ

2



−1

F(m,n) (B.37)

A powerful technique for solving partial difference equations is discrete Fourier transform, which

will be briefly reviewed in the next section. Applying DFT to the above partial difference equation

one gets,


 ∑

(r,s)∈Z2

ei(−rk1−sk2)Ars


 X̂m,n(k1, k2) = F̂mn(k1, k2) (k1, k2) ∈ B = [−π, π]× [−π, π] (B.38)

The behavior of the partial difference equation strongly depends on the characteristic matrix,

B(k1, k2) =
∑

(r,s)∈Z2

ei(−rk1−sk2)Ars (B.39)
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The matrix B may not be invertible at some points in the first Brillouin zone. An example would

be the singularity at the origin for translation invariant partial difference equations.

For solving partial difference equations on bounded rectangular domains there are direct methods

using matrix tensor product methods (Lynch et al., 1964). However, these methods are not applicable

to the problems we are dealing with in this thesis. There are also some direct methods for solving

simple partial difference equations (see Mickens (1990)). However, these methods are not applicable

for general vector-valued partial difference equations.

B.4 Discrete Fourier Transform

Discrete Fourier Transform (DFT) is a powerful technique for solving system of linear difference

equations. In the literature there are two different types of discrete Fourier transform both known

as DFT. The first type, which is the one we use in this thesis, transforms a sequence (or more

precisely a lattice function) to a function of a continuous variable(s). This is sometimes called

continuous discrete Fourier transform (CDFT). Theory of CDFT was developed in (Babǔska, 1959;

Babǔska et al., 1960; Vitásek, 1959). The other type of DFT, which we call discrete DFT (DDFT),

transforms a sequence to another sequence (Briggs and Hendon, 1995), (Benedetto, 1997) and is

usually useful for solving periodic difference equations or difference equations on bounded domains.

In this work by DFT we mean CDFT, i.e., the one that maps a mesh function to a continuous

function in k-space.

Consider a lattice L and a lattice function f : L → R3. The discrete Fourier transform of f is

defined formally as

f̂(k) = V
∑

j∈L
f(j)eik·xj

k ∈ B (B.40)

where V is the volume of the unit cell and B is the first Brillouin zone. For a chain of atoms of unit

lattice spacing this definition reduces to the usual definition of DFT of a sequence in R, where V = 1,

B = [−π, π]. Let us denote by U the set of all discrete Fourier transformable lattice functions. Let

us also denote by R the set of those lattice functions such that

|f(x)| ≤ C

3∏

i=1

(
1 + |xi|p

) ∀ x = (x1, x2, x3) ∈ L (B.41)

for some integer p ≥ 0 and constant C ≥ 0. It can be shown (Vitásek, 1959) that there is a one-to-

one correspondence between the spaces R and U . It should be noted that in the definition of DFT

the convergence should be understood in the sense of distributions.
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Inverse DFT is defined as

f(j) =
1

(2π)3

∫

B

f̂(k)e−ik·xj

d3k (B.42)

DFT has many nice properties and here we mention a few of them. DFT is a linear operator, i.e.,

(αf + βg)∧ = αf̂ + βĝ ∀α, β ∈ R, ∀ f, g ∈ U (B.43)

Shifting property of DFT is essential in solving difference equations. Suppose,

X̂n = Y(k) (B.44)

Then,

X̂n+m = e−im·k Y(k) (B.45)

Definition 32. Discrete convolution of two lattice functions f and g is defined as

(f ∗ g)(i) = V
∑

j∈L
f(i− j)g(j) (B.46)

Note that the multiplication f(i− j)g(j) is defined componentwise.

Theorem 33. If f, g ∈ U , then

(̂f ∗ g)(k) = f̂(k)ĝ(k) (B.47)

Discrete Fourier Transform is a powerful tool in solving partial difference equations but should

be used carefully in numerical calculations.

