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Abstract

I demonstrate that high precision measurements of the vertical-average dry volumn-mixing-ratio

of atmospheric carbon dioxide (CO2) can be obtained from ground-based solar spectra. Oxygen

measurements from the same spectra can be used to calibrate CO2 retrievals across different instru-

ments, enabling a global network of column CO2 observations to be constructed. I also illustrate

that this new type of data, together with aircraft profile CO2 observations, provide new constraints

on global carbon fluxes.

v



Contents

Acknowledgments iv

Abstract v

1 Introduction 1

1.1 Global warming and the carbon budget . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Current measurements of atmosphere related carbon fluxes . . . . . . . . . . . . . 5

1.3 Spaceborne and ground-based XCO2 observations . . . . . . . . . . . . . . . . . . 9

1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Atmosphere CO2 column mixing ratio over Kitt Peak from 1979 to 1995 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



3 Ground-based photon path measurements from solar absorption spectra of the O2

A-band 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Using column CO2 mixing ratio to constrain North Hemispheric Net Ecosystem Ex-

change 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Measurements and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Summary and implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 The future of global carbon budget observation system 58

5.1 Total Carbon Column Observing Network (TCCON) . . . . . . . . . . . . . . . . 58

5.2 CO2 observing satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Differential Absorption Lidar (DIAL) . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Unmanned Aerial Vehicle (UAV) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



5.5 Passenger aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 68

viii



List of Figures

1.1 Atmosphere CO2 in the past 160,000 years . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Atmospheric CO2 concentration change . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The global carbon cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 CO2 observing satellite and ground-based spectral observatory . . . . . . . . . . . . 11

2.1 Examples of spectral fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Time series of retrieved vertical columns . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Columnvs. in situ CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Diurnal variations of the CO2/O2 ratio . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 An example of spectral fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Improving half-width of absorption lines . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 PPSFs from 540 TMF spectra and residual pattern . . . . . . . . . . . . . . . . . . 35

3.4 Effect of different lineshapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Precision of airmass calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Distribution of retrieved photon path scale factors . . . . . . . . . . . . . . . . . . . 40

ix



4.1 Data source sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Column CO2 observations versus models . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Partial column CO2 observation versus models . . . . . . . . . . . . . . . . . . . . 49

4.4 Surface CO2 observation versus models . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 CASA scale factors versus altitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 The timing and amplitude of CO2 seasonal cycles . . . . . . . . . . . . . . . . . . . 55

5.1 TCCON map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Principle of DIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 SkySeer UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 JAL passenger flight routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



List of Tables

4.1 The analysis detail of 35 surface sites . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Column and profile observation sites and the CO2 seasonal cycle amplitude compar-

ison with model simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Observations and model results for CO2 profiles . . . . . . . . . . . . . . . . . . . . 56

5.1 TCCON site detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xi



Chapter 1

Introduction

1.1 Global warming and the carbon budget

Global warming is one of the biggest challenges facing mankind in our time [Dickinson and Ci-

cerone, 1986], with various predictions of its disastrous consequences. These predictions include:

rise of sea-level [Meehl et al., 2005], increase of extreme weather events [Emanuel, 1987;Knutson

and Tuleya, 2004], and altering of agriculture pattern [Adams et al., 1990;Mendelsohn et al., 1994;

Rosenberg, 1981]. While some of the consequences are already observable [Levitus et al., 2000;

Goldenberg et al., 2001;Emanuel, 2005;Webster et al., 2005], the warming is on-going and con-

tinuously driven by emissions of “greenhouse gases” (e.g. CO2, CH4, and CFCs1) as byproducts

of human activities. These gases increase the absorption of long wavelength radiative energy from

the Earth surface and warm the climate. The key to controlling global warming, therefore, lies in

our ability to control the emission of such gases [HaDuong et al., 1997;Corfee-Morlot and Hohne,

2003;Kallbekken and Rive, 2007].

Since the most important greenhouse gases are compounds of carbon (water vapor excluded),

understanding the carbon sources and sinks at global scale (i.e. the global carbon budget) is a

prerequisite for a global warming control strategy. Numerous studies during the last five decades

1or chlorofluorocarbons
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Figure 1.1: The atmospheric CO2 concentration since 160,000 years ago. The fast increase of
CO2 concentration after 1850 is highlighted. The green triangles are palieclimate measurements
of CO2 contents in the Vostok ice core [Barnola et al., 1987;Neftel et al., 1985], and the red line
shows the air sample of Mauna Loa observatory after 1958 [Tans, 2007b].
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(e.g. [Keeling, 1958, 1961;Takahashi, 1961;Houghton et al., 1983;Eamus and Jarvis, 1989;

Jarvis, 1989;Keeling and Shertz, 1992;Tans et al., 1993;Keeling et al., 1996]) have constructed

a picture of the carbon budget, that include all transportation and transformation processes of

different forms of carbon compounds taking place on the Earth (Figure 1.3). Some important

discoveries related to atmosphere carbon contents are:

• The atmosphere carbon dioxide level fluctuated from 180 to 300 ppmv (parts per million

by volume) in the past 420,000 years [Barnola et al., 1987] and stayed around 280 ppmv

for several millanium until around 1750 [Neftel et al., 1985], when the industrial revolution

took off. Since then, anthropogenic carbon sources have rapidly driven the atmosphere CO2

to levels unprecedented in past 100,000 years – 315 ppmv in 1958 and 379 ppmv in 2005

(Figure 1.1)[IPCC, 2007].

• Fossil fuel combustion and cement production are the primary anthropogenic carbon sources

into the atmosphere, contributing to about 2/3rds of the total anthropogenic carbon emission

since 1750. The magnitude of fossil fuel fluxes have been growing since the beginning of

industrial age [Andres et al., 1996, 1999]. In the first decade of 21st century, the magnitude

of this flux is about 6 petagram (1015g or Pg) carbon per year [IPCC, 2007;Marland et al.,

2007].

• Effect of land use change, notably deforestation, has contributed to another 1/3rd of the

cumulative anthropogenic carbon emission after 1750 [Schlesinger, 1984;McGuire et al.,

2001]. In the 1990s, the emission of carbon from global land use change is around 1.5 Pg/yr

[Dixon et al., 1994].

• In recent decades, only about half of the anthropogenic carbon stays in the atmosphere [Keel-

ing et al., 1995], as show in Figure 1.2. The other half, or about 3 PgC/yr, is absorbed by

land biosphere and ocean water [Keeling et al., 1996].
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Figure 1.2: The expected atmospheric CO2 concentration change in ppmv during one year if all
fossil fuel emission stays in the atmosphere (yellow triangles, data fromMarland et al.[2007]),
compared with the actual observation (red lines, data fromTans[2007b, Online Database]).
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The social response to these findings have not produced any significant controls on CO2 emissions

— unlike the success in the control of CFC emission. The Intergovernmental Panel on Climate

Change (IPCC) has, however, led the public and policy makers to start discussing possible means

of limiting the anthropogenic CO2 emissions [Wara, 2007].

This thesis describes effort on one aspect of the CO2 control strategy: How to construct a new type

of global atmosphere CO2 observation network — the solar spectral derived column averaged dry

air CO2 mole fraction (XCO2) observations. This new technology is shown to have high accuracy

(~0.2%), and can be used to both validate the future space-borne CO2 measurements and provide

new insights to the global carbon cycle. Its extension to global XCO2monitoring from space may

provide a means of auditing any future carbon control agreement.

1.2 Current measurements of atmosphere related carbon fluxes

By definition, anyconservativematerial flux can be expressed as the material inventory change

during unit time period:

m =
m2 −m1

t2 − t1
=

∆m

∆t
(1.1)

Otherwise, the mean flux can also be expressed as the integration of mass flow rate~m during given

time span. Since~m is determined by flow densityρ and speed~V , plus constantK, we get:

~m = K · ρ · ~V (1.2)

m =

∫ t2
t1

~m · dt

t2 − t1
=

∫ t2
t1

K · ρ · ~V
∆t

(1.3)
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From the definitions above, we can divide various carbon fluxes measurement methods into two

groups:

1. Methods that measure the carbon inventory change in a given time period, then derive the

mean fluxes;

(a) Carbon fluxes from fossil fuel and cement production can be derived from documents

of energy consumption statistics [Andres et al., 1996, 1999]. The accuracy of these

statistics can be quite different in developed and developing countries, but in general

they can provide high spatial and temporal resolution (e.g. the fuel consumption of a

local power plant can be traced during each hour);

(b) Fossil fuel carbon amount change can also be derived from other atmosphere species, if

the relationship between the species and CO2 is known. For example, using local bio-

sphere carbon cycle model, Levin et al. have used observations of atmosphere change

of CO and SO2 [Levin et al., 2003;Levin and Karstens, 2007] to estimate the fossil

fuel emission rate. Similiar approach can be applied toδ13C andδ14C as well [Turnbull

et al., 2006;Hsueh et al., 2007];

(c) Measure atmospheric CO2 concentration change, then use atmosphere general circula-

tion model and fossil fuel emission to estimate net carbon fluxes of different regions

[Fan et al., 1998;Gurney et al., 2002;Krakauer et al., 2004]. This method, if com-

bined with measurements of O2 [Keeling et al., 1996;Bender et al., 1996] orδ13C

[Ciais et al., 1995a,b] of atmosphere CO2, can also decompose the total fluxes into

ocean part and land biosphere part;

(d) Field biomass inventory in different sample biomes, combined with biome type dis-

tribution estimates, can be used to derived the total carbon flux from land biosphere.

The biomass inventory can be derived from different sources, such as rountine national

forestry statistics [Kurz and Apps, 1999;Fang et al., 2001] or history documents of

land use changes [Houghton et al., 1983];
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(e) Ocean water∆C∗ content change [Gruber et al., 1996;Sabine et al., 2002], combined

with CFCs tracked ocean circulation [Matear et al., 2003;Matsumoto and Gruber,

2005], can be used to derive the net carbon flux into the ocean

2. Methods that directly measure the flux or the mass flow rate;

(a) The net carbon flux between vegetated canopy and the atmosphere can be monitored

using eddy covariance method, which simultaneously take high-frequency measure-

ments of wind and CO2 concentrations from towers above the vegetation [Baldocchi

et al., 1988, 1996;Aubinet, 2000]. A global observation network (FLUXNET) of over

300 sampling sites, covering different type of biomes in five continents, has been in

operation continuously since 2001 [Baldocchi et al., 2001, 2006];

(b) Ocean-atmosphere carbon exchanges can be derived from wind speed and the surface-

water carbon dioxide partial pressure (pCO2) [Takahashi et al., 2002]. One limiting

factor of this approach is the complexity of the gas transfer rate dependence on the wind

speed [Wanninkhof, 1992;Wanninkhof and McGillis, 1999]. For example, change of

gas transfer dependence equation can increase the annual global ocean flux by 70%

[Takahashi et al., 2002]. The difficulty of providing real-time wind observations over

oceans was a problem, but this could be improved by recent space-borne wind obser-

vations [Bentamy et al., 2003;Soloviev et al., 2007].

