DYNAMIC CENTRIFUGE TESTING OF CANTILEVER RETAINING WALLS

Thesis by

L. Alexander Ortiz

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1982

(Submitted May 24, 1982)

ABSTRACT

An investigation was made into the behavior of flexible cantilever walls retaining a cohesionless soil backfill and subjected to earthquake-type dynamic excitations using the centrifuge modelling technique. The study was motivated by the abundant observations of earth retaining structure damage and failures documented in earthquake damage reports.

The "prototype" typical walls were designed using the traditional Mononobe-Okabe dynamic lateral earth pressure theory, were properly scaled for use in the centrifuge at 50 g's, and were subjected to lateral earthquake-like motions which were considered to be of realistic levels. The walls were amply instrumented with pressure and displacement transducers, accelerometers, and strain gages. Moment, pressure, shear, and displacement distributions (static, dynamic, and residual) were obtained.

From the test data, some empirical curves for relating the upper bound responses of the retaining walls to the strong motion characteristics of the applied earthquakes were obtained.

11

ACKNOWLEDGMENTS

The author wishes to express his appreciation and gratitude to his research advisor, Professor Ronald F. Scott for, first of all, suggesting the research topic, and then providing guidance and suggestions during the course of the investigation. Additional thanks are owed to other faculty members and postgraduate fellows at Caltech, especially Professor Paul C. Jennings, Dr. John F. Hall and Dr. John M-M. Ting, for helpful discussions of some of the problems which were encountered.

In addition, the aid provided by Mr. John R. Lee in designing, building, and maintaining the experimental equipment is gratefully acknowledged and appreciated. Special gratitude is also owed to Mr. Raul Relles for his help in maintaining the digitizer in working order when it was most needed.

Finally the author wishes to thank Mrs. Sharon Beckenbach, Mrs. Gloria Jackson and Mrs. Beth McGrath for the expert typing of this work.

The financial support for research provided by the National Science Foundation (work performed under Grant No. CME79-13822), and the California Institute of Technology is also gratefully appreciated.

iii

TABLE OF CONTENTS

	PAGE
CHAPTER 1. INTRODUCTION	1
1.1 Mononobe-Okabe Method	2
1.2 Experimental Studies	9
1.3 Analytical Studies	14
1.4 Earthquake Damage to Retaining Structures	21
 1.4.1 Chile, 1960 1.4.2 Alaska, 1964 1.4.3 Niigata, Japan, 1964 1.4.4 San Fernando, California, 1971 1.4.5 Friuli, Italy, 1976 1.4.6 Tangshan, China, 1976 1.4.7 Miyagi-Ken-Oki, Japan, 1978 	24 29 35 38 42 46 47
CHAPTER 2. CENTRIFUGAL MODEL TESTING	50
CHAPTER 3. EQUIPMENT AND INSTRUMENTATION	56
3.1 The Centrifuge	5 6
3.2 The "Earthquake Generating" Mechanism	59
3.3 Model Retaining Walls	63
3.3.1 Design of the Retaining Walls3.3.2 Determination of the Actual EI of the Walls3.3.3 Determination of the Natural Frequencies of the	66 74
Wall-Soil Systems	75
3.4 Soil	84
3.5 Instrumentation	86
 3.5.1 Strain Gages 3.5.2 Accelerometers 3.5.3 Pressure Transducers 3.5.4 Displacement Transducers (Δ-beams) 	86 93 95 99

TABLE OF CONTENTS (CONCLUDED)

	PAGE
3.6 Calibration of Transducers	103
 3.6.1 Strain Gages 3.6.2 Accelerometers 3.6.3 Pressure Transducers 3.6.4 Δ-beams 	104 104 105 106
CHAPTER 4. EXPERIMENTAL PROCEDURE	107
4.1 The Experiment	107
4.2 Data Reduction	111
CHAPTER 5. RESULTS	121
5.1 Dimensionless Groups	121
5.2 The Experimental "Earthquake"	124
5.3 Parameter Diagrams	178
5.4 Static Results	235
5.5 Dynamic Results	240
5.6 Final Static (Residual) Results	267
CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS	275
6.1 Conclusions	275
6.2 Recommendations	279
BIBLIOGRAPHY	283
APPENDICES	
 A. Scaling Relations B. "WALL" Program Listing C. List of Symbols D. Finite Element Comparison 	289 298 341 347

CHAPTER I

INTRODUCTION

In this study, an investigation was made into the behavior of cantilever retaining walls, with a cohesionless soil backfill, subjected to earthquake-type dynamic excitations.

Interest in this problem arose from the fact that in virtually every earthquake damage report there is documentation of damage or failure of bridge abutments, sea walls, quay walls, canals, dikes, retaining walls, etc.; in other words, earth retaining structures. This is further enhanced by the fact that in most seismically active areas, there are absolutely no code provisions for some aseismic design of retaining structures. Where seismic considerations are taken into account, a design with the 60 year old pseudo-static Mononobe-Okabe theory with reduced design accelerations is usually accomplished.

Even though many experimental (model) and analytical studies have been done on the subject in the last 60 years, many have been improperly formulated, oversimplified, or simply inadequate. To this day there seems to be no general agreement as to what seismic method of design should be used or even if one should be used at all.

In recent years, the centrifuge has become a more accepted and useful tool in the modelling of soil mechanics problems. It was therefore decided to use this device in order to try to develop some empiricaltype design guidelines for at least one type of retaining structure, namely cantilever retaining walls. In order to do this an

- 1 -

"earthquake generating" mechanism, simple and light enough not to take up a substantial portion of the centrifuge payload, was developed in order to provide properly scaled earthquake-type excitations to the properly scaled and designed wall-soil system.

A series of fourteen tests was performed on two properly scaled retaining walls which were designed according to the traditional seismic theory. Since these walls are bending beams, bending moments were measured directly. This appears to be unprecedented since model studies have generally been done only on rigid walls. In addition, earth pressures behind the walls were measured and these results integrated to determine the shear forces. With the aid of accelerometers and displacement transducers, deflection shapes were also determined.

Although model tests were performed, they provided the response of a real (not idealized) retaining structure system subjected to a real earthquake excitation. This was afforded by using the artificial gravity field provided by the centrifuge.

1.1. Mononobe-Okabe Method

During the 1920's, N. Mononobe and N. Matsuo [31], and S. Okabe [39], developed an approximate method for determining the dynamic lateral earth pressure on a retaining structure. The method was based on the traditional Coulomb lateral earth pressure theory where inertial forces of the soil due to the earthquake were treated as additional static forces, through the use of horizontal and vertical accelerations. The observed failure mechanisms of gravity walls which had displaced

- 2 -

under lateral acceleration provided a physical basis for this approach. The method, therefore, does not incorporate a calculation of the pressures which may develop between wall and soil prior to wall failure.

The Mononobe-Okabe method set a standard with which most future research in the field would be compared. Ensuing research has been concerned with refinement of the method or tests of its validity by model studies. Only a few countries have building codes that specify earthquake provisions for wall structures [17,55], but in general, when specified, these provisions are based on the Mononobe-Okabe method. Even in localities where no specific code requirements exist, it appears that the Mononobe-Okabe method is used in design when a dynamic analysis is desired.

Details of the Mononobe-Okabe method and suggestions regarding its application to design problems are given by Seed and Whitman [55].

- The wall is assumed to displace laterally a sufficient amount to generate minimum active pressure.
- 2. The soil is assumed to satisfy the Mohr-Coulomb failure criterion.
- 3. Failure in the soil is assumed to occur along a plane surface through the toe of the wall and inclined at some angle to the horizontal.
- 4. The wedge of soil between the wall and the failure plane is assumed to be in equilibrium at the point of incipient failure, under gravity, earthquake, and the boundary forces along the

- 3 --

MONONOBE-OKABE ANALYSIS

FIGURE 1.1

wall and failure surface. The forces acting on the soil wedge of weight W are shown in Figure 1.1 for the case of a cohesionless soil.

- 5. Equivalent static horizontal and vertical forces $k_h W$ and $k_v W$, applied to the center of gravity of the wedge, represent the earthquake effect. The parameters k_h and k_v are the horizontal and vertical earthquake coefficients expressed as fractions of g, the gravitational acceleration.
- 6. The method gives the magnitude of the total acting force on the wall, but does not give the point of application or the pressure distribution. The method apparently was developed with the assumption that the total force acted 1/3H above the base of the wall of height H. Based on more recent refinements to the method, as well as model test results, Seed and Whitman [55] recommended that the dynamic force should be assumed to act 0.6H above the base. The total active wall force, due to gravity and earthquake, is determined by a force and moment equilibrium analysis of the soil wedge behind the wall (Figure 1.1).

As in a Coulomb analysis, the angle of the failure plane is varied to give a maximum value of the wall force per unit width P_{AE} , and under the critical condition it can be shown that

$$P_{AE} = 1/2\gamma E^{2} (1-k_{v}) K_{AE}$$
 (1.1)

- 5 -

in which:

$$K_{AE} = \frac{\cos^2(d-\theta-\beta)}{\cos\theta\cos^2\beta\cos(\delta+\beta+\theta)} \left[1 + \left(\frac{\sin(d+\delta)\sin(d-\theta-i)}{\cos(\delta+\beta+\theta)\cos(i-\beta)}\right)^{1/2}\right]^{-2}$$
(1.2)

(coefficient of lateral earth pressure)

$$\theta = \tan^{-1} \frac{k_h}{1 - k_w}$$

 γ = unit weight of soil

 ϕ = angle of internal friction of soil

 δ = angle of wall-soil friction.

i = angle of backfill slope

 β = angle of wall slope

 k_{h} = horizontal earthquake coefficient (fraction of g)

 $k_{w} = vertical earthquake coefficient (fraction of g)$

Figure 1.2 illustrates the variation of K_{AE} with k_h with changes in the various soil/wall/lateral acceleration parameters. The Mononobe-Okabe method can be readily extended to encompass cohesive soils by considering the equilibrium of cohesive forces acting along the wall boundary and the failure surface.

Some limitations on the method are given by Wood [67]. A brief summary follows:

 For full active pressure (full plastic state) to develop in the soil behind the wall, it is necessary for the top of the wall to deflect laterally about 0.5% of the wall height. This

FIGURE 1.2 - FROM (55)

- 7 -

condition probably occurs readily in gravity and cantilever walls, but may not always occur in channel sections or anchored sheet-pile walls. It was shown by Wood that for a rigid wall on a rigid foundation the earthquake force component computed by elastic theory was likely to be greater than twice the force computed by the Mononobe-Okabe method. This result was based on a static solution of identical horizontal earthquake coefficients for each case. Thus failure of a rigid structure designed using the Mononobe-Okabe criterion is a great possibility.

Unlike design procedures which allow yielding of structural members of building frames during strong earthquakes, it is generally undesirable to allow excessive yielding in retaining structures. This is because yielding of the structure generally tends to occur in only one direction away from the backfill. Unidirectional yielding may lead to excessive wall displacements with severe cracking to both wall and backfill. It is thus considered desirable to prevent yielding of the retaining structure during an earthquake.

- 2. Although the assumption of a plane failure surface appears reasonable, its validity has been based on a very limited number of test and field observations.
- 3. The Mononobe-Okabe Method is a pseudo-static method. Inertia forces are included by use of the earthquake coefficients k_h and k_v . These are generally chosen without any uniform basis

- 8 -

and are generally well below the values for expected peak accelerations. This is basically due to the assumption that some permanent movement of the wall due to shaking can be tolerated.

- 4. In the Mononobe-Okabe method no account is taken of resonance effects or the amplification of earthquake motions that might occur as a result of the propagation of the motion through the relatively soft soil behind the wall.
- 5. The Mononobe-Okabe method neglects the influence of the dynamic behavior of the wall structure itself on the earth pressures. Richards and Elms [43] (see section 1.3) have performed a study taking wall parameters into consideration.

1.2. Experimental Studies

In order to verify the Mononobe-Okabe theory, experiments on smallscale laboratory models subjected to sinusoidal excitation on shaking tables have been performed by a number of researchers: Mononobe and Matsuo, 1929 [31]; Jacobsen, 1939 [19]; Ishii, Arai, and Tsuchida, 1960 [18]; Matsuo and Ohara, 1960, [28]; Murphy, 1960 [33]; Niwa, 1960 [36]; Ohara, 1960 [38].

Mononobe and Matsuo used a 4 ft high, 4 ft wide, and 9 ft long sandbox which was subjected to horizontal excitations with vibration periods of 0.42 to 0.48 seconds. The end-walls of the box were hinged at the base and restrained by pressure measuring devices at the top. Total end-wall forces were measured and were found to be in reasonable agreement to those given by the Mononobe-Okabe method. Although no details were given, the wall was presumably allowed to displace sufficiently to allow full active pressure to develop.

Jacobsen performed tests on a sandbox using a shaking table and a 3 ft high layer of sand. Although no other details as to size of the box, flexibility of the wall, or type of excitation are given, it was concluded that the tests were in reasonable agreement with the Mononobe-Okabe method, and that the dynamic component of the force acted at about two thirds of the height of the sand layer above the base.

Ishii, Arai and Tsuchida performed tests with which they concluded that, in general, their results were in agreement with the Mononobe-Okabe analysis. They conducted tests on a sandbox with fixed and movable end-walls. Model gravity walls were also used in the box. A 2.3 ft depth of sand was used behind the walls. The entire box was subjected to sinusoidal excitations of approximately 3 Hz and 0.1g to 0.7g amplitude. Observations on wall displacement, sand settlement, residual earth pressures, and phase relationships between the earth pressures and base motion were made.

Matsuo and Ohara performed tests on dry and saturated sands in a shaking box 3.28 ft x 1.97 ft x 1.31 ft high. Conditions were similar to the tests of Ishii, et al. The box was subjected to 3 Hz sinusoidal excitations with an amplitude of 0.1g to 0.4g. Tests were conducted for both a fixed end-wall (essentially rigid) and a movable end-wall that was permitted to rotate about its base. Shaking was allowed to vary during the tests. For the rigid case the earth pressures were

- 10 -

significantly higher than predicted by Mononobe-Okabe. The earth pressure distributions were also found to deviate considerably from linear.

Based on elasticity theory, Matsuo and Ohara also derived analytical expressions for pressure distributions for the fixed and rotating wall. The experimental pressures were significantly less for the rigid wall than those predicted by their theory. They attribute the discrepancies to influences of the side walls of the box and to the elasticity of the pressure cells used.

Murphy conducted tests to determine the mode of failure of wallsoil systems. A 1/64 scale wall model was placed in a shaking sand box and subjected to a 5.4 Hz excitation with a maximum acceleration of 0.25g. No pressures or displacements were recorded. It was found that failure occurred by outward rotation of the wall about the toe with a failure surface in the soil inclined at 35° to the horizontal. The results were considered consistent with the failure plane in the Mononobe-Okabe method.

Niwa performed tests on a large-scale gravity-type quay wall model. The wall was 9.8 ft high and 13.1 ft wide with a 16.4 ft long sand backfill. In addition, a 6.6 ft X 6.6 ft X 13.1 ft surcharge of sand was placed right behind the wall. A large vibration generator was used. It was capable of delivering frequencies of 3 Hz to 6 Hz with a lateral force of 35 tons @ 6 Hz and a lateral acceleration of 0.3g @ 6 Hz. The generator was placed 34.8 ft behind the wall. A sizeable number of transducers were used to instrument the wall. These included pressure cells, as well as displacement, velocity and acceleration transducers.

- 11 -

Unfortunately, results were very sketchy. Pressures recorded were zero at the top and increased fairly linearly towards the bottom. No comparison with the Mononobe-Okabe method was given.

Ohara conducted experiments on a 12 in deep, 22 in wide and 39 in long sandbox which was harmonically forced with accelerations of up to 0.4g. The end wall was given controlled displacements and the results were found to be consistent with those predicted by the Mononobe-Okabe method.

From the shaking table experiments it is generally concluded that the Mononobe-Okabe method gives the total resultant force reasonably well, but not the pressure distribution, and hence, does not predict the point of application of the force or the magnitude of the overturning moment correctly. Overall, the results of the shaking table experiments are questionable. The tests were performed under fairly unreal conditions. They generally had externally controlled restricted displacements and rotations of the wall. The tests were performed in the laboratory at earth gravity, using scaled harmonic forcing, which was not random as seismic forcing is and may not adequately represent transient earthquake stresses. The rationale for these tests is based on the following argument (Wood[67]). A similarity condition for an elastic soil and a rigid wall under the assumption that both the model and prototype have the same Poisson's ratio is given by the dimensionless equation for the frequency of a vibrating elastic system:

$$\frac{f_{p}^{2}\rho_{p}H_{p}^{2}}{G_{p}} = \frac{f_{m}^{2}\rho_{m}H_{m}^{2}}{G_{m}}$$

where:

 $f_{m,p}$ = frequency of vibration of model and prototype respectively. $\rho_{m,p}$ = soil mass density $H_{m,p}$ = height

 $G_{m, p}$ = shear modulus

and both model and prototype tests are performed at the same gravitational acceleration.

The equation is usually employed to determine the frequency at which the model is to be vibrated to simulate the full-scale behavior. If the ratio of length scale in prototype to model is denoted as N, the equation can be rearranged in terms of frequency to give

$$\frac{\mathbf{f}_{m}}{\mathbf{f}_{p}} = \left[\left(\frac{\mathbf{H}_{p}}{\mathbf{H}_{m}} \right)^{2} \left(\frac{\mathbf{G}_{m}}{\mathbf{G}_{p}} \right) \left(\frac{\boldsymbol{\rho}_{p}}{\boldsymbol{\rho}_{m}} \right) \right]^{1/2}$$
(1.4)

However, $H_p/H_m = N$, and, since the same soil is generally used in model and prototype, ρ_p/ρ_m is close to unity so that

$$\frac{\mathbf{f}_{m}}{\mathbf{f}_{p}} = N \left(\frac{\mathbf{G}_{m}}{\mathbf{G}_{p}}\right)^{1/2}$$
(1.5)

In a clay, a laboratory model can be prepared with G_m essentially any desired value, from a low level, appropriate in some way to the model dimension, to a value the same as the prototype. In sands, the shear modulus G varies with the effective stress, which depends directly

(1.3)

on the gravitational field. As a consequence G_m in a model sand is considerably smaller over the wall depth than G_p in the full-scale domain. The choice of f_m therefore, depends on the relationship adopted between G and the effective stress in the sand. If G is taken to vary linearly with effective stress, then f_m is approximately equal to

 $N^{1/2}f_p$. Alternative if G is taken to vary as some power of effective stress, say 1/2 (Seed and Idriss [54]), f_m would be given as $N^{3/4}f_p$.

Given this uncertainty about the variation of G with effective stress, no clear approach is indicated, nor do the experiments clarify the effect on the dynamic pressure distributions obtained by the use of different model exciting frequencies. It can be concluded that it is difficult or impossible to achieve a pressure distribution in a (one g) model on a shaking table similar to that found in the full-scale field situation. Therefore, true modelling of the prototype soil cannot be attained in a (one g) shaking table experiment.

1.3. Analytical Studies

In addition to the experimental research, analytical models have been proposed to describe the dynamic earth pressures acting on walls: Tajimi, 1969-73 [59-61]; Prakash and Basavanna, 1969 [42]; Scott, 1973 [50]; Wood, 1973 [67]; Richards and Elms, 1977 [43]; Chang and Chen, 1981 [6,7]. Tajimi obtained the solution for earthquake-induced soil pressures on a cylindrical structure embedded in an elastic soil. He also obtained the solution for a harmonically forced rigid wall of finite height at the corner of a quarter-infinite elastic medium (Figure 1.3). The analysis was based on elastic wave propagation theory. Although the boundary conditions are not very realistic, the solution can be used as an approximation for some dynamic problems.

Prakash and Basavanna computed an approximate wall pressure distribution on a wall under similar assumptions to those of the Mononobe-Gkabe method. It was determined that the pressure distribution was essentially parabolic although the resultant was virtually of the same magnitude as give by Mononobe-Okabe. The resultant, however, acts at a height above the base H_a given by:

$$H_a = C_a H/3 \tag{1.6}$$

where C_a is a very complicated expression dependent on all the Mononobe-Okabe wall-soil parameters. H is the height of the wall. C_a is greater than one. For $k_h = 0.3$, H_a is approximately midheight and continues to rise with higher lateral acceleration.