B.4.1 DFT and Difference Equations

Consider the following ordinary difference equation.

xp+1 − 2xp + xp−1 = fp p ∈ Z (B.48)

Note that this difference equation is translation invariant, i.e., if the sequence {xp} is a solution so

is the sequence {xp + c}, ∀ c ∈ R. Applying DFT to this difference equation we get,

(
e−ik − 2 + eik

)
x̂p(k) = f̂p(k) (B.49)

Or,

x̂p(k) =
1

2(cos k − 1)
f̂p(k) (B.50)
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Thus

xp =
1
2π

∫ π

−π

e−ipk 1
2(cos k − 1)

f̂p(k)dk (B.51)

Note that this integral is not convergent in general because there is a singularity at k = 0,

1
2(cos k − 1)

= − 1
k2

+ O(1) (B.52)

This is a consequence of translation invariance of the difference equation. In other words for this

difference equation the solution can be obtained up to a rigid translation and this shows up in the

inverse discrete Fourier transform as a singularity. One could make the integral convergent by adding

a suitable rigid translation. The following would be a rigid translation that removes the singularity,

xp =
1
2π

∫ π

−π

e−ipk

[
1

2(cos k − 1)
f̂p(k)− eipk

2(cos k − 1)

]
dk (B.53)

For R-valued difference equations there are rigorous treatments of this problem in the literature (see

De Boor et al. (1989) and Veit (2003)). In a special case when the loading sequence is symmetric

about p = 0 the inverse DFT is convergent. An example would be the following,

f−p = fp ∀ p ∈ N, f0 = 0 (B.54)

In this case f̂p(0) = 0 and the inverse DFT is convergent.

B.5 A Semidirect Method for Solving a Class of Linear Par-

tial Difference Equations

In this section we present an efficient method for solving a class of linear partial difference equations.

The idea of this method is similar to that of reducing a partial differential equation to an ordinary

differential equation by applying Laplace or Fourier transform in one direction. Our semidirect

method can be useful in problems where a very large number of Gauss points in necessary in

evaluating the two-dimensional (or three-dimensional) DFT. Here we present the method for a two-

dimensional partial difference equation but generalizing it to higher order partial difference equations

would be straightforward.

Consider the following partial difference equation,

α=r∑
α=−r

β=s∑

β=−s

AαβXm+α,n+β = Fm,n m,n ∈ Z (B.55)
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Let us assume that

Fm,n = 0 |m| > M (B.56)

Applying DFT in n−direction for the above partial difference equation we obtain,

∞∑
n=−∞

eink
α=r∑

α=−r

β=s∑

β=−s

AαβXm+α,n+β =
∞∑

n=−∞
einkFm,n m ∈ Z (B.57)

Or,
α=r∑

α=−r

β=s∑

β=−s

e−iβkAαβŶm+α(k) = f̂m(k) m ∈ Z (B.58)

where

Ŷm+α(k) =
∞∑

n=−∞
einkXm+α,n, f̂m(k) =

∞∑
n=−∞

einkFm,n (B.59)

This can be rewritten as

α=r∑
α=−r

Aα(k)Ŷm+α(k) = f̂m(k) m ∈ Z (B.60)

where

Aα(k) =
β=s∑

β=−s

e−iβkAαβ (B.61)

Note that for a given value of k Eq. (B.60) is an ordinary system of difference equations. Let us

write the solution explicitly for r = 1 and r = 2 as generalizing it for an arbitrary r would be

straightforward.

i) r=1: The governing ordinary difference equations are,

A−1(k)Ŷm−1(k) +A0(k)Ŷm(k) +A1(k)Ŷm+1(k) = f̂m(k) m ∈ Z (B.62)

Let us define,

Zm =


 Ŷm−1

Ŷm


 m ≥ 1 (B.63)

The governing equations can be rewritten as

Zm+1 = AZm + Gm m ≥ 1 (B.64)

where

A =


 0 1

−A−1
1 A−1 −A−1

1 A0


 , Gm =


 0

A−1
1 f̂m


 (B.65)
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Let us assume that

Fm,n = 0 m > M (B.66)

Thus

f̂m(k) = 0 m > M (B.67)

Therefore the solution of (B.64) for large m (m ≥ M + 1 can be expressed as

Zm = Am−M−1
(
AMc + d

)
m ≥ M + 1 (B.68)

where

c = Z1 =


 Ŷ0

Ŷ1


 , d = AM−1G1 + AM−2G2 + ... + AGM−1 + GM (B.69)

The boundary equations are the governing equations for m = 0,

A−1(k)Ŷ−1(k) +A0(k)Ŷ0(k) +A1(k)Ŷ1(k) = f̂0(k) (B.70)

The boundedness equations at infinity guarantee the following,

‖Ŷm‖ < ∞ as m →∞ (B.71)

The matrix A has the following Jordan decomposition,

A = XΛX−1 (B.72)

where X is the matrix of generalized eigenvectors. The solution can be rewritten as

Zm = XΛm−M−1
(
X−1AMc + X−1d

)
= XΛm−M−1

(
ΛMX−1c + X−1d

)
m ≥ M + 1

(B.73)

Boundedness of solutions at infinity requires that

(
ΛMX−1c

)
?