Figure 1.3 summaries estimated annual carbon fluxes for the 1990s. Although anthropogenic car-

bon emission is the main drive behind rising level of atmospheric CO2, its size (~6 PgC/yr) is more

than an order of magnitude smaller than that of either the land biosphere photosynthesis or its res-

piration during the same time (both are about 120 PgC/yr). The same applies to the carbon fluxes

going in and out of ocean as well. The fact that the net atmospheric CO2 increase is determined

by the small differences of several big fluxes is the major difficulty facing the global carbon cycle

research.
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Figure 1.3: The estimated pools and fluxes of global carbon cycle in the late 1990s. All pools are
expressed in units of PgC and all annual fluxes in units of PgC/yr. Figure and data are fromIPCC
[1995].
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1.3 Spaceborne and ground-based XCO2 observations

To go beyond current methods for estimating global total carbon fluxes, measurements of higher

spatial and temporal resolution are required to solve several key problems in carbon cycle research.

One such example is the effort to locate the 1~2 PgC/yr “Northern Carbon Sink”, which had been

speculated to be in either North America [Fan et al., 1998] or Euroasia [Kauppi et al., 1992] by

different inversion estimates. It was later shown that the exact location and mechanism of this

carbon sink can not be robustly constrained by current surface CO2 observations [Gloor et al.,

2000;Gurney et al., 2002;Houghton, 2003]. A recent study using aircraft CO2 profiles (which

provide vertical coverage) find the “Northern Sink” is non-existent and instead locates a “Tropical

Carbon Sink” [Stephens et al., 2007], after applying correction for vertical mixing bias in inversion

models. However, limited by fewer sampling sites (12 profile vs. ~100 surface) and much lower

sampling rate (weekly for profile vs. hourly for surface), the sampling error of CO2 profiles is

much larger than that of surface CO2 observations, making this study less robust.

Spaceborne CO2 observations with frequent (e.g. biweekly to monthly) global coverage and high

spatial resolution (~104 km2) are proposed as the next generation of carbon cycle observation.

Future missions of this type include the Orbit Carbon Observatory (OCO) of Jet Propulsion Lab-

oratory [Crisp et al., 2004] and the Greenhouse gases Observing Satellite (GOSAT) of Japan

Aerospace Exploration Agency [Masahiro and Takashi, 2005]. They have great advantages over

the traditional surface CO2 sampling networks, especially for the purpose of deriving carbon fluxes

from regions of continental to sub-continental size [Rayner and O’Brien, 2001;Chevallier et al.,

2007] (e.g. Northern American Carbon Sink).

Both missions will obtain spectra of surface-reflected sunlight at both CO2 and O2 absorption

bands in the near IR region. Atmospheric CO2 concentration will be retrieved from the spectra

using molecule absorption cross sections determined in the laboratory. This method measures the

mean CO2 mixing ratio along the photon path of the sun light (or XCO2). In contrast, the existing

CO2 networks (e.g. GlobalView-CO2) measure the CO2 mixing ratio at the sampling point. This

9



important difference (as shown in [Olsen and Randerson, 2004]) means the future data from CO2

observation satellites can not be readily calibrated by current observations, and a new validation

strategy must be developed together with the satellites.

Ground-based solar spectral observations have been used to monitor trace gases in the Earth atmo-

sphere, including ozone [Pougatchev et al., 1995], HDO [Schneider et al., 2006], NOx and CFCs

[Notholt et al., 1995]. As show in Figure 1.4, the ground-based spectral observatories can use

the same molecule spectroscopy and much stronger light source directly from the sun. They thus

provide an ideal calibration for the spaceborne CO2 observations. These spectral observations also

have another big advantage over existing point samples, in that they average through the changes

in the atmosphere boundary layer height and are much less sensitive to these noises.

Figure 1.4: CO2 observing satellite and ground-based spectral observatory
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1.4 Outline of the Dissertation

This work explores three issues related to ground-based spectral CO2 measurements: 1) the techni-

cal achievable precision for a single instrument; 2) the method to inter-calibrate observations from

different instruments and different sites; and 3) the advantage of using this type of observations to

constrain global carbon budget.

Chapter 2 presents our retrieval of XCO2 from existing high-resolution solar absorption spectra

obtained during period 1977-1995 at Kitt Peak National Observatory. The spectra cover both the

CO2 band at 6300 cm−1 and the O2 band at 7900 cm−1. The CO2 and O2 amount were first

derived separately based on lab spectroscopy, and then ratioed to give the XCO2. The precision

of this technique is better than 0.5%, and has since been greatly improved in our new project by

employing specifically designed instruments [Washenfelder et al., 2006].

Chapter 3 demonstrates the possibility of using retrieved atmospheric oxygen column mixing ratio

to calibrate a ground-based spectral CO2 observation network. To improve precision, we took new

solar absorption spectra from Table Mountain Facility in 2003, with special attention on observa-

tion timing. These spectra were then analyzed at 13160 cm−1 to yield the oxygen column mixing

ratio, which is in turn compared with the photon paths based on geometrically ray-tracing calcu-

lation. The comparison shows that the oxygen spectral retrievals can provide a precision of about

0.2%, which indicates oxygen can serve as the benchmark for inter-calibration among different

instruments and observation sites of a network.

Chapter 4 describes our first effort to use column XCO2 to constrain the global carbon budget. In

this work, we analyzed several column CO2 datasets, including new measurements from the first

observatory of Total Carbon Column Observing Network (TCCON). We find these observations

indicate a significantly larger (>25%) net ecosystem exchange in the Northern Hemisphere than

current biosphere model prediction. We also used aircraft CO2 profile data to illustrate that these

underestimates may come from too weak vertical mixing in atmosphere transport models.

11



The last chapter includes a summary of the future methods proposed to observe the global car-

bon budget, and a short discussion on the improvement they will contribute to the big picture:

Improving our understanding of the exchange of CO2 between the land, ocean, and atmosphere.

12



Chapter 2

Atmosphere CO2 column mixing ratio over
Kitt Peak from 1979 to 19951

Abstract

The column-averaged volume mixing ratio (VMR) of CO2 over Kitt Peak Arizona was retrieved

from high-resolution solar absorption spectra obtained with the Fourier transform spectrometer on

the McMath telescope. Simultaneous column measurements of CO2 at ~6300 cm−1 and O2 at

~7900 cm−1 were ratioed to minimize systematic errors. These column ratios were then scaled

by the mean O2 VMR (0.2095) to yield column-averaged VMRs of CO2, which display simi-

lar behavior to the Mauna Loa in situ surface measurements. During the period 1977-1995, the

column-averaged mixing ratio of CO2 increased at an average rate of 1.49± 0.04 ppmv/yr with

seasonal variations of ~7 ppmv peak-to-peak. Our retrievals show that this remote technique is

capable of precisions better than 0.5%, and can be greatly improved by employing specifically

designed instruments.

1Adapted from Z. Yang, G. C. Toon, J. S. Margolis, P. O. Wennberg (2002), Atmospheric CO2 retrieved from
ground-based near IR solar spectra,Geophysical Research Letters, 29(9), 1339, doi: 10.1029/2001GL014537
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2.1 Introduction

The atmospheric CO2 VMR has increased from about 280 ppmv in pre-industrial times (before

1800) to about 360 ppmv by the 1990s. Previous studies based on observations from thein situ

network of surface stations indicate that the biosphere and ocean sinks are absorbing about half of

the anthropogenic CO2 emission [Battle et al., 2000]. The nature and geographic distribution of

these sinks, however, remains too uncertain to predict their responses to future climate or land use

changes [IPCC, 2001]. Althoughin situ measurements of CO2 from the existing surface network

are highly accurate (0.1 ppmv), their sparse spatial coverage (both vertical and horizontal) limits

their usefulness in constraining models of CO2 sources and sinks.

Rayner and O’Brien[2001] have shown that global satellite measurements of the CO2 column,

even with poorer precision (2 ppmv, 0.5%), would provide a better constraint on geographic and

temporal distribution of CO2 sources and sinks than the existing surface network. This calculation

assumes, however, that such space-borne observations are bias-free. To test and eliminate bias, an

extensive correlative measurement effort will be required. These measurements, additionally, can

be important for constraining aspects of the CO2 behavior that will not be measurable from space

in the foreseeable future (e.g. diurnal variations).In situ measurements of CO2 from the existing

surface networkcannotalone be used to validate space-borne measurements of column CO2 due

to their much higher spatial resolution and their confinement to the planetary boundary layer.

Ground-based spectral observations of the sun at high spectral resolution can, in principle, be used

to determine the total CO2 column. The near IR is particularly attractive for this task because

the sun is sufficiently bright that high signal-to-noise (S/N) with high spectral resolution can be

obtained during minimal integration time.

14



2.2 Measurements

Between 1979 and 1985, numerous high-resolution absorption spectra (∆v = 0.014 cm−1) of the

Sun were obtained with the 1-m Fourier Transform Spectrometer (FTS) at the McMath telescope

complex on Kitt Peak (31.9◦N, 111.6◦W, 2.07 km above sea level). Observations covering the

spectral range from 6000–8000 cm−1 were used to determine the column-averaged dry air VMR

of CO2 and CH4 [Wallace and Livingston, 1990]. In that work, equivalent width analyses (EQW)

were performed on 19 well isolated lines of the CO2 (21◦2)-(00◦0) band (v0 = 6348 cm−1) and 14

lines of the O2 0-0 1∆g −3 Σ−
g band (v0 = 7882 cm−1) to get the column amount of both gases.

Assuming the O2 VMR to be constant (0.20946), the column ratio (CO2/O2) was scaled to yield

the column-averaged CO2 VMR in the atmosphere over Kitt Peak.

In this letter, we report a reanalysis of the Kitt Peak observations using a more sophisticated spec-

tral retrieval algorithm with updated spectroscopic linelists for CO2, O2 (including the collision

induced absorption), H2O, and absorption in the solar atmosphere. In our analysis, we simultane-

ously fit all lines (more than 200) in the entire O2 band and two CO2 bands centered at 6228 cm−1

and 6348 cm−1. This allows us to include in our analysis spectra obtained at high airmasses, that

Wallace and Livingston[1990] excluded due to limitations imposed by the EQW technique. In

addition, we have analyzed spectra obtained more recently at the same facility.

