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Abstract

This work presents findings of an experimental and theoretical study of dynamic
bimaterial crack growth. Bimaterial systems composed of constituents with large
material mismatch were investigated under dynamic loading conditions. The ma-
terials used in this study consisted of Poly-Methylmethacrylate (PMMA) and AISI
4340 Steel, bonded together using a Methylmethacrylate monomer. One point bend
loading was achieved using a drop weight tower. Dynamic crack growth, with veloci-
ties up to eighty percent of the Rayleigh wave speed of PMMA, was observed using
the lateral shearing interferometric technique of Coherent Gradient Sensing (CGS) in
conjunction with high speed photography. The results of these experiments are first
discussed within the realm of the validity of the linear, elastodynamic asymptotic
stress fields. The complex interdependency of stress intensity and mode mixity with
crack tip speed is also discussed. The interpretation of [Kd] and ¢? in a dynamic
bimaterial crack is clarified through the experimental observation of crack growth.

Complications in analysis arising from this interdependency between the dynamic
K field and velocity are examined for experimentally obtained CGS fringe patterns.
Improvements of existing analyzing procedures are made, resulting in increased con-
fidence in data obtained utilizing the method of CGS in dynamic bimaterial fracture.
Special attention is given to the interaction of loading and velocity in the behavior of
these crack tip fields.

Previous methods of investigation have used an elastodynamic, asymptotic K%
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field to describe the deformations near a bimaterial crack tip. Attempts to develop a
fracture criterion based on these results have suffered from the lack of natural length
scale as the major criticism. Motivated by experimental observations, a cohesive
zone model is presented in this thesis that allows an investigation of dynamic crack
growth. The length of the cohesive zone is given by a combination of stress intensity
and mixity, bimaterial behavior, and velocity, and emerges as a natural, time evolving
length scale with which to examine the bimaterial crack problem. A fracture criterion
based on critical cohesive displacements at the trailing edge of the cohesive zone is
presented.

This cohesive zone model is subsequently used to examine data obtained from
experiment. The model enhances our ability to extrapolate our experimental mea-
surements to the near tip region, and to thus study the neighborhood close to the
propagating crack tip. Within experimental error, predictions of the proposed fracture
criterion are shown to correspond to the experimentally observed dependence of | K¢ [
and ¢% on the instantaneous crack tip velocity. The fracture criterion based on the co-
hesive model presented in this paper provides the natural next step in understanding
dynamic bimaterial crack growth. It provides a criterion based on physically moti-
vated parameters, introduces a natural length scale into the problem, and increases

our understanding of dynamic bimaterial fracture mechanics.
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Chapter 1

General Introduction

The use of advanced composite materials began several decades ago, as a response
to the increased demand for materials for specialized structural applications. Tech-
nology’s desire for advanced materials, however, outweighs our knowledge and under-
standing of this new field. Despite the rapid rise of bimaterials and multimaterials
for special applications, composites have not yet replaced metals as basic structural
materials. The performance of advanced composites, while often superior to more
common materials in some areas, is often less than ideal due to their typically low
ductility, low tensile strength, and poor fracture toughness (see Hashin 1983, Evans
1989).

The earliest available theoretical analysis of interfacial fracture was presented by
Williams (1959). Williams developed a static, asymptotic complex K-field model
based on purely linear elastic behavior of the crack. Williams showed that the stress

field near the tip of a crack between two dissimilar materials has an oscillatory singu-



larity in addition to the 1/4/7 singularity observed in cracks in homogeneous materials.
This singularity is governed by a parameter, €, called the “oscillatory index”. In static
cases, € is a function of the material properties of the two constituents in a bimaterial.
In general, larger material mismatch results in larger e.

The principal criticism of the fields proposed by Williams was the interpenetra-
tion, or overlapping, of the crack surfaces that it predicts, due to this oscillatory
singularity. This stress field was investigated in detail by Erdogan (1965) and Eng-
land (1965) using mathematical techniques very similar to those used in Chapter 3 of
this work. Initial reaction to this non physical behavior of the asymptotic model was
varied. Some researchers focused on reformulating the problem of a bimaterial crack
starting with the initial assumptions. Comninou (1977) recast the problem of a finite
length crack in a bimaterial interface with the requirement that the crack faces not
overlap. This formulation used frictionless contact zones at the crack tip to prevent
interpenetration. Knowles & Sternberg (1983) investigated the behavior of a crack
in a bimaterial interface using a hyperelastic, neo Hookean constitutive description
to model the constituents of the bimaterial. Knowles & Sternberg showed that this
asymptotic interfacial model did not exhibit interpenetration near the crack tip, and
that interpenetration appears to be an artifact of the purely linear elastic crack con-
stitutive model assumed earlier. Hutchinson (1989) modelled the interface as a third
layer between the two constituent materials, characterized by behavior that blended

continuously between the two main constituent layers.



Other researchers argued for the validity of the Williams field based on small
scale contact zone arguments. The concept of a contact zone was incorporated by
Rice (1988) as an argument for accepting the asymptotic field as long as the contact
zone behind the crack tip was small. Rice (1988) also showed that, although the
asymptotic K-field for a static bimaterial crack cannot be completely separated into
modes, as for a crack in a homogeneous material, the interpretation of bimaterial
¢ as an accurate measure of mode mixity is generally correct for cases where the
oscillatory index, €, is small.

The small scale contact zone approach was used by Ortiz & Blume (1990) in
their development of a cohesive zone model for a static bimaterial crack. Ortiz &
Blume proposed a nonlinear constitutive model for the interface that assumed finite
load bearing capability of the interfacial bond. Their model allowed for decohesion
and sliding of the interface in such a way that unbounded interfacial tractions are
alleviated. The static interfacial model proposed by Ortiz & Blume (1990) provided
the basis for the dynamic cohesive zone model developed in this work.

The consideration of dynamics in interfacial fracture problems significantly in-
creases the complexity of the problem. Thus, only a few theoretical investigations of
dynamic bimaterial cracks were conducted during this period ( Goldshtein 1967, Brock
& Achenbach 1973, Willis 1971, Willis 1973, Atkinson 1977). For the most part, re-
search concentrated on static and quasistatic crack growth in bimaterial interfaces.

It was not until the experimental investigations of Tippur & Rosakis (1991) that it



became apparent that interfacial cracks may propagate dynamically with very high
speeds, and that the dynamic behavior of such interfacial cracks could not be ade-
quately described using quasistatic models. Due to these observations of very high
crack propagation speeds, Tippur & Rosakis hypothesized that velocity plays a sig-
nificant role in the stress fields that surround the crack tip. This behavior, however,
could not be captured using the existing quasistatic asymptotic fields. Motivated by
these new experimental observations, Yang, Suo & Shih (1991) considered a dynami-
cally growing interfacial crack, and developed an asymptotic, steady state | K¢ |-field
for dynamic, subsonic, bimaterial crack growth. The nature of the field is similar
to the K-field proposed by Williams (1959), except that the material constants also
depend on the velocity of the crack tip. Specifically, the behavior of the oscillatory
parameter, €, is a strong function of velocity in dynamic interfacial fracture. Thus,
the “effective” material mismatch is a function of velocity as well as material param-
eters, and increases dramatically with higher crack tip velocities. As a result, under
dynamic conditions, an interpretation of bimaterial stress intensity and mixity based
on small € (e.g. Rice 1988) breaks down.

The effects of inertia and changing velocity on the bimaterial crack tip fields were
examined by Liu, Lambros & Rosakis (1993). Using a different analytical method, the
fields of Yang, Suo & Shih were recovered and shown to be the first order solutions
when transient velocity effects are neglected. Experiments confirmed the validity

of these fields, and higher order comparisons were also successfully made to highly



transient experiments. More recently, experiments have shown that, under some con-
ditions, the interfacial crack can travel at speeds that are above the Rayleigh wave
speed of the more compliant material. The first observations of transonic interfacial
crack growth have been made by Lambros & Rosakis (19956) using CGS interfer-
ometry, while Liu, Huang & Rosakis (1995) provided the first transonic analysis of
such crack fields. Their observations were soon confirmed by Singh & Shukla (1996)
using the method of photoelasticity. Because these two optical methods measure dif-
ferent field quantities, they provide independent confirmation of this experimentally
observed phenomenon. These experiments show evidence that catastrophic failure
of the bimaterial can occur, in which the less compliant material “drives” the more
compliant material into an intersonic velocity regime.

In the subsonic regime, Lambros & Rosakis (1995a) analyzed subsonic bimaterial
experiments with the aid of the asymptotic K%fields presented by Yang et al. (1991)
and Liu et al. (1993), and proposed a possible fracture criterion using the asymptotic
model. Lambros & Rosakis observed that the crack face displacements appear to
remain constant at a fixed but arbitrary distance behind the propagating interface
crack. The main criticism against using this observation as a fracture criterion is
the arbitrary choice of location to apply the criterion. This arbitrary selection was
necessary due to the asymptotic nature of the fields used in the analysis. These fields
contain no natural length scale with which to analyze experimental data.

The investigations of Lambros & Rosakis (1995a) and Ortiz & Blume (1990) pro-



vided the primary motivation for this work. In this study, a cohesive zone model for
dynamic crack growth is developed. The work of Ortiz & Blume provides the founda-
tion for the dynamic cohesive zone model developed here. This cohesive zone model
is constructed in such a way as to recover the purely linear elastodynamic behavior
away from the cohesive zone (small scale yielding). Dynamic bimaterial fracture ex-
periments are analyzed in the far field using the purely linear elastic fields given by
Yang et al. (1991), as in Lambros & Rosakis (1995a). The near tip stress behavior is
then examined using this newly introduced small scale yielding cohesive zone model,
and a fracture criterion based on constant crack face displacement at the trailing edge

of the cohesive zone is investigated.



Chapter 2

An Experimental Study of

Bimaterial Cracks

Overview

In this chapter, investigations of dynamic, bimaterial crack growth are described.
Experiments are conducted that use Coherent Gradient Sensing and high speed pho-
tography to visualize stresses surrounding a crack propagating along a bimaterial
interface. The interferograms obtained from these experiments are analyzed using
the linear elastic, asymptotic stress field given by Yang et al. (1991), and complex
dynamic stress intensity factors, K%(t), are extracted. The fitting procedure used
to obtain these K% values is discussed, and improvements on the existing methods
of data reduction are presented. Specific issues arising from the inseparability of
modes in dynamic bimaterial cracks are examined with regard to the interpretation

and analysis of bimaterial crack growth experiments. Finally, the far field parameters



obtained from these experiments provide the motivation for the cohesive zone model

presented in Chapter 3.
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T1,T2,L3 «vvn... fixed specimen coordinates

Wty ..ot crack length

v(t) velocity of crack tip

1,6, ... .. coordinates fixed on the moving crack

rl polar coordinates in moving frame

Oij wverenininenn Cauchy stresses

OB wvvveeeennnnn thickness averages of in-plane stress components
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|K® ], % ... .. magnitude and phase of K¢ = K% 44 K¢
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£ refractive index of deformed material
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A grating separation
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m,n ........... fringe orders
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2.1 Experimental techniques

2.1.1 The method of CGS

The purpose of this study was to examine the stress field behavior of bimaterials
undergoing dynamic deformation and crack growth, and to propose a cohesive zone
model for dynamic crack growth. A reliable, full field optical technique that would
provide real time imaging and full field analysis of stress behavior of a dynamically
propagating crack was needed for this study. Coherent Gradient Sensing, in conjunc-
tion with high speed camera imaging, was chosen for these purposes.

The method of CGS was introduced by Tippur, Krishnaswamy & Rosakis (1991),
and has been described in detail by Rosakis (1993). The method can be applied in
both transmission and reflection configurations. This study used exclusively transmis-
sion CGS; the applications in reflection CGS are very similar. The setup for general
transmission CGS is shown in Figure 2.1. A coherent, monochromatic, collimated
laser beam is incident on the dynamically deforming specimen. As the light trans-
mits through the specimen, changes in optical path length and refractive index due
to the stresses and deformations in the specimen change the speed and direction of
the light. After emergence from the specimen, the light is no longer collimated, and
contains spatial optical path differences. The emerging light is passed through two
line diffraction gratings, G; and G, of fine pitch (typically 40 lines/mm) and identical
orientation. These gratings are placed a distance A apart, and together they perform

a shearing of the incident wave front as described below. The output light from the
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Figure 2.1: Schematic of CGS set-up in transmission.
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Figure 2.2: CGS working principal.

gratings is focused by use of a filtering lens, L, on the filtering plane. One diffraction
order is chosen to pass through the filtering plane, and all others are blocked. The
chosen diffraction spot is expanded and brought into focus on the imaging plane to
produce an interference pattern. In this study, a high speed camera was utilized as
the imaging medium.

