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ABSTRACT 

This thesis is concerned with time-dependent free-boundary problems at 

low Reynolds numbers. The primary objective is to use a combined experi- 

mental and numerical investigation to examine the deformation and breakup 

characteristics of a single phase Newtonian liquid drop suspended in a second 

immiscible Newtonian fluid undergoing a prescribed linear flow. Two related 

studies grew naturally out of this work and are also discussed here: (1) an ana- 

lytic and numerical examination of the behaviour of concentric double emulsion 

droplets in linear flows, and (2) an introduction to the effect surfactants have 

on drop deformation in extensional flows. 

Specifically, the breakup of a Newtonian liquid drop is studied under well- 

defined flow conditions. Experiments are performed in a computer-controlled 

four-roll mill and a detailed numerical investigation using the boundary inte- 

gral method is presented. Particular attention is given to the dynamics of drop 

breakup and many experimental and numerical examples are shown of the ac- 

tual fragmentation process. Transient effects associated both with nonspherical 

initial shapes and time-dependent velocity gradients are studied. Although the 

time-dependent velocity fields are limited to step changes in flow conditions, 

these investigations provide valuable insight into the breakup phenomenon and 

are a necessary first step toward understanding more complicated flow situa- 

tions. The effects of viscosity ratio, flow-type and capillary number are dis- 

cussed thoroughly. Overall, these studies of drop breakup provide a nice illus- 

tration of the influence of an interfacial-tension-driven flow that arises because of 

curvature variations along the fluid-fluid interface (the interfacial tension is con- 

st ant). The interaction of this interfacial-tension-driven flow with the prescribed 

time-dependent velocity field produces very interesting breakup processes, often 

without large scale stretching of the drop. Also, for highly elongated drops, 

finite-amplitude capillary waves are observed experimentally and numerically. 

The study of drop deformation and breakup leads naturally to considera- 



tion of other systems involving deformable miscrostructures. Double emulsion 

droplets, which arise in applications involving liquid membranes, are frequently 

treated by drawing analogies with the known behaviour of single phase droplets. 

We present a fundamental investigation of concentric double emulsion drops 

in extensional flows. The analytic results allow calculation of the first effects 

of flow-induced deformation and the effective viscosity of a dilute emulsion of 

these particles. The analysis suggests interesting deformation and interact ion of 

the two drop surfaces so a numerical investigation of the finite deformation of 

these particles is described. The critical capillary number for breakup is deter- 

mined, the dependence on physical and flow parameters is outlined and possible 

mechanisms for breakup are discussed that differ from the single phase droplet 

results. Finally, the effect of different flow-types, i.e., uniaxial or biaxial exten- 

sional flows, is shown in some instances to suggest breakup of the inner droplet 

even though the outer droplet maintains a steady shape. 

The thesis closes with an introduction to the effect surface-ac tive agents 

have on drop deformation. Because the distribution of surfactant along the 

fluid-fluid interface produces interfacial tension variations, the calculation of 

the drop shape as a function of time is intimately coupled with the convection 

and diffusion of surfactant along the drop surface. We present an approximate 

numerical procedure to study finite deformations and surfactant transport. The 

results are not extensive but suggest several interesting aspects of the deforma- 

tion of drops due to the presence of surfactant. 
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CHAPTER 1 

THESIS INTRODUCTION 



In this thesis we are interested in the deformation and breakup of Newtonian 

liquid droplets at low Reynolds numbers. Our focus will be on the dynamics 

of the breakup process. Both experimental and numerical investigations will 

be used to detail and understand qualitative and quantitative features of this 

problem. We also include two extensions of these ideas to related topics: (1) 

deformation and breakup of concentric double emulsion droplets and (2) an 

introduction to the effects surface-active agents have on drop deformation in 

extensional flows. 

There exist many industrial processes that use studies of drop deformation 

as a prototype. For example, the classical motivation for this research includes 

applications to the mixing of immiscible liquids, the blending of polymers, the 

dispersion of agglomerates of small particles in fluids, and the desire to obtain 

a better understanding of the complex rheology of fluids with a deformable 

microstructure. 

In addition to many of the practical concerns outlined above, the study 

of drop deformation remains a classical example of a free-boundary problem 

in fluid mechanics. The deformable nature of the fluid-fluid interface implies 

that the interface location is a priori unknown. Therefore, instead of being 

given the boundary location as part of the problem statement, the boundary 

location must be found as part of the problem solution. Perturbation methods 

have been in use for many years to describe shapes that depart only a little 

from a known equilibrium shape (e.g., a sphere, cylinder or plane), but it has 

only been in recent years that efficient numerical methods capable of describing 

finite deformation have been developed. In this thesis we will use the boundary 

integral method to study time-dependent, finite deformation and breakup of 

droplets in extensional flows. 

Basic research concerning the fluid dynamics of drop deformation began 

with two classic papers by G.I. Taylor in the 1930s. Taylor, who was interested 

in the study of emulsions, distilled the complicated problem of emulsification 



down to the meaningful and relatively straightforward analysis of a single droplet 

suspended in a second immiscible fluid undergoing a prescribed linear flow. The 

observations and results of Taylor's investigations serve as the starting point for 

more than 50 years of drop deformation research reported in the fluid mechanics 

literature, in addition to remaining among the most important and relevant 

results in the field. An early overview of drop breakup phenomena is given by 

Hinze (1955). Experimental, numerical and theoretical studies describing much 

of the recent work have been summarized in two excellent review articles by 

Acrivos (1983) and Rallison (1984). A related work that makes a more direct 

connection with actual applications, particularly polymer blending processes, 

has been written by Han (1981). 

Physically, the problem of drop deformation would appear to be straight- 

forward. A droplet immersed in a nonuniform velocity field will deform because 

of viscous stresses exerted on the fluid-fluid surface. The deformation is re- 

sisted by interfacial tension. If the velocity gradient is sufficiently large, in most 

instances the drop cannot maintain a steady shape, but rather begins to con- 
b 

tinually stretch in the flow. In the literature, this nonexistence of a steady drop 

shape is generally called "drop burst" or "drop breakup." Since the stretching 

process produces shapes that are roughly cylindrical near the middle of the drop, 

a common approach used to predict drop size distributions is to study the capil- 

lary instability of an infinite fluid cylinder. However, it should be stated clearly 

that there exist in the literature very few direct observations of the drop breakup 

process for finitely deformed drops. Furthermore, there are two aspects related 

to transient drop deformation that have received very little attention in the lit- 

erature and deserve further investigation; namely, the effect of time-dependent 

velocity gradients and the effect of nonspherical initial shapes, which drive mo- 

tion even in the absence of any external flow. Han (1981) makes this point 

very clear when discussing how the prototypical steady-state drop deformation 

studies may apply to real systems. 



Therefore, the goal of the research reported in this thesis is to obtain a 

better understanding of drop breakup with particular attention given to the ef- 

fect of simple time-dependent flows and to a description of the mechanism of 

drop breakup. Although only step changes in flow conditions will be examined, 

such experiments are a necessary first step toward understanding more compli- 

cated transient flows. Overall, these studies will include both experiment a1 and 

numerical investigations of drop breakup in well-defined flow conditions. 

The experiments are performed in a computer-controlled four-roll mill, de- 

signed and constructed by Barry Bentley as part of his PhD research. A detailed 

description of the design and operation of this device can be found in Bentley's 

PhD thesis (1985). The four-roll mill is ideal for studying particle deformation 

and breakup in linear flows where the magnitude of strain rate exceeds that of 

the vorticity (so-called "strongn flows). The computer-controlled apparatus al- 

lows these studies to be performed in well-controlled steady-state and transient 

flow fields. 

One modification to the experiment that we have introduced in this thesis 

is the development of a technique to store and analyze digital images of the de- 

formed drop. Previously, drop deformation as a function of time was monitored 

using 35 mm photographs. For the large number of experiments it is necessary 

to perform in this study of time-dependent effects, the use of digital image anal- 

ysis is an important step in monitoring the rapid changes that occur during the 

deformation and breakup of the drop . The implementation of this procedure is 

discussed in more detail in Chapter 2. 

In order to understand the details of the experimental observations, a com- 

plementary numerical investigation based on the boundary integral method is 

described. The boundary integral method is a powerful method for solving time- 

dependent free-boundary problems. This technique provides a clear picture of 

the evolution of the interface during the breakup process, even for the highly 

distorted drop shapes examined here, and the associated velocity fields internal 



and external to the droplet are illustrated in order to better understand the 

mechanism of breakup. 

The net result of the studies described in Chapters 2-4 is a much improved 

understanding of drop breakup, including a description of effects associated with 

(simple) time-dependent flows. The experimental and numerical investigations 

allow for a complete study of the effects of nonspherical initial shapes, the vis- 

cosity ratio of the two fluids, the flow-type of the external flow, and the capillary 

number. The role of capillary waves is examined also. 

The final two chapters of this thesis describe how the methodologies used in 

the course of this research and the understanding that developed as a result of 

this research, can be extended to two other interesting free-boundary problems. 

In Chapter 5 we examine the deformation and breakup of concentric double 

emulsion droplets. An analytic solution is developed to study nearly spherical 

compound drops and a complete numerical solution, again applying the bound- 

ary integral method, is described to account for finite deformation and possible 

mechanisms of breakup. In Chapter 6 we provide an introduction to the effect 

surfactants have on drop deformation in extensional flows. This is a very difficult 

problem and, although the numerical procedure used is approximate, it provides 

valuable insight concerning the behaviour of finitely deformed drops that have 

interfacial tension variations produced by the distribution of surfact ant along 

the fluid-fluid interface. 

For the most part, each chapter is selfcontained with its own abstract, 

introduction, description of experimental and numerical methods, and results 

section. In Appendix 1 of this thesis the little studied problem of drop breakup 

in bian'al flows is discussed and in Appendix 2 a complete description of the 

boundary integral method is provided to bridge the gap between the discussion 

in the text and actual numerical implementation. 

Rat her remarkably, the fundamental studies mentioned above, are finding 

applications outside of the classical fluid mechanics arena. The ideas that have 



developed from the basic research involving drop deformation are currently be- 

ing used, and may prove to be potentially useful, in such varied disciplines as 

material science, biology and geology. In all of these fields, there will often be a 

complex deformable microstructure whose response must be understood in order 

to predict system behaviour, characterize bulk properties, etc. 

For example, Stookey & Araujo (1968) have studied the deformation of 

silver particles imbedded in a glass matrix and Seward (1974) has studied phase 

separated glass materials (a glass matrix with very small second phase glass 

particles imbedded in it). When the matrix is elongated, the discrete phase is 

also elongated, sometimes being stretched into a long thread-like shape. Under 

the conditions of the experiment both phases behave like Newtonian fluids. Upon 

removal of the applied force, small droplets of the second phase glass are formed 

by the disintegration of the narrow thread. In almost all cases, this breakup 

process did not occur uniformly along the thread, but rather was confined to 

the end of the thread (Seward 1974). These observations are very similar to 

experimental and numerical observations of the breakup of elongated droplets 

that we discuss in Chapters 2 and 3. 

From a biological view point, some aspects of the behaviour and deformation 

of cells, especially red blood cells, can be usefully studied with the understanding 

and methods developed in fundamental studies of drop deformation. A general 

discussion of some of these ideas is given by Goldsmith & Skalak (1975) and a 

recent mechanical model of a cell as a drop with an elastic membrane is discussed 

by Bart hes-Biesel (1980). Additional discussion of the deformat ion of cells and 

the role it plays in transport processes in the microcirculation is provided by 

Caro, Pedley, Schroter & Seed (1978). Although no direct reference to the fluid 

mechanics literature is given by Caro et al., it would appear that techniques 

developed to examine deformation of a liquid drop may prove useful in this 

context also. 

Finally, there is even mention recently in the geology literature of ideas con- 



cerning the information that can be extracted by accounting for the deformation 

of droplets during studies of the flow of immiscible liquidst. 

It is our hope that some of the ideas introduced in this thesis may prove to 

be useful in related problems areas as well. 

t We wish to thank Ichiro Sugioka, a graduate student in Aeronautics, for 
bringing this line of thought to our attention. 
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IN THE BREAKUP OF VISCOUS DROPS 

The basic text of Chapter 2 consists of an article which appeared in the G.I. 
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ABSTRACT 

A computer-controlled four-roll mill is used to examine two transient modes 

of deformation of a liquid drop: elongation in a steady flow and interfacial- 

tension-driven motion which occurs after the flow is stopped abruptly. For 

modest extensions, drop breakup does not occur with the flow on, but may occur 

following cessation of the flow as a result of deterministic flows associated with 

internal pressure gradients established by capillary forces. These relaxation and 

breakup phenomena depend on the initial drop shape and the relative viscosities 

of the two fluids. Capillary wave instabilities at the fluid-fluid interface are 

observed only for highly elongated drops. This study is a natural extension 

of G. I. Taylor's original studies of the deformation and burst of droplets in 

well-defined flow fields. 
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1. INTRODUCTION 

Basic research on the deformation and breakup of a liquid drop due to the 

motion of an immiscible, viscous suspending fluid dates back to the pioneer- 

ing work of G. I. Taylor (1932, 1934, 1964). The problem is of considerable 

fundamental interest in fluid mechanics as an example of a time-dependent free- 

boundary problem and as a prototype for flow-induced deformation of a variety 

of flexible bodies such as red-blood cells, macromolecules, flocs, elastic particles, 

etc. It is also closely related to dispersion processes in commercial blenders and 

mechanic a1 emulsifiers. As a consequence, many investigations have appeared 

since Taylor's original papers. Two excellent reviews by Acrivos (1983) and 

Rallison (1984) provide a comprehensive description of this more recent work. 

The remarkable feature of Taylor's early investigations is that he actually 

discovered most of the interesting phenomena that are characteristic of drop 

deformation and breakup in steady flows. However, to stop at this point in a de- 

scription of Taylor's contribution to the drop deformation and breakup problem 

does not do justice to the importance of his work. To experimentally simulate 

a planar extensional flow, Taylor invented the four-roll mill, which has subse- 

quently been used in many laboratories for studies of drop breakup, extension 

of macromolecules, floc stability, and many related topics. To provide a theoret- 

ical description of small deformations of the drop, Taylor used the asymptotic 

method of domain perturbations. Later, to describe the motion of the highly 

elongated shapes characteristic of low viscosity drops, Taylor pioneered slender- 

body theory for low Reynolds number flow. 

Taylor's (1934) experimental observations in steady simple shear and planar 

extensional flows show clearly that drops at first deform under the combined 

action of viscous and pressure forces through a series of steady shapes as the 

shear rate is increased, until finally a point of maximum steady deformation 

is reached beyond which further increases in the shear rate usually lead to a 

transient, steadily increasing extension of the drop with time. As Taylor was 



first to note, however, there is a fundamental difference between simple shear 

flow and two-dimensional extensional flow. In particular, a drop with a viscosity 

that exceeds the suspending fluid viscosity by more than approximately a factor 

of 4 does not become stretched in simple shear flow, but rather achieves a steady, 

slightly deformed shape for all large shear rates. Thus, at low Reynolds number, 

it is impossible to break a sufficiently viscous drop in steady, simple shear flow 

regardless how large the shear rate becomes. In two-dimensional extensional 

flow, on the other hand, drops of any viscosity ratio extend continuously so long 

as the strain rate exceeds a certain critical value. This fundamental distinction, 

first discovered by Taylor, between simple shear flow and planar extensional flow 

is of considerable practical importance despite the restriction to low Reynolds 

numbers, simply because the drops that we attempt to break in blending devices 

are frequently very small, and are thus characterized by low Reynolds numbers. 

In spite of the major accomplishments of Taylor and subsequent researchers 

over the intervening 50 years, however, many important qualitative questions 

remain to be answered: 

(a) What is the role of flow-type in the deformation and breakup processes? In 

particular, what is the nature of the transition between simple shear and 

two-dimensional extensional flows? 

(b) What are the mechanisms for breakup and how do they depend on the 

parameters of the system, including the degree of deformation of the drop? 

(c) What is the role of flow transients in the deformation and breakup proc- 

esses? 

(d) What is the role of rheology if one or both fluids are non-Newtonian? 

The research reported here and in two earlier publications from our labo- 

ratory (Bentley & Leal, 1986a,b) represent the first steps in a series of experi- 

mental (and theoretical) studies that are designed to address these and related 

questions. These experiments are based upon a computer-controlled version of 

Taylor's four-roll mill designed to maintain the drop at the stagnation point of 



the flow, with minimal disturbance, for either steady or unsteady flows. The 

complete spectrum of linear, twedimensional flows can be generated from pure 

rotation to two-dimensional straining flow (the latter being the only motion 

studied by Taylor with the four-roll mill). A complete description of this device 

was published by us in our earlier paper, Bentley & Leal (1986a). 

In our initial investigation, Bentley & Leal (1986b), we studied the steady 

state shape and orientation for drops in five different types of steady two- 

dimensional flows, from pure extension ('hyperbolic flow') to a flow with only 

slightly more strain than vorticity and for drops with viscosity ranging from 

to lo2 that of the suspending fluid. Critical conditions for breakup were also de- 

termined for all these cases, the critical condition being identified as the capillary 

number (dimensionless shear rate) beyond which the drop undergoes continuous 

extension. The Bentley-Leal study of drop deformation in steady flows was a 

natural outgrowth of preceding research in the field and concentrated mainly 

on the measurement and prediction of steady shapes and of conditions where 

steady shapes could not be achieved in steady flows. 

The present paper represents a first step toward generalization of preceding 

studies to investigate transient effects on the deformation and breakup of a liquid 

drop. In particular, we examine the continuous elongation of a liquid drop for 

steady two-dimensional flows at capillary numbers (shear rates) that are equal to 

or slightly above the critical value for 'breakup', and, the subsequent interfacial- 

tension-driven relaxation of the extended drop when the flow is stopped abruptly. 

Relatively few previous studies have examined any aspect of time-dependent 

behaviour in the deformation and breakup process. Capillary wave instability 

on infinite, stationary fluid cylinders has been considered by Tomotika (1935), 

Rumscheidt & Mason (1962), Lee & Flumerfelt (1981) and Lee, Yu & Flumerfelt 

(1981), while Tomotika (1936) and Mikami, Cox & Mason (1975) have studied 

capillary wave growth on extending fluid threads of infinite length. Of course, 

extended drops differ from an infinite cylinder in the sense that they are always 



closed at their ends, and thus do not represent a possible equilibrium state. We 

shall see that the final drop length plays a critical role in both the extension of the 

drop and its relaxation when the flow is removed, with the result that capillary 

wave instability plays a role only if the droplets are extremely elongated. The 

closest experimental study to that reported here is due to Grace (1971), who 

reports data on the elongation necessary to achieve rupture in the relaxation 

process, the resulting drop-size distribution, and some interesting effects due 

to abrupt changes in shear-rate for simple shear and planar extensional flows. 

Torza, Cox & Mason (1972) also investigated experimentally some effects of the 

time-history of the flow field. From a theoretical point of view, three types 

of analyses have been used to study transient phenomena. Hinch & Acrivos 

(1980) and Hinch (1980) used slender-body theory to investigate the behaviour 

of low-viscosity drops, and found that the equilibrium shapes corresponding to 

subcritical shear rates were accessible only if the shear rate was increased slowly. 

It was also shown that the existence of a waist in the initial shape always led 

to breakup. Nearly spherical drops of arbitrary viscosity ratio were studied via 

domain perturbation techniques by Cox (1969) and Rallison (1980), and shown 

to attain steady shapes in an oscillatory manner in flows with vorticity. Finally, 

Rallison & Acrivos (1978) and Rallison (1981) have used the boundary integral 

method to investigate some aspects of the time evolution of the drop shape and 

observed that the critical shear rate and mode of drop burst depended on the 

history of the flow. 

2. PROBLEM STATEMENT 

We consider a Newtonian liquid droplet, with undeformed radius a, density 

3, and viscosity f i ,  suspended in a second immiscible Newtonian fluid of density 

p and viscosity p, which is undergoing a linear, two-dimensional flow at infinity. 

The undisturbed velocity field is u = I' x, where the velocity gradient tensor 



with a being a 'flow-type' parameter and G the fluid shear rate. An approx- 

imation to this flow field is generated near the center of a four-roll mill. The 

flow-type parameter a provides a measure of the ratio of the rate of strain rel- 

ative to the vorticity in the undisturbed flow and varies between a = +LO, a 

hyperbolic (or extensional) flow, and a = -1.0, a purely rotational flow. Simple 

shear flow corresponds to a = 0.0. We will be interested in flows with a > 0, 

the so-called 'strong' flows, as they are capable of producing the greatest de- 

formation for a given value of G. The streamlines for several of these flows are 

illustrated in figure 1. The fluid-fluid interface is characterized by a constant 

interfacial tension a. 

Provided the Reynolds number is sufficiently small, the behaviour 

of a neutrally buoyant drop in a steady flow can be characterized by three 

dimensionless parameters: the viscosity ratio X = the capillary number 
P' 

C = Q (which provides a measure of viscous forces causing deformation 

relative to interfacial tension forces which resist deformation), and the flow- 

type parameter a. The orientation of the drop relative to the principal axis of 

strain (in our device, this is the x-axis for all flow types) is denoted by B and 

is sketched in figure 2. Two scalar deformation measures have been used in 

drop deformation studies and are also shown in figure 2. These are: D = w, 
where L and B are the half-length and half-breadth of the drop, respectively, 

which is appropriate for mildly deformed drops; and L/a, the elongation ratio, 

which is appropriate for highly extended drops. As discussed by Bentley & 

Leal (1986b), the orientation angle is important because the effectiveness of a 

particular flow in deforming the drop depends on the orientation of the drop 

relative to the principal axis of strain of I'. This same concept will arise later 

when we consider the transient elongation of drops in steady flows characterized 

by different flow types. 
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For sufficiently small values of the capillary number C a steady drop shape 

exists in a steady two-dimensional flow for all a and A. Indeed, for each flow type 

a # 1, there exists a viscosity ratio above which the drop attains a steady shape 

for any value of the capillary number (provided, of course, that the Reynolds 

number remains small). In such cases, drop bunt  is impossible. In the majority 

of cases, though, there exists a critical capillary number above which a steady 

drop shape no longer exists and viscous forces cause the drop to continually 

elongate. This transient deformation is examined in the present study. If at 

some time during this elongation process the flow is stopped, the problem be- 

comes that of an extended liquid drop suspended in a fluid that is otherwise 

quiescent. Because the extended drop is not an equilibrium shape, an evolution- 

ary, interfacial-tension-driven flow occurs and the drop rapidly changes shape, 

either returning to a sphere or breaking into smaller drops via a complicated, 

t ime-dependent mot ion. The entire dynamics of this interfacial-tension-driven 

flow are characterized by the viscosity ratio and the initial drop shape, and this 

includes the determination of whether the drop breaks or returns to its native 

spherical shape. Interfacial tension determines the velocity scale for the drop's 

motion, and hence the time scale of the relaxation or breakup process, but has 

no role in determining the qualitative characteristics of the phenomena. In the 

present study we examine this evolution of extended drops as a function of both 

viscosity ratio and initial elongation ratio L/a at the time flow is stopped. One 

objective is to determine the elongation ratio that is necessary if the drop is to 

break, including any dependence of this critical condition on the viscosity ratio 

or the flow-type during the elongation process (the latter presumably affecting 

the initial elongated shape). 

3. THE EXPERIMENT 

The experiments reported in this paper were performed using the computer- 

controlled four-roll mill described previously (Bentley & Leal, 1986a). Here, we 

discuss only those features of the device that are important to the present work. 



The drop position in the device is sensed using a digital television camera. 

A minicomputer uses the digital representation of the drop to determine the 

location of its center of mass. A control scheme which models the response of 

the flow to changes in roller speed and the drop's response to changes in the 

flow field then regulates the speeds of the rollers in order to maintain the drop 

at the center of the device, under the constraint that the shear rate G and flow 

type a remain constant. Typically, about five control cycles occur each second. 

Since the drop position is controlled via small but finite modifications of 

the flow several times per second, an obvious question is whether these changes 

introduce any discernible change in the shape of the drop. A qualitative indi- 

cation of the success of the control scheme is illustrated by the sharp fluid-fluid 

interfaces shown in the time-exposure photographs of figure 3. Photo 3a is an 

eight-second exposure (approximately 40 control cycles) of a drop at G = 0.11 

sec-', a = 1.0, while photo 3 b  is an eight-second exposure with G = 0.165 

sec-', a = 0.2. The different light intensity at the center is due the lens effect 

of the drop. Previous four-roll mills, including Taylor's original device, could be 

controlled only by manual manipulation of the roller speeds. This resulted in 

strong, time-dependent changes in the flow, and restricted the studies to steady, 

hyperbolic flow, a = 1.0, only. The present apparatus dramatically increases the 

reliability and utility of the four-roll mill by reducing the flow disturbances to a 

minimal level and by allowing the full range of both steady and time-dependent 

two-dimensional flows to be performed. 

In our previous studies, the deformation and deformation history of the drop 

was followed via 35 mm photographs. However, this procedure is demanding of 

the operator's time and is limited in the range of time-dependent motions that 

can be followed (the minimum time increment between successive photographs 

for a Canon A-1 motor-driven camera is approximately 0.8 sec). Furthermore, 

it is expensive with regard to film and developing costs. Thus, one change 

introduced for the present study is the development of a technique for direct 



analysis of the existing digital image of the drop to determine the degree of drop 

deformat ion. 

3.1 Data analysis using digital image processing 

Digital image processing techniques have found a wide variety of uses in 

experimental fluid mechanics. However, so far as we are aware, the only uti- 

lization similar to that described below is due to Girault, Schiffrin and Smith 

(1982, 1984) who used a video digitizing technique to determine the shapes of 

stationary pendant drops for the measurement of interfacial tension. 

In our experiment, the sensor of the digital television camera effectively 

consists of a 224x112 grid of discrete picture elements (pixels), the light inten- 

sity at each pixel being represented by an eight-bit digital signal. This gray 

level information is thresholded by hardware to a one-bit (or two-st ate) signal, 

effectively replacing the entire gray level image by a black drop in a white back- 

ground. The thresholded information is sent via direct memory access to the 

computer's memory and used in the control scheme to rapidly determine the 

position of the center of mass of the drop. In our previous studies, this was the 

sole use of the threshold image. In the present work, however, the thresholded 

digital image is saved in a data file at the command of the operator, and then 

analyzed, following completion of the experiment, to determine the character- 

istic scalar measure of the degree of drop deformation; i.e. D or L/a. During 

rapid deformation, many images could be saved, if desired. 

The resolution of the digital television camera is 110.2 pixels/cm in the x- 

direction and 72.5 pixels/cm in the y-direction (directions are shown in figures 

1 and 2). The undeformed radius of the drop was typically 0.1 cm, but during 

the elongation and breakup experiments the drops often attained half-lengths of 

approximately 1 cm with very narrow waists, approximately 0.02 cm in diameter. 

The narrow cylindrical waist was often very difficult for the digital camera to 

resolve. 

Two digital images of deforming drops are shown in figure 4, along with 



corresponding still photographs. These images are typical of the transient de- 

formation that was the topic of interest of this paper. The basic features of the 

shape are captured by the digital image. Following determination of the center 

of mass, we calculated L/a by determining the distance separating the farthest 

edge bit from the center of mass. Edge bits were located by scanning the image, 

from the outside toward the inside, until we found the first bit on each scanning 

line such that two out of three successive bits were 'dark'. Such a screening 

process was necessary to be sure that extraneous dark bits due to 'noise' in the 

digital image were not inadvertently identified as edge bits. A representative 

comparison of data from 35 mm still photographs with the results of analyzing 

the digital image in this manner is shown in figure 5. Results are presented 

for three different viscosity ratios and two different flow types for a series of 

experiments on the transient elongation of a liquid droplet, described in further 

detail in Section 3.2. Agreement is typically to within five percent.t With this 

level of accuracy, the digital image analysis procedure was adopted and used 

extensively for determination of the degree of drop deformation in the present 

investigation of transient effects. 

3.2 Procedure 

The experiments reported here are a straightforward extension of the drop 

deformation studies described by Bentley & Leal (1986b). With a drop main- 

tained at the center of the four-roll mill, the shear rate is increased by small 

increments of about 0.01 sec-' until a steady drop shape no longer exists. The 

corresponding shear rate is termed the critical shear rate Gc, or, in dimension- 

less terms, the critical capillary number C,. At this point the drop elongates 

continuously in the local flow field. When a certain elongation ratio L/a is 

t It may be noted that there is a small, but definite systematic increase 
in the data from still photographs relative to the digital image data for low 
viscosity ratio drops. This difference is a consequence of a small time lag in 
manually triggering the still picture relative to the moment when a digital image 
is obtained. This time lag is accentuated for low viscosity ratio drops because 
they stretch more rapidly. 



reached, the flow is stopped. Depending on the viscosity ratio and the degree of 

elongation, the drop then either breaks up into a series of 'daughter' drops or 

else relaxes back to a spherical shape through a rather complex motion. 

The objective of the experiments in which the flow is stopped is to approx- 

imate an abrupt step change in the suspending fluid from a steady motion to a 

state of rest. In order to achieve this, a necessary condition is that the character- 

istic time scale for the viscous response of the velocity field in the four-roll mill 

to changes in roller speed is small compared with any time scale of drop defor- 

mation. The present study was performed using Pale-4 Oil (an oxidized castor 

oil available from Cas Chem, Inc., Bayonne, N.J.) as the suspending fluid, with 

viscosity of approximately 50 poise. The characteristic viscous response time for 
2 

changes in the four-roll mill flow, b, is thus 0.3 sec (here, I ,  is the characteristic 

apparatus length scale, and v is the kinematic viscosity of the suspending fluid). 

On the other hand, the characteristic time scale for interfacial-tension-driven 
a l + X  changes in drop shape is and this is usually large compared with the 

viscous response time for the flow. In general, then, when the rollers are stopped, 

drop motion is driven strictly by interfacial tension and is a consequence of the 

nonequilibrium shape of the extended drop in an otherwise quiescent fluid. 

All of the experiments were recorded on video tape for qualitative viewing 

and the results were quantified by analyzing digital images of the deformed drop 

or by occasionally taking 35 mm still photographs. Experiments were performed 

for ten viscosity ratios between 0.01 and 12 and for five flow types, a = 1 .O, 0.8, 

0.6,0.4 and 0.2. The drop fluids were a series of Dow Corning Silicone oils. The 

properties of these fluid systems were tabulated by Bentley & Leal (198613). The 

undeformed drop radius varied between 0.05 cm and 0.1 cm and, in all cases, 

was small enough that the elongated drop remained in the central region of the 

device where the flow field is given approximately by (1). The Reynolds number 

@ was about for these experiments. 
P 



4. RESULTS 

In this section we present the results of our experimental study of the elon- 

gation of liquid drops in twedimensional strong flows, and the subsequent re- 

laxation and/or breakup of the drops after the flow is stopped. First, we report 

qualitative observations of drop deformation and breakup, including the effects 

of varying both flow type and viscosity ratio. Second, we present quantitative 

results for the drop elongation ratio L/a as a function of time, as well as the 

critical elongation ratio necessary to ensure breakup for this special flow his- 

tory. Our results will be compared with two existing theoretical analyses: (1) 

an extending, infinite fluid cylinder in an axisymrnetric extensional flow and (2) 

capillary wave growth on an infinite, stationary liquid cylinder in a quiescent 

fluid. In the final section, we present a qualitative explanation for the dynamics 

of the observed relaxation and breakup phenomena and we describe briefly a new 

solution for the motion of an elongated drop in a quiescent fluid generated using 

the boundary integral technique which supports this qualitative explanation. 

4.1 Qualitative behaviour 

We begin by describing the elongation and subsequent interfacial-tension- 

driven breakup in qualitative terms, using the results for the case X = 2.4, a = 

1.0, shown in figure 6a, b to illustrate the phenomena. The first photograph in 

figure 6a is the undeformed drop, and the remaining photos exhibit the transient 

deformation of the drop while the flow is maintained at the critical capillary 

number, Cc = 0.117. The times listed to the right of the photographs (and all 

other photographs shown in this paper) are nondimensionalized with respect 

to GC& (f = GC&t) and it is clear from the values listed that the initial 

elongation process is very slow. This is, in fact, true for all viscosity ratios, 

though the rate of elongation in this initial stage of transient deformation is 

observed to decrease as the viscosity ratio increases. During this slow initial 

elongation process, the sides of the drop are gradually flattened until the drop 

eventually develops a waist. Once the waist develops, the rate of drop: elongation 



increases, as seen in the last three photos in figure 6a, eventually approaching 

the rate of elongation of a fluid line element in the linear flow. During this 

period, the central section of the drop decreases rapidly in radius. Meanwhile, 

the ends retain their bulbous shape and appear to translate with only a small 

change in volume. While the flow is on, there is no evidence of capillary waves 

on the central cylindrical section. This was true for all the systems examined 

and will be discussed more fully in Section 4.5. Furthermore, we found no case 

where the extending drop in a steady flow fractures at the middle while the flow 

was on, though it should be noted that the total elongation in our experiments 

was limited by the finite dimensions of the four-roll mill. 

The sequence of photos, figure 6b, shows the drop behaviour after the flow 

is stopped. The times shown are measured relative to the instant that the flow 

is turned off and, for consistency, have also been nondimensionalized with re- 

spect to G&. The most interesting and important observation is that the 

breakup process, illustrated by the series of photos, is entirely different from the 

capillary wave instability mechanism that is the basis for all existing theories of 

drop breakup! The motion leading to breakup is obviously driven by the finite 

interfacial tension of the interface. However, this motion is clearly a consequence 

of capillary pressure variations near the ends of the drop rather than the insta- 

bility of infinitesimal disturbances in the drop shape. We first notice that the 

ends immediately become almost spherical after stopping the flow, forming a 

dumbbell-like shape, while the overall length decreases. The ends then proceed 

to pinch off, leaving a cylindrical thread of fluid which relaxes rapidly while the 

newly formed ends bulb up. However, in this particular case, the ends do not 

pinch off and the central thread relaxes to form a single spherical drop. Just 

barely visible between each pair of drops is a tiny satellite drop. During the 

relaxation and breakup process exhibited in figure 6b, capillary waves are never 

visible on the central, cylindrical section. Although this is not true in general, 

as we will see in Section 4.5, evidence of capillary wave instability only appears 



for the most elongated drops that could be achieved in our four-roll mill while 

still maintaining the drop within the central region of homogeneous flow. 

Qualitatively, the behaviour observed in figure 6 b  is typical of all fluid sys- 

tems studied. We call the new breakup mechanism 'end pinching'. It appears 

that the final drop size distribution obtained via the 'end pinching' mechanism 

is determined by the rate at which the ends bulb up and contract toward the 

drop center, relative to the rate at which the ends pinch off. Evidently, the 

interfacial-tension-induced flow responsible for 'end pinching' occurs on a much 

shorter time scale than the growth of capillary waves, at least for the particular 

case shown in figure 6. Theories of drop breakup and resulting predictions of 

drop size distributions based upon a capillary wave instability mechanism will 

clearly not suffice in such circumstances. 

4.2 Effect of flow type 

Before considering the effect of varying the viscosity ratio on the dynamics 

of the elongation and 'end pinching' processes, it is worthwhile to examine the 

effect of flow type. Bentley & Leal (1986b) have shown that a drop that passes 

through a series of quasi-steady states becomes oriented with its long axis along 

the exit streamline of the flow (figure 1) as the critical capillary number is 

approached. At this orientation, the effective strain rate of the fluid on the drop 

(i.e. the strain-rate along its axis) is Gc&. 

Now, figure 7 illustrates the elongation and breakup process for X = 0.09 

and two different flows, a = 0.6 and a = 0.2, respectively. The main difference, 

other than flow type, is that the critical shear rate Gc is approximately 1.5 times 

larger for the a = 0.2 flow. Otherwise, the similarities are rather remarkable. 

As before, the drop undergoes a very slow initial elongation followed by a period 

of rapid extension prior to stopping the flow. Notice that the a = 0.6 drop was 

allowed to stretch further before the flow was stopped, which leads to more drop 

fragments being formed. The dynamics of the breakup process, though, are 

very similar for the two cases in spite of the fact that the final extended shapes 



are somewhat different. This suggests that drop breakup in a quiescent fluid 

depends primarily on the global geometry (rather than on any local feature of 

the shape) and the basic shape of the elongated drops generated by these flows 

is very similar. The 'end pinching' mechanism is observed and, in these cases, 

the process repeats itself on the middle thread. Since the shape of this thread, 

immediately after its formation, is different from the shape of the originally 

stretched drop, we again see that it is the overall elongated shape and not 

local details that denominates and is responsible for the 'end pinching' breakup 

process. 

Figure 8 illustrates the rate at which the elongation ratio L/a varies with 

dimensionless time G&t for the drops shown in figure 7. Additional data are 

also presented for the same X but different a. Here we focus attention on the 

rate of elongation as a function of flow type, for constant A. Hence, the data for 

each experiment end when the flow is stopped. Because G c f i  is the effective 

extension rate along the exit streamline where the elongated drops align, it is a 

reasonable choice for scaling the time while the flow is on, and this is indicated 

by the agreement in the data of figure 8 for the various values of a. 

It should be noted that the very slow elongation process that characterizes 

the initial stage of transient deformation means that a small error in experimen- 

tally determining the critical capillary number makes a large difference in the 

origin of the time axis for each experiment. Consequently, all the plots of L/a 

versus time in this paper have been adjusted so that the steeply sloping portions 

of the curves overlap. This adjustment affects the relative position of the curves, 

but has no effect on their shape. From figure 8 it is clear that the effect of flow 

type a is only to modify the time scale for elongation of the drop, at least for the 

particular flow history that we examine in this paper. Hence, the photographs 

in figure 7 and the rate of elongation data presented in figure 8 demonstrate that 

the qualitative nature of the transient deformation and relaxation processes are 

essentially independent of flow type for a given value of GC&. 



4.3 Effect of viscosity ratio 

Figure 9 illustrates the elongation and breakup process for the entire range 

of viscosity ratios that we studied. Although the flow type is different for the 

various cases shown in figure 9, we have already demonstrated that a has no 

effect other than determining the critical shear rate and hence the time scale for 

elongation. The differences apparent among the experiments shown in figure 9 

are a consequence of changes in the viscosity ratio A. 

Figure 90 shows a sequence of photographs illustrating the transient be- 

haviour of a drop with viscosity ratio 0.01. In low viscosity ratio experiments 

such as this one, the drop attains highly elongated steady shapes prior to achiev- 

ing the critical shear rate where continuous elongation occurs, and the ends of 

the drop are much more pointed than we saw in either figures 6 or 7. During 

elongation with the flow on, the shape of the drop does not change dramati- 

cally. Except for a small region near the ends which remains almost pointed, 

the width of the elongating drop is nearly constant over its entire length at any 

instant. When the flow is stopped, however, the ends rapidly become rounded, 

the overall length is reduced significantly, fluid drains from the center and the 

drop breaks. Two daughter droplets are formed in the case illustrated here with 

a barely visible satellite drop between them. 

Two intermediate viscosity ratio cases X = 0.046 and X = 1.37 are shown in 

figure 96,c respectively, and the qualitative behaviour is very similar to the cases 

X = 1.4 and X = 0.09 examined in figures 6 and 7, respectively. In the present 

figures, the initial onset of stretching of the drop occurs at moderate deforma- 

tions. In other words, the maximum steady deformation is relatively small in 

these cases, as already shown by Bentley & Leal (1986b). For both experiments, 

breakup is evidently a consequence of the 'end pinching' mechanism. 

Figure 9d illustrates the drop behaviour for the highest viscosity ratio exam- 

ined in this study, X = 11.3. The new qualitative, dynamical feature we observe 

is that the drop relaxes back to a spherical shape after the flow is stopped, even 



though it is highly elongated and the ends bulb up to produce a dumbbell-like 

shape. No pinching off of the ends occurs. Instead, the ends are pulled toward 

the drop center and engulf the cylindrical protion of the drop as they move. It 

is interesting that the diameter of the central portion of the drop remains es- 

sentially constant until the separation between the drop ends is approximately 

equal to the end diameter. Again, capillary waves are not observed. 

Examination of the photographs in figure 9b-d illustrates that, despite the 

300-fold difference in viscosity ratio, the shapes of the intermediate and high 

viscosity ratio drops are remarkably similar while the drop is elongating in a 

steady flow at the critical capillary number. Furthermore, the rates of stretching 

of these different viscosity drops, following the slow initial deformation, are 

also remarkably similar. This is clearly evident in figure 10 which presents 

the elongation ratio L/a as a function of dimensionless time GC&t for the 

experiments shown in figure 9b-d. Data are only presented for the period while 

the flow is on, the results having been adjusted so that the steeply sloping 

portions of the c w e s  overlap. As is evident in the photographs, however, the 

similarities in behaviour ended after the flow is stopped. Not only does the high 

viscosity ratio drop not fragment in spite of having a comparable initial L/a and 

shape as the intermediate viscosity ratio drops, but, as is to be expected, the 

time period over which relaxation occurs is much longer the larger the viscosity 

ratio (when examining the relaxation process it is necessary to remember that 

the time has been scaled with respect to Gc@ and, for X s10,  Gc decreases 

with increasing A). Because the degree of elongation in the three cases is similar, 

the differences observed for the high X case are evidently due to the effects of 

viscosity ratio. 

With reference to the lowest viscosity ratio, X = 0.01, if the drop is allowed 

to stretch further than shown in figure 9a, we find that it also stretches at 

the same rate as the higher viscosity ratio drops shown in figure 10. However, 

the dynamics following cessation of the flow appear qualitatively different from 



the intermediate and high X experiments due both to the lower viscosity ratio 

and the initial, pointed shape (which, of course, is also a consequence of the 

lower viscosity ratio). A qualitative explanation for the effect of viscosity ratio 

on the elongationJbreakup process, as exhibited by these photographs, will be 

presented in the discussion section. 