Scott performed an analysis on a simple yet useful model (Figure 1.4). It basically consists of a rigid wall with the soil modelled as a simple shear beam on a Winkler foundation. He also performed an analysis where a wall flexibility was included. Closed form solutions were obtained for various cases that include variations of the elastic constants with depth and certain types of wall

FIGURE 1.3

SCOTT'S MODEL

FIGURE 1.4

deformations. Because of simplicity the solutions are quite useful in preliminary design applications. Scott concluded that what happens in an earthquake to a wall designed by the Mononobe-Okabe method is that "elastic", transient forces much higher than those predicted by Mononobe-Okabe act on the wall, causing it to displace and rotate. When the wall reaches a displacement of 1/2% or so of the height, the soil reaches failure. The wall continues to displace and rotate due to inertia and when it stops what is observed is the failure (Mononobe-Okabe) mechanism - not the stresses that caused failure. This is why all the experiments involving failure end up by concluding that Mononobe-Okabe is the right analysis. If the earthquake force only reached Mononobe-Okabe levels of stress, then the wall designed to M-O should not fail.

Wood, using elastic and elastic wave propagation theories developed solutions for an elastic soil stratum of finite or infinite length and finite depth on a rigid base with a rigid wall under various and forcing conditions. For a perfectly rigid wall (Figure 1.5), supporting a relatively long layer of soil, he determined that the earthquake force component computed was likely to be greater than twice that estimated by the Mononobe-Okabe method (Figure 1.6). Identical horizontal earthquake coefficients k_n were used in the comparison. It was thus recommended that for a rigid wall embedded in rock or very firm soil, restrained by piles or deeply buried, an elastic analysis should be used in lieu of the Mononobe-Okabe method.

- 18 -

WOOD'S RIGID WALL PROBLEM

FIGURE 1.5

LENGTH/HEIGHT = 10.0

and Mononobe-Okabe method. FIGURE 1.6 - FROM (67)

- 20 -

Richards and Elms extended the Mononobe-Okabe method to include the influence of the dynamic behavior of the wall structure itself (Figure 1.7). It was concluded that for gravity retaining walls the Mononobe-Okabe analysis is satisfactory provided that the inertia of the wall is taken into consideration. In addition, Richards and Elms give a description of the significance of each of the Mononobe-Okabe parameters which is useful in a further understanding of the method.

Chang and Chen developed an upper bound technique of limit analysis and then applied it the earthquake problem. It is basically an approach similar to Mononobe-Okabe with the main difference being that more refined failure surfaces (Figure 1.8) are used. The seismic coefficient of active earth pressure K_{AE} was found to be practically the same as that obtained by a Mononobe-Okabe analysis.

1.4. Earthquake Damage to Retaining Structures

Failures in retaining structures due to earthquakes occur very frequently. These are documented in virtually every earthquake-damage report. It should be noted that in most reports, unless failures are dramatic, retaining-structure damage is given secondary importance. This is generally due to the fact that failure of these structures does not entail severe loss of life and limb. The damage done by the earthquake can, however, be very costly in terms of repair and replacement as well as economic setbacks to a community. A few examples of damage to retaining structures follow.

RICHARDS & ELMS ANALYSIS

FIGURE 1.7

FIGURE 1.8 - FROM (7) Log-Sandwich Failure Mechanism for Seismic Active Earth Pressure Analysis

1.4.1. Chile

Duke and Leeds [11] provide an extensive account of damage to retaining structures in the 1960 Chilean Earthquakes, the most severe of which had a Richter magnitude of 8.5. At Puerto Montt (Figure 1.9), the Modified Mercalli Intensity (MMI) was estimated to be between VIII and IX. There was essentially total failure of the harbor gravity-type quay walls (Figs. 1.10, 1.11, 1.12, 1.13). Both walls completely overturned. Sheet pile sea walls (Figs. 1.11, 1.14) were severely damaged. The piles had approximately 5" x 15" hat-shaped cross-sections with 5/16" thick webs and were made in Germany. Since the walls were about 30 years old at the time of the earthquake, failure principally occurred when the corroded rods broke due to the added tension resulting from the added soil pressure.

Most of the above-mentioned structures were founded on fill consisting of gravel, sand, silt, some masonry fragments, and organic matter. In general, it was placed by dumping although some was placed hydrodynamically by dredging from the harbor bottom. The disastrous damage to structures retaining this material was largely due to liquefaction as a result of earthquake motion.

Figure 1.15 shows distortion of the Isla Teja bridge in Valdivia (MMI X) due to the added soil pressure on the abutment whose excessive movement caused damage to the bridge superstructure. Unlike the Puerto Montt failures, damage to this structure was not due to liquefaction, but solely to the added inertia from the shaking.

- 24 --

FIGURE 1.9 - FROM (11)

FIGURE 1.10 - FAILURE OF QUAY WALL AT PUERTO MONTT - FROM (55)

15.5 METER QUAY WALL (after Chile Dept. of Ports)

FIGURE 1.11 - PUERTO MONTT, WATERFRONT WALLS, DESIGN FEATURES - FROM (11)

FIGURE 1.12 - FAILURE OF GRAVITY WALL AT PUERTO MONTT - FROM (11)

FIGURE 1.13 - PUERTO MONTT, GRAVITY WALL FAILURE - FROM (11)

FIGURE 1.14 - FAILURE OF SHEET-PILE SEA WALL AT PUERTO MONTT - FROM (11)

FIGURE 1.15 - DISTORTION OF ISLA TEJA BRIDGE DUE TO SOIL PRESSURE ON ABUTMENT - FROM (55) Seed and Whitman [55] also report on a gravity retaining wall failure at Frutillar (MMI VIII) where dry material was encountered (Fig. 1.16).

1.4.2. Alaska

Ross, Seed, and Migliaccio [45] report on extensive bridge damage due to the 8.4 magnitude Alaska earthquake of 1964. Most of the bridges which suffered damage were 50 to 80 miles away from the cone of major energy release. The most severe damage occurred on the Seward, Sterling, and Copper River Highways (Fig. 1.17). Table 1.1 gives a foundation damage classification reduced from reports of the Alaska Department of Highways.

Most of the bridges were founded on alluvial deposits composed of granular materials which ranged anywhere from coarse gravels to fine sands and silts depending on location. The deposits ranged in depth from 50 to 150 ft and were generally underlain by clays or bedrock. A few bridges were founded on bedrock.

Damage was due completely or in part to the lateral displacement of the bridge abutments toward the channels causing tilting of piers and buckling of superstructures (Figs. 1.18, 1.19, 1.20). There was also spreading and settlement of abutment fills. The greatest concentrations of severe damage occurred in regions characterized by thick deposits of saturated cohesionless soils. There was ample evidence of liquefaction of these materials during the earthquake. This phenomenon probably played a major role in the development of foundation displacements and

FIGURE 1.16 - FRUTILLAR, RETAINING WALL FAILURE - FROM (55)

TABLE 1.1

Classification of Damage to Highway Bridge Foundations During the Alaska Earthquake (from Ross et al. [45])

114 Bridges Classified

Classification	Description	Percentage
Severe	Abutments moved streamward and/or markedly subsided; piers shifted, tilted, or settled; substructure rendered unsalvageable	28
Moderate	Distinct and measurable net displacements as in previous category, but to a lesser degree, so that substructure could perhaps be repaired and used to support a new superstructure	22
Minor	Evidence of foundation movements (such as cracked backwalls, split piles, closed expansion devices), but net displacements small and substructure serviceable.	18
Ni1	No evidence of foundation displacements	32

bridge damage. Even where damage was moderate or minor, there was evidence of bridge joints closing indicating lateral displacement of the abutments.

It should be noted that where bridges were founded completely on bedrock there was virtually no damage. However, severe to moderate displacements were reported for bridges founded partly on bedrock and partly in soils.

Highway routes of seven main bridge-damage locations in earthquake-damaged region, south central Alaska. FIGURE 1.17 - FROM (45)

- 32 -

FIGURE 1.19 - SUPERSTRUCTURE BUCKLING OF SNOW RIVER BRIDGE 604 - FROM (45)

FIGURE 1.20 - SUPERSTRUCTURE DRIVEN THROUGH ABUTMENT BACKWALL,COPPER RIVER BRIDGE 345 - FROM (45) The 7.5 magnitude, 1964 Niigata, Japan earthquake caused severe damage to waterfront structures and virtually paralyzed operations at the port of Niigata, one of Japan's most important. Accounts of the damage are given by Hayashi, Kubo, and Nakase [14], and by Kawasumi [22].

The total length of waterfront structures including jetties and dikes at the port of Niigata was 10.25 miles. About 76% of this length was composed of earth retaining structures. Sixty-nine percent of these were steel sheetpile bulkheads, 8% were concrete sheetpile walls and 6% were concrete gravity walls. The severity of damage to harbor structures is outlined in Table 1.2.

TABLE 1.2

Grade of Damage	Description	Total Length* (mi.)	Proportion to the Overall Length* (%)
4	Complete failure of whole structure	5.43 (4.43)	52.8 (57.1)
3	Failure in main part	2.32	22.6
	of structure	(2.32)	(30.0)
2	Appreciable Deformation	0.07	0.7
	to main part of structure	(0.02)	(0.3)
1	Failure in sub-part	3.98	14.5
	of structure	(0.39)	(5.0)
0	No damage	0.97 (0.59)	9.4 (7.6)

(from Hayashi, et al. [14])

Figures in parentheses refer to earth retaining structures only.

It should be noted that due to the failure of earth retaining structures, 61 warehouses and sheds, 676, 600 ft² in total area, fell down completely, and 92, 691, 500 ft², were seriously damaged (Figs. 1.21, 1.22).

Most of the sheet pile structures in Niigata Harbor underwent damage and a large number were completely destroyed or submerged. A common feature of the damage was a swelling of the backfill and inclination of the wall toward the sea. This type of damage was typically observed in bulkheads with poor anchor resistance. The rods were severed in some cases. In others there was a shear failure in the concrete anchor blocks due to the stress concentration created by the tie rods. The sheetpile bulkheads were designed employing a Mononobe-Okabe Analysis and a seismic coefficient of 0.10. Actual horizontal ground accelerations were around 0.2g amplitude.

The brand new Yamanoshita wharf (completed 1963) which had been Mononobe-Okabe designed with a seismic coefficient of 0.12 suffered no appreciable damage, except for local sinking of the fill behind the anchor plate.

Concrete sheetpile walls, which formed a small part of the waterfront, were completely destroyed by the earthquake.

The gravity retaining walls were generally composed of several concrete blocks stacked up on top of each other and then assumed to act as a monolithic structure. A seismic coefficient of 0.10 was used in design, but it was later found that when the seismic coefficient reaches

- 36 -

FIGURE 1.21 - SHEET-PILE BULKHEAD FAILURE, NIIGATA - FROM (14)

FIGURE 1.22 - WAREHOUSE COLLAPSE DUE TO SHEET-PILE BULKHEAD FAILURE,NIIGATA - FROM (14)

0.12 or 0.13 the structure cannot any longer be assumed to act monolithically. As a result, damage was characterized by blocks falling forward, slippage, and sinking of blocks, and general inclination and sliding of the structures. Damage was severe.

The general soil profile of the Niigata area consists of a layer of sand about 130 ft deep underlain by clays and containing pockets of fine silty soil in the top 60 ft. The soil was generally saturated and much of the damage was due to the occurrence of liquefaction. Before the earthquake the top 30 ft of soil was characterized by an average blowcount of from 4 to 8 using the Standard Penetration Test. Between 30 and 60 feet, it varied linearly from about 8 at 30 ft to about 30 at 60 ft. These figures were reduced by one third after the earthquake. In general, the deeper the structure was embedded in the soil the less severe the damage.

Based on the damage caused by the 1964 earthquakes, replacement structures have been designed and built based on a seismic coefficient of 0.2.

1.4.4. San Fernando, California

The 1971 San Fernando, California, earthquake, which had a magnitude of 6.2, severely damaged, in some cases, earth retaining structures including flood control channels, bridge abutments, and underground water storage tanks and tunnels.

Murphy [32], Scott in Reference [21], Lew, Leyendecker and Dickers [24], and Wood [67] provide descriptions of damage to the Wilson Canyon

and Mansfield Street Flood Control Channels and to the Lopez Canyon Diversion Channel which were located in an area where transient lateral accelerations may have been as high as 50%g.

The Wilson Canyon Channel is partially an open, rectangular, reinforced concrete channel, with a width of about 15 feet and wall heights which vary from 9 to 11.5 feet (Figure 1.23) and partially a covered, rectangular, box section with widths varying from 15 to 22 feet and wall heights ranging from 105 to 16 feet; it is about 3 miles long.

The Lopez Canyon Diversion Channel is an open, rectangular reinforced concrete channel about 1.8 miles long, with widths varying from 12 to 16 feet and wall heights ranging from 7 to 12 feet.

All the above-mentioned structures were built in the early 1960's by the Corps of Engineers in accordance with the Chief of Engineers' design criteria with no seismic consideration. Allowable design stresses were $f_c' = 1.05$ ksi for concrete and $f_s = 20$ ksi for steel. The channels were designed as L-type retaining walls where the wall heights were less than half the channel width, and as U-type channel sections otherwise.

No significant ground displacements seem to have occurred in the vicinity of the damaged sections of the Wilson Canyon and Mansfield Street Channels so the damage can be attributed to an increase in the lateral earth pressure due to ground shaking. There were some inward displacements in the open sections which measured up to 6 inches at the top of the walls (Figs. 1.24, 1.25). Damage to the underground box sections varied from hairline cracks to major shear and moment failures in

- 39 -

FIGURE 1.23 - FROM (67)

- 40 -

FIGURE 1.24 - WILSON CANYON CHANNEL:WALL TOP DISPLACED 4" WITH RESPECT TO THE BRIDGE ABUTMENT AT LEFT - FROM²(67)

FIGURE 1.25 - WILSON CANYON CHANNEL:CRACKING IN SOIL AS A RESULT OF WALL DISPLACEMENT - FROM (67)

walls. Inward deflections of up to 12 inches at midheight were measured at the most severely damaged sections.

Complete failure occurred in sections of the Lopez Canyon Channel, but the failed sections were close to a surface expression of the faulting associated with the earthquake and probably permanent ground displacements contributed significantly to the damage.

It should be noted that the failure of the flood control structures did not create any danger to human life and since in the Los Angeles area these carry only infrequent flood flows, a need for seismic consideration in design and construction might not be economically warranted except for replacement costs.

1.4.5. Friuli, Italy

Similar in magnitude to the San Fernando Earthquake were the 1976 Friuli, Italy earthquakes. The May main shock had a magnitude of about 6.5 while two September aftershocks had magnitudes around 6.0. There was some damage to earth retaining structures [10,57].

Along the Ledra River a retaining wall was considerably damaged during the May shock (Figs. 1.26, 1.27). There were reports of water and sand gushing and evidence of severe cracking in the backfill indicating that liquefaction had occurred. After the September shocks water and sand gushing occurred again in lines parallel to the river course, and the damaged wall completely collapsed.

After the May event damage to the Udine-Carnia-Tarvisio highway due to movement by the retaining structures below it was observed

FIGURE 1.26 - WEIR ON THE LEDRA RIVER: DAMAGED RETAINING WALL - FROM (10)

FIGURE 1.27 - WEIR ON THE LEDRA RIVER: DAMAGED RETAINING WALL - FROM (10)

(Figs. 1.28, 1.29). This is where the highway runs between a canal and a mountainside. On the canal side the embankment is retained by a 33 ft high wall built on piles. Figure 1.30 illustrating a normal section of the road axis shows the relative positions of the canal, the retaining wall, and road embankment, with a rough representation of the supporting soil profile.

Perhaps the fact that the entire embankment was underlain by an inclined rock formation contributed to the slipping of the retaining wall towards the canal and probably to the failure of the foundation piles. Vertical displacements along the 660 yards of retaining wall ranged from 1.6 to 9.5 inches while horizontal movements were between 9.1 and 19.3 inches.

As a consequence of the September aftershocks the damage described above increased.

In addition, there was also some severe damage of several autostrada (freeway) bridges in the area, but these were due mainly to impact from the moving bridge superstructures as opposed to failure due to increase in lateral earth pressure.

1.4.6. Tangshan, China

Yuxian [70] reports bridge failure during the 1976 Tangshan (People's Republic of China) earthquake which had a Richter magnitude of 7.8. The failure came from falling of superstructures to the river, or more usually, from sliding and tilting of the abutments. Lateral movement of abutments is blamed for buckling in bridge decks which would

FIGURE 1.29 - DAMAGE TO EMBANKMENT RETAINING WALL AND CANAL, UDINE-CARNIA-TARVISIO HIGHWAY - FROM (IC)

FIGURE 1.30 - UDINE-CARNIA-TARVISIO HIGHWAY, SECTION THROUGH EMBANKMENT RETAINING STRUCTURE ADJACENT TO CANAL -FROM (10)

have otherwise remained standing. No details were given on design criteria or construction methods.

1.4.7. Miyagi-Ken-Oki, Japan

The 7.4 magnitude Miyagi-Ken-Oki, Japan earthquake of 1978 caused failures in several sites where earth retaining structures were in place due mainly to soil liquefaction (Yanev [6] and Ellingwood [12]). A dike along the Natori River was contained by a concrete retaining wall. A section of wall several hundred yards long moved about one foot toward the river (Figure 1.31). Longitudinal fissures opened in the dike behind the wall and in some concrete pavement along part of the dike. The dike also settled as much as one foot. The site, which is at the mouth of the river, is underlain by at least 65 feet of sand.

In the port of Ishinomaki, a fine-sand fill liquefied, causing severe damage to anchored sheet-pile bulkheads. The fill material had been dredged from the seafloor and placed hydraulically with no compaction. It was placed next to old beach deposits, and the boundary of the liquefaction damage followed the contact very closely; the beach deposits were not involved in the liquefaction.

In addition, there were reports of cracking and settlements of bridge abutments. A comparison was made between the Japanese and American criteria for bridge design under earthquake conditions. According to the 1971 Japan Road Association (JRA) bridge design code a provision is made for the inclusion of a design force for lateral seismic earth pressure, whereas the 1977 American Association of State

- 47 -

FIGURE 1.31 - REPAIRED PORTION OF DIKE, NATORI RIVER - FROM (12)

Highway and Transportation Officials (AASHTO) criteria, which is an adaptation of the criteria developed by the California Department of Transportation in 1973, does not. From the earthquake damage descriptions above, it seems clear that even the seismic design criteria for earth retaining structures are inadequate. No country, whether wealthy or poor, where there is seismic activity seems to be immune from this type of damage.

CHAPTER II

CENTRIFUGE MODEL TESTING

In recent years, the centrifuge has become a more accepted and useful tool in the modelling of soil mechanics problems. Most soil properties are generally dependent on continuum stresses which are generally gravity-induced. Thus, it is very difficult and inconvenient, if not impossible, to find a model material which will exhibit correctly scaled properties if a test is to be performed at the same gravitational acceleration as the prototype. It would be convenient to use prototype material, but as demonstrated in Chapter I, it would obviously not behave in an appropriate manner at the reduced confining stresses in the model. In such a model, in order to develop the same stresses as in the prototype, it is necessary to increase the gravitational acceleration by the lineal scale factor. Thus, if a 1/50th scale model, made of the same material as the prototype is subjected to a gravitational acceleration 50 times that of the prototype, the confining stresses, and thus the properties and behavior of the model are the same as in the prototype (an analytical description of scaling relations is found in Appendix A). A centrifuge is a machine that can provide model gravity as desired.

It must be realized that the model structure must be properly scaled to provide accurate results. The ratio of the accelerations in model and prototype structures is inversely proportional to the ratio of their lineal dimensions. If the ratio of linear prototype dimensions to

- 50 -

those of the centrifuge model is N, then the ratio of area is N^2 and volumes N^3 . The scaling relations indicate that the forces in the prototype are N^2 times those in the model and moments N^3 times while the stresses (force per unit area) are unchanged. Deformation in the prototype is N times larger than in the model, but strains (deformation per unit length) are the same. Thus, the pressure of the same material in both prototype and model results in identical stresses and strains at homologous points.

In the experiments, it was necessary to model the reinforced concrete walls by means of aluminum due to the difficulty in properly scaling down both the reinforcement bars and concrete to a small scale (see Chapter 3). Therefore, the model wall was designed to a similar stiffness per unit width, EI with the stiffness in the prototype being N^3 times that in the model.

Where dynamic problems are involved, it turns out that the prototype time scale is N times that in the model. As a consequence, model frequencies are higher by the factor N. Table 2.1 lists the relations between prototype and model (centrifuge) parameters when the centrifuge is employed [15,46].

In the experiments described here, N was chosen to be 50, so that the model was 1/50 of the prototype linear dimension, and the model acceleration employed was 50 times normal terrestrial gravity. It was also considered desirable to subject the retaining wall and associated

- 51 -

TABLE 2.1

Parameter	Full Scale (Prototype)	Centrifugal Model at Ng's
Acceleration	1	N
Velocity	1	1
Linear Dimension	1	1/N
Area	1	1/N ²
Volume	1	1/N ³
Stress	1	1
Strain	1	1
Force	1	1/N ²
Mass	1	1/N ³
Mass Density	1	1
Weight Density (Unit Weight)	1	N
Time (dynamic)	1	1/N
Time (consolidation)	1	1/N ²
Frequency	1	. N
Unit stiffness, EI	1	1/N ³

soil mass as a passive system to essentially random, earthquake-like excitations at levels equivalent to strong earthquake motions.