The relationship between the stress field in the material specimen and the result-
ing interference pattern will be explained following the lines of Murty (1978). This
is a simple shearing analysis commonly used to describe any lateral shearing interfer-
ometer. A more rigorous analysis using Fourier optics, which yields the same results,
has been found by Lee, Lambros & Rosakis (1996).

The effect of the two line gratings on an incident wavefront is demonstrated in
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Figure 2.2. Without loss of generality, a sinusoidal transmittance of the gradients is
assumed. A plane wave normally incident on grating G; will be diffracted into three
wavefronts, Ey and E.;. The angle between the propagation directions of E, and
E,, is given by the diffraction equation

6 =sin™! («é) ~ 2 (2.1)
p p

where A is the wavelength of the incident wavefront, and p is the grating pitch. The
value of A used in the following study is 514 nm and p is 0.0254mm (40 lines/mm).
Thus, the quantity A/p is small and the approximation given above is accurate. The
resulting diffraction angle for a planar incident wavefront is then about 1.2 degrees.
Each wavefront incident on the second grating G, will also be diffracted into three
wavefronts separated by an angle of , and thus there will be a total of nine wavefronts
emerging from the second diffraction grating. Some of the resulting wavefronts are
parallel to others, and only the optical path length travelled through the gratings
differs between them. These parallel wavefronts are then brought into focus by the
filtering lens, L, forming a set of diffraction spots on the filtering plane. Only the +1
or —1 order is permitted to pass through the filtering plane, and all other orders are
blocked. In figure 2.2, the —1 order has been allowed to pass through the filtering
plane. The resulting image then consists of a superposition of the original wavefront

with itself after being sheared (displaced) by an amount shown as w on the diagram.
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This distance is given by

w=Atanf = Af (2.2)

for small 6.

Now, consider a plane wave that is first normally incident on a deforming specimen.
The wavefront incident on the grating G, will not be planar, but will now be distorted
by changes in refractive index and lens effects due to surface deformation. This is
mathematically represented as the light front having a phase or optical path change of
S(z1, z,) that depends on the local specimen stress state and deformation. The image
on the focusing plane again consists of the wavefront superimposed with itself sheared
by w. The condition for constructive interference of the Ey, and E,, diffracted

wavefronts on the image plane of the camera is then

S(z1+w,z2) — S(x1,73) =mA (2.3)

where m is an integer. Now, divide both sides equation (2.3) by w and use equations

(2.2) and (2.1), to obtain

S(x1 +w, ) ~ S(xy,2,)  mp
" = (2.4)

Consider w — 0, which implies that the gratings are moved closer together (A = 0)

or the pitch of the gratings is increased (p — o). Then the condition for interference
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on the image plane, equation (2.4), becomes

”a% [S(z1,22)] = %, m =0,+1,42,... (2.5)
1

If the gratings lie parallel to the z; direction, it can be shown in a similar fashion

that the condition for constructive interference becomes

0 np
8—:1:2[5(171,1'2)} = Z‘, n —O,:!Z].,j:2, (26)

The quantity S(z;, z;) must be written in terms of the material behavior and stress
state of the deforming specimen. Consider a planar wave front travelling in the dir-
ection r3 and impinging on a plane lying parallel to the (z;, z;) plane.This wavefront
would initially be represented by the equation z3 = constant. After passing through
the specimen, the wavefront could be represented by the equation z3 + S(zy, ;) =
constant, where S(zy, z2) is the optical path change acquired by the wavefront as it
is transmitted through the specimen. As discussed in detail by Rosakis (1993), this

optical path change may be expressed as
1/2 1/2
S(z1,22) = 2h(n — 1) / essd(zs/h) + 2h / dnd(zs/h). (2.7)
0 0

The first term represents the net optical path difference due to changes in the thickness
of the specimen caused by the strain component €33. The second term is due to the

stress induced change in refractive index of the material. This change in refractive
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index is given by the Maxwell relation,
dn = Dy(o1; + 022 + 033), (2.8)

where D; is a stress optic constant and o;; are Cartesian components of the Cauchy
stress tensor. The above relation is strictly true for isotropic linear elastic solids. For
such solids the strain component €33 can also be related to the stresses and equation
(2.7) becomes

S(z1,22) = 2he, /0 v {(011 + o) {1 _ D, (;—ﬂ-—))} } d(zs/h),  (2.9)

(011 + 022

where

Co = [Dl — -V-(n - 1)} , Dy = — E : (2.10)

E.v and ¢, are the Young’s modulus, Poisson’s ratio and the stress optical coefficient
of the material, respectively.

The quantity o33/v(011 + 022) in equation (2.9) is called the “degree of plane
strain”. Under plane stress conditions, this ratio is equal to zero. Under plane stress

conditions, the optical path difference given in equation (2.9) may be written as
S(.’L‘l,l‘g) ~ 2hCU(&11 + 5'22) (211)

where 61, and &9, are the thickness averages of the in-plane stress components in the
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plate. Thus, for points within the plane stress region of the specimen, equations (2.5)

and (2.6) may be written as

0(611 + G22) mp 0(611 +622) np
he, = heg——t T 722 _ 7 =0,+1,4+2,... (212
T b A T b, A THREEHELES (212)

While the interferograms resulting from experiments using the CGS technique
could be studied by numerically extracting field parameters, there exist some non
trivial special cases for which analytical solutions exist. These solutions are two-
dimensional, and are based on an assumption of plane stress. It has been argued
that conditions of plane stress will prevail in thin, homogeneous cracking plates at
distances from the crack tip larger than half the specimen thickness. These solutions
would be expected to correspond to the interference fringes predicted by equation
(2.12) in areas where plane stress dominates.

The assumption of zero degree of plane strain, given by the quantity o33/v (o1 +
022) = 0 in equation (2.9), is also true in areas of plane stress. This quantity has been
examined previously by Lee and Rosakis (Lee & Rosakis 1993). A three-dimensional
finite element model was made of a sharp bimaterial crack, and the degree of plane
strain was studied. It was found that the three-dimensional model corresponded to
the two-dimensional model (i.e., zero degree of plane strain) in an area shown in
Figure 2.3. Thus, the analysis will only compare the two-dimensional model to the

interferograms in those areas that correspond to plane stress.
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Figure 2.4: Specimen geometry showing loading configuration and debonded area
forming initial crack, with an initial crack length of I,.

2.1.2 Experimental setup and apparatus

Previous bimaterial studies have focused on material constituents that generate a
large mechanical property mismatch. For this study, the constituents were chose to
allow for comparison with previous results. Plexiglass (Poly-Methylmethacrylate or
PMMA) and AISI 4340 Steel were selected for these experiments, with the transparent
PMMA allowing the use of transmission CGS analysis. Throughout this study, the
PMMA side of the bimaterial will be described as material 1 and the steel side as
material 2. The specimen geometry is shown in Figure 2.4. The mechanical properties
of the two constituent materials may be found in Table 2.1.

The bonding method used for the specimens in this study was as follows: First,
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Property PMMA | AISI 4340 Steel
E (GPa) 3.24 208
v 0.35 0.3
¢ (m/s) - plane strain | 2080 5970
¢ (m/s) - plane stress | 1761 5401
¢s (m/s) 1000 3190
¢ (m/s) 935 2950
p (Kg/m?) 1190 7830

Table 2.1: Material Properties

the bond surfaces were machined to have flat and square surfaces to allow for accurate
bonding. The materials each had a nominal thickness of 8.5 mm. The parts of the
surfaces to be bonded were sandblasted with 10-20 pm sized glass beads to produce a
roughened surface. The area that would make up the initial crack was not roughened.
Both surfaces were thoroughly cleaned before bonding. An adhesive, described below,
was then applied to the roughened parts of both sides of the interface, and the initial
crack was kept adhesive free by the selective application of machine grease. The
materials were then clamped together and and a uniform pressure applied. The
adhesive was allowed to cure at room temperature for approximately 24 hours before
testing. The bond thickness generated by this process has been estimated to be
approximately 100 pgm (Tippur & Rosakis 1991).

The adhesive selected for these tests was chosen for its material similarity to

PMMA. The adhesive used is commercially available, and consists of two compo-
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nents: a Methylmethacrylate monomer (MMA) compound and a catalyst which can
polymerize the monomer. The resulting properties of the adhesive are almost iden-
tical to those of PMMA. This choice of adhesive reduces the effects of introducing a
third material into the system, and allows for the use of models based on only two
materials with a straight line interface. This adhesive was investigated in detail by
Lambros (1994).

Sharp cracks were created in the specimens as described above. Since the method
of creating the initial crack consisted of simply not bonding part of the interface, the
crack front created in this manner was typically not very well defined. These pre-
cracks were further treated by quasistatically growing the crack an additional distance
of 2-3 mm in a displacement controlled Instron machine. This slow growth of the
cracks was conducted using a CGS interferometer to monitor the crack tip. By using
the interferometer during this procedure, it was possible to confirm that the crack
front did become straight across the thickness of the material. Furthermore, visual
inspection of the interface by looking through the transparent PMMA half showed
distinctly the position of the crack before and after this quasistatic crack growth. The
effects of loading and unloading the specimens in this manner were investigated by
Lambros (1994) and no accumulation of damage or change in strength of the bond
was found.

The experimental setup was shown in Figure 2.1. A collimated, pulsed laser was

used for the light source. The light beam was directed through the PMMA half of
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the specimen. The light that emerged from the specimen was passed through two
diffraction gratings and through a 1000 mm focal length lens placed in front of the
camera. The resulting diffracted beams were focused inside the Talon lens mounted
on the front of a Cordin high speed camera. The +1 or -1 order diffraction spot
was aligned with the central axis of the lens apparatus. In these experiments, the
Talon lens system acted as the filtering plane as only the beam aligned with the axis
of the lens could pass through to the camera. The distance between the Talon lens
system and the 1000 mm lens was adjusted so that this beam was focused on the
film track inside the camera. Due to the expansion and contraction of the beam as
it passes through the Talon lens and camera, care must be taken to assure that the
beam is fully reflected at each internal mirror in the camera. The spacing between the
1000 mm lens and the front of the Talon lens, and the focal length of the Talon lens
system were adjusted to eliminate this loss of information. Any additional difficulty
in obtaining adequate alignment with the Talon lens is more than compensated for
by its ability to fine tuning the focus of the light beam on the surface of the specimen
much more effectively than previous lens configurations.

An elliptical distortion in the resulting interferograms was observed in the course
of these experiments - the magnification ratio in the resulting z; direction (paral-
lel to the interface) exceeded the magnification in the z, direction (normal to the
interface) by 13 to 17 percent. This distortion is inherent to the Cordin camera sys-

tem when used with collimated light. Previous researchers have only measured the
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magnification in the z, direction. Due to this elliptical distortion, measuring only
the z, magnification ratio is insufficient. Neglecting this difference in magnification
would introduce additional error in velocity calculations through an error in crack
length measurement. In these experiments, the magnification ratios in two orthonor-
mal directions were measured and incorporated into the data analysis, and thus the
elliptical distortion was accounted for during the analyzing process.

A very short exposure time was necessary (= 10ns) due to the high speeds of
crack growth (up to ~ 900m/s). The exposure time must be short enough that
the crack doesn’t move a significant distance during exposure, which would result
in blurred fringes and less accurate results. However, such a short exposure time
made it difficult to obtain adequate light intensity on the film at the image plane. In
addition to the short exposure time, the two diffraction gratings used in the method
of CGS inherently reduce the amount of light that reaches the image plane. For these
reasons, a very high speed film (TMAX 3200) was necessary for these experiments.
A mechanical shutter was used in front of the laser to reduce the amount of “leakage
light” that reached the film. This film choice resulted in grainy exposure on the
film, and further exaggerated the non linear relationship between light intensity and
resulting film intensity. That is, the fringes seen on the film tended to be more
extreme in their intensities, thus unexposed and lightly exposed areas both resulted
in completely white areas on the film, and moderate to heavy exposures both resulted

in solid black areas. Thus, if the fringe pattern were imaged in real time on a white
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page, a gradual fading in and out of the constructive and destructive fringes could be
seen, whereas on the film used, these bands became solid black or white. In order to
find the stress field parameters using CGS, the position of maximum constructive and
destructive interference must be known. This nonlinearity of input to output exposure
makes it difficult to determine the real position of the fringe. For these experiments,
it was assumed that the actual “fringe” lay in the middle of the resulting fringe bands.

The loading of the specimen was achieved using a Dynatup drop weight tower.
The contact area of the drop weight tup is made of a semi circular piece of steel
to provide line loading to the specimen. The weight was dropped from a height of
459 m resulting in a speed of 3 m/s on impact. Upon impact, the loading on the
specimen produced stress waves that travelled radially outward. The magnitude of
these waves are insufficient to initiate the crack when they first reach the crack tip.
Upon reflection from the edges of the specimen the waves are focused on the crack
tip and initiation occurs. Due to the different speeds of compression and shear waves,
the length of the initial crack in the specimen determines the type of loading at the
crack tip. Two different initial crack lengths, 20mm and 25mm, were examined in
this study. This allowed an investigation of the effect of different dynamic initiation
conditions on crack growth. A summary of the tests conducted in the course of this
study is shown in Table 2.2.