4.4 Effect of L/a; critical elongation necessary to 

ensure breakup once the flow is stopped 

We have yet to address specifically the question of how the initial degree of 

elongat ion affects the relaxation and breakup dynamics. First, we must reiterate 

that in no case did we observe breakup while the flow was on. Drop breakup, 

and, consequently, the final drop size distribution for a given viscosity ratio, 

were dependent on the elongation ratio L/a prior to stopping the flow. 

It should not be surprising, in the light of the photographs presented in 

this paper, that drops that were extended only a little past their steady shape 

relaxed back to a sphere without fragmenting over the entire range of viscosity 

ratios studied. In addition, in all cases there existed a critical elongation ratio 

above which the drop fragmented when the flow ceased. 

For each of the viscosity ratios studied, several experiments were performed 

to determine the critical elongation ratio for drop breakup. One way to il- 

lustrate the results of varying the elongation ratio is to examine data for L/a 

as a function of dimensionless time. Such data are shown in figure lla-f for 

X = 0.018,0.036,0.20,0.47,2.2 and X = 5.7, respectively, and for a range of final 

elongation ratios at the point when the flow is stopped. These plots are very 

similar to figures 8 and 10. Here, however, we systematically vary L/a, holding 

X constant, and observe the effect on the relaxation/breakup process and sub- 

sequent drop size distribution. For each experiment, we mark by a horizontal 

arrow, the point where the flow is stopped. Measurements of L/a then are con- 

tinued until the first fragment separates from the main drop. The value of L/a at 

this instant is indicated by the last data point for each symbol. Although motion 



is driven by interfacial tension after the flow is stopped so that a more appro- 
a l + X  priate time scale is u, for convenience, the time-scale was not changed 

in this portion of the plot. In each figure, data that return to L/a = 1 indicate 

that the drop relaxes back to a sphere without fragmenting. When breakup 

does occur, we also include a photograph of the final dispersed state of the drop 

after breakup and indicate the fractional increase in interfacial area, denoted by 

A/Ao, that is generated by the fragmentation process (the bottom photograph 

in figure l l c  shows the drop shortly before it fragments into two equally sized 

droplets). These figures reiterate some features that were exposed earlier by the 

photographs, namely that provided L/a is not too large, a considerable short- 

ening of drop length occurs prior to fragmentation, and the relaxation is slower 

for higher viscosity ratios. Finally, the solid, almost vertical line in each figure 

illustrates the expected slope if the drop were to stretch at the same rate as a 

fluid element in the linear flow. It is clear that as the drop becomes increasingly 

elongated this asymptotic behaviour is approached. 

These figures illustrate that for small enough L/a the drop relaxes back 

to a sphere. However, above a critical elongation ratio the drop breaks and the 

number of drop fragments ( and hence interfacial area ) increases with increasing 

L/a beyond this critical value. 

For all viscosity ratios, the critical elongation ratio necessary to guarantee 

drop breakup for the flow history that we examined is summarized in figure 

12. The squares denote the largest elongation ratio for which the drop relaxed 

back to a sphere and the triangles denote the smallest elongation ratio for which 

breakup was observed upon cessation of the flow. The cross-hatched region 

therefore denotes the uncertainty in the magnitude of the critical elongation ra- 

tio. The dotted line in this figure represents L/a for the most deformed steady 

shapes that were observed experimentally by Bentley & Leal (1986b). Exami- 

nation of the unsteady elongation and breakup for X = has been very 

difficult because the steady shapes are very long and slender. The data in figure 



12 illustrate, as found by Grace (1971), that the critical elongation necessary to 

ensure breakup is large compared with the maximum stable shape. 

Figure 12 also clearly illustrates a difficulty in breaking drops with either 

a high or low viscosity ratio. As shown by the photographs in figure 9, high X 

drops are able to relax back to a spherical shape before either capillary wave 

instabilities on the central cylindrical portion or the dynamics of 'end pinching' 

cause fragmentation. On the other hand, low viscosity ratio drops are difficult 

to break primarily because a high degree of elongation (and a high capillary 

number) is necessary before the drop even begins to elongate with time in a 

steady flow. 
< < The graph exhibits a minimum in the critical L/a in the range 0.1 --A- 2.0 

and this is qualitatively similar to results reported by Grace (1971) for hyperbolic 

flow. A quantitative comparison is difficult, however, because Grace reported 

all results in terms of D, which is very insensitive to increased extension for the 

highly elongated drops formed in these experiments. As discussed above, our 

results hold for all a. 

4.5 Capillary waves 

In Sections 4.1, 4.3 and 4.4, we have noted that capillary wave instability 

is not observed during the elongation of drops in the present experiments. Fur- 

thermore, there is at least a range of elongation ratios where the drop is highly 

elongated but the breakup mode, in the absence of any external flow, is due 

to 'end pinch off' and not due to the growth of capillary waves. Both of these 

results are surprising in view of the previous work on the drop breakup problem 

and deserve further discussion and investigation. 

First, we consider the fact that no capillary waves are observed during the 

elongation of the drop, even though the midsection of the drop becomes long 

and cylindrical and L/a values as large O(15) are attained. Mikami et al. (1975) 

published a theoretical stability analysis for an infinite fluid cylinder in a second 

fluid that is undergoing an axisymrnetric extension. The theory shows that the 



fluid cylinder behaves exactly as a fluid element in this flow and we have seen 

already that this asymptotic behaviour is approached as the drop elongates 

during the experiment. In general, though, the theoretical results are quite 

complicated with the net effect being that the elongation of the thread decreases 

the overall growth rate of capillary waves. Nevertheless, some disturbances are 

still predicted to grow exponentially and this suggests that breakup is possible 

via capillary wave growth even when the drop is extending. In addition, Mikami 

e t  al. (1975) demonstrate that the predictions of the linear stability analysis are 

valid for the two-dimensional extensional flow generated in the four-roll mill. 

Indeed, these investigators report experimental observations that qualitatively 

support their analysis and show breakup of a fluid thread in a steady two- 

dimensional hyperbolic flow. The main difference between their experiment and 

ours is that they achieved much greater elongation ratios than the maximum 

values of O(15) that we obtained in our experiments. Presumably, a drop must 

become much more elongated before capillary wave instabilities become evident 

during its extension, but this could not be tested in our apparatus because of 

constraints imposed by the size of the linear flow region and by resolution limits 

of the video camera in the control system. 

When the flow is turned off after the drop has been highly extended, the 

midsection would appear, even with the ends being shed via 'end pinching', to 

approximate a stationary liquid cylinder. The stability of an infinite, station- 

ary fluid cylinder in a second viscous fluid was studied by Tomotika (1935), 

Rumscheidt and Mason (1962) and Lee et  al. (1981a,b). As demonstrated by 

Tomotika, although an infinite fluid cylinder suspended in a quiescent fluid is 

a perfectly valid solution to the governing equations, u = 0 everywhere, it is 

unstable with respect to small disturbances with wavelength greater than the 

cylinder circumference. Crudely, then, capillary wave instability cannot occur 

on elongated drops unless the length is greater than the circumference. However, 

for longer drops, capillary wave growth should be expected. The fact that we see 



no evidence of capillary waves in the majority of our experiments, even when the 

initial length of the extended drop is several times its circumference, is probably 

because the 'end pinching' process occurs on a short time scale relative to the 

time required for small capillary wave disturbances to achieve finite amplitude. 

Thus, the drop is reduced to a length that can no longer support capillary wave 

growth before significant growth of the initial disturbances can occur. However, 

this 'explanation' suggests that capillary waves should eventually become evi- 

dent if we simply make the drop long enough - for such a long drop, breakup will 

occur initially via the 'end pinching' mechanism, but now capillary waves may 

appear on the remaining elongated thread simply because the drop was so long 

initially that the time scale for its complete breakup via 'end pinching' exceeds 

the time scale for growth of capillary waves. 

Based upon these ideas, we set out to search for evidence of capillary wave 

growth by simply producing increasingly more-elongated drops. The results 

of this search confirm our qualitative explanation. Several examples of cases 

that show significant capillary wave growth are shown in figure 13. In these 

cases, the presence of capillary wave instability produces a striking and abrupt 

transition in the mode of breakup in the middle of the breakup process. At 

first, the drop begins to break up via the 'end pinching' mechanism which we 

identified earlier in this paper. Then, however, there is an abrupt appearance 

of finite amplitude waves on the remaining thread, which leads to simultaneous 

breakup into a line of small drops. The fact that this latter process is due to 

capillary wave instability is confirmed by the comparison, shown in figure 13d, 

between the wavelength obtained from the experiments and the wavelength of 

the fastest growing linear mode calculated from the linear stability theory in 

the limit of negligible inertial effects, p+, p F  <( 1, where R, is the thread 

radius. Experimentally, ~3 = lo-*. The agreement is excellent for X = 0.1 

and X = 1.3. The discrepancy for X = 12.2 may be due to the fact that there is 

a relatively strong flow induced in the fluid by the initial contraction in length 



which occurs to a much greater extent for drops with a large viscosity ratio. Of 

course in the capillary wave theory, an infinite, stationary thread is assumed 

and it is perhaps surprising that there is good agreement between the theory 

and experimental data for an elongated drop in any case. 

5. DISCUSSION 

Of all the experimental observations described in the preceding section, the 

most import ant, and interesting, is the identification of the mode of interfacial- 

tension-driven breakup that we have termed 'end pinching'. Qualitatively, it 

is clear that the mechanism is a consequence of motion generated via capillary 

pressure gradients in the region near the end of the drop. An obvious question, 

though, is why drops of intermediate viscosity ratio break via this mechanism 

when they are only modestly extended, while more viscous drops do not break 

until L/a is considerably larger. From our observations, it can be seen that a 

general precursor to 'pinch off' is the development of a local 'waist' just inside 

the bulbous end. Once such a local minimum in the radius occurs, there will be 

an associated local pressure maximum inside the drop due to capillary forces and 

an obvious mechanism for increase in the depth of the minimum, subsequently 

leading to pinch-off. However, this simple observation does not explain why the 

local minimum in radius occurs in the first place, nor why it occurs less readily 

for drops of large viscosity ratio compared with X = O(1). This latter question 

is particularly perplexing in view of the fact that the drop shapes in the initial 

stages of the relaxation/breakup process are very similar. 

5.1 A qualitative description of 'end pinching' 

A starting point in attempting to understand 'pinch-off' is the recognition, 

from dimensional analysis, that the qualit at ive features of the interfacial-tension- 

driven flow are determined completely by the viscosity ratio and the initial shape 

of the drop, including the value of L/a. One might, at first, suppose that the 

differences between the relaxation/breakup process for drops of intermediate 

and large viscosity ratio are a result of some viscosity ratio dependent detail of 



the drop shape at the instant when the external flow is stopped. However, this 

appears unlikely for several reasons. First, when 'end pinching' occurs, it does 

so for any elongation ratio greater than some minimum value even though the 

initial drop shape (as described, say, by the ratio of the radius of the bulbous 

end to the radius of the cylindrical midsection) varies with L/a. Second, the 

initial shapes for small and intermediate X are markedly different in the region 

near the end of the drop and yet 'end pinching' occurs in both cases. Finally, 

when 'end pinching' initially takes place, it often leaves an elongated central 

fragment which develops bulbous ends and may pinch off in the same manner 

in spite of the fact that its shape is clearly different from the original extended 

shape. Hence, it would appear that the mechanism of 'end pinching' depends on 

the global geometry of the drop (and viscosity ratio), rather than on any local 

details of the shape. This was indicated previously in the discussion of figure 7. 

A more plausible suggestion is that the difference between moderate and 

high viscosity ratio systems is due to differences in the relative rates of the flow 

in different regions of the drop which arise from the relative viscosities of the 

drop and continuous phases. In order to develop this concept, it is necessary 

to begin with a general description of the relaxation process. Let us begin by 

considering the internal pressure distribution associated with capillary forces for 
\ 

an interface of the shape shown in figure 14a, which is qualitatively typical of the 

observed drop shapes in all cases soon after the flow is stopped. For illustration 

purposes, we have chosen the radius of the bulbous end to be twice the radius 

of the cylindrical midsection. Let us denote the stress tensor as T and the unit 

normal from the droplet phase to the continuous phase as n. Then, if the drop 

surface is described in cylindrical coordinates as r = f (t), the normal stress 

jump is given by 

where R1 and R2 are the principal radii of curvature of the surface, and f' and f" 

are the derivatives of the shape function f ,  with respect to the axial coordinate 



z. The normal stress jump corresponding to the shape plotted in figure 14a is 

depicted qualitatively in figure 14 6. Now, let us suppose that the shape is fixed, 

so that the normal stress jump can be interpreted in terms of capillary pressure 

variations within the drop. Then, we see that the pressure is highest near the 

end of the drop where the radius of curvature is concave in planes both parallel 

and perpendicular to the drop axis, goes through a minimum with decreasing z 

because the drop surface in the plane parallel to the drop axis becomes convex, 

and finally increases to a constant value in the central portion of the drop. 

This capillary pressure gradient will tend to induce flow both from the end 

of the drop and from the central cylindrical region. However, the flow from 

the end of the drop can occur without large velocity gradients in the internal 

fluid, since the drop end can translate without a significant change in shape. 

Thus, this motion is resisted mainly by viscous effects in the outer fluid. Motion 

of the bulbous end towards the pressure minimum causes the convex region 

(and hence the pressure minimum) to move toward the drop center as well, so 

that the driving force for continued end movement is maintained. On the other 

hand, the dynamics of the flow from the central portion of the drop towards the 

pressure minimum is qualitatively different, because this flow requires significant 

velocity gradients within the inner fluid (note that the fluid is stagnant at the 

drop center). As a consequence, this motion is inhibited primarily by the droplet 

viscosity. It will be noted, however, that a local 'neck' in the shape will tend to 

form as a consequence of a flux of fluid from the cylindrical region towards the 

pressure minimum. 

Given this qualit at ive picture of interfacial-tension-driven changes in the 

drop shape, the observed differences between high and low viscosity ratio sys- 

tems may be 'explained' in the following manner. In high viscosity ratio systems, 

the ends are drawn toward the middle as described above, with the rate of this 

process controlled mainly by the relatively low viscosity outer fluid. Drainage 

from the central portion, on the other hand, is comparatively slow since it is 



controlled by the higher viscosity droplet fluid. As a result, movement of the 

pressure minimum and of the bulbous ends occurs sufficiently fast relative to the 

flow from the central region that a significant 'neck' in the shape cannot form 

unless the drop is highly elongated. In contrast, in lower viscosity ratio systems, 

fluid flows readily from the central region towards the pressure minimum (and 

the relative motion of the bulbous end is slower) causing a local minimum in 

the drop radius. The ends 'pinch off' due to flow away from the corresponding 

maximum in capillary pressure, which causes the 'neck' to become more pro- 

nounced and eventually 'pinch'. Notice that the higher curvature at the ends 

of very low viscosity ratio drops should lead to a rapid bulbing of the ends (i.e. 

high velocities near the end of the drop) followed by the pinching process just 

discussed. This is seen clearly for X = 0.01 in figure 9a. 

5.2 Numerical solution of the motion of an elongated drop 

via the boundary integral method 

In order to test the qualitative description presented above and to under- 

stand more about the dependence of the dynamics on the initial shape and 

viscosity ratio, a numeric a1 study of the interfacial- tension-dr iven mot ion of an 

elongated drop in a quiescent fluid is currently in progress using a boundary 

integral method. Here we present calculations for the case X = 1 only in order 

to show that the numerical simulation agrees with the description of the physics 

presented in Section 3.1. 

The boundary integral method has been applied to the low Reynolds num- 

ber deformation of bubbles and drops in an external flow by Youngren & Acrivos 

(1976), Rallison & Acrivos (1978) and Rallison (1981). The technique is well- 

suited to free-boundary problems since the interfacial velocities may be obtained 

directly, without the necessity of determining the velocity field in the entire flow 

domain. 

Our overall objective is the examination of the dynamics of an initially 

extended liquid droplet that is suspended in a second immiscible fluid which is 



at rest at infinity. Inertial effects are negligible with respect to viscous effects 

provided .& << 1, where I, is some characteristic length scale of the 

deformed drop. As discussed specifically by Rallison and Acrivos (1978), for 

the special case X = 1, the velocity field, nondimensionalized with respect to 

.*, at any point, x in the fluid domain, is given by 

where S represents the drop surface. Here, n is the unit outward normal from 

the drop surface and V, n is the surface curvature. Thus, for the case when 

the drop and suspending fluids have the same viscosity, the velocity field may 

be thought of as generated by a 'membrane of Stokeslets distributed along the 

interface' with a density proportional to the local curvature. If we wish to follow 

the interface motion, equation (2) is used in conjunction with the kinematic 

condition, which may be stated symbolically as = u - n  for x E S  
I ,p 1 + A 1  (time has been nondimensionalized with respect to ( ) As is evident 

from equation (3), the evolution of the drop shape is completely dependent 

on the initial drop geometry and the only role interfacial tension plays is to 

determine the characteristic velocity scale and, hence, the time scale of the 

relaxation/breakup process. 

In this short discussion, we aim to demonstrate that the drop shape evolves 

in a manner representative of the 'end pinching' phenomenon and then examine 

the interior velocity field to see whether the behaviour is qualitatively consis- 

tent with the proposal of the preceding section. The details of the numerics and 

more comprehensive results will be reported in a future communication. Here 

we simply note that the numerical scheme incorporates methods used for sim- 

ilar free-boundary problems by Rallison & Acrivos (1978), Lee & Leal (1982), 

Geller, Lee & Leal (1986), and E.J. Hinch et al. (private communication). In 

the calculation reported below: the interface was subdivided into 24 elements; 

the interface shape was approximated by fitting a cubic spline to the colloca- 

tion points; every few iterations the collocation points were evenly redistributed 



(based on arclength) along the interface; all integrals were evaluated using a 

Gauss quadrature scheme; and the drop volume, monitored as time progressed, 

was found to change by less than one percent over several hundred iterations. 

Figure 15a represents the time-evolution of a typical drop shape, with an 

initial elongation ratio L/a = 5.3, and an initial shape that can be approximated 

as a cylindrical midsection with a spherical end, the ratio of bulb to cylinder 

radius being 3:l.  We have chosen the local radius as the characteristic length 

scale and t * is the dimensionless time that identifies evolution of the drop shape. 

We observe that the bulbous end translates towards the drop center, a 'neck' 

slowly develops, and then the bulbous end rapidly begins to pinch off. This 

evolution is very similar qualitatively to the many photographs presented above 

for X = O(1). In order to accurately describe the details of the pinch process, 

more points would have to be distributed along the interface to resolve the 

regions of high curvature. However, our goal is primarily to show that the 

elongated drop does undergo an 'end pinching' process and that the interior 

velocity field is qualitatively consistent with the mechanism suggested in Section 

5.1. For the latter purpose, it is sufficient to examine the initial velocity field 

at t = of when the surface resolution is more than adequate. These results 

are shown in figure 156. We see that the end induces a strong, almost uniform 

flow toward the drop center. Furthermore, there is indeed a flow, albeit weak, 

from the cylindrical region towards the pressure minimum, as was suggested in 

the qualitative discussion in section 5.1. It is this initial flux that leads to the 

development of a 'neck' and, consequently, a local pressure maximum, which will 

eventually result in drop fragmentation via 'end pinching' as depicted in figure 

150 . Hence, this example lends support to the qualitative explanation that we 

have presented to describe the relaxation/breakup process. 
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FIGURE CAPTIONS 

Figure 1 Streamlines for the linear flow u = I' *x ,  I' given by Eq. (1). a > 0. 

Figure 2 Scalar measures of deformation and orientation. 

Figure 3 Eight second time-exposure photographs of drops in the four-roll mill. 

The sharpness of the fluid-fluid interface demonstrates the ability of the 

control scheme to maintain the drop at the device center with minimal 

disturbances. (a) X = 1.4, a = 1.0, G = 0.11 sec-'. (b) X = 1.4, cr = 

0.2, G = 0.165 sec-' 

Figure 4 Typical digital images of the transient deformation of highly elongated 

droplets in a steady flow at the critical capillary number. 35 mm 

photographs are shown for comparison. 

Figure 5 Comparison of L/a calculated from 35 mm photographs and L/a cal- 

culated by analyzing digit a1 images. The solid line denotes (L/a) 35mm 

= &/a) digital* 

Figure 6 (a) Elongation of a liquid droplet in a steady flow at the critical capil- 

lary number. f = GC& t,  Gc = 0.132 sec-'. (b) Relaxation and 

breakup after the flow is stopped abruptly - 'end pinching'. The time 

is measured from the instant the flow ceases and f = GC& t. 

Figure 7 The effect of flow type on the elongation process and on the subsequent 

relaxation and breakup phenomena. Viscosity ratio is held constant, X 

= 0.09. (a) a = 0.6, Gc = 0.224 sec-l; (b) a = 0.2, Gc = 0.33 sec-'. 

Figure 8 The effect of flow type on the elongation process - elongation ratio L/a 

as a function of dimensionless time G,fi t. This figure illustrates that 

the effect of flow type is only to modify the time scale of the elongation 

process. The data for each experiment end when the flow is stopped. 

Figure 9 The effect of viscosity ratio on the elongation and breakup phenomena. 

(a) Gc = 0.260 sec-', Cc = 0.26. (b) Gc = 0.235 sec-', Cc = 0.21. (c) 

Gc = 0.187 sec-', Cc = 0.18. (d) Gc = 0.135 sec-', Cc = 0.14. 

Figure 10 Elongation ratio L/a as a function of dimensionless time for the ex- 



periments shown in figure 9b,c,d. The data indicate the remarkable 

similarity in stretching rate for (L/a) 2 3  in spite of the 300-fold differ- 

ence in viscosity ratio. 

Figure 11 The effect of L/a on the relaxation and breakup process. (a) X = 0.018, 

(b) X = 0.036, (c) X = 0.2, (d) X = 0.47, (e) X = 2.2, (f) X = 5.7. The 

horizontal arrows indicate when the flow is stopped. Data points for 

each experiment then continue until the first fragment separates from 

the main drop. AIA, denotes the fractional increase in interfacial area 

due to the fragmentation. The solid, almost vertical line indicates the 

rate at which a fluid element stretches in the linear flow. 

Figure 12 Critical elongtion ratio necessary to ensure breakup, following an abrupt 

halt of the flow, as a function of viscosity ratio. Triangles denote the 

smallest L/a for which a drop was observed to break up. Squares de- 

note the largest L/a for which a drop relaxed back to a sphere. The 

shaded region denotes the uncertainty in the critical elongation ratio. 

The dashed line indicates the L/a values of the final steady shapes. 

Figure 13 Development of capillary wave instabilities. Notice that capillary waves 

are not visible while the drop stretches. (a) G, = 0.306 sec-', C, = 

0.18. (b) G, = 0.218 sec-', C, = 0.12. (c) Gc = 0.234 sec-', C, 

= 0.10. (d) Comparison of experiment and theory for the instability 

of infinite, stationary liquid cylinders. The theoretical predictions are 

obtained in the limit of negligible inertial effects, Q: 1, 9 Q: 1 

(Lee & Flumerfelt 1981). 

Figure 14 (a) Typical drop shape shortly after the flow is stopped. Radius of 

bulbous end is twice the radius of the cylindrical midsection. (b) Ap- 

proximate normal stress jump across the interface. 

Figure 15 (a) Evolution of an initially elongated drop suspended in an otherwise 

quiescent fluid, X = 1. (b) The velocity field in the drop for the initial 

shape shown in (a). 
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CHAPTER 3 

RELAXATION AND BREAKUP 

OF AN INITIALLY EXTENDED DROP 

IN AN OTHERWISE QUIESCENT FLUID 

The basic text of Chapter 3 consists of an article which has been submitted for 

publication in the Journal of Fluid Mechanics. 
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ABSTRACT 

In this paper we examine some general features of the time-dependent dy- 

namics of drop deformation and breakup at low Reynolds number. The first 

aspect of our study is a detailed numerical investigation of the 'end-pinching" 

behaviour reported in a previous experimental study. The numerics illustrate 

the effects of viscosity ratio and initial drop shape on the relaxation and/or 

breakup of highly elongated droplets in an otherwise quiescent fluid. Such flow 

situations provide a very nice example of fluid motion, due to interfacial tension, 

which arises solely because of curvature variations along the drop surface. In ad- 

dition, the numerical procedure is used to study the simultaneous development 

of capillary wave instabilities at the fluid-fluid interface of a very long, cylin- 

drically shaped droplet with bulbous ends. Initially small disturbances evolve 

to finite amplitude and produce very regular drop breakup. The formation of 

satellite droplets, a nonlinear phenomenon, is also observed. 



1. INTRODUCTION 

The study of the low Reynolds number deformation and breakup of a liquid 

droplet due to a nonuniform velocity field is a classical free-boundary problem 

which has been of longstanding interest in the fluid mechanics community, dating 

back to two remarkable papers by G.I. Taylor in the 1930s. In the intervening 

50 years there has been considerable theoretical, numerical and experimental 

work aimed at achieving a more complete understanding of this problem. Part 

of the motivation for these studies lies in potential industrial applications which 

include mixing and polymer blending operat ions, characterization of the rheo- 

logical properties of emulsions, and flow-induced deformation of flexible bodies 

(e.g., cells). Of course, due to the deformable nature of the fluid-fluid interface, 

the inherent difficulty which arises in fundamental analyses of these problems is 

the a priori unknown location of the boundary. Rather than being given in the 

problem statement, the interface location must be found as part of the problem 

solution. 

Two distinct approaches have been taken in order to understand different 

aspects of the drop breakup problem. The first approach examines the deforma- 

tion of an initially spherical droplet, with undeformed radius a, in steady linear 

flows. The major objective of these studies is the determination of the critical 

capillary number, C = % (G is the local shear rate, p is the suspending fluid 

viscosity, and o denotes the interfacial tension), which corresponds to the limit 

point for steady drop shapes (on the branch of solutions which begin with a 

sphere at C = 0). For C larger than the critical value, the droplet stretches con- 

tinuously to a highly elongated shape. This work is well-summarized in review 

articles by Acrivos (1983) and Rallison (1984), though an important extension 

is presented by Bentley & Leal (1986) who systematically investigate the in- 

hibiting effect of vorticity on the deformation and breakup process, a feature 

first observed and explained by Taylor (1934). The term 'drop burst', as used 

in these investigations, denotes the flow conditions corresponding to continuous 



elongation. In general, actual fragmentation of the droplet is not discussed in 

these studies. 

At the critical capillary number, the drop shapes characteristic of the con- 

tinuous stretching process have long cylindrical midsections with generally bul- 

bous ends. This elongated shape is used as a starting point and motivation for 

the second major class of studies on drop breakup. In this case, the droplet is 

modeled as an infinite fluid cylinder of initially constant radius which breaks up 

in quiescent or sheared flows due to the growth of capillary wave instabilities. 

Within the confines of linear stability theory, the effects of viscosity ratio and 

disturbance wavelength on the disturbance growth rate and resulting drop size 

distribution are examined by Tomotika (1935), Rumscheidt & Mason (1962) 

and Lee & Flumerfelt (1981) for the case of quiescent fluids and by Tomotika 

(1936), Mikami, Cox & Mason (1975) and Khakhar & Ottino (1987) for droplets 

in a shearing flow. For the equivalent problem where inertial effects rather than 

viscous effects are important, perturbation methods have been used to examine 

some nonlinear details of the interface evolution (for example, see the review 

article by Bogy 1979). However, as far as we are aware, nonlinear effects have 

not been studied for the Stokes flow problem. 

While these studies have been very valuable in understanding the basic 

physics of flow induced changes in the drop shape, and have yielded some in- 

sight into the factors which control drop size distributions on breakup, it is nev- 

ertheless true that real processes almost always involve time-dependent flows 

(as seen by the drop) and it is important to ask how transient effects may alter 

the deformation and breakup process. Furthermore, there remain many out- 

standing problems related to capillary wave growth on extended fluid drops. 

For example: what role does the end of the droplet play? how do finite ampli- 

tude disturbances evolve? and how are nonlinear effects evident? These aspects 

of the drop deformation problem have received relatively little attention in the 

literature. There are probably two reasons for this. First, until recently it was 



difficult experimentally to study the deformation of an object in a well-defined, 

time-dependent flow and, second, it has only been in recent years that numerical 

methods have been developed that are capable of examining transient dynamics 

of significantly deformed viscous drops. 

In a previous publication (Stone, Bentley & Leal 1986) we took the first 

step in an attempt to better characterize the time-dependent dynamics of mod- 

estly deformed drops. Specifically, we experimentally examined droplet stretch- 

ing near the critical capillary number in two-dimensional linear flows generated 

in a computer-controlled four-roll mill and investigated the relaxation dynam- 

ics which occur if the imposed flow is stopped abruptly with the droplet in a 

stretched, nonequilibrium state. In the relaxation experiments it was frequently 

observed that drop breakup occurred due to deterministic flows established by 

capillary forces associated with curvature variations along the interface. The 

observed motion consisted of a relatively rapid bulbing of the end of the droplet 

followed by break off of the bulbous end from the central portion of the drop. 

This breakup process, called "end-pinching", was shown to have a rather strong 

dependence on the ratio of drop viscosity to suspending fluid viscosity, X ( A  = f 
where ji is the droplet viscosity). Specifically, for X > 0(1), the mechanism 

leading to breakup was damped and much larger elongations were necessary to 

guarantee breakup as the viscosity ratio was increased. The effect of increasing 

the droplet extension prior to stopping the flow was also examined, and, for 

sufficiently long drops, capillary waves were shown to play an important role 

in the final stages of the breakup process. Finally, a qualitative explanation 

of the "end-pinchingn process was proposed and a brief supporting numerical 

computation presented for the special case X = 1. 

In this paper we present more detailed numerical calculations using the 

boundary integral method to further elucidate the end-pinching mechanism for 

a highly extended droplet of constant interfacial tension in an otherwise quies- 

cent fluid. Our basic interest is to probe the effects of viscosity ratio and initial 



drop shape on the relaxation and breakup process, with a particular emphasis on 

underst anding the end-pinching behaviour. Qualitative and quantitative com- 

parisons with experimental observations from Stone e t  al. (1986) also confirm 

that the experimental system corresponds closely to the assumption of constant 

interfacial tension. The last part of the study uses the numerical procedure to 

probe some (nonlinear) features associated with the growth of capillary wave 

instabilities on a highly elongated droplet. Specifically, we follow the entire evo- 

lution of an initially arbitrary, small amplitude disturbance to finite amplitude 

and consequent drop breakup. Although not extensive, to our knowledge these 

calculations are among the first which exhibit the implicitly nonlinear behaviour 

of finite amplitude disturbances on a cylindrical fluid interface. In addition, the 

calculation simultaneously resolves the behaviour near the end of the droplet. 

Perhaps the most interesting aspect of the simulation is the predicted formation 

of small satellite drops. 

In a general sense, the numerics illustrate application of the boundary in- 

tegral method to a problem involving large, time-dependent deformations and 

interfacial-tension-driven flows that are caused by variations in curvature along 

the interface (the interfacial tension is constant). Of course, an obvious and, 

from the standpoint of applications, important question is the role of surface 

tension gradients in drop deformation and breakup due, for example, to the 

presence of surfactants at the fluid-fluid interface. This is currently under study 

and will be addressed in a future communication. 

In our previous study we have made a distinction between the end-pinching 

motion and motion due to capillary wave instabilities. It is important to rec- 

ognize that both are interfacial-tension-driven flows and the same characteristic 

velocity scale, ,+, may be used to describe the dynamics in each case. How- 

ever, the source of the two motions is different. End-pinching specifically refers 

to deterministic motions induced by the significant curvature variations which 

occur near the closed end of the droplet. The initial drop shape is not an equi- 



librium solution of the governing equations and boundary conditions and the 

shape must therefore evolve toward some steady conformation. The term capil- 

lary wave instability is traditionally used to describe the evolution of arbitrary, 

infinitesimal disturbances on an infinite circular fluid cylinder. The difference is 

that the infinite cylinder is an equilibrium shape (albeit an unstable equilibrium 

shape) in the absence of any disturbances. However, it should be clear that once 

finite amplitude disturbances have developed these two types of motion are due 

to the same mechanism : curvature variations of the order of the drop radius 

give rise to velocities which are O(,*). 

It is worth noting that the transient dynamics described in this paper are re- 

lated to other free-boundary problems which arise in quite varied processes. For 

example, similar relaxation and breakup processes are illustrated by Lasheras, 

Fernandez-Pello & Dryer (1979) in an experimental study of the combustion 

characteristics of fuel droplets and by Greenspan & McCay (1981) for the retrac- 

tion of an initially extended droplet which wets a solid planar surface.? Another 

closely related problem is the capillary instability of inviscid liquid jets, which 

has been widely studied due to a variety of practical applications. For example, 

similar dynamics to aspects of this work are illustrated and nicely discussed by 

Goedde & Yuen (1970). 

t We wish to thank these authors for bringing these studies to our attention. 



2. NUMERICAL PROCEDURE / IMPLEMENTATION 

One objective of this study is to examine the details of relaxation and 

breakup of highly elongated droplets suspended in an otherwise quiescent fluid 

or in a subcritical flow. A very efficient numerical scheme for this free-boundary 

problem is the boundary integral method. The basic boundary integral formu- 

lation is fairly widespread in the fluid mechanics literature. For example, at low 

Reynolds numbers it has been used to study flow past solid particles by Youn- 

gren & Acrivos (1975), the approach of a particle or drop toward a fluid-fluid 

interface by Leal and coworkers (Lee & Leal 1982, Geller, Lee & Leal 1986) and 

flow over two-dimensional slits by Higdon (1985). 

The first application of the boundary integral method to the droplet de- 

formation problem was presented by Youngren & Acrivos (1976) in a study of 

bubbles in an axisymmetric extensional flow, and by Rallison & Acrivos (1978) 

for the general case of viscous drops. Specifically, the latter authors calculate 

steady drop shapes for viscosity ratios X in the range 0.3 < X < 100. For 

the special case X = 1.0 the calculations were extended by Rallison (1980) to 

deformation in a simple shear flow and the method has also been applied to 

drop deformation in electric and magnetic fields by Sherwood (1987). Our long 

term interest is in using the boundary integral method to study the drop shape 

evolution in time-dependent flows. The numerical procedure incorporates ideas 

presented in the above mentioned studies in addition to those of Hinch (private 

communication). 

For the sake of completeness we summarize the necessary integral equations 

below. For more details, the reader is referred to Rallison & Acrivos (1978). The 

formulation is given for the general situation with u, # 0, though, for the most 

part, it is applied in this paper only for the case of a quiescent far-field flow, 

u, = 0. The dimensionless governing equations are the quasi-steady Stokes 

equations and continuity equation for each phase: 



Variables associated with the droplet phase are denoted by the symbol A .  

All velocities have been nondimensionalized by u,  = :, time by the convective 

time scale t ,  = where I ,  is a characteristic length scale and pressures by 

p ,  = fi fit = p. The choice of characteristic velocity is motivated by the 
LC ' 

desire to study relaxation of initially elongated droplets in an otherwise quiescent 

fluid. For a nearly spherical drop the undeformed radius,~, is an appropriate 

length scale while for a highly extended droplet the midsection radius is more 

appropriate. 

The boundary conditions are 

u = ii for x E x ,  

n e T  - X ~ - T  = n ((V,*n) for x E x, 

and the kinematic condition 

describes the evolution of the drop shape. The position vector x denotes a 

point in the fluid domain while x, specifically indicates a point at the fluid- 

fluid interface, T and T denote the stress tensors for the continuous and droplet 

phases respectively, n is the unit normal directed from the droplet phase to 

the continuous phase and V, n represents the mean curvature of the fluid- 

fluid interface (see figure 1). Due to our choice for u,, the capillary number, 

C = % (G is the shear rate of the external flow u,) appears explicitly in the 

definition of u, (see equation (4)), but does not appear in the stress balance at 

the interface. 

The complete neglect of inertia, upon which this study is predicated, re- 

quires that both the local and convective acceleration effects are small corn- 

pared to viscous effects. For relaxation phenomena when C = 0 this requires 



< 1 ( p  is the density of the suspending fluid) which will generally be 

satisfied for small droplets suspended in viscous fluids. In the presence of an im- 

posed linear flow, with characteristic velocity scale Gl,, the neglect of convective 
GI inertia also requires that < 1 . For time-dependent flows it is necessary to 

neglect inertial effects due to the transient nature of the flow. Local acceleration 

effects are negligible compared to viscous effects provided $ << 1 where r is 

the time scale characterizing the transient flow. 

In the boundary integral formulation, the velocity at any point in the two 

phases is represented by 

where 

In these equations, S represents the droplet surface and y is the integration 

variable. The pressure field can be similarly represented by surface integrals 

involving the velocity and stress fields at the interface. Hence, provided that 

the interfacial stress and interfacial velocity fields are known, knowledge of the 

drop shape allows the velocity and pressure fields to be determined anywhere in 

the fluid domain. 

Making use of the boundary conditions and the well-known jump conditions 

to treat the singular nature of the kernel in the limit x + x. E S the general 

equations (1) and (2) lead to an integral equation for the interfacial velocity 

(Rallison & Acrivos 1978) 



For a given shape, capillary number and viscosity ratio, this expression is an 

integral equation of the second kind for the interfacial velocity ii(x,). As there 

exists no known analytic solution to this equation we must resort to an approx- 

imate numerical solution. The case X = 1 is especially straightforward, as is 

evident from equation (3). 

If the object of greatest interest is the interface evolution then it is clear 

from (3) that one advantage of the boundary integral method is that it is only 

necessary to perform computations on a two-dimensional surface rather than 

over the entire three dimensional domain. Furthermore, as a result of the quasi- 

steady nature of Stokes equations, the interfacial velocity at any time is uniquely 

determined by the drop shape and the imposed flow at that time. Since the drop 

shape evolves according to the kinematic condition, then the shape at all future 

times is determined by an initial condition and the time-history of the flow 

(Rallison 1984). 

In the interest of numerical simplicity, we consider an initially axisymmet ric 

drop which then remains axisymmetric for all time. Referring to the cylindrical 

coordinate system shown in figure 1, the shape is also symmetric with respect 

to a plane passing through z = 0,  orthogonal to the axial (a )  direction. In 

equation (3) the azimuthal (0) integration can be performed analytically and 

the surface integrals are reduced to line integrals. The resulting one-dimensional 

integral equation for the interfacial velocity field is solved by discretizing the 

interface into 2N-2 boundary elements with node points placed at the end of 

each element, and converting the integral equation to an "equivalent" linear 

system of coupled algebraic equations by approximating the unknown function 

Q(x,) over each element of the surface. Due to the axisymmetry, there are two 

unknown components of the interfacial velocity (ir,, 6,) at each node point. 

There are two important aspects to the discretization: (1) approximation 

of the variation of interfacial velocity over an element of the surface and (2) ac- 

curate representation of the drop shape and curvature. The former is treated by 



assuming that the velocity field varies linearly over each element. For the highly 

deformed shapes typical of this study, tests with this representation demon- 

strated that it helped to produce smoother and more accurate interfacial velocity 

distributions then the more common assumption of constant velocity over each 

element. Accurate representation of the drop shape is crucial simply because 

many of the motions we wish to study are driven solely by curvature variations 

over the drop surface. In order to generate a smooth and accurate representa- 

tion of the interface without excessive use of collocation points two alternative 

methods are utilized. 

Since many of the shapes to be studied have cylindrical midsections with 

bulbous, nearly spherical ends, the first scheme makes use of cylindrical coordi- 

nates near the middle of the drop and spherical coordinates near the end of the 

drop (the surface, with 2N-1 collocation node points, is described in these two 

cases by r = r(z) and p = p(q5) respectively - see figure 1) with cubic splines 

used to generate twice continuously differentiable representations of the inter- 

face in each region. The two representations are patched together by requiring 

first derivatives to be continuous at the point of overlap and second derivatives 

to be continuous within some tolerance (typically at the point of overlap. 

In this way the drop shape is described by a smooth function which is essen- 

tially twice continuously differentiable everywhere. The second scheme uses an 

arclength parametrization method (Ascoli 1987). If s represents a normalized 

measure of arclength (0 5 s 5 I), then the collocation points on the inter- 

face, labeled using the cylindrical coordinates (r, z), are parametrized so that 

r = r (s) , z = z(s) describes the fluid-fluid interface and again twice continuously 

differentiable representations are generated using cubic splines. Both methods 

work very well, although for a similar number of points, as might be expected, 

the former scheme is more successful for elongated shapes with nearly spherical 

ends while the latter scheme performs better for very slender shapes with nearly 

pointed ends. 



Due to the fore-aft symmetry, the number of unknowns is halved and the 

net result of the discretization is a system of 2N-2 equations and unknowns. 

The resulting linear system is solved using Gaussian elimination to give the 

interfacial velocity distribution along the fluid-fluid interface. 

Typically, for relaxation of the extended drops illustrated in Section 3.2, 

we choose N=35 for drops with initial half-lengths 30-40 times the midsection 

radius. In a study of capillary instabilities on a highly elongated drop, described 

in Section 3.3, we choose n=49. In both studies, the collocation points initially 

have an average spacing of Az a 1.0 - 1.5 in the cylindrical region and are more 

densely spaced near the bulbous end where larger curvature variations occur. 

With this node point spacing the numerics are capable of resolving small initial 

disturbances on the cylindrical region whose frequencies w are smaller than 2. 

Since the drop shortens as the relaxation process proceeds (and, consequently, 

the average point spacing decreases), the same number of points is capable also 

of resolving the larger curvature variations which occur at later times, either due 

to the end-pinching phenomena or the growth of capillary instabilities. Limited 

testing in these cases with 50% more collocation elements yields the same results. 