As previously described by Scott [52], the attractiveness of the centrifugal method is that the stresses and strains in the model are identical to those in the prototype so that it avoids problems associated with testing, at earth gravity, small soil models involving material with strongly nonlinear behavior. The disadvantages are associated with performing the tests on models which are rotating at rates of 100 to 500 rpm in a centrifuge. Power and signals have to be passed in and out through electric and hydraulic sliprings. There are problems associated with the addition of electrical noise in recording transducer output. The noise comes from ambient sources, the electric motor driving the centrifuge, as well as mundane sources such as local radio stations. Most noise can be effectively taken care of by proper amplification and filtering of output signals as well as numerical smoothing of the digitized data.

In initiating a program of centrifuge testing several questions must be asked concerning the proof or the accuracy of the technique. How well does a model test predict a prototype behavior? Do the scaling relations tell the whole story? In addition, particularly when models of particularly small dimensions such as retaining walls are considered for testing, there is a problem in deciding at what soil grain scale the applicability of continuum constitutive laws to both model and prototype soils breaks down. For very fine grained soils, such as clays, there will be many particles per unit width in both model and prototype retaining wall; on the other hand, in a coarse sand, with grains one twentieth of an inch or so in diameter, there will be relatively few grains per model retaining wall unit width. It is likely that gravity scaling will apply to the constitutive laws, but not to the grain dimensions in the first example. In the second example, it seems possible that the stress-strain relations of model and prototype may not be the

- 53 -

relevant factors, but that the individual grains in the model represent the behavior of boulders in the prototype. Thus, a model retaining wall in coarse sand may not represent the behavior of a prototype retaining wall in the same coarse sand, but that of a retaining wall with a backfill composed of boulders.

The use of the centrifuge in geomechanics dates back to the early 1930's when Bucky [4] first used one in the study of some simple mining problems. The use of a soil mechanics centrifuge was also reported in the Soviet Union around the same time [52]. The use of the centrifuge technique, however, has not been extensively practiced since then, although in the past 15 or 20 years it has been gaining in popularity.

At present, a number of centrifuges have been built and used for soil testing. There are three in the United Kingdom, two at Cambridge and one at Manchester, with radii up to 16 ft and acceleration capabilities up to 200g. It has been reported that "several dozen" centrifuges for soil testing purposes are in use in the Soviet Union [41]. In addition, centrifuges are currently used for geotechnical research in Sweden, Denmark, France, and Japan. Surprisingly, in the United States, where the technique originated, there are only a handful of small centrifuges currently in use. There is one at Princeton, one at Colorado, and one is being developed at the Ames Research Center by the University of California at Davis, in addition to the one at Caltech. The reasons for their limited usage have not been determined.

- 54 -

A compilation of references on centrifugal testing, worldwide, extends to more than 150 papers and a number of books.

With the number of centrifuges built and operational, and the number of tests performed, it might well be thought that the questions above would have been satisfactorily answered by this time; that many comparisons would have been made between models and prototypes. Study of the accessible literature does not show this to be the case in the quantitative sense, although a fair number of studies show qualitatively similar behavior and mechanisms. The particular type of testing involved in this case, the dynamic centrifuge testing of flexible retaining walls, however, has, as far as known, no precedent.

- 55 -

CHAPTER III

EQUIPMENT AND INSTRUMENTATION

3.1. The Centrifuge

The centrifuge (Figure 3.1) used is a Model A1030 Genisco G-accelerator", which consists of an 80-inch diameter aluminum-alloy arm which rotates in the horizontal plane and is rated at 10,000 g-pounds payload capacity. At each end of the arm is located an 18×22 inch magnesium mounting frame (Figure 3.2) capable of carrying a 200-pound payload to 50g or 60 pounds to 175g. The acceleration range at the approximately 40-inch radius of the basket is from 1 to 175g.

The machine is driven by means of a Sabina Electric and Engineering Type RG 2600 Single phase Full Wave Regenerative Static D.C. Drive with a 5 HP, 1725 rpm, 230v, 3-phase, constant torque, doubleended electric drive motor. For accurate determination of the rotational speed, there is located on the main drive shaft a 600 tooth gear wheel, which via a magnetic pickoff produces 600 pulses per revolution. The pulses are read by an electronic counter which converts them to an LED display of RPM accurate to 0.1 rpm. The drift and wow of the system at any given setting is 0.05%. The acceleration arm is housed in an extruded aluminum enclosure, with all the controls and instrumentation, in the interests of safety, located remotely.

FIGURE 3.2 - CENTRIFUGE FRAME

Electrical power and signals to and from the rotating arm or frame are conducted through 44 sliprings of various capacities in the 10 to 30 amp range. Hydraulic pressure is externally generated with a Haskell Engineering and Supply Co. Model DEN.PR51 pump unit with a line capacity of 3000 psi and is transmitted through either two or four lines by means of rotary unions (hydraulic sliprings). Operations on the centrifuge can be observed by means of a television camera mounted on the arm close to the axis; its signal is conveyed either through the rings mentioned above or through coaxial cable and related, separate sliprings to a monitor TV in the instrumentation room.

3.2. The "Earthquake Generating" Mechanism

As mentioned previously the centrifuge is rated at 10,000 g-pounds payload capacity. The load ("payload") of model structure, soil, and containment that it can sustain is limited to 200 lbs (taken up to 50g). Consequently, the need for a method of creating an earthquake-like motion in the centrifuge without taking up a substantial amount of the payload was imperative and was developed with the aid of John Lee.

The "earthquake-generating" mechanism (Figures 3.3, 3.4) consists of a $14.6" \times 11.6" \times 10"$ reinforced aluminum container mounted on a bed of ball bearings which lie in horizontal parallel grooves in a steel plate attached to the swinging magnesium centrifuge frame. The bearings were separated with a perforated teflon sheet which allowed equal spacing between them and thus an even pressure distribution throughout (Figure 3.5). At one end, between the bucket and the frame is a spring

- 60 -

FIGURE 3.4 - EARTHQUAKE GENERATING MECHANISM

FIGURE 3.5 - BALL BEARINGS SEPARATED BY TEFLON SHEET

FIGURE 3.6 - REACTION SPRING

(spring constant = 75 kips/in) (Figure 3.6). At the other end is a toggle mechanism connected to a hydraulic piston (Figures 3.7,3.8). Under control the piston displaces the center of the toggle, spreading the ends, and thus forcing the bucket to move, deforming the spring at the other end. When the toggle goes over center, it snaps through, driven by the sudden energy release of the spring, and the soil container snaps back until it hits, stops and rebounds. This happens a number of times for one model "earthquake" event. The bucket thus moves back and forth for a couple of tenths of a second in a relatively random motion which resembles that of a short but intense earthquake. The comparison of the model earthquakes with that of one component of a record of the 1966 Parkfield, California earthquake is done in Section 5.2. Because of the simplicity of the "earthquaké generating" mechanism, the motion attained resembles that which would occur near a short fault rupture. The production of prolonged earthquake motions typical of sites at intermediate distances from a long fault rupture (a "great" earthquake) would require another (probably more complicated and thus heavier) mechanism.

3.3. Model Retaining Walls

Ideally, a model retaining wall made of (properly scaled) reinforced concrete similar to one described in the design example of Section 12.7 of Wang and Salmon's <u>Reinforced Concrete Design</u> [64] would be desirable for centrifuge testing, but as can be seen from the design sketch (Figure 3.9) of a prototype, it would be very difficult to scale

- 63 -

FIGURE 3.7 - PISTON, TCGGLE, AND BUMPER (ERONT VIEW)

FIGURE 3.8 - PISTON, TOGGLE, AND BUMPER (TOP VIEW)

FIGURE 3.9 - FROM (64)

down all the components of the wall to 1/50th the size shown. Because of the ease of modelling, it was decided to design a retaining wall made of aluminum instead, and then scale it down. The procedure is similar to the procedure used in the design of a regular reinforced concrete cantilever retaining wall.

3.3.1. Design of the Retaining Walls

It is required to design a prototype, aluminum cantilever retaining wall to support a backfill of earth 16 ft high above the final level of earth at the toe of the wall. The backfill is to be level. A lateral earthquake acceleration of 0.25g is expected for design purposes (in actuality, it doesn't occur though). The following data is given for design:

soil density $\gamma = 92$ pcf (Nevada 120 sand @ medium density) Elastic Strength of 6061-T6 Aluminum f_A = 48,000 psi Elastic Modulus E_A = 10 × 10⁶ psi

First of all, it is necessary for the wall-soil system to be in a state of equilibrium. A Mononobe-Okabe analysis (see Section 1.1) with $k_{\rm H} = 0.25$ will be used.

The Mononobe-Okabe parameters are:

$$\theta = \tan^{-1}(0.25) = 14^{\circ}$$
 $\delta = 0^{\circ}$
 $\gamma = 0.092 \text{kcf}$ $i = 0^{\circ}$
 $d = 35^{\circ}$ $\beta = 0^{\circ}$

Therefore:

$$K_{AE} = 0.43$$

and the total force $\mathbf{P}_{AE}^{}$ is thus

$$P_{AE} = 1/2\gamma h^2 (1-k_v) K_{AE}$$
 (3.1)

or

$$P_{AE} = (1/2)(0.092)(18.3)^2(0.43) = 6.6kips/ft.$$

This is the total lateral force acting on the wall. As recommended by Seed and Whitman [55], the force increment on the wall, ΔP_{AE} , due to the earthquake load should be assumed to act 0.6 h or so above the base. Thus, it is necessary to find the static force P_A and place the forces on the wall as shown in Figure 3.10.

From the Rankine static lateral earth pressure theory P_A is given by:

$$P_{A} = 1/2\gamma h^{2} K_{A} \qquad (3.2)$$

where:

$$K_{A} = \frac{1 - \sin \phi}{1 + \sin \phi}$$
(3.3)

For the soil involved $K_A = 0.27$ so:

$$P_A = (1/2)(0.092)(18.3)^2(0.27) = 4.2kips/ft.$$

- 68 -

which acts at h/3 above the base of the wall. Thus:

$$\Delta P_{AE} = P_{AE} - P_{A} = 6.6-4.2 = 2.4 \text{kips/ft}$$

which acts at 0.6 h above the base.

The weight of the backfill, W, is:

$$W = \gamma Hx = (0.092)(18) \times = 1.6 x kips/ft.$$

Summing moments about point B. ($\sum M_b = 0$)

$$\frac{W_{x}}{2} = \frac{P_{A}h}{3} + 0.6\Delta P_{AE}h = h(1/3P_{A} + 0.6\Delta P_{AE})$$

Consequently:

$$\frac{1.6x^2}{2} = (18.3)[(1/3)(4.2) + (0.6)(2.4)]$$

Therefore:

$$x = \left[\frac{(2)(18.3)[(1/3)(4.2) + (0.6)(2.4)]}{1.6}\right]^{1/2} = 8.1 \text{ ft.}$$

The entire base length is recommended by Wang and Salmon to be approximately:

Base length $\approx 1.5x = (1.5)(8.1) = 12.2ft.$

The base length was thus decided upon to be 15.25 feet long (3.66 in long in the 1/50 scale model) which gives about an extra 25% or so of

length for safety. A check must now be made for safety against overturning. Recalling that the design base length is 15.25 ft, the design x (Figure 3.10) is thus 2/3 of this or 10.2 ft. (10 ft,2 in). Thus the weight W of the backfill is, from above:

$$W = 1.6x = (1.6)(10.2) = 16.3 kips/ft.$$

Taking moments about point A of the base and neglecting the weight of the wall, the resisting moment is:

$$M_{R} = (10.2)(16.3) = 166.3$$
 ft k/ft

The overturning moment is:

$$M_{O} = h(1/3P_{A} + 0.6\Delta P_{AE})$$

Thus:

$$M_{0} = (18.3)[(1/3)(4.2) + (0.6)(2.4)] = 52.0ft-k/ft$$

Therefore, the factor of safety against overturning is:

F.S. =
$$\frac{M_R}{M_A} = \frac{166.3}{52.0} = 3.2$$

which is greater than the traditional value of 2.0. This factor of safety does not even include the weight of the wall itself which would provide additional resistance to overturning. The stem of the wall must now be designed to resist the bending moment M given by:

$$M = H(1/3P_A + 0.6\Delta P_{AE}) - 1/3P_{PE}H_{f}$$

where P_{PE} is the resultant of the passive force provided by the frost cover of depth H_f (Figure 3.10).

The coefficient of passive earth pressure, K_{PE} , for a Mononobe-Okabe analysis is given by

$$K_{\rm PE} = \frac{\cos^2(d-\theta;\beta)}{\cos^2\beta\cos(\beta-\delta-\theta)\left(1 - \sqrt{\frac{\sin(d+\delta)\sin(d-\theta+i)}{\cos(\beta-\delta-\theta)\cos(\beta-i)}}\right)^2}$$
(3.4)

and:

$$P_{PE} = 1/2\gamma H_{f}^{2} (1-k_{v}) K_{PE}$$
(3.5)

Therefore:

$$K_{\rm pR} = 3.18$$

Therefore:

$$P_{\rm PE} = (1/2)(0.092)(4)(3.18) = 0.6$$
 kips

Thus:

M = 18[(1/3)(4.2) + (0.6)(2.4)] - (1/3)(0.6)(2) = 50.7 ft k/ftWith a bending factor of safety of 1.7, the design moment is:

 $M_{\rm D} = 86.1$ ft k/ft

The thickness of the stem is determined by the use of the bending formula for a beam:

$$\sigma = M/S \tag{3.6}$$

Where:

 σ = stress of the material

S = unit section modulus of cross section

For a rectangular cross section, the unit section modulus is:

$$S = \frac{d^2}{6}$$
 (3.7)

Where d is the thickness of the section. Taking the elastic strength of the aluminum f_A as σ , the stem thickness is determined:

$$d = \left(\frac{6M}{\sigma}\right)^{1/2} = \left(\frac{6M_{o}}{f_{A}}\right)^{1/2} = \left[\frac{(6)(86.1)}{48}\right]^{1/2} = 3.28 \text{ in.}$$

This corresponds to a thickness of 0.065 inches in the model wall, at 1/50 scale.

Two models of the 16 ft high cantilever retaining wall were built (Figure 3.11). They were made of two aluminum 6061-T6 plates dip-brazed together by Precision Dipbraze, Inc. of Van Nuys, CA. The base of both walls is made of 0.063 inch plate while the stems are 0.063 inches thick in wall No. 1 and 0.050 in wall No. 2. The thicknesses stated are standard aluminum plate sizes. The 0.063 inch thickness of wall No. 1 is approximately the correct size for the design conditions imposed with the appropriate safety factors. Wall No. 2 has no safety factor (F.S. = 1.0) at all. (Its prototype wall would have a moment capacity of 50.0 ft-k/ft versus the calculated acting moment of 52.0 ft-k/ft).

It should be noted that it is generally agreed upon in practice that the Mononabe-Okabe method gives a conservative design (i.e., calls for larger walls than "necessary"), and in most cases is not even used (nor is any other method) when a seismic design is in order.

3.3.2. Determination of Actual EI of Walls

In order to determine the true stiffness (EI) of the retaining walls, the Young's Modulus E of the aluminum used had to be measured. To do this a rectangular piece of the same 0.063" thick plate used to make the walls 6.555" long and 1.493" wide was cut. The piece was then clamped and held horizontal so that it formed a cantilever beam 5.026" long. Weights of 0, 0.220, 0.441, 0.661 and 0.772 lbs (0, 100, 200, 300, and 350 grams) were then hung from the free end. The end deflection was measured with a Federal dial gage accurate to 0.0001 inches. Recalling that the end (maximum) deflection y_{MAX} of a cantilever beam with an end point load is:

$$y_{MAX} = \frac{P1^3}{3EI}$$
(3.8)

where P is the load, 1 the beam length, and I the bending moment of inertia it follows that:

$$E = \frac{P1^{3}}{3I_{y_{MAX}}}$$
(3.9)

The average E then determined from the measurements was found to be 9.699×10^6 psi.

Recalling that the moment of inertia per unit width I of a rectangular cross section is $\frac{h^3}{12}$, where h is the section depth, for retaining wall No. 1 (RW1) the EI was determined as 202.1 1b in²/in and for (RW2) as 101.0 1b in²/in.

3.3.3. <u>Determination of the Fundamental Frequency of the Wall-Soil</u> System

The fundamental frequency of the wall-soil system was determined by an examination of the Fourier Amplitude Spectra of the accelerograms recorded at the top and bottom of the wall (in prototype scale) from tests 1CN0001,* 1CN0002, and 1CN1003 for RW1, and from test 2CN0011 for RW2 using the FORTRAN program IVMAIN described in Section 4.2. The accelerograms at the top of the wall indicate the output response of the system while those at the bottom are a measure of the input excitation to the system. Taking the corresponding pairs of Fourier Spectra for each test and finding where the ratio of output (top) to input (bottom) amplitude is a maximum provides an accurate determination of the system's natural frequencies.

Upon examination of the Fourier spectra (Figures 3.12 through 3.19), it was determined that the fundamental frequencies were 2.3 Hz for 1CN0001, 2.7 Hz for 1CN0002, and 2.7 Hz for 1CN1003. There was

* The following nomenclature was chosen for test numbering:

Test $\frac{a}{1} \frac{b}{C} \frac{c}{N} \frac{d}{00} \frac{e}{01}$

a = wall number; b = type of wall; c = type of sand; d = backfill angle (in degrees); e = test number; C = cantilever; N = Nevada 120.

FOURIER AMPLITUDE SPECTRUM - CM/SEC

- 76 -

FOURIER AMPLITUDE SPECTRUM - CM/SEC

- 77 -

FOURIER RAPLITUDE SPECTRUM - CM/SEC

FOURIER RMPLITUDE SPECTRUM - CM/SEC

FOURIER AMPLITUDE SPECTRUM - CM/SEC

FOURIER AMPLITUDE SPECTRUM - CM/SEC

very little relative difference between the frequencies determined from these tests, leading to the conclusion that there is little sensitivity in the system with regard to backfill slope or soil density differences for RW1. The fundamental frequency of the tests where RW1 was used was then taken to be the average of these tests, 2.6 Hz (129 Hz model). Similarly from the spectra for 2CN0011, the fundamental frequency of RW2 was taken to be 2.5 Hz (123 Hz model). This is also very close to the frequencies of tests using RW1, so there is little variation of frequency with regard to wall stiffness as well.

From examination of the Fourier spectra it can also be seen that there is only a significant contribution to the response of the systems by only one frequency, the fundamental. This is confirmed upon examination of the displacement curves presented in Chapter 5.

As will be explained in section 5.1, the fundamental frequencies of the systems are used to create dimensionless time parameters since they are a characteristic of each system.

3.4. Soil

The type of soil used was Nevada 120 Silica. This sand is a uniformly-graded, fine grained soil. A grain size distribution is shown in Figure 3.20. The soil was dry in all of the tests. It has a density range of from about 85 pcf in its loosest state to 99 pcf in its most dense. For the tests the density ranged from 91 to 99 pcf. For the medium density soil, the angle of internal friction ϕ is about 35⁰.

- 85 -

The soil was chosen because of its fine grained size which is desirable when doing centrifuge work, as already mentioned in Chapter 2.

3.5. Instrumentation

A cross section of the retaining walls indicating the location of all the transducers which will be described below is shown in Figure 3.21.

3.5.1. Strain Gages

Moments on the retaining walls are measured directly by the use of strain gages which in reality measure the curvature, M/EI.

Retaining wall No. 1 (RW1) is instrumented with seven pairs of Micromeasurements Model CEA-13-062UW-350 strain gages located at distances 1.50", 2.25", 275", 3.15", 3.50", 3.75" and 4.00" from the top of the wall, and down the centerline, one strain gage of each pair on the front and one on the back at each location. Retaining wall No. 2 (RW2) is likewise instrumented with four pairs at distances from the top of 1.50", 2.75", 3.50" and 4.00" (Figure 3.22). The type of strain gage used is a universal general-purpose strain gage. These gages are polymide-encapsulated Constantan ('A' Alloy) gages featuring large, integral, copper-coated terminals. This construction provides optimum capability for direct leadwire attachment. The gage is extremely thin and flexible (0.0022"). The gage length is 0.062" and the grid width is 0.062". The resistance is $350 \pm 0.3\% \Omega$ with a strain range of $\pm 3\%$.