Triggering of the laser was accomplished by placing a strain gauge on the specimen

just below the point where the tup impacted the specimen. The delay between loading
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initial | loading
specimen | crack | impact | offset
length | velocity

25mm | 3m/s |10 mm

C
D 25mm | 3m/s |10 mm
E

25mm | 3m/s |10 mm

F 25mm | 3m/s |10 mm
C2-25 [20mm | 3m/s |10 mm
D2-22 |20 mm | 3m/s |10 mm
D2-25 {20 mm | 3m/s | 10 mm

Table 2.2: Specimen summary.

and crack initiation is a result of the time it takes the waves to travel to the crack
tip, as well as the stress concentration necessary for the crack to initiate. An initial
test was run at very low framing rate to determine the delay necessary between the
loading at the strain gauge and crack initiation. In addition, the exact time between
impact and crack initiation varied between specimens. While every attempt was made
to create a uniform initial crack front, any local differences in the bond at the crack
tip would affect the initiation time of the crack. Different initiation times would
result in different initial loadings of the crack. If, as has been previously suggested
(Lambros & Rosakis 1995a), much of crack growth behavior is dictated by initial
growth conditions, one would expect that these differences in the bond strength and
initial crack would yield differing results for stresses and crack speed.

A typical sequence of selected interferograms from these tests is shown in Figure
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2.5. The analysis of these photographs is explained in the next section.
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Figure 2.5: Sequence of CGS interferograms showing a crack propagating along a
PMMA /Steel interface, specimen E; top: t = 12 us, center: t = 17 us, bottom: t =
22 ps.
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2.2 Data reduction

2.2.1 Digitization of data

Data is extracted from the interferograms by hand using a digitizing tablet connected
to a computer. Each fringe is digitized by recording position and fringe number at
points along the center of the fringe. Both negative interference fringes (dark) and
positive interference fringes (light) were digitized. By digitizing both the light and
dark fringes, the number of data points is increased, which contributes to the stability
of the fitting procedure.

The fringes correspond to lines of the in-plane stress gradient. The sign of the
fringes is undetermined by the interferogram. Additional information must be sup-
plied to determine the whether the stress gradient increases or decreases from a par-
ticular fringe to an adjacent one. A reference sign may be determined by analyzing
the fringes in front of the crack tip along the z, axis. The crack intensifies the stresses
in the material, so the stresses must generally decrease as z; increases ahead of the
crack tip. From this, one can determine that the gradient of the in-plane stresses
with respect to z; must be negative in front of the crack tip. Likewise, the stresses
increase as x; approaches from —oo, so the gradient is positive. Therefore, the front
lobe corresponds to negative fringe numbers, and the rear lobe corresponds to posi-
tive fringe numbers. All areas of the fringe patterns were digitized. During the fitting
procedure, only points corresponding to the area of plane stress shown in Figure 2.3

were utilized for data analysis.
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Errors are introduced during the digitization procedure that may effect the re-
liability of the data. First, as discussed in section 2.1.2, the position of maximum
destructive or constructive interference of the diffracted light is difficult to determine
from the interferograms. In addition, the center of each fringe is estimated visually
during the digitization procedure. If a large number of points are digitized, it can be
assumed that error introduced in determining the center of the fringes is symmetric
about the mean and should be negligible. Additional error is introduced by a miscal-
culation of the magnification of the photographs. As discussed in section 2.1.2, this
optical system introduces an elliptical distortion in the final, magnified image which
must be accurately accounted for. Finally, each interferogram must be located with
respect to an absolute coordinate system for accurate calculation of crack position.
Absolute coordinates are determined for each interferogram by utilizing markers on
the specimen. Any error in this procedure introduces a corresponding error into the
crack length, and can have a large effect on velocities calculated from these measure-

ments.
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2.2.2 Analysis of interferograms using a 2-D linear crack

model

The x, gradient of 613 + 622, as obtained by Liu et al. (1993), is given by

8(5'11 + 6‘22)

801
324 )
l 2 e(m—6, d
—(1+ a; — 2na,)e cos(36;/2 — ¢* —€lnr;) —
(1+ a2 + 2na,)e ™% cos(36,/2 + ¢? + elnm)) +
26(1 + a? — 2na,)e ™ sin(36,/2 — ¢* — elnr,) —
2¢(1 + o + 2na,)e ) sin(36,/2 + ¢% + €1n r)] (2.13)
where
J 1/2
4 () ) K o
(4o, — (14 a?)?) cosh e’ be = i ’

6, = Tan"Y(ayz, /), T =1/z} + ozl

K(t) = K{(t) +iK5(t),  ¢%(t) = Tan™"(K5(t)/ K$(2))
The expression for in-plane stress gradient given in equation (2.13) may be substituted

into the CGS fringe equation (2.12) to obtain an expression for fringe order,

p;LlA - — K(]? 1";3/2 [APH COS(301/2) - BP12 Sln(301/2)] +
Cq

K2 r7%/* [APyy sin(36,/2) + BPy; cos(36,/2)] (2.14)
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where

Py = (14 o?) cosh(e(m — 6,)) — 2na,sinh(e(m — 6;))
P, = (14 o?)sinh(e(m — 6;)) — 2na, cosh(e(m — 6)))
(2.15)
A = cos(elog ;) + 2¢e sin(e log )

B = sin(elog ;) — 2¢ cos(e log ).

The above asymptotic model will also be referred to here as the “linear” model
(see Yang et al. 1991). Equation (2.14) shows that the fringe order can be written as
a linear combination of the coefficients, K¢ and K¢. Far field K¢ and K¢ values are
obtained by fitting this theoretically predicted fringe pattern to the interferograms
obtained by experiment. To perform these fits, the velocity of the crack for each
interferogram must be supplied.

Previously (Lambros & Rosakis 1995a) the location of the crack tip has been
visually estimated from the extrapolated intersection of the interferogram fringes, and
the velocities then calculated from those measurements. Unfortunately, obtaining the
crack lengths directly from the interferograms can be difficult and inaccurate. The
location of the crack tip is obscured by three-dimensional effects near the crack tip.
The region where the two-dimensional assumption is expected to hold was shown in
Figure 2.3. This approach is also problematic and incurs human error. It is difficult
to determine this place of “intersection” when only half the specimen is imaged.

The method of visual inspection of the crack tip also makes it difficult to account
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sufficiently for the limited region of K%dominance to be expected in these problems
(see section 2.1.1).

Miscalculations of crack tip velocity can affect the resulting ]Kdl and ¢¢ values
obtained from the interferograms. To demonstrate this effect, an interferogram was
created that corresponded exactly to a two-dimensional, asymptotic K%-field. A
“synthetic” fringe pattern was created corresponding to |K?| = 1.2 MPay/m and
¢% = 45 degrees at a velocity of 600 m/s. This fringe pattern was then fitted to
fields using a wide range of assumed velocities. Several examples are shown in Figure
2.6. The values for |K?| and ¢¢ derived from these fits are plotted verses velocity
in Figures 2.7 and 2.8. It can be seen in these figures that any error in velocity
affects the corresponding values for |[K¢| and ¢?. Figure 2.7, for example, shows
that underestimating the velocity of the crack tip increases the fitted | K¢ | value, and
overestimating the velocity decreases the fitted | K* | value.The effects of velocity and
stress intensity for these problems are intertwined, and several different combinations
of velocity and stress intensity describe the fringe pattern, especially the rear lobe,
almost equally well. It can be seen from these figures that great care must be taken
in determining input velocities for the data analysis.

This fundamental issue is not a specific problem with the CGS technique. As is
demonstrated visually by Figure 2.6, v, ¢¢ and | K| interact strongly through e(v)
in dynamic bimaterial crack growth fields. For cracks in homogeneous materials, ¢

describes precisely the orientation of the stress field in the material. In dynamic
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Figure 2.6: Comparision of a pure K%field to fields fitted using different assumed
velocities.
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bimaterial crack growth, velocity also contributes to the orientation of the stress field
through the function €(v). €(v) is a very strong function of velocity which becomes
singular at cg, as shown in Figure 2.9. This is why bimaterial |Kdl and ¢¢ differ
substantially from homogeneous |K| and ¢, both in meaning and behavior. In a
bimaterial, ¢? does not by itself fully describe mixity, and | K¢ | does not truly describe
the stress intensity. For a dynamically growing crack in a bimaterial, large velocity
heavily influences mixity and stress intensity. As a result, it is not surprising that
the choice of velocity is so important when fitting these fields to the data. |K?|, ¢%,
and velocity are simply not independent parameters with independent meanings and
implications for behavior in a bimaterial crack problem.

Fortunately, the range of velocity errors shown in Figures 2.7 and 2.8 are much
larger than those expected experimentally. The expected error in the velocity mea-
surement is on the order of 4+ 50 m/s (Lambros & Rosakis 1995a). From the figures,
we can see that for velocities in the range of 0 to =~ 85%cg, this error has a small
effect on the values of |[K*| and ¢? obtained from the fits. For velocities nearing
the Rayleigh wave speed, however, the interaction of velocity, [Kdl and ¢¢ becomes
increasingly sensitive, and typical errors in velocity can result in unacceptable errors
in | K¢ | and ¢¢ due to the singular behavior of € as v — cg. The transparent material
used in these experiments, PMMA, has a Rayleigh wave speed of 924 m/s. Thus,
we expect that this method may have difficulty in accurately obtaining [Kdl and ¢?

information for cases in which the velocities exceed ~ 785 m/s.
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Reducing the error in the calculation of the velocities used for fitting CGS inter-
ferograms will improve the reliability of the data obtained from these fringe patterns,
a fact that is made especially clear by the above observations. In this study a new
method was developed that removes or reduces many of these sources of error in the
calculation of crack position and velocity. This technique allows the position of the
crack tip to be obtained indirectly and in an unbiased manner, by numerically allow-
ing the fits of the fringe patterns to determine the crack tip positions. A K%field
model was fit to the data away from the crack tip, so the position of the crack tip
was not determined directly, but rather by the position which yielded the best corre-
spondence to the linear model in the region of K%dominance. The fit of the linear
model to the data, however, required an initial estimate of the velocity of the crack

tip. The following procedure was developed to address these issues:

Step 1. The initial fitting was performed using estimated crack locations and
velocities obtained from the interferograms. Velocities were calculated from the

crack length data as described below.

Step 2. |K%| and ¢¢ values were calculated for a range of lengths centered

around the previous length.
Step 3. The best fit was selected, and its predicted crack location recorded.
Step 4. Steps 1-4 were repeated for every interferogram in the sequence.

Step 5. New crack tip velocities were calculated from these crack lengths.
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Step 6. If the fit showed an area of K%dominance, the values of K%, ¢?
and velocity for that interferogram were retained. If the fit showed no area of

K%-dominance, the frame was excluded from further velocity calculations.

Step 7. If the new crack tip velocities and positions differed from the old values,

steps 2-6 were repeated.

Step 8. Iteration was stopped when the crack tip positions, velocities, and fitted

parameters | K| and ¢¢ remained unchanged.

This procedure should reduce the velocity errors by eliminating human inter-
pretation in visually estimating the crack tip location. The self consistency of the
velocity,| Kd] and ¢? results should further reduce the amount of error in subsequent
calculations utilizing these parameters. This self consistency is important, because
fits of the interferograms themselves do not provide confirmation of the velocity used
to fit the fringes. The rate of convergence of the iteration scheme, however, can
provide direct confirmation of the accuracy of the measurements.

This procedure was tested as follows: A single data point was obtained from ex-
periment that had values of | K| = 1.2 MPa, ¢¢ = 45 degrees, and v = 600 m/s.
Data files containing fringe data were created to correspond to a crack growing under
these constant conditions. These files then formed data from a “virtual” crack growth
test, where the exact conditions were now known. To test the robustness of the itera-
tion procedure, initial velocities were assumed for this test that deviated widely from

the artificially constructed constant 600 m/s velocity. These initial velocities would
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correspond to inaccurate “observed” velocities utilized in Step 1 above. The iteration
procedure was then applied. It was seen that the iteration procedure captured the
“true” nature of the crack after four iterations, and indeed showed significant con-
vergence after only one iteration. Therefore, it appears that the iteration procedure
should be helpful in obtaining more accurate velocity data from experiments.

Calculation of crack tip velocities, as performed in Step 5 of the procedure, is
also a source error in the crack lengths due to the differentiation involved. For this
study, the crack length data was first fit to a polynomial to smooth the data. Then,
differentiation was performed and the resulting quantities for velocity were used for
the fits. A third-order polynomial was fitted over each set of four points, and the
derivative of the polynomial was taken at the center for the velocity.