In order to demonstrate the accuracy of the shape-fitting routine, we com- 

pare analytically determined curvatures, (V, n), with numerically generated 

values for an object of known shape. The test shape is shown in the inset to 

table 1 and consists of a uniform cylindrical midsection connected to bulbous 

ends. The end-to-end length of the drop is 106 times its undeformed radius. 

The dark symbols on the interface indicate the location of the node points. On 

the cylindrical midsection a sinusoidal disturbance, frequency w and amplitude 

R,, is superimposed. At each node point in the cylindrical region we calculate 

the relative error between the numerical and analytical values of the curvature 
(error = exact-numerical 

ex act ). In table 1 we display the maximum error and square 

root of the mean square error. Also shown is the dominant frequency obtained 

from a Fourier analysis of the central cylindrical region (calculated using equa- 



tion (5)). The cases N=49 have an average point spacing between collocation 

points in the cylindrical region of At  1.0 and the cases N=69 have an aver- 

age spacing of At. % 0.6. Clearly, the numerical procedure does a good job of 

approximating the curvature and in all cases the Fourier spectrum has a sharp 

peak at the frequency of the applied disturbance. This test of the shape-fitting 

routine is comparable to the most severe geometry considered in this study and 

demonstrates the ability of the numerical scheme to resolve those details of the 

shape that will be important to this study. Larger amplitude disturbances or 

frequencies larger than w ,- 2 on this model shape would require more points to 

be resolved properly. 

Finally, we should add that all calculations reported in this paper are done 

in double precision, integrals are evaluated using a five point Gauss quadrature 

scheme and, in the vicinity of the singularity where rapid variation of the inte- 

grand occurs, special care is taken by subdividing the interval of interest into 

three smaller intervals prior to integrating. A small region, typically to 

lo-' the size of an interval is cut out around the singularity and the integration 

over this portion is performed analytically (the singularity is integrable in the 

sense of a Cauchy principal value). 

The interface shape is updated by solving the kinematic condition using 

an explicit Euler method. Preliminary calculations using a second order Runge- 

Kutta method to update the shape gave nearly identical results. For the majority 

of shapes and capillary numbers to be studied, the largest dimensionless veloc- 

ities are O(0.1-1.0) so the time-step chosen is typically 0.02-0.05.t This value 

is reduced when regions of high curvature (and hence large local velocities) de- 

t For larger viscosity ratios it is more convenient in the numericd calculations 

to scale the velocity with u, = ,h and the time with t ,  = 5.  In this way 

u = O(1) for all A. For simplicity when comparing simulations involving different 

A we discuss all calculations using the time scale and velocity scale introduced 

in the text. 



velop. 

Our numerical procedure is then as follows. For a given shape solve for 

ii(xe), update the shape using the kinematic condition and repeat the procedure. 

Every few time-steps the collocation points are evenly redistributed based upon 

arclength along the interface. When a region of high curvature (the region of a 

neck during the end-pinching process - see figure 5) begins to develop, additional 

points are added in the immediate vicinity of the maximum curvature. Typically 

5-8 additional points are added, at least tripling the local density of collocation 

points, which, coupled with the cubic spline used to represent the interface 

shape, maintains accurate resolution of the shape. 

As we will see, for these free-boundary problems the interface evolution can 

be quite complicated and knowledge of the internal and external velocity and 

pressure fields can be useful in understanding the observed behaviour. As men- 

tioned following equation (2), this requires determination of both the interfacial 

velocity and interfacial stress. Hence, when a complete picture of the velocity 

and pressure fields is desired, the interfacial velocity is calculated as described 

above and a similar discretization process must be used to solve for the unknown 

(interior) interfacial stress distribution, n *. Once again, the unknown int erfa- 

cia1 stress components are assumed to vary linearly over each element and the 

integral equation is recast as a system of linear equations which is solved using 

Gaussian elimination. Then, the exterior normal stress distribution, n T, is 

calculated using the normal stress boundary condition. Finally, the interfacial 

stress and velocity can be used in equations (1) and (2) to compute the velocity 

field at any interior or exterior location. A similar procedure can be followed to 

determine the interior and exterior pressure distribution in the fluid. 

As a check on the numerics, a detailed comparison is made with the small 

deformation analysis of Barthes-Biesel & Acrivos (1973) for drop deformation in 

axisymmetric extensional flows (briefly summarized in Section 3.1) and with the 

velocity and pressure fields around solid prolate ellipsoids in extensional flows. 



In all cases, the comparison is excellent. Also, the drop volume is monitored as a 

function of time and typically changes by a couple tenths of a percent over several 

hundred iterations. For the drop relaxation studies to be described in Section 

3.2, a typical simulation requires 600-3000 iterations resulting in overall volume 

changes from 1-10 percent of the original drop volume. However, for simulations 

involving small A, X < 0(0.01), characterized by long slender shapes with nearly 

pointed ends, the volume changes are larger (as other researchers have found). 

In these cases, the drop dimensions are rescaled every few time-steps in order to 

conserve volume. Comparing results with and without rescaling indicates that 

the qualitative behaviour (basically the overall shape and the critical conditions 

for drop burst) is unchanged when the rescaling is implemented and the only 

significant change is a small change in the time scale for deformation. 

3. RESULTS 

3.1 Comparison of numerics with small deformation theory 

We begin by briefly examining the deformation of an initially spherical 

droplet placed in an axisymmetric extensional flow, u, = I' x where 

where the capillary number C = %. The appearance of C in (4) occurs because 

of our choice of the characteristic velocity as u, = 5 and the characteristic 

length scale as the undeformed drop radius, a. This numerical problem was 

considered by Rallison & Acrivos (1978) and, as reported by Rallison (1984), 

higher accuracy results have been obtained by Duffy and Blundell for the special 

case X = 1. The purpose of this section is to compare our numerical simulations 

with the small deformation theory of Barthes-Biesel & Acrivos (1973) and the 

numerical work mentioned above. 

Theoretical work to predict the steady drop shape as a function of capillary 

number began with Taylor (1932). Taylor treated the droplet as spherical, solved 



for the internal and external flow fields using continuity of velocity and tangential 

stress boundary conditions and determined the O(C) correction to the drop 

shape by approximately satisfying the normal stress balance at the fluid-fluid 

interface. Bart hes-Biesel & Acrivos (1973) extended the analysis to second order 

in capillary number and the applicability of this work and previous work was 

clarified by Rallison (1980). An additional discussion, including the extension 

to a large number of two-dimensional linear flows, can be found in Bentley & 

Leal (1986). 

For droplets which are only slightly deformed, an appropriate scalar mea- 

sure of deformation is D = H, where L and B are the half-length and half- 

breadth of the cross-sectional shape respectively. The deformation as measured 

by D monotonically increases with increasing capillary number and, near the 

critical capillary number, D increases rapidly with small changes in C. 

A comparison between the present numerical results and existing theoretical 

results for D versus capillary number is shown in figures 2-4 for X = 0.1,l.O and 

10.0 respectively. The short dashed line denotes the O(C) result and the long 

dashed line the 0 ( C 2 )  result. Each analytic line ends when a capillary number is 

reached above which the theory predicts no steady shape. The numerical results 

are given by the solid line and, for completeness, several numerically generated 

shapes are shown in each figure. In figure 3, the open circles represent the 

computations of Duffy and Blundell (as reported by Rallison 1984) which are 

clearly in excellent agreement with our numerics. The good agreement between 

analytic theory and numerics is similar to the agreement previous researchers 

have observed upon comparison of the asymptotic theory with experimental 

results. The small deformation theory does a remarkable job of capturing the 

major features of the drop deformation even when the deformation is no longer 

small. 

With the level of accuracy indicated by this comparison and the numerical 

tests outlined in Section 2, we will use the numerical method to examine the 



detailed dynamics of very highly extended droplets. 

3.2 Relaxation of extended droplets : 

the effects of viscosity ratio and initial shape 

We next demonstrate numerically some dynamical features associated with 

the relaxation and breakup of an initially extended drop in an otherwise quies- 

cent fluid. Here we are not specifically concerned with how the droplet reached 

this highly deformed state. Rather, given a highly stretched droplet, the nu- 

merics describe the evolution of the drop shape. Although these results reit- 

erate some aspects of the experimental study we previously reported (Stone et  

al. 1986), they illustrate the underlying mechanism of the end-pinching phe- 

nomenon, and contribute to a better understanding of drop breakup. 

Our goals are twofold. First we wish to demonstrate that the numerics cap- 

ture the qualitative features of the drop relaxation dynamics. As a part of this, 

we wish to demonstrate that the low viscosity ratio experimental results previ- 

ously reported are in accord with the same basic mechanism that is responsible 

for breakup at larger viscosity ratios, even though, at first, they may appear 

qualitatively different due to the regions of very high curvature that are charac- 

tistic of nearly pointed, low viscosity ratio drops. Second, we seek to show that 

the computed results based upon the assumption of constant interfacial tension 

are in quantitative agreement with the experimental data from our earlier study, 

Stone et al. (1986). Of course, a basic desire is to gain a better understanding of 

motion driven (at least in part) by capillary pressure gradients due to curvature 

variations along the surface and this illustrative section is useful in this regard. 

The numerics also demonstrate the usefulness of the boundary integral method 

for detailing the evolution of interfacial-tension-driven flows at low Reynolds 

numbers. 

It is convenient to characterize the degree of deformation using a single 

scalar parameter. For the highly elongated shapes that are typical of this part 

of the study, a dimensionless extension ratio, $, is appropriate, where 2L is the 



end-to-end drop length. 

With reference to equation (3), it is worth reiterating that in the absence 

of an imposed velocity gradient, i.e. C = 0, the only effect of the interfacial 

tension is to scale the velocity and, consequently, the time. Hence, for a given 

initial shape, the magnitude of the interfacial tension plays no qualitative role in 

the dynamical evolution of the drop shape, but only determines the time scale 

over which these dynamics occur. In particular, the qualitative features of the 

relaxation and breakup dynamics are completely determined by the viscosity 

ratio and the initial drop shape. 

3.2.1. X 2 O(0.05); shapes with bulbous ends 

In figure 5 we show a series of typical relaxation histories for X = 0.05, 0.1, 

1.0, 7.5, 10.0. The initial shape with = 8.6 is the same in each simulation and 

is taken from an experiment for X = 11.3. This highly stretched initial shape 

with bulbous ends is typical of experimental results for all X 2 0.05. The times 

reported have been made dimensionless with respect to the time scale t ,  = % 
where the midsection radius R, has been chosen as the characteristic length 

scale. The time scale is independent of the viscosity ratio so that the different 

simulations may be compared directly as the viscosity ratio is changed. However, 

because the larger of the two fluid viscosities should be expected to provide the 

best measure of the temporal relaxation, we also list in parentheses the modified 

time, -&, corresponding to the characteristic time scale t ,  * = w. G This 

allows a test of the usefulness of this alternative measure of dimensionless time. 

These calculations provide a qualitative illustration of the effects to be expected 

when the viscosity ratio is varied. 

The numerical scheme breaks down when end pinching causes the local 

radius to become very narrow (typically < 0.003) and the large local velocities 

calculated (corresponding to the large curvatures in this region) move collocation 

points across the droplet centerline. In a later simulation focussing on capillary 

wave instabilities (Section 3.3) we will assume that actual fragmentation of the 



bulbous end from the central thread occurs at this point. Although this criterion 

is ad hoe, if our primary purpose is to examine the evolution of the interface, 

then it nevertheless is a reasonable approximation, as the available experiments 

indicate very rapid breakup as the local radius thins. In this manner we may 

continue calculations beyond the initial fragmentation. 

The results in figure 5 illustrate several interesting aspects of the relaxation 

physics. For small A, the end of the droplet translates a relatively short distance 

prior to pinching. At the point where the ends appear close to breaking off, 

a central cylindrical thread remains which itself would undergo a similar end 

bulbing and relaxation process. It may also be noted that the rate of pinching 

accelerates as the pinch regions develop. 

As the viscosity ratio is increased the relaxation process slows a s  does the 

flow mechanism that leads to the development of a neck. Thus, the end of the 

drop moves closer to the mid-point prior to the development of a significant 

pinch. Indeed, for sufficiently viscous drops, no breakup occurs for the initial 

degree of extension considered in figure 5. In this case, the end of the drop 

translates all of the way to the middle before a significant pinch can develop, 

and the drop simply returns to its equilibrium spherical shape. It may be added 

that the central section of the droplet remains cylindrical in all cases, and, at 

least for the elapsed time represented by these simulations, there is no evidence 

of (finite amplitude) capillary waves. The simulations in figure 5 should be 

compared with figure 9 of our previous publication, Stone et  al. (1986), which 

illustrates similar experiment a1 observations. 

From the dimensionless times &J shown in figure 5 we observe that all 

<70.Hence,this the relaxation and/or breakup processes occur for 25 < 
modified time scale yields a good measure of the dimensionless time over which 

significant changes in shape occur for a wide range of A. 

It is very informative to examine the interior and exterior velocity fields. 

These are shown in figures 6-8 for X = 0.1,1.0,10.0, respectively, at different 



stages of the shape evolution. In each illustration the arrows denote the direction 

and relative magnitude of the fluid velocity. There is no connection between 

arrows in one simulation and those in another. Associated with each figure we 

show the variation of pressure in the droplet fluid, j, along the droplet centerline. 

Since viscous forces are balanced by a pressure gradient, in each case we plot 

the difference j - j, where j, is the pressure at the droplet center ( z  = 0). 

When a significant pinch develops it is often difficult to resolve the interfacial 

stresses sufficiently to determine accurately the pressure variation in the pinch 

region and for this reason no pressure field is reported in figure 6d. 

From these developing velocity and pressure fields we make several obser- 

vat ions. Qualitatively, we observe that for large viscosity ratios the interior 

velocity gradients are small everywhere, while for small viscosity ratios large 

interior velocity gradients are possible. Also, there exist two relatively distinct 

regions of flow: the cylindrical region around the middle of the drop and the 

region near the bulbous end. For each viscosity ratio and for the initial shape 

shown, there is initially a pressure-driven flow in the cylindrical region toward 

the ends of the drop, and a counter-flow from the bulbous end toward the drop 

center. This is true even for X = 10, where the velocities inside the cylindrical 

region are very small but are still directed towards the end of the drop. In the 

case of X = 1, the "collisionn region where these flows meet is almost identical 

with the location of the pressure minimum. For larger A, the relative magnitude 

of the flow from the end is larger than that in the cylindrical region, and the 

zero velocity ("collision") point lies closer to the droplet center than does the 

pressure minimum. The converse is true for X < 1. 

In all cases, the velocity profiles in the cylindrical region are parabolic as 

expected from a slender body analysis (Acrivos & Lo 1978). Also, we note that 

in the exterior fluid which is quiescent at infinity, the velocity field decays as  

(where p2 = r2  + z2) sufficiently far from the droplet, characteristic of a 
p' 

Stokes flow (which, of course, is no surprise). 



3.2.2. X < O(0.01); shapes with nearly pointed ends 

In figure 9 we show a series of relaxation histories which are characteristic 

of the relaxation of relatively inviscid droplets. The viscosity ratio is 0.01 and 

the evolution of three successively elongated droplets (i = 5.3, 6.4, 7.5) is 

shown. The basic initial shapes are sketched from a series of experiments for 

X = 0.011. Notice that we have maintained the same ratio of midsection radius 

to radius of curvature at the end of the drop. These low viscosity ratio droplets 

have long slender shapes with nearly pointed ends. The high initial curvature 

at the ends of the drop results in large velocities near the ends and a very rapid 

initial reduction in drop length. However, if the drop is sufficiently extended 

so that this shortening process does not return it too close to its equilibrium 

spherical shape, the ends eventually bulb up which lowers the pressure in this 

region and the drop breaks by an end-pinching mechanism that is essentially the 

same as shown earlier for larger X values. Notice that even though the initial 

shape had a midsection that was very nearly cylindrical, capillary waves again 

play no significant role in determining the final drop size distribution as the 

end-pinching dynamics apparently occur on a time scale that is short compared 

to that required for growth of finite amplitude capillary disturbances. We will 

examine this in more detail in Section 3.3. 

In figure 9b it is interesting to notice that the thin cylindrical thread con- 

necting the two bulbous ends at t = 22.68 leads to the formation of a small 

satellite drop as the ends fragment a short time later. Because this is difficult 

to see we have indicated it by a * on the figure. This provides an example of 

satellite drop formation due to the nonlinear evolution of the drop shape. In 

figure 9c, the more highly stretched initial shape leads to three almost equally 

sized daughter droplets. 

In figure 10 the evolution of the velocity and pressure field is shown for 

the most highly stretched initial shape shown in figure 9. The initial pressure 

gradient drives the rapid relaxation and as the end becomes more spherical this 



pressure gradient diminishes. It is clear that the pressure gradient in the central 

cylindrical region then begins to drive a flow toward the end of the droplet. This 

mass flux causes a neck to form in the cylindrical region, a pressure maximum 

develops and the breakup process accelerates. 

Experimentally, the critical elongation necessary to fragment a drop with 

X = 0.01 lies in the range 5.4 < < 6.2. Hence, the numerics are in good 

agreement with this qualitative result of the end-pinching dynamics. Finally, by 

comparison of figures 5 and 9, we can conclude that the different initial shape 

coupled with the lower viscosity ratio will lead to a noticeable change in the 

ultimate drop size distribution after breakup. 

3.2.3. The mechanism of end pinching 

We are now in a position to provide a qualitative explanation of the re- 

laxation and breakup of an extended liquid drop suspended in an otherwise 

quiescent fluid. As this reiterates several points made in our previous exper- 

imental study, we will be brief and stress those new aspects that have been 

uncovered by the numerical simulations. 

In all cases we have examined, the initial shapes characteristic of the elon- 

gated droplets have basically cylindrical midsect ions. The pressure gradient in 

most of this region is virtually zero, hence very little flow occurs. However, a 

pressure gradient favoring flow toward the end does occur in the transition zone 

where the cylindrical midsection joins the bulbous end. One possibility is that 

this pressure gradient may lead to a flow which uniformly decreases the radius 

of the cylindrical midsection. However, the observed response is more localized. 

The pressure gradient generates a local flow from the cylindrical region toward 

the end which thus causes a neck to form in the drop shape. This is a precursor 

to end-pinching. Therefore, the mechanism for relaxation and breakup of an ex- 

tended droplet in an otherwise quiescent fluid consists of a competition between 

a pressure-driven flow near the end which causes translation of the end toward 

the droplet center and thus tends to return the drop to its spherical equilibrium 



shape and a pressure-driven flow away from the center in the transition region 

which leads to the development of a neck and thus to breakup via a capillary 

pinch-off process. 

Dynamics associated with X < 1 are characterized by relatively large inter- 

nal velocity gradients and, for modest extensions, the net flux toward the center 

of the droplet induced by end motion cannot inhibit formation of a neck and 

subsequent pinch-off. The pointed shapes typical of very low viscosity droplets 

produce large velocities from the ends toward the droplet center which, at least 

initially, inhibits the pinching process and allows a significant reduction in drop 

length prior to breakup (see figure 10). However, larger viscosity ratios are 

characterized by very small internal velocity gradients and the net flux induced 

by end motion, while initially retarded by the adverse pressure gradient and 

competing flux from the central section, can nevertheless dominate the flow in 

the transition region and thus inhibit breakup by inhibiting the formation of a 

pinch-point. The consequences of this are that very large extensions of a vis- 

cous droplet (i.e. X B 1) are necessary to guarantee breakup in an otherwise 

quiescent fluid. Since the effect of the formation of a pinch is to generate a local 

pressure maximum which retards motion from the end of the droplet, these large 

extensions are necessary to allow a significant pinch to develop prior to the end 

translating back to the droplet center. 

Overall, it is the global features, rather than any local details, of the initial 

drop shape which are responsible for the end-pinching dynamics. This observa- 

tion was made in our previous experimental study (Stone et al. 1986). Similar 

remarks are made by Brady & Acrivos (1982) in a study of inertial effects on 

the breakup of slender drops. 



3.2.4. Quantitative comparison of experimental and theoretical results 

Until this point, the numerical calculations have helped to explain the qual- 

itative features of the end-pinching dynamics. We next address the question of 

whether our results based on the assumption of constant interfacial tension can 

quantitatively predict the actual time-dependent evolution of the drop shape. 

Figures 11 and 12 compare experimental and numerical results for drop 

length as a function of relaxation time for two different viscosity ratios, X = 0.45 

and X = 11.3, respectively. The experiments, conducted in a two-dimensional 

flow field generated in a four-roll mill, stretch the droplet at the critical cap- 

illary number and at some point during the elongation process the flow field 

is turned off (Stone et al. 1986). The Reynolds number ,y typical of the 

relaxation process is approximately for these experiments. When the im- 

posed flow is stopped abruptly the drop shape becomes axisymrnetric on a time 

= 0.1 - 1 sec, which is fast relative to the time of the overall scale, 

relaxation process (30-150 sec). Therefore, a direct comparison of the exper- 

imental results with the numerical calculations is valid. In these figures the 

dotted lines are the experimental results and the solid lines are the results of the 

numerical simulations. We also compare several photographs taken during the 

relaxation experiment with corresponding numerically generated shapes. The 

small differences may be attributed to uncertainty in the exact value of the in- 

terfacial tension. In any case, the agreement between numerics and experiment 

illustrated in these figures is very good, both qualitatively and quantitatively. 

Clearly the time scale of the relaxation dynamics that we have observed is com- 

pletely captured using a constant value for the interfacial tension. A numerical 

study concerning the effect of variations in the interfacial tension, due to the 

presence of surfactants, on the dynamics of drop deformation and breakup is 

currently in progress. 

Careful reading of the literature shows that the relaxation dynamics de- 

scribed above and in our previous experimental paper were first observed by 



Taylor (1934) and discussed by Grace (1971), though Grace interpreted the 

breakup in terms of capillary wave instabilities. 

3.3 Capillary waves 

An important aspect of the breakup process which arises in an examination 

of the droplet relaxation dynamics, but has not yet been explicitly considered, is 

the role played by capillary waves. Existing investigations concerned with pre- 

dicting drop-size distributions have generally assumed that the droplet shape 

could be approximated as an infinite fluid cylinder which fragmented due to 

capillary wave instabilities. Such theoretical studies, based upon linear stability 

theory, have been successfully compared with experimental studies of extremely 

long cylindrically-shaped droplets by Rumscheidt & Mason (1962) and Lee, Yu 

& Flumerfelt (1981). However, as should be clear, the capillary inst ability mech- 

anism cannot explain the droplet relaxation and breakup dynamics illustrated 

in the previous sections. Nevertheless, it is to be expected that if the droplet is 

very highly stretched prior to stopping the flow abruptly, then, while fragmenta- 

tion still occurs at the ends due to the end-pinching mechanism, capillary waves 

should have enough time to evolve so as to play a role in the breakup of the cen- 

tral cylindrical port ion of the droplet. Indeed, this premise was demonst rated 

experimentally by Stone et al. (1986). 

In spite of some success in predicting the breakup of fluid cylinders, linear 

stability theory is not able to explain the existence or formation of satellite 

drops, nor is it applicable in a selfconsistent sense when the disturbances reach 

a finite amplitude as must inevitably occur in breakup. The goal of this section 

is to use the boundary integral method in order to obtain a more complete 

understanding of drop breakup in the presence of (finite amplitude) capillary 

waves. The later stages of the breakup process involve finite amplitude capillary 

waves growing on a cylindrical fluid thread, so the numerics also shed light on 

this simpler, though classic, problem. 

The evolution of capillary waves has interest in several areas concerned 



with drop breakup. For example, the controlled breakup of liquid jets, which 

is a necessary aspect of ink-drop formation in high speed ink-jet printers, has 

many features in common with this study. Small disturbances, which may be 

externally applied, result in very regular breakup of a cylindrical liquid jet. The 

time necessary for breakup, dropsize distributions and shedding of satellite 

droplets are some of the related problems that have been experimentally and 

theoretically studied (Bogy 1979, Beatty 1987). 

A few remarks regarding capillary waves on cylindrical fluid interfaces are in 

order. An infinite, stationary fluid cylinder suspended in an otherwise quiescent 

fluid represents a solution to the governing equations and boundary conditions. 

This stationary solution, however, is unstable to disturbances with wavelength 

greater than the cylinder circumference. Linear stability theory (e.g. Lee & 

Flumerfelt 1981) examines the evolution of an arbitrary disturbance by superpo- 

sition of individual Fourier modes; i.e., the disturbance has the form e7tcos(wz) 

and an eigenvalue problem is formulated for the growth rate 7 ( w )  as a function 

of the disturbance frequency w .  The disturbance growth rate also depends on 

the viscosity ratio. 

The theory implicitly assumes that all disturbances are equally likely so that 

the observed drop sizes will correspond to the disturbance wavelength with the 

largest positive growth rate. If the initial amplitude of this critical disturbance 

is known, then the time for breakup can be estimated. For example, table 2 

shows, for different viscosity ratios, the time (made dimensionless with respect 

to t ,  = Q) Q necessary for a capillary wave to grow to half the cylinder radius 

as a function of the initial disturbance amplitude. An initial disturbance with 

amplitude lo-* takes longer to evolve to half the cylinder radius than the time 

necessary for the examples of end-pinching that are shown in figure 5. This 

helps to explain why the majority of our experimental and numerical studies 

have not observed capillary waves; the end-pinching dynamics (at least the first 

fragmentation of the end) evolve on a faster time scale than the time necessary 



for the growth to finite amplitude of an initially infinitesimal disturbance. 

In order to underst and more completely the development of capillary waves, 

including any nonlinearities related to finite amplitude disturbances, we numer- 

ically examine the evolution of an initial disturbance on the surface of a highly 

stretched droplet with a uniform cylindrical midsection. An initial disturbance 

on the cylindrical region is generated by the superposition of several different 

frequencies (including modes that, according to linear theory, are stable and 

unstable) and the growth of the disturbance from small to finite amplitude is 

observed. As a means of characterizing the details of the interface evolution 

beginning with an arbitrary disturbance, a Fourier decomposition of the drop 

shape is performed. Since the drop shape is fore-aft symmetric, the amplitude 

of a given frequency is calculated from 

where r ( z )  represents the interface position, r.,, represents the average interface 

position, and I denotes the axial position where the integration is terminated. 

r,,, changes slowly as a function of time due to the flow accompanying the 

droplet relaxation and the growth of capillary waves. Truncating the integra- 

tion at l is necessary because the droplet is not infinite and we wish to isolate 

capillary wave dynamics from end-pinching dynamics. Although the choice of 1 

and the number of collocation points used to represent the interface make a small 

difference in the exact values of the Fourier amplitudes calculated from equation 

( 5 ) ,  the qualitative trends we observe are not changed. The resolution of the 

Fourier decomposition is affected in two ways: ( 1 )  because the discretization of 

the initial shape has only about one point every 1.5 units in the z-direction, we 

are not able initially to resolve disturbances for w > 2 and (2) as the integration 

in equation ( 5 )  is truncated at z = I, the numerical Fourier transform cannot 

accurately resolve details for frequencies < 7. 
In figure 13 we illustrate the complete evolution of a highly extended droplet, 

X = 1, in an otherwise quiescent fluid. Numerical calculations using X = 1 are 



convenient since they produce a very simple form of equation (3) but still high- 

light the important dynamics. The droplet has a dimensionless initial extension 

ratio $ = 14 and the drop half-length is initially 73 times the radius of the 

cylindrical region. Although the shape is rather extreme, we will see that even 

with only 49 collocation points the numerics can resolve the basic qualitative 

and quantitative features of capillary wave growth. The cylindrical midsection 

has a small disturbance superposed on it with an initial amplitude about 3-10-~. 

This amplitude is large enough that numerical errors don't play a significant role 

in the early development of the capillary wave, yet small enough that the results 

should approximate those from linear theory. The disturbance is made up of a 

number of discrete modes and the Fourier decomposition of this disturbance is 

shown in figure 14a. 

The droplet in figure 13 fragments initially at the ends due to the end- 

pinching process and fractures near the center at later times due to the growth 

'of finite amplitude capillary waves. For numerical ease we have made the ap- 

proximat ion that when the numerics indicate fracturing is complete (numerical 

difficulty occurs when large local velocities in the region of a pinch move colloca- 

tion points across the droplet centerline as discussed in Section 3.2.1; e.g., figure 

13d, k, m show the droplet shortly before fragmentat ion occurs) the end droplets 

are assumed to be broken off (the radius at the point of fracture is set equal 

to zero), the calculation is started again with the central thread only and the 

daughter droplets are neglected completely in ensuing calculations. Because the 

fracturing process creates very high curvatures at the ends of the central thread 

which lead to a very rapid relaxation and bulbing of the ends, the approximation 

made by neglecting the fragmented daughter droplets should have little effect 

as the calculations are continued. In other words, even though the pinch-off cri- 

terion is ad hoe, it plays no role in our results as the time scale associated with 

the bulbing process at the nearly pointed ends of the remaining central thread 

is very fast compared to the time scale of the capillary wave growth process. In 



figure 14 we plot the square of the amplitude of the Fourier decomposition as a 

function of frequency, calculated using equation (5) with I = 20, at intermedi- 

ate times during the relaxation process. Practically identical results were found 

with I = 25. Notice that the vertical scale in the plots changes as time increases. 

We make the following observations concerning the relaxation and breakup 

process. Initially, all the interesting behaviour occurs in the vicinity of the end 

of the droplet where the curvature variations are the largest, figure 13a-d. End- 

pinching causes a droplet to be shed at about t = 64. Then, the very high 

curvature at the end of the remaining central thread causes rapid bulbing of the 

end and a significant relaxation. Capillary waves are visible (finite amplitude) 

at t = 100 and are very evident at t = 200. At t = 234.6 the end of the droplet 

appears ready to fragment due to a combination of the end-pinching mechanism 

and the capillary instability mechanism, leaving a central thread consisting of 

three droplets connected by thin cylindrical threads. The final fragmentation, 

figures 131-n, produces three equally sized main drops and two smaller satellite 

droplets. First, the two outside drops in figure 132 fragment and the middle drop 

begins to pinch off from the thread-like regions. Continuation of the simulation 

shows formation of two satellite drops in figure 13n  Clearly, the satellite drops 

form from the cylindrical threads that originally connect the larger drops. The 

formation of satellite drops from the cylindrical thread between two bulbous 

reservoirs occurs following the formation of pinch points at the ends of cylindrical 

region. This process, involving a cylindrical region connecting bulbous "ends", 

appears very similar to the basic end-pinching dynamics originally outlined in 

our previous study (Stone et al. 1986). The formation of satellite drops from 

the cylindrical connecting thread has been observed by, among others, Goren 

(1964) and Goedde & Yuen (1970). It is clear that satellite drop formation is a 

direct consequence of the nonlinear dynamics of interface evolution. In a related 

study of the breakup of liquid filaments, Bousfield, Keunings, Marrucci & Denn 

(1986) do not observe satellite drop formation in the limit of negligible inertial 



effects. We have no explanation for this discrepancy other than the observation 

that their simulation only considers a viscous thread neglecting the environment 

(limit X -+ 00). 

In addition, we should mention that this numerical simulation has several 

features in common with the experimental observations of Rutland & Jameson 

(1971) concerning the formation of secondary undulations which form on the 

cylindrical thread connecting the primary disturbances growing on a liquid jet. 

These secondary undulations were explained by the nonlinear theory of Yuen 

(1968) in which inertial effects were assumed to dominate. It is very difficult 

to distinguish between our observations of the latter stages of drop breakup 

(figures 131-n), which appears to be a deterministic consequence of nonlinear 

interface dynamics associated with a cylindrical thread connecting two bulbous 

reservoirs, and the instability mechanism observed in the above studies on jet 

breakup which is a result of growth of harmonics associated with the primary 

mode of instability. 

It is interesting that the capillary wave development near the central region 

of the droplet is so uniform in spite of the fact that the droplet is finite and 

continually shortening. This suggests that there is very little flow in this central 

region, and hence very little effect on the capillary wave dynamics due to the 

continuous shortening of the drop due to the flow near the ends. The velocity 

profiles illustrated previously in Section 3.2 support this idea. It is for this reason 

that the quantitative comparison with linear theory examined below is carried 

out for a thread in a quiescent fluid rather than a thread in an extensional flow 

(e.g. Mikami, Cox & Mason 1975). 

The Fourier decompositions shown in figure 14 are also very informative. 

Initially the dominant frequency is w = 1.4, a linearly stable mode. This was 

purposefully chosen in order to shed light on the evolution of stable modes in a 

case when their initial amplitudes were larger than that of any other (unstable) 

modes. Very rapidly this mode decays (as expected from linear theory) and the 



new dominant modes lie within the linearly unstable range 0 < w < 1. These 

results demonstrate that the numerics can resolve the stabilizing influence of 

interfacial tension for the small amplitude, short wavelength disturbances. The 

very rapid decay of this linearly stable mode occurs at a rate comparable to 

that predicted by linear theory although the growth rate is difficult to calcu- 

late accurately as the amplitude quickly decays to a point where numerical 

error is significant. As the disturbance continues to grow on the cylindrical in- 

terface, three modes that are present initially dominate the Fourier spectrum, 

w = 0.44,0.66,0.88. For X = 1, the most unstable mode predicted by lin- 

ear theory is w = 0.56. However, the rate of growth of the modes that we 

do see is in qualitative accord with expectations from linear theory. While 

each of these three dominant modes have positive growth rates, the frequen- 

cies w = 0.44,0.66 have growth rates, according to linear theory, approximately 

twice that of w = 0.88 and, indeed, examination of the Fourier spectra in figure 

14 demonstrates that these former two modes overtake the latter mode as time 

progresses. 

A quantitative comparison of the rate of growth of the amplitude of the 

different frequencies with predictions of linear stability theory is illustrated in 

figure 15. This figure shows a plot of the in p2 versus time for the three 

frequencies, w = 0.44,0.66,0.88, in addit ion to the most unstable frequency 

(from linear theory), w = 0.56. It is only the slope of the curves that matter 

as the slope is directly proportional to the disturbance growth rate. The plot 

is stopped at t = 200 when the disturbance has grown to a finite amplitude 

of about 0.2 and the droplet has shortened to a point where the choice of I 

in the Fourier decomposition is no longer a simple matter. The solid lines are 

the numerical calculations and the dashed lines are the predicted slopes from 

linear stability theory. The results are quite good considering the numerical 

approximations and the very extreme initial shape, and indicate that the linear 

theory is quite good even as the disturbance evolves to finite amplitude. We 



have no explanation for the fact that the w = 0.88 (curve d) data show more 

deviation from the linear theory at later times than the other frequencies nor 

for the observation that it is not straight initially, unlike the other curves. 

Perhaps most interesting is the observation that the dominant mode corre- 

sponds to w = 0.66 and is responsible for the final drop size distribution on the 

central region of the droplet. The most unstable linear mode has a much smaller 

initial amplitude and is never able to catch up even though it has a larger growth 

rate. The fact that the most unstable linear mode, w = 0.56 does not dominate 

appears due to the very small differences in growth rate between this 'critical' 

frequency and nearby frequencies. This is indicated in the inset to figure 15 

which shows a stability diagram with the growth rate 7 plotted as a function of 

the disturbance frequency w for X = 1. In the neighborhood of w = 0.56 there is 

a wide-range of frequencies with growth rates close to the maximum or 'critical' 

value. For these frequencies the evolution depends primarily on the magnitude 

of the initial disturbance. 

At the later times when the choice of I is difficult, we plot the in u,(z = 0) 

versus time. For a disturbance of a given frequency, linear stability theory 

predicts this graph to be linear with slope 7. This is illustrated in figure 16. 

The solid line represents the numerical simulation and the dashed line is simply 

a straight line with the same initial slope. The growth rate calculated from this 

line is 7 = 0.030 which is in reasonable agreement with the growth rate, predicted 

from linear theory, at the dominant frequency, $0.66) = 0.033. Remarkably, the 

linear theory holds even though the disturbance is clearly finite amplitude. Very 

close to the point of actual fragmentation the interface evolves more rapidly than 

theory predicts which points out that nonlinear effects do eventually become 

noticeable, but only in the latter stages of the breakup process on the cylindrical 

thread-like region. 

The simulation represented in figures 13-16 highlights sever a1 dynamical 

features associated with capillary wave growth on cylindrical fluid interfaces. 



Perhaps the most intriguing of the observations is the fact that the linear theory 

is remarkably good even when the disturbance is no longer small and even though 

the cylinder is finite and continually shortening. The nonlinearities associated 

with the evolution of capillary waves are only evident close to the point of 

actual fragmentation and their only significant consequence appears to be the 

formation of the small satellite drops in the final disintegrated drop. We also 

note that the numerics did not select the linearly most unstable disturbance. 

Instead, the linearly unstable mode with the largest amplitude at t = 0 simply 

dominated for all times. This appears to be a consequence of the fact that the 

linear growth rates in the neighborhood of the critical mode differ by only a few 

percent so that for significant differences in initial amplitude, the most unstable 

linear mode is never able to catch up. Of course, if the initial disturbances were 

truly infinitesimal, the results from linear theory would apply. 

A simulation was also performed with the largest initial disturbance chosen 

to be coincident with the linearly most unstable mode, i.e. w = 0.56. In this c q e  

the interface evolved as in figure 13 but the predominant disturbance remained 

w = 0.56 for all times and the growth rate calculated numerically for w = 0.56 

differed form the prediction of linear stability theory by less than six percent. As 

mentioned previously, the qualitative observations made during these numerical 

simulations of finite amplitude capillary wave on st at ionary cylindrical interfaces 

are very similar to the observations made in related studies on the breakup of 

inviscid liquid jets (Goedde & Yuen 1970). 

Finally, we recall that in our complimentary experiment a1 study of capillary 

waves (Stone et  al. 1986 - figure 13), there was excellent agreement between the 

linear theory and experiment for X = 0.1 and 1.3, but poor agreement for 

X = 12.2. The difference for the higher viscosity ratio suggests that the flow 

from the end due to the relaxation process that is characteristic of very viscous 

drops may modify the selection of the most unstable wavelength. It may be 

noted, in this regard, that the growth rate versus frequency diagram is very flat 
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for X > 10 so that there is a large range of frequencies with growth rates about 

equal to that of the most unstable linear mode. Hence, a small modification due 

to end effects may play an important role. 
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FIGURE CAPTIONS 

Figure 1 Definition of variables for a deformed droplet in an extensional flow 

Figure 2 Drop deformation in a steady axisymmetric extensional flow: D vs. 

C; X = 0.1. The solid line represents the numerical simulation and 

the dashed lines are the predictions of the small deformation theory 

of Barthes-Biesel & Acrivos (1973). The short dashed line denotes 

the O(C) result and the long dashed line the O(C2) result. Several 

numerically generated steady shapes are included. 

Figure 3 Drop deformation in a steady axisymmetric extensional flow: D vs. 

C; X = 1.0. The solid line represents the numerical simulation and 

the dashed lines are the predictions of the small deformation theory of 

Barthes-Biesel & Acrivos (1973). The short dashed line denotes the 

O(C) result and the long dashed line the O(C2) result. Open circles 

represent the calculations of D u e  and Blundell (as reported by Ralli- 

son 1984). Several numerically generated steady shapes are included. 

Figure 4 Drop deformation in a steady axisymmetric extensional flow: D vs. 

C; X = 10.0. The solid line represents the numerical simulation and 

the dashed lines are the predictions of the small deformation theory 

of Barthes-Biesel & Acrivos (1973). The short dashed line denotes 

the O(C) result and the long dashed line the 0 ( C 2 )  result. Several 

numerically generated steady shapes are included. 

Figure 5 Relaxation and breakup of an initially extended droplet in an otherwise 

quiescent fluid: dependence on viscosity ratio. The initial shape, $ = 

8.6, is taken from an experiment for X = 11.3. This highly stretched 

initial shape with bulbous ends is typical of experiment a1 results for 

all > 0.05. a) = 0.05; t = 0.0,15.75,22.05,24.57 b) = 0.1; 

t = 0.0,16.50,22.40,28.97,32.64 c) X = 1.0; t = 0.0,48.0,76.0,100.0 d) 

= 7.5; t = 0.0,231.9,333.9,397.1,418.2 e) X = 10.0; t = 0.0,173.9, 

396.0,660.0. The modified dimensionless times ,& are shown in 



parentheses for reference. 

Figure 6 Velocity and pressure fields for a relaxing drop in an otherwise quiescent 

fluid; X = 0.1. The pressure field 3 - Po shown is the droplet pressure 

along the centerline (r = 0) and is measured with respect to zero at 

the droplet center (r,z) = (0,O). a) t = 0.0 b) t = 22.40 c) t = 28.97 

d) t = 32.64 

Figure 7 Velocity and pressure fields for a relaxing drop in an otherwise quiescent 

fluid; X = 1.0. The pressure field 3 - 3, shown is the droplet pressure 

along the centerline (r = 0) and is measured with respect to zero at 

the droplet center (r ,  z )  = (0,O). a) t = 0.0 b) t = 48.0 c) t = 76.0 

d) t = 100.0 

Figure 8 Velocity and pressure fields for a relaxing drop in an otherwise quiescent 

fluid; X = 10.0. The pressure field fi - fi,  shown is the droplet pressure 

along the centerline (r = 0) and is measured with respect to zero at 

the droplet center (r, z) = (0,O). a) t = 0.0 b) t = 173.9 c) t = 396.0 . 

d) t = 660.0 

Figure 9 Relaxation and breakup of low viscosity ratio droplets in an otherwise 

quiescent fluid; X = 0.01. The initial shape is taken from an experiment 

for X = 0.011. Low viscosity ratio droplets have long, slender shapes 

with nearly pointed ends. a) $ = 5.3; t = 0.0,10.22,20.20 b) $ = 6.4; 

t = 0.0,10.77,22.68,23.59 c) 5 = 7.5; t = 0.0,7.54,18.54,27.74,29.74 

Figure 10 Velocity and pressure fields for a relaxing drop in an otherwise quiescent 

fluid; X = 0.01. The pressure field f i  - fi,  shown is the droplet pressure 

along the centerline (r = 0) and is measured with respect to zero at 

the droplet center (r,z) = (0,O). a) t = 7.54 b) t = 18.54 c) t = 27.74 

d) t = 29.74 

Figure 11 Quantitative comparison of numerical (solid curve) and experimental 

results (dotted surve) for relaxation of an initially extended droplet in 

a quiescent fluid; X = 0.45 - a test of the constant interfacial tension 



boundary condition. Still photographs and corresponding numerically 

generated shapes are shown. 