- 86 -

- Accelerometer and Δ -beam locations
- Strain gage locations
- × Pressure transducer locations

(Parentheses indicate distance of transducer from top of wall in inches)

FIGURE 3.21 - MODEL WALL CROSS SECTION

FIGURE 3.22 - MODEL RETAINING WALLS (RWI, LEFT: RW2, RIGHT) STRAIN GAGE BRIDGES IN BACKGROUND

The gages are bonded to the wall surface according to M-Line Accessories Instruction Bulletin B-130-6 (8/77) with M-Bond 600 epoxy resin adhesive. Soldered to each gage are two lengths of Belden AWG32 magnet wire. The leads were laid on the faces of the wall and coated with a flexible, impermeable protective coating (BLH Barrier J).

The strain gage circuit is arranged as a Chevron Wheatstone bridge circuit as shown in Figure 3.23. This configuration minimizes the number of balancing resistors used as well as the number of sliprings taken up since all the pairs of strain gages have but one common ground. The excitation voltage is 5V DC.

The location of the Soil Mechanics Centrifuge at Caltech is on the roof of Thomas Laboratory in close proximity to air conditioning units and elevator drive motors which make for a very noisy electrical environment. In order to minimize this noise, the signals from the strain gage bridge are amplified with one LF352 amplifier (Figure 3.24) for each pair of strain gages. This is done inside the centrifuge itself as the amplifiers are loaded on the centrifuge arm. The gain is set at 50. The amplified signals then pass through the sliprings to the control room where they are recorded on a Honeywell Model 1858 CRT Visicorder which allows inertialess recording from DC to 5 kHz. The analog signals are recorded on Kodak Type UV 1920-80330Y Visicorder Recording Paper at an amplitude of 200 mV/division (1 division = 2.5 cm). In the dynamic portions of the test, the recording takes

- 89 -

FIGURE 3.23 - STRAIN GAGE CIRCUIT

- 90 -

FIGURE 3.24 - AMPLIFIERS FOR STRAIN GAGES AND ACCELEROMETERS

FIGURE 3.25 - CENTRIFUGE POWER SUPPLY TO DRIVE BRIDGE

place at a rate of from 50 to 80 inches per second of recording paper depending on the particular test.

3.5.2. Accelerometers

At the top and bottom of the centerline of the face of each retaining wall is mounted an Entran Devices Inc. Model EGA-125F-500D miniature accelerometer. In most tests there is an additional one located in the backfill approximately half way between the wall and the wall of the bucket and is buried near the surface.

The accelerometers employ a fully active Wheatstone Bridge consisting of semiconductor strain gages. The strain gages are bonded to a simple cantilever beam which is end-loaded with a mass (Figure 3.26). Under acceleration, a "g" force, the force on the cantilever is created by the g effect on the mass (F = ma). The accelerated mass creates a force which in turn provides a bending moment to the beam. The moment creates a strain (proportional to the acceleration) which results in a bridge unbalance. With an applied voltage, this unbalance produces a millivolt deviation at the bridge output, which is proportional to the acceleration vector.

A very attractive feature of this type of accelerometer is its very small size. The entire unit (minus the leads) weighs only 0.02 oz. The accelerometer unit is 0.270" long by 0.145" wide by 0.105" (unit weight of 525 $1b/ft^3$) high and is mounted on a 0.270" \times 0.370" \times 0.040" flange as shown in Figure 3.27. The bold-faced arrows indicate the sensitive axis. The accelerometers are attached to the model walls with

- 93 -

two 0-80 hex screws. The model of accelerometer used has a range of \pm 500g with a nominal sensitivity of about 0.5 mV/g (varies slightly from this with each particular unit), an input impedance of about 1150 Ω , an output impedance of about 550 Ω , and a resonant frequency of 3000 Hz. In addition, the unit is damped to 0.7 of critical using a viscous fluid medium. This helps to eliminate resonance and allows a useful frequency range of DC to 1000 Hz. The excitation voltage is 15 V DC.

Similarly, as with the strain gages, the output signals were suitably amplified and filtered to minimize the high frequency noise inherent with centrifuge testing. The accelerometer circuit is shown in Figure 3.28. The gain on the amplifiers was set at 10, and the analog signals recorded on the Honeywell Visicorder at an amplitude of 200 mV/division. The accelerometer signals were recorded directly alongside those of the strain gages on the recording paper.

3.5.3. Pressure Transducers

Originally, it was planned to obtain pressure distributions behind the retaining walls by means of differentiating the moment distributions twice with respect to the length coordinate x. From elementary relationships it is well known that the shear Q is:

$$Q = \frac{\partial M}{\partial x}$$
(3.10)

- 95 -

where M is the moment distribution. The load (pressure) distribution P is:

$$P = \frac{\partial Q}{\partial x} = \frac{\partial^2 M}{\partial x^2}$$
(3.11)

Unfortunately, because of inaccuracies which develop and propagate in numerical differentiation it was found that these simple relations did not give adequate or accurate pressure distributions.

Figure 3.29 (which is fully explained in Section 5.3) shows how inaccurate the use of moment differentiation to arrive at pressure distributions is. It was thus necessary to measure pressure directly by the use of pressure transducers and then integrate the determined pressure distributions (numerical integration is much more stable and accurate than differentiation) to obtain the shear distributions.

Except for test 1CN0001, four miniature, low profile pressure transducers were placed at various locations (depending on the particular test) along the centerline of the back of the walls. In tests 1CN0002, 1CN1003, and 1CN0004, the pressure transducers were located 1.68", 2.78", 3.59", and 4.17" from the top of the wall; in tests 1CN1505, 1CN0006 at 1.79", 2.75", 3.60", 4.16", in tests 1CN0007, 1CN0508, 1CN1009, 1CN1510 at 1.86", 2.77", 3.59", 4.21", and in tests 2CN0011, 2CN0012, 2CN1013, 2CN1514 at 1.83", 2.92", 3.36", 3.91".

The pressure transducers used are Entran Devices Inc. Model EPF-200-50 Flatline Pressure Transducers. The transducer consists of a semiconductor strain gaged circular diaphragm less than 0.2" in diameter constructed of 17-4 PH stainless steel. This is a piezo resistive

FIGURE 3.29 - PRESSURE DISTRIBUTION OBTAINED FROM MOMENT DOUBLE-DIFFERENTIATON

- 98 -

pressure transducer with a fully active semiconductor bridge. Similarly, as with the accelerometer, a load on the diaphragm will create a strain (proportional to the pressure) which results in a bridge unbalance. With an applied voltage, this unbalance produces a millivolt deviation at the bridge output, which is proportional to the pressure.

The transducer is very small (Figure 3.30) and thin being only 0.040" thick. It has a range of 0 to 50 psis with a nominal sensitivity of about 2.5 mV/psi (varies slightly from this with each particular unit), an input impedance of about 750 Ω , an output impedance of about 250 Ω and a resonant frequency of 50 kHz. The excitation voltage is 6 V DC.

As previously described with the other types of transducers, the output signal is suitably amplified and filtered. The pressure transducer circuit (Figure 3.28) is similar to that of the accelerometers with the exception that the signals are amplified with a CA3080 amplifier (Figure 3.31). The amplifier gain was 25, and the signals were recorded alongside those of the other transducers on the Honeywell Visicorder at an amplitude of 200 mV/div.

3.5.4. <u>Displacement Transducers (A-beams)</u>

In order to determine the relative displacements of the retaining walls with respect to the centrifuge bucket, the moment distribution

- 99 -

FIGURE 3.31 - AMPLIFIERS FOR PRESSURE TRANSDUCERS AND DELTA-BEAMS

along the wall must be integrated twice with respect to the length coordinate x. Recalling the equation for a the curvature of the deflected shape of a simple beam:

$$\frac{\partial^2 y}{\partial x^2} = \frac{-M}{EI}$$
(3.12)

it follows that the deflected shape y is given by:

$$y = \frac{1}{EI} \int_{0}^{H} \int_{0}^{H} Mdxdx + Ax + B.$$
(3.13)

where A and B are constants of integration dependent on the boundary conditions of the wall. A and B can be determined knowing the displacements at the top and the bottom of the wall. The displacements at these locations can be deduced by integrating the accelerometer records twice with respect to time. This, however, requires the determination of two additional constants of integration dependent on time-imposed conditions. At each location if the initial (static), and final (static, after shaking is over) displacements are known at each of the locations, the pair of time imposed constants of integration can be determined, and thus the relative displacements between the walls and bucket can be determined at the top and bottom of the wall. Knowing this, A, B, and the full displacement curves can thus be determined.

Initial and final displacements at the top and bottom of the walls are measured by means of a pair of cantilever beams (called Δ -beams for simplicity) which are attached to the front of the bucket and connected by means of a very thin wire to the accelerometer locations on the face of the wall. These Δ -beams are very thin (0.015" thick) strips 2.25" long, 1.00" wide of spring steel attached to a rigid base and strain gaged, so that, properly calibrated, they can record displacements over a relatively wide range.

The Δ -beam circuit is similar to that of the pressure transducers (Figure 3.28). Since the frequency response is very low, the transducer signals are only recorded on the Visicorder during the static portions of the test. The circuit excitation is 5 V, the gain 25, and the Visicorder amplitude is 100 mV/div.

3.6. <u>Calibration of Transducers</u>

All pre-test calibrations were carried out using the entire electronic circuitry, i.e. the calibration signals were routed through those terminals, amplifier channels, filters, sliprings, and Visicorder channels which they would use during the actual testing. The excitations, gains, and recording amp'itudes used in calibration were likewise the same as in the tests. The outputs recorded on the Visicorder were converted directly to parameter (moment, displacement, acceleration, etc.) measurements without the use of instrument factors. All transducers are linear and therefore require two calibration factors (slope, intercept) for each. These factors were determined using the linear least-squares function on a Hewlett-Packard 55 pocket calculator.

All calibrations were recorded on the Visicorder and the traces digitized with a Benson-Lehner 099D data reducer unit. The digitizer had a resolution of 790.8 digitizer units (du) per inch of width of recording paper and 792.0 du/inch of length. The calibration slopes
were thus in units of parameter per digitizer unit and the intercepts in units of parameter. Data reduction of the tests will be discussed in Section 4.2.

3.6.1. Strain Gages

The strain gages are calibrated to measure moments directly. To accomplish this, the base of the model retaining walls is rigidly secured to the bottom of the centrifuge magnesium frame which was rotated 90° so that the stem forms as horizontal cantilever beam. Two 1" thick (each) Plexiglas beams were then clamped in sandwich fashion to the free end of the stem and weights hung from the center. The calibration arrangement is shown in Figure 3.32. The Plexiglas beams distribute the load evenly across the width of the wall. This creates in effect a cantilever beam with a concentrated load at the end, moments of which can be readily determined. Weights of 0,1,2,3,4,5,6,and 8 pounds were hung and the output recorded at the Visicorder at the other end of the system.

3.6.2. Accelerometers

In order to calibrate the accelerometers, they were placed with the sensitive axis facing downward on the upper lip of the centrifuge bucket which is at a radius of 30.5 inches from the centrifuge axis. Readings were recorded on the Visicorder with this arrangement, i.e., the accelerometers reading 1g. The centrifuge was then taken up to accelerations of 10, 20, 30, 40, 50, 60, and 70g respectively. It was

- 104 -

assumed that an amplitude of 0 du on the Visicorder was 1g. The calibrations were then determined in relation to this.

3.6.3. Pressure Transducers

The pressure transducers were calibrated by placing them on the bottom of the centrifuge bucket at a radius of 40.5 inches from the centrifuge axis, and placing 4.90" of Nevada 120 sand at a density of 93.3 pcf on top of them. Measurements were then taken with the centrifuge stationary (at 1g) and spinning at 10,20,30,40, and 50g. The increase in g-acceleration to N g's causes an increase in the soil unit weight by N (see Table 2.1) and thus an increase in pressure, the pressure simply being the weight density of the soil (at the particular acceleration level) times the depth (4.90"). Thus pressures of 38, 381, 762, 1143, 1524, and 1905 psf corresponded to each g level used in the calibration.

3.6.4. <u>A-beams</u>

The A-beams were calibrated by fixing them to a vice and measuring displacements with the aid of a Federal dial gauge accurate to 0.001 in. Displacements of 0, 0.01, 0.02, 0.03, 0.04, 0.05, and 0.10 inches were measured (Figure 3.33).

CHAPTER IV

4.1. The Experiment

In every test performed, the following sequence of experimental procedures was carried out.

To begin with, sand was placed on the centrifuge bucket to a depth of about 4 inches (Figure 4.1). If looser conditions were desired, it was just dumped in; if denser, it was tamped and/or vibrated after being placed in one to two inch lifts. Following this, one of the walls, along with all its instrumentation, was placed approximately 6 inches from the front of the bucket (leaving about 8-1/2 inches for backfill) and carefully seated on the sand layer already placed (Figure 4.2). Special care was taken to assure the wall was vertical by following guide lines drawn on the inside of the bucket. Sand was then placed on both sides of the wall following the procedure for looser or denser conditions described above (Figure 4.3). The total depth of sand (for a flat backfill) was 8 inches. For a sloping backfill, it was placed to the desired slope above the 8 inch mark on both sides. The weight of the sand placed was then totalled and, since the bucket dimensions were well known, the unit weight determined.

By placing sand on both sides of the wall and taking the container up to 50g's the transducers were thus zeroed. In this manner, the walls were subjected to no moment, lateral acceleration, or displacement and an accurate zero was recorded on the Visicorder at the test centrifuge

- 107 -

FIGURE 4.1

FIGURE 4.2

FIGURE 4.3

FIGURE 4.4

acceleration. The experiment was then returned to one g where the sand on the front of the walls was removed to the design height (Figure 4.4).

Test	Density () 1g (pcf)	Density @ 50g (pcf)	Test	Density @ 1g (pcf)	Density @ 50g (pcf)
1CN0001	92.6	4630	1CN0508	95.9	4797
1CN0002	91.2	4561	1CN1009	97.0	4849
1CN1003	92.0	4597	1CN1510	95.3	4764
1CN0004	93.9	4695	2 CN0011	98.8	4941
1CN1505	92.4	4621	2 CN0012	95.8	4790
1CN0006	94.5	4726	2 CN1013	97.3	4865
1CN0007	98.1	4906	2 CN1514	97.7	4886
	an an ann an				

Table 4.1 Soil Densities

The system was next taken back up to 50g's where all the static outputs were recorded on the Visicorder. The channels which carried the signals of the A-beams were then turned off since, due to the poor frequency response of the A-beams, they were inadequate for dynamic measurements. After this, the container was subjected to the "earthquake" shaking described in Sections 3.2 and 5.2. The output signals were recorded on the Visicorder at a recording paper rate of 50 to 80 inches per second depending on the particular test. Usually there were 4 strain gage, 3 accelerometer and 4 pressure transducer outputs (11 traces total) being recorded on paper only 8 inches wide. Needless to say, there was some overlapping of traces, and a high density of analog data, but the recordings were usually clear and easy to follow when digitizing subsequently. Figure 4.5 is an example of the traces recorded on the Visicorder during part of the dynamic portion of a typical test (2CN0012 in this case).

Following the shaking, the two A-beam channels were turned back on, and their outputs taken along with those from the other transducers now static once more. The system was then brought back to rest which concluded the actual experiment itself. Data reduction of the Visicorder output followed.

4.2. Data Reduction

The digitizing was performed on a Benson-Lehner 099D data reducer unit and the following procedure used. The cross hairs are manually set to successive x-y coordinates on each record trace. The coordinates are converted to digital position figures by means of a magnetic readout head, and are stored in a 6-digit accumulator system from which they are automatically read out to an IBM 29 card punch. The resolution of the system is 792.0 du/inch in the x and 790.8 du/inch in the y directions. The Visicorder paper is placed on the 24" \times 16" digitizing table with the horizontal axis lined up by eye to an estimated zero axis. The lining up of the paper need not be too accurate since it will be corrected with respect to a baseline recorded on the paper. All traces are digitized without moving the record on the table.

First of all, a baseline, which will be used to make corrections for deviation from the horizontal, is digitized. Each trace on the Visicorder paper is then digitized individually as follows. The zero

- 111 -

- 112 -

point of the trace is first digitized. This is the point at 50g where sand is on both sides of the wall. For the pressure transducers and the Δ -beams the zero point is the reading when the centrifuge is at rest. Next the static point at 50g (normal experiment, backfill sand only) is digitized followed by the digitization of the dynamic part of the test. The records are digitized on an unequal time basis since this leads to the best definition of the trace for a given number of data points. All significant peaks, points of inflection, etc., are picked, along with as many intermediate points as are needed for an accurate definition of shape.

The digitized data are directly punched on cards which are then read into magnetic disks on a VAX 11 Wordprocessing system. Program P1CHECK (Trifunac, Lee [63]) reads the data and checks whether the time coordinates monotonically increase. It also searches for possible disproportionate jumps of the amplitude data. If any error is found, the program prints out the message. Small errors are corrected immediately. The data are then plotted to the same scale as the digitized record, and the two versions are compared to check the accuracy of digitization. Any portion that is digitized improperly has to be redigitized and replotted until the final plot agrees well with the digitized record.

The corrected digitized data is now fed into the data processing program WALL which will be described below and which is listed in Appendix B. WALL prints out static, maximum dynamic, and final static moment, pressure, shear, and displacement distributions along the wall

- 113 -

to discrete locations; moment, pressure, shear, displacement vs. time distributions at the location of each maximum response at equal time steps; accelerometer, velocity and displacement vs. time records for each of the three accelerometer locations, as well as other data pertaining to the test, namely, centrifuge operation data, material properties, and calibration factors. In addition plots are made of the above-mentioned distributions. Contour plots of moment, pressure, shear, and displacement distributions with respect to location and time are also made. This provides a very descriptive and compact representation of the entire test.

It was sometimes desired to obtain characteristics of the motion recorded by the accelerometers in order to have a comparison with actual accelerogram characteristics of real earthquakes. For this purpose, some of the accelerometer records were given the routine computer processing of strong-motion accelerograms developed at Caltech by Trifunac and Lee [63]. Programs P1CHECK, P2SCALE, and P3TAPE form Volume I of data in which the raw data is converted into uncorrected, scaled, accelerogram data. Program IIMAIN creates Volume II which contains corrected accelerogram, velocity, and displacement data. Volume III, which gives the response spectra of the record, is created using program IIIMAIN. Program IVMAIN creates Volume IV containing the Fourier Spectra. From this volume, the fundamental frequency of the system is determined (see Section 3.3.3). As will be seen in the results, it is the only frequency which contributes significantly to the

- 114 -

response. The standard accelerogram processing is outlined in Figure 4.6.

The results from the tests are obtained by processing the digitized data with the FORTRAN program WALL. The program is run on an IBM 370/3032 Computer System at the Booth Computing Center at Caltech.

After the raw digitized data is checked by program P1CHECK, the corrected data from the transducers is fed into WALL, along with other experimental data, namely centrifuge speed, distance from centrifuge axis to top of wall, wall/soil properties, order of polynomial desired for least-squares fit (see below), type, number, and location of transducers used, and calibration factors.

All the traces are then corrected with respect to the input baseline to avoid errors due to the slight slope which all the records inherently have because of positioning on the digitizer table. This is particularly important in the accelerometer records since double integrations can introduce errors proportional to the square of the running time with just a small initial slope present.

Following this, the data is scaled to model dimensions using the calibration factors.

Since all the separate traces are digitized individually, it is necessary to correlate them to specific, discrete time steps. This is done by smoothing the individual trace data point by point with a cubic spline and then picking off the values from the spline at particular time intervals. For convenience (see Section 5.1), it was decided to use a dimensionless time group tf_1 to express time. t is the real

- 116 -

prototype (or model) time and f_1 is the real prototype (or model) fundamental frequency of the system. tf_1 is the same for both model and prototype. The discrete time steps are chosen at 150 per tf_1 for the first six tf_1 and 75 per tf_1 thereafter. Because of the nature of the experimental shaking, most of the critical (maximum and high frequency) response occurs when $0 \leq tf_1 \leq 6.0$.

The moments are determined from the scaled strain gage data. Ιt is intended to use a quintic (fifth order) spline fit to the data points at each time step. The spline fitting, however, requires six boundary conditions, the moment and the first and second derivatives of the moment, at the top and base of the wall. At the top of the wall, these are known. The moment and shear (first derivative) are zero since this is the free end of a cantilever beam. The pressure (second derivative) is also zero (no load). Since the bottom-most strain gage is located at some distance from the base of the wall (Section 3.5.1), the boundary conditions at this location are thus not known. In order to estimate these a polynomial least-square fit is made of the data points at each time step. A third or fourth order fit is done and the base boundary conditions are determined from this. Once this is done, the quintic spline is fitted to the data points and the moment distribution determined from this fit at each time step.