The iteration procedure described above has several advantages over the previous
system of visually estimating the crack tip position. First, it allows one to focus
only on the K%field in the region of K9dominance and validity. It accounts for
errors in estimating crack tip position and velocity. It provides a mechanism for
excluding the more inaccurate crack tip measurements from interferograms not clearly
corresponding to a K%field, in which it is difficult to apply the “intersection of the
fringes” criterion for locating the crack tip. It makes possible a calculation of crack
length even when the locus of the fringes is obscured, or non essential fringe data
(such as part of the front lobe) is missing. In every case, this iteration technique

resulted in a unique set of crack lengths, IKd{ and ¢? values that provided a self
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consistent “best” fit to the data.

In section 2.1.1, some of the factors limiting the region of K%dominance were
discussed. Some of the interferograms showed no significant region of K% dominance,
and those points were excluded from further calculations. While this reduced the
number of points available for subsequent velocity differentiation, a lack of knowledge
of the stress field and an inability to estimate the position of the crack in these
instances would introduce even more uncertainty into the velocity calculations. In
cases where K%dominance failed, the main reason was the effect of large velocity
changes, which would necessitate the use of a higher-order model (see Liu et al. 1993).
Several frames were also lost to misfires of the laser which resulted in insufficient
fringe data. In addition, in one specimen, shock waves can be seem emanating from
the growing crack tip. These waves obscure the fringe pattern for several frames.
The cause of these shock waves is unknown, but it is likely they resulted from highly

dynamic debonding of parts of the interface due to local defects in the bond.

2.2.3 Fitting procedures and quality of fit measurement

The fit was made by minimizing the difference between the predicted fringe patterns
and the experimentally obtained interferograms. The specific quantity selected to
measure this “difference” can have considerable effect on the results. If the difference
between fitted fringe number and experimentally measured fringe number was used,

the resulting fit would better match the higher-order, inner fringes. These fringes
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are thinner, and thus the location of the center of the fringe can be more accurately
determined, but three-dimensional effects affect the inner fringes more strongly than
the distant fringes. If the error was based on the location of the fringes, the fit would
be better for the fringes furthest away from the crack. These fringes are most likely
to lie outside the three-dimensional area, but the furthest fringes would also be more
sensitive to boundary effects. In addition, these fringes are much wider, and thus
the location of the center of the fringe is more difficult to determine. A compromise
between these competing effects was achieved by using weights for each of the digitized

points in a x? fit. Mathematically, the quantity

ngxp - nﬁt Kd’ Kd
2 = Z (n] U(;} e(xp)l 2)) over all digitized points (2.16)

i

was minimized, where the standard deviations

o(n) = e~ /201 (2.17)

were used.

Finally, a criterion was needed that would allow the procedure to systematically
eliminate |K“| and ¢¢ values from interferograms that exhibited no K%dominant
region. A “quality of fit” measure was calculated for each K%field fitted. A com-
parison of just the chi squared error of each fit would be unable to take into account

the different data that was obtained for each picture, in that fringe patterns with
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more high-order fringe data would exhibit a larger error than patterns with a lower
percentage of high-order fringe data. A measure was needed that would allow a com-
parison between interferograms, in order to establish an independent criterion for
excluding points as described in Step 6 above. For each fringe pattern, a “base” error
was determined which was the chi squared error of a fit with | K?| = 0. The ratio of
the actual fit error to the base error was then used to compare the quality of the fit
in a general sense. Points with a quality of fit of greater than .3 did not appear to
have a K%dominant region, and were excluded from further iterations. This number
was selected by comparing a number of fits to interferograms. While this reduced
the number of data points for subsequent velocity calculations, it removed points for

which the crack location was in question.
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2.3 Far field results and discussion

Using the techniques discussed in the previous section, interferograms from a dynamic,
bimaterial experiment were digitized and fitted to the asymptotic, two-dimensional
stress intensity field shown in equation (2.13). Results for velocity, | K?| and ¢¢ for
test D are shown in Figures 2.10, 2.11 and 2.12.

Previous researchers have attempted to examine behavior of bimaterial cracks us-
ing | K¢ |, ¢* and v obtained using a process similar to that just described. While one
can look at the data in Figures 2.11 and 2.12 and consider general trends of behavior,
the temptation to consider | K¢ | and ¢? as sole measures of stress intensity and mode
mixity must be resisted. As has been demonstrated here, that approach would be
incorrect due to the interaction between v, | K¢| and ¢¢ in stress intensity and mix-
ity fundamental to dynamic bimaterial crack problems. Specifically, no conclusions
can be made from Figure 2.12 regarding the mixity of the stress fields in terms of
mode I and mode II, or in terms of “shear” and “opening” mechanisms. A direct
correspondence between mode mixity and ¢¢ does not exist in dynamic bimaterial
problems.

Using data derived by fitting a two-dimensional, asymptotic K%field to interfero-
grams obtained by experiment, Lambros & Rosakis (1995a) observed that the fringe
patterns obtained from a growing bimaterial crack appeared to remain constant even
as the velocity changed drastically. From this, it was suggested that some combi-

nation of the three parameters, v, IKd] and ¢¢, must remain constant during crack
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growth. Crack face displacements at a fixed distance behind the crack tip provided
potential quantities for describing the crack behavior. Indeed, it was observed that
constant crack face displacements at a distance of 2mm behind the moving crack
tip was consistent with the measured variation in |K?| and ¢¢ verses velocity for
those tests. This observation formed the basis for a proposed fracture criterion which
assumes constant crack face displacement at a fixed, arbitrary distance behind the
moving crack tip.

The principal criticism of such a fracture criterion is based on the lack of physical
motivation for the arbitrary choice of the location at which the displacements were
assumed constant. Lambros & Rosakis (1995a) used a distance of 2 mm behind the
crack tip because this was the closest distance to the crack tip that was clearly within
the range of dominance of the linear, asymptotic field used. Such a selection was
deemed necessary given the asymptotic nature of the model available at that time,
which did not include a natural length scale. Furthermore, the actual choice of the
position at which to apply the criterion dictates the crack opening “angle” | 4, /02,
predicted by these constants, and thus any attempt to describe the “mixity” of the
displacements is not independent of the location at which the crack face displacements
are determined. The lack of a material “length scale” is a problem inherent in any
asymptotic analysis of crack growth, and is not exclusive to bimaterial problems.
However, the lack of sufficient motivation for the choice of location at which to apply

this criterion represents its primary criticism.
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In problems involving cracks in homogeneous materials, the inclusion of near field
cohesive behavior in the asymptotic model imparts a material length scale, the co-
hesive zone length, to the problem. In the next chapter, a cohesive zone model will
be presented for dynamic bimaterial problems. This model presents a mechanism
for examining the behavior of the crack tip inside the process zone, an avenue not
previously available. In the dynamic bimaterial case, the length of the cohesive zone
is a function of the loading parameters, the velocity, and the bimaterial parameters,
and thus satisfies the requirements of a material length scale. In addition, this model
may be used to define a “local” mixity and traction magnitude that become the local,
bimaterial equivalents to ¢ and |K|. The model also provides a physical motivation
for a fracture criterion based on the maximum “stretch” experienced at the back of
the cohesive zone. It is at this position that the bonding of the interface is presumed
to “break”, i.e., the cohesive tractions fail at this point, and thus this model provides

a logical, materially motivated location at which to apply a crack growth criterion.
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Chapter 3

A Cohesive Zone Model for

Bimaterial Cracks

Overview

In this chapter, material behavior is determined for dynamic crack growth in a bi-
material specimen with a Dugdale-Barenblatt type cohesive zone following the lines
of Ortiz & Blume (1990). The formulation incorporates asymptotic | K| and ¢¢ pa-
rameters, to allow for later comparison to experimental results. Near tip material
behavior is determined for a constant failure traction cohesive model, and predicted
CGS interferograms are generated. Stress and displacement fields for an example
specimen are shown. It is shown that this near tip analysis allows for a physically
motivated study of crack propagation, which includes a naturally emerging length
scale. Motivated by experimental results, and by the new analytic capability pro-

vided in this chapter, a local fracture criterion involving this length scale is proposed.
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material 1 ......

material 2 ......

CR, €, Cs
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upper material
lower material
coordinates in fixed frame

coordinates in moving frame

material displacements

in-plane Cauchy stress components

sliding and opening crack face displacements

shear modulus

bulk modulus

material density

oscillatory index

velocity of the crack tip

modified interfacial traction vector

complex displacement potentials

displacement potentials

two dimensional alternator

Rayleigh, plane stress longitudinal and shear wave speeds
components of complex dynamic stress intensity factor

magnitude and phase angle of K‘f +1 K‘Zl



52
List of Symbols, cont.

S o bond failure strength
o local mixity in cohesive zone

R .o length of cohesive zone



a3

3.1 Mathematical development

This section contains the mathematical formulation for a bimaterial crack with a
cohesive zone. The problem is solved by progressively restricting the assumptions
until a specific cohesive zone model is obtained. First, the general formulation of
the bimaterial interface problem is described in subsection 3.1.1 of this study. In
subsection 3.1.2, the problem is recast as a Riemann-Hilbert problem that includes
general tractions and displacements of the interface. In subsection 3.1.3, the model is
specialized to represent a cohesive zone by requiring that cohesive tractions prevent
unbounded stresses at the crack tip.

The specific case in which the cohesive tractions have constant magnitudes, and
time varying but spatially invariant directions, throughout the cohesive zone is then
examined. This cohesive behavior is very similar to that used by Ortiz & Blume
(1990), but applied to a dynamically growing crack. The cohesive tractions are fixed
in magnitude and direction throughout the cohesive zone at any given moment in
time. Furthermore, the magnitude of the interfacial tractions is assumed to be a
fixed material parameter for this analysis. This simplifies the analysis, but it is
not necessary to specify the maximum yield traction in general. In general, the
mathematical formulation is described in such a way that a model based on a different
description of the interface could be easily obtained.

Results are obtained for the specific interface behavior described above. The

length of the cohesive zone, the stresses ahead of the crack tip, and crack face dis-
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placements are then determined in terms of the applied complex dynamic stress in-
tensity factor, K‘li +i Kg. The full stress and displacement fields are derived under
this model, and the transmission CGS fringe pattern predicted by the stress field is

shown.
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3.1.1 General formulation

A Ty A 62

material 1

T &1

material 2

Figure 3.1: Coordinate systems for theoretical development.

Consider a body consisting of two homogeneous, isotropic, linear elastic materials
which are bonded along a straight line interface. Suppose that a crack propagates
along this interface as shown in Figure 3.1. Introduce a fixed Cartesian coordinate
system as shown, with the z; axis lying along the interface so that the positive x;
direction corresponds to the direction of crack propagation. If the materials deform in
plane strain, the displacements can be written using the two dimensional Helmholtz

additive decomposition as

ua(l'l, Za, t) = (:D,a(xla T2, t) + eaﬁl[{ﬁ(%, T2, t)a (31)

where a, 3 € {1,2} and the summation convention is observed. e, is the two dimen-
sional alternator, where ej; = —eg; and e;; = ez = 0. The case of generalized plane

stress is identical except for the interpretation of the elastic constants.
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The components of stress can be written in terms of these displacement potentials,

011 = 6] P a0 — 20,22 + 290 12),
022 = e} Paa — 20,11 + 29 12), (3.2)
012 = plcf 012 + 2022 — 29 11),

where p is the shear modulus, and ¢; and ¢, are the longitudinal and shear wave

speeds, respectively. The wave speeds, ¢; and ¢, can be related to the shear and bulk

moduli by

K+ 14 1/2 4 1/2
_ K = (%), 3.3
o (F__lp) , o= (L (33)

where k = 3 — 4v for plane strain and k = (3 — v)/(1 + v) for plane stress, and v is
Poisson’s ratio.
The equations of motion of this system (in the absence of body forces) in terms

of the displacement potentials, p(z1, z2,t) and 9(z;, o,t), are

1
(’Oaa(zl’m%t) - ; ¥ ($1,$2,t) = 07
’ (3.4)

1
Tpaa(zl»x%t) - ? '(p (‘Tl’m2’t) =0.

8
Now consider a coordinate system, (£;,&;), that moves with the crack so that the

origin is always at the crack tip. This new coordinate system is related to the fixed
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coordinate system through

&= —I(t), & = 2o (3.5)

In this moving coordinate system, the equations of motion in terms of v(&1,&,,t) and

Y(&1, &2, t) are

) :
(1 _ (t)) p11(&1, &2, 1) + @ 22(61, &2, ) + @W,lt - Ci2¢,tt =0
i

c? o
) .
(1 - vc(2t)> Y161, €2, t) + ¥ 22(&1, 62, t) + o)

2
s Cs

(3.6)

1
lb,lt - “2'1/),tt =0
CS

where 0/t is used to denote partial differentiation with respect to time in the moving
coordinate system, (£,£;), and {'} denotes the absolute time derivative in the fized
coordinate system, (z1,Z3).