Figure 12 Quantitative comparison of numerical (solid curve) and experimental 

results (dotted curve) for relaxation of an initially extended droplet in 

a quiescent fluid; X = 11.3 - a test of the constant interfacial tension 

boundary condition. Still photographs and corresponding numerically 

generated shapes are shown. 

Figure 13 Evolution of capillary waves during the relaxation/breakup of an ini- 

tially highly extended droplet suspended in an otherwise quiescent 

fluid. Initial shape: $ = 14, X = 1.0. a) t = 0.0 b) t = 30.0 c) 

t = 50.0 d) t = 63.4 e) t = 64.6 f )  t = 73.0 g) t = 104.6 h) t = 170.6 

i) t = 194.6 j) t = 218.6 k) t = 234.6 1) t = 235.2 m) t = 240.8 

n) t = 242.0 When fragmentation occurs, the daughter droplets shed 

from the end are completely neglected as the calculation is continued. 

Notice the formation of small satellite droplets in the latter stages of 

the capillary breakup of the cylindrical midsection. 

Figure 14 Evolution of the Fourier spectrum of the disturbance on the central 

cylindrical region of the drop. Fourier decomposition calculated using 

equation (5) with I = 20. a) t = 0.0 b) t = 10.0 c) t = 20.0 d) t = 30.0 

e) t = 50.0 f) t = 73.0 g) t = 104.6 h) t = 170.6 i) t = 194.6 Modes 

that are stable in the linear stability theory are w > 1. All 0 < w < 1 
are unstable according to the linear theory. Notice that the dominant 

mode initially is a linearly stable mode and it rapidly decays. 

Figure 15 Comparison of numerical results with predictions of linear stability 
2 

theory - In P(w) vs. dimensionless time, t for different frequencies. 

The solid lines are the numerical results and the dashed lines are the 

predicted slopes from linear stability theory. a) w = 0.44 b) w = 0.56 

c) w = 0.66 d) w = 0.88 The inset shows the stability diagram 7 

versus w for X = 1.0. Notice that there exist a relatively wide range of 



frequencies with growth rate near the maximum value. 

Figure 16 in u,(z = 0) versus t. The solid line represents the numerical calcu- 

lations. The dashed line is a straight line with the same initial slope. 

The slope of this line yields a growth rate of 7 = 0.030 which is in 

good agreement with the prediction of the linear theory based on the 

dominant mode, ~(0.66) = 0.033. At later times the interface evolves 

more rapidly than the linear theory predicts. 
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# of Points Sqrt of Fourier 
on Midsection Maximum Mean Square Decomposition 

N (0 < Z < 30) R, o Error Error Frequency 
l a  49 30 0.2 0.5 2.0 x lr3 5.0 x 10-4 0.5 
b 69 50 8.6 x l p  2.0 x 10-4 

2a 49 30 1.5 1.7 x 1 4.3 x 1r2 1.5 
b 69 50 6.6 x lr2 1.8 x 1r2 

3a 49 30 0.02 0.5 1.8 x lo-' 4.8 x IF' 0.5 
b 69 so 8.0 x 104 2.0 x lr5 

4a 49 30 1.5 1.4 x 1r2 4.4 x l r 3  1.5 
b 69 50 6.4 x 1r3 1.8 x 1r3 

5a 49 30 0.002 0.5 1.9 x l r s  4.6 x 1od 0.5 
b 69 50 8.0 x lod 2.0 x lod 

6a 49 30 1.5 1.3 x 1r3 5.0 x 1@ 1.5 
b 69 50 6.4 x lo-" 1.8 x 1@ 

Test 
shape 

R, = disturbance amplitude, o = disturbance frequency 

N= # of collocation node points, error= exact-numerical 
exact 

Table 1. Test of numerical procedure for determining curvature. 



Table 2. Time for capillary wave to grow to half the cylinder radius as a function 
of the disturbance frequency and amplitude for different viscosity ratios. The max- 
imum growth rate is also listed. 

h 
viscosity 

ratio 

lo9 

lo-' 
1 

10 
100 

Y 
growth 

rate 

0.399 
0.266 
0.109 
0.0355 
9.82.10'~ 
1.45.10-~ 

time for growth 
Ra= initial disturbance amplitude 

lo4 
44.4 
66.6 
163.2 
499.4 
1.8-lo3 
1.2-lo4 

lad 
32.9 
49.2 
120.8 
369.6 
1.3.10~ 
9.1.10~ 

lo4 
21.3 
31.9 
78.4 
240.0 
871.2 
5.9~10~ 

1 o - ~  
9.8 
14.6 
36.0 
110.2 
400.4 
2.7.10~ 



CHAPTER 4 

THE INFLUENCE OF INITIAL DEFORMATION 

ON DROP BREAKUP 

IN SUBCRITICAL TIME-DEPENDENT FLOWS 

AT LOW REYNOLDS NUMBERS 

The basic text of Chapter 4 consists of an article which has been submitted for 

publication in the Journal of Fluid Mechanics. 
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ABSTRACT 

Transient effects associated with drop deformation and breakup in simple 

time-dependent flows are experimentally and numerically examined. Both step 

changes in shear rate and flow-type are studied in two-dimensional linear flows 

generated in a computer-controlled four-roll mill and step changes in shear rate 

are examined numerically for axisymmet ric extensional flows. For su bc tit ical 

flow conditions abruptly applied to nonequilibrium shaped, rather modestly de- 

formed drops, the interaction of a relaxational flow driven by interfacial tension 

and a stretching motion due to a velocity gradient near the droplet can give 

rise to complete breakup without large scale stretching of the droplet. This be- 

haviour appears more pronounced for high viscosity ratios where large extensions 

are necessary to guarantee breakup if the flow is stopped abruptly. The sudden 

addition of vorticity in the external flow is characterized by rapid rotation to 

a new, steady orientation followed by deformation and/or breakup according 

to the effective flow conditions at the new orientation. For very viscous drops 

in flows with vorticity which typically cannot be made to break when begin- 

ning with a near spherical shape, independent of the magnitude of the capillary 

number, it is demonstrated experimentally that the same flow conditions can 

produce breakup if the initial shape is sufficiently nonspherical. Finally, the ac- 

tual fragmentation of the droplet is characterized by a conically tipped central 

thread connected to an almost spherical end. This is geometrically very similar 

to other free-surface configurations observed, for example, during the breakup 

of pendant drops. 



1. INTRODUCTION 

G. I. Taylor's early investigations of the low Reynolds number deforma- 

tion and breakup of liquid droplets (1932, 1934) were motivated by an interest 

in emulsion formation and mixing processes. In recent years, the areas of ap- 

plication have widened and drop deformation studies have also found use in 

characterizing the flow-induced deformation of flexible bodies, e.g., cells, as well 

as being applied in certain material science problems (Seward 1974). However, 

in spite of over 50 years of research, one significant aspect of the problem has 

received relatively little attent ion: namely, time-dependent deformat ion asso- 

ciated with the actual fragmentation of the droplet and how this is related to 

deformation and breakup in the presence of time-dependent flows. An introduc- 

tion to some qualitative features associated with drop deformation and breakup 

in transient flows is presented in this paper. 

The majority of analytic, experimental and numerical studies have consid- 

ered the case of a single droplet suspended in a steady linear flow field at low 

Reynolds number. These studies have focussed primarily on understanding the 

coupled effects of the capillary number, the viscosity ratio and the vorticity of 

the external flow on the deformation and breakup process. The effect of vorticity 

is to inhibit deformation (and thus breakup) in a manner which becomes more 

pronounced as the ratio of the internal to external viscosity increases. Indeed, 

for all steady linear flows with vorticity, there exists a critical viscosity ratio 

above which the deformation remains finite, independent of the magnitude of 

the capillary number (provided that the Reynolds number remains small). In 

these instances, it is not possible to fragment the droplet in a steady flow. How- 

ever, for smaller viscosity ratios, there exists a critical capillary number above 

which interfacial tension forces are not able to balance viscous forces and a con- 

tinuous stretching motion of the droplet results (i.e., no steady shape exists). 

In spite of the fact that this is called 'breakup' in the literature and is charac- 

terized by a critical value of the capillary number, it should be noted that the 



complete fracturing of a droplet in a steady linear flow has been experimentally 

reported by Mikami, Cox & Mason (1975) only for the case of extremely elon- 

gated, basically cylindrical droplets breaking due to capillary wave instabilities. 

Two excellent review articles concerning much of this work have been written by 

Rallison (1984) and Acrivos (1983). The effects of vorticity, first discovered and 

explained by Taylor (1934) by examining drop deformation in two-dimensional 

extensional flow and simple shear flow, have been extended recently by Bentley 

& Leal (1986b) in a comprehensive experimental study of drop breakup over the 

complete spectrum of two-dimensional linear flows with strain rate exceeding 

the magnitude of vorticity. 

Although the work to date is very useful in understanding flow-induced 

deformation of liquid droplets and other nonrigid microstructures (flocs, cells, 

etc.), it focusses for the most part on the steady s ta te  and, consequently, does 

not provide much insight into the actual dynamics of drop fracture, nor does 

it address questions related to timedependent flows applied to significantly de- 

formed drops. While a comprehensive study of transient effects has not been 

undertaken, there have been a number of studies that provide considerable in- 

sight in several specific problem areas. 

One aspect of research on time-dependent drop dynamics deals mainly with 

the transients associated with the breakup of droplets. The most extensive ex- 

perimental study has been reported by Grace (1971) who considered both sim- 

ple shear and planar extensional flows, and discovered a number of fascinating 

phenomena, including the effect of abruptly stopping the flow, the use of a pro- 

grammed gradual reduction of the shear rate to produce breakup without gross 

stretching of the droplet, and a systematic study of the number of drop frag- 

ments produced when breakup occurs at a shear rate that exceeds the critical 

value. Some additional transient experiments are described by Torza, Cox & 

Mason (1972) who report that the mechanism for drop burst may depend on 

the rate at which the shear rate is increased. In a numerical study, Rallison & 



Acrivos (1978) briefly discuss observations concerned with drop breakup due to 

the application of a subcritical flow to a drop originally stretched by a stronger 

flow. 

A second class of transient studies makes use of analytic methods, but is re- 

stricted to motions that result in only small perturbations from an initial shape 

that is assumed known a priori. Time-dependent deformations of nearly spher- 

ical droplets have been treated analytically by Cox (1969) and Barthes-Biesel 

& Acrivos (1973) and reviewed by Rallison (1980). Although these small de- 

format ion theories have proven surprisingly accurate at predicting the critical 

capillary number necessary for drop burst, they unfortunately produce unrealis- 

tic shapes at breakup. Since these shapes and flow conditions are precisely the 

ones upon which we wish to concentrate our attention, these theories will be of 

limited use in the present investigation. There have been a number of analytic 

studies concerned with the st ability of slender, nearly pointed shapes character- 

istic of low viscosity ratio droplets (Hinch 1979, Hinch & Acrivos 1980, Khakhar 

& Ottino 1986). Other analytic studies concerned with time-dependent aspects 

of drop breakup have been limited to the growth of infinitesimal capillary insta- 

bilities at the fluid-fluid interface of a stationary or extending fluid drop that 

is modeled as an infinite cylinder (Tomotika 1935,1936, Rumscheidt & Mason 

1962, Mikami, Cox & Mason 1975, Lee & Flumerfelt 1980, Khakhar & Ottino 

1987). Traditionally, this simplified model of a drop is used to make predictions 

of drop size distributions. 

As outlined in a review article by Rallison (1984) it is clear that the effects 

of transients are significant, but, nonetheless, their qualitative and quantitative 

aspects have not been carefully studied. Indeed, recent observations indicate 

that complete fracturing of the droplet and hence predictions of drop size dis- 

tributions will depend on the actual time-history of the flow. 

As a first step toward a better understanding of transient behaviour, a 

combined experimental and numerical study of the time-dependent dynamics 



of drop deformation and breakup is in progress in our laboratory. In the first 

part of our investigation (Stone, Bentley & Leal 1986), we examined experi- 

mentally the stretching of a droplet at the critical capillary number and then 

focussed our attention on the interfacial-tension-driven relaxation and breakup 

which results when the flow is stopped abruptly with the droplet in an elongated, 

nonequilibrium state. Curvature variations produce a rapid bulbing at the end 

of the droplet which frequently leads to the breaking off of the bulbous end from 

the central portion of the droplet, hence the description uend pinchingn. This 

fragmentation mechanism is damped for larger internal viscosities so that much 

larger initial elongations are necessary to guarantee breakup of high viscosity 

ratio systems. The second part of our study (Stone & Leal 1987) made use of the 

boundary integral method to probe numerically several details of this breakup 

phenomenon. The drop dynamics are both qualit at ively and quantitatively con- 

sistent with the assumption of a constant interfacial tension boundary condition. 

An interesting feature of these investigations, observed both experiment ally and 

numerically, was the role of finite amplitude capillary waves in the breakup 

process. These studies have provided us with a good understanding of droplet 

relaxation and breakup due to an interfacial-tension-driven flow in an otherwise 

quiescent fluid. However, this is clearly but a first step in understanding more 

complicated time-dependent flows. 

Many (all?) real processes will be time-dependent and it is important to ask 

how the time-dependent features of the flow affect the qualitative and quantita- 

tive observations mentioned both in our initial studies and by other researchers. 

Of course, there are an infinite number of possible transient flows one could 

study and it is clearly not feasible, nor desirable, to have to investigate individ- 

ually a great many of them. Rather, our goal is to choose several very simple 

flow situations and identify those aspects of the physics which will apply over a 

large range of flow conditions. 

The novel flow situation examined in this paper is the behaviour of a mod- 



estly deformed drop in a subcritical time-dependent flow. The term 'modestly 

deformed' refers to a shape more deformed than the maximum steady shape but 

one that has not had sufficient time to become highly elongated. In most cases 

these drop shapes are basically ellipsoidal. We focus experimentally on a study 

of step changes from the critical capillary number to subcritical or weaker flow 

conditions, either by decreasing the shear rate directly or by suddenly adding 

vorticity to the flow. The addition of vorticity indirectly decreases the effective 

shear rate experienced by the drop by rotating the drop away from the principal 

axis of strain of the undisturbed flow field. Thus, the effective shear rate (i.e., the 

local rate of stretching of a fluid element oriented in the direction of maximum 

droplet elongation) is reduced (Bentley & Leal 198613) and, as a consequence, 

the effective capillary number is subcritical. Included among the interesting ob- 

servations presented in this paper are several examples of complete breakup of 

a modestly extended droplet in a subcritical flow. This is a consequence of the 

interaction of an interfacial-tension-driven flow causing relaxation of the droplet 

with an external flow which tries to continue to elongate the droplet. Again, 

the boundary integral method can be used to probe the details of the flow field 

both internal and external to the droplet. 

It should be mentioned that very interesting dynamics associated with tran- 

sient deformation of a bubble in an axisymmetric extensional flow at finite 

Reynolds number have been described by Kang & Leal (1987) and, indeed, 

aspects of the behaviour detailed in their study are very similar to observations 

to be described here. There also appear to be other quite varied processes where 

interfacial-tension-driven flows play an import ant role. For example, Lasheras, 

Fernandez-Pello & Dryer (1979) observe breakup of stretched liquid droplets 

in an experimental study of the combustion of fuel droplets and Greenspan & 

McCay (1981) examine retraction of an initially extended droplet which wets a 

solid surface. Of course, similar transient effects should be expected in electro- 

hydrodynamic or magnetohydrodynamic deformation and breakup of droplets 



(see, for example, Torza, Cox & Mason 1971 and Sherwood 1987) if the field 

producing the deformation is time-dependent. 

2. PROBLEM STATEMENT 

Consider a neutrally bouyant Newtonian liquid droplet with undeformed 

radius a, viscosity p suspended in a second immiscible Newtonian fluid with 

viscosity p. The viscosity ratio X is defined as A = $. The fluid-fluid interface 

is characterized by a constant interfacial tension o . The Reynolds numbers 

characterizing motion in both fluids are assumed vanishingly small so that all 

inertial effects are negligible. Far from the droplet, the undisturbed flow field 

is assumed to vary linearly with position, u, = I' x where I', the velocity 

gradient tensor, may depend on time provided the time-dependent nature of the 

motion does not violate the low Reynolds number assumption. The assumption 

of a locally linear flow is often justified as an approximate description for the 

small drops typical of many applications since the length scale characteristic of 

droplet deformation is much smaller than the distance over which significant 

velocity gradient variations occur in the bulk flow. 

In this paper we will numerically examine droplet deformation in axisym- 

metric extensional flows where I' is diagonal, 

( t )  - - 1  0 )  
0 -1 0 - 

and experimentally study two-dimensional linear flows where I' has the form 

The shear rate G represents the magnitude of I' and a is a flow-type parameter 

which provides a measure of the ratio of vorticity to the rate-of-strain. Typical 

streamlines for different choices of a are not reproduced here but are given in 

previous publications from our laboratory (e.g., Bentley & Leal 1986b). Sim- 

ply note that a = 1.0 corresponds to two-dimensional extensional flow, a = 0.0 



corresponds to simple shear flow and the vorticity of the undisturbed flow mono- 

tonically increases as a decreases from 1 -, 0. As a result of the velocity gradi- 

ent, viscous stresses generated at the droplet surface cause deformation which 

is resisted by interfacial tension. The relative importance of viscous forces to 

interfacial tension forces is measured by a capillary number, C = where (? 

indicates a representative value of the time-dependent shear rate. 

It is convenient to characterize the degree of deformation using a single 

scalar parameter. For this study, most cases will consider drops which are sig- 

nificantly deformed and in these instances a dimensionless extension ratio,$, 

where 2L is the end-to-end drop length, is appropriate. 

As discussed in the introduction, the great majority of studies in the low 

Reynolds number drop deformation literature have focussed on the steady-state 

effects of C, A, and the tensorial character of r. Our concern is time-dependent 

behaviour. In this case, as outlined by Rallison (1984), two additional param- 

eters are introduced: the initial shape of the drop (nonspherical initial shapes 

generate motion even in the presence of no imposed flow) and the history of the 

flow as specified by I'(t). These aspects will be studied in this paper, both exper- 

imentally using a computer-controlled four-roll mill and numerically using the 

boundary integral method, which is a powerful scheme for solving free-boundary 

problems. 

The objective of this study is to approximate flows where a sudden change in 

either the flow-strength or the flow-type occurs. With this in mind, some simple, 

but illustrative flow field modifications are step changes. The experimental 

investigation will focus on step changes in shear rate and/or flow-type for two- 

dimensional flows generated in the four-roll mill. In order to learn more about 

the details of these motions, the boundary integral method is used to study step 

changes in shear rate for axisymmetrical extensional flows. Specifically, we will 

examine the effect of initial deformation of the droplet on the capillary number 

needed to produce breakup, the effect of vorticity of the imposed flow and the 



role played by the viscosity ratio. 

Our goal is to bring together observations made in several prior experimen- 

t al, numerical and theoretical investigations, combine these with new experi- 

mental and numerical studies and consistently interpret behaviour within the 

framework of deformation and breakup due to competition of an imposed flow 

and an interfacial-tension-driven flow. The experiments take advantage of the 

ability of the computer-controlled four-roll mill to generate well-defined, time- 

dependent flows to probe different aspects of transient behaviour. Furthermore, 

by carefully representing the interface shape and resolving the interfacial ve- 

locity, the numerics illustrate application of the boundary integral method as 

a useful tool for understanding complicated time-dependent dynamics of free- 

boundary problems. 

3. THE EXPERIMENT 

Experimentally we will study drop dynamics in two-dimensional flows gen- 

erated in a computer-controlled four-roll mill. The application and use of this 

device have been documented in two previous publications from our laboratory 

(Bentley & Leal 1986a,b). To summarize briefly, the four-roll mill consists of 

four cylindrical rollers, placed at the corners of a square, counterrotated to cre- 

ate an approximation to a two-dimensional linear flow field in the region between 

the rollers. Flows with arbitrary ratios of vorticity to strain rate can be studied, 

though all of our investigations have focussed on so-called strong flows (a > 0) 

where the magnitude of the rate-of-strain tensor is larger than the magnitude 

of the vorticity tensor. For a given value of the shear rate, these flows are ca- 

pable of producing larger microstructural deformation than flow fields in which 

vorticity dominates. 

A drop is placed at the central stagnation point of the flow. Because the 

drop position at the stagnation point is unstable, a control scheme is used to 

regulate the roller speeds in a manner which keeps the droplet at the stagnation 

point while maintaining the shear rate and flow-type at specified values. This 



control algorithm has proven very effective and we have demonstrated that the 

small roller speed changes that occur produce no observable additional drop 

deformation (Stone, e t  al. 1986). Hence, all effects seen in this study are strictly 

due to programmed changes in flow conditions. 

The experimental parameters are such that changes in flow conditions, man- 

ifested by changes in roller speeds and vorticity diffusion into the fluid, are 

relatively fast compared to the time for significant drop deformation to occur. 

Therefore, a good approximation to step changes in flow conditions is produced 

(Stone, et al. 1986). 

The experimental procedure is to slowly increase the shear rate in small in- 

crements so that the drop progresses through a series of steady states. When the 

critical shear rate, characterized by nonexistence of a steady shape, is reached, 

the droplet slowly extends. At some point, conveniently represented by the di- 

mensionless elongation ratio, 5, the flow conditions are altered abruptly. We 

will examine step changes to 'weaker' or subcritical flow conditions. In other 

words, the shear rate will either be decreased or the new flow conditions will have 

a higher vorticity to strain rate ratio (smaller a). In addition, a small number 

of experiments will be described where simultaneous step changes in shear rate 

and flow-type are made. Overall, the studies described in this paper are inter- 

esting dynamically and very challenging since the change to the new subcritical 

conditions occurs during the transient stretching of the droplet. Hence, relative 

to the new flow conditions the droplet is in a nonequilibrium configuration. 

Step change experiments similar to the ones discussed here were first de- 

scribed by Grace (1971), although the results were not very extensive. This 

aspect of our work is meant to amplify Grace's results and examine the cou- 

pled effects of initial deformation, flow-type, viscosity ratio and subcritical flow 

conditions. 

For the reader's reference, the undeformed drop radii are a rn 0.1 cm, the 

suspending fluid has a viscosity p rn 50& and a density p m 1 3  and the 



d nes interfacial tensions for the fluid-fluid systems used are 0 w 5%. The shear 

rates necessary to produce breakup vary with viscosity ratio but are generally 

in the range 0.1 - 0.3 sec-' so that 0.1 < C < 0.3. The Reynolds numbers, 

and q, are typically for the experiments reported here. 

As described in a previous publication (Stone et  al. 1986), the droplet 

deformation as a function of time is conveniently followed by analysis of digital 

images obtained from a digital video camera (a central feature of the control 

hardware). The experiments are video taped for qualitative viewing and 35 mm 

still photographs are taken occasionally to document the observed dynamics. 

Clearly, there are an infinite number of possible time-dependent flows that 

can be studied and our investigations have only concentrated on a small subclass 

of these possible flows. Furthermore, a comprehensive experimental program 

was not undertaken to identify all possible quantitative features associated with 

each special flow history. Rather, the experiments which covered 0.2 5 a 5 1.0 

and 0.01 5 X 5 20 with a large number of step changes to new flow conditions, 

do serve to indicate qualitative, and even some quantitative, trends. The net 

result is that our observations appear to be rather general in nature. 

4. NUMERICAL PROCEDURE 

In order to illustrate some of the detailed features of the flow field dur- 

ing the evolution of the drop shape, a numerical study of transient dynamics 

is undertaken. Here we only examine step changes in shear rate to subcritical 

flow conditions. Of course, in addition to providing a very systematic method 

for examining the effect of viscosity ratio and initial drop shape, the numeri- 

cal simulations offer the possibility of studying time-dependent flows that may 

otherwise be difficult to produce experimentally. 

A powerful numerical scheme for this free-boundary problem is the bound- 

ary integral method, first applied to the drop deformation problem by Rallison 

& Acrivos (1978). This method is particularly well-suited for these problems 

as only the boundary of the region need be discretized rather than the entire 



domain and, consequently, interfacial velocities are calculated directly. Here we 

only present calculations for a droplet in an axisymrnetric extensional flow. De- 

tails of the application of the method to this problem can be found in Stone & 

Leal (1987). The interfacial velocity is calculated from the integral equation 

where V a o n  represents the mean curvature of the surface S, n is the unit normal 

directed from the droplet phase to the suspending phase and x. denotes a point 

on the fluid-fluid interface, x, E S. In this equation we have assumed that all 

velocities have been nondimensionalized with respect to u, = 2, lengths with 

respect to the undeformed radius I ,  = a and time by the convective time scale 

t ,  = 5. Also, I' represents the dimensionless version of equation (2) and the 

characteristic shear rate is chosen as the shear rate prior to the step change. 

For the axisymmetric drop shapes we will examine here, the azimuthal 

integration is performed analytically so that the surface integral is reduced to 

a line integral. Given the drop shape, (3) is an integral equation of the second 

kind for the unknown ii. This equation is solved by discretizing the surface 

and converting (3) to an equivalent linear system of equations that is solved by 

standard Gaussian elimination techniques. 

As is characteristic of Stokes equation, this integral equation highlights 

the fact that the instantaneous drop shape uniquely specifies the instantaneous 

interfacial velocity. The interface position can then be updated by using the 

kinematic condition 9 = n(u n). Hence, the drop shape is uniquely deter- 

mined for all time by an initial shape and the history of the flow I'(t) (Rallison 

1984). The interfacial velocity field can then be used to evaluate the interior 

and exterior velocity fields which are helpful in understanding detailed features 

of the drop shape evolution (for example, Stone & Leal 1987). 



Since the boundary integral method is derived from the quasi-steady form of 

Stokes equation, the application of this numerical technique to time-dependent 

problems implicitly assumes that inertial effects due to the unsteady nature of 

the motion are negligible. This is indeed true provided that the time scale for 

vorticity diffusion, $, is much shorter than both the time characteristic of 
1+X a and the time representative of convective effects in drop deformation, 

the external flow, e-'. Therefore, we require ,* < 1 and < 1. 

5. RESULTS / DISCUSSION 

We now focus on studying general features of the dynamics of drop deforma- 

tion associated with step changes in flow conditions that occur with the droplet 

in a nonequilibrium state. The connection with our previous studies is the ob- 

servation that the droplet behaviour, even in the presence of a time-dependent 

imposed velocity gradient, is significantly influenced by an interfacial-tension- 

driven flow that occurs due to the existence of curvature variations along the 

fluid-fluid interface. 

We first outline an experimental study which highlights most of our qualita- 

tive observations, including effects related to the magnitude of the step change, 

the flow-type, the initial degree of elongation of the droplet and the viscosity 

ratio. Then, we discuss detailed numerics of similar time histories for droplets 

suspended in axisymmetric extensional flows. By combining careful experiments 

with detailed numerics it is possible to develop good physical insight into the 

complicated dynamics of the breakup of modestly deformed drops. 

5.1 Step changes in shear rate; flow-type constant 

Let us begin by examining the effect of a step change in shear rate on the 

dynamics of a modestly extended drop, the flow-type being maintained constant. 

Figure 1 illustrates the result of an abrupt reduction from the critical capillary 

number C, to C = 0.5CC with three different initial extensions for A = 0.1 and 

a = 1.0, a two-dimensional extensional flow (C, = 0.174). A photograph of the 



undeformed droplet is shown for reference. Dimensionless time is shown to the 

right of each photograph where the time reported is made dimensionless with 

respect to the characteristic deformation time scale t ,  = y .  t For parameters 

typical of the experiments reported in this paper t ,  = 1 sec. Although a more 

appropriate measure of time during the stretching process is (G@-' (and in- 

deed this is used in our previous experimental study, Stone et al. 1986), to be 

consistent with the numerical work presented in this paper and with our previ- 

ous numerical study (Stone & Leal 1987) we measure time using the deformation 

time scale. This time scale is convenient for direct comparisons of experiments 

with different viscosity ratios since it remains unchanged as X varies. Whenever 

a step change in the velocity field occurs, the time is measured with respect to 

the instant the change is made. In each of the figures the first few photographs 

show the droplet slowly extending in a steady flow at the critical capillary num- 

ber. The droplet shape during this elongation process basically consists of a 

cylindrical midsection with rounded ends. At the time the step reduction in 

shear rate occurs the droplet is in a transient, nonequilibrium state. 

In figure l a  the application of the subcritical shear rate is not sufficient 

to cause breakup. In this case, interfacial tension drives a relaxational motion 

which dominates the applied flow and the drop relaxes back to a steady shape. 

As far as we can discern from still photographs of the cross-sectional shape 

of the drop, the new steady shape attained is the same as would be achieved 

by applying this capillary number, C = 0.5C,, to an initially spherical drop. 

This is true in general. In all experiments conducted, 0.2 < a < 1.0 and 

0.05 < X < 20, for a wide range of shear rate and flow-type changes, whenever 

a steady drop shape is achieved, it is the same as found in the steady-state 

experiments beginning with a spherical shape and the same final flow conditions. 

-- - 

t As discussed by Stone et al. (1986), the zero of time is subject to some 
error due to the small experimental uncertainty in determining the critical cap- 
illary number coupled with the very slow elongation process that accompanies 
stretching at C,. 



In figure i b  the effect of a step change in shear rate is most dramatic and 

interesting. Following the abrupt change to C = 0.5CC complete drop breakup 

occurs even though the flow would have been too weak to cause breakup in the 

absence of the initial deformation. Two large daughter droplets are formed with 

a small satellite drop visible in between. The small satellite drop forms from 

the fluid cylinder connecting the two large bulbous ends. This demonstrates 

complete drop breakup in a flow without large scale stretching of the droplet. 

Figure lc shows how the two competing flow mechanisms, associated with 

interfacial tension and the external flow, interact for a more highly stretched 

droplet. Shortly after the abrupt change in flow, the droplet begins to stretch at 

a rate similar to a line element of the fluid, but the ends are continually bulbing 

and the development of a pinching region near the bulbous ends is evident. This 

pinching eventually leads to droplet breakup if the flow field is maintained, but, 

in this case, the experiment is stopped when the droplet approaches the limits 

of the linear flow region of the four-roll mill. For clarity we will distinguish this 

breakup process from the complete breakup illustrated in figure 1 b. Throughout 

the remainder of this paper, whenever a subcritical flow causes the droplet to 

continue stretching but does not produce complete fragmentation during the 

time the drop remains within the linear flow region of the four-roll mill, we will 

use the term 'breakup via continuous stretching.' 

After the flow is stopped in figure lc the droplet fragments according to 

the basic end pinching mechanism. Recall that when the flow field is stopped 

abruptly, the fluid comes to rest on a time scale that is short compared to the 

time scale for drop deformation (Stone et al. 1986). Therefore, in the absence 

of any external motion, the final stages of the dynamics are dictated by the 

initial drop shape. Curvature variations in the vicinity of the bulbous ends 

produce a deterministic flow field that leads to the breakup of the droplet. This 

aspect of the breakup dynamics has been extensively discussed experimentally 

and numerically in two previous papers from our laboratory (Stone et al. 1986 



and Stone & Leal 1987). 

A second example of the relaxation and breakup process following a step 

change in shear rate is shown in figure 2 for X = 5.1. Two aspects of the shape 

evolution are worth emphasizing. Figure 2a illustrates the relaxation back to 

a steady shape even though intermediate drop shapes exhibit the pronounced 

formation of a neck in the middle of the drop. However, simultaneously with 

the development of the neck the ends bulb up and the drop shortens because of 

an interfacial-tension-driven flow in the vicinity of the end. This relaxation flow 

dominates the applied subcritical extensional flow that seeks to stretch the drop, 

and the drop returns to a steady shape. Figure 2 b  shows the complete fracturing 

of this viscous droplet in a subcritical flow. Roughly speaking, there are two 

stages to the breakup process for this high viscosity ratio system. After the 

reduction in shear rate, the drop shortens slightly, the ends become bulbous and 

the middle, cylindrical portion thins noticeably, Then, the drop begins to stretch 

because of the weak extensional flow and, as the middle becomes very thin, a 

pinch is seen to develop near the bulbous end. This pinching is a precursor 

to the complete fracturing in the steady subcritical flow shown in the last few 

photographs. 

These experiments highlight several features that are common to the step 

change experiments discussed throughout this paper. In many cases, follow- 

ing the abrupt change in flow conditions, there is an observable reduction in 

end-to-end length followed by breakup in the subcritical flow. The "dog-bone" 

shaped drops (similar to the shapes formed immediately after the shear rate is 

reduced) typical of this initial relaxation are occasionally maintained in the flow 

for a significant length of time. These intermediate shapes may either relax back 

to a steady shape or undergo a stretching and breakup process (for example, 

see figure 2). Initially one might think that such conformations may be steady 

shapes which break because they are unstable with respect to small disturbances 

always present in the flow due to the action of the control algorithm. However, 



the reproducible nature of this phenomenon in many experiments and numerical 

simulations (to be illustrated in many figures throughout this paper) suggests 

that this is not the case. Rather, the complicated dynamics simply evolve on 

a long time scale. It appears clear that these dynamics are a consequence of 

the interaction of the extensional character of the flow, which drains fluid from 

the central cylindrical region while also trying to further stretch the droplet, 

and an interfacial-tension-driven motion, which causes bulbing of the ends and 

a relaxational motion reminiscent of the end-pinching phenomenon. The de- 

tailed velocity fields which are helpful in illustrating the shape evolution will be 

presented in the numerical study described in Section 5.4. 

One question which comes to mind at this point concerns the effect of flow- 

type. How are the previously illustrated dynamics affected if a # I? First of all, 

in the steady-state experiments of Bentley & Leal (1986b), as the critical capil- 

lary number for burst is approached, the ellipsoidally shaped droplet elongates 

and aligns along the outflow axist of the linear flow field where it experiences 

an effective shear rate G c f i  (Gc is the shear rate at the critical capillary num- 

ber). It follows (Stone et  al. 1986) that for the case of transient stretching of a 

droplet aligned along the outflow axis the appropriate measure of time is G C G .  

In such cases, the only effect of the flow-type during the transient elongation 

is to determine the representative time scale and critical capillary number for 

burst. Therefore, given a different flow-type, it should not be surprising that 

for a step change in shear rate only, the dynamics are quite similar to those just 

described in figures 1 and 2. 

In order to isolate the effect of flow-type, figure 3 presents a step change in 

shear rate for X = 0.1 and a flow-type cr = 0.6. Again, a step change from the 

critical capillary number to C = 0.5Cc is studied. Recall that C, depends on a 

so the critical capillary number in this case is C, = 0.23. Clearly, the dynamics 

t The outflow axis is the direction defined by the eigenvector of equation (2) 

with eigenvalue ++. 



are very similar to those shown in figures 1 and 2. In figure 3a,  following 

the reduction in the shear rate, we again observe complete drop breakup in a 

subcritical flow field with only a very small change in the end-to-end length of 

the drop. Also, notice that even though the capillary number is reduced, the 

droplet remains oriented in the direction of the outflow axis. For ellipsoidal 

steady shapes in these same flow conditions (C = 0.5CC) the droplet, in general, 

would have an orientation between the principal axis of strain (the horizontal 

direction) and the outflow axis. In figure 3b, the more elongated initial shape is 

responsible for the fact that the droplet remains oriented along the outflow axis 

even in these subcritical flow conditions. 

Figures 1 and 3 provide a direct visual comparison of the effect of flow-type 

for X = 0.1 and a step reduction in shear rate. In addition to the qualitative 

similarities of the relaxation and breakup process, a series of experiments in 

addition to those displayed in figures 1 and 3 demonstrate that the critical 

initial elongation needed for breakup at X = 0.1 given a reduction to C = 0.5CC 

is bounded by 3.0 < $ < 3.2 for the a = 1.0 flow, while for the a = 0.6 flow the 

critical elongation is bounded by 3.0 < 5 < 3.3. Clearly, small details in the 

shape can be expected as the flow-type varies. Therefore, as in the end-pinching 

studies reported by Stone et al. (1986), the qualitative and quantitative results 

described above suggest that the drop dynamics, in response to a step change in 

shear rate, depend on the global features of the drop shape rather than on any 

local details. 

Two additional examples of the effect of a step change in shear rate which 

further corroborate this point are shown in figures 4 and 5 for X = 1.3 and 

X = 5.3 respectively. Figure 4 0  shows a step reduction to C = 0.75C, for a 

flow-type a = 0.2 and figure 4b shows the same step reduction for an a = 0.6 

flow. Again we observe relaxation back to a steady shape if the droplet is not 

too elongated and breakup via continuous stretching if the step change occurs 

with the droplet more highly elongated. In figure 5, step reduction experiments 



are shown for C = 0.5C, and a flow-type a = 0.4. The large X experiment 

illustrated in figure 56  is particularly interesting and well documented. In the 

steady subcritical flow, we see complete fracturing into two large droplets with a 

very thin thread in between. The initial response to the a b ~ p t  step change is a 

reduction in end-to-end length, bulbing of the ends, and then a gradual thinning 

of the droplet midsection with almost no change in overall length. Finally, the 

droplet stretches, the middle region is drawn into a very thin cylinder and a 

pinch process occurs near the ends. The final photograph shows the final stage 

of fragmentation. After the flow is stopped, the central very thin thread, which 

has very pointed ends, returns to a single droplet. 

The qualitative features illustrated by figures 3-5 are the same as those 

outlined in figures 1 and 2. Furthermore, even after the step change in shear 

rate, the elongated droplet maintains an orientation along the exit streamline 

(the effective shear rate for a fluid element at this orientation is GJiii) during 

the relaxation and breakup process. As a result of these observations, we may 

conclude that for changes in shear rate only, the only independent effect of flow- 

type is to determine the critical capillary number and the proper time scale of 

the stretching process. 

It is informative to study the relaxation and stretching processes by display- 

ing the dimensionless drop length as a function of time. In figure 6a-c, typical 

data for $ versus time are shown for the cases X = 0.1,0.46 and 5.3, respec- 

tively. In the figures, each type of symbol denotes the transient behaviour of a 

single droplet and the horizontal arrows indicate the elongation at which a step 

change is made from the critical to subcritical flow conditions. The initial tran- 

sient stretching is very slow and is followed by a rapid elongation when $ > 3. In 

each of the figures, a change to subcritical flow conditions is shown that results 

in the droplets recovering a steady shape. However, for each viscosity ratio, a 

larger initial extension prior to the step change leads to breakup. The breakup 

process exhibits the interesting feature, shown pictorially in previous figures, 



that the end-to-end drop length remains the same or noticeably shortens for a 

significant period of time. This is followed by a period of continued stretching 

during which time complete fracturing may occur in the flow. In figure 6a,b 

the resulting stretching process produces complete breakup in the flow when 

the symbols terminate. The high viscosity ratio experiments shown in figure 

6 c  are characterized by stretching with the formation of a thinning cylindrical 

midsection, but breakup did not occur during the time the drop remained within 

the linear flow region of the device. The continuous stretching mode is generally 

observed for these very viscous drops. The stretching process in subcritical flows 

is a precursor to complete fragmentation since very viscous drops damp the in- 

ternal flow that leads to the pinch phenomena. We will discuss this aspect of 

the breakup of viscous drops more fully using the numerical simulations, Section 

5.4. The solid vertical line adjacent to the stretching data in figure 6 denotes 

the asymptotic limit of stetching at a rate equal to a line element of the fluid 

in the new flow conditions. Notice that after the period during which the drop 

shape adjusts to the weaker flow, the droplet begins to rapidly stretch again 

and the rate of stretching asymptotes to that of a fluid element in the new flow 

conditions. Finally, notice in the cases where relaxation back to a steady shape 

occurs, the drop length decreases monotonically and we have made no observa- 

tions (experimentally or numerically) of any behaviour similar to the "inertial 

overshoot" discussed by Kang & Leal (1987) (the numerical calculations of in- 

ertial overshoot during transient bubble deformation were limited to moderate 

to high Reynolds number and were not observed for Reynolds number as low as 

10). 

The experiments just out lined imply that the capillary number necessary 

to produce breakup is dependent on the initial drop shape, as indicated, say, 

by the elongation ratio $ at the time the flow field is changed abruptly. This 

behaviour is entirely consistent with the properties of Stokes equations for which 

the instantaneous velocity field, and consequently the drop shape evolution, 



depend only on the instantaneous imposed flow and the instantaneous shape. 

The history of the flow is only important in that it produces a definite initial 

shape. Some typical experimental results for the dependence of the critical 

extension ratio necessary for breakup (either complete fragmentation or breakup 

via the continuous stretching mode) as a function of the magnitude of the step 

change in shear rate are summarized in Table 1 for the case X = 0.46 and in 

Table 2 for the case X = 5.3. Qualitatively, the more extended the droplet, 

the weaker the external flow necessary to cause breakup. As should be clear 

these results hold for all flow-types provided the flow history consists of a step 

reduction in shear rate only. Perhaps the most interesting aspect of the data 

in these two tables is that for the large viscosity ratio data summarized in 

Table 2, even a weak flow can produce breakup, generally observed via the 

continuous stretching mode, without requiring a large initial elongation. If the 

flow is stopped abruptly, an initial elongation 5 = 8 is necessary to guarantee 

breakup. However, these results demonstrate that even weak extensional flows 

can lead to the continuous stretching and breakup of a viscous drop which has 

a modest initial deformation. 