2.3 Data analysis

Spectra are analyzed using a line-by-line algorithm developed at Jet Propulsion Laboratory for

the analysis of solar absorption spectra. In the retrieval, least square analysis is performed over a

prescribed spectral window to derive theslant column abundanceof the target gases. The fitting
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residual is defined as:

χ2 =
∑ (Y M

i − Y C
i (x))2

σ2
i

(2.1)

In which Y M
i is one measurement in one spectrum,Y C

i is the forward model calculation,x is

the target gas scale factor,σi is the uncertainty ofY M
i . In our forward model the atmosphere is

represented by 70 vertical levels. Pressure- and temperature-dependent absorption coefficients are

computed line-by-line for each level and used in the forward model to produce spectraY C
i (x) for

comparison.

Pressure and temperature profiles are obtained from NOAA’s Climate Diagnostics Center (CDC),

which are assimilated temperature data on 17 levels from 1000 to 10 mbar with 1◦×1◦ geographic

resolution. For levels with pressure smaller than 10 mbar, climatological temperature profiles are

used. A study of the temperature sensitivity of the retrieved CO2/O2 ratio revealed a T-dependence

of 0.07%/K. So if the CDC profiles were systematically in error by 5 K at all levels, the CO2/O2

error would be 0.35% or about 1 ppmv.

The CO2 spectral parameters are derived from the latesthigh-resolution transmission molecular

absorption database(HITRAN) [Rothman et al., 1998]. The background solar linelist is based on

the work ofWallace and Livingston[1990]. For the O2 lines, the HITRAN strengths were updated

with a recent recalculation [Goldman, private communication] that was found to give improved

agreement with laboratory data [Newman et al., 2000]. In addition to the discrete O2 lines of the

1∆ band, there is also underlying O2 continuum absorption [Smith and Newnham, 2000;Smith

et al., 2001]. Although this O2 collision induced absorption (CIA) was included in the line-by-line

calculation to improve estimation of the continuum, only the discrete1∆O2 lines were used in the

computation of the O2 column amount.
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2.4 Results

414 spectra obtained at Kitt Peak over the period 1977-1995 have been analyzed. Due to other

demands on the instrument, solar observations in the 6000 – 8000 cm−1 spectral region were gen-

erally made on only a few days each year. The spectra were measured at various times throughout

the day from sunrise to sunset, weather permitting. The spectra analyzed are generally co-additions

of 2-4 individual spectra, each taking 7 minutes to acquire. The effective solar zenith angle (SZA)

was calculated as the average of the SZAs of the individual interferograms at theirzero path differ-

ence(ZPD) times. At high airmasses (~10), this was often significantly different (5% in airmass)

from the mean SZA, due to the fact that the ZPDs were typically not in the middle of the double-

sided interferograms, and due to the non-linear nature of the variation of the airmass with time.

Examples of the spectral analysis are shown in Figure 2.1. Two spectral windows for CO2 and one

window for O2 were employed as shown. Since most of these spectra were not intended for use

in the 6000 – 8000cm−1 region, we have excluded 71 observations (17% of the total) that produce

rms spectral residuals greater than 6.0% for O2 or 3.0% for CO2. The larger threshold for rejection

of O2 spectra is due to the difficulty in fitting the O2 CIA at large SZAs. In remaining spectra,

those measured at low SZA generally have rms residuals of about 0.4-0.8% for O2 and 0.7-0.8%

for the CO2. These residuals are dominated by solar features and by the O2/CO2 lines themselves.

For spectra measured at high SZA (>75◦) the residuals are larger (up to 3% in CO2 and 5% in O2)

due to the increasing strengths of the O2/CO2 lines.

The retrieved slant column amounts were divided by the calculated airmass to produce vertical

column amounts. Account was taken of the 250 m optical path inside the telescope, which adds

nearly 3% to the noontime O2 slant column. The daily-average value of CO2 and O2 vertical col-

umn amounts and their ratio (CO2/O2) are shown in Figure 2.2. The long-term trend in the CO2

column amounts (Panel A) is evident, but the seasonal variation is unclear. For the O2 column

amount (Panel B), no long-term trend is observed. The retrieved dry VMRs (converted from col-

umn amount after dividing by2.15× 1021 times the surface pressure in mbar) of O2 fall within the
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Figure 2.1: The spectrum was measured at 70.70◦SZA on May 9, 1981. Diamonds are the mea-
surements and black lines are the fitted transmittance. (a) The 6100 – 6400 cm−1 region, containing
the (14◦1)-(00◦0) and (21◦2)-(00◦0) bands of CO2; (b) The 7800 – 8000 cm−1 region, containing
the O2 0-0 1∆g −3 Σ−

g band. The contributions from CO2/O2, H2O and solar features are shown
by the red, green and blue lines respectively. The O2 CIA is represented by the grey line in (b).
The residual traces (measured-calculated) and are clearly dominated by systematic errors in both
regions.
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range of 0.202 to 0.217, with a mean of about 0.209 – remarkably close to the actual O2 VMR for

dry air (0.2095).

The ratio of the CO2 and O2 column amounts, scaled by the standard atmospheric O2 fraction of

0.2095, gives the column-averaged dry volume-mixing ratio of CO2 in the atmosphere (Figure 2.2,

Panel C). Clearly, the precision of the CO2/O2 ratio is improved over that of the CO2 column.

The high degree of correlation between errors in CO2 and O2 suggests that much of the scatter

in the unratioed observations is common to both spectral regions. We speculate that these errors

arise in the spectra (e.g. uncertainties in instrumental line shape) or in the calculated airmass (e.g.

uncertainty in surface pressure or SZA). In Figure 2.2, we have scaled the CO2 column average

dry mixing ratio by 1.058. This scaling was empirically determined to minimize bias between the

Kitt Peak data and those from Mauna Loa, and probably reflects an error in the CO2 line strengths

and/or pressure broadening coefficients. Also shown in Figure 2.2(Panel C) are the Mauna Loa

CO2 in situ measurements. Their trend and seasonal cycle are remarkably similar to the Kitt Peak

data. The average CO2 increase between 1977 and 1995 is 1.49±0.04 ppmv/yr, the same as that

measured from Mauna Loa (~1.47 ppmv/yr) over the same period.

Details of the seasonal cycles for CO2/O2 in the period 1979-1985 are expanded in Figure 2.3. We

compared the Kitt Peak data with two sets ofin situmeasurements: Mauna Loa (19.5◦N, 155.6◦W,

3397 m above sea level) and Niwot Ridge (40.1◦N, 105.6◦W, 3475 m above sea level). The phase

of Kitt Peak data is nearly the same as Mauna Loa measurements but has a lag of about one month

compared with the Niwot Ridge record, despite the latter site being much closer to Kitt Peak. The

seasonal amplitude of Kitt Peak data (~7 ppmv peak-to-peak) is also more similar to Mauna Loa

record than to the Niwot Ridge record. We do not know the reason for the different behavior of

the Niwot Ridge data, but we speculate that the Mauna Loa and Kitt Peak records might better

represent the free tropospheric CO2, while the Niwot Ridge record is more heavily influenced by

local sources and sinks of CO2.

To understand the diurnal variation and to estimate the precision of the retrieval, 231 column results
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Figure 2.2: (a) CO2 and (b) O2. (c) the column-averaged CO2 VMR over Kitt Peak determined
from the ratio of the individual CO2 and O2 spectra (green dots) and the daily-averaged value
(red diamonds) are shown. The column measurements have been scaled by 1.058 to match the
absolute value of the Mauna Loa record (blue). Error in the spectroscopic database for CO2 is
likely responsible for the discrepancy (see text).
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Figure 2.3: Time series of daily averaged retrieved values of the Kitt Peak column CO2 VMRs
(red open diamonds) over period 1979-1985, compared with the Mauna Loa (blue) and the Niwot
Ridge (pink) in situ measurements.

for the 40 different days for which more than 4 column measurements exist were analyzed. For

each day, the O2 and CO2 vertical column amounts were converted into VMRs and averaged to get

the daily mean. The variation of one measurement from the daily mean is defined as

Diurnal variation of x =
x

x
− 1 (2.2)

wherex is one measurement andx is the mean of the day. The diurnal variations for O2 and CO2

obtained in this manner are partly correlated and therefore the CO2/O2 ratios exhibit less error than

CO2 VMRs obtained by dividing the CO2 column amount by pressure. The range for O2 variation

is 2.0%, whereas for CO2 it is 1.2%.

The diurnal variations in the CO2/O2 ratios are shown in Figure 2.4. Most of the deviation is in

the range of -0.5~0.5%, except for a few measurements made at high airmasses (>10). Assuming

the CO2 VMR over Kitt Peak is essentially constant during one day, the scatter in Figure 2.4 is a
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measure of the precision of the column measurements. The origin of the increase of CO2/O2 at

high airmass is likely non-geophysical. We speculate that the different behaviors of the continuum

signal in the CO2 and O2 spectral regions as a function of airmass contributes to this anomalous

diurnal behavior in CO2/O2. Since the integrating periods of the Kitt Peak measurements are

quite long (about 30 minutes at 5 airmasses and 15 minutes at 10 airmasses), it is impossible to

un-ambiguously assign an average airmass to these spectra.

Figure 2.4: Diurnal variations of the CO2/O2 ratio (see page 22 for detail)

2.5 Conclusions

Reanalysis of near IR spectra obtained at Kitt Peak National Solar Observatory have demonstrated

that the column-averaged CO2 VMR can be retrieved with ~0.5% precision. By simultaneously

fitting all lines in one band and using new spectroscopic linelists, we decreased the temperature

sensitivity of data retrieval and greatly improved the precision compared with Wallace and Liv-

ingston’s analysis.
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We believe that remaining errors are dominated by deficiencies in the spectroscopic linelists, and

by airmass ambiguities exacerbated by the long scan duration of the Kitt Peak spectrometer. With

improvements to the spectroscopic linelists and with modern, faster-scanning FTIR spectrometers

dedicated to the measurement of CO2, substantially better results can be anticipated. We are confi-

dent that with these improvements, this technique will be more than adequate for ground-truthing

future space-based CO2 column observations.
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Chapter 3

Ground-based photon path measurements
from solar absorption spectra of the O2
A-band1

Abstract

High resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38◦N,

117.68◦W, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths

of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with

ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith

angle, the ratios of retrieved to geometrically derived photon paths are highly precise (~0.2%), but

they vary as the zenith angle changes. This is because current models of the spectral lineshape in

this band do not properly account for the significant absorption that exists far from the centers of

saturated lines. For example, use of a Voigt function results in an error in the retrieved photon path

of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function

reduces, but does not completely eliminate this problem. New lab measurements of the lineshape

are required to make further progress.