In Freund & Rosakis (1992) and Liu et al. (1993) it was shown that if an asymptotic
expansion is used for ¢(£1,&,t) and (€, &, t) in the equations of motion (3.6), the
first order solutions correspond to

w11(é1, &) + a—lz}@go,zz(ﬁl, &)=0

(3.7)
1

Y€1, &) + a—g({)*w,zz(&,ﬁz) =0

where the quantities o and o; depend on the crack tip speed, and therefore on time,
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through

) 1/2
a(t) = <1 Y Z(t)) . (3.8)

cl,s

Note that, in the bimaterial problem described, all of the preceding equations hold
for each of the two materials. Thus, the displacements in the upper material would
be represented by one pair of potentials, (1, 1), that satisfy (3.7) in the upper half
plane (£, > 0), and the displacements in the lower material would be represented by a
different pair of potentials, (¢2,1), that satisfy (3.7) in the lower half plane (&, < 0).

Under the transformations,
z1 =& + 1€, zs = &1 + ta€o, (39)

the wave equations (3.7) correspond to Laplace’s equations in the z and z, scaled
complex planes, respectively. Note that the mapping given by equation (3.9) is only
one-to-one if a; and oy are real. Thus, the following formulation will apply only in
the region v < ¢, < ¢.

The most general solutions to the scaled Laplacian equations resulting from equa-

tion (3.7) are given by

0o(61,€2) = R| Fala1,0)| Us(6n6) =S[Galzt)]  (310)

where 8 = 1 is used when referring to the upper material, and 5 = 2 is used when
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referring to the lower material. This notation is implied in subsequent equations when
not specifically labeled otherwise.

For the bimaterial system described, Fj(z;) and G;(z,) are analytic functions
defined in the upper half plane, and F3(z) and Ga(z,) are analytic functions defined
in the lower half plane. Note that since the wave speeds of the two materials are
different, the scaled complex variables z; and z, will be different in the upper and
lower half planes, but are identical along the &, = 0 interface line.

The stress and displacement field quantities may be expressed in terms of the

potential functions, F and G, as

- %[F'(zl) + asG'(zs)]

H

Uy [alF (z1) + G zs)]
o = puR [(1 +2a? — d®)F'(z) + 2aSG“(zs)} (3.11)
Op2 = -;m[u +a?)F'(z) + ZasG"(zs)]

"

o1 = —uS [2a,F"(zl) +(1+ )G (zs)].

Recall that the traction on any surface is given by Cauchy’s formula as

In the complex planes described, the unit normal of the interface is n = —i on the
upper face, and n = ¢ on the lower face. Thus, the complex traction acting on the

lower material at the interface is 012 + 9092 and the complex traction acting on the
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upper material at the interface is —o15 — i095. For ease of calculation, the equivalent

modified traction vector,

* 022
t= (3.13)

iO'IQ

will be considered in place of the complex traction.

The stress components o3, and o, may expressed in the form

20’22 = -l [(1 -+ ag)[F”(zl) + F”(Zl)] + QQS[G”(ZS) -+ G”(Zs)]]

(3.14)
Ziony = —p|[200[F" (z) = F ()} + (1 + 2)[G () — T (=)
or in vector form,
209, —p(l+a?)  —2ua, F'(z)
= +
2ioy —2ucy —p(l+al)| \G(z)
(3.15)
—p(l+a?)  —2ua, F"(z)
2uoy p(l+a?)| \G"(2,)
For simplicity, define the matrices
p(l+a?)  2ua, p(l+ a?) 2p0
P= Q= (3.16)

2ucy p(l+a?) —2u0; —p(l+a?)
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and define the following complex vector,

£(2) = (3.17)

for each materal, where z = & + i€. Thus, f(z) corresponds to F"(z) and G"(z,)
on the interface, & = 0. The preceding equations hold for each half of the material,
with subscripts again implied.

From the above definitions, Equations (3.15) can be rewritten as

022 F”(zl) F"(z1)
-2 =P +Q . (3.18)

i012 G" (2) G"(zs)

For any analytic function, (z), define

lim Q(z) = Q (&)

52 -0+

lim Q(z) = Q (&) (3.19)

£2—0~

where z = & + i&,.

The tractions on the upper and lower materials of the interface, respectively, may
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then be written as

( +

* g —
2t =2 | P —Pufi(e) + Qubi(6)
)
/A 1 (3.20)
e o _
ot =2 | =Puh(a) + QE(6)*

10
\ 12 ) ,
The derivative of the crack face displacements may be rewritten in terms of F”

and G as

(3.21)
2ty = —pi (al [F"(zl) - F"(zl)] + [Gﬂ(zs) - G"(zs)D :
Using the following definitions,

1 Qg 1 Qs
U= V= (3.22)

a 1 —a; —1

equation (3.21) becomes
u; F'(z) F'(z)

2 =U +V . (3.23)

zu'2 G (zs) G"(z)
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The &, gradient of the crack face displacements is

+ —
8 uy Uy
(3.24)
= U1f1(f1)+ + Vlﬁ(fl)—

— U2f2(§1)- - V2§(£1)+'

Everywhere on the interface, the tractions on the upper and lower faces of the
interface are either zero or equal and opposite,
+ —

022 022

= for all &;. (3.25)

iUlg iUlz
1 2

Using equation (3.25) with the equations in (3.20) yields

Pifi (&) + Qufi(61)” = Pafa(&)” + Qafa (&) (3.26)

Rearranging equation (3.26) yields

Pifi(&)" — Qefa(6)" = Pafa(6)” — Qufi(&)7, (3.27)

where the left hand side of (3.27) consists of the limiting values of functions that are
analytic in the upper half plane. The right hand side consists of the limiting values

of functions that are analytic in the lower half plane. Since the limiting values are
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the same on the entire real axis, the function Pafa(2) — Q1 (2), defined in the lower
half plane, is the analytic continuation of P1f)(z) — Q2f;(z), defined in the upper
half plane, and vice versa. Thus, a function A(z) can be defined as follows:

Plf]_(Z) - Qz—f:g_(Z) if z € S+
A(z) = (3.28)

szz(Z) - ng(z) if z € S~

where

&1+ if —oo < <ooand & >0
§* = (3.29)

§1+i€2 if—oc<§1<ooand§2§0

so that A(z) is holomorphic in the entire complex z plane, including the real axis.
In addition, consider the case where the stress field goes to zero far from the crack

tip. Under this requirement, the function A(z) must vanish as |z| goes to infinity.

By the theory of complex functions, A(z) must then be identically zero in the entire

complex plane, and then

Plfl(Z) e QzE(Z) =0 z€ S+
(3.30)
szz(Z) - Q]_E(Z) =0 z€S§5".
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Substitution of the equations in (3.30) into (3.20) yields

+ _—

-2 = -2 =P1fi(&)" + Pof2(&)".

’i0'12 i012
1

Next, define a new function, ©’ (z), as

Ulfl(z) — VzE(Z) zZ € S+
Q' (z)=

szz(Z) - Vlﬁ(Z) Z € S-.

Using the relationships established in (3.30), ©" can be written as

Ulfl(Z) - Vnglplf]_(Z) YA S+,
0'(2) =

szz(Z) - Vlengfz(z) z€S™.

Define matrices, H and fI, as follows

H=U1P;1—V2Q;1 Z€S+

H

I

—U2P;1—V1Q;1 z€S™.

Combining equations (3.34) with equations (3.33) gives

@, (Z) = HP]_f]_(Z) A S+

O (z) = ~HPyf,() z2€85.

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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The components of H and H are given in Appendix B.

Rewriting equations (3.35) as

Pfi(z) =H'@ (2) 2¢€8*"

« —1

szz(l) =—H @I (Z) zZ € S—,

(3.36)

the modified traction vector and the crack face displacement gradient can be expressed

in terms of the complex, vector valued function @’ (z):

+
922 -1+ *——1 ’ -
—2 =H7 0 "(&L)-H " 0 (&)
1012
1 (3.37)
6’1 '+ =
2 =0 (&4)-0"" (&)
—id,

When combined with traction and displacement conditions on the interface, equa-
tions (3.37) may be solved as a coupled Hilbert problem for the complex, vector valued
function, ©® (z). Once the solution for ©' (z) is obtained, Fj(2;) and Gs(z,) can be

calculated using equation (3.36),

f1(z) = P;'H 'O (2) ze St (3.38a)

* —1
£2(z) = -P;'H ©'(2) z€ 8™ (3.38b)

and the stress and displacement fields are given by equations (3.11).
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3.1.2 Solution of the Hilbert problem

In the previous section, the dynamic, steady state bimaterial system was formulated
in terms of two half planes connected at an interface. The solutions are given in terms

of ©' (z), where ©’ (z) solves the Reimann-Hilbert problem,

+
022 + * -
~2 =H1'e (&) -H'10 (&) (3.39a)
1012
1
5; ++ r-
2 =0 (6L)-6" (&) (3.39b)
—16,

Now consider a general bimaterial crack problem. Ahead of the crack tip, the interface
must remain perfectly bonded. Behind this advancing crack tip, tractions may act
on the crack faces. This approach will incorporate a “Dugdale-Barenblatt” cohesive
zone model, as well as more general formulations, as will be shown in the following
section. Under these conditions the Hilbert problem, equation (3.39), can be written

as

H'0' (&) -H' 0 (&) =r(&) &<0 (3.40a)

OF) -0 T(&H)=0 >0 (3.40b)
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where

o fl
k(&) = —2 &) . (3.41)

iTe(€1)

< may also depend on time or other parameters that would be determined by the
model used to describe the bonding of the interface. However, only the dependence on
&1 needs to be noted in the following derivations. The subscript c is indicative of how
these formulas will be used in the following section, where the presence of a cohesive
zone is incorporated into the model. For the present section, however, the exact origin
or nature of the tractions acting on the crack faces need not be considered.

To solve for the complex, vector valued function, ©®’(z), note that the matrices

H and H are diagonalized by the same matrix B,

H' =B 'H'B (3.42a)
H'! =B 'H !B (3.42b)
where
1 n ° /\1 0 : —)\2 0
B , H= , H= (3.43a)
1 —’)’] 0 —/\2 O )\1

h
A1 = har + Vhzhoa, A2 = —hiy + v/ hizha, n= h_21 (3.43b)
12

The components of H and H are given in Appendix B.
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In addition, define the following quantities:

©'(z) = B0 (2)

k(&) = B k(&).

(3.44a)

(3.44b)

Now the two Hilbert problems given in equation (3.37) can be written as uncoupled

Hilbert equations,

or in component form,

o + °

/\2 91, "l")\l 9{ = )\1/\2/%1(51) 61 < 0

o +

0, —6, =0 £>0

and
o + o

MOy X205 = MMka(&) & <0

o -+ o =

05 —0), =0 & >0.

(3.45a)

(3.45b)

(3.46a)

(3.46b)

(3.47a)

(3.47b)



70

The parameter ¢ is given by

€= 1 In As
- 27 /\1 .
Recall that € is a function of velocity, as shown in Figure 2.9.

To solve for 6;(z) from (3.46), consider the complex function,

L(Z) — z—l/2+ie

(3.48)

(3.49)

with the branch cut along the negative real axis. This function solves the homoge-

neous Hilbert problem,

ALt (&) =ML (&) =0 & <0
L7(&) - L (&) =0 & >0
since
L* (&) = =iy 2 gy 12+ £ <0
A2
A .
L™(&) = iy/ 3 el 7/ & <0
1
L+(§1) — n—1/2+is 51 > 0.

(3.50a)

(3.50Db)

(3.51a)
(3.51b)

(3.51c)
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Thus, the first equation of (3.46) can be written as
o\ T o \ - o
6, 1 A1k (61)
i % N e S = 0
(L) (L (&) fe

o + o -
01 o0y _
(3) () - o

Likewise, 62(2) can be found from equations (3.47) by considering

L(Z) — Z—l/2—ie7
which satisfies the homogeneous problem

ML T(&) = ML (&) =0 & <0

L) -T (&)=0 £ > 0.