Finally, we directly address the effect of viscosity ratio. In our previous 

study (Stone et al. 1986), which only investigated transient behaviour following 

an abrupt halt of the flow, the effect of a high viscosity ratio is to severely damp 

the internal motion which leads to the development of a neck, a precursor to 

the end pinching process. Consequently, very large extensions are necessary to 

guarantee breakup of viscous drops in an otherwise quiescent fluid. However, as 

illustrated above in Table 2, figure 5 and figure 6c, if the flow is not altogether 

stopped, but rather reduced to a subcritical value, it is not necessarily true that 

large extensions are needed for breakup. As a matter of fact, the critical ex- 

tension necessary to guarantee breakup or, at least, to continue the stretching 

process, appears to become almost independent of X for X > O(1). This be- 

haviour is shown in figure 7 where the experimental results for a step change 



to C = 0.75C, are summarized. The open squares denote the largest elongation 

ratio for which the drop relaxes back to a steady shape (a sphere) and the open 

triangles denote the smallest elongation for which breakup was observed upon 

cessation of the flow. Similarly, the filled squares represent relaxation back to 

a steady shape and the filled triangles represent breakup, either complete frag- 

mentation in the flow or breakup via the continuous stretching mode. As Tables 

1 and 2 document, the qualitative behaviour of a step change in shear rate illus- 

trated in figure 7 is representative of a wide range of step changes. For large X 

it is nonetheless true that complete fracturing in the flow takes longer time and, 

above the critical extension ratio, the evolution and complete fracturing of the 

droplet is accompanied by large scale stretching (see figure 5). We emphasize 

that this behaviour is true for all flow-types provided the flow history consists 

of a step change in shear rate. 

5.2 Step changes in flow-type; shear rate constant 

We have examined t ime-dependent dynamics associated with step changes 

in shear rate. An equally interesting question is to ask how the drop shape evolu- 

tion is influenced by changes in flow-type. Here we specifically address questions 

concerned with abrupt changes in flow-type, the shear rate being maintained 

constant, so that the new flow conditions are subcritical. Recall that as the 

flow-type changes from a hyperbolic flow (a = 1.0) towards a simple shear flow 

(a = 0.0), the addition of vorticity causes the drop to rotate away from the 

principal axis of strain. Thus, the effective shear rate experienced by the drop is 

reduced and the effective capillary number becomes subcritical. Again, in these 

experiments changes in flow conditions are applied with the drop undergoing a 

transient stretching at the critical capillary number. These experiments are very 

interesting and are somewhat unique in that the computer-controlled four-roll 

mill in our laboratory is one of the few (only?) devices currently capable of 

performing such a study in a well-controlled manner. 

Figures 8,9 and 10 show the effects of a step change in flow-type for three 



different viscosity ratios, X = 0.1,1.3 and 5.3. These photographs are typical 

of the experimental results. The breakup processes are very similar to those 

previously described in figures 1-7. In figures 8-10 the step change in flow- 

type is followed by rapid rotation to a new steady orientation after which the 

observed behaviour is either (1) relaxation back to a steady shape, (2) breakup in 

the flow without large scale stretching or (3) continued stretching and breakup. 

No new steady shapes are observed and the new steady orientation achieved 

by the droplets is along the outflow axis of the new flow field. The rotation 

process is documented very clearly in figure 10. Clearly, the most interesting 

new dynamical feature associated with the sudden addition of vorticity is that for 

these rather modest deformations and the small capillary numbers at which the 

step change occurs, drop rotation appears very rapid relative to any significant 

deformat ion. 

It is clear that the subcritical flow conditions that exist after a change in 

the flow-type can still produce breakup of a drop, even if the drop is initially 

deformed beyond the maximum steady deformation by only a modest amount. 

Of course, in these experiments the magnitude of the capillary number needed 
L for breakup not only depends on the initial conditions (the drop elongation ; 

when the flow is changed) but also on the magnitude of vorticity in the new 

flow field. As a consequence of the rapid rotation, relative to any significant 

interfacial-tension-induced change of shape, the drop aligns along the outflow 

axis where the effective shear rate is Gf i .  

We have qualitatively observed that the critical length for breakup given 

only a step change in shear rate G is nearly the same as for a given change in 

fi. For example, in experiments with X = 0.46, a step change from a = 1.0 to 

a = 0.4 (6 = 0.63) showed rapid rotation to the new steady orientation along 

the outflow axis and a critical extension ratio for breakup 2.35 < $ < 2.57, 

which compares very well with the data illustrated in Table 1. This suggests 

that for these modestly extended drops the idea of an effective shear rate, G f i ,  



corresponding to the droplet oriented along the outflow axis (the eigenvector) 

of the new flow, may prove to be very useful. Furthermore, it implies that 

when both shear rate changes and flow-type changes occur simultaneously, the 

critical extension ratio for breakup depends, at least qualitatively, on an effective 

capillary number in the modified flow C e f  = *. This idea does indeed 

prove to be valuable and we examine this in the next section. 

As an aside, for those readers interested in geometric aspects of free surfaces, 

the photograph of the droplet just as it is fracturing in figure 86 shows a narrow 

conically shaped central thread attached to an almost spherical droplet. This is 

very similar to a remark of Peregrine (1986) on the shape of the liquid bridge 

joining a nascent drop to the remainder of the fluid, although viscous effects in 

Peregrine's experiments are generally insignificant (see also the experiments of 

Marschall 1985, which were brought to our attention by Professor Peregrine). 

The conical interface is also very similar to intermediate shapes observed in 

the formation of satellite drops due to capillary wave growth on cylindrical 

fluid interfaces (Goedde & Yuen 1970 and Van Dyke 1982). This suggests that 

conically shaped surfaces created during the evolution of fracturing interfaces 

may be a general geometrical phenomenon. Additional examples can be seen 

in figures 2-5 and figure 11 b, c. However, we have not investigated this matter 

further. 

5.3 Simultaneous step changes in shear rate and flow-type 

The observations that the sudden addition of vorticity leads to rapid ro- 

tation relative to any significant drop deformation, at least for X = o ( ~ ) ,  may 

appear, at first, somewhat surprising. This suggests that the angular velocity of 

a deformable drop in a linear shear field should be examined. Although a general 

analytic solution is not available for the orientation of a finitely deformed drop 

in a linear flow, nevertheless, as discussed by Bentley & Leal (1986b), useful 

ideas can be obtained by considering a solid ellipsoid of revolution. A particle 

in a linear shear flow will have an angular velocity proportional to G. So the 



time for the ellipsoid to reorient from an initial orientation to a final steady 

orientation should scale with the inverse of the shear rate G-'. This is the same 

order of magnitude as the rate of drop deformation only if the droplet is highly 

extended, in which case deformation similar to a fluid element in the flow is ob- 

served. The key difference with regard to our observations is that the stretching 

process is very slow initially (see the discussion in Stone et al. 1986) and the 

droplet does not begin to stretch like a fluid element until $ > 3. Typically, 

for the rapid addition of vorticity when the droplet is only modestly deformed 

(say, $ ES 2 - 3, as in these experiments), the time scale for drop deformation 

is much longer than G-I (see figure 6) and the rotation to a new orientation 

can be decoupled from the deformation process. Then, following reorientation, 

the effective shear rate for the extended droplet aligned along the outflow axis 

of the new flow is G f i  (Bentley & Leal 1986b). 

G a a  In order to test the idea of an effective capillary number C, = A c 
= 

C f i  for describing drop dynamics we present some experimental observations on 

simultaneous step changes in shear rate and flow-type. In figure lla,b we show 

the results of step changes from the initial flow conditions C = C, and ar = 1.0 

to the final flow conditions C = 0.8Cc and a = 0.6. Figure l l c  illustrates the 

effect of a step increase in capillary number to C = 1.3Cc when the flow-type 

is changed from a = 1.0 to a = 0.25. The drops in figure 11 have a viscosity 

ratio X = 0.46. In the first case (figure l la ,  b) the effective capillary number 

characterizing the new flow conditions is Ceff = 0.62Cc and in the latter case 

(figure l l c )  C, = 0.65Cc. 

We make the following observations concerning the effects of simultaneous 

changes in shear rate and flow-type. In figure i la ,  after the step change in flow 

conditions, the droplet relaxes back to a steady shape. However, notice that 

during the relaxation process the droplet clearly develops a 'waist '. Eventually, 

though, the relaxational motion dominates and a steady shape is established. 

Figure i l b  illustrates the effect of a more elongated initial shape. The droplet 



first reorients prior to any significant deformation, then breaks in the subcritical 

steady flow as seen in many of the earlier figures. 

Figure 11 c also shows an interesting evolution. In this case, as the droplet 

rotates away from the extensional axis, it initially feels a stronger effective shear 

rate since the shear rate was increased to 1.3Gc. The droplet reorients and de- 

forms a little, then rapidly begins to stretch and eventually fractures in the flow. 

Again, we observe a conically tipped thread at the end of the central portion of 

the droplet connected to the deformed spherical end shortly before the final frag- 

mentation is complete. After the flow is stopped, the central thread relaxes and 

fragments, leaving the small satellite drops shown in the last photograph. The 

experiments shown in figure l lb,c appear to be very close to the critical length 

necessary for breakup, which we estimate in both cases to be 5 M 2.4 - 2.6. 

This estimate of the critical length for breakup at Ceff = 0.65C, is in good 

agreement with the data reported Table 1 that only accounts for a step change 

in shear rate. 

In figure 12 we show another sequence of simultaneous changes in flow-type 

and shear rate. For this droplet, X = 0.46, the shear rate is reduced from G, to 

0.4Gc and the flow-type simultaneously changed from a = 1.0 to a = 0.25. The 

effective capillary number at the new flow conditions is Ce = 0.2Cc. First of 

all, figure 12a provides a dramatic example of a waist forming initially due to 

the external extensional flow only to eventually be overwhelmed by the inward 

capillary-driven flow generated by the bulbing end. Figure 12 b appears to be 

very close to the critical length necessary for breakup as the droplet fractures in 

two with a very small satellite droplet in between. It is quite remarkable that at 

the time breakup is complete the droplet has a shorter end-to-end length than the 

initial shape at the time the step change in flow conditions occurs. The critical 

length for breakup for a step change to Cef/  = 0.2Cc, as bounded by the two sets 

of photographs in figure 12, is 3.2 < 5 < 3.3, which is again in good agreement 

with the data in Table 1. Therefore, it appears clear from the experiments 



performed using simultaneous step changes in flow conditions, in conjunction 

with the effect of viscosity ratio, shear rate and flow-type described in Sections 

5.1 and 5.2 that both qualitatively and even quantitatively the effective capillary 

number at the new flow conditions is useful for predicting behaviour for a given 

initial condition, provided only that droplet rot ation to a steady orientation is 

sufficiently fast. 

Several remarks regarding these dynamics are in order. F in t  of all, it should 

be clear that the idea of an effective capillary number for breakup of modestly de- 

formed drops given an abrupt change in flow conditions makes qualitative sense 

and is even quantitatively correct, at least for the limited number of cases we've 

examined. The validity of this correlation depends on the disparate time scales 

governing different aspects of the dynamics. Because the drop shape evolution 

depends on the global shape rather than on any local details, then, provided 

rotation to a new steady orientation is sufficiently fast relative to the time scale 

for any significant drop deformation (due either to interfacial tension or the ex- 

ternal flow), the breakup criteria is well-approximated by the initial elongation 

4 a and an effective capillary number C e f f .  On the other hand, we might expect 

that for a large increase in G and a corresponding decrease in fi the drop would 

spend a significant length of time in a very strong flow as it rotates to the final 

steady orientation and the above time scale assumptions would begin to break 

down. Nevertheless, at least in the case illustrated in figure l l c ,  the breakup 

behaviour was still well correlated with C e  f .  The viscosity ratio will also play 

a role in such time scale arguments as viscous drops deform more slowly than 

lower viscosity ratio drops. For viscous drops the difference between reorienta- 

tion and deformation time scales will be even larger than illustrated in figures 11 

and 12. Therefore, the disparate time scales arguments that suggested the idea 

of an effective capillary number will be even better for very viscous droplets. 

From these arguments we conclude that the critical extension data tabulated in 

Tables 1 and 2 and figure 7, which are all determined from experiments involving 



step changes in shear rate only, are useful for the broader class of flows involv- 

ing simultaneous changes in shear rate and flow-type provided interpretation is 

based upon the critical capillary number Ce as described above. 

5.4 numerical study of step changes 

The brief numerical study we present here is designed to complement the 

basically qualitative description of the dynamics demonstrated by the series of 

experiments just described. One advantage of the numerical simulation is that 

it allows a systematic change in the parameters to be coupled with a detailed 

picture of the velocity field. For example, in step reduction experiments, it is 

straightforward to vary the magnitude of the subcritical flow for the same initial 

elongation or vary the initial elongation for a given subcritical flow. In addition, 

the evolution of the shape, detailed velocity fields and the effect of viscosity ratio 

are relatively easy to examine and will be illustrated in this section. 

We begin by examining droplet extension in a uniaxial extensional flow. 

Starting with a spherical droplet, the capillary number is increased in small 

increments until a steady shape no longer exists and a continuous stretching 

occurs. This stretching at slighty supercritical capillary numbers is illustrated 

below. At different stages of the elongation process the capillary number is 

decreased abruptly to a subcritical value analogous to the experimental study 

described in Section 5.1. Two different viscosity ratios are examined, X = 1.0 

and X = 10. The calculations with X = 1.0 are especially straightforward and 

capture all the important features of the shape evolution and the velocity field. 

The numerical study of X = 10 is useful for understanding the effect of sub- 

critical flows on the relaxation and breakup processes for very viscous drops. 

Calculations of drop deformation in biaxial extensional flows are described by 

Stone (1988). 

In figures 13 and 14 the solid curves show the time-dependent elongation 

that occurs at slightly supercritical capillary numbers for X = 1.0 and 10.0, 

respectively. The evolution of the drop shape is also shown at intermediate times 



during the transient stretching process. The shapes are identified by the letters 

a,b,c, etc. Characteristic of the deformat ion process, the elongat ion is very 

slow. But, as a waist develops, the drop begins to stretch rapidly, approaching 

the asymptotic limit of stretching at the rate of a line element of the fluid in the 

undisturbed flow (the solid nearly vertical line in these figures). 

We next illustrate the effect of abruptly decreasing the capillary number at 

different times during the continuous extension. We consider a step change to 

C = 0.5CC for three different initial conditions. The resulting evolution is shown 

by the dashed lines in figures 13 and 14 and numerically generated shapes are 

presented. As indicated in the experimental study, there appears to be three 

basic modes of behaviour. In each figure, curve A shows the relaxation back 

to a steady shape. This is the same steady shape calculated by beginning with 

a spherical drop in this subcritical flow. Curve B illustrates a very interesting 

time-dependent breakup. Initially a visible relaxational motion and reduction 

in drop length occurs as the ends become rather bulbous. In figure 13, X = 1.0, 

the formation of a significant neck leads to complete drop breakup in the flow 

although the drop has extended very little. In addition, the thin cylindrical 

thread connecting the two almost spherical ends, forms a small satellite droplet. 

This illustrates complete breakup in a steady flow without large scale stretching 

of the droplet, similar to several of the experiments discussed in Section 5.1. 

Finally, for the initial condition used in curve C, the droplet has a very small 

initial relaxation as the shape at the end responds to the weaker velocity gradient 

by becoming more bulbous, but then the drop rapidly extends. In the case of 

X = 1.0 it is evident that the ends are pinching off, but the drop is simultaneously 

beginning to stretch. However, the X = 10 droplet basically stretches during the 

time shown and there is no immediate evidence of the ends breaking off. This 

is related to the fact that the flow process internal to the droplet that leads 

to the end pinching phenomenon is damped by the more viscous droplet fluid. 

Consequently, the end pinching mechanism requires longer times for breakup of 



high viscosity ratio systems so that, instead of complete fragmentation, drop 

deformation is characterized by a significant increase in the end-to-end drop 

length. Finally, the dashed almost vertical line adjacent to curve C in figures 

13 and 14 illustrates the rate at which a fluid element stretches in these new 

flow conditions and the droplet elongation rapidly approaches this asymptotic 

behaviour. 

In all cases, the numerics indicate that the curvature near the end decreases 

(i.e. the end becomes more rounded) in response to the abruptly weaker flow. 

This is true even in instances where the droplet continues to stretch so that the 

end slowly becomes more spherical as the droplet elongates. These simulations 

also indicate, in agreement with the experimental results discussed in Sections 

5.1-5.3, that there is a narrow range of initial elongations for which complete 

breakup will occur without much stretching of the drop. Furthermore, because 

of the interact ion of the extensional flow and the interfacial-tension-driven flow, 

the range of initial conditions that lead to complete breakup without much 

stretching is even narrower for viscous drops, which inhibit the flow process 

leading to end pinching. Nevertheless, in the experimental study, several cases 

of complete breakup of high viscosity ratio drops are documented (figures 2,s 

and 10). 

In order to better understand the evolution of the drop shape, in figures 15 

and 16 we present the internal and external velocity fields for the intermediate 

shapes shown along curve B in figures 13 and 14. The arrows denote the direction 

and relative magnitude of the fluid velocity, but there is no connection between 

arrows in one illustration and those in another. The "competitionn between the 

externally imposed flow, and the relaxational, interfacial-tension-driven flow is 

very evident. Notice how the competition between these two mechanisms for 

flow produces a closed vortical motion interior to the droplet (figures 15a-c). 

Figure 15a shows the velocity field just after the abrupt change in shear rate. 

Initially, the most noticeable motion takes place near the end of the droplet. The 
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ends become more spherical and, as a consequence, drive a large inward velocity. 

Near the droplet center, the external velocity gradient produces an extensional 

motion which causes the droplet to form a waist and continually thin. The 

precise role of the flow field produced by curvature variations along the surface 

will be examined in detail below. As the end becomes more rounded the driving 

force for inward motion becomes less pronounced while the drop continues to 

thin. In figure 15c the drop is beginning to lengthen slowly and a visible neck is 

formed near the bulbous end. This neck will eventually lead to the ends pinching 

off and the remaining liquid thread in the middle will form at least one satellite 

drop. At t^ = 113.8 the fluid velocity in the neighborhood of the pinch is much 

larger than the speed at which the end translates. This is responsible for pinch off 

without large-scale stretching of the droplet. At least in the central section of the 

droplet the velocity profile is parabolic as expected from a slender-body analysis 

(Acrivos & Lo 1978). Qualitatively, very viscous drops have much flatter velocity 

profiles than do smaller viscosity droplets. In the X = 10 simulation shown in 

figure 16 there is no pinch evident. Presumably, for the initial condition chosen, 

longer times, and more elongated droplets are necessary before a significant 

pinch can develop for higher viscosity ratio droplets. 

In these simulations of a step reduction in shear rate, the mechanism of the 

breakup process can be seen to involve a very interesting interaction between an 

interfacial-tension-driven flow and a flow produced by the external velocity field. 

The net effect is both competitive and cooperative depending on the region of the 

drop and the stage of the interface evolution. In order to illustrate this last point 

we examine the different contributions to the two components of the interfacial 

velocity field (u,, u,) at different times during the breakup process for the cases 

X = 1.0 and X = 10,whose detailed velocity fields were shown in figures 15 and 

16. In figures 17a-c, we show the r-component of the interfacial velocity field 

as a function of axial position and in figures 17d-f we show the z-component. 

In these figures the solid line is the numerically calculated interfacial velocity 



field, the short dashed line is the undisturbed velocity and the long dashed line 

is the difference between the actual velocity and the undisturbed velocity. This 

difference is directly attributable to a flow produced by curvature variations 

along the surface and is a direct consequence of interfacial tension (see equation 

3) 

In figure 17a the decomposition is shown just after the step reduction in 

shear rate occurs and in figure 17 6, c the results are shown at later times. Relax- 

ational flows are characterized by u, < 0 and the pinching process is produced 

by u, < 0 and u, > 0. The f i s t  aspect to notice is that, at first, the flow pro- 

duced by interfacial tension (the long dashed line) opposes the thinning of the 

cylindrical midsection. This is evident because, near the center of the drop, the 

contribution to the radial velocity field is positive and the contribution to the ax- 

ial velocity field is negative, corresponding to flow towards the center. Although 

the curvature is highest here, it must be remembered that the interfacial-tension- 

driven flow is not a local effect, but rather depends on the global drop shape 

as discussed in our study of end-pinching (Stone et al. 1986). Nevertheless, 

although the end-to-end drop length decreases, the net effect of the subcritical 

external flow is to cause the central region to slowly thin and form a waist (the 

solid curve). Clearly this is a necessary condition for eventual drop breakup. 

This is not a sufficient condition because the relaxational motion due to flow 

near the end may eventually dominate and completely reverse the flow field at 

the center, allowing the drop to recover a steady shape. This is clearly seen in 

the experimental photographs, especially figure 12a. 

The later stages of the breakup process are examined in figure 176, c. It 

is clear that as the middle region thins the resistance to fracturing, due to the 

interfac ial-tension-dr iven flow, diminishes. In figure 17 c, where the midsection 

is quite thin, a cooperative flow is produced where both the external flow and the 

interfacial-tension-driven flow (which only depends on the instantaneous drop 

shape and A) result in fluid draining from the center. This is illustrated by the 



negative values of u, and positive values of u, near the middle of the drop. In 

figure 17 6 the contribution of interfacial-tension-driven flow to the thinning of 

the drop midsection (u,  < 0) is small while at a later time shown in figure 17c 

the rapid pinching is predominately due to the interfacial- tension-driven flow. 

The evolution of the velocity field shown in figure 18 for X = 10 is very similar. 

The main difference for this high viscosity ratio is that the internal velocity 

gradients are damped significantly. As a result, the radial velocity field that 

produces thinning of the midsection is much smaller than in the X = 1.0 case, 

and it takes much longer for the interfacial-tension-driven flow to dominate and 

produce the end pinching effect. 

It is important to point out that the undisturbed flow field alone does not 

produce complete fracturing. Rather, the extensional undisturbed velocity field 

results in a simple stretching of the droplet and, as discussed by Mikami, Cox 

& Mason (1975) for the special case of an infinite cylindrical thread, such a flow 

uniformly thins the cylindrical body of fluid. The fracturing process is a direct 

consequence of the nonuniform flow produced by curvature variations along the 

drop surface. It is also clear, though, that the weak external flow is necessary 

to cause thinning of the drop midsection until the interfacial-tension-driven flow 

dominates and produces breakup. 

The second aspect of the transient dynamics we wish to study is the effect of 

the magnitude of the shear rate reduction for a given initial condition. Basically, 

a series of such studies amounts to determining the capillary number necessary to 

produce breakup a s  a function of the initial droplet elongation and the viscosity 

ratio. In figures 19 and 20 we illustrate these dynamics for X = 1.0 and 10 for an 

initial elongation $ = 3. These figures illustrate, for the same initial condition, 

a step change from stretching at the critical capillary number C, to a subcritical 

flow C = Y C,. In every case where the drop relaxes back to a steady, ellipsoidal 

shape it does so monotonically and we find numerically that it is the same steady 

shape as would be generated if an initially spherical drop were placed in these 
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subcritical flow conditions. This is reported in the inset to these figures where 

the deformation parameter D t  is compared for the case of an initially spherical 

drop placed in the flow C = YC, (the steady state established is denoted by 

D,,) and for the transient approach to the steady state shown in figure 19 and 

20 (the steady state is denoted byDt,,,,). 

Clearly, figures 13-20 show that there is a quite complicated interaction 

between a relaxational motion, dependent on the drop shape and the viscosity 

ratio, and the extensional motion, which is dependent basically on the capillary 

number and the initial shape. The numerics indicate that there is a quite narrow 

range of capillary numbers where breakup is preceded by a visible reduction in 

end-to-end length. 

5.5 breakup for large X in weak flows with vorticity 

As first pointed out by Taylor (1934) for the case of steady simple shear 

flow and extended to other steady two-dimensional linear flows by Bentley & 

Leal (1986b), the effect of vorticity in the flow is to inhibit drop breakup. For 

sufficiently high viscosity ratios, droplets attain a maximum steady deforma- 

tion in such flows and any additional increases in capillary number are only 

accompanied by increased rotation of droplet fluid rather than by any notice- 

able deformation. For example, in simple shear flow, breakup is not possible if 

the viscosity ratio exceeds approximately 4, and for a = 0.2 and 0.4 the vis- 

cosity ratios above which breakup is not possible are approximately 20 and 60 

respectively. 

The above remarks concerning the inhibiting effects of vorticity on the 

breakup process are based on the premise that the drop shape is initially spher- 

ical. Here we ask the question whether breakup of high viscosity ratio drops in 

flows with vorticity is possible if the initial deformation exceeds the maximum 

stable deformation observed in the steady-state experiments. Clearly, if the vis- 

cous drops are very highly extended prior to application of a flow with vorticity, 

t D = where L and B are the half-length and half-breadth of the drop. L+B 



previous photographs and discussion in this paper would suggest that breakup 

would be possible if the product Gf i  is sufficiently large (also, the larger the 

extension the weaker the flow necessary to ensure breakup). Instead, using an 

initial condition that is more deformed than the maximum steady deformation, 

but still not highly stretched, we illustrate the breakup of a very viscous drop 

by a flow that would otherwise not burst the drop at any value of the capillary 

number if the initial shape were a sphere. 

In figure 21 the results of one such experiment is reported for X = 19. A 

photograph of the maximum steady deformation attainable by beginning with 

a spherical drop and increasing the capillary number in small increments is 

provided for reference. The breakup of this drop is now examined by initially 

generating a more deformed shape in a stronger flow. The initial ellipsoidal 

shape shown is generated by first stretching the drop in an a = 1.0 flow at 

the critical shear rate so that unsteady stretching occurs. When the viscous 

droplet is not too highly deformed the flow is abruptly stopped, the droplet 

begins to relax and then a flow field with a = 0.2 is applied. The shear rate 

is then increased. The photographs shown illustrate that the droplet reorients 

along the outflow axis of the a = 0.2 flow and continues to stretch. It must be 

remarked that the weak flow coupled with the high viscosity ratio produce a very 

slow elongat ion. The experiment does not represent the lowest possible capillary 

number for breakup given the nonspherical initial condition, but does show that 

different initial conditions, even modestly deformed ellipsoidally shaped drops, 

can lead to breakup of very viscous systems where simple steady approaches to 

breakup would never succeed. Again, this experiment illustrates a point made in 

figure 12, that even relatively weak flows can result in breakup for high viscosity 

ratio droplets. 

6. CONCLUSIONS 

We conclude with a few observations summarizing the results of this study. 

In this paper general features of the time-dependent dynamics of drop breakup 



have been presented for transient flows produced by making step changes in 

flow conditions. The effects of initial drop shape, viscosity ratio and flow-type 

on the critical capillary number necessary for breakup are investigated. Detailed 

flow features are examined using the boundary integral method. The principal 

conclusions are: 

1. Complete drop breakup in subcritical flows may occur without large scale 

stretching. 

2. An effective capillary number C, = 3 @ ~  u = C@ is useful for under- 

standing the effect of step changes in shear rate and/or flow-type on mod- 

estly deformed droplets. In these cases, rotation to a new steady orientation 

is fast relative to any significant deformation. 

3. The critical drop extension necessary to guarantee breakup in subcritical 

flows appears to become independent of X for X > O(1). 

4. The development of conically tipped threads connected to nearly spheric a1 

ends is very noticeable in several of the experiments. 

5. This study extends observations made initially by Grace (1971). Grace 

suggested the use of a stage-wise process for efficient -breakup. The step 

change studies reported here provide additional data supporting this idea 

and indicate that the procedure should prove useful even for very high 

viscosity ratio systems. 

6. Finally, it should be added that there are several interesting qualitative 

analogies (and differences) with the numerical calculations of bubble defor- 

mation in a uniaxial extensional flow at finite Reynolds numbers obtained 

by Kang & Leal (1987). 
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FIGURE CAPTIONS 

Figure 1 The effect of a step reduction in shear-rate; the flow-type is maintained 

constant. X = 0.1; a = 1.0. Step change from C, to 0.5Cc; C, = 0.174. 

Figure 2 The effect of a step reduction in shear rate; the flow-type is maintained 

constant. X = 5.1; a = 1.0. Step change from C, to 0.35Cc, C, = 0.12 

Figure 3 The effect of a step reduction in shear-rate; the flow-type is maintained 

constant. X = 0.1; a = 0.6. Step change from C, to 0.5Cc; C, = 0.23.. 

Figure 4 The effect of a step reduction in shear-rate; the flow-type is maintained 

constant. X = 1.3. a) a = 0.2; b) a = 0.6. Step change from C, to 

0.75Cc. 

Figure 5 The effect of a step reduction in shear-rate; the flow-type is maintained 

constant. X = 5.3; a = 0.4. Step change from C, to 0.5C.. 

Figure 6 Elongation ratio $ as a function of time. The horizontal arrows indi- 

cate when a step change in shear rate occurs to the new flow conditions. 

(a)X = 0.1, a = 1.0, step change to C = 0.5Cc; (b)X = 0.46, a = 1.0, 

step change to C = 0.65Cc; (c) X = 5.3, a = 1.0, step change to 

C = 0.75Cc. The solid line denotes asymptotic stretching similar to a 

fluid element in the new flow conditions. 

Figure 7 Critical elongation ratio necessary to ensure breakup as a function 

of viscosity ratio. Both an abrupt halt of the flow (C = O.OC,) and 

a step change in shear rate to the new flow conditions C = 0.75Cc 

are examined. The open triangles denote the smallest $ for which a 

drop is observed to breakup and the open squares denote the largest 

5 for which a drop relaxes back to a steady (spherical) shape when 

the flow is abruptly stopped. The filled triangles and squares represent 

similar behaviour for the case that the change is made to the subcritical 

conditions C = 0.75Cc. 

Figure 8 The effect of a step change in flow-type; the shear rate is maintained 

constant. X = 0.1. Step change from o: = 1.0 -+ a = 0.2. 



Figure 9 The effect of a step change in flow-type; the shear rate is maintained 

constant. X = 1.3. Step change from a = 1.0 + a = 0.2. 

Figure 10 The effect of a step change in flow-type; the shear rate is maintained 

constant. X = 5.3. Step change from a = 1.0 --, a = 0.25. 

Figure 11 The effect of a simultaneous change in shear rate and flow-type. X = 

0.46. a,b) Step changes from C, + 0.8Cc and a = 1.0 -, a = 0.6. c) 

Step changes from C, + 1.3Cc and a --, 0.25. 

Figure 12 The effect of a simultaneous change in shear rate and flow-type. X = 

0.46. Step changes from C, + 0.4Cc and a = 1.0 -, a = 0.25. 

Figure 13 Numerical simulation of step changes in capillary number for three 

different initial conditions. X = 1.0; C, -* 0.5Cc. The solid, almost 

vertical line is the asymptotic limit of stretching like a line element in 

the undisturbed flow. The solid cuke is the time-dependent elongation 

of the droplet at the critical capillary number. The dashed c w e s  are 

the response to a step change in shear rate to C = 0.5Cc. The dashed 

line is the asymptotic limit of stretching like a line element in the new 

flow conditions. 

Figure 14 Numerical simulation of step changes in capillary number for three 

different initial conditions. X = 10.0; C, + 0.5CC. The solid, almost 

vertical line is the asymptotic limit of stretching like a line element in 

the undisturbed flow. The solid curve is the time-dependent elongation 

of the droplet at the critical capillary number. The dashed curves are 

the response to a step change in shear rate to C = 0.5Cc. The dashed, 

almost vertical lines are the asymptotic limit of stretching like a line 

element in the new flow conditions. 

Figure 15 Numerical simulation of the internal and external velocity fields dur- 

ing the relaxation and breakup of a droplet after a step reduction in 

capillary number; X = 1.0; C = 0.5Cc. The simulations correspond to 

the intermediate shapes shown along curve B in figure 13. 



Figure 16 Numerical simulation of the internal and external velocity fields dur- 

ing the relaxation and breakup of a droplet after a step reduction in 

capillary number; X = 10.0; C = 0.5CC. The simulations correspond to 

the intermediate shapes shown along curve B in figure 14. 

Figure 17 The contribution of an interfacial-tension-driven flow to the drop breakup 

process. solid line - numerically calculated interfacial velocity as a func- 

tion of axial position; short dashed line - contribution of the external 

flow; long dashed line - difference between the actual velocity and the 

external velocity. X = 1.0 a-c) u, vs. z; d-f) u, vs. z. The plots (a-c) 

and (d-f) correspond to the first three velocity profiles shown in figure 

15, respectively. 

Figure 18 The contribution of an interfacial-tension-driven flow to the drop breakup . 

process. solid line - numerically calculated interfacial velocity as a func- 

tion of axial position; short dashed line - contribution of the external 

flow; long dashed line - difference between the actual velocity and the 

external velocity. X = 10.0 a-c) u, vs. z; d-f) u, vs. z. The plots (a-c) 

and (d-f) correspond to the first three velocity profiles shown in figure 

16, respectively. 

Figure 19 Numerical simulation of the effect of changes to subcritical capillary 

number for a given modestly deformed initial shape. X = 1.0. D,, 

refers to the steady shape established by beginning with a spherical 

initial shape and Dt,,,, refers to the steady shape established in the 

subcritical flow by beginning with a highly stretched initial shape. 

Figure 20 Numerical simulation of the effect of changes to subcritical capillary 

number for a given modestly deformed initial shape. X = 10.0. D,, 

refers to the steady shape established by beginning with a spherical 

initial shape and Dtran8 refers to the steady shape established in the 

subcritical flow by beginning with a highly stretched initial shape. 

Figure 21 Breakup of a very viscous droplet beginning with a shape that exceeds 
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the maximum steady deformation. X = 19.0, a = 0.2. If the initial 

shape were spherical, no breakup would occur and the droplet would 

reach a limiting deformation shown by the first photograph. 
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Table 1. The critical elongation necessary for breakup as a function of a 
change from stretching at the critical capillary number to subcritical flow condi- 
tions; step reduction in shear rate only. h = 0.46. 

new flow 
conditions 

o.occ 

0.2cc 

0.4Cc 

0.65Cc 

0.9Cc 

final steady 

shape 

critical elongation 
for breakup 

L 3.4 < -- < 4.5 
a .  
L 3.14 < - < 3.35 
a 
L 2.93 < - < 3.2 
a 
L 2.44 < - < 2.66 

. 

a 
L 2.08 c -- c 2.25 
a 

L - = 1.6 
a 



Table 2. The critical elongation necessary for breakup as a function of a 
change from stretching at the critical capillary number to subcritical flow condi- 
tions; step reduction in shear rate only. h. = 5.3. 

new flow 
conditions 

o.OCc 

0.35Cc 

o.5cc 

0.75Cc 

final steady 

shape 

critical elongation 
for breakup 

L 7.6 < - < 8.2 
a 
L 3.21 < -- < 3.38 
a 
L 2.57 < -- < 2.95 
a 
L 2. < -- < 2.41 
a 

L 
-- = 1.6 
a 
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ABSTRACT 

The behaviour of concentric double emulsion droplets in linear flows is ex- 

amined analytically, for the case when both fluid-fluid interfaces remain nearly 

spherical, and numerically, for the effect of finite interface deformation. In ad- 

dition to determining the velocity fields and the first effects of flow-induced 

deformation, the theoretical analysis is used to calculate the effective viscosity 

of a dilute emulsion of these compound multiphase droplets. The numerical 

simulations allows for a complete investigation of the finite deformation of both 

the outer drop and the encapsulated particle. For example, the critical capillary 

number for globule breakup depends on the relative size and viscosity of the 

inner droplet. Also, for these concentric multiphase particles, there appear to 

be two distinct mechanisms of globule breakup, either continuous extension of 

the globule or contact of the two interfaces at the globule center even though 

the globule is only modestly deformed. The breakup behaviour is principally 

dependent on the radius ratio of the two droplets and the different mechanisms 

are directly related to the hydrodynamic interaction that occurs due to finite 

deformation of the fluid-fluid interfaces. The effect of different flow-types, i.e., 

uniaxial or biaxial extensional flows, is shown, in some instances, to suggest 

breakup of the inner droplet even though the outer droplet maintains a steady 

shape. 



1. INTRODUCTION 

Fundamental studies of encapsulated particles or drops are a relatively re- 

cent topic of interest in the fluid mechanics literature. An encapsulated particle 

is a particle or drop (or, more generally, multiple particles or drops) that is 

completely engulfed by a second immiscible fluid drop. This larger droplet is 

itself suspended in an immiscible fluid. In order to distinguish these compound 

double emulsion droplets from single phase droplets, which have been studied 

widely for many years, we will follow the precedent set by previous authors and 

use the term globule for these multiphase drops. 

There exist a wide variety of processes where multiphase droplets and simi- 

lar multiphase particles are found. The most well-known applications of double 

emulsions occur as liquid membranes for selective mass transport, but multi- 

phase droplets also arise in other heat and mass exchange systems and combus- 

tion processes. The use of liquid membranes for the separation of hydrocarbons 

was proposed originally by Li (1971a,b) and has subsequently been extended to 

artificial blood oxygenation, water purification, recovery of heavy metals, and 

even the controlled release of drugs (Maugh 1976). The globules are efficient 

for mass transfer processes because of the high interfacial area per unit volume 

that can be generated, coupled with the short diffusion distances associated 

with transport between phases. The globules typical of these applications are 

very small (the undeformed radii are generally - 10-I cm) so that iner- 

tial effects are small and Stokes equations can be used as a f is t  approximation. 

Because aspects of several industrial operat ions involve mult iphase droplets ris- 

ing through an otherwise quiescent fluid, the majority of theoretical analyses of 

these systems have focussed on the sedimentation problem. 

Initial low-Reynolds-number studies of streaming flow past droplets coated 

with thin fluid films are presented by Johnson (1981) and Johnson & Sadhal 

(1983). Rushton & Davies (1983) study the translation of concentric spherical 

droplets in an infinite fluid. This work has been extended recently by Sadhal & 



Oguz (1985) who allow for nonconcentric, though spherical, drops and account 

for the relative motion of the inner and outer droplets. An important feature 

of this study is the investigation of the stability of eccentric configurations of 

encapsulated particles. Also, Brunn & Roden (1985) calculate the first effects 

of inertia for concentric spherical droplets. These analyses have in common the 

assumption that the shapes and locations of the fluid-fluid interfaces are a priori 

known. 

Chervenivanova & Zapryanov (1987) use the velocity fields computed by 

Sadhal & Oguz to determine the first corrections to the inner and outer drop 

shapes due to viscous stresses generated by the fluid motion. An interesting re- 

sult of the analysis is that, even at small capillary numbers, the effect of the flow 

may be to cause deformation of both droplets at zero Reynolds number, unlike 

the classical Hadamard-Rybczynski result whereby a sedimenting single phase 

droplet remains exactly spherical at zero Reynolds number, independent of the 

magnitude of the capillary number. Furthermore, Chervenivanova & Zapryanov, 

accounting for eccentricity of the droplets, and Brunn & Roden, allowing for the 

first effects of inertia, observe that the flow created by the sedimenting globule 

causes the outer droplet to deform into a prolate spheroid while the inner droplet 

deforms into an oblate spheroid. These deformation analyses, though, are lim- 

ited to cases where only small distortions from a spherical shape are produced. 

Additional aspects of the behaviour of compound drops are discussed in a recent 

review article by Johnson & Sadhal (1985). 

There is a class of studies at high Reynolds number that has many qual- 

itative features in common with the above mentioned studies. Typically, the 

high Reynolds number investigations of encapsulated particles are concerned 

with centering of bubbles in fluid droplets (Tsamopoulos & Brown 1987). These 

configurations arise, for example, in the formation of spherosymmetric shells of 

metal and glass that are used as fuel targets in inertial confinement studies and 

in particles that have been suggested as additives in high strength composite 



systems. In addition to the obvious geometric similarity, the interaction be- 

tween flow-induced prolate and oblate shapes of the inner and outer droplets, 

observed in the low-Reynolds-number work discussed above, is found in these 

studies a1so.t 

As pointed out by Ulbrecht, Stroeve & Prabodh (1982), mass transfer opera- 

tions are hindered by breakup of the globules. The relationship of this breakup to 

specific transport processes involving liquid membranes is discussed by Stroeve 

& Varanasi (1982). The process equipment involved in many applications ex- 

pose the double emulsion particles to a wide range of velocity fields and varying 

degrees of hydrodynamic forces. As a first step in understanding the breakup 

problem for multiphase droplets, Ulbrecht, Stroeve & Prabodh and Stroeve & 

Varanasi (1984) conducted experimental studies of the breakup of double emul- 

sions in simple shear flows. The results are interpreted by drawing direct analo- 

gies with the single phase drop breakup studies. In the experiments reported, 

the globule contained many subdrops. It is very difficult to be very specific 

about any overall trends since these multiphase systems exhibit shear thinning 

and normal stress differences. However, the studies suggest that the effect of 

velocity gradients should be explored and also raises the question of whether 

and when is it applicable to draw simple analogies with the single phase droplet 

results. 

A related study, though with a different motivation, is presented by Davis 

& Brenner (1981). These authors are interested in the creation of emulsions 

consisting of smaller droplet sizes. Davis & Brenner examined the deformation 

of a fluid drop, with a solid sphere occluded at the center, in a simple shear 

flow. Under certain conditions (the viscosity ratio of the two fluid phases is 

order one and the flows are weak), the presence of the solid phase destabilizes 

the globule in the sense that the globule is more deformed than it would be 

t We wish tothank Prof. R. A. Brown for directing our attention to these 

investigations. 



without the solid. With the hypothesis that increased deformation makes the 

system more susceptible to rupture, this small deformation theory implies that 

the solid sphere enhances the conditions for breakup. Davis & Brenner also 

calculated the rheological properties of a dilute emulsion of these particles. 