If no pressure transducers are used, the moment distributions are numerically differentiated with a fourth order finite difference scheme, once to obtain the shears and once more to obtain pressures. (This is why a quintic-spline was used, since a cubic spline would give straight line segments in the second derivative.) However, due to the instabilities of numerical differentiation, it was determined that first derivatives were marginally satisfactory and second derivatives very inaccurate (recall Figure 3.29). This spawned the use of pressure transducers in tests.

When pressure transducers were used (all the tests except the first one) at each time step, the pressure transducer data points were polynomial fitted and a cubic spline fitted in a manner similar to the moments. An advantage of the cubic spline is that it requires no boundary conditions to be specified. The pressure distribution at each time step is thus read directly from the spline. The location of the resultants is then determined by finding the centroids of the pressure distributions. The shear distributions are obtained by direct trapezoidal rule integration of the pressure distributions. Numerical integration, as opposed to differentiation, is stable and accurate.

The following step is to determine the displacements at the top and bottom of the wall for every time step. The accelerograms are integrated twice and the Δ -beam readings are used to the in the initial and final conditions. (In the case of the free-field accelerometer, the initial and final displacements are assumed to be zero). The displacement distributions along the wall are then determined by integrating the moments twice and using the end displacements to find the two constants of integration required (see Section 3.5.4). The velocities at the accelerometer locations are also calculated in this process.

- 118 -

After each parameter distribution was determined, the corresponding printing and plotting described in the previous section was done.

The data processing procedure is outlined in the flow chart of program WALL in Figure 4.7.

- 120 -

CHAPTER V

RESULTS

5.1. Dimensionless Groups

Henceforth, for convenience, all parameters will be discussed as dimensionless groups. This will make the discussion indifferent as to model or prototype.

The principles of dimensional analysis (reference [3] and Appendix A) are used to determine the dimensionless groups. From the tests, the following parameters are involved in influencing the results:

TABLE 5.1

Parameters Involved in Tests

x - vertical location H - height of wall EI - stiffness of wall* M - wall moment* Q - wall shear force* y - lateral displacement of wall P - lateral earth pressure \gamma - density of soil & - angle of internal friction of soil e - soil void ratio g - gravitational acceleration a - lateral acceleration v - lateral velocity t - time f₁ - fundamental frequency of system

* per unit width

Parameters like Young's Modulus, Poissons's ratio and wave velocities for the soil were not used since these imply the soil is elastic, and are items that can only be assumed, not measured.

Table 5.1 gives a total number of parameters n of 14. From the Buckingham II theorem, the total number of independent dimensionless groups k that can be derived is n minus the rank r of the dimensional matrix:

$$k = n - r \tag{5.1}$$

For the parameters listed the dimensional matrix is shown as Table 5.2.

TABLE 5.2

Dimensional Matrix of Test Parameters

Parameter	Force (F)	Length (L)	Time (T)
YANNEY'S D			
x	0	1	0
H	0	. 1	0
EI	1	1	0
М	1	0	0
Q	1	-1	0
У	0	1	0
P	1	-2	0
γ	1	3	0
6	0	0	0
e	0	0	0
g	0	1	-2
a	0	1	-2
t	0	0	1
f	0	0	1
v	0	1	-1

The rank of the above matrix is 3. From equation (5.1), therefore, 12 independent dimensionless groups can be determined. They were chosen as follows:

TABLE 5.3

Dimensionless Parameters						
Parameter	Symbol	Dimensionless Group				
Location	x	x/H				
Time	t	tfl				
Moment (bending)	М	MH/EI				
Moment (overturning)	M	6M/γH ³				
Shear force	Q	$Q/(1/2\gamma H^2)$				
Pressure	Р	P/yH				
Displacement	y	у/Н				
Velocity	v	v/f ₁ H				
Acceleration	8	a/g				
Friction angle	¢	ø				
Void ratio	e	e				
	aine an De salacity ar eiliter for the fact stage of the second stage of the second stage of the second stage of the se	v ² /gH				

In addition, the ratio of bending to overturning moment gives the non-independent dimensionless grouping $\gamma R^4/6EI$ which can be used as an indication of the relative stiffness of the wall-soil system.

In the following sections, unless otherwise noted, a reference to Pressure (P) will imply its dimensionless group ($P/\gamma H$), reference to time (t) will imply tf₁, and so forth. This will avoid any model/prototype confusion, and will also simplify the discussion.

5.2. The Experimental "Earthquake"

Although the "earthquake generating" mechanism employed in the experiment was quite simple, the recorded motions are such that they are within the realm of strong earthquake ground motions which have been recorded in reality.

The accelerograms recorded at the top and bottom of the wall, as well as the free field (i.e., in the backfill some distance behind the wall) during various experiments, are displayed in Figures 5.1a through 5.40a. Their corresponding velocities and displacements are shown in Figures 5.1b through 5.40b and 5.1c through 5.40c respectively.

The displacement curves include both the initial static displacements due to the backfill load (assuming that no backfill implies no wall deflection) plus those generated by the shaking. The magnitudes of the displacements prior to the earthquake are greater than 1/2% of the wall height which indicates a state of plastic equilibrium behind the wall, and thus the development of full active pressure.

From the accelerograms it can be seen that the general pattern of shaking is such as one would expect from the motion-generating mechanism involved, namely that of a decaying sinusoid. However, due to the inherent complexity of the experimental system, this basic pattern is enhanced by some extra acceleration noise probably generated from reverberations, collisions, nonlinearities, etc., of the

- 124 -

FICURE 5.8

t and t i

.

centrifuge-frame-bucket-toggle-spring-bumper-wall-soil system. The accelerograms recorded in the free-field are very similar to the corresponding ones at the base of the wall (which indicate the input excitation into the wall-soil system), although they are not exactly alike. The peak amplitudes range from about 0.25 to 0.70 depending on the test, and the duration of shaking is from about 18 to about 33 (note the dimensionless variables). The accelerograms recorded at the top of the wall indicate that the motion can be amplified by greater than a factor of 2.0. The "earthquakes" can be generally categorized as short but severe.

The shaking exhibited in the experiments is not unlike that which has been recorded very near a ruptured fault. For example, used for comparison is the accelerogram (Figure 5.41) recorded at Station 2 of the Cholame-Shandon array during the Parkfield, California earthquake of June 27, 1966 ($M_L = 5.6$). The strong motion accelerograph was located just a few yards from the San Andreas fault trace. This record also exhibits sharp pulse-like accelerations which decay quite quickly. Although the maximum recorded ground acceleration was 50% of gravity, there was little damage to nearby structures presumably because of the narrowness of the acceleration spikes (low energy content) and because of the short duration of the severe shaking [8,16].

From an engineering standpoint, the response spectrum is very important since it gives an indication of how the response of a structure to an earthquake will be. Comparing the response spectra of the centrifuge accelerograms of tests 1CN0001, 1CN0002, 1CN0003, and

- 165 -

- 166 -

.

TEST 1CN0001 CENTRIFUGE EARTHQUAKE 11-12-80 11XX0100 80.001.0 SOIL NECHANICS CENTRIFUGE - TOP OF WALL ACCELEROMETER COMP HOR DRMPING VALUES ARE 0. 2. 5. 10 AND 20 PERCENT OF CRITICAL

TEST 1CN0001 CENTRIFUGE EARTHQUAKE 11-12-80 IIXX0100 80.001.0 SOIL MECHANICS CENTRIFUGE-BOTTOM OF WALL ACCELEROMETER COMP HOR DRMPING VALUES ARE 0. 2. 5. 10 AND 20 PERCENT OF CRITICAL

TEST 1CN0002 CENTRIFUGE EARTHQUAKE 3-4-81 11XX0200 01.002.0 SOIL MECHANICS CENTRIFUGE -- TOP OF WALL ACCELENCIETER COMP HOR ORMPING VALUES ARE 0, 2, 5, 10 AND 20 PERCENT OF CRITICAL

TEST 1CN0002 CENTRIFUGE EARTHQUAKE 3- 4-81 11XX0200 81.002.0 SOIL MECHANICS CENTRIFUGE-BOTTOM OF WALL ACCELEROMETER COMP HOR DAMPING VALUES ARE 0, 2, 5, 10 AND 20 PERCENT OF CRITICAL

TEST 1CN0002 CENTRIFUGE EARTHQUAKE 3- 4-81 IIXX0200 81.002.0 SOIL MECHANICS CENTRIFUGE - FREE FIELD ACCELEROMETER COMP HOR DRNPING VALUES ARE 0. 2. 5. 10 RND 20 PERCENT OF CRITICAL

TEST 1CN1003 CENTRIFUGE EARTHQUAKE 3-9-81 IIXX0300 81.003.0 SOIL MECHANICS CENTRIFUGE - TOP OF WALL ACCELEROMETER COMP HOR DRIMPING VALUES ARE 0. 2. 5. 10 AND 20 PERCENT OF CRITICAL

TEST 1CN1003 CENTRIFUGE EARTHQUAKE 3- 9-81 11XX0300 81.003.0 SOIL MECHANICS CENTRIFUGE-BOTTOM OF WALL ACCELEROMETER COMP HOR DRYPING VALUES ARE 0. 2. 5. 10 AND 20 PERCENT OF CRITICAL

- 173 -

FIGURE 5.48

TEST 2CNOD11 CENTRIFUGE EARTHQUAKE 2-25-82 IIXX0100 82.011.0 SOIL MECHANICS CENTRIFUGE - TOP OF WALL ACCELEROMETER COMP NOR DAMPING VALUES ARE 0. 2. 5. 10 AND 20 PERCENT OF CRITICAL

FIGURE 5.49

TEST 2CNO011 CENTRIFUGE EARTHQUAKE 2-25-82 IIXX0100 82.011.0 SOIL MECHANICS CENTRIFUGE-SOTTOM OF WALL ACCELEROMETER COMP HOR DAMPING VALUES ARE 0, 2, 5, 10 AND 20 PERCENT OF CRITICAL

- 175 -

RESPONSE SPECTRUM

TEST 200011 CENTRIFUGE EARTHQUAKE 2-25-82 IIXX0100 82.011.0 SOIL MECHANICS CENTRIFUGE - FREE FIELD ACCELEROMETER COMP HOR DRNPING VALUES ARE 0, 2, 5, 10 AND 20 PERCENT OF CRITICAL

RESPONSE SPECTRUM

PARKFIELD, CALIFORNIA EARTHQUAKE JUNE 27, 1966 - 2026 PST IIIB033 66.001.0 CHOLAME.SHANDON, CALIFORNIA ARRAY NO. 2 COMP NGSE DAMPING VALUES ARE 0, 2, 5, 10 AND 20 PERCENT OF CRITICAL

FIGURE 5.52

2CN0011 (Figures 5.42 through 5.51) with that of the stronger horizontal component of Parkfield (Figure 5.52), it can be seen that they are all very similar. They have peaks for periods between 0.4 and 1.5 seconds (prototype) which are at similar levels for similar dampings. The main difference lies in the observation that the centrifuge shaking lacks the longer (> 2.0 sec) period components which the Parkfield motion contains. The above would seem to indicate that the prototype structure of the centrifuge model would have behaved very much like the model during an earthquake similar to Parkfield, had it been close to the rupturing fault.

The comparisons clearly show that, although the shaking mechanism employed in the centrifuge is not sophisticated, it does give motions which have realistic characteristics and thus can be used to provide some real insight into the problem at hand. Longer duration shaking would primarily affect walls retaining saturated backfill in which pore pressure effects might be important.

5.3. Parameter Diagrams

Figures 5.53 through 5.107 show the moment, pressure, shear force, and lateral displacement distributions obtained from the 14 tests performed. As explained in Section 4.2, these figures show the entire response of the system to the particular shaking it was subjected to. Table 5.4 should be used as a key to the interpretation of the figures.

TABLE 5.4Key To Figures 5.53 Through 5.107

- Frame a Contour map of the parameter distribution with respect to location and time.
- Frame b Parameter distribution with respect to time at location where maximum occurs (Section A-A of contour map).
- Frame c Parameter distribution with respect to location-static, maximum dynamic (section B-B of the contour map), and final static after motion ceases.
 - + Location of strain gages
 - x Location of pressure transducers
 - O Maximum
 - Λ Data point

On Frame c of pressure distribution plots, the following symbols

appear. [Along $(P/\rho g E)$ axis]:

0 Location of static resultant

- Location of maximum resultant
- \Diamond Location of final static resultant

Rankine/Coulomb (static) and Mononobe-Okabe (maximum dynamic) pressure distributions are also shown in this frame.

Except for tests 1 CN0001, 1 CN0002, 1 CN1003, 1 CN0004, and 1 CN1505, the time (tf₁) scales (on Frames a and b) are set up so that the first 20% of the record is displayed over the first 50% of the graph and the final 80% over the other 50%. This was done to enhance the presentation of the more critical part of the tests.

- 182 -

- 185 -

FICURE 5.61

- 188 -

FIGURE S.65

- 193 -

FICURE 5.67

- 194 -

- 196 -

- 203 -

and a series of the series of

- 213 -

- 214 -

- 215 -

- 220 -

- 221 -

- 224 -

- 226 -

- 230 -

FIGURE 5.104

- 231 -

FIGURE 5.106

5.4 Static Results

Although the main emphasis of the research project was the study of the dynamic behavior of retaining walls, some interesting results were obtained from a static point of view as well. An important indication that an accurate model has been used is to examine how it behaves statically and compare the results with the accepted Rankine and Coulomb static lateral earth pressure theories.

The Rankine lateral earth pressure theory gives the resultant active force $P_A/(1/2\gamma H^2)$ acting on the retaining wall as:

$$\frac{P_A}{1/2\gamma H^2} = K_A = \frac{(1 - \sin \phi)}{(1 + \sin \phi)}$$
(5.2)

The coefficient K_A is referred to as the active earth pressure coefficient. The assumptions under which this theory is formulated are very approximately fulfilled by the model tests which have a horizontal backfill, namely:

- The wall is rigid and vertical.
- The backfill is horizontal.
- There is no friction between soil and wall.
- There is active pressure (wall displaces more than 1/2% of its height).

The Coulomb lateral earth pressure theory (of which the Rankine is only a special case) follows the same assumptions as the Mononobe-Okabe theory (Section 5.5), with the exception that there are no lateral or - 236 -

vertical acceleration coefficients k_h or k_v (i.e. $\theta = 0^{\circ}$). The resultant force acting on the wall is expressed as:

$$\frac{P_A}{1/2\gamma H^2} = K_A = \frac{\cos^2(d-\beta)}{\cos^2\beta\cos(\delta+\beta)} \left[1 + \left(\frac{\sin(d+\delta)\sin(d-i)}{\cos(\delta+\beta)\cos(i-\beta)}\right)^{1/2} \right]^{-2}$$
(5.3)

For the previously mentioned assumptions, with the exception that the backfill can be sloping, equation (5.3) can be reduced to:

$$\frac{P_{A}}{1/2\gamma H^{2}} = K_{A} = \cos^{2} \phi \left[1 + \left(\frac{\sin \phi \sin (\phi - i)}{\cos i} \right)^{1/2} \right]$$
(5.4)

This equation will be used as a comparison basis for the tests with sloping backfills.

In the Rankine and Coulomb theories, under the assumptions listed, the resultant acts at one third of the height above the wall base since the pressure distribution is assumed triangular. Therefore, the overturning moment $6M/\gamma H^3$ from the Pankine/Coulomb theory is:

$$\frac{6M_{A}}{\gamma H^{3}} = K_{A}$$
(5.5)

The maximum bending moment is:

$$\frac{M_{A}H}{EI} = \frac{\gamma H^{4}}{6EI} K_{A}$$
(5.6)

Table 5.5 gives a comparison of the maximum measured static parameters from the tests with the Rankine/Coulomb theories, recalling that the friction angle of the soil used is 35°.

The lateral earth pressure theories (both static and dynamic) unfortunately only estimate the resultant force and its point of application based on the assumption of a triangular pressure distribution.

R/C - Eankine/Conionb

Koment Shear-Force always at base of wall. Pressure 開出工业的建筑

Marimum dispiscoment siways at top of wall.

Therefore, the most accurate comparison that can be made is that of the resultant forces.

Comparing the Rankine/Coulomb resultant forces with the maximum shear forces (which are an integration of the pressure distribution behind the wall) it can be concluded that there is reasonable agreement between theory and experiment in this respect, the maximum difference being of the order of 25% between the two. The sole exceptions are tests 1CN1505 and especially 1CN0006 where the pressure distributions show a small magnitude in the upper 60% or so of the height and then increase rapidly below that (Figures 5.69c and 5.73c). This then comtains a smaller area under the curve, although the maximum pressures (at the bottom of the wall) are comparable to those of similar tests.

From frames c of the pressure distribution figures, it can be observed that the static pressure distributions are not linear, as the Rankine/Coulomb theories assume, although for the most part, the centroid of the distribution (location of the resultant force) is at around 1/3 of the wall height above the base as a triangular distribution would indicate. It should be noted that, for RW2, the more flexible wall, this centroid does generally creep up to about 40% of the wall height above the base. The maximum pressures (at the bottom of the wall) are much greater in all cases, except 2CN0011 (Figure 5.93c), than those predicted by the Rankine/Coulomb assumption. The maximum static pressures recorded are on an average on the order of 60% higher than those than the Rankine/Coulomb theories would give. From these figures

- 238 -

it can, however, be seen that the traditional theories do seem to predict a correct <u>average</u> pressure distribution.

Since the traditional lateral earth pressure theories are based on the assumption that the wall holding back the soil is rigid, one can only make a qualitative overturning/ bending moment comparison with the test results which are those of two flexible walls. The Rankine/Coulomb overturning moment is assumed to be the resultant force times the moment arm which is 1/3 of the height above the base. The bending (reaction) moments recorded in the tests are generally greater than the overturning (action) moments given by Rankine/Coulomb. The actual test moments generally vary from just a few percent to about 35% greater than those predicted. Since stems of cantilever walls are designed as bending beams, the actual factor of safety could thus actually be much less than the usual 1.7. For a 35% underestimation, the actual safety factor (static) would then only be 1.25.

Looking at the parameters that do not involve the wall stiffness EI, namely, $6M/\gamma H^3$, $P/\gamma H$, and $Q/(1/2\gamma H^2)$, it can be seen that there is correspondingly virtually no difference in the values for the two walls. This indicates that, for the range of wall stiffnesses tested, the system stiffness has little or no effect on the static response. The stiffness of RW1 is about twice that of RW2, but its moments MH/EI are about half. Thus the dimensional moments would be correspondingly similar also demonstrating the independence of wall flexibility on the response.

- 239 -

As far as is known, nobody has ever measured actual moments, static or otherwise, in a cantilever retaining wall, or has ever considered it to be a flexible bending beam, which it obviously is. Thus the moments shown in frames c of the moment distribution figures provide a first insight into actual moments in cantilever walls due to lateral earth pressures.

The measurement of lateral displacements seems also to be unprecedented. The static displacements for all the tests indicate that the wall has initially displaced laterally at least 1/2% of its height and thus a state of plastic equilibrium in the traditional sense can be assumed to exist behind the wall, and thus comparisons with the traditional theories (which use this assumption) can be considered valid. The maximum static displacements are of the order of 3% to 4% in RW1 and 4% to 6% in the less stiff RW2, and, as expected, always occur at the top of the wall. On some of the displacement curves (frames c), one may note a small outward "curl" near the bottom of the wall. This is probably due to slight faults in the measurements of the boundary conditions and should be considered numerical and not physical. This also applies to the maximum dynamic and final static curves.

5.5. Dynamic Results

One can compare the maximum dynamic parameters obtained from the tests with those which would be estimated from the Mononobe-Okabe Theory (discussed in detail in Section 1.1) for similar circumstances. The envelopes (upper bounds) of the various parameters with respect to the

- 241 -

- 242 -

- 243 -

- 244 -

- 245 -

- 246 -

- 247 -

- 248 -

- 249 -

- 250 -

- 251 -

- 252 -

- 253 -

^{- 254 -}

- 255 -

strong-motion characteristics are illustrated in Figures 5.108 through 5.122. How these envelopes were determined will be explained below. In addition, Mononobe-Gkabe distributions with respect to the lateral acceleration coefficients k_h for an average test soil density are shown in Figures 5.108, 5.111, 5.114 and 5.117.

For a flat backfill under the test assumptions (see Section 5.4), the total resultant active force $P_{AE}/(1/2\gamma H^2)$, given by Mononobe-Okabe, reduces from equations (1.1) and (1.2) to:

$$\frac{P_{AE}}{1/2\gamma H^2} = \cos^2 \frac{(d-\theta)}{\cos^2 \theta} \left[1 + \left(\frac{\sin d \sin (d-\theta)}{\cos \theta}\right)^{1/2} \right]^{-2}$$
(5.8)

For a sloping backfill of angle i, the resultant force is expressed as:

$$\frac{P_{AE}}{1/2\gamma H^2} = K_{AE} = \frac{\cos^2(d-\theta)}{\cos^2\theta} \left[1 + \left(\frac{\sin d \sin (d-\theta-i)}{\cos \theta \cos i}\right)^{1/2} \right]^{-2}$$
(5.9)

These equations form the basis for comparison with the maximum dynamic results obtained from the tests.