Equations (3.47) can then be written as

o + ° -
1 [6) _ Aok (£1)
(Z) (f) A @<t
o + o -
) _ (%) _

(3.52a)

(3.52b)

(3.53)

(3.54a)

(3.54b)

(3.55a)

(3.55b)

The solutions for the two Hilbert problems, (3.52) and (3.55), can be found by
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using the theory of complex variables,

bi(z) _
L(2)
03(2) _
L(2)

1 Alloil(t)dt ©

2mi /_ Fot—e) T A (3.56)
1 Xoka(t)dt o .

o /_ T =D + B(2). (3.56b)

By considering the properties of the matrices Py, P2, Q;, and Q,, and using the

definitions of ©’ (z) given in the previous section,

HP,f,(z) = HQ.f;(z) ze St
Q' (z) = (3.57)
—ﬁpgfz(Z) = "'I,:IQ].E(Z) z€ 8
it can be shown that
05(z) = — 6,(2) (3.58)
and thus
. 6i(2)
0= . (3.59)
—01(z)
where
012
o L-1/2+ie [0 VA Az (o2 + ZT)(t)dt
b0 =5 | e
2 Jow Y] (t—2) (3.60)

0
+Z_1/2+16A(Z).
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Using equation (3.45), the components of traction ahead of the crack tip and

<
displacement gradients of the crack faces can be written in terms of 6, as

o + o -
6 (@) 6 (&)
/\1 Ag

(022 + z’%)(@) - (3.61a)

(6 — %)’(&) — 6 (@) -0 (&). (3.61b)

Using (3.48), (3.59) and (3.60), the formulas for interfacial traction ahead of the crack

tip and crack face displacement gradient behind the crack tip are as follows:

. .T12
(U N 10—12—)(5 ) B COSh(WE) ;1/24—15 /0 (0'22 +1 7 )(t)dt
TR m oo [Tt — )

_ 2e7™ cosh(re)
A

gV A®E) 6 >0 (3.62a)

02 012

(6 — Z-T-’-),(fl) = sinh(me)A1e™ (090 + 2—;—)(51)
(212
Cosh(ﬂ.s))\lens‘gll—l/ﬂ-is 0 n
- ][‘OO ]t|—1/2+is(t _ 51)

— ’1:0'22)(t)dt

™

— 25 cosh(me)|61| VEHEAE) £ < 0. (3.62b)

Note the presence of 1/n in the uncoupled traction and displacement gradient terms.
This is the “traction resolution factor” as denoted by Yang (1991), and g9y + i012/7
is referred to as the “generalized” traction.

<
The function A(z) can be found by requiring that the stress field far away from
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the crack correspond to that of a sharp crack,

Kd+in ~1/24ie
1 2/51

V2r

(022 + if’nl—"’)(sl) -

as & = o0 (3.63)

and thus

(K¢ +i Kg){{l/ﬂis _ 27 cosh(me) _1/2+i5:1(§1) (3.64)
Varm A1 ! . '

<o
Therefore, A is a constant, and is related to the applied stress intensity by

A:_/\l(K1 +iKj)e ' (3.65)
2v/27 cosh(me)
<
The complete solution for ;(z) is then
012
5’(Z) e /0 VA Az (o2 + Z*;]")(t)dt M (KE +i K2)er (3.66)
! oo 2m|t|TV2HiE(t — 2) 2v/2m cosh(me) .

Substituting equation (3.66) into equations (3.61), and using the definitions (3.42)
and (3.43), the full solution for the tractions ahead of the crack and crack opening

gradients are

_ 012
( +ig£)(§ _ cosh(re) 1—1/2+15 /0 (090 +1 ; )(t)dt
A ™ oo JIFE(E = 6))
(1 KA

V2r

& >0 (3.67a)
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(6, — Z'%?.)'(gl) = sinh(7e)A1e™ (092 + ’i%)(fl)

012 .
_ cosh(me) Aje™ €|~ 1/2+ie ][o (*77 — 1092)(t)dt
™ oo ]t|—1/2+ie(t _ 51)

e K¢ —i K¢, | V/2+ie

Ver

& <0. (3.67b)

In the above equations, the complex tractions are yet unspecified. Their magni-
tudes and directions could be any function of position and time, specified anywhere

along the negative z; axis.

3.1.3 A general line cohesive zone

The last section demonstrated that, for a dynamic, bimaterial crack with a per-
fectly bonded interface ahead of the crack and tractions acting on the crack faces,
the tractions and crack face displacements on the interface can be expressed as in
((3.67)).

The analysis will now incorporate the existence of a general cohesive zone into
the system. While one might normally think of a cohesive zone as acting ahead
of the advancing crack tip, it is customary in these types of problems to consider
instead the “mathematical” crack tip, which is the point at which the material ceases
to be perfectly bonded. Consider the origin of our moving reference frame, (§; =
0,& = 0), to be located at this “mathematical” crack tip, as shown in Figure 3.2.
Thus, the presence of a cohesive zone will be incorporated by considering the effects

of the cohesive tractions acting behind the “mathematical” crack tip in the moving
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Figure 3.2: Bimaterial crack with general line cohesive zone.
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coordinate frame. For ease of notation, all following mentions of the “crack tip” will
refer to this “mathematical” crack tip.

The presence of the cohesive zone will prevent the occurrance of unbounded trac-
tions on the interface. Specifically, it will force the tractions to be bounded at the
crack tip, and thus

+
< 00 as & — 0% (3.68)
1

.012
099 + 71—
n

which gives, from equation (3.67),

. _1/24ic |cosh(me) [0 (o2 +i%2)(t)dt (K¢ +iK9)
511190{51 [ - /_oo ]t|“1/2+"57(?t—§1)+ N <oco.  (3.69)

Therefore, the portion of the right hand side of the above equation enclosed in square

brackets must go to zero as £ — 0:

i ] c0sh(re) / (02 F 5Pt (KI+iKD | _ (3.70)
€10 ™ oo [t|TIATE(E — &) Ve
which can be rewritten as
K{+iK;  cosh(me) /0 (022 +i%22)(t)dt
- tt|—1/2+ie
vem T gl (3.71)

_ cosh(me) (022 + i%52)(t)dt
- T . ,tll/Z—H’e

Using (3.71), the K¢ +i K¢ term in (3.66) can be absorbed, to get the expression
1 2
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<
for non singular ©(z) under the bounded stress constraint,

'(2) = — _l/zﬂe\//TTz/ 022+z-‘ﬂ1 (t)dt[ 1 1}

o
91 |t|——1/2+15 t—z - ’t.

(3.72)

S/2+ie Y )\1/\2 / (022 + Z—Q)(t)dt

Itll/2+zs t— Z) )

Substitution of equation (3.72) into equations (3.61) yields

012
ie Ooo + 12— )t dt
COSh(WE)£%/2+ /0 ( 22 n )( ) 51 >0 (373&)

012 _
(022 + 17)(&) = |t /2+ie(t — &)

(6, - i%)’(&) = sinh(re)hie” (o + 1 Z2)(6)

(T - 20'22)(t)dt

(7= )

™

& <0. (3.73b)

™

cosh(mwe) A e™e|€; |1/2+ie ][0

Equations (3.73) now represent the tractions and displacements on the interface
when the presence of a cohesive zone prevents the unbounded growth of the stress field
near the crack tip. The analysis has not, as yet, associated any particular behavior
or form with this zone. It is gratuitous at this point, even, to refer to this zone as
a “cohesive” zone. It could be a nonlinear process zone of any type, so long as its

presence precludes the existence of unbounded stresses.

3.1.4 Application of constant cohesive traction behavior

Before this section, only a general line cohesive model has been considered. No
specific characterizations have been made concerning the behavior of the cohesive

stresses behind the crack tip. Now, consider the specific, hypothetical bimaterial of
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material 2

Figure 3.3: Bimaterial crack with constant cohesive tractions.
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configuration shown in Figure (3.3). When a crack travels along the interface, &, = 0,
a cohesive zone of length R forms at the crack tip preventing the unbounded growth of
stresses. Assume the material interface can sustain a critical failure traction of S , and
thus, following a Dugdale-Barenblatt formulation, consider a process zone in which
the maghitude of the failure traction is equal to S throughout. Furthermore, assume
that the direction of this failure traction is uniform throughout the cohesive zone.
However, this traction direction is allowed to vary with time during crack growth.
Thus, the interface fails in such a way that the cohesive tractions are constant in

magnitude and direction throughout the cohesive zone, or

0 & < —R
(022 +i012) (1) = (3.74)

S(sina+icosa) —R <& <0.
Recall from linear fracture mechanics that the mode I and mode II stress intensity

factors are given by
K] = |K]COS¢, K]] = IK‘ sin¢. (375)

The parameters S and a now correspond to a local “intensity” and “mixity”. Thus,
when a is equal to 90 degrees, the cohesive zone is under pure mode II type traction,
and when o is 180 degrees, the local mixity is pure mode I type.

<
This particular failure behavior may be incorporated into the equation for 67, to
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get
° _1j2+ie .COS (0 \//\ Az
0i(z) = 2V/** S (sina + / |t[1/2+’5 =) (3.76)
The equations for traction and crack face displacements are then
o _ cosh(me 12+
(0 +i72) &) = -2RIRL__g
n 7
cosa, [° dt
sino + i—— . >0 (3.77a
( n )/:R |t[1/2He(t — &) 4 ( )
and
)
(6, — 2;2) (&) = sinh(me)A1e™ S (sina + iCOSQ)H(& + R)
cosh(me)A1e™|&; |3 cosa | | 0 dt
- ~ A A7b
- S ( ; zsma)][_R A g & <0 (3.77b)
where
1 ¢>0
H(() = (3.78)
0 ¢<0.

To calculate the cohesive zone length, R, for the constant cohesive traction model,
recall the unbounded stress restriction for any cohesive zone behavior, given by equa-
tion 3.68. This requirement establishes a relationship between the loading parameters,
K¢ 4+i K¢ and the cohesive zone behavior, as given in equation (3.71).

Equation (3.71) must be satisfied for any cohesive behavior that prevents the
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unbounded growth of stresses around the crack. By considering the specific failure
behavior given in (3.74), an equation may be obtained relating the dynamic bimaterial
parameters e(v) and 7(v), the dynamic stress intensity factors K¢ and K¢, the local

parameters S and «, and the length of the cohesive zone R :

K{+iK§ cosh(me) RY/?~% S (sina+ joosa

/ o 1
2 T §—i5 n

). (3.79)

Rearranging equation (3.79) yields

I
R1/2—ia — z _2— —e Ktli +1 Kg (3 80)
2 cosh(me) < . ,cosa) ' '
S {sina+i—
n

In the case where S is a given material parameter representing the maximum principal
cohesive traction, the traction direction, «, is determined by the loading. Now, R
and « represent physical parameters, so consider only real R and . Equation (3.80)

may then be solved as follows. For positive, real R, (3.80) becomes

/3 +e?|KY
RY2 — \/—i 4 , (3.81)
2 cosh(me) S 4/sina? + 99%3—"

R™* =exp {z [Tan‘l(Zs) — ¢% + Tan™! <——i—)} } , (3.82)

ntanh o

where ¢¢ = Tan™'(KZ/K%) and |K¢| = \/( K{)2 + (K%)2. The superscript “d”
for ¢ is retained in the notation as a reminder that the interpretation for dynamic

bimaterial ¢¢ differs from the static case.
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Substitution of equation (3.81) into equation (3.82) yields

—ie

™ 1+ |KYP 1 _
2cosh®(me) S2 .,  cosfa -
sin® o + 5
n
1
- -1 d -1
_ T .
exp{z l:Tan (2¢) — ¢“ + Tan (ntanha)]}’ (3.83)

which is an equation relating a to the loading parameters, ]Kd| and ¢%, and the
dynamic bimaterial parameters, e(v) and n(v). Equation (3.83) may be solved nu-

merically for a. R is then calculated using « in equation (3.81).
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3.2 The constant cohesive traction model

In this section, the results for the constant cohesive traction model are studied. In
subsection 3.2.1, stresses and displacements are calculated for various values of £,, and
the Coherent Gradient Sensor fringe pattern predicted by this cohesive zone model is
examined and compared to the linear model solution. In subsection 3.2.3, a fracture

criterion based on maximum cohesive displacements is proposed.

3.2.1 Calculation of displacment potential functions

In the following sections, the stress and displacement fields predicted by the constant
cohesive traction model will be examined. In addition, a transmission Coherent Gra-
dient Sensing (CGS) interferogram that would result from a material following this

model is shown. The quantity of interest in transmission CGS is

Ologa +on)1 009 +ou)
v - 5, (3.84)

and thus, from equation (3.11),

0
1
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From equations (3.38),

fi(z) =P{'H'O' (z) z€UHP

—P{'BH! ©'(z) (3.86a)
fo(z) = -P;'H! @ (2) z€ LHP

- -P;'BH! &/(). (3.86b)

<
The matrices multiplying ©’(z) in the above equations may be shown to be

[ 1+a?—2a,.m 1+ a2+ 2a,n]
A B Az
PBH! = — Dl(v) (3.87a)
n(l+a?) - 20 n(l+a?)+ 2
L Ar Ay J
[ 14+ a? - 20,7 1+ a? + 2a.7]
o >\2 B /\1
P'BH™! — - Dl(v) (3.87b)
n(1+a?) —-20 (1 +a?)+ 2
i A2 A1 J

Subscripts have been neglected in these two equations. It is understood that, for the
upper material, P, along with the material quantities yuy, D;(v), etc., is considered,
and similarly for the lower material.