= − (
X−1d

)
?

(B.74)

The boundedness equations can be rewritten as follows,

D1(k)Ŷ0(k) +D2(k)Ŷ1(k) = FD (B.75)

For SC shell potential it turns out that M = 2. Thus, after calculating the integration constants
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c the solution can be expressed as

Z2 = Ac + G1 (B.76)

Z3 = A2c + AG1 + G2 (B.77)

Zm = XΛm−3
(
Λ2X−1c + X−1d

)
m ≥ 4 (B.78)

where

d = AG1 + G2 (B.79)

If the matrix A(k) is ill-conditioned, the solution for large m should be rewritten as follows,

Zm = XΛm−M−1e (B.80)

where

e =


 0

E


 , E =

(
ΛMX−1c + X−1d

)
∗ (B.81)

The subscript ∗ refers to those rows that were not in the boundedness equations.

Looking at the symmetry relations (7.46) carefully, one can see that there is no simple relation

between the values of Ŷm for positive and negative values of m and one has to solve the

complete governing equations (B.62). Let us define,

Z̄m =


 Ŷm+1

Ŷm


 m ≤ −1 (B.82)

Now the governing equations (B.62) can be rewritten as

Z̄m−1 = ĀZ̄m + Ḡm m ≤ −1 (B.83)

where

Ā(k) =


 0 1

−A−1
−1A1 −A−1

−1A0


 , Ḡm =


 0

A−1
−1f̂m


 (B.84)

We know that for the step problem and the given potential for PbTiO3,

Ḡm = 0 m < −M̄ (B.85)

For m ≤ −M̄ − 1,

Z̄m = Ā−m−M̄−1
(
ĀM̄ c̄ + d̄

)
(B.86)
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where

c̄ = Z̄−1 =


 Ŷ0(k)

Ŷ−1(k)


 , d̄ = ĀM̄−1Ḡ−1 + ... + Ḡ−M̄ (B.87)

Using the Jordan decomposition of Ā, i.e., Ā = X̄Λ̄X̄−1 the above relation can be rewritten

as

Z̄m = X̄Λ̄−M̄−1−m
(
Λ̄M̄X̄−1c̄ + X̄−1d̄

)
(B.88)

where X̄ is the matrix of generalized eigenvectors. For SC potential it turns out that M̄ = 2

and hence,

Z̄m = X̄Λ̄−m−3
(
Λ̄2X̄−1c̄ + X̄−1d̄

)
(B.89)

Boundedness equations ensure the following,

‖Ŷm‖ < ∞ as m → −∞ (B.90)

and read,
(
Λ̄2X̄−1c̄

)
?

= − (
X̄−1d̄

)
?

(B.91)

These can be rewritten as

D̄1(k)Ŷ−1(k) + D̄2(k)Ŷ0(k) = F̄D (B.92)

Boundary equations are governing equations for m = 0,

A−1(k)Ŷ−1(k) +A0(k)Ŷ0(k) +A1(k)Ŷ1(k) = f̂0(k) (B.93)

The unknowns are Ŷ−1(k), Ŷ0(k) and Ŷ1(k), which are determined using the boundary equa-

tions and boundedness equations at ±∞,




0 D1(k) D2(k)

A−1(k) A0(k) A1(k)

D̄1(k) D̄2(k) 0







Ŷ−1(k)

Ŷ0(k)

Ŷ1(k)


 =




FD

f̂0(k)

F̄D


 (B.94)

Solving the above system of linear equations gives us c and c̄. Thus the solution can be written
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as

Z̄m = X̄Λ̄−M̄−m−1
(
Λ̄M̄X̄−1c̄ + X̄−1d̄

)
m ≤ −3 (B.95)

Z̄−2 = Āc̄ + Ḡ−1 (B.96)

Z2 = Ac + G1 (B.97)

Zm = XΛm−3
(
Λ2X−1c + X−1d

)
m ≥ 3 (B.98)

ii) r=2: The governing ordinary difference equations are,

A−2(k)Ŷm−2(k)+A−1(k)Ŷm−1(k)+A0(k)Ŷm(k)+A1(k)Ŷm+1(k)+A2(k)Ŷm+2(k) = f̂m(k) m ∈ Z
(B.99)