In the Mononobe-Okabe theory, the resultant force is assumed to act at one third of the height above the base of the wall. Therefore, the overturning moment $6M_{\rm AE}/\gamma {\rm H}^3$ from the Mononobe-Okabe theory is:

$$\frac{6M_{AE}}{\gamma H^3} = K_{AE}$$
(5.10)

The maximum bending moment is:

$$\frac{M_{AE}H}{EI} = \frac{\gamma H^4}{6EI} K_{AE}$$
(5.11)

On the basis of previous studies (up to 1970), Seed and Whitman [55] suggest that the dynamic portion of the moment acts at 0.6 of the height above the base of the wall. Therefore the overturning moment is:

$$\frac{6M_{AE}}{\gamma H^3} = K_A + 1.8\Delta K_{AE} = 1.8K_{AE} - 0.8K_A$$
(5.12)

where:

$$\frac{\Delta K_{AE}}{\Delta E} = K_{AE} - K_{A}$$
(5.13)

Likewise, the bending moment is:

$$\frac{M_{AE}H}{EI} = \frac{\gamma H^4}{6 EI} \left(K_A + 1.8\Delta K_{AE} \right) = \frac{\gamma H^4}{6 EI} \left(1.8 K_{AE} - 0.8 K_A \right)$$
(5.14)

This suggestion is also used in the moment comparisons with the experiments, and is shown (for an average test soil density) in Figures 5.108 and 5.111.

The maximum pressure $R_{AE}^{\gamma}/\gamma H$ at the base of the wall is:

$$\frac{R_{AE}}{\gamma H} = K_{AE}$$
(5.15)

One should keep in mind that the Mononobe-Okabe Theory is based on the assumption that the coefficient of lateral earth pressure k_h is representative of a constant lateral acceleration which provides a constant lateral body-type force to the system. There are no inertia effects. The wall is also assumed to be rigid. In the experiment however, the lateral acceleration was rapidly varying in time, providing for inertia effects, and the retaining walls were flexible.

From equation (5.9) it can be seen that the Mononobe-Okabe equation goes singular when $(d' - \theta - i)$ is less than zero since the term under the radical goes negative. For $d = 35^{\circ}$ and a flat backfill (i = 0°) this means that θ has to be less than or equal to 35° or $k_{\rm b} \leq 0.70$. Likewise, for a 5[°] backfill slope $\theta \leq 30^{\circ}$ or $k_{\rm h} \leq 0.58$, for a 10[°] backfill slope $\theta \leq 25^{\circ}$ or $k_{h} \leq 0.47$ and for a 15° backfill slope, $\theta \leq 20^{\circ}$ or $k_h \leq 0.36$. From the lateral acceleration values (comparable to k_h) listed in Table 5.6, it can be seen that the upper limits just mentioned are exceeded, or very nearly exceeded, in some of the tests, especially in those where sloping backfills were used. From a Mononobe-Okabe analysis one would then have expected a complete collapse of the walls. In fact, there was never a complete collapse in any of the tests although lateral displacements were in some cases quite high (about 10% of the wall height in tests 1CN0508, 2CN1013, and 2CN1514). Complete collapse would probably have occurred if the lateral acceleration was constant and inertialess as assumed by Mononobe-Okabe. The level of maximum acceleration was only achieved momentarily, however, being followed by changes in acceleration which in time would lead to a restoring force holding the wall back. There might have been a momentary collapse of the system in some cases, which was quickly arrested. It should be noted that in most tests the maximum accelerations recorded (especially at the top of the wall) occur while the wall is being

"pushed" back into the backfill (i.e., while the system is being restrained from collapse).

The envelopes of the various parameters with respect to the strong motion characteristics were arrived at in the following manner:

As mentioned in Section 5.2, the ground motion of the centrifuge earthquakes has the shape mainly of a decaying sinusoid with some additional noise added (see the bottom-of-wall accelerograms). In most of the tests there is an initial acceleration spike (positive acceleration) followed by a trough (negative acceleration), then a smaller spike, then a smaller trough, and thereafter low amplitude accelerations. The corresponding velocity diagrams, which, as one would expect, have their extreme values when the acceleration curves cross the zero axis, give the total area under the acceleration curves. The velocity changes from one extreme velocity to the other thus give the area under their respective acceleration spikes. The velocity and velocity changes are important in that they can be used as an indication of the energy content of the acceleration spikes, which is thus an indication of the energy put into the system by the earthquake. Recall that there was little damage from the Parkfield earthquake (Section 5.2), although there were high accelerations, because of the low energy content of the acceleration spikes.

It was observed, from the frames b of the parameter diagrams (Figures 5.53b through 5.107b) that, in almost every experiment, peaks in the maximum moment, pressure and shear distributions at the base of the walls with respect to time were obtained in between the time when

- 259 -

the acceleration spikes reached their peaks and the time when they crossed the zero axis (where the corresponding velocities reached their peaks). It was likewise observed that troughs in the maximum moment, pressure and shear distributions were obtained in between the times when accelerations reached troughs (negative maxima) and the times when they recrossed the zero axis (where the corresponding velocities reached their negative maxima). The opposite correlation between acceleration/velocity extremes and the maximum displacements at the top of the walls was also observed.

The peaks and troughs of the parameter distributions were then plotted with respect to their corresponding accelerations, velocities, and velocity changes (which are the areas under individual acceleration spikes) in Figures 5.108 through 5.122. These values are also tabulated in Table 5.6. It should be noted that static values were not included as peaks or troughs in the analysis, as they are probably neither. These values would have been plotted along the axis where acceleration and velocity are zero. However, in dynamic motion, when the acceleration is zero, the velocity might not be, and vice-versa, so the inclusion of static values in the envelope analysis would not have been appropriate to the other dynamic points. Only dynamic values were included.

It should also be noted that the Mononobe-Okabe analysis reduces to the static Rankine/Coulomb analysis for no lateral acceleration which does not seem accurate from a dynamic motion point of view.

- 260 -

							TABLE	5.6							
					Maxtmum Ej	ttreme Dy	mamic Val	lues (Pea	ks and Tr	(sugne)					
	Test		Te	st			Te	st			Test			Test	
	1CN0001		1 CNI	0002			1 CNJ	1003			1CN0004			1 CN1 505	
Ia/m	0.387	0.383	0.271 ^T	0.382	0.354T	0.450	0.343T	0.433	0.401 ^T	0.323	0.292	0.305T	0.406	0.346T	0.314
£H/YE3	0.503	0.505	0.358^{T}	0.504	0.467T	0.589	0.489 ^T	0 .566	0.525 ^T	0.414	0.374 ^T	0.391	0.529	0.451 ^T	0.437
H779	J	0.813	0.318^{T}	0.622	0.430 ^T	0.929	0.324 ^T	0.560	0.378 ^T	0.605	0.391 ^T	0.489	0.661	0.389 ^T	0.532
$Q/(1/2\gamma h^2)$	0.538	0.513	1	0.452	1	0.558	0.293^{T}	1	1	0.415	ı	0.362	0.420	0.370T	0.488
у/н	0.0181 ^T	0.0238 ^T	0.0534	0.0149 ^T	0.0365	0.0238	0.0462	0.0274	0.0596	0.0305 ^T	0.0607	0.0383 ^T	0.0300 ^T	0.0572	0.0331 ^T
a/8	0.430	0.401	-0.538	0.181	-0.162	0.483	-0.529	0.234	-0.165	0.279	-0.203	0.090	0.344	-0.371	0.072
v/f ₁ a	0.0305	0.0369	-0.0249	1010.0	-0.0109	0.0364	-0.0249	\$600°0	-0.0117	0.0249	-0.0114	-0.0001	0.0335	-0.0132	0.0041
Av/f ₁ H	0.0305	0.0369	-0.0618	0.0350	-0.0210	0°0364	-0.0613	0.0343	-0.0211	0.0249	-0.0363	0.0113	0.0335	-0.0467	0.0173
														Ne o parte de la constante de la parte de la constante de la constante de la constante de la constante de la co	
	To:	at		To	st				fest			T	est		Tost
	1 CNO	006		1 CNO	1007			10	N0 5 0 8		and and provide the second	10	600 TA		1 CN1 51 0
Mi/EI	0.229 ^T	0.393	0.423	0.108 ^T	0.296	0.249 ^T	0.327	T221.0	0.327	0.264 ^T	0.491	0.301 ^T	0.493	0.351 ^T	0.554

	To	st		To	sst			Te:	st			Te	st		Tost
	ICNC	006		ICN	0007			1CN0	508	, , _, _, _, , , , _ , 		1 CN1	600		1 CN1 51 0
I/EI	0.229 ^T	6.393	0.423	0.108 ^T	0.296	0.249 ^T	0.327	T991.0	0.327	0.264T	0.491	0.301 ^T	0.493	0.351 ^T	0.554
%/γR ³	0.292 ^T	0.500	0.519	0.133 ^T	0.363	0.305 ^T	0.410	0.250^{T}	0.410	0.331 ^T	0.609	0.373 ^T	0.611	0.436T	0.700
/ 7 8	0.250 ^T	0.366	0.712	0.179 ^T	0.455	0.235 ^T	0.723	0.300 ^T	0.549	0.306 ^T	0.557	0.233 ^T	0.506	0.322T	0.673
$(1/27R^{2})$	0.110 ^T	0.169	0.458	0.135^{T}	0.307	0.276 ^T	0.479	0.254 ^T	195.0	0.312 ^T	0.473	0.272 ^T	0.404	0.291T	0.611
H I	I	1	0.0210 ^T	0.9638	-0.0029 ^T	0.0182 ^T	0.0236 ^T	0.0647	0.0612 ^T	0.0412 ^T	ł	1	1	I	0.0200 ^T
63	-0.472	0.157	0.549	-0.652	0.332	-0.151	0.629	-0.614	0.302	-0.161	0.634	-0.593	0.379	-0.185	0.575
111	-0.0285	0.0075	0.0601	-0.0413	0.0104	-0.0113	0.0525	-0.0412	0.0087	6110.0-	0.0452	-0.0317	0.0036	-0.0217	0.0445
H[1//	-0.0285	0.0360	0.0601	-0.1014	0.0517	-0.0217	0.0525	-0.0937	0,0499	-0.0206	0.0452	-0-0969	0.0553	-0.0253	0.0445

- 261 -

		Teat			To	st			To	st			Te	ţ	
	451	41510(Coni	(··)		2 CN0	011			2 CNC	012			2 CN1	013	
Nel/EI	0.239 ^T	0.560	0.409 ^T	0.736	0.622 ^T	0.826	0.732 ^T	0.698	0.492 ^T	0.762	0.680 ^T	0.746	0.570^{T}	0,804	0.738 ^T
68/7H ³	0.302 ^T	0.707	0.517 ^T	0.448	0.379 ^T	0.503	0.453 ^T	0.438	T 205.0	0.478	0.427T	0.461	0.352 ^T	0.497	0.456T
P/YH	0.374 ^T	0.578	0.426 ^T	0.703	0.142 ^T	0.414	ł	0.615	1.020.0	0.423	1	0.814	0.239 ^T	0.456	0,261 ^T
Q/(1/2γH ²)	0.3517	0.541	0.452 ^T	0.338	0.277 ^T	0.377	0.240T	055.0	0.209 ^T	0.400	1	0.408	0.203 ^T	0.375	0.331T
ИА	0.0640	0.0024 ^T	0.0210	0 .0229 ^T	0.0488	-0.0376	-0.0222	0.0279 ^T	0.0666	-0.0124T	0.0135	0.0368 ^T	0.0706	0.0048 ^T	0.0296
a/ 8	-0.615	0.367	-0,190	0.629	-0.703	0.590	361.0-	0.723	-0.612	0.408	-0.151	0.729	-0.596	0.400	-0.193
v/f ₁ B	-0.494	0,0095	-0.0142	0.0569	-0.0376	0.0137	-0.0114	0.0595	-0.0373	0.0115	-0.0071	-0.0593	8620.0-	0,0138	8500.0-
∀v/f ₁ E	6660.0-	0.0589	-0.0237	0.0569	-0.0945	0.0513	-0.0251	0.0595	8960.0-	0.0488	-0.0186	0.0593	-0.0944	0.0536	-0.0236
													-		-
						,									
		Ĩ	est												
	-	50	VI 51 &												

			5 E C	
		200	1514	
MH/BI	861.0	0.616 ^T	0.502	0.830
6м/үв ³	164.0	0.379 ^T	0.555	0.511T
HA/4	0.730	0.202 ^T	0.659	0.257 ^T
Ω/(1/2 ₇ H ²)	0.394	0.265T	0.323	0.203 ^T
14/H	0.0282 ^T	0.0472	0.0331 ^T	-0.0288
a/ 5	0.701	-0.624	0.422	-0.202
nīj/A	0.0526	-0.0474	0.0074	-0.0200
μ _r γνά	0.0326	-0.1000	0.0548	-0.0274
I . Trough	(local mi	ninum) Po	ak value o	therwise.

`

Maximum { Shear-Force } always at bottom of wall. Pressure

Marimum displacement always at top of wall.

- 262 -

The extreme points seem to follow, with the exception of the displacement, a general trend; that is, the higher the lateral acceleration, velocity or change in velocity, the higher the extreme. It was decided to fit least-squares straight lines through each of the sets of points one for each backfill slope; 0° , 10° , 15° . The maximum slope from each of the three sets of data was taken as the slope for the envelopes. The envelopes were drawn with these slopes as tangents to the individual sets of points. From the linear correlation coefficients of the least-squares fits, it was determined that the best fits were the maximum moment vs. change in velocity (Figures 5.110 and 5.113), the maximum pressure vs. velocity (Figure 5.115) and, the maximum shear vs. acceleration (Figure 5.117). No conclusions could be drawn from the displacement curves (Figures 5.120 through 5.122).

The best fits would indicate that moment and pressure are more momentum- or energy-governed parameters since they are better related to velocity effects. Similarly, the shear force is more a force-governed parameter (which is logical) since it is better related to acceleration.

The envelopes presented thus provide an upper bound for the various parameters with respect to actual dynamic strong motion characteristics for at least a range of system stiffnesses ($\gamma H^4/6EI$) between about 0.75 and 1.75 which the experiments encompassed (for $\phi \simeq 35^{\circ}$).

As in the static case, the various parameters are indicated to be independent of the stiffness of the walls at least for the range of stiffnesses tested. It would be difficult to say if this would hold for

- 263 -

rigid walls, or very flexible walls, since the actual walls tested appeared quite flexible as indicated by the deflection shapes.

The only logical comparisons that can be made are those between the envelopes obtained and the corresponding Mononobe-Okabe predictions (which have been simplified for an average of the soil densities encountered). These can be seen in Figures 5.108 and 5.111 for moments, 5.114 for pressures, and 5.117 for shears. In addition, Figures 5.108 and 5.111 show the values for moments suggested by Seed and Whitman which were previously discussed. No comparisons with previous investigators can be made in terms of the envelopes involving the velocity parameters since this does not seem to have been examined before. Having the envelopes with respect to accelerations, velocity and change in velocity should, however, help in better understanding the problem at hand.

Since the Mononobe-Okabe curves and Seed and Whitman curves (in the moment diagrams) generally intersect at one point and at relatively steep angles to each other, it appears that the traditional methods underestimate the actual values of maximum moments below the point of intersection and overestimate them above. It appears that going even a small distance above or below the intersection points leads to large differences between the actual experimental maximum values and those predicted by the theory. For example, from Figure 5.111, for a flat backfill and a lateral acceleration of 0.25g the Mononobe-Okabe method gives a maximum moment around 60% as large as that determined from the envelope. Seed and Whitman indicate one about 80% as large. For 0.50g,

- 264 -

however, Mononobe-Okabe predicts a maximum moment about as large as the envelope while Seed and Whitman shows one 1.5 times larger. Similar comparisons can readily be made for the other parameters as well by examining the respective diagrams. The designer would observe, therefore, that the envelopes obtained from the experiments generally give what appear to be conservative values for lateral accelerations less than about 0.50g (which is probably the practical extreme for the use of the Mononobe-Okabe theory in any case). It should also be noted that the envelopes do not seem to be as sensitive to backfill slope as the Mononobe-Okabe theory is.

From the parameter diagrams (Figures 5.53 through 5.107) it can be observed that the maximum moments recorded ranged from about 40% to about 100% higher than the maxima recorded statically (with the exception of test 1CN0007 which had a relatively very low static maximum moment). As mentioned previously, this ratio is more dependent on the energy input into the system (represented by the velocity) than on the peak accelerations. The moment distributions with respect to the location (frames c and vertical cuts of frames a) seem to be smooth curves which could possibly be approximated using low order polynomials, for example, quadratic functions.

The maximum dynamic pressures ranged anywhere from 1 to 2-1/2 times the maximum static ones and like the moments this ratio was more dependent on the velocities recorded. Although the pressure distributions are by no means linear (as assumed by the Mononobe-Okabe theory), their centroids (locations of resultants) generally appear to be at or

- 265 -

very near the location of the static centroids, that is, somewhere between 30% to 40% above the wall base. As with the static pressure distributions, this indicates that the distributions are like an "average" of a linear pressure distribution although they are generally difficult to relate to a Mononobe-Okabe distribution. In any case, the dynamic centroid appears to hold steady at around 1/3 the height above the base in contradiction to Seed and Whitman [55] and Prakash and Basavanna [42] (see Section 1.3).

The maximum shear forces recorded in the tests are generally 50% to 100% higher than the maximum recorded statically for the range of maximum test accelerations. It appears that the percentage is more closely associated with the acceleration than the velocity lavels. One should keep in mind that shear requirements are usually amply met if a bending design is used unless the beam is short with respect to its thickness (behaving like a shear beam). For reinforced concrete beams, shear is important, however, and some shear reinforcement is usually required by design.

As can be seen from Figures 5.120 through 5.122 no clear trend could be determined between the maximum displacements (at the top of the wall) and the strong motion characteristics.

Richards and Elms [43] performed some tests on a <u>gravity</u> retaining wall on a (1g) shaking table which was subjected to a scaled El Centro, California (1940) earthquake record. They measured the displacements on the wall and noted that the wall always moved outward away from the backfill and continued to move outward until the shaking ceased. By

- 266 -

contrast, barring the author's prejudice toward 1g shaking table tests (Section 1.2), in the cantilever retaining wall tests of this investigation, the walls were observed to displace both outwardly and inwardly with respect to the backfill. The maximum displacements were observed to be not necessarily the final ones although in some tests they were. This is as it should be. At 1g, the soil grains are under low stresses and are rigid, so the only displacements are due to grain slipping which is all irreversible. In the centrifuge, the soil behavior is properly elastic/plastic so dynamic to and fro movements are observed. In addition to the sliding and rotation of the base, there is also the flexing of the stem (and base) so the elastic wall can rebound somewhat as well. The maximum deflections ranged from 5% to 9% of the wall height for RW1 and from 7% to 11% for the more flexible RW2. These magnitudes of deflections could lead to some severe cracking in reinforced concrete walls although it should be remembered that part of the deflection is due to a rotation of the base.

From the shape of the deflection curves (frames c and vertical sections through frames a of the parameter diagrams) it can be seen that the wall motion is basically in the first mode with apparently little or no contribution from other modes. This is also confirmed by the Fourier Spectra discussed in Section 3.3.3.

5.6. Final Static (Residual) Results

A visual idea of the results of the earthquake on the retaining walls can be observed from Figures 5.123 (Test 1CN0007), 5.124 (Test

- 267 -

FIGURE 5.123 - TEST ICN0007, POST TEST VIEW (AT 1G)

FIGURE 5.124 - TEST ICN1009, POST TEST VIEW (AT 1G)

FIGURE 5.125 - TEST 20NOOII, POST TEST VIEW (AT IG)

1CN1009), and 5.125 (Test 2CN0011). Although the photographs were taken after the centrifuge was brought back down to rest, one can see that there was a large amount of motion of the backfill and wall. There was, of course, an amount of "rebounding" of the system as the artificial gravitational field decreased. One can observe that the backfill, which was originally flush with the lip of the wall, has displaced downward 1/4 to 1/2 of an inch. These kinds of displacements are quite sizeable and it can be safe to speculate that, if colored sand, or slightly moistened sand (with some apparent cohesion) had been used, some cracks in the backfill would have been observed.