1Adapted from Z. Yang, P. O. Wennberg, R. P. Cageao, T. J. Pongetti, G. C. Toon, S. P. Sander (2005), Ground-
based photon path measurements from solar absorption spectra of the O2 A-band, J. Quant. Spectrosc. Radiat.
Transfer, 90, 309-321
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3.1 Introduction

The A-band is the strongest absorption band of O2 in the visible and IR region. Its importance for

atmospheric remote sensing lies not in measuring O2 itself (the mixing ratio is well known), but

rather in its use of determining the photon paths traversed through the atmosphere. Because the

A-band has the virtue of being in a window region (where atmosphere is transparent down to the

surface) and free from interference of other atmospheric gases (e.g. water vapor), transmission and

reflectance spectra of this band are sensitive to ray path changes in the troposphere and thus directly

relevant to the study of clouds and aerosols from space [Yamamoto and Wark, 1961;O’Brien and

Mitchell, 1992;Kuze and Chance, 1994;Asano et al., 1995;Min et al., 2001]. The A-band spectra

have also been used for estimating surface pressure from aircraft [O’Brien et al., 1998] and deriving

tangent heights for solar occultation observations .

Photon path information is extremely important for achieving the required precision of future

global-coverage space-borne measurements of CO2, which are necessary for resolving the global

carbon budget. Similar applications on other well-mixed gases (e.g. CH4) are possible. These

measurements must have very high precision (e.g. 1 ppmv or 0.3% for CO2) to detect small geo-

graphic and temporary changes. The usefulness of the O2 A-band in improving space-borne CO2

measurements, however, is predicated on accurate simulation of its absorption spectrum [Kuang

et al., 2002].

Retrieval of photon path lengths with sub-percentage precision from atmospheric spectra is always

a challenge. For the A-band, the high optical depths mean that most of the lines are saturated from

the centers to ~10 Lorentzian widths, even at the smallest airmass (the ratio of the slant column to

the vertical column). The information on the photon paths, therefore, comes largely from the far-

wings of these O2 absorption lines where existing laboratory constraints are inadequate. Retrievals

from highly saturated spectra also require precise knowledge of both the continuum and zero levels.

In addition, accurate temperature information is needed. Finally, the absorption lines in this band
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are strongly overlapped (especially for lines in the R branch), and line-mixing effects could be

important.

In this paper, we evaluate the accuracy of photon path retrievals from the A-band spectra in a situ-

ation where the photon paths are very well known: ground-based narrow field-of-view observation

of direct sunlight in near-IR region. In this observation geometry, virtually all the measured pho-

tons have passed through the atmosphere without being scattered. The photon paths can, therefore,

be accurately determined by simple geometric ray tracing. The main purpose is to develop an al-

gorithm and technique that will allow retrieval of photon path information from the ground-based

A-band spectra, and to explore the accuracy-limiting factors.

3.2 Measurements

The data analyzed in this work were obtained with the Fourier Transform Ultraviolet Spectrometer

(FTUVS), installed at JPL’s Table Mountain Facility, about 40 miles Northeast of Los Angeles

[Cageao et al., 2001]. The instrument is designed specifically for use in the visible and near-UV,

but is able to work in the near-IR as well using a Silicon photodiode detector. Measurements were

taken on 12 days between March 24 and April 11, 2003, each consisting of 10 scans (5 forward

and 5 reverse) obtained in 5 minutes. The forward and reverse scans were summed separately in

order to evaluate the systematic error from different scan directions. Altogether 540 spectra were

obtained from 10450 to 17987 cm−1, covering the entire A-band (centered at 13120 cm−1), with

a resolution of 0.054 cm−1. To minimize the measurement variation, the instrument settings and

alignment were adjusted minimally during the 19 days.

We recorded the beginning and ending times of each measurement with an error smaller than five

seconds. This translates to photon path accuracies better than 0.06% at two airmasses and 0.17%

at five airmasses. The surface pressures were recorded at the same time. We also noted cloudiness

and only use spectra taken in clear sky cases.
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3.3 Data analysis

Spectra are analyzed using the GFIT algorithm developed at Jet Propulsion Laboratory. This algo-

rithm is able to simultaneously retrieve the column amounts of several molecules from a prescribed

spectral window. In the forward model, we represent the atmosphere by 70 levels from 0 to 69 km.

Pressure- and temperature-dependent absorption coefficients are computed line-by-line for each

level. The atmospheric transmittanceT at frequencyvi is represented as

T (vi) = exp[−
∑

plnl

∑
λgml,g

∑
sl,g,kfl,g,k(vi − vl,k)] (3.1)

Wherepl and nl is the effective optical path lengthand the totalatmospheric number density

(molecule cm−3) at thelth level; ml,g is the a priori volume-mixing ratio (VMR) of thegth gas

at thelth level; sl,g,k andfl,g,k is the absorption strength (cm molecule−1 cm−1) and normalized

lineshape function of thekth absorption line of thegth gas at thelth level; andvl,k is the center

frequency (cm−1) of the kth absorption line at thelth atmospheric level.λg is the scale factor

applied to the VMR of thegth gas (for a gas with accurately known mixing ratio such as O2,

λg is effectively the photon path scale factor). The pressure and temperature profiles for each

day’s spectra are rescaled from NCEP/NCAR reanalysis data, which include temperatures on 17

levels from 1000 to 10 mbar with 2.5◦×2.5◦ geographic resolution. Climatological temperature

profiles are used for levels with pressure 10 mbar. The optical path length between each level is

calculated based on time-derived astronomical solar zenith angle (SZA), pressure altitude (instead

of geometrical altitude to reconcile with the P-T profile), and atmospheric refractive index. All

these factors, together with the absorption strengths and lineshape functions, are pre-determined

and kept the same during the fitting process.

During the retrieval, the algorithm performs least squares analysis over the spectral window to

derive the factors that scale the slant column abundances of the target gases. The fitting residual is
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defined as:

χ2 =
∑ (Y M

i − Y C
i )2

σ2
i

(3.2)

Y M
i is one measurement in the spectrum andσi is its uncertainty.Y C

i is the corresponding forward

model calculation, which is determined by above-atmosphere solar spectrum , spectral window

continuum (approximated linearly as[α + β(vi − vc)], with α and β the continuum level and

tilt, and vc the window center frequency), zero level offset (Zoff ), instrument lineshape (ILS),

frequency shift (δ) and atmospheric transmittance.

Y C
i = Zoff + Y S

i [α + β(vi − vc)][ILS(vi, δ)⊗ T (vi)] (3.3)

⊗ denotes the convolution operation. During retrieval process, both and its derivatives with respect

to the variables are computed iteratively to find the combination of unknowns

X = [λ1, λ2...λG, α, β, δ, Zoff ]

that minimize the residualχ2.

Figure 1(a) shows a raw spectrum and the parameters applied to fit it. The upper line represents the

linearized continuum level and the lower line represents theZoff . During fitting, the continuum

level is determined from regions where the atmospheric absorption is minimal (i.e. beyond the

edges of the band), and theZoff is determined from blacked-out regions, where the atmospheric

transmittance is known to be zero. The fitted results and residuals of the same spectrum are shown

in Figure 3.1(b) and (c). The curvature of the continuum is less than 0.2% judged from residuals,

which is small compared with the uncertainty in the gaseous absorption.

Since atmospheric spectra have many saturated lines inside the O2 A-band, even at the lowest air-

mass, zero level offsets affect the retrieval heavily. An attempt of determiningZoff from the whole
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Figure 3.1: (a) A TMF O2 A-band (12970~13220 cm−1) spectrum measured at 51.50◦ SZA on
March 24, 2003. The fitting parameterscontinuumandzero level offsetare also shown. (b) the
result of fitting the same spectrum in the same region. Diamonds are the measurements and black
lines are calculated total transmittance. The contributions from O16O16, O16O16+O16O18, and the
solar features are marked by red, cyan, and blue respectively. Compared with (a), the continuum
has been normalized and the zero level offset has been subtracted. (c) the spectral fitting residual
(measured minus calculated). The large peak at ~ 13165 cm−1 is probably caused by neglecting
line-mixing.
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A-band gives undue weight to spectral points that are nearly but not exactly blacked out. We thus

retrieve zero levels separately from the contrast of non-absorbing and saturated regions inside the

A-band, and input the results back into the general retrieval process to determine photon paths. The

two-step strategy has reduced the scatter of retrievals from high airmass spectra, but slightly in-

creased the scatter of the low airmass results. Study shows that, because of their narrower saturated

regions and consequently larger sensitivity to other factors (e.g. ILS), it is difficult to determine

Zoff for low airmass (<2) spectra. The retrievedZoff values from these spectra scatter much more

than the high airmass ones, and induce a spurious correlation between the retrieved scale factors

and theZoff themselves (not shown) after input into the 2nd step retrieval. Nonetheless, a simple

subtraction of this correlation reduces the scatter significantly, and is thus applied to retrievals from

all low airmass spectra. The corrections are mostly around 0.1%, although a few can be as large as

0.3%.

A sensitivity test exhibits that the retrieved photon path scale factor from the A-band has tem-

perature dependence that decreases almost linearly with airmass (from 0.16%/K at one airmass to

0.04%/K at seven airmasses). The positive temperature dependence indicates that the linewidth

rather than the linestrength dominates the overall temperature sensitivity for this heavily saturated

band. Since we only use one temperature profile for each day, the diurnal temperature variation at

near ground levels could introduce significant error. For this reason, we retrieve the temperature at

levels lower than 5 km using the contrast between the O2 lines of different ground state energies

as a correction. Tests using simulated spectra indicate that this strategy accurately retrieves O2 at

all airmasses, even when the a priori surface temperature is off by 10 K. This sensitivity test also

demonstrated that the retrieved O2 amount is not sensitive to the altitude-dependence of tempera-

ture change, as either a uniform offset or a top-fixed linear slope. We thereby use a simple offset

Toff to change the temperature profiles at altitudes below 5km.

The positions, intensities, and ground state energies of the O16O16 A-band spectral absorption

lines are from the HITRAN2000 [Ritter and Wilkerson, 1987;Gamache et al., 1998] compilation
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. The self- and pressure-broadening coefficients, however, were recalculated from a fit to several

lab measurements [Ritter and Wilkerson, 1987;Yang et al., 2000;Brown and Plymate, 2000;New-

man et al., 2000] (shown in Figure 3.2). In HITRAN2000, the widths of high rotational quantum

number (denoted as J hereby) absorption lines were extrapolated from earlier measurements of the

lower-J lines. The new linewidth estimates (the orange lines in Figure 3.2) substantially reduce the

fit residuals especially for the high-J lines. Spectral parameters of O16O18 and O16O17 have also

been updated [Camy-Peyret, private communication]. To avoid artifacts resulted from inconsisten-

cies among the spectroscopic parameters of the various O2 isotopomers, we retrieve separate scale

factors for O16O16 and O16O18+O16O17, and use only the results from the O16O16 to determine

photon paths.