Define,

Zm =




Ŷm−2(k)

Ŷm−1(k)

Ŷm(k)

Ŷm+1(k)




, Z̄m =




Ŷm+2(k)

Ŷm+1(k)

Ŷm(k)

Ŷm−1(k)




(B.100)

Thus

Zm+1 = AZm + Gm m ≥ 2 (B.101)

Zm−1 = ĀZ̄m + Ḡm m ≤ −2 (B.102)

where

A(k) =




0 1 0 0

0 0 1 0

0 0 0 1

−A2(k)−1A−2(k) −A2(k)−1A−1(k) −A2(k)−1A0(k) −A2(k)−1A1(k)




,

Ā(k) =




0 1 0 0

0 0 1 0

0 0 0 1

−A−2(k)−1A2(k) −A−2(k)−1A1(k) −A−2(k)−1A0(k) −A−2(k)−1A−1(k)




,

Gm =




0

0

0

A2(k)−1f̂m(k)




, Ḡm =




0

0

0

A−2(k)−1f̂m(k)



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It can be easily shown that

Zm = Am−M−1
(
AM−1c + d

)
= XΛm−M−1

(
ΛM−1X−1c + X−1d

)
m ≥ M + 1

Z̄m = Ā−m−M̄−1
(
ĀM̄−1c̄ + d̄

)
= X̄Λ̄m−M̄−1

(
Λ̄M̄−1X̄−1c̄ + X̄−1d̄

)
m ≤ −M̄ − 1

where

c = Z2 =




Ŷ0(k)

Ŷ1(k)

Ŷ2(k)

Ŷ3(k)




, d = AM−2G2 + ... + GM (B.103)

c̄ = Z̄−2 =




Ŷ0(k)

Ŷ−1(k)

Ŷ−2(k)

Ŷ−3(k)




, d̄ = ĀM̄−2Ḡ−2 + ... + Ḡ−M̄ (B.104)

Boundedness equations are,

(
ΛM−1X−1c

)
?

= − (
X−1d

)
?

(B.105)
(
Λ̄M̄−1X̄−1c̄

)
?

= − (
X̄−1d̄

)
?

(B.106)

Or,

D1(k)Ŷ0(k) +D2(k)Ŷ1(k) +D3(k)Ŷ2(k) +D4(k)Ŷ3(k) = FD (B.107)

D̄1(k)Ŷ−3(k) + D̄2(k)Ŷ−2(k) + D̄3(k)Ŷ−1(k) + D̄4(k)Ŷ0(k) = F̄D (B.108)

Boundary equations are the governing equations for unit cells m = −1, 0, 1,

m = −1 : A−2(k)Ŷ−3(k) +A−1(k)Ŷ−2(k) +A0(k)Ŷ−1(k) +A1(k)Ŷ0(k) +A2(k)Ŷ1(k) = f̂−1(k)

m = 0 : A−2(k)Ŷ−2(k) +A−1(k)Ŷ−1(k) +A0(k)Ŷ0(k) +A1(k)Ŷ1(k) +A2(k)Ŷ2(k) = f̂0(k)

m = 1 : A−2(k)Ŷ−1(k) +A−1(k)Ŷ0(k) +A0(k)Ŷ1(k) +A1(k)Ŷ2(k) +A2(k)Ŷ3(k) = f̂1(k)
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Thus




0 0 0 D1(k) D2(k) D3(k) D4(k)

A−2(k) A−1(k) A0(k) A1(k) A2(k) 0 0

0 A−2(k) A−1(k) A0(k) A1(k) A2(k) 0

0 0 A−2(k) A−1(k) A0(k) A1(k) A2(k)

D̄1(k) D̄2(k) D̄3(k) D̄4(k) 0 0 0







Ŷ−3(k)

Ŷ−2(k)

Ŷ−1(k)

Ŷ0(k)

Ŷ1(k)

Ŷ2(k)

Ŷ3(k)




=




FD

f̂−1(k)

f̂0(k)

f̂1(k)

F̄D




(B.109)

Solving the above system of equations gives us c and c̄. For M = M̄ = 2 the solution can be

written as

Z̄m = X̄Λ̄m−3
(
Λ̄X̄−1c̄ + X̄−1d̄

)
m ≤ −3 (B.110)

Zm = XΛm−3
(
ΛX−1c + X−1d

)
m ≥ 3 (B.111)

After having Ŷm(k), the solution Xmn can be recovered by applying the inverse DFT in n-direction,

Xmn =
1
2π

∫ π

−π

e−inkŶm(k)dk (B.112)

B.6 Ill-Conditioned Problems

A problem is well-posed in the sense of Hadamard if a solution exists, it is unique and depends

continuously on the data of the problem. However, this is not enough in numerical problems when

one would like to see small errors in the solution due to small errors in the parameters of the problem.