A final related research area involving multiphase particles that has sev- 

eral features in common with the problems discussed above is the behaviour 

of viscous fluid drops enclosed by an elastic membrane. These particles have 

been called 'capsules. ' The t ime-dependent and steady deformat ion properties 

of these capsules due to a general linear flow have been studied by Barthes-Biesel 

(1980), Barthes-Biesel & Rallison (1981) and by Brunn (1980,1983) as models 

for red blood cell behaviour . Constitutive equations for the bulk stress-strain 

behaviour of dilute emulsions of these capsules are calculated also. 

Our concern is the effect of nonuniform flow on the deformation and breakup 

of compound multiphase droplets. As many of the above studies imply, there is 

much to be learned by analogy with the behaviour of single phase droplets. The 

deformation and breakup of single phase droplets due to an imposed velocity 

gradient has been widely studied and interested readers are referred to review 

articles by Acrivos (1983) and Rallison (1984). It is well-documented that so- 

called strong flows, i.e., flows where the magnitude of the rate-of-strain tensor is 

greater than the magnitude of the vorticity tensor, are more effective in deform- 

ing a microstructure than a flow in which fluid elements predominantly rotate 

(Grace 1971, Olbricht, Rallison & Leal 1982, Bentley & Leal 1986). Hence, it is 

necessary and very informative to examine the effect of extensional flows on the 

dynamics of multiphase droplets, in addition to the simple shear flow studies 

already performed. 

The effect of strong flows on concentric double emulsion droplets will be 

examined in this paper. This investigation represents an initial step towards 

describing and understanding breakup of double emulsion droplets and indicates 

situations when useful comparison with results available for single droplets are 



applicable. The study of the concentric configuration in extensional flows is 

simpler than eccentrically configured particles and more straightforward than 

the case of multiple subdrops, but it is not just a mathematical diversion. Double 

emulsions consisting of a droplet containing a single internal droplet have been 

prepared experimentally by Florence & Whitehill (1981). Furthermore, this 

study will generalize the results of Davis & Brenner (1981) to account for the 

presence of a droplet of arbitrary viscosity at the center of a larger droplet 

that is suspended in a general linear flow. A consequence of this approach is 

to generalize some of the breakup observations of Stroeve & Varanasi (1984), 

which are confined to a simple shear flow. 

The hydrodynamic stability of the concentric drop configuration is not ex- 

amined here. The thermodynamic stability of similar multiphase drops, which 

depends on the interfacial tensions of all three fluid-fluid pairs, has been ad- 

dressed by Torza & Mason (1969, 1970). Also, Torza & Mason (1970) briefly 

discuss the behaviour of double emulsions in simple shear flows. 

The small deformation theory presented in the first part of this paper 

demonstrates the first effects of flow-induced deformat ion and examines the 

effects of the different fluid properties. In addition, the rheological behaviour 

of a dilute emulsion of these particles can be calculated. Several aspects of 

the globule deformation are very interesting and suggest that the effect of large 

deformations be examined in more detail. 

The effect of finite deformation and possible breakup is addressed in the sec- 

ond part of this paper using a complete numerical solution to this free-boundary 

problem. As suggested by Davis & Brenner, the presence of the inner droplet 

may lead to globule breakup at a smaller capillary number than would have been 

necessary had the inner phase not been present. The numerics illustrate that 

breakup may occur due to large scale stretching of the globule into a cylindrical 

shape, similar in many respects to the breakup of single phase droplets. How- 

ever, the numerics also indicate systems where globule breakup is more likely 



to occur because of the inner droplet causing the rupture of the outer interface 

without excessive globule deformation. In addition, an example is documented 

where the inner droplet approaches breakup because of the flow-induced defor- 

mation caused by circulation inside the globule even though the globule itself 

maintains a steady, nearly spherical shape. Although there are clearly several 

similarities with single drop breakup studies, the results of this paper indicate 

significant differences due to interface-interface interaction that accompanies fi- 

nit e deformat ion of double emulsion droplets in extensional flows. 

2. PROBLEM STATEMENT 

Consider the double emulsion droplet shown in figure 1. We restrict our 

study to the case where the centers of mass of the two droplets remain coincident. 

The undeformed radius of the outer droplet is R1 and the undeformed radius 

of the inner droplet is Rz. The ratio n = 2 characterizes the initial state 

of the system. The three distinct Newtonian fluid phases are immiscible with 

viscosities pi and densities pi.  The interfacial tension (assumed constant) of 

the ij interface is denoted by 4 ~ .  With respect to a coordinate system fixed 

to the center of the globule, we consider the case where the imposed flow field 

varies linearly with position. This assumption is good provided that the bulk 

flow varies on a length scale that is large compared to R1. In these instances, 

the flow-induced deformation due to a local velocity gradient will be significant. 

Thus, far from the droplet the velocity is given by 

where I' is the velocity gradient tensor and is traceless as a consequence of 

continuity. Alternatively, the undisturbed velocity field may be decomposed 

into a symmetric and an antisymmetric part, in which case (1) may be written 



where E, the rate-of-strain tensor, is the symmetric part of I' and w is the 

vorticity of the undisturbed flow. 

In this paper we will present an analytic solution for the velocity and pres- 

sure fields internal and external to the globule. These calculations, though, are 

restricted to the case where both the inner and outer droplets remain nearly 

spherical due, for example, to a large interfacial tension. This solution is used 

to calculate the first corrections to the shape of the droplets that occur because 

of viscous forces generated at the two fluid-fluid interfaces. Specific computa- 

tions are presented for the case of axisymmetric flows where w = 0 and E has 

the diagonal form 

The + sign corresponds to a uniaxial extensional flow and the - sign corresponds 

to a biaxial extensional flow. G denotes the fluid shear rate. 

When significant deformation occurs, as must certainly happen if the glob- 

ule begins to break, the analytic procedure breaks down and we must resort to 

a complete numerical solution of the problem. This is described in Sect ion 4. In 

this case, we also restrict our calculations to the axisymmetric flows described 

by equation (3). Nevertheless, we will first see that the small deformation pro- 

cedure described here is quite useful in understanding certain features of the 

flow-induced deformation and the rheology of these multiphase systems. 

For the small droplets typical of many processes involving double emulsions, 

inertial effects are negligible and the fluid motion in each phase is governed by 

the quasi-steady Stokes equations. Nondimensionalizing all lengths by 1, = R1, 

velocities by u, = GR1, times by t ,  = G-I and the pressure in phase i by 

p,, = y, the governing equations for phase i are 



Here (ui, pi) represent the dimensionless velocity and pressure fields in phase i. 

The boundary conditions for the three phases are 

U ~ = U Z  for x 8 € S z l  (5b) 

u2 = u3 for X, E S32 ( 5 4  

1 
n2 . T1 - X21n2 T2 = zn2(V8 n*) for x, E Szl ( 5 4  

n 
n3 T2 - X32n3 T3 = -n3(V8 n3) for xs E S32 

CX21 
( 5 4  

where 

The stress tensor T has the usual definition 

In these equations Sii denotes the interface separating phases i and j, ni is 

the unit normal directed outward from phase i and V8 n is the mean curva- 

ture of the interface (see figure 1). The capillary number C is defined using the 

properties of phase 1 and provides a measure of viscous forces responsible for 

deformation of the globule relative to interfacial tension forces that resist defor- 

mation. The dimensionless parameters Xz l ,  and fl represent simple ratios of 

fluid viscosities and interfacial tensions, respectively. 

The fluid-fluid interfaces evolve according to the kinematic conditions which 

may be stated as 



where x, denotes a point on the interface. 

We are interested in studying the deformation and breakup characteristics 

of double emulsion droplets as a function of the five dimensionless parameters: 

XZ1, Xa2, R, C and n = 2. In addition to direct dependence on C, the type 

of external flow, for example biaxial or uniaxial extensional flow, will play a 

significant role in the breakup problem. 

The study of time-dependent phenomena using the quasi-steady Stokes 

equations requires that both local and convective inertial effects be small com- 

pared to viscous effects. For steady flow situations this requires that 

P G R ~ ~  < 1 . <<I  and - 

As discussed by Davis & B r e ~ e r  (1981) the assumption of concentric 

droplets is valid provided that migration because of gravitational settling or 

flow-induced motion is negligible during the time scale of the experiment. Small 

droplets, nearly comparable fluid densities or viscous fluids are necessary. Al- 

though many systems will differ from these idealized conditions, it is nevertheless 

hoped that the analysis and numerics presented in this paper will shed light on 

the complicated dynamics of these free-boundary multiphase problems. 

The degree of interface deformation is characterized by the dimensionless 

deformation parameter D = H, where L and B represent the half-length and 

half-breadth of the interface position, respectively. The half-length L will always 

be measured in the z-direction and the half-breadth B in the radial (r)  direction 

(see figure 1). With this definition, prolate spheroidal shapes are characterized 

by D > 0 and oblate spheroidal shapes by D < 0. 

3. SMALL DEFORMATION ANALYSIS 

We first outline an analytical approach using the established methods of 

domain perturbation to study the initial effects of flow-induced deformation 

of double emulsion droplets. Section 3.1 outlines the method of solution and 

Section 3.2 summarizes the results of this analysis. Typical streamline patterns, 



interface deformation, the effect of varying fluid properties, and the rheology of 

a dilute suspension of these droplets are discussed. 

3.1 Analytic solution 

Knowledge of the velocity fields is a necessary first step in the analysis 

of heat and mass transfer problems. The emphasis in this section will be to 

calculate the velocity and pressure fields internal and external to a compound 

multiphase droplet that is immersed in a general linear flow field. In general, the 

free-boundary nature of the droplet complicates the solution procedure since the 

interface location is not known a priori and must be found as part of the solution 

to the problem. In order to make progress, the drops comprising the double 

emulsion globule are treated as concentric and initially spherical. The velocity 

field is calculated everywhere using the continuity of velocity and continuity of 

tangential stress boundary conditions. This procedure produces the first term 

in an asymptotic expansion for the velocity field based upon a small droplet 

deformation. The resulting flow generates viscous stresses that tend to deform 

the globule and the normal stress balance is used to determine the approximate, 

perturbed steady-state shape. 

The basic assumption in the analysis reported here is that the inner and 

outer droplets remain nearly spherical. From analysis of the single phase droplet 

deformation problem, there are two independent limits where the droplet will 

remain nearly spherical. In the first instance, low capillary numbers (in other 

words, weak flows or large interfacial tensions) correspond to small droplet de- 

formation and, in the second instance, large internal droplet viscosity gives rise 

to small deformations. We will deal principally with the low C case. 

The governing equation and boundary conditions are outlined in Section 

2. The most general form of the solution to Stokes equation is given by Lamb 

(1932) in terms of an expansion in spherical harmonics (alternatively, this can be 

thought of as a multipole expansion; e.g., Brunn 1982). This method of solution 

is particularly well-suited to problems with spherical symmetry and has been 



applied to the related problem of single phase drop deformation and breakup 

by Taylor (1932, 1934), Cox (1969), Frankel & Acrivos (1970), Barthes-Biesel & 

Acrivos (1973a) and Rallison (1980) and to the deformation of drops with elastic 

shells by Barthes-B iesel (1980), Barthes-Biesel & Rallison (198 1) and Brunn 

(1980,1983). We follow a similar procedure here, although we are content with 

the O(1) result for the general case X z l  = O(1) and Xs2 = O(1). This approach 

provides good physical insight and motivates the numerical simulations discussed 

in Section 4. 

As a result of the assumption of small deformation, both the governing 

equations and the applicable boundary conditions are linear. Since the droplets 

are assumed concentric and the undisturbed fluid motion is generated by the 

second order tensor I', the velocity and pressure fields in the suspending fluid 

(phase 1: r = 1x1 > 1) may be written in the following general form, where the 

only second order tensors retained correspond to spherical harmonics that decay 

1x1 + 00, 

The position vector x is measured from the center of the globule. We consider 

the external flow, represented by E and w, to be prescribed. The constant 

second order tensors B1 and C1 depend linearly on E and must therefore be 

symmetric, while the vector D depends linearly on w. The last three terms on 

the right hand side of equation (7a) represent the disturbance motion caused by 

the globule. 

The velocity and pressure fields in the inner droplet (phase 3: 1x1 5 n) must 

remain bounded as r + 0 and have the general form 



In the annular region (phase 2: n 5 1x1 2 I), spherical harmonics of both 

positive and negative degree are necessary so that 

In these equations, p; and pg are constant pressure terms which are related to 

p ,  and the curvature of the undeformed static interfaces. The corresponding 

stress fields are straightforward to calculate and are listed for completeness in 

Appendix A. 

The description of the actual drop shape can be approximated by an ex- 

pansion in surface spherical harmonics, where we retain at leading order only 

the second order term (Rallison 1980) (the zero and first order harmonics corre- 

spond to translation and dilatation of the droplet only, Cox 1969). Higher order 

harmonics would appear if additional terms in an asymptotic expansion for the 

velocity field are desired. These higher order terms have been calculated for the 

single phase droplet deformation problem by Bart hes-Biesel & Acrivos (1973a) , 
although the algebra is very complicated and requires the use of a computer. We 

are content here to calculate the leading order term in order to develop physical 

insight about the velocity field and the small deformation produced by the vis- 

cous stresses and then use the numerical analysis to study finite deformations. 

Hence, the shapes of the fluid-fluid interfaces are assumed to be of the form 

x * A Z l  = X  
r = l +  for x, E SS1 

r2 

where n = is the ratio of the radii of the initially undeformed droplets. The 
R1 

second order tensors Azl and A32, which describe the shape correction, are to 



be determined as part of the solution to the problem and must depend linearly 

on E. This emphasizes that, at the leading order order for the approximations 

introduced here, the magnitude of the steady drop deformation depends only on 

the rate-of strain tensor E and is independent of the vorticity. Clearly, for this 

small deformation analysis to be valid, the magnitudes of both Azl and Aa2 

must be small. We will make this qualitative statement more precise below. 

If we define the shape function as 

x*AalOx 
fzl = r - [ 1 +  ] = constant = 0 

r2 

then the unit outward normal to the outer interface can be calculated from 

It follows that the mean curvature of the deformed outer surface is given by 

where the superscript O denotes the normal to the spherical surface and the 

deformation is assumed to be small. Similarly for the inner surface we have 

Following standard procedures of domain perturbation, the O(1) velocity 

field is calculated by applying continuity of velocity and continuity of tangential 

stress boundary conditions on the undeformed spherical surfaces (x8 = n i ,  r = 

1 on Szl and x8 = nn&r = n on S32). The normal stress balance is not 

satisfied and is used to calculate the first correction to the drop shape. Thus, 

at steady state the normal component of equation (5b) is n", ul = nz uz = 0 

on x8 = n;, r = 1, which yields 



and, the tangential component of equation (5b) (t u l  = t u2; t represents the 

unit tangent vector to the interface) requires 

The normal and tangential components of (5c) yield the relationships 

Similarly, the tangential stress balance at the two interfaces provides the four 

equations 

Hence, we can conclude at this point 

1 
D l  =0 ,  D 2  = 0 and G 2  = -W = 

2 G3 (21b) 

The complete solution of the remaining 8 equations for the 8 remaining 

unknowns requires some tedious algebra. Each of the constant second order 

tensors is linearly related to E and the explicit dependence on n,Xzl and XS2 

is given in the Appendix B. The steady-state velocity field thus calculated is a 

uniformily valid first approximation to the flow field for all values of n, Xzl  and 

X32, provided the interface deformation is small. However, as is clear from the 



related analysis of the single phase droplet deformation problem, this velocity 

field is not sufficient to calculate the first correction to the drop shapes for very 

viscous droplets, either B 1 or > 1. This is because the next term in an 

asymptotic expansion for the velocity field makes an order one contribution in 

the normal stress balance if the viscosity ratio is large (Barthes-Biesel & Acrivos 

1973a, Rallison 1980 and Davis & Brenner 1981). We have not calculated this 

correction and have relegated the effect of large viscosity ratios to numerical 

investigation. 

If we consider the case where X z l  = O(1) and XQ2 = O(l), then for C < 1 

the velocity field just determined can be used in the normal stress balance to 

calculate the first correction to the drop shape. Equations (5d,e) and (lla,b) 

relate the constant pressures by 

and provide the two additional equations from which to determine the shape 

correction functions and As2 at this leading order of approximation, 

Using these equations the shape correction functions Azl and As2 may be ex- 

pressed in the form 

The functions hzl and hS2 are listed in Appendix B. The form of the solutions 

(24) confirms the expected conditions for validity of the steady-state small de- 

formation analysis. Namely, for A z l  = O(1) and A32 = 0(1), we require C 8: 1 

and Q: 1. 



Alternatively, rather than requiring n u = 0, the time evolution of the 

shape functions Azl and A3z can be determined by using the complete form 

of the kinematic conditions (equation 6). This is algebraically tedious and is 

not attempted here. Instead, we will illustrate the time-dependent evolution for 

finite deformation of the interfaces using the numerical simulations discussed in 

Section 4. 

The effect that deformation of one interface has on the deformation of the 

other interface would appear at the next order in the perturbation analysis. This 

is clearly a very important question, especially for the case n -, 1, where the flow 

field in the thin gap would be significantly affected by any drop deformation. 

However, this calculation is very complicated and, since a complete numerical 

study of finite deformation is included, this question is relegated also to the 

numerical calculations presented in Section 4. 

Finally, the approximate solution from this section can be used to determine 

the effective viscosity of a dilute suspension of identical double emulsion droplets. 

The analysis of the bulk stress in a dilute suspension of particles has been 

discussed by Batchelor (1970). The bulk stress, X, is related to the velocity 

gradient in the absence of the particles E by 

where 
34 

(26) 

represents the contribution to the bulk stress due to the presence of the parti- 

cles. Here, 4 represents the particle volume fraction and the integration is over 

the outer surface of the globule. Because the approximate solution presented 

above treats the globule as spherical, it is straightforward to show that the only 

contribution to this integral comes from the Bl term of the solution. Hence, 



Since B is linearly related to E the dilute emulsion of concentric spherical 

droplets behaves as a Newtonian fluid with a modified value of the viscosity. 

If we write B1 = BIE then the effective viscosity of a dilute emulsion of double 

emulsion globules, p*, has the form 

The magnitude of the capillary number plays no role at this level of approxima- 

tion. Finite deformation, which depends on both the magnitude of the capillary 

number and the flow type, leads to more complicated rheological properties (e.g. 

normal stress differences). This has been discussed for a dilute suspension of sin- 

gle phase droplets by Schowalter, Chaffey & Brenner (1968), Frankel & Acrivos 

(1970) and Barthes-Biesel & Acrivos (1973b). 

3.2 Results 

The analytic solution presented in Section 3.1 allows for investigation of 

the velocity fields external and internal to the globule and examination of flow- 

induced deformation that is ultimately responsible for breakup. The effective 

viscosity of dilute suspensions of these multiphase particles can be calculated 

also. 

We begin our discussion by illustrating typical streamlines internal and 

external to the globule. In figure 2a-c we exhibit the streamline patterns for 

n = 0.2,0.5 and 0.8. The other parameters are fixed at X z l  = 1.0, Aa2 = 

1.0. As C l  and C only appears in the normal stress balance, they will play 

a role in the deformation of the interfaces, but do not effect the velocity field 

at this order of approximation. The arrows on the streamlines shown in figure 

2 correspond to the case of a uniaxial extensional flow. However, because of 

the assumptions of spherical and concentric drops, the streamline patterns at 

this level of approximation are identical for uniaxial or biaxial extensional flows; 

only the direction of flow is reversed in these two cases. As we will see below, 

however, the effect of these two distinct flows on the droplet deformation is quite 

different. 



In figure 2, we simply observe two vortical flow patterns interior to the 

globule. The important point to notice is that the vorticity of the motion in the 

inner droplet is of opposite sign from the vorticity in the annular region. The 

external fluid motion creates a recirculating flow in the annular region that drives 

a flow in the inner droplet with opposite signed vorticity. The effect of changing 

XZ1  and XQ2 was examined and found to have very little qualitative effect on the 

streamline pattern with the change primarily limited to the magnitude of the 

velocity. 

The streamline patterns shown in figure 2 suggest a very interesting aspect 

of the flow-induced deformation of the globule. The external uniazial flow tends 

to deform the overall globule shape into a prolate spheroidal shape. Meanwhile, 

the steady interior flow generated in the annular region creates a biazial exten- 

sional flow in the neighborhood of the inner droplet. This deforms the inner 

droplet into an oblate spheroidal shape. Exactly the reverse situation would 

occur if a biaxial extensional flow were imposed at infinity: the globule would 

deform into an oblate ellipsoid and, consequently, the inner droplet would be 

exposed to a uniaxial extensional flow and deform into a prolate ellipsoid. A 

typical series of steady-state shapes is shown as a function of capillary number 

in figure 3 for a globule immersed in a uniaxial extensional flow. The same case, 

but for a biaxial extensional flow is shown in figure 4. The final shapes shown 

in figures 3 and 4 have both developed a pinch at the droplet center. This is not 

physically correct and simply occurs because the asymptotic solution is being 

used outside its range of validity. For these small deformations, the magnitude 

of deformation of both the inner and outer droplet increases linearly with cap- 

illary number (equation 24). Furthermore, the deformation of the inner droplet 

is much smaller than the deformation of the outer droplet. Of course, the ba- 

sic reason for this is that the smaller radius of curvature of the inner droplet 

make interfacial tension more import ant. Finally, this simultaneous existence 

of prolate shapes containing flow-induced oblate shapes, and vice-versa, is sim- 



ilar qualitatively to observations of Brunn & Roden (1985), Chervenivanova & 

Zapryanov (1987) and Tsamapoulos & Brown (1987). 

It is well established that the critical capillary number for drop breakup 

is dependent on the nature of the flow field. For example, in the single phase 

case, drops of any viscosity ratio can be burst in a two-dimensional extensional 

flow. However, for simple shear flow there exists a limiting value of the viscosity 

ratio above which breakup does not occur. Furthermore, even the nature of an 

extensional flow (uniaxial versus biaxial) can lead to differences in the breakup 

of single phase droplets. Small deformation studies of single phase droplets in 

biaxial and uniaxial extensional flows have been performed by Barthes-Biesel 

& Acrivos (1973a) and a numerical study of bubble deformation and breakup 

in these flows at intermediate and large Reynolds number has been examined 

recently by Kang & Leal (1987, 1988). A numerical study of finite deformation of 

droplets at zero Reynolds in both biaxial and uniaxial flows is presented by Stone 

(1988). The most notable feature regarding breakup at low Reynolds numbers is 

that larger capillary numbers are necessary for drop burst in a biaxial flow. This 

is of particular interest to this study since in the axisymmetric flows discussed 

above, one drop experiences a uniaxial straining flow, while simultaneously the 

other droplet experiences a biaxial straining flow. Clearly, this observation has 

implications with regard to the breakup of globules since these two extensional 

flows have a different effectiveness in causing breakup. In addition, not only is it 

of interest to learn what conditions are necessary for burst of the globule (outer 

drop), but an interesting question is whether it is possible that the outer drop 

shape remains stable while viscous stresses cause breakup of the inner droplet. 

Since all of these questions involve finite deformations, complete consideration 

must await the numerical investigation presented in Section 4. Nevertheless, the 

small deformation analysis can provide useful insight. 

We now consider the effect that the presence of the inner droplet has on the 

overall deformation of the globule. In a study of the deformation of a droplet 



with a small solid sphere at its center, Davis & Brenner (1981) observed that the 

effect of increasing the size of the solid phase was to increase the deformation 

of the droplet at a given value of the capillary number. This suggests that 

the onset of bursting is enhanced due to the presence of the solid phase and, 

consequently, that breakup occurs at a smaller value of the capillary number 

than would be possible without the solid sphere. Here we extend the analysis of 

Davis & Brenner to account for an inner phase of arbitrary viscosity ratio and 

strong flows. 

In figure 5 we present a plot of the globule deformation, DoUte,, versus 

capillary number for four different radius ratios, n = 0.1,0.3,0.5, and 0.7. The 

curve for n = 0.7 stops when the analysis predicts that the two interfaces touch. 

The other parameters are fixed at the values X Z 1  = 1.0, Xs2 = 1.0 and = 1.0. 

Although this plot shows prediction of finite deformation we do not imply that 

these calculations are valid there (it is to be expected from comparable anal- 

yses of single phase droplets that these calculations are indicative of deforma- 

tion trends but are not quantitatively accurate). Clearly, however, the effect 

of increasing n is to significantly increase the deformation at a given value of 

the capillary number. As in the study of Davis & Brenner this suggests that 

breakup with the occluded phase present will occur at a reduced value of the 

capillary number. However, it should be remarked as observed in the initial 

deformation shown in figures 3 and 4, that the inner droplet deforms toward the 

narrowing waist of the outer droplet so that significant hydrodynamic interac- 

tions between the two interfaces will occur. This interaction between the two 

fluid-fluid interfaces because of finite deformation is not taken into account in 

the small deformation theory and, at f i s t  inspection, it is not at all obvious how 

this will effect the breakup process. Therefore, in spite of the fact that defor- 

mation is initially increased due to the presence of the interior droplet, it is not 

clear whether the critical capillary number for breakup will actually be reduced 

relative to the case when no third phase is present. Again, these questions in- 



volving finite deformation must be answered with a numerical investigation (see 

Sect ion 4). 

Next we examine the effect of varying the fluid properties. As is clear from 

equation (24), within the context of this small deformation theory, varying the 

ratio of interfacial tension fl is limited to changing the deformation of the inner 

droplet and has no effect on deformation of the overall globule. For a given 

capillary number, more deformation of the inner droplet occurs for smaller 0 

and larger n. 

The effect of changing the viscosity of the occluded phase is examined in 

figure 6 by varying X32. In figure 6a, n = 0.5 and the outer globule deforms 

more if a solid phase is present at the center than if a less viscous fluid droplet 

is present. In figure 6b, deformation of the inner droplet, Dinner, is shown 

for the same conditions, and it is evident that the inner drop deforms more at 

a given capillary number for larger XQ2 (strictly speaking for sufficiently large 

the predicted deformation needs modification as discussed in Section 3 but 

for moderate Xa2 the trends of flow induced deformation should be correct). 

In figures 6c,d we show similar plots for n = 0.1. Interestingly enough, for 

n = 0.1, the deformation of the globule is effectively independent of the viscosity 

of the occluded phase as d u e s  of DoUte, differ by less than one percent for 

5 5 lo2. 

For completeness, the effect of varying Xzl  for two cases n = 0.5 and n = 

0.1 is examined in figure 7. For fixed values of and C, increasing X z l  is 

equivalent to increasing p2 and p3 by the same amount. If we assume that 

increased deformation of the globule leads to breakup at a lower value of the 

capillary number, then from figures 5,6 and 7 we conclude that globule breakup 

is enhanced due to larger interior drops and more viscous interior fluids. Of 

course, as with any theory that is restricted to small deformations, nothing can 

be inferred about the mechanism of breakup. 

Finally, we present a brief discussion of the rheology to be expected of a 



dilute emulsions of these multiphase globules. The analysis of the bulk stress 

of a dilute suspension of particles has been described by Batchelor (1970). The 

contribution to the bulk stress because of the presence of particles is summarized 

in Section 3.1. Following the notation of Davis & Brenner (1981), the bulk 

viscosity, p* can be written in the form 

where 

The coefficients 6i only depend on n and have the specific forms 

In the limit A32 + oo (Az l  and n finite) this expression reduces to the result of 

Davis & Brenner (1981) for a solid sphere occluded at the globule center. As 

discussed by Davis & Bremer, two other limits follow naturally . In the limit 

Azl  -, oo, the case of a very viscous shell of fluid, equation (30) yields K -, 0 

which is the well-known Einstein viscosity of a suspension of solid spheres. Notice 

that this is true for any n and A32 and simply says that the interior fluid plays no 

part in the rheology if the liquid membrane, however thin, is much more viscous 

than the suspending fluid. The effect of the viscous membrane is to reduce the 

velocity in the annular region to o(&) so that the effective deformation rate 

in the neighborhood of the inner drop is very small. The limit n -, 0 reproduces 

the results of Taylor (1932) for the viscosity of a suspension of single phase liquid 

droplets 



A very interesting limit is found by considering the case of a very thin liquid 

membrane, n -, 1. In this case we find 

where R = 1 - n. Hence, provided = O(1) the limit n + 1 ( R  + 0) produces 

K -, 0, which is the result for a suspension of rigid spheres. This dynamic 

feature of thin liquid membranes to reproduce solid sphere-like rheological be- 

haviour is best appreciated by viewing the velocity field. In figure 8 we show a 

magnified view of the fluid streamlines for n = 0.95. Because of the recirculation 

set up internal to the droplet, the fluid velocity is forced to change directions 

over a very thin distance. In order to satisfy continuity of velocity at both 

interfaces, the tangential velocity is reduced to zero, as it would be at a solid 

boundary. Therefore, the rheology is equivalent to a suspension of rigid spheres. 

This result is independent of the viscosity of the inner phase. This consequence 

of thin membranes was pointed out by Rushton & Davies (1983) for sedimenting 

double emulsion droplets. 

4. NUMERICAL STUDY OF HIGHLY DEFORMED GLOBULES 

4.1 Numerical scheme - application of the boundary integral method 

Although the analysis presented above is insightful and straightforward, it 

is nonetheless restricted to small deformations. The effect of large deformations 

and the possibility of breakup are clearly interesting and significant problems. 

However, as is characteristic of most free-boundary problems, the study of large 

deformations is amenable only to numerical study. A very powerful method 

for solving Stokes flow problems is the boundary integral method (Youngren & 

Acrivos 1975). The technique has been applied to several aspects of the single 

phase drop deformation problem (Rallison & Acrivos 1978, Rallison 1980, Stone 

& Leal 1987), in addition to a variety of other free-boundary studies (Lee & 

Leal 1982, Sapir & Nir 1985, Sherwood 1987, Stoos & Leal 1987, Ascoli & Leal 

1988). 



The governing equations and boundary conditions are outlined in Section 

2. The general solution to the quasi-steady Stokes equation in the three phases 

may be written as 

where S represents all the bounding surfaces for phase i, ni is the unit outward 

normal from phase i (see figure I), and we define u, = 0 for phase 2 and phase 

3. In this equation the kernels J and K represent 

The integral involving J is known as the single layer and the integral involving 

K is known as the double layer. The single layer is continuous for all x including 

x, E S, while the double layer is discontinuous in the limit x -+ S and suffers a 

jump in value (Ladyzenskaya 1969). 

We proceed by taking the limit of equations (31) as x + x, E Szl from 

phase 1 and phase 2, respectively. Making use of the continuity of the single 

layer and the jump condition for the double layer results in the two equations 

These equations me valid for x, E SZ1. The integrands in the integrals over 

Szl are singular, but the integrals themselves are integrable in the sense of a 

Cauchy principal value. The integrals over Sa2 are well-behaved and represent 

interaction terms between the two deformable fluid interfaces. 



Multiplying (33) by X21 ,  adding to (32) and making use of the boundary 

conditions on the velocity and stress fields gives 

This equation describes the velocity ul at the Sal interface in terms of integrals 

over both interfaces. Unlike the single phase droplet deformation problem where 

only the surface curvature VaOn is necessary to determine the interface evolution 

(Rallison & Acrivos 1978), in this multiphase droplet problem the velocity and 

stress on the second interface are needed also. As a consequence, all integrals 

are written in terms of ul and T2 n2 for the surface Szl and in terms of u3 

and T2 n2 for the surface SQ2. 

In a similar manner, taking the limit of equation (31) as x -* x8 E S32 from 

phase 2 and phase 3 results in the two equations 

Multiplying (36) by A32, adding to (35) and using the boundary conditions yields 

Equations (32), (34), (36) and (37) represent four integral equations for 

the four unknowns, ul and T2 n2 for x8 E Szl and UQ and Tz n2 for x, E 



S32. If u,, C, the fluid properties (Az1, A32 and n) and the shape of the fluid- 

fluid interfaces are specified, then these equations can be used to solve uniquely 

for the interfacial velocities. The evolution of the interfaces is followed using 

the kinematic conditions (equation 6) and, consequently, the globule shape is 

determined for all times by an initial condition and the time history of the flow 

(Rallison 1984). 

This system of equations is coupled; for example, determination of ul re- 

quires knowledge of u s  and vice-versa. Nevertheless, these equations illustrate 

the principal strength of the boundary integral method: namely, only two- 

dimensional surface integrals need to be calculated instead of having to solve 

for the velocity field throughout the entire three dimensional domain. The basic 

numerical procedure for this problem is very similar to the one used in our ear- 

lier time-dependent studies of drop relaxation and breakup (Stone & Leal 1987). 

Rather than repeating the details here, the important aspects are summarized 

below. 

We will consider concentric double emulsion drops and axisymmetric flows, 

where u, is given by (3). In such cases, the azimuthal (0) integration can be 

performed analytically and the surface integrals are reduced to line integrals. 

The integral equations are solved by discretizing each of the interfaces into 

2N-2 elements with node points at the end of each element. The unknowns 

(both velocities and stresses) are assumed to vary linearly over each element. 

This representation yields smoother and more accurate interfacial velocity and 

stress distributions than the assumption of a constant value over each element. 

Typically, for the calculations presented in this paper, we choose N=15-20. At 

each node point there are four unknowns: two components of velocity (u,,u,) 

and two components of stress ((T . n) ., (T n) .). Due to the fore-aft symmetry 

of the extensional flow, the net number of unknowns is halved so that the largest 

linear system generated is 160x160. This linear system of equations is solved by 

Gaussian elimination. 



The drop shapes are represented accurately by parameterizing each inter- 

face using a normalized measure of arclength, s (0 5 s < I) ,  and describing 

the location of the surface node points using the cylindrical coordinates r(s) 

and x (s) . Cubic splines are used to generate twice-continuously differentiable 

representations of the drop shape. The unit normals and curvature (V, n) are 

calculated using this cubic spline represent at ion. 

After the interfacial velocities are calculated, the kinematic condition is 

used to update the interface shape. A simple Euler method is used for this pur- 

pose. Velocities are typically 0 so that the time-step chosen is typically 

At = 0.3 - 0.5. After each iteration, the collocation points are redistributed 

evenly, based upon arclength, along the interface. This minimizes convection of 

points that leads to uneven node point distributions and is a principal cause of 

numerical difficulties. A typical simulation to determine the deformation param- 

eter D as a function of capillary number requires approximately 5000 iterations 

to map the entire steady deformation curve. Choosing N=20, one iteration takes 

about one minute of CPU time on a SUN 31160 workstation with a floating point 

accelerator. The steady shapes are calculated by requiring the normal velocities 

on both interfaces to be typically less than 2 x - 3 x lo-* at each node 

point. 

The numerical algorithm has been checked against the analytical results of 

Barthes-Biesel & Acrivos (1973a) for the deformation of single phase droplets 

in axisymmetric extensional flows (this comparison is reported in Stone & Leal 

1987). The agreement is excellent. Comparison with the small deformation 

analysis presented in Section 3 is shown in the results section that follows. The 

volume of the both the inner and outer droplets are monitored as time progressed 

and for Azl = O(1) and Aa2 = O(1) are found to change by less than a percent 

over several t how and iterations. As other researchers have found, larger volume 

changes occur for smaller A, say X = 0.1. 



4.2 Results of the  numerical investigation 

In this section we summarize our numerical observations of the deformation 

and breakup of double emulsion droplets in axisymmetric extensional flows. 

Both steady-state and time-dependent effects are discussed. 

We begin our discussion with a short comparison of the numerical simula- 

tions with the small deformation analysis out lined in Section 3. In figure Sa, bt he 

differences between the numerically predicted deformation of the inner and outer 

surfaces and the analytically calculated deformations(D,,,,, - Dthcory) are 

plotted as a function of capillary number in a uniaxial extensional flow for sev- 

eral different combinations of Xzl ,  X3z, n and n. Beginning with a spherical 

initial shape, the capillary number is increased in small increments (typically 

AC = 0.005), the steady shape is calculated and then the capillary number is 

incremented again. As discussed in Section 3, a double emulsion globule placed 

in a uniaxial extensional flow will deform into a prolate ellipsoidal shape (D > 0) 

and at steady state the inner droplet will deform into an oblate ellipsoidal shape 

(D < 0). In figure 9a,bthe basic trend we observe is good agreement between 

numerics and theory for sufficiently small capillary, but, as the capillary number 

is increased, the theory consistently underpredicts the numerical values for the 

outer shape and overpredicts the deformation of the inner surface. This level 

of agreement is comparable to the predictive capability of the first order small 

deformation theory for single phase droplet deformation. Although insightful, 

the small deformation analysis of Section 3 is quantitatively limited even for 

relatively small values of C and for the remainder of this paper we will use the 

numerical simulation to focus on the effects of finite deformation. 

The time-dependent response of these multiphase droplets is quite inter- 

esting. Before examining the transient behaviour that accompanies breakup we 

illustrate a typical response to a step change in shear rate for a uniaxial exten- 

sional flow. As discussed in Section 3, a globule placed in such a flow, deforms 

into a prolate spheroid (D > 0). At steady-state, the recirculating flow set up 



in the annular region creates a biaxial extensional flow so that the inner droplet 

deforms into an oblate spheroid (D < 0). However, the approach to this steady 

configuration is quite interesting. Figure loo, bshows plots of the deformation of 

the inner and outer interfaces as a function of time for the case of a step change 

in shear rate from C = 0.04 -+ C = 0.08 in a uniaxial extensional flow. The 

other parameters are X21 = X32 = 1.0,n = 1.0 and n = 0.5. 

The initial response of the globule to the step change in shear rate for a 

uniaxial extensional flow is to lengthen along the z-direct ion. This st retching 

process sets up a transient uniaxial stretching flow internal to the globule that 

results initially in a corresponding stretching of the inner droplet. Because the 

inner droplet has been deformed into an oblate spheroidal shape due to the bi- 

axial character of the initial steady flow, the effect of this transient stretching 

process is to decrease the degree of deformation of the inner droplet. In other 

words, the inner droplet begins with a steady oblate shape and responds to the 

step change by deforming towards a spherical shape. However, as the new steady 

globule shape is approached, the flow in the annular region becomes a recircu- 

latinig vortical motion (see figure 3, Section 3) and the inner droplet once again 

begins to stretch into an oblate spheroidal shape due to the biaxial character of 

the flow. Overall, the outer interface monotonically approaches the new steady 

shape, while the inner droplet relaxes initially then rapidly deforms back toward 

the shape it had prior to the step change. Finally, the inner droplet asymptot- 

ically approaches a new steady shape. The horizontal dashed lines in figures 

10a and l o b  denote the steady shapes observed at C = 0.08 by beginning with 

a spherical initial shape and making small increments in the capillary number 

(AC = 0.005). Clearly, the same steady shape is determined using either large 

or small increments in the capillary number. 

We next address the matter of finite deformation and breakup of compound 

double emulsion droplets. In figure 11 the solid curve shows a complete numerical 

simulation of the steady-state deformation as a function of capillary number 



for a globule suspended in a uniaxial extensional flow (Azl = A3z = 1.0, R = 

1.0 and K. = 0.5). The dashed curve is the equivalent single phase droplet 

deformation. The lowest solid line is the absolute value of the deformation of 

the inner droplet. Numerically generated shapes are also shown. The numerical 

simulation is stopped when a steady shape is no longer calculated and the globule 

begins to stretch. The symbols are the theoretical results of Section 3. 

This simulation is very informative. As mentioned above, the small defor- 

mation theory of Section 3 provides a good approximation to the actual defor- 

mation at small capillary numbers. Next, notice how the deformation is affected 

by the presence of the occluded particle. Initially, the deformation of the globule 

is significantly larger with the occluded droplet present than without it present. 

The increased deformation is maintained until the critical capillary number is 

approached. At C = 0.116 the globule begins to undergo a continuous stretching 

process so that breakup is characterized in this case by nonexistence of a steady 

drop shape. The numerics clearly indicate that the critical capillary number for 

breakup is lower with the inner droplet present than without it present. This 

was suggested by the small deformation analysis and stated first by Davis & 

Brenner (1981). However, it should be clear that the linear analysis presented 

in Section 3 is no longer valid near the critical capillary number as finite defor- 

mation has occurred. Also, the numerics indicate that the globule has a slightly 

more extended final steady shape with the occluded droplet present. However, 

the difference relative to the single phase droplet behaviour is small and because 

the determination of the steady shape is difficult as the critical capillary number 

is approached, the result mainly indicates that the overall globule shape changes 

very little due to the presence of the occluded particle. Nevertheless, it is easier 

to break. In this simulation the critical capillary number necessary for breakup 

is reduced by approximately five percent. 

Finally, it is interesting to examine the deformation of the inner droplet. 

The inner droplet monotonically deforms until near the critical capillary num- 



ber where its deformation levels off and then even decreases slightly. Overall, 

however, there is very little deformation since the radius of curvature is small 

and the flow strength internal to the globule is damped due to viscous dissipa- 

tion. The steady-state velocity field in the annular region will still be biaxial in 

nature. Nevertheless, the leveling off of the deformation is due to a combination 

of hydrodynamic interaction between the finitely deformed fluid-fluid interfaces 

and the effect the deformed interface shapes have on the velocity field internal 

to the globule. 