Line mixing is only prominent for the high-J lines of the R branch band-head (v ∼ 13165 cm−1,

shown in Figure 3.1), althoughLinda Brown[private communication] has speculated that it likely

extends throughout the entire A-band. Since we do not have good technique to account for this

effect, we only use the P branch (v < 13120 cm−1) in spectral fitting. However, the non-absorbing

regions on both sides of the A-band are used because they are necessary to derive the spectral

continuum.

3.4 Results and discussion

Retrieved photon path scale factors (PPSF: ratios of the retrieved to geometrically derived ray

paths) using Voigt function from O16O16 lines of the A-band FTUVS spectra are plotted versus

the airmasses at which they are taken in Figure 3.3(a). The results are symmetrical in the morning

and afternoon, demonstrating no existence of time offsets while recording these spectra. There is

also no significant (< 0.1% in total) difference between the retrievals from the forward and reverse

scannings (not shown). At a given airmass, the precision (1σ~ 0.2%) is satisfying, but the spurious

correlation between the scale factors and the airmasses is obvious. An examination of the spectral
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Figure 3.2: Laboratory measurements of air- and self- broadened half-width (ABHW and SBHW)
of O2 A-band (black) and O2 1.27 um band (color) absorption lines from different references [Ritter
and Wilkerson, 1987;Yang et al., 2000;Brown and Plymate, 2000;Newman et al., 2000]. The fit
of the SBHW (orange line in panel (b)) to upper rotational quantum number (N’) is

SBHW = 0.02204 +
0.03749

1 + 0.05428N ′ − 1.19× 10−3N ′2 + 2.073× 10−6N ′4 (3.4)

and ABHW is then derived from SBHW (orange line in panel (a))

ABHW = 1.012
SBHW√
1 + (N ′−5

55
)2

(3.5)

Both diverge from the HITRAN2000 extropolations (black dashed line) forN ′ > 20.
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residuals (e.g. Figure 3.3(b) and (c)) reveals that the Voigt function gives too low a ratio of far

wings to the near wings absorption. Changing linewidths in this formulation neither improves

the residuals nor removes the airmass dependence. Considering the Dicke narrowing effect by

adopting a hard collision model used to fit A-band lab spectra gives [Ritter and Wilkerson, 1987]

indistinguishable results (not shown) from those of the Voigt lineshape, because Dicke narrowing

affects only the line centers, which are blacked out for most of the O2 lines considered here.

In an attempt to improve our retrievals, the super-Lorentz function described byHirono and

Nakazawa[1982] has been tested. This function is represented as:

f(v) =
A(η)

π

γη−1
L

{(v − v0)2 + γ2
L}η/2

(3.6)

whereγLis the Lorentzian linewidth,v0 is the absorption line center frequency, and1 < η ≤ 2.

is the normalization factor. Whenη = 2, f(v) is Lorentzian; whenη < 2, f(v) becomes super-

Lorentzian, i.e. weaker near the line center and stronger in the far wings (shown in Figure 3.4(a)).

Although this lineshape is expected to better represent the dominant saturated lines in atmospheric

A-band spectra, it provides a poorer representation of the line centers than the Voigt function

because it neglects the Doppler effect. In this study, therefore, we apply the super-Lorentz function

only to strong low-J (J≤ 25) lines, which are always saturated at the centers for our spectra, and

use Voigt function for other weak lines. Although the division is arbitrary, it gives smaller residuals

than the attempt of combining two lineshapes (using Voigt for high altitudes and super-Lorentz for

low altitudes) does.

The comparison of photon path scale factors retrieved using different choices ofη are shown in Fig-

ure 3.4(b). As we use smallerη value (i.e. increase the far wing strengths), both the absolute value

of retrieved scale factors and their airmass dependence decreases. In spite of this, there exists no

singleη value that completely removes the airmass dependence. For example, atη = 1.977 (which

gives the smallest rms for super-Lorentz function fits), the low airmass (<1.8) retrievals are almost
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Figure 3.3: (a) Photon path scale factors retrieved from the TMF spectra using Voigt lineshape
plotted versus the airmasses at which they were taken. Negative and positive airmasses mean
the spectra were taken in the morning and afternoon, respectively. Each day’s results are marked
differently. (b) An expanded view of the13100− 13110 cm−1 region for the same TMF spectrum
shown in Figure 3.1. (c) The spectral fitting residual of (b) (black line) together with residuals from
fitting a Kitt Peak spectrum (pink line) and a Caltech spectrum (green dash line), demonstrating
that the error pattern is not of instrumental origin.
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airmass-independent, but the other retrievals still increase with airmass; and whenη = 1.958, the

fitting rms is larger (but still smaller than those of Voigt function), the airmass-independent region

moves to modest airmasses (2.5 ~ 4), while low and high airmass retrievals show negative and pos-

itive airmass dependences respectively. An investigation of the fitting residual of saturated lines

(not shown) reveals that, compared with the Voigt lineshape, the super-Lorentz lineshape repre-

sents the far wings better, but still has the same problem of overestimating the near wings (from

line center to ~1.5 cm−1 away), which might be a result of neglecting line-mixing. Besides, this

overestimation gets worse for high airmass spectra, which should be responsible for the complex

airmass dependences of retrievals. Considering the 2% accuracy of line intensities [Ritter and

Wilkerson, 1987;Brown and Plymate, 2000],η = 1.977 gives the most reasonable absolute values

(0.97~1.00, should be unity). Nevertheless, without accurate laboratory information on the far-

wing lineshape, it is impossible to ascertain if the retrieved non-unity scale factors are the result of

spectroscopic, instrumental, or other errors.

The observed airmass dependence can not be explained by errors introduced by the use of discrete

levels in the ray path calculation. We compared our 70-level-discretized calculations of airmass

with results of a numerical integration [Kristensen, 1998], both using the International Civil Avi-

ation Organization (ICAO) standard atmosphere. The discrete calculation gives smaller photon

paths, and the absolute difference increases almost linearly with airmass. However, the differences

(shown in Figure 3.5, ~0.13% at one airmass and ~0.02% at seven airmasses) are small compared

with the variance in O2 scale factors shown in Figure 3.4(b). Moreover, correcting the ray-tracing

error will worsen the spurious correlation between airmass and retrieval photon path, if we use

Voigt lineshape or super-Lorentz lineshape ofη value larger than 1.977.

Evaluation of achievable precision from current spectral retrieval technique is based on the scatter

of the ”flat region” in Figure 3.4(b), analyzed using super-Lorentz function ofη= 1.977. For 230

TMF spectra taken at airmasses less than 1.8 (Figure 3.6), the mean of retrieved scale factors is

0.9777 and the 1σ is 0.0022, sufficient to fulfill the requirement of calibrating 0.3% change in
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Figure 3.4: (a) The comparison of Lorentz lineshape function (approximating Voigt function in
the wings, in black) and super-Lorentz function withη = 1.977 (red), 1.958 (brown), and 1.940
(light blue), assuming a 0.015 cm−1 Doppler width. The strength axis is in log scale. The far
wing absorption clearly increases with decreasingη. The differences in the center are small and
immaterial because the strong lines are saturated there. (b) Retrieved photon path scale factors
using different lineshape functions versus airmass, using the same color scheme as in (a).
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Figure 3.5: Denote the integrated aimass fromKristensen[1998] asAMKri and our 70-level
discretized atmosphere calculation asAMdis. The relative difference between the two is defined as

%Difference = 100× AMdis − AMKri

AMKri

(3.7)

and plotted versus both airmass and refracted solar zenith angle.

atmospheric CO2 over this relatively small variation in surface pressure (~10 mbar). Observations

made over a broader range of surface pressures would be helpful to further test the retrieval and

could provide further insight about the physics of absorption in the A-band. In addition, in these

mountain top observations, the water vapor column is small. This clearly will not be the case for

soundings made at higher pressure. Because the influence of H2O on the lineshape is unknown,

further retrieval error can be expected.

Although the super-Lorentz lineshape is imperfect for describing A-band lines, its better represen-

tation of the far wings may indicate the existence of collision-induced absorption (CIA), which

was previously speculated [Mlawer et al., 1998]. According to the statistical theory, super-Lorentz

function of η = 2 corresponds to dipole-dipole (e.g. O2-O2 or O2-N2) interaction and that of

η = 1.75 corresponds to dipole-quadrupole (e.g. O2-O4) interaction , so that the super-Lorentz

lineshape of in-betweenη values represents the mix of common absorption and CIA. Then again,

the very small intensity of CIA in this region is immeasurable without extremely long path cell
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in the lab. To derive the CIA from atmospheric spectra, by finding a lineshape function (could be

similar to the multi-variable CKD model described byClough et al.[1989]) that minimizes the

airmass dependence of the retrievals instead of absolute rms error of an individual fit, might be

possible but difficult.

Figure 3.6: Retrieved photon path scale factors from the low airmass (<1.8) spectra usingη =
1.977 super-Lorentz function versus surface pressures at which they were taken. Corresponding
histogram and the fitted Gaussian curve are in the background.

3.5 Conclusion

Using ground-based measurements of direct sunlight as a simple test, we have shown that photon

paths can be retrieved with high precision (~0.2%) from high resolution FTS solar absorption

spectra of the O2 A-band, over a significant SZA driven (but not surface pressure) variation in

airmass. This is achieved by virtue of: 1) the atmospheric O2 being extremely well mixed with an

accurately known mole fraction; 2) the A-band lines being strong, numerous, and almost free of

absorption by other gases; 3) the stable and self-calibrating nature of the FTS instrument; 4) the

high signal-to-noise-ratio of direct solar absorption spectra. Successful retrieval of photon paths
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will eliminate a major systematic error source of future remote sensing experiments using solar

radiation as a light source, and greatly improve their precision in measuring many tropospheric

species.

The major obstacle for further progress in this effort is that we cannot correctly represent the line-

shape of the absorption in the A-band. Error in this parameterization results in spurious correlation

between retrieved photon path scale factors and the airmasses at which the spectra were taken.