In a well-conditioned problem, small errors in the data cause small errors in the solution. If small

errors of the data causes large errors in the solution the problem is called ill-conditioned.

Definition 34. Let X and Y be normed spaces with the norm ‖.‖ and L : X → Y a bounded linear

transformation with a bounded inverse L−1 : Y → X. The condition number of L is defined by

κ(L) = ‖L‖‖L−1‖ (B.113)

Note that κ(L) ≥ 1. Ill-conditioned problems are those with very large condition numbers, i.e.,

κ(L) À 1. Equivalently, an ill-conditioned problem has a wide spectrum.

In our lattice statics model, we need to calculate matrix powers of a highly ill-conditioned matrix

A. A is full-rank but multiplying it by itself a few times, it loses rank due to numerical round-off
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errors. Here we explain how An should be calculated. We know that

A = XΛX−1, Λ =


 Λ1 0

0 Λ2


 (B.114)

where Λ1 and Λ2 are the diagonal matrices of eigenvalues with modulus greater than or equal to

one and less that one, respectively. We also know that

An = XΛnX−1 =


 X11 X12

X21 X22





 Λ1 0

0 Λ2





 X̃11 X̃12

X̃21 X̃22


 (B.115)

This can be rewritten as

An =


 X11Λn

1 X̃11 X11Λn
1 X̃12

X21Λn
1 X̃11 X21Λn

1 X̃12


 +

1
sn


 X12(sΛ2)nX̃21 X12(sΛ2)nX̃22

X22(sΛ2)nX̃21 X22(sΛ2)nX̃22




= An1 +
1
sn
An2(s) (B.116)

where s = 1
|λmin| is a scaling factor.

B.7 A 2-D Lattice Problem

In order to develop some intuition, we have studied a two-dimensional lattice under different loading

conditions. This would give us an idea on what one should expect in the complex lattice of ABO3.

This example also helps us to check and compare different methods of solving the governing ordinary

or partial difference equations.

Let us consider a two-dimensional lattice with lattice parameters a and c and look at the governing

equilibrium equations for different ranges of interactions. The simplicity of this 2-D model will allow

us to see the reason for degeneracy of a system of difference equations representing a discrete physical

system very clearly. We assume interactions of up to fifth nearest neighbors and the linear spring

connecting the jth nearest neighbors has stiffness kj . The simple lattice is indexed by (m,n) ∈ Z×Z.

Consider two system of forces I and II. In system I we consider a boundary line ` (wall) in such

a tetragonal lattice and assume that forces of magnitude 1 are applied to atoms which are one

lattice parameter away from the wall ` as shown Fig. B.1. Note that this problem has translational

symmetry in y-direction. This means that all the atoms lying on the same line parallel to the wall

have the same displacements. Here n is the atomic index of the line which is na away from `. We

assume that the atoms on the wall are fixed, i.e., u0 = v0 = 0. The boundary equations are the

equations governing atoms with index n = 1 (two equations). The associated matrix of the auxiliary
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first-order equation has two eigenvalues λ1, λ2 with modulus larger than one and two eigenvalues

λ7, λ8 with modulus less than one. The other eigenvalue is λ = 1 with multiplicity four. The

following are the global (interior) equilibrium equations,

A−2Xn−2 + A−1Xn−1 + A0Xn + A1Xn+1 + A2Xn+2 = Fn n ≥ 2 (B.117)

where

Xn =


 un

vn


 ∈ R2

and un, vn are displacements in the direction of x and y axes, respectively. The matrices Ai, i =