The time-dependent breakup process for the droplet considered in figure 

11 is very interesting. In order to examine the dynamics of breakup, figure 12 

L presents a plot of the dimensionless globule length, >-, as a function of time 

at the critical capillary number (the solid curve). The evolution of the dimen- 

sionless i ~ e r  droplet length, A R2 is also plotted in this figure (the dashed 

curve). Numerically generated shapes are shown. Similar to the stretching of a 

single phase droplet, the extension is very slow initially. The extended character 

of the globule is similar to the breakup of single phase droplets at the critical 

capillary number. The midsection becomes cylindrical and as the globule be- 

comes more extended it stretches more rapidly. The most important feature 

to notice is that as the globule begins to stretch, characteristic of nonexistence 

of a steady shape, the flow field internal to the globule is extensional so that 

the inner droplet also begins to lengthen and deforms into a prolate spheroidal 

shape. However, the thinning of the globule occurs more rapidly than the the 

inner droplet can deform and the result is the formation of a very thin film be- 

tween the two interfaces. Shortly after the final shape illustrated, the numerical 

scheme begins to introduce unrealistic oscillations on the inner surface. Addi- 

tional collocation points are necessary to accurately describe the variations in 

interfacial velocity and stress that occur for these elongated globules with thin 

films between the surfaces. The formation of a thin film configuration suggests 

the possibility of breakup of this extended globule due to fracture at the middle 



induced by the presence of the inner droplet. It might have been expected if the 

inner droplet also began to stretch, that at later times, the globule would begin 

to approach a configuration similar to a concentric multiphase fluid cylinder. 

However, it appears that breakup due to pinching about the occluded particle 

occurs instead. 

In figure 13 we present another complete simulation of the steady-state 

deformation curve for a double emulsion drop in the case Xzl = 1.0, Xa2 = 

10.0,n = 1.0 and K. = 0.5. Here we specifically examine the effect of a large 

viscosity of the occluded particle. The two solid curves represent the deformation 

of the outer and inner surfaces. The short dashed line is the deformation of a 

single phase droplet with X = 1.0 and the long dashed line is the deformation of a 

single phase droplet with X = 10.0 (for single phase drops X represents the ratio 

of drop fluid viscosity to suspending fluid viscosity). Notice that the critical 

capillary number for breakup of the globule is bounded by the single phase 

droplet results. Also, the inner, droplet is observed to deform monotonically 

until the critical capillary number is approached at which point the deformation 

levels off and decreases a little. This is similar to the deformation shown in figure 

12. It is also interesting to notice how the single phase drop with X = 10.0 is 

initially less deformed than the double emulsion droplet, but as the capillary 

number is increased the single phase drop deforms more and breaks at a lower 

capillary number. 

The effect of changing X32 is illustrated clearly in figure 14. Although 

the magnitude of the final steady-state deformations differ by a small amount, 

this calculation is very difficult and time-consuming close to the breakup point 

and presumably the actual differences are small. Nevertheless, at any given 

capillary number the globule (DoUte,) is more deformed for larger viscosities of 

the internal droplet, as suggested by the small deformation analysis. Also, it is 

evident that as the viscosity of the inner droplet is increased the critical capillary 

number needed for breakup of the globule decreases. The breakup occurs via 



the continuous stretching process characteristic of the nonexistence of a steady 

shape, as shown in figure 12. 

In figure 15 we examine the deformation and breakup of a globule con- 

taining a large internal droplet. For this simulation we choose n = 0.8, Xzl = 

1.0, X32 = 1.0 and 0 = 1.0. In this case, the surfaces are separated initially 

by a small amount and it might be expected that any finite deformation can 

have a significant effect. On the plot of deformation versus capillary number, 

numerically generated globule shapes are included to illustrate the interfacial 

evolution. As in previous figures the effect of the uniaxial extensional flow is 

to deform the outer drop into a prolate spheroidal shape while the inner drop 

becomes oblate spheroidal. However, in this case, the numerics predict that at 

the globule center, the two interfaces make contact at C = 0.066. The calcu- 

lations are stopped at this point. Physically, the numerical contact of the two 

interfaces suggests breakup of the globule as a consequence of the inner droplet 

breaking through the outer surface. The breakup of the globule occurs in this 

case without any large scale stretching. Although the numerics cannot capture 

the actual breakup process since intermolecular forces that become very impor- 

tant at small separations are not included, this example demonstrates a second 

mechanism of globule breakup. 

The effect of n on the globule deformation and the critical capillary number 

for breakup is illustrated in figure 16. Clearly, the conjecture, based on the 

small deformation analysis, that the presence of the occluded particle leads to 

lower capillary numbers for breakup, is indeed true. However, as illustrated in 

figure 15, the very low capillary number breakup suggested for n = 0.8 is not 

a consequence of large deformation of the globule, but rather occurs due to the 

inner drop making contact with the outer surface. 

Finally, we consider the case of a globule suspended in a biazial extensional 

flow. Figure 17 shows the deformation versus capillary number plot and also 

presents intermediate steady shapes typical of the deformat ion process. The 



parameters chosen are Xzl = X3z = 1.0, n = 0.5 and fl = 0.1. In this case 

the biaxial flow deforms the globule into an oblate spheroidal shape and the 

steady uniazial flow established in the annular region deforms the inner drop 

into a prolate spheroidal shape. Because lower capillary numbers are needed 

for breakup of a droplet in uniaxial extensional flows we have purposely cho- 

sen a low value of n. Clearly, the outer droplet deforms very little. However, 

viscous stresses generated internal to the globule stretch the occluded droplet 

into a rather extended prolate spheroid. Even though the flow is damped in 

the annular region, the low value of coupled with the uniaxial nature of the 

flow field in the annular region produces a large distortion of the inner droplet. 

The deformation of the inner droplet is approaching the most highly deformed 

steady shape observed for a single phase drop suspended in an unbounded uni- 

axial extensional flow. This suggests that the inner drop may undergo breakup 

even though the outer drop is itself not very deformed. Shortly after the final 

steady shape shown the numerical scheme begins to break down and additional 

collocation points and a smaller time step are necessary to continue the calcu- 

lat ions further. Nevertheless, this example illustrates that, in some instances, 

the effect of flow-type coupled with the flow-induced deformation internal to the 

double emulsion droplet can produce large distortions. 

5. CONCLUSIONS 

The analytic and numerical results presented above are very informative 

with regard to the deformation and possible breakup mechanisms of double 

emulsion droplets in extensional flows. In addition, the simulations provide 

insight as to when analogies with single phase droplet behaviour may be useful. 

The most import ant observations are: 

(1) The effective viscosity of a dilute emulsion of these drops behaves like a 

suspension of solid spheres in the limit of almost equal-sized inner and 

encapsulating drops, n + 1. 

(2) A uniaxial extensional flow deforms the globule into a prolate spheroidal 



shape while the steady recirculating flow generated in the annular region 

deforms the occluded drop into an oblate spheroidal shape. The reverse 

holds for a globule placed in a biaxial extensional flow. 

(3) The presence of the internal droplet produces breakup at a lower value of 

the capillary number than is necessary if no third phase was present. Also, 

as the viscosity of the occluded phase is increased, the critical capillary 

number for breakup decreases. 

(4) For n < 0.5 breakup of the globule occurs by a continuous stretching mode. 

However, for n w 0.8 the inner and outer interfaces make contact even 

though the globule is not very deformed. This suggests an alternative mech- 

anism for breakup. 

(5) The application of a biaxial flow produces a uniaxial flow internal to the 

globule that is capable of producing large distortions of the occluded drop. 

For a low value of the interfacial tension of the inner drop (n = 0.1), a 

simulation is illustrated suggesting breakup of the inner phase even though 

the outer drop is not very deformed. 
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A P P E N D I X  A 

In this appendix we report the form of the stress fields corresponding to the 

velocity and pressure fields reported in section 111. They are : 

( B 1 * ~ ) ~ + ~ ( B 1 * ~ )  X X ( X * B ~ * X )  
Tl(x) = 2E + - 5 - 20 (c1 *x)x 

75 77 r7 

x(c1 x) I(x C1 x) xx (x -C1*x)  C1 - 20 - 10 
r7 r7 

+ 70 + 4- 
r9 r 5  

x(D1 A x) + (Dl A X)X 
- 3[ r5 I 
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APPENDIX B 

In this appendix we report the form of the tensor functions B 1 ,  C 1 ,  etc. Be- 

cause of the linear nature of the problem each of these functions is proportional 

to the rate-of-strain tensor E and we denote these functions as 

etc. 

The scalar functions B1, C1, etc. are listed below: 

tll + -112 

where 

71 = (4 - 25n3 + 42n5 - 25n7 + 4n1°) + X21(4 - 10n3 + 10n7 - 4n1°) 

72 = (15 - 42n2 + 35n4 - 8n7) + X2i(6 - 14n4 + 8n7) 



Finally, we give the shape functions hzl and ha2 that describe the first 

flow-induced changes in drop shape (see equation 24):  

and 

h32 = 10F2 - (6 + 4X32)F3 - 3n2(1 - X32)H3. 
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FIGURE CAPTIONS 

Figure 1 Concentric double emulsion droplet. Definition of variables. 

Figure 2 Streamlines in and around the compound droplet as a function of the 

internal droplet size, X21 = = 1.0. (a) n = 0.2; (b) n = 0.5; (c) 

n = 0.8. 

Figure 3 Deformation of a double emulsion droplet in a uniaxial extensional flow; 

C = 0.0,0.04,0.08,0.12. 

Figure 4 Deformation of a double emulsion droplet in a biaxial extensional flow; 

C = 0.0,0.04,0.08,0.12. 

Figure 5 Overall globule deformation DoUte, as a function of capillary number. 

n = 0.1,0.3,0.5 and 0.7. The n = 0.7 curve is stopped when the 

analysis predicts that the interfaces overlap. 

Figure 6 Deformation of the inner and outer droplets due to varying X32. (a),(b) 

n = 0.5; (c),(d) n = 0.1. x~~ = 1.0, n = 1.0. 

Figure 7 Deformation of the inner and outer droplets due to varying X z l .  (a),(b) 

n = 0.5; (c),(d) n = 0.1. ~ 3 2  = 1.0, n = 1.0. 

Figure 8 The velocity profile in the annular region of the globule in the limit 

n -r 1.0. n = 0.95. The boundary of the globule acts effectively as a 

noslip surface in this limit so that a dilute emulsion of these droplets 

behaves as a suspension of rigid spheres. 

Figure 9 A comparison of numerical and theoretical predictions for globule de- 

formation and wide range of parameter values. (a) DoUte, vs. C 

(b)Dinner vs. C. Typically agreement is good at low capillary num- 

bers, but worsens as the capillary number, and hence the deformation, 

increases. 

Figure 10 Time-dependent response of the globule deformation to a step change 

in shear rate, C = 0.04 -* C = 0.08. (a) DoUte, vs. time (b) Dinner 

vs. time. The dashed horizontal line indicates the steady state estab- 

lished by approaching C = 0.08 using small increments in the capillary 



number. Xzl = 1.0, XQ2 = 1.0,fl = 1.0, n = 0.5. 

Figure 11 Complete numerical simulation of deformation as a function of the 

capillary number in a uniaxial extensional flow. Xzl = Xg2 = 1.0, = 

1.0, n = 0.5. Several numerically generated steady shapes are included. 

The upper solid line represents DoUte, vs. C, the lower solid line r e p  

resents IDinnerl vs. C and the symbols are predictions of the small 

deformation theory. The dashed curve represents the deformation of a 

single phase droplet of comparable viscosity. The curves are stopped 

when breakup is indicated by continuous stretching of the droplet. 

Figure 12 Globule length versus time for elongation at a slightly supercritical 

capillary number. The solid curve is the globule length L>y and the 

dashed curve is the length of the inner droplet *. 
Figure 13 Double emulsion deformation a s  a function of capillary number for a 

viscous occluded particle. = 1.0,Xg2 = 1 0 . 0 , ~  = 0.5 and fl = 

10.0. The solid curves are the outer and inner droplet deformations 

respectively. The short dashed line is a single phase droplet with X = 

1.0 and the long dashed line is a single phase droplet with X = 10.0. 

Figure 14 The effect of Xg2 on drop deformation and the critical capillary number 

for breakup. X21 = 1.0, fl = 1.0 and n = 0.5. 

Figure 15 Deformation as a function of capillary number for a large internal 

droplet. X21 = Xa2 = 1.0, fl = 1.0 and n = 0.8. 

Figure 16 The effect of n on the deformation as a function of capillary number 

and effect on the critical capillary number necessary for breakup. The 

curve for n = 0.3 shows the same trends as smaller n and the calculation 

is stopped at an intermediate deformation. 

Figure 17 Deformation of a double emulsion droplet in a biaxial extensional flow. 

Xzl = X32 = 1 . 0 , ~  = 0.5 and fl = 0.1. 
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ABSTRACT 

We discuss the effect surface-active agents have on the deformation and 

breakup of droplets suspended in extensional flows at low Reynolds numbers. 

In order to couple the interfacial tension variation produced by a nonuniform 

surfact ant distribution with the transient, finite deformation of the droplet, the 

boundary integral method is used in conjunction with the convective-diffusion 

equation for surfactant transport. We only examine the case of an insoluble 

surfactant. The results, though not extensive, indicate that at low capillary 

numbers the surfactant causes larger deformations than occur on a clean inter- 

face. The increased deformation occurs due to the surfactant being swept to the 

end of the drop where it acts to locally lower the interfacial tension, which in turn 

requires increased deformation to satisfy the normal stress balance. At larger 

capillary numbers the deformation is observed in some cases to be lower than in 

the surfactant-free case. This appears to be due to the increase in interfacial area 

accompanying finite deformation, which tends to decrease the local surfactant 

concentration, thereby increasing the effective interfacial tension; Finally, the 

formulation allows for an arbitrary equation of state relating the interfacial ten- 

sion to the local concentration of the surface active agent, although calculations 

are only presented for the common linear equation of state. 



1. INTRODUCTION 

It is well-established that interfacial tension variations and/or interfacial 

viscosity and elasticity can have dramatic qualitative and quantitative effects 

on free-surface flows. The drag on a fluid sphere obeying Stokes law rather than 

the ideal Hadamard-Rybczynski result in all but very clean systems, bubble 

migration in a temperature gradient, and the damping of ocean waves due to 

the existence of a thin oil film are just a few examples. Furthermore, it is clear 

that the effects of surfactants must be properly understood if the results of 

fundamental (model) problems are to be useful in real engineering applications. 

In this paper, we will study the effect interfacial tension variations, due to 

the presence of surface-active agents, have on the deformation and breakup 

of Newtonian liquid droplets. 

There have been many previous studies concerned with the effect of surfac- 

tants on drop and bubble motion in quiescent fluids. For example, it is observed 

that even a small amount of surfactant can reduce the terminal and interfacial 

velocity of drops and significantly reduce the rate of solute transport to or from 

the drop. A valuable compendium related to this topic is the classic treatise on 

Ph  ysicochemical Hydrodynamics by Levich (1962). Additional theoretical anal- 

yses of different aspects of this problem have been discussed by Newman (1967), 

Haber & Hetsroni (1971), Saville (1973), LeVan & Newman (1976), and Hol- 

brook & LeVan (1983a,b). A common assumption made in all of these studies 

is to treat the droplet shape as spherical and calculate the steady-state velocity 

and surfactant concentration fields. The small, flow-induced steady deformation 

of a translating drop has been calculated by Sadhal & Johnson (1986). 

A major interest in our laboratory is the deformation and breakup of 

droplets due to extensional flows. This topic stems from G.I. Taylor's classi- 

cal experimental and theoretical studies (1932, 1934) that were motivated by 

an interest in emulsion formation. Although much work has been performed in 

the interim, it focusses mainly on droplet deformation and neglects any effects 



due to such dynamic interfacial properties as surface tension gradients. Theo- 

ret ical efforts, limited to nearly spherical deformations and a uniform interfacial 

tension, are reported by Cox (1969) and Barthes-Biesel & Acrivos (1973), exper- 

imental studies are discussed by Mason & coworkers (e.g., Rumscheidt & Mason 

1961 and Torza, Cox & Mason 1972) and Bentley & Leal (1986), and numerical 

work is presented by Rallison & Acrivos (1978). Two excellent review articles 

describing much of this work have been written by Acrivos (1983) and Rallison 

(1984). 

Recently, we reported on several investigations undertaken in our laboratory 

in order to examine the drop breakup process under well-defined flow conditions 

(Stone, Bentley & Leal 1986 and Stone & Leal 1987, 1988). An experimental 

investigation examined the transient stretching process that occurs at the critical 

capillary number and a combined experimental and numerical study examined 

the relaxation and breakup of these stretched droplets in subcritical flows or 

in an otherwise quiescent fluid. In many cases, the relaxation dynamics are 

sufficient to cause complete fracturing of the droplet and the effect of viscosity 

ratio, capillary number and drop shape are examined. It is demonstrated that 

the relaxat ional mot ion is a consequence of an int erf acial-t ension-driven flow due 

to curvature variations along the surface (the interfacial tension is constant). 

An obvious question, though, is how these motions are affected by dynamic 

interfacial properties; e.g., surface tension variations because of an adsorbed 

surfactant at the fluid-fluid interface. 

The related problem of finite drop deformation, incorporating dynamic in- 

terfacial properties, has received very little attention in the literature. To our 

knowledge, the only study which addresses this question is reported by Flumer- 

felt (1980). Flumerfelt examined the deformation and orientation of nearly 

spherical drops in simple shear and extensional flows incorporating interfacial 

tension variations as well as effects due to surface shear and dilational viscos- 

ity. Related experiments in simple shear flow are reported by Phillips, Graves 



& Flumerfelt (1980). Clearly, because the analysis is restricted to small de- 

formations, it is difficult to extract information about drop breakup, since this 

necessarily involves finite deformation. 

The great difficulty in treating these free-boundary problems stems from 

the a priori unknown location of the fluid-fluid interface. The presence of sur- 

fact ants complicates matters further because the distribution of surfact ant is 

intimately coupled to the drop shape and interface mobility, which in turn af- 

fect the time-dependent evolution of the drop shape. In order to properly solve 

such free-boundary problems it is necessary to couple equations describing the 

fluid motion to the boundary conditions at the fluid-fluid interface. Included in 

such a formulation must be a prescription of the interface behaviour. A rigorous 

discussion of the dynamics of a fluid interface is given by Scriven (1960) and 

Aris (1962). The interface is treated as a two-dimensional surface and the time- 

dependent effects associated with interface deformation are explicitly included. 

Unfortunately, due to the complexity introduced because of the coupling 

of the partial differential equations describing both the bulk fluid motion and 

the interface evolution, analytic methods have only been applied to rather well- 

defined problems where the interface departs very little from its equilibrium 

shape. In addition to the work of Flumerfelt (1980) on small droplet defor- 

mation, Quinn & Saville (1974) and Whitaker (1976) have used linear stability 

analysis to study the effects of various interfacial properties on the evolution of 

infinitesimal disturbances on a cylindrical thread of fluid. 

In this paper, which is concerned with finite drop deformation and drop 

breakup, we will neglect any effects of interfacial shear or dilational viscosity 

and only consider effects that arise because of interfacial tension variations due 

to presence of adsorbed surfactant on the fluid-fluid interface. We will also 

restrict our examination to the case of insoluble surfactant. In this case the 

surfactant has an extremely low solubility in either of the bulk phases so that it 

may be assumed to reside only at the fluid-fluid interface. 



Even with these restrictions, there is a large class of flows related solely to 

effects due to interfacial tension. A classic, general review of different aspects 

of int erfacial-tension-driven flows is provided by Levich & Kry lov (1958). As 

discussed by these authors there exist two distinct classes of motion associated 

with interfacial tension. The first, so-called Marangoni flows, are much discussed 

in the literature and arise due to variations in interfacial tension along the 

boundary. This produces an unbalanced tangential stress that drives the motion. 

The second class of motions arise due to changes in curvature along the boundary 

(interfacial tension is constant). These produce unbalanced normal stresses that 

drive motion. In the case of droplet deformation examined here both mechanisms 

come into play. 

In this paper interfacial tension variations are produced by gradients in sur- 

factant concentration. Alternatively, temperature gradients can produce vari- 

ations in interfacial tension that result in several well-known examples of fluid 

mot ion: bubble rnigrat ion in a temperature gradient (Young, Goldstein & Block 

1958) and cellular Marangoni convection (Pearson 1958). The effect of finite 

deformation due to drop motion normal to a solid planar boundary as a result 

of a prescribed temperature gradient is examined numerically by Ascoli & Leal 

(1988). 

It is interesting to note that the dynamical effects and fluid motions pro- 

duced by interfacial tension gradients have proven useful in fluid mechanical 

modelling of cell division and cell motion (Greenspan 1978 and Sapir & Nir 

1985). Greenspan provides a vivid experimental illustration of drop breakup 

caused by surface tension variations along the surface produced by the deliber- 

ate addition of a surfactant. Sapir & Nir have applied the boundary integral 

method in order to examine aspects of the mechanism of cell cleavage using ideas 

similar to those discussed by Greenspan. 



2. PROBLEM STATEMENT 

Consider a Newtonian liquid droplet, undeformed radius a, density 3, viscos- 

ity ji suspended in a second immiscible Newtonian fluid, density p and viscosity 

p,  undergoing an axisymmetric extensional flow characterized by the shear rate 

G. The fluids are isothermal. The fluid-fluid interface is assumed to be charac- 

terized completely by the interfacial tension a and all stresses associated with 

the rate-of-deformation of the interface (surface shear and dilatational viscosity) 

are neglected. The interfacial tension, though, may vary with position along the 

interface due to the presence of adsorbed surface-active material. The surfactant 

is assumed to be insoluble in either the droplet fluid or the suspending fluid so 

that convection and diffusion of surfactant in the bulk phases may be neglected. 

Therefore, with the exception of o, all fluid properties are treated as constants. 

We begin by assuming that the Reynolds numbers characterizing motion 

in both fluids are small so that inertia may be neglected completely and the 

quasi-steady Stokes equations apply for both fluid phases. The low Reynolds 

number assumption is valid for the small droplets typical of many industrial 

applications. In order to be consistent with our prior studies concerning drop 

breakup, it is convenient to nondimensionalize all velocities by u, = F, lengths 

by the undeformed drop radius I, = a, pressures by p,  = ?,$, = and 

times by t ,  = z. Here o, represents a mean value of the interfacial tension 

(defined more precisely below). The governing equations for the velocity and 

pressure fields (u,p) in the suspending fluid and in the droplet fluid (h,$) are 

The velocity far from the droplet is an axisymmetric extensional flow 



where the + sign corresponds to a uniaxial extensional flow, the - sign corre- 

sponds to a biaxial extensional flow and the capillary number, C = 9, provides 

a measure of viscous forces tending to deform the droplet relative to interfacial 

tension forces tending to maintain the droplet spherical. 

At the fluid-fluid interface continuity of velocity and the stress balance may 

be written as 

u = i i  for x, E S 

and 
0 0 

n T - An T = -n(V, n) - V,(-) for x, E S. 
00 00 

(4) 

In these equations x, represents a point on the fluid-fluid interface S, n 

is the unit outward normal directed from the droplet phase to the continuous 

phase (see figure I), V, n is the mean curvature of the interface, V, is the 

surface gradient operator (V = (I - nn) V) and = $ denotes the viscosity 

ratio of the two fluids. 

The interface evolves according to the kinematic condition, which may be 

written as 

The interfacial tension o depends on the local concentration I" of surfac- 

tant, which generally acts to lower the interfacial tension and is given by an 

equation of state 

Here I" denotes a dimensional surface density, i.e., the mass of surfactant per 

unit .of interfacial area. 

The effect of interface mobility and flow-induced drop deformation will 

change the distribution of surfactant on the interface. The changes in surfact ant 

concentration at a phase interface are governed by a time-dependent convective- 

diffusion equation that may be written in the dimensionless form (Aris 1962) 



where the surfactant concentration I' has been made dimensionless with respect 

to a mean value I?, (I' = E) ,  u, represents the velocity tangent to the interface 

(u, = (I - nn) u) ,  a is the determinant of the surface metric tensor and j, 

represents the dimensionless net flux of surface-active material to and from the 

interface from either of the bulk phases. The importance of convection relative 

to diffusion is measured by a surface Peclet number 

where D, is the surface diffusivity. The fourth term in equation (7) is a source- 

like contribution to the surface-equivalent of the convect ive-diffusion equation 

and accounts for changes in the local surface concentration due to stretching 

and contraction of the interface (i.e., the total interfacial area changes as the 

drop deforms). For the case of insoluble surfactant to be studied here, j, = 0. 

Equations (1)- (7) clearly indicate the difficulty in solving problems where 

surface-active agents are important. Determination of the interfacial velocity 

field requires knowledge of the distribution of surfact ant which, in turn, necessi- 

tates knowledge of the interfacial velocity. The free-boundary character of this 

problem is an additional nontrivial complication as the interface location is a 

priori unknown and must be found as part of the solution to the problem. 

The problem is completely formulated by specifying an equation of state 

(equation 6). Although, in principle, the numerical procedure described in Sec- 

tion 3 could incorporate any functional form of a = o(I'*), we will focus on 

well-known (and simple) approximations. If the surfactant is present in dilute 

concentrations, then a linear relationship exists between a and r*, which is 

typically written as (Adamson 1976) 

where 7r is known as the "spreading pressure", R is the gas constant, T is the 

absolute temperature and o,,~vent is the interfacial tension of the clean interface. 



This simple equation of state has been used widely by prior researchers who have 

examined the effects of interfacial tension gradients on the drag and interface 

mobility of rising drops, etc. Because of the form of this equation it is often called 

the two-dimensional gas law. Other relations between o and I?* are possible. For 

example, in order to account for nonideality (e.g. the finite area occupied by the 

surfactant molecules in addition to intermolecular forces), versions of equation 

(7) similar to the well-known Van der Waals equation of state are written as 

where A represents the area per molecule, A = +, A0 is the excluded area 

per molecule and v accounts for the attraction between surfactant molecules 

(Adamson 1976). Clearly, the more complicated the equation of state, the more 

parameters are necessary to specify the problem completely. Therefore, we re- 

strict ourselves to the linear equation (9). 

If I', represents a characteristic surfactant concentration then the choice of 

the characteristic value of the interfacial tension o0 = a(I',) is 

We choose I', to be the surfactant concentration on the initially uniformly con- 

taminated surface. In dimensionless form the equation of state is 

and 

RT is a physicochemical parameter that provides a direct measure where p = o,:l.., 

of changes in interfacial tension that occur for a given change in surfactant 

concentration. Given the form of the equation of state we also require 0 5 P 5 1. 

Notice that the capillary number defined here using the interfacial tension of the 



contaminated surface is related to the capillary number of the clean interface 

If we wish to focus attention on effects due to /3 and Pea alone, then C is the 

proper definition of the capillary number for a droplet initially uniformly covered 

by surfactant. 

We wish to solve this coupled drop deformation and surfactant transport 

problem. In this paper, we will consider an initially spherical drop with uni- 

formly distributed surfact ant, concentrat ion I' ,; i.e., a dimensionless concentra- 

tion I' = 1. We examine the deformation of the droplet in a uniaxial exten- 

sional flow with a goal of understanding the coupled effects of C, Pea and p. 
As discussed by Rallison (1981) the calculations with X = 1.0 should provide 

qualitative insight into the behaviour for all viscosity ratios so here we limit our 

calculations in this paper to X = 1.0. The numerical method for solving this 

problem is outlined in Section 3. 

It is convenient to characterize the degree of drop deformation using a single 

scalar parameter. In this study we will focus on modest deformation beginning 

with a spherical initial shape and it is appropriate in such instances to define 

the deformation parameter D = H, where L and B represent the half-length 

and half-breadt h of the drop, respectively. 



3. NUMERICAL METHOD/IMPLEMENTATION 

In this section we will discuss the numerical procedure used to solve this 

coupled free-boundary and surface transport problem. It should be emphasized 

that there have been very few calculations performed to determine the effect of 

surfact ant transport on drop deformation in extensional flows. To our knowledge 

the only calculation is due to Flumerfelt (1980) who studied the surfactant 

distribution for a drop that is spherical and then used the imbalance in normal 

stresses to calculate the first (small) correction to the drop shape. Flumerfelt 

also allowed for elasticity of the interface and incorporated mass transfer from 

the bulk fluids. 

The numerical procedure described here accounts for finite deformation 

of the interface and could be used to study the effect of surface-active agents 

on rising drops and bubbles. In such cases, although the entire effect is due 

to the existence of surface tension gradients, very little deformation occurs, 

and the numerical results may not prove very insightful. However, flows that 

are predominantly extensional are capable of producing large distortions to a 

deformable microstructure, even in the absence of surface tension gradients, and 

it is in these situations that the formulation described below is most useful. 

In Section 3.1 we describe the calculation of the interfacial velocity and 

outline the procedure used to discretize and represent the drop surface. The 

convective-diffusion equation is examined in detail in Section 3.2 and is sim- 

plified to a form suitable for this axisymmetric problem. The coupling of the 

unknown drop shape and the evolving surfactant distribution makes solution of 

the simultaneous system of equations extremely difficult, so in Section 3.3 we 

outline an approximate procedure for numerically solving this problem. 

3.1 Calculation of the interfacial velocity 

using the boundary integral method 

The boundary integral method is a powerful technique for solving Stokes 

flow problems. It is particularly well-suited for free-boundary studies since only 



the boundary of the domain must be discretized and the interfacial velocity is 

calculated directly. 

The first application of the boundary integral method to Stokes flow prob- 

lems was presented by Youngren & Acrivos (1975) in a study of streaming flow 

past arbitrary solid bodies. The technique was generalized to studies of droplet 

deformation by Rallison & Acrivos (1978) and, since that time, has been used 

by many investigators for a wide-range of free-boundary studies. For example, 

the motion of particles normal to a deformable fluid-fluid interface has been 

discussed by Lee & Leal (1982) and Stoos & Leal (1988), the mechanism of 

breakup has been investigated by Stone & Leal (1987,1988), drop deformation 

and breakup in electric and magnetic fields has been discussed by Sherwood 

(1987), multiple droplet interactions have been described by Higdon & Schnep- 

per (1987) and the application of the method to peristaltic flows is discussed by 

Pozrikides (1987). A closely related investigation to the work reported here is 

the numerical study by Ascoli & Leal (1988) of drop migration normal to a solid 

planar wall due to a temperature gradient. 

Following the procedure of Rallison and Acrivos (1978), the interfacial ve- 

locity can be written as 

where 

Here x, denotes a point at the fluid-fluid interface, y is the integration variable 

and u, is given by equation (2). Making use of the normal stress boundary 



condition we can rewrite (14) as 

This integral equation of the second kind highlights the principal advantage 

of the boundary integral method, namely that it is only necessary to compute 

tw-dimensional surface integrals rather than performing calculations over the 

entire three dimensional fluid domain. Once the interfacial velocity is deter- 

mined the drop shape can be updated using the kinematic condition. Clearly, 

the physicochemical character of the problem enters through (J = o(r) and s, 
which is specified once an equation of state is chosen, so that the solution of 

equation (15) is no more difficult for more complicated equations of state. How- 

ever, in this study, we will just examine the linear relation discussed in Section 

2. 

The solution of this integral equation for the interfacial velocity must be 

accomplished numerically. The approach taken is to first discretize the interface, 

write the integral equation at each node point and reduce (15) to an equivalent 

set of linear algebraic equations that is straightforward to solve using Gaus- 

sian elimination. Assuming for the moment that the surface concentration I? is 

known, there are three important aspects necessary for an accurate numerical 

solution of this integral equation: (1) the geometry must be accurately repre- 

sented so that the interface curvature, which involves second derivatives, can be 

computed; (2) the functional representation of the unknown velocity field u(x,) 

must be chosen; and (3) accurate evaluation of integrals is required, including 

careful resolution near the singular points y -+ x, where the kernels J and K 

are singular, although the integrals themselves are integrable in the sense of a 

Cauchy principal value. 

We have dealt with these difficulties in a manner outlined in our previous 

investigations of the breakup of highly elongated droplets (Stone & Leal 1987, 
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1988). The results of these studies give us confidence that these aspects of the 

problem are well-resolved. Here we summarize our approach. 

We only consider axisymmet ric drop shapes. Referring to the cylindrical 

coordinate system shown in figure 1, the azimuthal integration in equation (15) 

can be performed analytically. This reduces the surface integrals to line inte- 

grals. Then, the interface is discretized into 2N-2 boundary elements with node 

points placed at the end of each element and u(xa) is assumed to vary linearly 

over each element. At each node point there are two unknown components of 

the interfacial velocity vector (u,, u,). The interface location is parametrized 

using a normalized measure of arclength s (0 5 s 5 1). In this case, the sur- 

face collocation points are labeled using cylindrical coordinates (r, z) and cubic 

splines are used to generate twice continuously differentiable representations for 

r = r (s) and z = Z(S) . Finally, because of the fore-aft symmetry of the flow 

fields, drop shapes and surfactant distributions considered in this paper, the 

number of unknowns is halved and a 2N-2 system of equations and unknowns is 

solved using Gaussian elimination. 

3.2 Calculation of the surfactant distribution 

using the convec tive-diffusion equation 

We first make some general remarks concerning the general form of the 

convective-diffusion equation appropriate for a two-dimensional surface imbed- 

ded in a three-dimensional space. Time-dependent effects are also included. 

In general, the twc+dimensional surface can be represented by x, = xa(vl ,  v 2 )  

where the vQ represent surface coordinates. For a discussion of the differential 

geometry of surface coordinates the reader is referred to McConnell (1957) and 

Aris (1962). The convective term can be written using index notation and the 

summat ion convent ion as 

where the surface velocity ua is defined with respect to the surface base vectors 



a us = u a,, * 8  a, = - a = 1,2 
dva 

and a is the determinant of the surface metric tensor. A differential element of 

surface is related to ii and differential changes in the surface coordinates by 

The surface Laplacian can be written as 

where aaP are the surface covariant components of the surface metric tensor. 

The convective-diffusion equation (7) can then be written in the more com- 

pact form 

where the local time derivative and the source-like term due to changes in in- 

terfacial area have been combined into the first term in equation (20). 

In general the drop surface can be parametrized using the surface coordi- 

nate system ( s ,9 )  where 9  is the azimuthal angle (0 5 9  5 27r) and s is the 

normalized measure of arclength introduced in Section 3.1 (see figure 1). In this 

axisymrnetric problem (20) reduces to 

where r = r ( s ,  t )  , the time-dependent metric a is given by 

and 



Since the surface base vectors a, are not unit vectors, the surface velocity us 

in equation (21) is related to the tangential velocity component u(x,) t = iis 

calculated using the boundary integral technique described in Section 3.1 by (t 

is the unit tangent vector to the surface) 

Therefore, we can write (21) in the relatively simple form 

This is the proper form of the convective-diffusion equation for transport on 

the axisymmetric surface, including effects due to the change in shape of the 

interface with time. 

In order to solve equation@) numerically it is convenient to write it as 

where the coefficients Ai depend on the surface velocity, surface shape and the 

Peclet number. 

We can summarize progress to this point by saying that equation (15) de- 

scribes the interfacial velocity u(x8) if the surfactant distribution is known. The 

tangential component of u(x.) is necessary in equation (22) to determine con- 

vective transport and the normal component is used in the kinematic condition 

to adjust the interfacial shape. Furthermore, the local rate of change of the in- 

terfacial area appears in the first term in equation (22). An approximate method 

for solving this coupled set equations is described next. 



3.3 Approximate numerical solution 

of the coupled system of equations 

The highly coupled drop deformation / surfactant transport problem is 

solved in a step-wise manner. Although the method is approximate, we feel that 

it cont aim the correct "physics." Results described in Sect ion 4.1 demonstrate 

that decreasing the magnitude of the time step does not change the evolution of 

the shape or concentration field, nor does it affect the steady state calculated for 

the small time steps used in this study. Consequently, the simulations presented 

in Section 4 provide the first picture of the evolution of the surfactant concen- 

tration field simultaneously with the drop shape evolution on a finitely deformed 

drop. Such a transient procedure is necessary for an accurate description of drop 

breakup in the presence of surface-active agents. 

The approximate numerical procedure is now described. Given an initial 

surfact ant distribution, equation (15) is solved for the instantaneous interfacial 

velocity field at time t. The interface shape is then updated by solving the 

kinematic condition using an explicit Euler method. This shape is assumed to 

be the correct shape at the new time t + At. To this point the method is the 

same as the one used in our previous studies of drop deformation. 

In order to determine r ( t  + At) on this new shape the convective-diffusion 

equation (22)  is then solved using an implicit Euler method. However, because 

the velocity field corresponding to this new shape is not known, we assume that 

the velocity field at any node point at t + At is well-approximated by the velocity 

of this node point at time t .  Clearly, this is not exactly correct. However, for 

the small time steps used in this study the interface evolves very slowly and this 

method provides a very good approximation to the convective term in equation 

(22). The basic idea is that the evolution of the shape and concentration field 

from one steady state to another steady state occurs on a long time scale relative 

to the time step At. 

In order to actually calculate the surfactant distribution, r(s, t )  is dis- 



cretized using the same grid introduced in Section 3.1 to describe the drop 

surface, equation (23) is written in finite difference form and r(s) is assumed to 

vary quadratically between node points. Therefore, if ri denotes the surfactant 
a3 r  concentration at node point i ,  and at each collocation point can be 

written in terms of ri- 1, ri and I' i+l. Equation (23) is then written in implicit 

form at each node point and the linear system of equation that is produced for 

the surfactant distribution is solved using Gaussian elimination. This procedure 

produces the approximate shape and surfactant distribution at time t + At that 

is then used in equation (15) to calculate a new velocity field, etc. An obvi- 

ous improvement of this method is to use the new velocity field in an iteration 

scheme to determine the concentration field for a given shape. However, since 

the explicit/implicit procedure described above is convergent when the (small) 

time step is decreased (see Section 4.1) we have not tried to further refine our 

technique. 

We should add that using the same stepwise procedure an attempt was 

made .to solve the convective-diffusion equation (23) using an explicit Euler 

method. The numerical solution in this case proved to be very unstable. Using 

the implicit procedure provided a very stable and smooth solution. 

Steady states are calculated by marching along until the normal velocity 

is very small (typically lu nl < 4 x lo-*) at each collocation point and the 

concentration field at any node point changes by a negligible amount between 

two time steps. Typically, we choose N = 15 - 20 node points and a time step 

At = 0.02 -05. The numerical procedure can be monitored as time progresses by 

following the change in volume of the drop and the change in the total amount of 

surfactant, which must remain constant for the case of an insoluble surfactant. 

Typically, volume changes and changes in the total amount of surfactant are less 

than one percent over a thousand iterations. 
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4. RESULTS 

In this section we discuss some of the numerical results we have obtained 

in our study of the effect of surfactants on drop deformation in extensional 

flows. The results are not extensive, but they do indicate that the numerical 

procedure described in Section 3 can resolve both the evolution of the surfactant 

concentration and the drop shape. Also, several interesting physical observations 

are described. 

4.1 Convergence of the numerical method 

To begin with we should test the accuracy of the numerical procedure by 

comparing with known analytic results. Unfortunately, there exists at this time 

no straightforward analytic result. Therefore, we tested the numerical scheme by 

decreasing the magnitude of the time step and comparing the calculated steady- 

state deformations and surfactant concentration distributions at different cap- 

illary numbers. In all cases, for the small time steps used in these simulations, 

the calculations using a smaller time step were identical with calculations per- 

formed with a larger time step. For example, in figure 2 we show the steady-state 

drop deformation D as a function of the capillary number for the case P = 0.9 

and Pea = 10.0. The open squares are the numerical results using a time step 

At = 0.05 and incrementing the capillary number between steady shapes by 

AC = 0.01 and the solid circles are the numerical results with At = 0.025 and 

AC = 0.005. In both cases the numerical scheme smoothly approaches the same 

steady state. In figure 3, we show a similar comparison for the case /3 = 0.1 

and Pea = 10.0. Notice that in figure 2 there is a small difference developing 

at larger values of C. This is a consequence of the evolutionary nature of the 

problem and results from the accumulation of numerical errors in the solution 

using larger values of the time step. With the level of accuracy indicated in 

figures 2 and 3 we use the numerical method to examine the effects of /3, Pe, 

and C on finite drop deformation. 



4.2 Initial observations 

We first present some typical steady deformation results. In figure 4 the 

solid curve is the numerically calculated steady drop shape as a function of the 

capillary number for P = 0.1 and Pe, = 10.0. Numerically generated shapes 

are also shown. For reference, the dashed line is the result for a clean surface, 

p = 0.0. Recall that the capillary number is defined with respect to the inter- 

facial tension of the initial uniformly contaminated undeformed surface so the 

difference between the two curves is solely dependent on interfacial tension vari- 

ations that arise because p # 0. In the case of surfactant, the calculations have 

not been continued until breakup. For each of the intermediate shapes shown, 

the surfactant distribution along the drop surface is shown in figure 5. In figures 

6 and 7 we show additional simulations for the drop shape and surfactant dis- 

tribution for p = 0.7, P e  = 10.0 and in figures 8 and 9 we show the case P = 0.8 

and Pe = 10.0. 

We make a number of observations immediately. First of all, in each of 

the simulations, at low values of the capillary number the deformation in the 

presence of surfact ants is larger than without the surfactant. This difference 

initially increases as the capillary number increases. In figure 5 it is also evident 

that for small values of p the concentration gradient along the surface becomes 

quite large as the deformation and capillary number increase. In the sense 

that the drop shape is more deformed with surfactant than without surfactant, 

the surfactant might be considered, at least qualitatively, to be destabilizing. 

However, as illustrated in figure 8 (and the trend in figure 7 suggests a similar 

effect) as the capillary number is increased further the drop deforms to a lesser 

degree than the clean interface case! As figure 8 shows, at C B 0.107 the 

drop with surfac t a t ,  hence interfacial tension variations, actually has the same 

deformation D as a drop with no surfactant at all! This result is quite striking 

and, in the sense that steady shapes are calculated for capillary numbers greater 

than the critical value necessary for breakup of a surfactant-free drop, the net 



effect of interfacial tension variations appears to be stabilizing. The calculations 

have not been continued until breakup but there is obviously motivation for 

continuing this type of study. 

The striking effect due to interfacial tension variations displayed above de- 

serves comment. The interfacial tension variation along the drop surface is 

affected by the capillary number in two competing ways. The first, direct effect 

of the velocity gradient is to convect surfactant toward the end of the droplet. 