Neither Voigt nor super-Lorentz lineshape is the correct description for the strong absorption lines

in the A-band. Although we speculate that the near wing overestimation and the far wing un-

derestimation could be due to line-mixing and continuum absorption respectively, it is difficult to

unambiguously determine the reasons for the poor spectral fits of open-path atmospheric spectra

because there are too many unknowns (interfering absorption features, T/P varying along the line

of sight, etc.). New laboratory measurements of the O2 A-band lineshape with a closed-path of at

least 10 km are clearly needed.
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Chapter 4

Using column CO2 mixing ratio to constrain
North Hemispheric Net Ecosystem
Exchange1

Abstract

We present the first effort to use column CO2 to constrain the global carbon budget. This analysis

uses observations of the column-averaged dry molar mixing ratio of CO2 above both Park Falls,

Wisconsin and Kitt Peak, Arizona, together with partial columns derived from six aircraft pro-

files over Eurasia and North America to estimate the seasonal integral of net ecosystem exchange

(NEE) between the atmosphere and the terrestrial biosphere in the Northern Hemisphere. We find

that NEE is approximately 28% larger than predicted by the Carnegie Ames Stanford Approach

(CASA) model. We show that the earlier estimates of NEE may have been biased low by too weak

vertical mixing in the transport models used to infer seasonal changes in Northern Hemisphere

CO2 mass from the measured surface CO2.

1Adapted from Z. Yang, R. A. Washenfelder, G. Keppel-Aleks, N. Y. Krakauer, J. T. Randerson, P. P. Tans, C.
Sweeney, and P. O. Wennberg (2007), New constrains on Northern Hemisphere growing season net flux,Geophysical
Research Letters, 34, L12807, doi:10.1029/2007GL029742
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4.1 Introduction

Forecasting future CO2 levels in the atmosphere is needed to predict future climate. Accurate

forecasts require an improved understanding of carbon sources and sinks [IPCC, 2007]. During

the 1990s, fossil fuel combustion and cement production added approximately 6 PgC/yr to the

atmosphere. These fluxes are well constrained spatially and temporally [Andres et al., 1996].

From the observed atmospheric increase and the known anthropogenic emissions, the combined

ocean and terrestrial biosphere carbon sinks must have been close to 3 PgC/yr [IPCC, 2007].

To estimate the spatial and temporal distribution of these carbon sinks, inverse methods have been

used to estimate carbon fluxes from geographically sparse observations of atmospheric CO2 mix-

ing ratio, typically measured at the surface (e.g.Tans et al.[1990]). In these methods, surface

fluxes are scaled within the framework of a global atmospheric transport model to minimize the

difference between the observed and simulated spatial and temporal gradients of atmospheric CO2

mixing ratio [Enting et al., 1995;Kaminski et al., 1999;Rayner et al., 1999;Bousquet et al., 2000;

Krakauer et al., 2004;Baker et al., 2006]. Estimates of both NEE and the geographical distribution

of fossil fuel carbon sinks vary significantly, due in large part to errors in the atmospheric transport

models used in these inversions (e.g.Gurney et al.[2004]). This is quite understandable; estima-

tion of fluxes on large geographical scales requires knowledge of temporal and spatial gradients in

CO2 mass. These changes in mass can be inferred from gradients in the observed mixing ratio at

the surface only if the vertical structure of atmospheric CO2 is well known. Proper simulation of

the exchange between the planetary boundary layer (PBL) and the free troposphere, however, is

still an area of active research for the atmospheric dynamics community.

In this study, we use newly available observations of the column and vertical profile dry air CO2

molar mixing ratios above eight sites (Table 4.3) to estimate the seasonally-varying carbon flux

(NEE) in the northern hemisphere. Because these observations are of the column abundance, they

come close to representing directly a measure of atmospheric CO2 mass. As a result, our estimate

of NEE is significantly less sensitive to errors in the vertical transport than estimates based solely
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on surface observations. Our analysis suggests that the seasonally-varying fluxes are substantially

larger than the NEE fluxes from the CASA model used in theTransCom 3studies. We show using

vertically resolved observations of CO2 obtained at several sites in Eurasia and North America that

the TransCom models underestimate the seasonally-varying fluxes because they underestimate the

efficiency of mixing of CO2 throughout the free troposphere.

4.2 Measurements and Models

Measurements of column-averaged dry CO2 were obtained at Park Falls, Wisconsin beginning

in 2004. Using an automated solar observatory, direct solar spectra were acquired continuously

during clear-sky, daytime conditions. These spectra were used to determine vertically integrated

CO2 mass with high precision (0.1%) [Washenfelder et al., 2006]. The 337 days of measurements

were taken during May 2004 to November 2006 and have been averaged daily. We also included

similar but much infrequent (only 96 days during two periods: January 1979 to December 1985

and March 1989 to March 1995) column measurements obtained at the Kitt Peak solar observatory,

Arizona [Yang et al., 2002]. In addition to the ground-based total columns, multi-level aircraft CO2

measurements were available at six sites in North America and Eurasia during 2003-2004 ( 4.3

on page 53). Discrete CO2 samples were acquired biweekly or monthly up to 7500 m above the

surface (e.g.Levin et al.[2002]). In our analysis, we used the interpolations of these measurements

at fixed temporal (48 per year) and spatial (every 500m in altitude) intervals [GlobalView-CO2,

2006].

To compare with the observations, we used the twelve TransCom 3 experiment models that differ in

spatial resolution, advection scheme, driving winds, and sub-grid scale parameterizations [Gurney

et al., 2003]. Monthly terrestrial biosphere exchange (1◦×1◦) was derived from the Carnegie-

Ames-Stanford Approach (CASA) terrestrial biosphere model [Randerson et al., 1997], and is

annually balanced at each grid cell.
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Figure 4.1: The locations of all data sites used, including both column/partial-column (red crosses
with code names) and surface CO2 observations (green dots). For surface sites, only those between
30◦N–70◦N are included in my analysis.
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4.3 Methods

In our analysis, we compared the observed amplitude and phase of the atmospheric CO2 seasonal

cycles to simulations obtained from propagating seasonal surface fluxes from a terrestrial biosphere

model (CASA) with annually-balanced fluxes through the twelve different transport models. Since

the same fluxes are used, differences in the simulated atmospheric CO2 seasonal cycles at different

altitudes and locations become a comparative measure of differences in transport in the models.

To quantify the differences between the observations and the simulations, we used a simple least

square fit, assuming the observed seasonal cycle S(t) was a function of the simulated CASA bio-

sphere model response S0(t), adjusted by scale factorA, time delayT , and offsetB:

S(t) = A× S0(t− T ) + B (4.1)

Focusing on the shape of seasonal cycle, we reportedA andT but not offsetB. The parameters

A andT can also be thought of as two spatially uniform adjustments to all CASA surface fluxes

because of the linear relationship between these fluxes and S(t). Besides the simulations from the

twelve models, the mean of all these models’ simulations was considered as our “best” estimate

and included in the comparison. The fitting rms (σ) for the all-model mean simulation was reported

to measure the goodness of the fit, and to derive a weighted mean CASA scale factor (but not time

delay) forn different sites:

A =

∑n
i=1 Ai/σ

2
i∑n

i=1 1/σ2
i

(4.2)

To compare the observations with the neutral biosphere simulations, the measurements had been

detrended and offset by the annual mean value. The interannual trend for the Park Falls column

CO2 was empirically determined as 1.80 ppmv/yr during 2004 to 2006. For Kitt Peak, the trends

were 1.41 ppmv/yr during 1979 to 1985 and 0.83 ppmv/yr during 1989 to 1995. For the temporally
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evenly spaced GlobalView assimilations, their seasonal cycles were directly decomposed using the

empirical mode decomposition method [Huang et al., 1998] and folded into one year.

4.4 Results and Discussion

The comparison between the Park Falls CO2 seasonal cycle of column-averaged observation and

the TransCom simulations is shown in Figure 4.2. The observed seasonal CO2 cycle amplitude is

larger than any model simulation. A best fit was obtained by increasing the CASA fluxes by 34%.

Models also underestimated the CO2 seasonal cycle at Kitt Peak and all the other six aircraft sites

(average difference of 27%, Table 4.3). Because these vertically-integrated observations sample

a significant fraction of the northern hemisphere landmass, they provide a measure of CO2 mass

variations that is not highly sensitive to error in the transport fields. As a group, the seasonal

cycle in column CO2 is most sensitive to the seasonal fluxes themselves. This is supported by

the relatively small variation in the model simulations of the columns illustrated for Park Falls in

Figure 1 and for the other sites in the accompanying supplementary material.

The NEE used in CASA was derived from 1990 satellite observations, and so the observed 0.66%/yr

increase rate of CO2 seasonal-signal amplitude between 1981 to 1995 [Randerson et al., 1997] may

explain some, but clearly not all, of the differences between the observations and simulations of

the amplitude of the CO2 seasonal cycle. In addition, the phase analysis of CO2 seasonal cycles

shown in Table 1 shows that for all sites except Kitt Peak, CASA fluxes needed to be shifted earlier

by one to three weeks, which may, in part, be explained by advances in the timing of spring thaw

since 1988 [Smith et al., 2004].

In contrast to the column results, comparison of the simulations of the seasonal cycle with CO2

observations obtained at the surface [GlobalView-CO2, 2006] between 30◦N to 70◦N shows both a

smaller under-estimation of seasonal cycle (~12%, Table 4.3) and a smaller phase delay (Tsurface =

-11.9 days; Tcolumn = -14.5 days). Both the amplitude and phase differences between the estimates
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Figure 4.2: (a) Atmospheric column-average CO2 mole fractions at Park Falls for May 2004 ~
March 2006. (b) The monthly mean of observations (close circles) compared with the TransCom
simulations (grey shade shows range of 12-model predictions; thin solid line represents average;
thick solid line is the best fit). Each of the 12 models under-predicts the seasonal cycle observed in
the column measurements. The best match to the observations is achieved by scale the model-mean
simulations by 1.34 and shift them 7 days earlier.
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from surface and column observations suggest that the TransCom models as a group do not mix

the surface fluxes into the free troposphere quickly enough.

To investigate vertical mixing in the models, we focused on altitude-resolved data from the six

aircraft sites. The results of such an analysis are shown in Figure 4.5: the relationship between

retrieved CASA scale factors and altitude for are quite different from site to site. We find that

direct comparison between the simulations and observations for these sites was hampered by large

mismatches in the shape of the CO2 seasonal cycle at some sites (e.g. ZOT in Figure 4.6 on

page 55), and a new diagnostic method is necessary.