Equations (3.87), along with equation (3.59), may be used to find the complex
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potentials,

K| gz | 1+ed—2am .
ool AmDi(v
ciy) P v ad) 2|
21/(2) 1+ a2+ 2a:m (3.889)
Aoy D '
21 D1 (v) “ (1 + e?) - 2q
Fa)| gz |[1+ad—2am N
” AZ/”’QDZ(U) 2
Gy (z) n(l+ag) —2e
5{(z) 1+ a2+ 2a.m (3.58b)
A2 Do(v) ‘

—n(1+ a?) — 204\,
2

where 6{(z) is given by (3.76) in the case of the constant cohesive traction model.
< <
For (F",G") and (F’,G’), 8; and 6, are needed. Recall from equations (3.65),

(3.76) and (3.79),

S o1 . —Liie_Llaie 0 |t[—%~ledt
01(2) = —A(5 - i) RTEr et /_RT?)—’ (3.89)
o A e -
P Y YOI (3.90)
2m 5 — e Ui
First, rewrite equation (3.89) using
-R dz R
P —_ - (3.91)

2z dz 2%’
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to get

<

y 1ije~l_s 1, —5~—te
61,(2) =A (}. — ie)(—R)"iﬂfgg—ze/ u_f-ﬂ
2 T
Using the hypergeometric function, »F;, defined as

1
2F1(a'7 b7 C; Z) F(C) b) / ub—l(]_ — zu)“a(l _ u)c—b—ldu,
0

" T(®)(c—
21’ can then be expressed as

Y Y —L4ie sl de 1 .3 .~
0(z) = A (—R)" 2™ z27*,F (1, 5 ~ 65— zZ).

o o
To calculate 8" and 6;, make use of the following identities:

agl; [zb 2F1(a, b; e, z)] = (b) 2"t 2Fi(a, b+ 1;¢, 2),

d
272,F(a,b,c—1,2) = P [zc“l 2F1(a, b;c, z)] )

<
To find 6, start by writing

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)
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and thus
3 % “1iie 2ioge 1 -3 . R
rE [91(2)] =A(—R) 27 32 2F1(§ — i€, 1, 5 ~ e Z) x =
— -uZ(—R)%'HCZ_%““ 2F1(~1* )

3
5~ 1, 5~ i€, Z),

and by equation (3.95),

_d | A(=R)¥+*

s—1ge 1 , .
= %——!—ie z 2 2F1(_§”16,1,§—ze,z)
(3.98)
Then, after some algebra,
’Z R
o ‘ 1 3
’ R (= e, 1,5 — e, —— 3.99
1(2) %+i€z2 2Fi( 2 1€, '3 1€, z) ( )

where the integration constant is found to be zero through applying the boundary
conditions.

<
Similarly, use the identity (3.96) to get the first derivative of 6,

gr - 401 42
dz  dz (3.100)
= ;1(*3)"%“6(l —i€)F 2R (1, 2 — i€, = — i€, 5) X £
2 3 2 3 2 ’ 22’
and, after some algebra,

[ed

‘ 3
A(§ '“’L'G)Zv%-HE QFl(l, ] 3

b7 = — _ie S e -y (3.101)
t 2 T2 T R” ‘
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Rewriting equation (3.94) in the same form as (3.99) and (3.101), yields

o o . 1 3
0{(2) =./4Z_—%‘HE 2F1(1,‘2° —?:6,5 —i6,~l—:-). (3102)

3.2.2 Stress and displacement results

The stress and displacement fields under the constant cohesive traction cohesive zone
model can be calculated using the potential functions found in the previous section in
equations (3.11). For the following calculations, take the upper material to be PMMS
and the lower material to be 4340 steel. See Table 1 for material properties.

Figures 3.4, 3.5, and 3.6 show the in-plane stresses, 011, 022, and 012, calculated at
various values of £;. For this calculation the magnitude of the maximum interfacial
traction was assumed to be S = 50 MPa, and a velocity of 600 m/s was used. The
applied stress intensity was taken to be |K?| = .6 MPay/m with ¢? = 60 degrees.
As shown in the figures, the stresses o4, and oy, correspond to the cohesive zone
tractions in the region —R < z < 0.

Figure 3.7 shows the crack face profile after deformation. As is typical of cohesive
zone models of Dugdale type, the solution has a discontinuity of the gradient of the
interfacial displacements, §; and 45, and a corresponding singularity in the stress o;;.

Figures 3.8 and 3.9 show normal and tangential displacements of the upper mate-
rial along the interface. In the case at hand, the PMMA half is much more compliant
than the steel half of the bimaterial, and the crack face displacements of the lower

material are negligible.
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Figure 3.7: Crack-face profile in the cohesive zone (deformed configuration), normal-
ized with cohesive zone length.
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Figure 3.8: Opening displacement of the upper material at the interface, normalized
with cohesive zone length.
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Figure 3.9: Normalized shear displacement of the upper material at the interface.
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Figure 3.10: Fitted linear field and derived cohesive-zone fringe patterns.

Contours of constant in-plane stress gradient, as in (3.84), are shown in Figure
3.10 for a material obeying constant cohesive traction undergoing deformation at a
velocity of 600 m/s. Away from the crack tip, the fringe field predicted by the cohesive
zone model differs very little from that predicted by the linear model in the far field,

as expected. This assures that the model satisfies the small scale yielding assumption.
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3.2.3 A local fracture criterion

Previous authors have postulated a fracture criterion based on the crack opening
profile at a fixed, arbitrary distance behind a moving crack tip. The disadvantage
of this approach has been the lack of physical motivation for a criterion based on
displacements calculated at an arbitrarily chosen location far from the crack tip.
Using the model of a moving crack with a cohesive zone, as developed in the previous
sections, a fracture criterion can now be proposed that is based on locally determined
crack face displacements at the rear of the cohesive zone. The vectorial displacement

of the crack faces in the cohesive zone is given by

5 = 51é1 + 52é2. (3103)

Since the bond is assumed to “break” at the trailing edge of the cohesive zone,
i.e. the cohesive tractions cease to act, the crack face displacements at the trailing
edge of the cohesive zone represent the critical cohesive stretch and angle of the bond.
This suggests the following criterion for dynamic crack growth:

Proposed fracture criterion. The vectorial displacement of the crack faces at the

tratling edge of the cohesive zone remains constant in magnitude and direction through-

out crack growth.
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Mathematically, this is expressed as

V(=R +8,(—R)?? = ky (3.104)

Tan™ (6, (=R)/62(—R)) = k». (3.105)

This criterion can also be expressed in terms of the individual components of the
crack face displacements at the back of the cohesive zone. Constant magnitude and
direction of the vectorial displacement implies that each displacement component is

also constant, or

83(~R) = Cy. (3.107)

In order to study this criterion, the crack face displacements predicted by the constant
cohesive traction model considered in the last section must first be calculated.

From equation (3.61),

(6, - i%>’<§1> — 6] (&) - 6! (&) (3.108)

where 6] is given by equation (3.99). It can be shown that equation (3.108) may be
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rewritten as

0

(61 — 1;)(51) =

where

"

(1 + z'e)(2§ + de) <%> B (1’ 3T 5
2 2

_+Z'€’__.

5 R) -R<& <0

_B 1/2+ie
2R @ zFl(—1 ~i€,1,3
-G +io N F
2 2

R
- — i€, — < —R
g by Tl &

(3.109)

A me
B, = Rcosh e 1€ S (cosa

— %sin a) : (3.110)
w Ui

Using the definition of ,F;(a, b; ¢; z), equation (3.109) may be expressed as

02

(61 — lg)(&) =

BR

1 .
5 €

(

3/2+ie 1 1/2+e
1
(l%l) / (.._—I{ﬁ ) du —R<& <0
0 1-— T’LL

12+ic p1 1 — R\ V2
(%) / (——-——1 K;’ ) du & < —R
o _

where R is given by equation (3.81).



100

Using the definition of ,F;, given in equation (3.93), it can be shown that

1 1 )
- 2F1(1,—+’i6,§+’é6,1>=1

3
S+ 1€ 2
(3 +¢) (3.112)
1 1 3
—oF | —= — i€, 1, = — 16,1 | = 1.
(%-{—i&)z 1< 2 1€, ,2 1€, ) 1
The crack face displacements at the back of the cohesive zone are then
5 A e
(6 — i 2)(~R) = ——— coshme 22— 8 (COSO‘ - z'sina) (3.113)
n 5 T 1€ T n
1—2i . K¢ —i K¢
=~ Raticy ome 221 (3.114)
1+ 2ie V2
From equation (3.113),
52 . i(Tan~!(1/ntan a)—Tan~1(2¢))
—77 +1i61)(—R) = Bse' ntan aniee (3.115)
and from equation (3.114),
) . -
(;2 + 251)(—R) — B3€1(¢d—2Tan 1(2¢)+¢log R) (3116)

where

S Rcosh(me)e™ C";;“ + sin®
By = . (3.117)

2#,/;11--4-62
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Then equation (3.115) yields

53(=R) = nBs cos (Tan—l ( ! ) _ Tan_1(26)>

ntana

1
Py — . -1 _ -1
41(—R) = Bzsin (Tan <ntana) Tan (26)).

The fracture criterion, given by equations (3.107), then implies that

S Rcosh(me)Ae™,/ 991572—9 + sin’ o
C, = sin (Tan'l(
21/ 1 + €

nS Rcosh(me)Ae™ 9932—“ + sin?

(3.118)

) — Tan‘1(2e)> (3.119)

ntana

a

C, = Tan™* — Tan™'(2¢) | .

2 2W\/%_+€_2 cos( an (ntana) an” " ( e))
(3.120)

Then o predicted by the fracture criterion, acr, is
1
a = Tan™!

[7) tan (Tan™'(nC,/C,) + Tan—1(2e))} (3.121)

= acr(Ch, Gy €,) = éer(v),

since € and 7 are functions of velocity, and C; and C, are constants. The cohesive

zone length predicted by constant crack opening displacements is

P sz/%-i-@

1S cosh(me)Ae™ cos (Tan™'(Cy/Cs)) \/99—33723& + sin? aer (3.122)

= RCI‘(Ch 027 €, )‘1) = Rcr(v).
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Combining equations (3.115) and (3.116) yields

¢® = Tan"!(2¢) 4+ Tan™! < ) + elog Rer

7 tan aer (3.123)

= ¢dCI'(Cla CZa €1, /\1) = édcr(U)

Recall that the presence of the cohesive zone prevents unbounded stresses. From this

requirement, equation (3.81) resulted in an equation relating R to K% and a:

1, 2y 5ed |2
11e%)|K
Rzg (G+e) K] —— (3.124)
cosh?(me) S 2 <sin o + — )
n
R can be cancelled by substituting (3.122) into (3.124), to yield
v (3 +€) K B
2 TN
cosh?(me) S 2 (sin a? + C082 a)
n
Cymy /;11— + €2
. (3.125)
nS cosh(me)Ae™ cos (Tan™"(C1/C,)) “’f’# + sin® a
and thus
- 1/2
2C, cosh(me) S \/ cosnzacr + sin? aer
K| =
n)\lewe /i + €2
(3.126)

= [ Kd [CI‘ (Cla C?? &, )‘1) = [ Kd ]CI' (U)
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These equations may also be written in terms of the critical magnitude and angle of

the crack face displacement using

C) = ky cos(ks)

C‘z = ]C1 Sin(kg).
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3.3 Discussion

In this chapter, a dynamic cohesive zone model based on the small scale yielding
assumption was presented. This model imparts a physical structure and interpreta-
tion to the dynamic near tip fields that does not exist in the purely linear elastic,
asymptotic fields described by Yang et al. (1991). The model provides for local pa-
rameters that describe mixity and magnitude of traction near the tip of a bimaterial
crack. The length of the cohesive zone becomes a natural length scale with which
to examine the near tip behavior. An experimentally motivated fracture criterion
was suggested based on the maximum stretch at the back of the cohesive zone. The

validity of this criterion will be investigated in the next chapter.
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Chapter 4

Experimental Investigation of a

Cohesive Zone Model

Overview

In this chapter, the constant failure traction cohesive zone model is used to examine
data obtained from experiment. The ability to study near tip behavior in a dynamic
bimaterial crack is made possible using this model. Predictions of the proposed frac-
ture criterion are shown to correspond to experimentally observed | K¢ | and ¢¢, within
experimental error. The fracture criterion based on the cohesive model presented in
this paper provides the next step in understanding dynamic bimaterial crack growth.
It provides a criterion based on physically motivated parameters, and increases the

understanding of bimaterial fracture mechanics.
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List of symbols

material 1 ...... upper material

material 2 ...... lower material

T1,T9,L3 «unn... coordinates in fixed material frame

£1,62,&3 ... ... coordinates centered on moving crack

Uy, U2, U3 onnnn .. material displacements

TaB v v in-plane Cauchy stresses

01,00 ..ol sliding and opening crack face displacements

e(v) ool oscillatory index function

£ velocity

CRyCl,C2 «eenn.. Rayleigh, plane stress longitudinal and shear wave speeds
K‘f, Kg ......... components of complex dynamic stress intensity factor
K], ¢? ... ... magnitude and phase angle of K% 44 K2

R ... length of cohesive zone

S o bond failure strength

o local mixity parameter
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4.1 Bimaterial behavior in the presence of a cohe-

sive zone

In this section, the experimental results from Chapter 2 are analyzed using the con-
stant cohesive traction model proposed previously. The cohesive zone model already

contains the small scale yielding assumption,

cohesive

i linear as r/R — oo, (4.1)

o — 0y

that is, the cohesive zone stress field corresponds to the linear stress field far from
the crack. This allows us to utilize the values of | K?| and ¢? found in the previous
section in the following section.