−2, ..., 2 have the following form,

A−2 = A2 =


 k3 + 2(cos α)2k4 + 2(cos θ)2k5 0

0 2(sin α)2k4 + 2(sin θ)2k5




A−1 = A1 =


 k1 + 2(cos θ)2k2 + 2(sin α)2k4 0

0 2(sin θ)2k2 + 2(cos α)2k4




A0 =


 −2

[
k1 + 2(cos θ)2k2 + k3 + 2k4 + 2(cos θ)2k5

]
0

0 −2
[
2(sin θ)2k2 + 2k4 + 2(sin θ)2k5

]




where θ = tan−1
(

c
a

)
and α = tan−1

(
c
2a

)
. Note that det(A2) = 0 if k4 = 0. This means that if we

consider only the first three nearest neighbors then the resulting system of difference equations cannot

be transformed into an auxiliary first-order system. Singularity of A5 (and A1) physically means

that there are zero-energy modes involved in the problem. Obviously, it would be more convenient

to work with systems of difference equations that are transformable to a first-order system. This

means that for a given order of governing difference equations we should choose the maximum range

of interaction.‡ Note also that

A−2 + A−1 + A0 + A1 + A2 = 0 (B.118)

which reflects the translation invariance of the governing equations.

The solution can be written as

Yn = Anc (B.119)

‡For ABO3 multi-lattice we studied defects with 1-D and 2-D symmetry reductions. In the step problem we used
DFT and did not need to worry about degeneracy. For domain walls we considered interaction of a representative
unit cell n with representative unit cells n−m, ..., n + m. Interaction of the unit cell n with representative unit cell
n + m is interaction of a unit cell n with all the members of the equivalence class n + m and this is why the matrix
An+m was not singular. The numerical tests confirmed this.
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where

c = Y2 =




c1

c2

c3

c4

c5

c6

c7

c8




=




u0

v0

u1

v1

u2

v2

u3

v3




(B.120)

We now require the solutions to be bounded at infinity.

We assume that u0 = v0 = 0. The other two equations come from equilibrium equations of atoms

n = 1 (boundary equations), which have the only nonzero forcing term. It is seen that the number

of equations and unknowns are equal and this problem is well-posed.

One should note that in this specific problem the governing equations of un and vn are uncoupled

and it would be instructive to solve the two equations separately and see the difference in the solution

technique with the matrix method. The governing equations for un and vn are,

un+2 + αun+1 − 2(1 + α)un + αun−1 + un−2 = 0 |n| ≥ 2 (B.121)

vn+2 + βun+1 − 2(1 + β)vn + βvn−1 + vn−2 = 0 |n| ≥ 2 (B.122)

where

α =
k1 + 2(cos θ)2k2 + 2(sin α)2k4

k3 + 2(cos α)2k4 + 2(cos θ)2k5
, β =

2(sin θ)2k2 + 2(cos α)2k4

2(sinα)2k4 + 2(sin θ)2k5
(B.123)

The solutions for un and vn have the following form,

un = c1 + c2n + c3λ
n
1 + c4λ

n
2 n ≥ 0, |λ1| < 1, |λ2| > 1 (B.124)

un = c′1 + c′2n + c′3µ
n
1 + c′4µ

n
2 n ≥ 0, |µ1| < 1, |µ2| > 1 (B.125)

Boundedness at infinity implies that

c2 = c4 = c′2 = c′4 = 0 (B.126)

The condition u0 = v0 = 0 yields

un = c1

(
1− λn

1

)
, vn = c′1

(
1− µn

1

)
(B.127)

There is no loading in y-direction and hence c′1 = 0, i.e., vn = 0, ∀n. The boundary equation for un
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(assumping that u0 = 0 and u−n = −un) gives us

c′1 =
1

1− λ3
1 + α(1− λ2

1)− (3 + 2α)(1− λ1)
(B.128)

Suppose k1 = 1.0, k2 = 1
2k1, k3 = 1

3k1, k4 = 1
4k1, k5 = 1

5K1, a = c = 1.0. The solution is shown

in Fig. B.1.a.