This acts to decrease the interfacial tension near the end and increase the inter- 

facial tension near the center of the drop. At least at small capillary numbers 

the principal effect of this ttconvection moden that lowers the interfacial tension 

in the neighborhood of the end is to require a larger curvature at the end, hence 

more deformation. 

On the other hand, the capillary number also plays an indirect competing 

role due to flow-induced deformation of the drop. As the drop deforms, the 

interfacial area increases. In the case of insoluble surfact ant, the qualitative 

effect of an increase in interfacial area would be to lower the local surfactant 

concentration, hence increase the interfacial tension, thereby making deforma- 

tion more difficult. At least in a qualitative sense, this is what is observed in 

the numerical simulations. Due to the limited number of simulations performed 

at this time, we haven't been able to test this idea further. 

4.3 The effect of Pe, 

In figure 9 we compare steady-state deformation curves for the same value 

of ,8 but different values of the surface Peclet number. Low values of Pe, cor- 

respond to cases where the surface diffusivity is large. In these cases very small 

concentration gradients are observed and the surfactant remains uniformly dis- 

tributed. However, large values of the Peclet number (low surface diffusivity) 

are accompanied by large concentration gradients. The basic observation is that 

at a given value of the capillary number the drop is more deformed for larger 

values of Pe,. Because larger concentrations of surfactant near the end of the 



drop produce a sharp decrease in the interfacial tension, the drop appears to 

compensate by increasing the curvature near the end via increased deformation. 

5 .  CONCLUSIONS 

In this paper we have set out to study drop deformation in extensional flows 

in the presence of surface-active agents. An approximate numerical scheme based 

on the boundary integral method has been developed that appears capable of 

analyzing this t ime-dependent , coupled free-boundary / surfact ant transport 

problem. 

Although the numerical simulation presented are not extensive, the results 

suggest several interesting physical effects, including an apparent stabilizing in- 

fluence of surfactant since steady drop shapes are calculated at capillary num- 

bers greater than the critical capillary number for a surfactant-free drop. Clearly 

these results pose several questions that deserve further attention. 
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FIGURE CAPTIONS 

Figure 1 Schematic of problem: drop deformation in the presence of surface- 

active agent s. 

Figure 2 Testing of numerical procedure. Effect of decreasing the step size from 

0.05 to 0.025. The numerical scheme converges to the same steady 

shape. p = 0.9, P e a  = 1.0. 

Figure 3 Testing of numerical procedure. Effect of decreasing the step size from 

0.05 to 0.025. The numerical scheme converges to the same steady 

shape. p = 0.1, Pe, = 10.0. 

Figure 4 Steady state shape versus capillary number. P = 0.1, Pe, = 10.0. 

Figure 5 Steady state concentration field for the steady shapes shown in figure 

4. 

Figure 6 Steady state shape versus capillary number. P = 0.7, Pe, = 10.0. 

Figure 7 Steady state concentration field for the steady shapes shown in figure 

6. 

Figure 8 Steady state shape versus capillary number. P = 0.8, Pe, = 10.0. 

Figure 9 Steady state concentration field for the steady shapes shown in figure 

8. 

Figure 10 The effect of varying Pea. P = 0.1. 
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CHAPTER 7 

THESIS SUMMARY 



In this thesis we have addressed several free-boundary problems associated 

with drop deformation and breakup at low Reynolds numbers. The major focus 

of this work concerns the mechanism of drop breakup in simple time-dependent 

flows. This topic is discussed extensively in Chapters 2-4 and Appendix 1 using 

both experimental and numerical studies. The ideas and methods developed 

during the drop breakup investigations are then applied to two related problems: 

(1) the deformation and breakup of concentric double emulsion drops in linear 

flows (Chapter 5) and (2) the effect of surfactants on drop deformation (Chapter 

6). Below we summarize some of the important conclusions of our work. 

DROP BREAKUP 

Although the deformation of a liquid droplet has been extensively stud- 

ied for over 50 years, there have been very few careful and detailed studies of 

the drop breakup process, the mechanism of breakup and effects due to time- 

dependent flows. There are basically two reasons for this. First, it has only 

been in recent years that careful experimental studies of the transient breakup 

phenomena, characteristic of highly elongated droplets, have become possible. 

Second, it has also only been in recent years that numerical procedures capa- 

ble of describing time-dependent free-boundary problems have been developed. 

We take advantage of both of these developments to study the drop breakup 

problem with particular emphasis on the interface evolution and the mecha- 

nism of breakup. The investigation of simple time-dependent flows presented in 

this thesis is a necessary first step toward understanding more complicated flow 

situations. 

The experiments are performed in a computer-controlled four-roll mill. As 

part of these investigations a simple digital image analysis scheme has been 

developed to monitor the rapid drop shape changes that occur during the many 

transient experiments performed. The numerical investigation makes use of the 

boundary integral method. The numerical procedure provides valuable insight 

into the dynamics of the breakup process and demonstrates application of the 



boundary integral method to highly distorted drop shapes. 

Included among the experiment a1 studies described in this thesis are the 

stretching of drops at the critical capillary number, the effect of abruptly halting 

the flow with the drop in a highly elongated nonequilibrium state and the effect of 

subcritical flows on drops stretched beyond their maximum steady deformation. 

The subcritical flow studies examine step reductions in shear rate and/or the 

abrupt addition of vorticity to the flow. 

It is demonstrated experimentally that complete fragmentation of a highly 

elongated droplet in an otherwise quiescent fluid may occur due to a determin- 

ist ic interfacial-tension-driven flow established by curvature variations along the 

fluid-fluid interface. Because it is observed that the ends of the drop rapidly 

bulb up and then break off from the central portion of the drop, this process is 

called "end pinching." The experiments are then extended to consider subcritical 

flows and it is observed that an interfacial-tension-driven flow is responsible for 

complete drop breakup in a subcritical flow without large scale stretching of the 

drop. Overall, the relaxation and breakup process depend in a relatively com- 

plicated manner on the interaction of the external flow, which attempts to drain 

fluid from the middle of the drop while simultaneously seeking to continue to 

stretch the drop, and the interfacial-tension-driven flow, which, at least initially, 

is responsible for relaxation of the drop. The interesting feature associated with 

the sudden addition of vorticity to the external flow is the rapid rotation of 

the drop to a new steady orientation followed by relaxation and/or breakup ac- 

cording to the effective flow conditions at the new orientation. When relaxation 

back to a steady state occurs, there is a monotonic approach to the steady state 

and the steady shape established is the same as is observed by starting with a 

spherical initial shape in the subcritical flow. 

A complementary numerical study provides valuable insight into the dy- 

namics of the interface evolution and the flow processes responsible for either 

relaxation or breakup. It is demonstrated that the numerical simulations capture 



both the qualitative and the quantitative features of the breakup phenomena as- 

suming that the interfacial tension is constant along the surface. 

A number of other transient aspects of the deformation and breakup phe- 

nomenon are discussed also. The role of capillary waves during the breakup 

process is examined both experimentally and numerically. Capillary waves only 

appear to play a role in breakup on the midsection of very elongated drops 

when end effects are negligible. In addition, many photographs and numerical 

simulations of complete drop fragmentation are shown throughout this thesis. 

Also, several instances of rather interesting free-surface configurations of the fi- 

nal stages of the breakup are seen to involve a conically tipped thread connected 

to an almost spherical end. 

A comparison of drop deformation and breakup in uniaxial and biaxial flows 

is provided in Appendix 1. The results are discussed in terms of the strong 

flow ideas of microstructure deformation presented by Olbricht, Rallison & Leal 

(1982). 

The net result of the experimental and numerical investigations reported 

in this thesis is a much improved understanding of the drop breakup process. 

Effects of the capillary number, viscosity ratio, flow-type, subcritical flow and 

initial conditions are presented and discussed. 

CONCENTRIC DOUBLE EMULSION DROPLETS 

In Chapter 5, the deformation and breakup of concentric double emulsion 

droplets in linear flows are described. An analytic investigation of nearly spheri- 

cal interfaces is complemented by a complete numerical solution, again using the 

boundary integral method, to study highly deformed globules. Effects of capil- 

lary number, flow-type, the ratio of the different fluid viscosities, and the ratio of 

interfacial tensions are discussed. The main interest is to compare and contrast 

the multiphase drop behaviour with single phase drop results to understand 

when single phase studies may be relevant to the compound drop problem. 

Several interesting observations are made in this free-boundary problem. In 



a uniaxial extensional flow, the outer drop is deformed into a prolate ellipsoidal 

shape while the inner drop is deformed into an oblate ellipsoidal shape. Two 

interesting breakup process are directly related to this flow-induced deformation. 

It is demonstrated that the finite deformation of the globule may cause the inner 

interface to come into contact with the outer interface even though the globule is 

itself not highly deformed. This suggests a mechanism for globule rupture that 

does not involve highly stretched shapes. Furthermore, because of the increased 

effectiveness of uniaxial flows at producing finite deformation relative to biaxial 

flows, a numerical example is shown where the globule deforms very little when 

placed in a biaxial flow, but the inner drop is exposed to a uniaxial flow and 

rapidly becomes very deformed. This suggests that the outer shape may be 

st able, but, nevertheless, the flow-induced deformat ion internal to the globule 

may produce breakup of the internal particle. 

THE EFFECT OF SURFACTANTS ON DROP BREAKUP 

Finally, an introduction to the effect of surfactants on drop deformation is 

provided in Chapter 6. The deformation and surfactant transport problem is 

highly coupled and an approximate numerical solution is described. Although 

the results are not extensive, these calculations are among the first describing 

Marangoni effects on finitely deformed drops. 



APPENDIX 1 

DROP DEFORMATION IN BIAXIAL FLOWS 



1. INTRODUCTION 

In this appendix we present numerical calculations of the finite deformation 

and breakup of Newtonian liquid droplets in biaxial extensional flows at low 

Reynolds numbers. The boundary integral method is used to determine steady- 

state drop shapes as a function of the capillary number. In addition, the ability 

of the numerical method to investigate time-dependent free-boundary problems 

and highly distorted drop shapes is used to examine some unsteady aspects 

of the dynamics of the deformation and breakup process. For completeness, 

comparison with the small deformation theory of Barthes-Biesel and Acrivos 

(1973) is included. These results provide a nice extension to the study of a 

bubble in a biaxial extensional flow at finite Reynolds numbers presented by 

Kang & Leal (1988) and to the relatively well-studied problem of a drop in a 

uniaxial extensional flow at low Reynolds numbers (for example, see Rallison & 

Acrivos 1978). 

The study of drop deformation in biaxial extensional flows has received 

very little attent ion in the literature. Nevertheless, the problem is meaningful 

physically as an example of the general class of linear flows where extension 

occurs predominantly in two orthogonal directions and, as discussed by Hinze 

(1955) and Lewis & Davidson (1982), this problem should be considered to 

better understand bubble and drop breakup phenomena. In addition, biaxial 

flows are approximated in the region where two impinging jets meet. 

As far as we are aware, the only calculations for the deformation characteris- 

tics of drops in biaxial extensional flows are due to Frankel & Acrivos (1970) and 

Barthes-Biesel & Acrivos (1973). Frankel & Acrivos performed a perturbation 

analysis for nearly spherical droplets of arbitrary ratio of dispersed to continuous 

phase viscosity and predicted the first small deformation effects produced by the 

flow. Barthes-Biesel & Acrivos extended the analysis to higher order in the small 

deformation parameter. In addition, Frankel & Acrivos performed a full numer- 

ical solution for the arbitrary deformation of a bubble. Clearly, there remain 



many questions regarding the finite deformation and actual breakup process for 

drops in biaxial flows at low Reynolds numbers. For example, the mechanism of 

breakup, the effect of viscosity ratio and time-dependent features of the breakup 

process are all interesting, though unanswered, questions. 

This scarcity of work was one of the primary motivations for the recent study 

of Kang & Leal (1988). These authors examined time-dependent features of the 

bubble deformation and breakup process for Reynolds number, R ,  0 5 R 5 200. 

One of the main conclusions of their study was that no critical shear rate for 

the nonexistence of steady-state solutions was found, at least for the range of 

shear rates examined. Indeed, their calculations at zero Reynolds numbers did 

not locate a critical capillary number for bubble breakup in spite of the fact that 

the drops were highly deformed. 

One obvious extension of this work is to examine the case of liquid droplets. 

At low Reynolds numbers this task is accomplished in a straightforward manner 

using the boundary integral method. Additional insight offered by such a study 

is to compare droplet deformation and breakup behaviour in biaxial flows with 

analogous behaviour in uniaxial extensional flows. This provides an interesting 

comparison of effects due to a change of the flow-t ype. 

It is well known that at low Reynolds numbers the effect of vorticity in the 

undisturbed flow acts to inhibit drop breakup. This was first recognized by G.I. 

Taylor in the 1930s. Taylor demonstrated' that droplets of any viscosity ratio 

could be made to burst in a two-dimensional extensional flow but droplets that 

were approximately four times as viscous as the suspending fluid could not be 

burst in a simple shear flow. This flow-type effect is easily understood as an 

interaction between rate-of-strain of fluid elements, which produces stretching, 

and rotation of fluid elements, which effectively inhibits breakup. Recently, 

these ideas were extended to the entire spectrum of two-dimensional linear flows 

by Bentley & Leal (1986). In the study reported here, however, a difference in 

flow-type does not arise because of vorticity in the undisturbed flow. Rather, 



calculations of drop deformat ion in biaxial extensional flows can be compared 

with uniaxial extensional flows to study the effect of changing the principal 

directions of extension. In this case, as we shall see, the effect of the two different 

flows is only evident after the drop has undergone finite deformation. 

A general framework for examining the effect of a given external flow on 

a deformable microstructure is presented by Olbricht, Rallison & Leal (1982). 

An extension of some of these ideas to the breakup of slender drops is discussed 

by Khakhar & Ottino (1986). The formulation of Olbricht e t  al. incorporates 

both the kinematics of the flow field and a description of the deformation and/or 

orientation of the suspended microelements (in this case drops). The objective of 

such an analysis is to delineate "strong" flow conditions. These flow conditions 

are capable of producing large distortions to a suspended microstructure. The 

theoretical developments are predicated on two models of the microstructure: (I) 

a vector model that characterizes the rateof-change of the length and orientation 

of the suspended particles and (2) a second order tensor model that describes the 

first flow-induced deviations of the structure from isotropy. In principle, both 

models are limited to describing small deviations from a rest state configuration. 

We will compare our numerical results of the finite deformation of drops in 

biaxial and uniaxial flows with the strong flow results of Olbricht, et al. 



2. NUMERICAL PROCEDURE 

The boundary integral method described in previous chapters is used to 

study this time-dependent free boundary problem. Before discussing the results, 

a few remarks about the numerical procedure are required. 

All variables are nondimensionalized as described in Chapter 3. For ex- 

ample, the characteristic velocity is chosen as u, = ; and the characteristic 

time as t ,  = where a, p and a represent the interfacial tension, suspending 

fluid viscosity and undeformed drop radius, respectively. The capillary nurn- 

ber, C = 9, (G is the local shear rate) provides a measure of viscous forces 

causing deformation of the drop relative to interfacial tension forces that resist 

deformation and X = f where fi is the viscosity of the droplet phase. The ex- 

ternal velocity field is described by equation (3) in Chapter 5 where the - sign 

corresponds to the biaxial flow field studied here. 

The drop surface is parametrized using a normalized measure of arclength 

s, 0 5 s 5 1 (see figure 1). The collocation points along the discretized inter- 

face are labeled using the cylindrical coordinates (r, z )  and twice continuously 

differentiable representations for r(s) and z(s) are generated using cubic splines. 

Every few iterations the collocation points are evenly redistributed based upon 

arclength along the surface. This minimizes convection of the collocation points 

that leads to uneven element distribution, which in turn results in poor resolu- 

tion of the interface shape, and is a principal cause of numerical difficulties. For 

the steady-state calculations presented here the number of boundary elements 

N chosen typically is N = 20, although for the highly deformed shapes charac- 

teristic of the unsteady stretching process that occurs at the critical capillary 

number, we choose N = 30. 

The steady-state results for the drop deformation D as a function of capil- 

lary number are determined by beginning with a spherical shape and C = 0.01. 

The steady state is established when the normal velocity at each of the colloca- 

tion points is very small so that minimal changes in drop shape are occurring. 



Typically, we require lu -nl < 6 x After a steady shape is established, the 

capillary number is incremented ( AC = 0.01) and the steady shape at the old 

value of the capillary number is used as the new initial condition. 

The accuracy of the method can be checked by comparing with the small 

deformation theory of Barthes-Biesel & Acrivos (1973) and the drop volume is 

monitored as a function of time. Typically, the drop volume changes by less than 

a percent over a thousand iterations, but as the drop becomes highly deformed 

or the viscosity ratio is made significantly lower than O(1) larger volume changes 

occur. 

A convenient scalar measure of distortion for modestly deformed drops is 
L B  the deformation parameter D = where L is the half-length of the drop and 

B is the half-breadth. Here we measure the length in the r-direction so that 

D > 0 for the oblate spheroidal shapes formed by the biaxial flows. When the 

drop becomes highly deformed a more convenient scalar measure of distortion 

is the dimensionless drop length $. 



3. RESULTS / DISCUSSION 
In this section we summarize our numerical observations of drop deforma- 

tion and breakup in axisymmetric biaxial flows. Throughout this discussion 

we compare the results with the deformation of drops in uniaxial flows and we 

make reference to the strong flow ideas of microstructure deformation described 

by Olbricht, Rallison & Leal (1982). 

3.1 Steady-state calculations 

In figure 2 the steady-state drop deformation D is plotted as a function of 

the capillary number for X = 1.0. The solid line is the result of the numerical 

simulation, the short dashed line the result of the 0 (C) theory of Barthes-Biesel 

& Acrivos (1973) and the long dashed line is the O(C2) theory. Several numer- 

ically calculated drop shapes are shown. The second order theory is continued 

up to the turning point. Beyond this point Barthes-Biesel & Acrivos report that 

the solutions are unstable, although it should be noted that the results given 

in Barthes-Biesel & Acrivos for the critical capillary number do not agree with. 

the analytic calculations presented here. They predict C = 0.26, which is much 

lower than the theoretical result or numerical simulation shown in figure 2. We 

have no explanation for this discrepancy. 

The numerically calculated curve is stopped when a steady shape no longer 

exists. We find that at C = 0.41 the droplet begins to undergo a continuous 

extension so that breakup occurs because of the nonexistence of a steady drop 

shape. The time-dependent stretching that occurs will be discussed more below. 

The theory of Barthes-Biesel & Acrivos predicts that break up occurs as a result 

of the drop shape becoming unstable to small disturbances. However, this is a 

prediction of a small deformation theory, so it does not necessarily follow that 

predictions applicable near the point of breakup, where the drop deformation is 

large, should be strictly correct. Rather, it may be surprising that the theory 

works as well as it does. Clearly, agreement between the theory and numerics 

is very good, especially for low capillary numbers and are still quite good for 



D m 0.4. The critical capillary number for breakup is approximated quite well 

also. 

It is interesting to note that the final steady shape shown in figure 1 has a 

midsection that is practically flat. Close examination of this shape shows that 

there is actually a slight indentation in the middle of the drop. It is not clear 

whether this is a real physical characteristic of the highly deformed steady shapes 

produced at larger values of the capillary number or whether it is an artifact 

due to small numerical errors inherent in the numerical technique. Nevertheless, 

a small increase in capillary number causes the droplet to continuously extend. 

In figure 3 the steady-state deformation results for a drop in a uniaxial 

extensional flow (dashed curve) are compared with the biaxial flow calculations 

(solid curve). Several remarks regarding these results are in order. First of all, 

at low values of the capillary number, the distortions produced by the two flows 

are the same. This is in accord with the predictions of small deformation theory 

since both flows produce only slightly nonspherical shapes at low C. The second 

order tensor model of Olbright et al. is closely related to the small deformation 

analysis of Barthes-Biesel & Acrivos and, consequently, is also not capable of 

distinguishing distortions produced by uniaxial and biaxial extensional flows. 

However, the vector model of Olbricht et al. predicts that uniaxial flows produce 

larger microstructural deformations than biaxial flows for the same s h e s  rate. 

Indeed, in figure 3 the numerical calculations of finite drop deformation show 

this to be true. Even though the second order tensor model is identical to the 

rigorous derivation of nearly spherical distortions of a drop in a linear flow, it 

nonetheless appears that for finite drop deformations the vector model provides a 

better measure of the effective strength of the flow with regard to microstructural 

deformations. Also, it is clear that a much larger capillary number is necessary 

to cause drop burst in a biaxial flow than in a uniaxial flow and the numerics 

indicate that much larger steady shapes are possible in the biaxial flow. 

The numerically calculated steady-state deformation curve for X = 10.0 



is shown in figure 4. Again, numerically generated shapes are included. The 

interesting feature of these results is that that the O(C) prediction provides 

a better approximation to the numerical curve than the higher order theory 

does for a large range of capillary numbers. A similar observation was made 

by Barthes-Biesel & Acrivos for the case X = 0. Drop breakup again occurs by 

the drop continuously elongating when the capillary number is increased a little 

beyond the value for the final steady shape shown in figure 4. The capillary 

number necessary for breakup at X = 10.0 is smaller than the critical capillary 

number determined in figure 2 for X = 1.0. An identical trend is found for drop 

breakup in uniaxial extensional flows. 

Before proceeding further, a few remarks are necessary concerning the drop 

shapes produced by biaxial flows at low Reynolds numbers. At low values of the 

capillary number the flow generates oblate spheroidal shapes. As the capillary 

number is increased the drop elongates and the midsections flattens, eventually 

becoming almost planar. The curvature in this case is very small along most 

of the interface and decreases as the midsection gets thinner. In uniaxial flows, 

however, the drop midsection is cylindrical and the curvature increases with 

increasing deformation (the drop radius decreases). In other words, if c repre- 

sents the slenderness of the drop it is straightforward to show that the curvature 

(V, n)  for the biaxial flow-induced shapes is O(c) while the curvature for the 

uniaxial flow-induced shapes is 0 ( 3 ) .  

3.2 Transient effects 

Next, we examine the continuous stretching process that is associated with 

drop breakup at the criticd capillary number for X = 1.0. The dimensionless 

drop length is plotted versus time in figure 5. After a very slow elongation, 

the droplet begins to rapidly extend. This is similar qualitatively to the breakup 

process in uniaxial flows. 

Even more informative, though, are the drop shapes produced during the 

time-dependent elongation. In figure 6 we show the final steady drop shape 



and a sequence of shapes during the transient stretching process at the super- 

critical capillary number. Shortly after the final shape shown the numerical 

scheme breaks down due to poor curvature resolution near the end of the drop. 

Although the drop length increases slowly, the interesting aspect of the simu- 

lation is the rapid thinning that occurs near the middle of the drop. This is 

in marked contrast to the burst process in uniaxial extensional flows where the 

drop rapidly elongates and the midsection slowly thins but remains cylindrical. 

In an axisymmetric biaxial flow the drop is rapidly flattened. The midsection 

of the drop becomes planar and is enclosed by a large bulbous ring. At least 

during the stretching process examined here, the planar drop thins almost uni- 

formly in the middle and in the final shape shown in figure 6 the two sides 

of the midsection are only separated by a dimensionless distance 0.01. As the 

drop continues to stretch and thin, the distance separating opposite sides of the 

drop interface rapidly become so short that intermolecular forces (e.g., Van der 

Waals attraction) would have to be considered in order to properly describe the 

mechanism of breakup. Clearly, the finite drop deformation of drops in biaxial 

flows is much different than the comparable deformation in uniaxial flows. 

The final aspect of this numerical study is an investigation of transient 

effects associated with simple time-dependent flows. In principle, such a study 

is similar to the time-dependent effects examined in Chapters 2-4. 

In figure 7, we show the relaxation of an initially extended drop in an 

otherwise quiescent fluid for X = 1.0. The initial condition chosen is the most 

deformed shape shown in figure 6, so this study represents effects due to an 

abrupt halt of the biaxial flow. It is quite remarkable that the highly deformed 

initial shape with the very thin planar midsection relaxes back to a sphere. 

No breakup is observed in this case. As with the droplet relaxation studies 

examined in Chapters 2 and 3, the magnitude of the interfacial tension only 

sets the time scale characteristic of the relaxation process but plays no role 

in the qualitative aspects of the dynamics. Fluid motion is produced by a 



deterministic interfacial- tension-driven flow that is due to curvature variations 

along the fluid-fluid interface. In figure 7 the planar middle slowly thickens, 

although the predominant motion initially is confined to the end of the drop. 

Finally, the middle "pops" out as the drop returns to a spherical shape. 

After examining the effect of abruptly halting the flow, it is appropriate 

to examine the effects of subcritical capillary numbers on the deformation and 

breakup properties of initially extended drops. The response of a drop to step 

changes from the critical capillary number to subcritical values of the capillary 

number is examined in figure 8, again for X = 1.0. The solid curve is the 

stretching process already discussed in figure 5. The dashed curves represent 

the response of the drop to different subcritical shear rates applied while the 

droplet is in a transient, nonequilibrium state. Step changes from C = C, 

to C = 0.5Cc, 0.65C, and 0.8Cc are studied. In the first two cases, the drop 

recovers a steady shape, which within the accuracy of the numerical method, is 

the same steady shape calculated by beginning with a spherical initial condition 

and the subcritical capillary number. In the case of a step change to 0.8Cc the 

drop midsection continues to thin and the drop slowly stretches indicating that 

breakup is imminent. 

The evolution of the interface in response to a step change from C = C, to 

the subcritical shear rate C = 0.5Cc is illustrated in figure 9. It is interesting that 

the midsection remains very thin and planar while the end retracts. Finally, the 

interfacial-tension-driven flow produced near the end overwhelms the extensional 

flow that tries to continue to thin the drop and a steady shape is established. 

It appears clear that even though biaxial flows produce quite distorted drop 

shapes with very thin midsections, complete breakup of the drop is not evident 

in the biaxial flow for the extensions studied here, nor is it necessarily produced 

by abruptly changing to subcritical flow conditions. In many ways this is in 

marked contrast to the behaviour observed in uniaxial extensional flows. The 

basic reason for these observations of the stability of drops in biaxial flows can 



be traced to the interfacial-tension-driven flow associated with the shape of the 

drop. 

4. CONCLUSIONS 

Although not extensive the numerical calculations discussed above demon- 

strate a critical capillary number for drop breakup in a biaxial extensional flow. 

This is in marked contrast to the result obtained by Kang & Leal (1988) where 

a bubble at low Reynolds number has an increasingly elongated steady shape 

as the capillary number is increased. Drop breakup in a biaxial extensional 

flow requires a much larger capillary number and the maximum steady drop 

deformation in a biaxial flow is significantly larger than in a uniaxial flow. Fur- 

thermore, in subcritical flows the drops produced by the biaxial flows appear 

more stable than the corresponding uniaxial flow cases in the sense that relax- 

ation back to a steady shape occurs in most of the cases examined, even for 

highly deformed drops with very thin midsections. This is a direct consequence 

of the interfacial-tension-driven flow associated with the drop shape, which has 

a planar midsection with a bulbous surrounding ring. 
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FIGURE CAPTIONS 

Figure 1 Schematic of drop deformation in a biaxial flow and definition of the 

variables. 

Figure 2 Drop deformation versus capillary number in a biaxial extensional flow. 

X = 1.0. The solid line represents the numerical simulation, the short 

dashed line represents the O(C) result of Barthes-Biesel & Acrivos and 

the long dashed line the 0 ( C 2 )  result. Several numerically generated 

shapes are included. 

Figure 3 Comparison of drop deformation in a biaxial extensional flow and in a 

uniaxial extensional flow. The solid curve is the numerical calculation 

for a biaxial flow and the dashed curve the numerical calculation for a 

uniaxial flow. 

Figure 4 Drop deformation versus capillary number in a biaxial extensional flow. 

X = 10.0. The solid line represents the numerical simulation, the short 

dashed line represents the O(C) result of Barthes-Biesel & Acrivos and 

the long dashed line the 0 ( C 2 )  result. Several numerically generated 

shapes are included. 

Figure 5 Time-dependent drop deformation in a biaxial flow at the critical cap- 

illary number. Dimensionless drop length $ as a function of time. 

X = 1.0. 

Figure 6 Transient deformation at the critical capillary number. X = 1.0, C, = 

0.41. The shapes shown are at t = 0.0,36.0,60.0,72.0 and 80.0. The 

initial shape is the most highly deformed shape shown in figure 2. No- 

tice the very thin, almost planar midsection formed during the stretch- 

ing process. 

Figure 7 Relaxation of an initially extended drop in an otherwise quiescent fluid. 

The shapes correspond to times (measured from the instant the flow 

is stopped) t = 0.0,2.0,4.0,6.0 and 12.0. The initial shape is the most 

highly deformed shape shown in figure 6. 
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Figure 8 The effect of subcritical flows on deformation and breakup of an ini- 

tially extended drop. Step change from C = C, to 0.5Cc,0.65C, and 

0.8Cc. 

Figure 9 Drop shape evolution during the relaxation of an initially extended 

drop in a subcritical flow. C = 0.5Cc. The shapes correspond to times 

(measured from the instant the flow is changed) t = 0.0,4.0,10.0,12.0, 

26.0. 
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APPENDIX 2 

IMPLEMENTING THE BOUNDARY INTEGRAL METHOD 



In this appendix we provide additional details concerning the solution of 

the integral equation that arises in application of the boundary integral method 

to the drop deformation problem. This is an extended version of the discussion 

in Chapter 3 and includes most of the results necessary for the actual imple- 

mentation of the numerical scheme. 

1. GOVERNING EQUATIONS 

For completeness we summarize the basic equations as they apply to the 

drop deformation problem. A general discussion is provided by Rallison & 

Acrivos (1978). The velocity, pressure and stress fields in the continuous phase 

will be denoted by (u, p, T) and in the droplet phase by (Q, fi, ?). Since our 

initial concern was the relaxation of an extended liquid droplet in an otherwise 

quiescent fluid, we chose to nondimensionalize velocities by u, = E, pressures 

by p, = y, f i  = where I ,  is an appropriate length scale, and time by 2, 

the convective time scale t ,  = 5. The dimensionless form of the governing 

equations are the quasi-steady Stokes equations and the continuity equation for 

each phase 

v 2 u = v p  v2 i i=vf i  (1) 

subject to the boundary conditions 

u = Q for x, E s (2b) 

n o T - X n e ~ = n ( V , - n )  for X.ES 

In these equations, the position vector x locates a point in the fluid domain, 

x, specifically indicates a point on the fluid-fluid interface S, u, denotes the 

imposed flow at infinity that is responsible for deforming an otherwise spherical 

droplet, n denotes the unit outward normal directed from the droplet phase to 



the continuous phase and V, n represents the mean curvature of the fluid-fluid 

interface. Also, X = denotes the ratio of fluid viscosities and, because of 

the choice of the characteristic velocity, the capillary number C = % appears 

in the dimensionless form of u, (G denoted the fluid shear rate and a is the 

undeformed radius of the drop). Finally, the drop shape evolves according to 

the kinematic condition, which may be stated as 

In the boundary integral formulation, the velocity and pressure fields in the 

suspending phase may be written as integrals over the drop surface 

and in the droplet phase as 

where y denotes the variable of integration. The kernels J , K , L , M  are known 

functions of position: 



Here, p ,  and p ,  denote constant reference pressures. Only one of these two 

values is independent. Specification of one, say p ,  allows the other, in principle, 

to be determined using the calculated velocity fields in conjunction with the 

normal stress balance. The integral involving J is known as the single-layer 

and the integral involving K is known as the double-layer. The single-layer is 

a continuous function of x including x + x, E S while the double-layer suffers 

a discontinuity as x + x, E S. Also, both integrands are singular in the limit 

y --, x,, but in each instance, the integral is integrable in the sense of a Cauchy 

principal value. 

Since we are interested in the evolution of the interface, these equations are 

written so that the interfacial velocity is calculated directly. Equations valid for 

points on the interface can be derived by taking the limit of equations (4a) and 

(5a) as x + x, E S and making use of the well-known jump conditions on the 

double-layer: 

Then, multiplying equation (8) by A, adding to equation (7) and using the 

boundary conditions yields the following equation for the interfacial velocity: 

Hence, if the drop shape is known at some instant, then the determination of 

the interfacial velocities that correspond to this drop shape and given values 



of C and X requires the solution of this integral equation of the second kind. 

Once the interfacial velocities are determined, the kinematic condition (3) can 

be used to update the drop shape. In principle, with the interfacial velocities 

established, equations (7) and (8) can be similarly solved to yield the stresses 

exerted by the interior and exterior fluids on the interface. With the interfacial 

velocities and stresses thus determined, equations (4) and (5) can be used to 

compute the velocity and pressure anywhere in the flow domain. 

The case X = 1 is especially straightforward as the above equations simplify 

As discussed by Rallison & Acrivos (1978), these equations are actually valid 

for all x E V and P. 

2. SIMPLIFICATION FOR AXISYMMETRIC PROBLEMS 

In general, there is no known analytic solution to these equations so that 

we must resort to numerical methods. We restrict our discussion to the case 

of axisymmetric drop shapes. The fully three-dimensional case has been con- 

sidered by Rallison (1981) and Higdon & Schnepper (1987) and is numerically 

more difficult and CPU intensive. In the axisymmetric case the two-dimensional 

surface integral can be reduced to a one-dimensional line integral by perform- 

ing the azimuthal integration analytically. In terms of a cylindrical coordinate 

system (r, z, 8) and the cartesian system (2, y, z) (see figure 1) we write 

y = r cosee, + r sinee, + ze, (lib) 

n = n, cosOe, + n, side, + n,e, (11~) 



and the differential surface element is given by 

where 

O I z S L  and O S B I 2 r .  

The integration involving B can be performed analytically in terms of elliptic 

functions. The result of the integration is 

/ [ J { r  J { z ]  [z:]  ( V 8 e n )  dr (1 + X)u(x,) = 2u, - - 
4r Jzr Jzz  

where 

dr 
d 3 = r  I + ( - ) 2  dz. \i dz 

The elements Ji;. and Ki;. are given by 

J k  = E ( l , l , A , B )  - r 8 r [ ~ ( 0 , 3 , A , B )  + E ( ~ , ~ , A , B ) ]  + ( r f  + r 2 ) E ( 1 , 3 , A , B )  

J f ,  = ( z ,  - z ) [ r , ~ ( 0 , 3 , A , B )  - r E ( 1 , 3 , A , ~ ) ]  

J:, = ( z ,  - z )  [ r 8 ~ ( 1 , 3 , A ,  B )  - rE(O,3,A, B ) ]  

J:, = E ( O , l , A , B )  + (2, - z ) ~ E ( o , ~ , A , B )  



and 

K:, = -r,r [n,(z, - Z )  - m,] E(O,  5, A, B )  + [(n,(z, - z )  - rn,) (r: + r 2 )  

- n,r:r] E(1,5 ,  A ,  B )  + r ,  [n,(r: + 2r2) - r ( z ,  - z)n,] ~ ( 2 , 5 ,  A, B)  

- rr?n,E(3,5, A ,  B)  

K:, = (2, - z )  [7,(n,(z, - z )  - rnr)E(O, 5 ,  A,  B)  

+ [n,(r: + r2 )  - r ( z8  - z ) n Z ] E ( 1 , 5 , A , B )  

- rr,n,E(2,5, A ,  B)]  

K:, = ( z ,  - z)[-r(n,(z ,  - z )  - rnT)E(0 ,5 ,A ,B )  

+ z,(n,(z, - z )  - 2m,)E(1,5 ,  A ,  B)  + r , 2 n r ~ ( 2 , 5 ,  A, B ) ]  

Kt, = (2,  - z ) 2  [(n,(z, - z )  - rn,)E(O,5,A, B)  + r.nTE(1,5,A, B)]  

with 

In these equations the integration variables are (r,  z ) .  The point of interest on 

the drop surface is (r,, 2,) and the E(n,m,A,B) involve elliptic integrals of the 

first and second kind and are given by Lee & Leal (1982) (an alternative form is 

given by Youngren & Acrivos 1975). The fluid-fluid interface is now represented 

simply as an arc, s. 

A similar integration can be performed on the equations for the pressure 

field. The result is 



where (i,, Z,) are the two components of the stress vector T n and 

L: = r8E(1,3,A,B) - rE(O,3,A,B) 

L; = (2, - z) E(O,3, A, B) 

M,' = nTE(0,3,A,B) + 3r[(z, - z)n, - nrr]E(0,5,A,B) 

+ 3[2n,r,r - (z, - z)nZr,]E(1,5,A,B) - 3nrr,2E(2,5,A,B) 

M i  = n,E(O,3, A, B) - 3(z, - z)[(z, - z)n, - n,r]E(O,5, A,B) 

- 3n,r,(z, - z) E(l, 5, A, B) 

3. DISCRETIZATION OF THE INTEGRAL EQUATION 

These integrals equations are solved numerically by discretizing the inter- 

face (now simply an arc) and recasting (12) as a system of linear equations, 

which can be solved using standard Gaussian elimination methods to yield the 

velocity distribution on the interface. There are three important aspects to the 

discretization : (1) accurate representation of the drop shape and curvature, 

(2) approximation of the variation of velocity along the interface (and if the 

interior and exterior velocity and pressure fields are desired the interfacial stress 

distribution must similarly be approximated) and (3) accurate evaluation of the 

integrals. We discuss each of these topics below. 

To begin with, because many of the motions we intend to study are driven 

by the nonequilibrium shape of the drop it is necessary to represent the interface 

shape of highly elongated drop shapes as accurately as possible. For this reason 

two alternative methods were developed to approximately represent the inter- 

face. In both methods the interface is discretized into 2N-2 boundary elements 

with node points at the end of each element (therefore there are 2N-1 node 

points). The first scheme makes use of cylindrical coordinates near the middle 

of the drop, spherical coordinates near the end of the drop (in other words the 

surface is locally described by r = r(z) and p = p(t$), respectively), cubic splines 

are used to generate twice-continuously differentiable representations of the in- 

terface, and the two representations are patched together by requiring the first 



and second derivatives to be continuous within some tolerance (typically 

at the point of overlap. In this manner, the drop shape is described by a smooth 

function that is essentially twice-continuously differentiable everywhere. The 

second scheme used an arclength parametrization method. Letting s represent a 

normalized measure of arclength (0 5 s 5 I), the collocation points on the inter- 

face are parametrized so that r = z(s), r = r(s) describes the fluid-fluid interface 

and a twice-continuously differentiable representation is generated using cubic 

splines. Both methods work very well, although for similar numbers of points, 

the former scheme is more successful for very elongated shapes with nearly spher- 

ical ends while the latter scheme performs better for very slender shapes with 

nearly pointed ends. Also, the arclength parametrization scheme is much easier 

to code and much more flexible for a variety of problems. Consequently, it is the 

preferred scheme for drop deformation in biaxial flows discussed in Appendix 

1 and, as discussed in Chapter 6, the arclength parametrization scheme is the 

natural approach for drop deformation in the presence of surface-active agents 

when transport along the interface must be described. 

Next it is necessary to approximate the variation of the unknown velocity 

(and, if desired, the stress) along the interface. In all of our work, the unknown 

velocity and stress components on the interface are assumed to vary linearly 

over each element. Compared to the more common approximation of treating 

the unknowns as constant over each element, this approximation yields smoother 

and more accurate velocity variations, especially for the highly elongated drop 

shapes, where, in the interest of computation speed, as few collocation points as 

possible are used. For example, the velocity is expressed as 

for 0 5 t j  5 z 5 r,+l where UJ represents the velocity at the jth node point. 

It is then straightforward to discretize the integral equation, although care 

must be taken to keep track of all the elements. The integral equation is written 



at each node point xi. For example, the double-layer is discretized as 

where the superscript i on K denotes evaluation at collocation point xi and the 

superscript j on K denotes integration over element j .  The surface element j < 0 

corresponds to z  < 0. We have dropped the star notation introduced in equation 

(12) to distinguish the general three dimensional case from the axisymmetric 

situation and now u = ( u , , ~ , ) .  

Substituting the approximat ion for the velocity field into (15) gives 

(16) 

where the superscript - on Kij- reminds us that this kernel is evaluated for 

z  < 0. Furthermore the fore-aft symmetry requires 

%(z)  = ur(-z )  and u,(z) = - u , ( - Z )  (17) 

so that 

where 

and 



The absolute value lzl is introduced so that the equations hold for all values of 

z, including z < 0. 

The final form of the linear set of equations is 

where H is a 2N x 2N matrix and 

The elements of the matrix H are given by 

Hij  = 6ij - [K:: + K::- + RfF-1)- + R'(j-1) rr ] I I ~ , ~ I N  

H~ = - [K:; + K:;- + Rfp-1)- + ~ ' ( i -  ,., 'I] 1 < i < N ,  N + l < j < 2 N  

H~ = - [K:: + KZ- + Rfy-1)- + R'(j-l)] ~t N + l < i < 2 N ,  l < j < N  

Hi j  = 6', - [K:; + pi- + Rft-1)- + R'(I-1) zz ] N + l < i , j < 2 N .  

Also, it is clear from this simplified expression that K'' = 0. 

The vector b represents 

b = (b:, bf, . . . , b;, b t ,  b:, , b:) 

and, again using the superscript notation to represent evaluation at collocation 

point x, and dropping the * notation 

From the symmetry of the problem 

1 u, = 0 and u r  = 0 

so that H is reduced to a nonsingular 2(N - 1) x 2(N - 1) system before inverting. 

All the integrals are performed using a five point Gauss quadrature scheme. 

In the vicinity of the singularity the integrand varies rapidly and extra care is 

taken by subdividing the interval of interest into three smaller intervals prior to 

integrating. A very small region, typically or the size of an interval, 

is cut out around the singularity and the integration over this small region is 

performed analytically. 
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