Not apparent from the photographs is a "mounding" of the sand observed at the base of the wall. This was obviously produced by the outward movement of the wall during the tests.

An important observation related to the downward sliding of the backfill and the "mounding" at the base is that these features were uniform across the width of the wall and there was no apparent change near the edges. This can be taken as a good indication that the system behaved in a plane strain fashion (as assumed) and that the edge effects (if any) were minimal.

Seed and Whitman [55] mention the fact that after a retaining structure with granular backfill has been subjected to a base excitation, a residual pressure acts on it which is substantially greater than the initial pressure before base excitation. This pressure is also a

- 270 -

	Non-112-1-12-12-12-12-12-12-12-12-12-12-12-			-	the state by the state of the			
		Test	2 CN1 51 4	0.836	0.527	0.276	0.282	0.0947
		Test	2 CN1 013	0.760	0.470	0.297	0.063	0.0856
		Test	2CN0012	0.708	0.445	0.275**	0.398	0.0731
		Test	2 CN0 011	0.790	0.481	0.268*	0.359	0.0653
		Tost	1 CNI 510	0.456	0.576	0.444	0.482	0.0561
	8 J & D J & D	Test	1 CN1 009	0.423	0.525	0.354	0.381	0.0580
	ues From	Test	1CN0508	0.270	0.379	0.308	0.317	0.0552
5.7	itatio Vai	Tost	100001	0.302	0.370	0.313	0.320	0.0481
TABLE	sidual) S	Tost	1 CN0 006	0.381	0.485	0.314	0.177	0.0328
	Final (Re	Tost	1CN1505	0.371	0.483	0.501	0.419	0.0548
	MaxAmum	Test	1CN0004	0.303	0.383	0.461	0.375	0.0433
		Test	1 CN1 003	0.409	0.535	0.408	0.423	0.0599
		Tost	1CN0002	0.358	0.472	0.478	0.428	0.0536
		Test	1CN0001	0.338	0.439	I	0.413	0.0474
		6	-	Moment MU/EI	Moment 6M/ Y H ³	Pressure P/ Y H	Sheer Q/(1/2 7 H ²)	Displacement y/M

Maximum Moment always at bottom of wall unless otherwise specified. Maximum Pressure always at bottom of wall unless otherwise specified. Maximum Shear Force always at bottom of wall unless otherrise specified. Maximum Displacement always at top of wall.

°. Occurs at x/H = 0.625

**. Occurs at x/H = 0.431

				TA	BLE 5.8	a and a second					
	-	Rattos o	f Final R	osidual	to Mazim	um Stat	ic and May	t mum			
·			рула	mic Val	ues (Test	only).					
		L	Test 1CN00	100	Test 1CN	2000	Test 1Ch	11 003	Tost J	CN0004	
		Ś	tatio Dyn	anic S	tatic Dy	nam lo	Statle D	ynam ic	Static	Dynam	10
Woment Wil/	ELAGN/ Y	H ₃	.40 0.	87	1.32 0	.93	1.37	0.91	1,23	0 .94	
anesord,	0 P/ Y E	- (ł		0.96.0	65.	0.92	0.44	0.87	0.76	
Shear Force	0/(1/2	х ^{в2} 2	1.55 0.	22	1.44 0	-84	1.48	0.76	1.36	06°0	
Dispiaco	ment y/I		1.70 1.	*00	1.63	¢00°	6 5° 1	1.00%	1.37	0.71	
a sea - se val v _{al t} a - sea secolar a sea des significadas en sea sea secolar de sea secolar de secolar de se											
Tost 107	VI 505	Test 1	CN0005	Test.	LCN0007	Test	1 CN0 508	Tes	1 1 CN1 00	6	
Static D	ynamic	Statio	Dynamic	Static	Dynamic	Stati	c Dynamic	Stati	c Dynan	110	
1,35	0.91	1.39	0.97	1.80	0.71	1.29	0.83	1.80	0.8	. 91	
	0.70	0.75	0.75	0.83	0.45	0.56	0.43	0.83	0°9	~	
	0.96 0.96	1.10	1.00 -0.92	1 00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0.70	2 2 2 4 2 2 4 2 2 4	0.59	4 60 7 7	2 0 0 0		
	Ale and a second se						n de ante en entre en entre en entre en	S			
Test 1C	N1510	Test	2 CN0 0 1 1	Tost	2 CN0 012	Tos	t 2CN1013	Ter	t 2 CN1 51	4	
Statio	Oynem 10	Statio	Dynamic	Static	Dynamic	Stati	c Dynaml	c Stat	ic Dyna	aic	
1.57	0.81	1.56	0.97	1.58	0.93	1.53	0.95	1.6	1 0.9	5	
\$8°0	0.66	0.95	0.38	0.87	0.45	0.62	0.36	0.0	6 Q.3	63	
म् म् स्य	0.79	1.07	0.95	1.58	0.97	1.54	0.89	ford ford	1 0.7	0	
1.72	0.88	1.49	1.00	1.58	1.00*		0.76	1	3 1.0	0	

* Final - Maximum

substantial portion of the maximum pressure developed during the excitation. This statement is quantitatively demonstrated by the experiments.

The maximum residual parameters are listed in Table 5.7 and their ratios to maximum static and maximum dynamic values in Table 5.8.

One can observe that, although the maximum residual pressure is always somewhat lower than the maximum static pressure (5% to 25%), and considerably lower than the maximum dynamic (25% to 60% lower), the resultant (shear) forces (i.e., the areas under the pressure distributions) are in accordance with the Seed and Whitman observation. The residual resultants can be up to 60% higher than the static! This appears to be random with respect to the slope. From frames c of the pressure distribution diagrams, it can also be observed that the final residual resultant is usually located scme 20% to 40% above the static and dynamic resultants indicating that a triangular (or "average triangular") pressure distribution no longer exists.

The residual moments are also substantially higher than the static and are only a few percent lower than the maximum. This, again, develops regardless of the magnitude of the shaking the wall was subjected to. This could indicate that a retaining wall which has survived an earthquake intact could be pre-stressed for the following earthquake or aftershock to the point where there is virtually no safety factor and thus fail under an even mild event. It should be noted that in Test 1CN1505 the centrifuge was left running for 3 hours after the shaking occurred. This is the equivalent of 150 hours (over 6 days) in prototype time, and in this period, no rebounding or relaxation was observed in either the strain gage (moment) or pressure transducer readings.

As mentioned in Section 5.5 the walls displaced out and in with respect to the backfill and then generally crept out toward some final displacement which in some tests was the maximum observed. The final displacements were found to be much greater than the static ones in any case. This then gives rise to the question of whether or not such large displacements can be tolerated from a safety or aesthetic point of view although the retaining wall survived the earthquake.

CHAPTER VI -

CONCLUSIONS AND RECOMMENDATIONS

The purpose of this investigation was to observe the natural behavior of an 18 ft high cantilever retaining wall when subjected to only a gravity body force with a dynamic lateral earthquake excitation. The retaining walls were properly modelled and were subjected to some earthquake-like motions which were considered to be in a realistic range. Moment, pressure, shear, and displacement distributions (static, dynamic, and residual) were obtained. It was also novel that the retaining walls were considered flexible (as they are in real life) as opposed to rigid, which seems to be the norm in 1g model retaining wall studies and in theoretical analyses. A large amount of data was obtained directly from transducers and indirectly from simple mathematical manipulations of transducer 4ata and was presented in as concise a manner as possible. Some empirical curves for relating the upper bound responses of the retaining walls to strong motion characteristics were also obtained.

From the information acquired from the tests, the following conclusions and recommendations can be made.

6.1. Conclusions

1. The simple "earthquake generating" mechanism employed was found to give realistic characteristics and could thus be employed in the studies of other earthquake-related problems in geotechnics in the centrifuge.

- 2. The static earth pressure distributions obtained were not triangular as the Rankine/Coulomb lateral earth pressures assume. The experimental centroids were generally located at about 1/3 the height above the base of the wall. The resultant forces (areas under the pressure curves) were in reasonable agreement with the Rankine/Coulomb theory. This indicates that the Rankine/Coulomb theory estimates an "average" pressure distribution which is taken as triangular.
- 3. The static moments measured were generally higher than those which would be obtained using a Rankine/Coulomb resultant force with a 1/3 of the height moment arm (by as much as 35%), indicating that the properly designed wall might have a safety factor lower than estimated.
- 4. Static displacements were sufficiently large to create a state of full active pressure behind the wall.
- 5. Static and dynamic reaction parameters (moments, pressures, etc.) appear to be independent of wall stiffness, at least for the range

of experimental system stiffnesses (0.75 $\leq \gamma H^4/6EI \leq 1.75$, $\phi \approx 35^{\circ}$) 6a. The only significant dynamic response of the system is in the fundamental mode.

6b. The two walls had fundamental frequencies of 2.6 Hz and 2.5 Hz with the soils employed.

- 7. The dynamic response of the system is not only dependent on lateral accelerations, as the Mononobe-Okabe theory assumes, but also on the energy content of the earthquake indicated by the velocities. Maximum moments were found to be more closely associated with the areas under the individual acceleration spikes (changes in velocity), maximum pressures with the velocities, and maximum shear (resultant) forces with the accelerations, although there is a general dependence on all the strong motion characteristics. There is a strong correlation between maximum and minimum (maximum negative) accelerations, velocities, and changes in velocities; and peaks and troughs in the maximum response curves.
- 8. The experimental envelopes presented in Chapter V provide an upper bound for the various parameters with respect to actual dynamic strong motion characteristics for at least the system stiffness range $(0.75 \leq \gamma E^4/6EI \leq 1.75, \phi \approx 35^\circ)$ which was studied. These envelopes can be used as a design aid (Section 6.2).
- 9. The Mononobe-Okabe theory underestimates responses (in some cases severely) below certain lateral acceleration levels for each individual case (Figures 5.108, 5.111, 5.114, and 5.117) and overestimates them above that acceleration when compared to the experimental envelopes. This is due to the steep slope of intersection (at only one point) between the recorded parameter envelopes and the Mononobe-Okabe curves. This makes the envelopes appear conservative for k_h values less than 0.5g, but they are not, because they came from tests.

- 10. The experimental envelopes are not as sensitive to backfill slope as the Mononobe-Okabe theory is.
- 11. Dynamic moment distributions with respect to wall location are generally smooth, monotonic curves which resemble some low order polynomial, possibly quadratic.
- 12. As in the static cases, the dynamic pressures were not triangular as the Mononobe-Okabe theory assumes, although the centroids did remain at about 1/3 the height above the base, contradicting other investigators which state that it rises to between 1/2 and 2/3 of the height. The dynamic pressure distributions could thus be considered an "average" of a linear distribution, although they could not generally be related to Mononobe-Okabe.
- 13. The walls displaced both outwardly and inwardly with respect to the backfills during the severe parts of the shaking and crept outwardly during the milder shaking towards the end. Maximum deflections could be considered excessive in some cases even though the structure survived the event intact. Deflected shapes gave an indication of first mode (only) flexible bending beam behavior.
 14. The fact was confirmed that, after a retaining structure with a
 - granular backfill undergoes severe dynamic excitation, a residual pressure acts on it which is substantially greater than the initial pressure before excitation, and is a substantial portion of the maximum pressure developed during the excitation. This also applies to moments, shears, and displacements.

15. No noticeable experimental "edge effects" were observed, and a plane strain condition for the tests could be assumed to hold.

16. Elastic solutions for retaining wall problems should be avoided. This includes the use of elastic finite elements (Appendix D).

6.2. <u>Recommendations</u>

Based on the concluded investigation, it is highly recommended that some type of dynamic analysis in the design of large retaining structures be employed, as the dynamic responses generated can be considerably greater than the static ones. There should be extreme caution in accepting the following quote from Seed and Whitman [55]:

"Thus many walls adequately designed for static earth pressures will automatically have the capacity to withstand earthquake ground motions of substantial magnitudes and in many cases, special seismic earth pressure provisions need 1.0t be required".

As an example of how the experimental data from this investigation might be used as a design aid consider the following practical problem:

It is required to design a 20 ft high cantilever retaining wall with a flat, granular backfill with $\phi = 35^{\circ}$. The wall is to be subjected to a scaled down Parkfield Earthquake (Figure 5.41a) to one half the magnitude shown.

Since the wall/soil description is similar to that of the experiments, the fundamental frequency can be assumed to be about 2.5 Hz. From Figure 5.41, based on test experience, the second acceleration spike (that whose peak is at about 4.1 seconds) should probably generate the critical response. The peak design acceleration is then 215 cm/sec², the corresponding velocity 39 cm/sec (which occurs at about 4.6 sec) and the area under the acceleration spike is 49 cm/sec (which is the peak-trough difference on the velocity curve). Based on test experience, the peak response of the wall should then occur sometime between the 4 and 5 second mark.

For $a = 215 \text{ cm/sec}^2$, a/g = 0.22. Therefore, from Figure 5.111

$$\frac{6M}{\gamma H^3} = 0.58.$$

For v = 39 cm/sec, ($f_1 = 2.5$ Hz).

$$\frac{v}{f_{1H}} = \frac{39}{(2.5)(20)(30.48)} = 0.026.$$

Therefore, from Figure 5.112,

$$\frac{6M}{\gamma H^3} = 0.55$$

For $\Delta v = 49$ cm/sec, (f₁ = 2.5 Hz).

$$\frac{\Delta v}{f_1 \Pi} = 0.032.$$

Therefore, from Figure 5.113,

$$\frac{6M}{\gamma H^3} = 0.57$$

The maximum moment could then be taken as the average of the three values obtained from the envelopes, therefore

$$\left(\frac{6M}{\gamma H^3}\right)_{MAX} = 0.57.$$

Having this value, the stem could then be designed as a regular bending beam using, for example, a quadratic moment distribution for simplicity and having all the design requirements (as was done in Section 3.3.1).

It should be noted that had a Mononobe-Okabe analysis been performed, using the maximum scaled Parkfield acceleration of 240 cm/sec² and equation (5.10), the maximum moment would have been:

$$\left(\frac{6M}{\gamma H^3}\right)_{MAX} = 0.42$$

which is 35% below the one obtained from the other analysis. It was based on one dynamic parameter (the peak acceleration) whereas, the other was based on three. If a standard factor of safety of 1.7 is used, it would in actuality only be 1.25 when compared to the previous analysis.

One could also use a similar analysis to investigate the pressures and shears and perhaps refine the design.

Future research could be done using identical types of tests with different wall heights, stiffnesses, different soils and longer earthquake durations.

The data analysis should concentrate more on the highlights (peaks, troughs, etc.) of the dynamic characteristics related to the system responses instead of the detailed, time-consuming, expensive, and tedious data analysis which was performed in this investigation. Sheetpile walls, channel sections, and other types of bending beam retaining walls should also be studied.

Retaining wall problems with wet or saturated soils should also be examined with the centrifuge, although there could be some problems with retaining the water in the backfill as well as having two time scales (dynamic and consolidation -- see Appendix A).

The centrifuge would also be an ideal tool for studying static and dynamic retaining wall behavior with clays.

It would be desirable to develop a better shaker which could be implemented into a centrifuge. There is also a need for some full-scale testing of bending beam retaining structures. Sinusoidal shakers could be used on actual retaining structures to determine some natural frequencies and modes of vibration and perhaps test some to failure.

An actual retaining wall should also be instrumented with two strong motion accelerographs (one at the base and one at the top) and with at least some kind of pressure transducers which could record pressures during an actual earthquake. The recording devices could be triggered by the accelerographs.

- 282 -

- 283 -

BIBLIOGRAPHY

- K.J. Bathe, E.L. Wilson, F.E. Peterson (1973), "SAPIV A Structural Analysis Program for Static and Dynamic Response of Linear Systems", Report No. EERC 73-11, College of Engineering, University of California, Berkeley, California, June.
- 2. Biggs, J.M. (1964), <u>Introduction to Structural Dynamics</u>, McGraw-Hill Book Company, San Francisco.
- 3. Bridgman, P.W. (1943), <u>Dimensional Analysis</u>, Yale University Press.
- Bucky, P.B. (1931), "Use of Models for the Study of Mining Problems", American Institute of Mining and Metallurgical Engineers Technical Publication No. 425.
- Chakrabarti, S., Husak, A.D., Christiano, P.P., Troxell, D.E. (1978), "Seismic Design of Retaining Walls and Cellular Cofferdams", Proceedings of the ASCE Geotechnical Conference, <u>Earthquake Engineering and Soil Dynamics</u>, Pasadena, California.
- Chang, M.F., Chen, W.F. (1981), "Limit Analysis of Lateral Earth Pressures on Rigid Walls Retaining Cohesionless Soils", Report CE-STR-81-2, School of Civil Engineering, Purdue University, January.
- Chang, M.F., Chen, W.F. (1981), "Lateral Earth Pressures on Rigid Retaining Walls Subjected to Earthquake Forces", Report CE-STR-81-20, School of Civil Engineering, Purdue University, June.
- 8. Cloud, W.K. (1967), "Intensity Map and Structural Damage, Parkfield, California Earthquake of June 27, 1966", <u>Bulletin of the</u> <u>Seismological Society of America</u>, Vol. 57, No. 6, December.
- Cloud, W.K., Perez, V. (1967), "Accelerograms Parkfield Earthquake", <u>Bulletin of the Seismological Society of America</u>, Vol. 57, No. 6, December.
- CNEN-ENEL Commission on Seismic Problems Associated with the Installation of Nuclear Power Plants (1976), <u>Contribution to the</u> <u>Study of the Friuli Earthquake of May, 1976.</u>
- Duke, C.M., Leeds, D.J. (1963), "Response of Soils, Foundations, and Earth Structures to the Chilean Earthquakes of 1960", <u>Bulletin</u> of the Seismological Society of America, Vol. 53, No. 2, February.
- Ellingwood, B.R., Editor (1980), "An Investigation of the Miyagi-Ken-Oki, Japan Earthquake of June 12, 1978", U.S. Department of Commerce, Bureau of Standards Special Publication 592, October.
- 13. Greville, T.N.E. (1970), <u>Spline Functions and Applications</u>, National Technical Information Service, Springfield, Virginia.
- Hayoshi, S., Kubo, K., Nakase, A. (1966), "Damage to Harbor Structures in the Niigata Earthquake", <u>Soils and Foundations</u>, Tokyo.
- 15. Hoek, E. (1965), "The Design of a Centrifuge for Simulation of Gravitational Force Fields in Mine Models", <u>Journal of the South</u> <u>African Institute of Mining and Metallurgy</u>, Vol. 65, No. 9.
- 16. Housner, G.W., Trifunac, M.D. (1967), "Analysis of Accelerograms -Parkfield Earthquake", Bulletin of the <u>Seismological Society of</u> <u>America</u>, Vol 57, No. 6, December.
- International Association for Earthquake Engineering (1970), "Earthquake Engineering Regulations: A World List", November.
- Ishii, T., Arai, M., Tsuchida, H. (1960), "Lateral Earth Pressures in an Earthquake", Proceedings, Second World Conference on Earthquake Engineering, Tokyo, Japan.
- Jacobsen, L.S. (1939), Appendix D of "The Kentucky Project", Technical Report No. 13, Tennessee Valley Authority, 1951.
- 20. Japan Society of Civil Engineers (1980), <u>Earthquake Resistant</u> <u>Design of Civil Engineering Structures and Foundations in Japan.</u>
- Jennings, P.C., Editor (1971), <u>Engineering Features of the San</u> <u>Fernando Earthquake</u>, Report No. EERL 71-02, Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, California.
- 22. Kawasumi, H. (1968), <u>General Report on the Niigata Earthquake of 1964</u>, Tokyo Electrical Engineering College Press, Tokyo, Japan.
- 23. Ketter, R.L., Prawel, S.P., Jr. (1969), <u>Modern Methods in</u> <u>Engineering Computation</u>, McGraw-Hill Book Company, New York.
- 24. Lew, H.S., Leyendecker, E.V., Dikkers, R.D. (1971), "Engineering Aspects of the 1971 San Fernando Earthquake", Building Research Division, Institute for Applied Technology, National Bureau of Standards, Washington, D.C., Building Science Series 40, December.