For the purposes of this study, is was assumed that S, the failure strength of
the bond, is equal to 50 MPa. Previous tests have shown that, when two PMMA
specimens are bonded with the MMA monomer used in this test, the resulting fracture
toughness is approximately 95% that of homogenous PMMA specimens (Lambros
1994). Furthermore, it was also shown that the PMMA-steel specimens sustained
approximately 95% of the three point bend load of homogenous PMMA. If a value
of 95% of the failure strength of PMMA was used for the failure strength of the
bond, S would be 65 MPa. However, one would expect the interaction of the two
materials, and the imperfections surely present in the bond, to lower the failure

strength from this value. Therefore, a value of 50 MPa was chosen as a reasonable
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value for the failure strength of the bond in these experiments. In Appendix A,
several different failure strengths are utilized in the model, and the results indicate
that the dependence of | K?| on S is very small, while the value of S chosen affects
¢% somewhat more strongly. Further experiments would be needed to determine more
accurately the proper value of S to be used.

The cohesive zone length and local mixity are calculated numerically from the
|K?|, ¢¢ and v data obtained from experiment. Examples of the calculated values
of @ and R are plotted versus velocity in Figures 4.1 and 4.2 for specimen D2-25. It
can be seen that the local mixity, «, is near 90 degrees at very low velocities, and
tends towards 180 degrees as the crack tip velocity approaches cg. This implies that
crack behavior is opening dominated for low velocities and becomes progressively
more shear dominated at velocities approaching cg.

This model incorporates cohesive stresses in a zone behind the moving crack tip.
In such situations, a fracture criterion may be motivated by a consideration of the
maximum “stretch” experienced at the back of the cohesive zone. It is at this position
that the bonding of the interface is presumed to “break”, i.e., the cohesive tractions
fail at this point, and thus it provides a logical, materially motivated location at
which to consider a fracture criterion.

The crack face displacements at the back of the cohesive zone are obtained from
the values for R and «, along with the far field results for v, ]Kd |, and ¢%, using

equations (3.117) and (3.118). The results for the cohesive “opening” and “sliding”
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Figure 4.1: Local mixity vs velocity for test D2-25.
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displacements are shown in Figures 4.3 and 4.4 for specimen D2-25. Figures 4.5 and
4.6 plot the magnitude and crack opening angle at the back of the cohesive zone for
the same test. Similarly, values of R and o were computed for each test in Table 2.2.
Figure 4.7 shows the magnitude of the critical stretch for specimens D2-25, C2-25 and
D2-22. Recall from Table 2.2 that these tests all had the same initial crack length
(20mm £ 1 mm). Thus, these three tests were all subject to very similar initial
loading conditions. The magnitude of the stretch for these three tests can be seen
to be essentially constant (within experimental error) and very similar between tests.
For comparison, Figure 4.8 shows the magnitude of the critical stretch for specimens
C, D, E and F. These tests all had an initial crack length of 25mm 4 1mm. Again,
the magnitude of the critical stretch is essentially constant and the same for each of
these four tests.

In Figure 4.9, the magnitudes of the critical stretch for all specimens are plotted
versus velocity. From this figure it is clearly seen that the two groups of tests aquire
and maintain different constant values for the mangitude of the critical stretch. This is
to be expected, since the two groups were subjected to different initiation conditions.
The criterion of constant magnitude and angle of crack face displacement at the back
of the cohesive zone is a growth criterion, which specifies that the values of crack face
displacement at the back of the cohesive zone at initiation are retained throughout
crack growth.

Constant values of C; and C; may be calculated as in Figures 4.3 and 4.4 for
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Figure 4.3: Crack sliding displacements at the back of the cohesive zone, { = -R, for
specimen D2-25.
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Specimen d2-25 — 20mm initial crack
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Figure 4.4: Crack opening displacements at the back of the cohesive zone, £ = -R,
for test D2-25.
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Specimen d2-25 — 20mm initial crack
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Specimen d2-25 — 20mm initial crack
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Figure 4.6: Crack opening angle at the back of the cohesive zone, £ = -R, for test
D2-25.
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Specimens with 20mm initial crack length
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every specimen in Table 2.2. These values will be used in the next section to verify
that the constant cohesive displacement fracture criterion accurately predicts the

experimentally observed behavior of K¢ and ¢.
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4.2 Fracture criterion verification using experimen-

tal data

Constant values for cohesive zone opening and sliding displacements were calculated
in the previous section for each test. These constant values found for the cohesive
zone displacements at the back of the cohesive zone may be used to find the predicted
variation of R with velocity, as given by equation (3.122). The critical values for co-
hesive zone length are shown in Figure 4.10 along with the experimentally determined
values for specimen D2-25.

The predicted critical values for | K¢ |¢;r and ¢%; can be found from (3.123) and
(3.126). Figures 4.11 and 4.12 show the variation of | K¢| and ¢¢ with velocity pre-
dicted by the fracture criterion for specimen D2-25, along with experimentally ob-
served | K?| and ¢¢. Specimens C2-25 and D2-22, each also having a nominal initial
crack length of 20mm, are not shown but exhibit behavior similar to that shown in
Figures 4.11 and 4.12. Figures 4.13 and 4.14 show the same values for specimen
C. The remaining specimens, D, E and F, with initial crack length of 25mm are not
shown, but also exhibit similar behavior to that shown in Figures 4.13 and 4.14. From
these figures, it can be seen that the constant crack face displacements obtained in
the last section predict the behavior of ]Kd[ and ¢¢ for well. For comparison, the
criterion suggested by Lambros & Rosakis (1995a) is also shown in each figure. While
the two comparisons seem to predict the data equally well, it has been shown in this

paper that investigations of crack tip behavior using a cohesive zone model avoids
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many of the criticisms that are inherent in the fracture criterion of Lambros & Rosakis

(19954).
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Specimen d2-25 — 25mm initial crac
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Figure 4.11: |K?| vs velocity for test D2-25.
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4.3 Discussion

The cohesive zone model developed in Chapter 3 has been applied to lel and ¢?
values obtained from dynamic bimaterial experiments. It has been shown that the
crack face displacements at the trailing edge of the cohesive zone were approximately
constant throughout crack growth. This supports a criterion based on constant critical
cohesive displacements throughout crack growth. The predicted variation of | K¢ | and

¢¢ with velocity was consistent with this criterion.
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Chapter 5

Summary and Conclusions

An investigation of dynamic crack growth in bimaterials has been presented. Using
the method of Coherent Gradient Sensing (CGS) combined with high speed photog-
raphy, stress fields in dynamically propagatinh cracks were visualized in real time.
Asymptotic values of | K¢ | and ¢¢ were determined. It was demonstrated experimen-
tally and mathematically that the complex interaction between the crack tip velocity
and the dynamic loading parameters, 'Kd| and ¢¢, precluded a traditional inter-
pretation of |Kd] and ¢¢ as sole measures of stress intensity and mixity in dynamic
bimaterial problems. This interaction, inherent to dynamic bimaterial problems, can-
not be too strongly emphasized. An understanding of this interplay between velocity,
“intensity” and “mixity” is essential in the study of bimaterial cracks.

This work presented a dynamic cohesive zone model that allows application to, and
investigation of, experimentally obtained data. The model provides a mechanism for

examining near tip behavior of the crack tip. The cohesive zone length emerges as a
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natural length scale for bimaterial problems. It incorporates natural parameters that
act as local “intensity” and “mixity” in the cohesive zone. A crack growth criterion
based on the critical cohesive stretch and crack opening angle at the trailing edge
of the cohesive zone was proposed that is consistent with the behavior of dynamic
parameters, [Kd[ and ¢¢. This criterion states that the crack opening profile at the
back of the cohesive zone that the crack initiates with is retained throughout dynamic
crack growth. These initiation values would be provided by an initiation criterion for
this bimaterial system.

There are some areas that suggest promising future research. First, this crite-
rion describes dynamic crack growth. It states that the crack face displacements at
the trailing edge of the cohesive zone that are present at initiation remain constant
throughout crack growth. Further research is needed to develop a dynamic initiation
criterion in order to fully characterize dynamic crack growth.

Observations were made, the analysis of which was beyond the scope of this work,
that areas of the debonded interface that correspond to different crack propagation
velocities appear visually different. This suggests that a microscopic examination of
these surfaces might increase our understanding of the debonding process. The use of
temperature detectors (as in Zehnder & Rosakis 1993) to observe temperature behav-
ior in these different regions would facilitate a better understanding of mechanisms
involved. Consideration of rate effects and heat dissipation in the cohesive zone model

would provide valuable refinements, and would undoubtedly improve its applicability
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to many different bimaterials.

An experimental investigation of different bonding materials might also help to
increase understanding of the interaction between bond strength, plasticity, and frac-
ture toughness. It is possible that selectively weakening the bond be the best way to
prevent the catastrophic failure that can occur at very high crack speeds. Further-
more, an investigation of energy absorbed by the cohesive zone as plastic work might
provide insight into the design of composites that are resistant to catastrophic failure.

Finally, several specific issues surrounding the necessity of accurate velocity mea-
surements were discussed, and techniques for reducing the error in measuring velocity
were proposed. Future areas of work should investigate additional ways to reduce ex-

perimental errors in the measurement of crack tip velocity.
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Appendix A

Effects of the Choice of Bond

Failure Strength.

The value of S chosen for this work was based on the critical strength of PMMA,
and on the relative strength of the MMA monomer used for the bond between the
PMMA and steel in the bimaterial. This value was not experimentally determined,
but as can be seen from the following graphs, the precise value of S has very little
effect on the predicted overall behavior of the fields.

Each of the following graphs shows a quantity calculated using very different
values for failure strength, S. As these graphs show, none of the parameters of
the experiment are drastically affected by the choice of failure strength. Specific
experiments could be conducted to determine more precisely what this value should

be, but that appears to be unnecessary for the scope of this work.
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Comparision of Fits for Different Values of Yield Strength
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Appendix B

Definitions of Matrix Coefficients

Used in Chapter 3

Recall the definitions of the matrices P, Q, U and V given in section 3.1.1:

p(l+a?)  2ua
P = Q=
2p0g p(l+ )

u(l+a?) 2p0 }

—2peq —p(l +al)

and

where
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From the definitions of H and H given in equation (3.34), it can be shown that

H=L,-L, zeS*

*

Hzi]_—Lz ZES_,

where
L, = U, P, Ly = VoQ; L.

The components of L and L may be found, using the definitions above, to be

(h)e  (h2)k . (h)e  —(ha)k

Lk= Ly =
(la)k (hua)k —(l)k (lu)k
where
_ 2a1as—(1+a§) _ as(l—ai’) _ a,(l—ag)
b= {20 ) = e ) = {
and

Di(v) = {d4ayas — (1 + a§)2}k.



136

H and H may then be written as

hn h12 * hll _h12
H= , H = ,
hgl hll _h21 hll
where
hii = (lu)1 — (li)2,  hiz = (L) + (Li2)2,  har = (L)1 + (I21)2-
Note that

* *

HH = HH == (hfl - h12h21)1

- *(AIAQ) I,

where I is the 2 x 2 identity matrix. These identities were integral to the derivation
of the Hilbert problem solved in Chapter 3.

The functions D(v) are known in dynamic fracture mechanics as the Rayleigh
wave functions, because these functions are zero at the Rayleigh wave speed of the

material. In other words,
Dr(cr) =0 where cg is the Rayleigh wave speed of material k.

This shows that the components of Ly and Ly are singular at the Rayleigh wave

speed of material k. Recall from the definitions of ; and a, that the formulation of
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the Hilbert problem given in Chapter 3 is already constrained to the velocity regime

v € [0, cf MMA]. The componenets H and H are singular at the Rayleigh wave speed
of material 1, and thus the formulation breaks down at CEMMA. Thus, the solutions

to the dynamic bimaterial crack are singular at the Rayleigh wave speed.
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