To minimize the impact of the seasonal-signal shape mismatch we performed self-similarity tests

separately for observations and model simulations, among their seasonal cycles at different alti-

tudes. For each site, we defined a reference level and assumed the seasonal cycles S(t) at any level

could be represented by this reference seasonal cycleSref (t) with a time delayT (due to vertical

mixing), amplitude scale factorA, and offsetB, where S(t) andSref (t) must be of the same type

(simulation or observation):

S(t) = A× Sref (t− T ) + B (4.3)

The 3500 m level was chosen as the reference for all sites. The comparison for each site is shown

in Figure 4.6 and the retrieved values ofA andT are listed in Table 4.4. For the model simulations

at all sites, the scale factors monotonically decrease with altitude, while the time delays monoton-

ically increase. In contrast, for the observations at or above 2500 m, all sites except ESP showed

slower decreases or even increases in the amplitude scale factor with altitude as well as shorter

delay, and even advance (at PFA) in the seasonal cycle phase. For levels below 2500 m, the obser-

vations showed mixed trends from site to site, again possibly influenced by strong PBL variation.

The observation-model differences above 2500m strongly suggest that the atmospheric vertical

and/or meridional mixing within the free troposphere is faster than the TransCom simulations.
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Figure 4.3: The monthly mean of observations (open diamonds) compared with the TransCom
simulations for each of the eight sites. In each figure, grey shade show range of 12-model pre-
dictions, thin dotted line represents average, and thick solid line is the best fit with scaling and
shifting.
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Figure 4.4: The monthly mean of observations (open diamonds) compared with the TransCom
simulations for each of the 35 surface sites. Denotations are the same as in Figure 4.3. The
detailed results for the surface site are listed in Table 4.1.
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Table 4.1: The analysis detail of 35 surface sites

Site Type∗ Location Altitude
(m)

Mean scale
factor A of
the 12 mod-
els

Mean phase
shift T (in
days) of the 12
models

Scale factor
A for the
mean re-
sponses of
12 models

Phase shiftT
(in days) for
the mean re-
sponse of 12
models

RMS in
fitting the
mean re-
sponse of
12 models
(ppm)

bgu_11D0 L 41.8◦N, 3.3◦E 30 1.22± 0.34 -13.08±10.89 1.25 -11.00 0.90
frd040_06C L 49.9◦N, 81.6◦W 250 1.06± 0.27 -9.83± 2.41 1.02 -9.0 1.05
hun_01D0 L 47.0◦N, 16.6◦E 344 2.01± 0.54 -19.67± 5.88 1.94 -18.0 3.14
kzd_01D0 L 44.5◦N, 77.6◦E 412 1.18± 0.19 -3.83± 7.58 1.16 -3.0 2.13
kzm_01D0 L 43.2◦N, 77.9◦E 2519 1.42± 0.16 -23.08± 4.68 1.43 -24.0 1.21
lef_01D0 L 45.9◦N, 90.3◦W 868 0.95± 0.21 -10.50± 3.50 0.92 -9.0 1.92
nwr_01D0 L 40.0◦N, 105.6◦W 3475 1.10± 0.11 -17.58± 7.06 1.12 -17.0 0.55
obs023_06C L 54.0◦N, 105.1◦W 652 1.05± 0.30 -6.92± 5.66 1.00 -6.0 1.20
palmbc_30C L 68.0◦N, 24.1◦E 560 1.02± 0.28 -1.92± 6.16 0.96 0.0 0.64
pdm_11D0 L 42.9◦N, 0.1◦E 2877 0.96± 0.12 -33.33± 3.68 0.96 -35.0 0.86
prs_21C0 L 45.9◦N, 7.7◦E 3480 1.22± 0.15 -17.00± 3.30 1.23 -17.0 0.27
sch_23C0 L 48.0◦N, 8.0◦E 1205 1.33± 0.22 -20.42± 5.30 1.34 -19.0 1.03
uta_01D0 L 39.9◦N, 113.7◦W 1320 0.88± 0.13 -12.25± 8.70 0.89 -12.0 1.27
uum_01D0 L 44.5◦N, 111.1◦E 914 0.87± 0.24 -10.33± 3.28 0.83 -9.0 0.77
wlg_01D0 L 36.3◦N, 100.9◦E 3810 0.75± 0.19 -21.67± 6.05 0.71 -20.0 0.83
azr_01D0 O 38.8◦N, 27.4◦W 40 1.15± 0.16 -15.00± 4.47 1.15 -15.0 0.37
bal_01D1 O 55.5◦N, 16.7◦E 7 1.20± 0.29 1.00± 9.40 1.16 1.0 1.19
bme_01D0 O 32.4◦N, 64.7◦W 30 0.69± 0.15 -32.58± 3.75 0.68 -33.0 1.55
bmw_01D0 O 32.3◦N, 64.9◦W 30 1.00± 0.18 -11.58± 4.58 1.00 -11.0 0.41
bsc_01D0 O 44.2◦N, 28.7◦E 3 0.37± 0.16 -24.92± 8.73 0.36 -21.0 2.52
cba_01D0 O 55.2◦N, 162.7◦W 25 1.22± 0.26 -12.75± 4.45 1.20 -12.0 0.80
esp_06D0 O 49.4◦N, 126.6◦W 39 0.90± 0.21 -8.67± 7.30 0.88 -7.0 1.12
ice_01D0 O 63.2◦N, 20.1◦W 100 1.26± 0.23 -16.50± 5.82 1.25 -16.0 0.58
lmp_28D0 O 35.5◦N, 12.6◦E 45 0.97± 0.14 11.58± 7.69 0.99 11.0 0.84
mhd_01D0 O 53.3◦N, 9.9◦W 25 0.93± 0.19 -18.00± 8.50 0.94 -18.0 0.90
pocn30_01D O 30.0◦N, 126.0◦W 10 1.08± 0.17 -16.42± 6.33 1.10 -15.0 0.39
ryo_19C0 O 39.0◦N, 141.8◦E 260 0.99± 0.20 -11.00± 3.36 0.97 -10.0 0.49
sbl_06D0 O 43.9◦N, 60.0◦W 5 0.72± 0.20 9.92± 3.78 0.69 10.0 0.43
shm_01D0 O 52.7◦N, 174.1◦E 40 1.42± 0.28 -10.92± 4.19 1.40 -10.0 0.90
sis_02D0 O 60.2◦N, 1.2◦W 30 1.28± 0.22 -9.75± 8.25 1.29 -9.0 0.65
stm_01D0 O 66.0◦N, 2.0◦E 7 1.23± 0.24 -10.42± 6.47 1.22 -9.0 0.47
tap_01D0 O 36.7◦N, 126.1◦E 20 0.93± 0.25 7.83± 5.70 0.89 8.0 1.89
wis_01D0 O 31.1◦N, 34.9◦E 400 1.47± 0.15 -13.08± 9.70 1.51 -12.0 1.37

∗L for land sites and O for ocean sites
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Table 4.3: Column and profile observation sites and the CO2 seasonal cycle amplitude comparison
with model simulations

a For LEF and KTP, total CO2 columns were simulated for the comparison. For the aircraft sites, only partial columns
with measurements were simulated. The scale factor A and phase shift T here are described by Equation 4.1.
b The name of the models are CSU.gurney, GISS.prather, GISS.prather2, GISS.prather3, JMA-CDTM.maki,
MATCH.bruhwiler, MATCH.chen, MATCH.law, RPN.yuen, SKYHI.fan, TM3.heimann, GCTM.baker.
c The Kitt Peak observations were taken from January 1979 to March 1995, for more detail refer toYang et al.[2002].
d Excluding Kitt Peak due to different observation time period.
e The 35 surface sites are listed in Table 4.1.
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Figure 4.5: The optimized scale factors A for CASA terrestrial biosphere model fluxes required
for minimizing the difference between the observations and simulations at different altitudes. The
A values of 12 model-mean are given at each of the six aircraft sampling sites (marked by different
colors). The radius of each circle is proportional to1/σ2, whereσ is the fit rms in ppmv.
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Figure 4.6: Comparison of the CO2 seasonal cycles at different levels, for both the aircraft obser-
vations (left panel) and the TransCom 12-model mean simulation (right panel). Each altitude level
is represented by a different line and each row represents one site respectively. The range of model
simulations for 3500 meters altitude is also shown in the left panel as the shaded area.
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4.5 Summary and implications

Comparison of the column-averaged CO2 dry volume mixing ratio measurements and the TransCom

models show that the CASA model underestimates the Northern Hemisphere growing season net

fluxes by approximately 28%. Using multi-level observed CO2 from the Northern hemisphere

to diagnose the model performance at different altitudes, we identify substantial underestimation

of free troposphere vertical mixing rates by TransCom models. While the mixing between the

PBL and the free troposphere has been a major focus of carbon flux inversion experiments (i.e.

TransCom), this analysis suggests that equally large errors exist in the rate of vertical mixing

throughout the free troposphere.

Table 4.4: The optimal values of (a) scale factor,AH and (b) time delay in days,TH applied to
3500-m-level seasonal CO2 change for best matching the other levels (Equation 4.3). For each site,
the left column is for the observations and the right column is for the 12-model mean simulations.

The weak vertical exchange of the TransCom models will have impacts beyond the estimation

of NEE. have shown, for example, that the inferred uptake of fossil fuel carbon by land in the
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Northern Hemisphere by the various TransCom models (from 0.0 to 4.0 Pg C/yr depending on

which transport model is used) is correlated with their estimate of the CO2 seasonal cycle produced

by the biosphere fluxes.Gurney et al.[2004] suggest that this correlation is consistent with errors in

parameterization of the seasonal mixing efficiency between theplanetary boundary layerand the

free troposphere, which co-varies in time with the surface carbon exchange direction and strength

[Denning et al., 1995]. Our finding suggests that as a group, the TransCom models may have too

little vertical mixing and so may overestimate the size of the Northern Hemisphere land sink. The

validity of this inference, however, depends in part on the how the transport errors vary seasonally

- something this study has not addressed.

The analysis described in this letter illustrates the utility of having information about the verti-

cal distribution of CO2 from aircraft. In addition, the total column measurements allow a more

continuous record of CO2 mass. The Total Carbon Column Observing Network (TCCON) is be-

ing established to expand the number of sites where CO2 columns are measured (data available

at www.tccon.caltech.edu ). TCCON will include a number of sites in both the Northern

and Southern Hemispheres. These observations should provide an improved measure of the gra-

dient in CO2 mass between the Hemispheres. Based on the findings of this study, we expect that

the North-South gradient will be larger than predicted by the TransCom inversions tied to surface

observations.
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Chapter 5

The future of global carbon budget
observation system

The key of carbon cycle research, at this time, is data collection of all forms. The Earth is a

complicated system, and it will be naive to assume we can understand it with a few observation

sites. The proposed methods listed in this chapter will be a good start.