Discrete Fourier Transform Method. For the sake of illustration, we first solve the governing

equation of un using DFT. The one-dimensional discrete Fourier transform is a transformation

between sequences in R and functions defined on R. Given a sequence {un}∞n=−∞, its DFT is

defined as

ûn(k) =
∞∑

n=−∞
uneink (B.129)

Having the DFT of a sequence the inverse transform is

un =
1
2π

∫ π

−π

ûn(k)einkdk ∀n ∈ Z (B.130)

To be able to use DFT the governing equations should be written for the whole reduced chain of

atoms. The governing equation for un reads,

un+2 + αun+1 − 2(1 + α)un + αun−1 + un−2 = fn n ∈ Z (B.131)

where

f1 = −f−1 = f, fn = 0 ∀n /∈ {−1, 1} (B.132)

This means that, f̂n(k) = f(eik − e−ik) = 2if sin k. Taking DFT from both sides of Eq. (B.131)

and using the shifting property of DFT we have

[
e2ik + αeik − 2(1 + α) + αe−ik + e−2ik

]
ûn(k) = 2if sin k (B.133)

Thus

un =
f

2π

∫ π

−π

i sin ke−ink

cos(2k) + α cos k − (1 + α)
dk (B.134)

Note that u0 = 0. It may happen that for convergence one has to add a rigid translation to the

solution (Gallego and Ortiz, 1993). However, here because of the symmetry of forces there is no

singularity. For the matrix equations one should similarly consider the governing equations for the

whole space. Taking the DFT from the matrix equations (note that DFT of a vector is the vector
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of the DFT of the components) one gets,

A(k)X̂n(k) = F̂n(k) (B.135)

where

A(k) = e2inkA−2 + einkA−1 + A0 + e−inkA1 + e−2inkA2, F̂n(k) =


 2if sin k

0


 (B.136)

Thus

Xn =
f

2π

∫ π

−π

A−1(k)F̂n(k)e−inkdk (B.137)

For the same lattice let us consider only the first and second nearest neighbor interactions. But this

time let us not assume any symmetry along the y-axis. The governing system of partial difference

equations has the following form,

α=1∑
α=−1

β=1∑

β=−1

AαβXm+α,n+β = Fmn (B.138)

where

A−1,−1 =


 k2C

2 k2CS

k2CS k2S
2


 , A−1,0 =


 k1 0

0 0


 , A−1,1 =


 k2C

2 −k2CS

−k2CS k2S
2




A0,−1 =


 0 0

0 k1


 , A0,0 =


 −2k1 − 4k2C

2 0

0 −2k1 − 4k2S
2


 , A0,1 =


 k2C

2 −k2CS

−k2CS k2S
2




A1,−1 =


 k2C

2 −k2CS

−k2CS k2S
2


 , A1,0 =


 k1 0

0 0


 , A1,1 =


 k2C

2 k2CS

k2CS k2S
2




Consider loading system II, which is a discrete dipole. One would expect to see a localized discrete

displacement field. Because of symmetry only the quadrant {(m, n) : m, n ≥ 0} needs to be con-

sidered. The solutions are shown in Fig. B.1.b. It is seen that the discrete displacement field is

localized, though with a fairly long tail. This is the qualitative behavior we expect to see in the step

problem with localized forces.
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Figure B.1: (a) Discrete displacement field of the 2-D lattice under loading system I., (b) Discrete
displacement field of the 2-D lattice under the discrete dipole.
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Vitásek, E. (1959). The n-dimensional fourier transform in the theory of difference equations.

Archiwum Mechaniki Stosowanej, 12(2):185–202,488–504.

Wales, D. J. (2003). Energy Landscapes. Cambridge University Press.

Wallis, R. F. (1975). Effects of Surfaces in Lattice Dynamics. In Horton, G. K. and Maradudin,

A. A., editors, Dynamical Properties of Solids, volume 2, pages 441–507.

Wolf, D. (1992). Reconstruction of NaCl surfaces from a dipolar solution to the Madelung Problem.

Physical Review Letters, 68(22):3315–3318.

Wolf, D. (1995). Simulation of ionic surfaces from an absolutely convergent solution of the Madelung

problem. Springer Proceedings in Physics, 80:57–68.



199

Wolf, D., Keblinski, P., Phillpot, S. R., and Eggebrecht, J. (1999). Exact method for the simulation

of coulombic systems by spherically truncated, pairwise r−1 summation. Journal of Chemical

Physics, 110:8254–8282.

Yang, W. and Chen, L.-Q. (1995). Computer simulation of the dynamics of 180◦ ferroelectric

domains. Journal of American Ceramics Society, 78(9):4.

Young, K. (1987). Physical condition for elimination of ambiguity in conditionally convergent lattice

sums. Journal of Mathematical Physics, 28(2):425–427.

Zhirnov, V. A. (1959). A contribution to the theory of domain walls in ferroelectrics. Soviet Physics

JETP, 35(8):825–832.