5.1 Total Carbon Column Observing Network (TCCON)

The studies in previous three chapters have led to the creation of TCCON. This network includes

existing and proposed ground-based Fourier Transform Spectrometers carefully selected to provide

global coverage (see Figure 5.1 and Table 5.1). These spectrometers record direct solar spectra in

the near-infrared spectral region, from which accurate column-averaged abundance of CO2, CH4,

N2O, HF, CO, H2O, and HDO are retrieved. The network puts measuring carbon dioxide a priority

to provide an essential validation resource for the coming CO2 observing satellites.

Since 2004, several operational TCCON sites have achieved high precision for carbon dioxide

measurements [Warneke et al., 2005;Washenfelder et al., 2006]. Initial efforts have also been

made to use TCCON data to calibrate space-born CO2 measurements [Bösch et al., 2006;Barkley

et al., 2007].
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Table 5.1: The detail information of TCCON sites and partners

Site Name Location Instrument Status Operator
Park Falls, Wiscon-
sin

40◦N, 90◦W Bruker 125HR Operational
7/2004

California Institute of Tech-
nology

Lauder, New
Zealand

45◦S, 170◦E Bruker 120HR National Institute of Water
and Atmosphere Research,
New Zealand

Bremen, Germany 53◦N, 8◦E Bruker 125HR University of Bremen
Ny Alesund, Nor-
way

79◦N, 11◦E Bruker 120HR Operational
2/2002

University of Bremen, Alfred
Wegener Institute

Darwin, Australia 12◦S, 130◦E Bruker 125HR Operational
9/2005

University of Wollongong

Wollongong, Aus-
tralia

34◦S, 151◦E Operational
1/2007

University of Wollongong

Lamont, Oklahoma 37◦N, 98◦W Bruker 125HR Expected to
be operational
8/2008

California Institute of Tech-
nology

Izana, Tenerife 28◦N, 16◦W Expected to be
operational 2007

Institute of Meteorology
and Climate Research,
Forschungszentrum Karl-
sruhe and Univ. Karlsruhe

Garmisch, Ger-
many

47◦N, 11◦E

Bialystock, Poland 53◦N, 22◦E Expected to
be operational
8/2008

University of Bremen

Orleans, France 48◦N, 2◦E Expected to
be operational
8/2008

University of Bremen

Eureka, Canada 80◦N, 85◦W Possible site University of Toronto
Ascension Island 8◦S, 14◦W Possible site Max-Planck-Institut fur Bio-

geochemie
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Figure 5.1: The locations of spectrometers of TCCON. The red dots are sites already in operation
before 2007.

5.2 CO2 observing satellites

The first space-borne observations were made by Japanese Interferometric Monitor for Greenhouse

gases (IMG) [Kobayashi et al., 1999a,b] aboard the Advance Earth Observing Satellite (ADEOS)

launched on August 1996, although it only lasted eight months. Later studies have demonstrated

the feasibility of observing carbon dioxide from space by reanalyzing infrared soundings from

launched satellites, including HIRS-21 on the NOAA polar meteorological satellite [Chédin et al.,

2003a,b] and AIRS2 on the NASA Aqua platform [Crevoisier et al., 2004;Chevallier et al., 2005;

Engelen and McNally, 2005;Chahine et al., 2005]. More recent studies byBuchwitz et al.[2005];

Bösch et al.[2006]; Buchwitz et al.[2007]; Barkley et al.[2007] used near IR spectra from the

Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) on

ENVISAT [Burrows et al., 1995; Bovensmann et al., 1999]. All these efforts have led to the

development of the new generation high-precision (<0.3%) CO2-dedicated satellites: OCO and

GOSAT.
1High-Resolution Infrared Radiation Sounder
2Atmospheric Infra-Red Sounder
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The Orbiting Carbon Observatory (OCO) [Crisp et al., 2004] is a mission led by the Jet Propul-

sion Laboratory and sponsored by NASA’s Earth System Science Pathfinder (ESSP) program. The

Greenhouse gases Observing Satellite (GOSAT) [Masahiro and Takashi, 2005] is a joint project of

Japan Aerospace Exploration Agency (JAXA), the Ministry of the Environment, and the National

Institute for Environmental Studies (NIES). The two missions will have similar performance and

orbit characters. Both satellites measure XCO2 by using specially designed spectrometers to take

solar reflection spectra from the Earth, although the spectrometers are of different type. OCO car-

ries a 3-band (0.76µm, 1.58µm, 2.06µm) grating spectrometer, and GOSAT carries a Fourier

Transform Spectrometer [Hamazaki et al., 2004, 2005] to take spectra between 1.56µm to 1.81

µm. After their launch in 2008, we hope to see great improvement of CO2 measurements cover-

age, which will enable the inversion of carbon fluxes at continental spatial resolution [Rayner and

O’Brien, 2001].

5.3 Differential Absorption Lidar (DIAL)

Lidar (or Laser detection and ranging) is a remote sensing technology that measures properties of

scattered light to find distance and other information of remote targets. It is an active detection

technology:i.e. it uses its own light source instead of sun light or other nature light sources. This

enables a lidar to operate during the nights and bad weather conditions, when passive observations

are not available due to absence of natural light.

Using lidar to observe water vapor profiles dates back to the 1960s [Schotland, 1966]. Studies

on observing other atmospheric trace gases including CO2 started shortly after [Reid et al., 1978;

Bufton et al., 1983;Sugimoto and Minato, 1993]. The principle is to use laser light pulses at

different wavelengths at both the peak (on-line) and the wings (off-line) of an absorption band

for the targeting molecular, then compare the back-scattering difference of on-line and off-line

wavelengths to derive the molecular numbers along the light paths (shown in Figure 5.2). The
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Figure 5.2: Principle of DIAL: (a) Two pulses with on-line wavelengthλon and off-line wave-
lengthλoff are sent out by tunable laser into the atmosphere; (b) Small amount of light at on-line
wavelengthλon and off-line wavelengthλoff is back-scattered, collected by telescope assembly,
and monitored by a detector. Figures are fromSpectrasyne Inc.(www.spectrasyne.ltd.uk )
with permission.

technology, termed as differential absorption Lidar (DIAL), was used first in ground-based obser-

vatories (e.g. [Schotland, 1966;Reid et al., 1978]). Air-borne DIAL systems appeared in the late

1970s to early 1980s with developments at the Jet Propulsion Laboratory [Shumate et al., 1981]

and the NASA Langley Research Center [Browell et al., 1983]. An experimental space-borne

mission (lidar in-space technology experiment, or LITE) was also deployed by the space shuttle

Discovery in September 1994 [Browell et al., 1998].

Recently efforts in DIAL atmospheric CO2 measurement byKoch et al.[2004];Gibert et al.[2006]

have achieved precision of 1~2% from the ground, which is larger than the 0.3% accuracy generally

required by global carbon cycle research [Rayner and O’Brien, 2001]. New laser source with high

energy and stability (e.g. Fiber laser used by [Abshire et al., 2006]) may significantly improve the

situation and provide another independent method for measuring CO2 from the ground and space.
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5.4 Unmanned Aerial Vehicle (UAV)

Airborne carbon dioxide sampling missions (e.g.Levin et al.[2002];Tans[2007a]) have provided

important information about the temporal and spatial variation of atmosphere CO2, especially for

modeling the vertical mixing “rectifier effect”[Denning et al., 1999]. However, the number of these

missions are limited by the high cost of piloted aircraft: the rental for a single-engine piston plane

is $75/hr to $115/hr, or double that once insurance and pilot wage are added. Thus CO2 profiles are

only taken once every 5-10 days at Briggsdale, Colorado and every three weeks at Zotino, Russia

(see the site description ofGlobalView-CO2 [2006]).

Figure 5.3: Design and Specifications of Octatron SkySeerTM [Product brochure, Octatron Inc.]

The Unmanned Aerial Vehicle (UAV) is a much more economical and flexible alternative to

manned aircraft. Several recent studies [Sherwood, 2005;Fladeland et al., 2005;Watai et al.,

2006] have demonstrated the possibility of constructing a low-cost, low-maintenance UAV system

specifically for atmosphere CO2 sampling. A good example isWatai et al.[2006], who have devel-
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oped a lightweight (~3.5 kg) CO2 observation system with a precision of±0.26 ppm, which can be

installed on a small UAV (Kite Plane, Sky Remote, Japan). The UAV is autonomously navigated

by a GPS system, with a ceiling altitude of 3000 m and endurance of 1.5 hours. The U.S. Octatron

SkySeerTM (See Figure 5.3) provides similar performance with total cost of $25,000 to $30,000.

These type of UAVs, together with the effort on cheap ($2000 per device) UAV-borne atmosphere

CO2 sensor, such as the one supported by U.S. Department of Energy [Dahlman and Goswami,

2005], will enable most carbon cycle researchers to get frequent CO2 profiles in vast regions of

interest with minimal expense in the near future.

5.5 Passenger aircraft

The idea of using passenger aircraft to provide regular atmospheric trace gases measurements along

major airline routes started in the 1990s, when JAL Foundation (www.jal-foundation.or.

jp ) began to support a study to collect air samples in flights between Japan and Australia using

a Boeing 747 [Matsueda and Inoue, 1996]. The main advantage is that it can provide near-global

coverage and high sampling rate with modest cost, even compared with ground-based observation

system. The passenger aircrafts are therefore referred sometimes as “the poor man’s satellite”

[Brenninkmeijer et al., 2005].

Atmospheric CO2 measurements were included in the initial effort of JAL project [Matsueda and

Inoue, 1996;Matsueda et al., 2002], which has since expanded from one to seven aircrafts that

cover large area of (Figure 5.4) Pacific and Eurasia. Another effort on passenger aircraft CO2 mea-

surements is included in the European CARIBIC (Civil Aircraft for the Regular Investigation of the

Atmosphere Based on an Instrument Container) project [Brenninkmeijer et al., 1999;Zimmermann

et al., 2002;Brenninkmeijer et al., 2005, 2007]. Since all passenger aircrafts are able to carry the

payload of a UAV-based CO2 sensor, it will be a fast and low-cost way to expand the global carbon

dioxide measurements inside the upper troposphere and lower stratosphere.
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Figure 5.4: JAL passenger aircraft CO2 sampling network in 2006. Red dots are flight destinations
with numbers showing the monthly sample rates. Green lines (CME or Carbon dioxide Measuring
Equipment) are routes with only CO2 measurements, and the cyan line (ASE or Air Sampling
Equipment) is the route with air sample collections. (Figure fromMachida[2005])
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5.6 Perspectives

Carbon is the “element of life”, so global carbon cycle research carries more important goals than

the study of global warming. My hope is that all my researches can eventually lead to insights of

interactions among all terrestrial living species, from single-cell algae to complexhomo sapiens.

To me, the knowledge of carbon cycle can be keys to a better future, where human beings can

conduct responsibly on a planet that is not only occupied by our kind but also by all forms of other

lives.
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