- 25. Liu, H-P., Hagman, R.L., Scott, R.F. (1978), "Centrifuge Modeling of Earthquakes", <u>Geophysical Research Letters</u>, Vol. 5, No. 5, May.
- 26. Matsuo, H. (1941), "Experimental Study on the Distribution of Earth Pressures Acting on a Vertical Wall During Earthquakes", Journal of the Japanese Society of Civil Engineers, Vol. 27, No. 2.
- Matsuo, M., Ohara, S. (1955), "Seismic Earth Pressure Due to Saturated Soils", Journal of the Japanese Society of Civil Engineers, Vol. 40, No. 6.
- Matsuo, M., Ghara, S. (1960), "Lateral Earth Pressures and Stability of Quay Walls During Earthquakes", Proceedings, Second World Conference of Earthquake Engineering, Tokyo, Japan.
- 29. Matsuo, M., Ohara, S. (1965), "Dynamic Pore Water Pressure Acting on Quay Walls During Earthquakes", Proceedings, Third World Conference on Earthquake Engineering, New Zealand.
- Mononobe, N. (1929), "Earthquake Proof Construction of Masonry Dams", Proceedings, World Engineering Conference, Japan, Vol. 9.
- Mononobe, N., Matsuo, M. (1929), "On the Determination of Earth Pressures During Earthquakes", Proceedings, World Engineering Conference, Japan, Vol. 9.
- Murphy, L.M., Scientific coordinator (1973), "Earthquake Damage to Water and Sewerage Facilities: Subcommittee on Water and Sewerage Systems", <u>San Fernando, California, Earthquake of February 9, 1971</u>, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Washington, D.C.
- 33. Murphy, V.A. (1960), "The Effect of Ground Characteristics on the Aseismic Design of Structures", Proceedings, Second World Conference on Earthquake Engineering, Tokyo, Japan.
- Murray, W.M., Stein, P.K. (1958), <u>Strain Gage Techniques</u>, M.I.T. Press.
- 35. Newmark, N.M. (1965), "Effects of Earthquakes on Dams and Embankments", <u>Geotechnique</u>, Vol. XV, No. 2, June.
- 36. Niwa, S. (1960), "An Experimental Study of Oscillating Earth Pressures Acting on a Quay Wall", Proceedings, Second World Conference on Earthquake Engineering, Tokyo, Japan.

- Oberg, E., Jones, F.D., Horton, H. L., Schubert, P.B., Garratt, G., Semioli, W.J., Moltrecht, K.H. (1975) <u>Machinery's Handbook</u>, 20th Edition, Industrial Press, Inc., New York.
- 38. Ohara, S. (1960), "Experimental Studies of Seismic Active and Seismic Passive Earth Pressure", Proceedings, Third Japanese Earthquake Engineering Symposium, Tokyo, November.
- Okabe, S. (1926), "General Theory of Earth Pressure", <u>Journal of</u> the Japanese Society of Civil Engineers, Vol. 12, No. 1.
- Pokrovsky, G.I., Fyodorov, I.S. (1975), "Centrifugal Model Testing in the Construction Industry", Draft translation prepared by Building Research Establishment Library Translation Service, Great Britain, Vols. I and II.
- Polshin, D.E., Rudnitski, N.Y., Chizhikov, P.G., Yakovleva, T.G. (1973), "Centrifugal Model Testing of Foundation Soils of Building Structures", Proceedings, 8th International Conference of Soil Mechanics and Foundation Engineering, Moscow.
- 42. Prakash, S., Basavanna, B.M. (1969), "Earth Pressure Distribution Behind Retaining Wall During Earthquake", Proceedings, Fourth World conference on Earthquake Engineering, Santiago, Chile.
- 43. Richards, R., Jr., Elms, D.G. (1977), "Seismic Echavior of Gravity Retaining Walls", Research Report No. 77-10, University of Delaware, Newark, Delaware, University of Canterbury, Christchurch, New Zealand.
- 44. Richart, F.E., Jr., Hall, J. R., Jr., Woods, R.D. (1970), <u>Vibration</u> of Soils and Foundations, Prentice Hall.
- 45. Ross, G.A., Seed, H.B., Migliaccio, R. (1969), "Bridge Foundation Behavior in Alaska Earthquake", Journal of the Soil Mechanics and Foundation Division, American Society of Civil Engineers, July.
- 46. Rowe, P.W. (1975), "Application of Centrifugal Models to Geotechnical Structures", Proceedings, Symposium on Geotechnical Structures, University of New South Wales, Australia, July.
- 47. Satake, M. (1979), <u>Investigation of Disasters Caused by the 1978</u> <u>Mivagi-Ken-Oki Earthquake</u>.
- 48. Scott, R.F. (1963), <u>Principles of Soil Mechanics</u>. Addison-Wesley Publishing Co., Inc., Reading, Massachusetts.

- Scott, R.F. (1973), "Earthquake-Induced Earth Pressures on Retaining Walls", Proceedings, Fifth World Conference on Earthquake Engineering, Rome, Italy.
- 50. Scott, R.F. (1975), "The Centrifugal Technique in Geotechnology-Selected Papers", Soil Mechanics Laboratory, California Institute of Technology, Pasadena, California, November.
- Scott, R.F., Liu, H-P., Ting, J. (1977), "Dynamic Pile Tests by Centrifuge Modeling", Proceedings, Sixth World Conference on Earthquake Engineering, Paper 4-50, New Delhi, January.
- 52. Scott, R.F. (1977), "Centrifuge Studies of Cyclic Lateral Load-Displacement Behavior of Single Piles", Soil Mechanics Laboratory, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California.
- 53. Scott, R.F. (1979), "Cyclic Static Model Pile Tests in a Centrifuge", Offshore Technology Conference, Paper no. 3492.
- 54. Seed, H.B., Idriss, I.M. (1970), "Soil Moduli and Damping Factors for Dynamic Response Analyses", Report No. EERC, 70-10, Earthquake Engineering Center, University of California, Berkeley, December.
- 55. Seed, H.B., Whitman, R.V. (1970), "Design of Earth Retaining Structures for Dynamic Loads", ASCE Specialty Conference, Lateral Stresses in the Ground and the Design of Earth Retaining Structures, Cornell University Ithaca, New York.
- 56. Sim, L.C. (1979), "Behavior of Retaining Walls Under Seismic Loading", Research Report 79/9, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, February.
- 57. Stratta, J.L., Wyllie, L.A., Jr. (1979), "Reconnaissance Report, Friuli, Italy Earthquakes of 1976", Earthquake Engineering Research Institute, August.
- 58. Tagaya, K., Scott, R.F., Aboshi, H. (1977), "Fundamental Study on Extraction of Buried Anchors", Proceedings, 12th Conference on Soil Mechanics and Foundation Engineering, Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo.
- 59. Tajimi, H. (1969), "Dynamic Analysis of a Structure Embedded in an Elastic Stratum", Proceedings, Fourth World Conference on Earthquake Engineering, Santiago, Chile.

- 60. Tajimi, H. (1970), "Dynamic Earth Pressure on Basement Walls in the Elastic Ground", Proceedings, Third Japanese Earthquake Engineering Symposium, Tokyo, November.
- Tajimi, H. (1973), "Dynamic Earth Pressures on Basement Wall", Proceedings, Fifth World Conference on Earthquake Engineering, Rome, Italy.
- 62. Teng, W.C. (1962), <u>Foundation Design</u>, Prentice Hall Inc., Englewood Cliffs, New Jersey.
- Trifunac, M.D., Lee, V. (1973), "Routine Computer Processing of Strong Motion Accelerograms", Report EERL 73-03, California Institute of Technology, Earthquake Engineering Research Laboratory.
- 64. Wang, C.K., Salmon, C.G. (1973), <u>Reinforced Concrete Design</u>, Second Edition, Intext Educational Publishers, New York.
- 65. Winterkorn, H.F., Fang, H.Y. (1975), <u>Foundation Engineering Hand-</u> book, Van Nostrand Reinhold, New York.
- 66. Whitman, R.V. (1979), "Dynamic Behavior of Soil and its Application to Civil Engineering Projects", Proceedings, Sixth Pan-American Conference on Soil Mechanics and Foundation Engineering, Lima, Peru.
- 67. Wood, J.H. (1973), "Earthquake Induced Soil Pressures on Structures", Report No. EERL 73-05, Earthquake Engineering Research Laboratory California Institute of Technology, Pasadena, California.
- Wood, J.H. (1975), "Earthquake Induced Pressures on a Rigid Wall Structure", <u>Bulletin of the New Zealand Society for Earthquake</u> <u>Engineering</u>, Vol. 8, No. 3, September.
- 69. Yanev, P.I., Editor (1978), "Reconnaissance Report, Miyagi-Ken-Oki Japan Earthquake, June 12, 1978", Earthquake Engineering Research Institute, Berkeley, California, December.
- 70. Yuxian, H. (1979), "Some Engineering Features of the 1976 Tangshan Earthquake", Visit of the Soil Dynamics Delegation of the American Society of Civil Engineers to the People's Republic of China, August 25-September 10, 1979.

- 289 -

APPENDIX A

SCALING RELATIONS (Hock [15])

Every quantity of physics and mechanics has a dimension which can be expressed as a function of the fundamental dimensions:

M		mass		F	\$103#	force	(F	=	MLT ⁻	²)
L	6 9800	length	or	L	B alli	length				
T	6 .02	time		T	-	time				

If a formula is dimensionally correct, it is valid in all systems of units.

By the method of dimensional analysis ([3],[15]) relations between the equations governing the states of the model and prototype can be derived.

The stress and displacement at a point in the structure will depend upon the following factors:

1.) The geometry of the structure. The behavior of a point defined by the coordinates x, y, z can be described by a typical length dimension L and set of dimensionless ratios L_R relating all other

2.) Material properties: For example, for a linearly elastic isotropic material.

lengths to L.

 ρ = mass density of the material.

E = Young's modulus of the material.

V = Poisson's ratio of the material (dimensionless). Other material properties can be related to ρ and E by sets of dimensionless ratios $\rho_{\rm p}$, E_p.

3.) Applied stress conditions:

P = externally applied load.

Q = externally applied stress.

 u_{o} = externally induced displacement.

 $\sigma_0 =$ internal stress.

g = acceleration of gravity.

a = externally applied acceleration.

Other stress conditions are related to P, Q, u_0 , σ_0 , a by sets of dimensionless ratios P_R , Q_R , U_{OR} , σ_{OR} , a_R .

The behavior of a point x, y, z in the structure at time t is defined by a resulting stress σ and a resulting displacement u and depend upon the abovementioned parameters and dimensionless ratios.

The quantities σ , u, x, y, z, t, L, ρ , E, V, P, Q, σ_0 , u, g, a are all derived from the three fundamental units of force F, length L, and time T. The Poisson's ratio V is already dimensionless.

The dimensions of the listed parameters are given in Table A.1.

• 2 5.0	29	91	-
----------------	----	----	---

TA	ΒĽ	Е	A.	1

	σ	u	x	У	Z	t	L	ρ	E	١V	P	Q	σo	u _o	g	a
F	1	0	0	0	0	0	0	1		0	1	1	1	0	0	0
L	-2	1	1	1	1	0	۲Ч	-4	-2	0	0	-2	-2	1	1	1
Г	0	0	e	0	0	1	0	2	0	0	0	0	0	0	-2	2

The table consists of a matrix of rank 3. According to Buckingham's first theorem, one may obtain 16-3 = 13 dimensionless independent groups of parameters from those listed. Hock chooses the following:

 $\frac{\sigma L^2}{p}, \frac{u}{L}, \frac{x}{L}, \frac{y}{L}, \frac{z}{L}, \frac{t^2 a}{L}, \frac{EL^2}{p}, \frac{\sigma a L^3}{p}, \forall, \frac{a}{g}, \frac{\partial L^2}{p}, \frac{u_o}{L}, \frac{\sigma_o L^2}{p}$

It should be noted that other combinations than those listed above are possible. For this particular set, however, all other groups would be combinations of those listed.

Buckingham's second theorem (Buckingham's II Theorem) states that a dimensionally homogeneous equation (one which does not depend on the units of measurement) can be reduced to a relationship between a complete set of dimensionless products.

From Buckingham's II Theorem then the displacement u, and the stress σ at a point (x, y, z) can be expressed by the following dimensionless equations

$$\frac{\mathbf{u}}{\mathbf{L}} = \mathbf{F}\left(\frac{\mathbf{x}}{\mathbf{L}}, \frac{\mathbf{y}}{\mathbf{L}}, \frac{\mathbf{z}}{\mathbf{L}}, \frac{\mathbf{t}^{2}\mathbf{a}}{\mathbf{L}}, \frac{\mathbf{E}\mathbf{I}^{2}}{\mathbf{p}}, \frac{\mathbf{o}\mathbf{a}\mathbf{I}^{3}}{\mathbf{p}}, \mathbf{v}, \frac{\mathbf{a}}{\mathbf{g}}, \frac{\mathbf{O}\mathbf{I}^{2}}{\mathbf{p}}, \frac{\mathbf{O}\mathbf{I}^{2}}{\mathbf{p}}, \frac{\mathbf{u}_{0}\mathbf{c}}{\mathbf{p}}, \frac{\mathbf{\sigma}_{0}\mathbf{L}^{2}}{\mathbf{p}}, \mathbf{L}_{\mathrm{R}}, \mathbf{E}_{\mathrm{R}}, \mathbf{P}_{\mathrm{R}}, \mathbf{O}_{\mathrm{R}}, \mathbf{u}_{0\mathrm{R}}, \mathbf{\rho}_{\mathrm{R}}, \mathbf{\sigma}_{0\mathrm{R}}, \mathbf{a}_{\mathrm{R}}\right)$$
(A.1)
$$\frac{\mathbf{\sigma}\mathbf{L}^{2}}{\mathbf{p}} = \mathbf{G}\left(\frac{\mathbf{x}}{\mathbf{L}}, \frac{\mathbf{y}}{\mathbf{L}}, \dots, \mathbf{a}_{\mathrm{R}}\right)$$
(A.2)

in which F and G are undetermined functions. The parameter t is the dynamic time scale.

For the two systems, model and prototype to by physically similar, the functions F and G must be the same for each. Therefore, the following conditions of similitude are established.

The subscripts m and p will refer to model and prototype parameters respectively.

 Model similitude related to natural properties: Since Poisson's ratio is dimensionless, the model and prototype must have the same Poisson's ratio:

$$V_{\rm m} = V_{\rm p} \tag{A.3}$$

Combining the remaining natural properties E and ρ by dimensionless grouping:

$$\frac{\rho a L^3}{P} \cdot \frac{g}{E L^2} = \frac{\rho g L}{E}$$
(A.4)

- 292 -

$$\frac{\underline{\rho_m g_m L_m}}{\underline{E_m}} = \frac{\underline{\rho_p g_p L_p}}{\underline{E_p}}$$
(A.5)

or

$$\frac{L_p}{L_m} = \frac{E_p}{E_m} \frac{\rho_p}{\rho_m} \frac{g_m}{g_p}$$
(A.6)

If the model material is identical to the prototype material ($E_m = E_p; \rho_m = \rho_p; V_m = V_p$) and the model is subjected to an artificial acceleration N [•] g (N is the scale factor) then:

$$\frac{L_p}{L_m} = \frac{g_m}{g_p} = \frac{Ng}{g} = N$$
(A.7)

It can be thus seen that by use of the centrifuge, scale models manufactured of the prototype material are suitable.
2.) Model similitude in relation to applied stresses: Applied stresses are defined by the parameters P, Q, σ₀, u₀ and a and appear in the dimensionless groups:

$$\frac{t^2 a}{L}, \frac{EL^2}{P}, \frac{\rho a L^3}{P}, \frac{a}{g}, \frac{QL^2}{P}, \frac{u}{L}, \frac{\sigma_0 L^2}{P}$$

Taking the grouping:

$$\frac{Q}{E} = \frac{\Omega L^2}{P} \cdot \frac{P}{EL^2}$$

(A.8)

Therefore:

$$\frac{\frac{Q_m}{Q_p}}{\frac{Q_p}{p}} = \frac{\frac{E_m}{E}}{p}$$
(A.9)

also:

$$\frac{P_{m}}{E_{m}L_{m}^{2}} = \frac{P_{p}}{E_{p}L_{p}^{2}} \text{ or } \frac{P_{m}}{P_{p}} = \frac{E_{m}L_{m}^{2}}{E_{p}L_{p}^{2}}$$
(A.10)

From the grouping:

$$\frac{\sigma_{o}}{E} = \frac{\sigma_{o}L^{2}}{P} \cdot \frac{P}{EL^{2}}$$
(A.11)

Therefore:

$$\frac{\sigma_{\rm om}}{\sigma_{\rm op}} = \frac{E_{\rm m}}{E_{\rm p}}$$
(A.12)

Displacements are scaled directly by:

$$\frac{u_{om}}{u_{op}} = \frac{L_m}{L_p}$$
(A.13)

Inertia and gravity forces in the model and the prototype are

characterized by the dimensionless groups $\frac{\rho_{al}}{P}^{3}$ and $\frac{a}{g}$ which were already used in deriving expression (A.4).

Finally, dynamic or inertial forces involve a time scale which can be derived from the grouping:

$$\frac{t^2 E}{L^2 \rho} = \frac{t^2 a}{L} \cdot \frac{P}{\rho a L^3} \cdot \frac{EL^2}{P}$$
(A.14)

$$\frac{\mathbf{t}_{\mathrm{m}}}{\mathbf{t}_{\mathrm{p}}} = \begin{pmatrix} \rho_{\mathrm{m}} & E_{\mathrm{p}} \\ \rho_{\mathrm{p}} & E_{\mathrm{m}} \end{pmatrix}^{1/2} \frac{L_{\mathrm{m}}}{L} \\ p \qquad (A.15)$$

Using a centrifuge model made of the same material as the prototype ($E_m = E_p$; $\rho_m = \rho_p$; $V_m = V_p$) and subjecting it to the centrifuge artificial gravitational acceleration N \cdot g (A.7).

- (A.9) reduces to: $Q_m = Q_p$ (A.16)
- (A.10) reduces to: $\frac{P_m}{P} = \frac{1}{N^2}$ (A.17)
- (A.12) reduces to: $\sigma_{om} = \sigma_{op}$ (A.18)
- (A.13) reduces to: $\frac{u_{op}}{u_{om}} = N$ (A.19)

(A.15) reduces to:
$$\frac{t_p}{t_m} = N$$
 (A.20)

One can clearly see the convenience of centrifuge modelling. From (A.16), (A.18) and the fact that $E_p = E_m$ can also note that the strains in the model and prototype are identical. In the event that the soil behavior exhibits its usual nonlinearity, the same considerations hold, if prototype and model soils are the same.

In the experiments, it was necessary to model reinforced concrete walls by means of aluminum. The stiffness of the wall EI is modelled as follows. The dimensions of EI are FL (actually $FL^{2}L^{-1}$). It has been shown, by equation (A.17) that force scales as N², and length of course, scales as N, so that the EI of the

model must be equal to $1/N^3$ the EI of the prototype. For a given, but arbitrary design of a prototype reinforced concrete wall, the EI can be calculated. In the model, the E of the aluminum is known, and the wall thickness can therefore be selected to produce the appropriate, scaled value of EI.

The yield characteristics of the wall itself were not modelled. In the prototype, yield would be indicated by the creation of a plastic hinge at the point of maximum moment, i.e., at the base of the stem. In order to model this, a notch or groove would have to be cut along the base of the model to a point so that the stem would fail easily at that point and thus simulate the plastic hinge.

Consolidation time scale (Rowe [46]):

In the study of liquefaction, the time rate of flow of water from the soil is considered in comparison with the rate at which pore pressures are generated. The consolidation process thus requires consolidation time scaling.

The time factor T of consolidation is defined by:

$$T = \frac{C_v t_c}{(nH)^2}$$
 (A.21)

- 296 -

where

 $\mathbf{c}_{\mathbf{v}}$ is the coefficient of consolidation

t_c is consolidation time

H is the height of the stratum to be drained

n is the number of drainage boundaries (1 or 2)

It is required that $T_m = T_p$. If the soil materials are identical then:

$$\frac{C_{v} t_{c}m}{n^{2} H_{m}^{2}} = \frac{C_{v} t_{c}p}{n^{2} H_{p}^{2}}$$
(A.22)

since

$$\frac{H}{H} = \frac{1}{N}$$

then

$$\frac{t_c^m}{t_c^m} = \frac{1}{\sqrt{2}}$$

(A.23)

which establishes the consolidation time scale.

APPENDIX B

WALL PROGRAM LISTING

Following is a listing of the data processing program WALL described in Section 4.2. The following subroutines were developed:

MAIN(program)	DIGIT	PAPRNT
ALGEQN	INTEG	PRESS
APLOT	MAP	QUINT
BASCOR	MAXARR	SHEAR
BIGMAX	MOMENT	SPLINE
CRUNCH	PAGE	SUBU
DERIV	PAPLOT	YDISP

The following called subroutines are system subroutines of the IBM 370/3032 system at the Booth Computing Center of Caltech.

EQSOV - System of equations solving routine.

LSQUAR - Polynomial least-squares fitting routine.

SYSSYM* - Symbol plotting routine.

VLABEL* - Axis/axis label plotting routine.

XYPLOT* - Line plotting routine.

XYPLT* - Point Plotting routine.

*Calcomp plotter.

- 299 -

MAIN

С	MAIN PROGRAM
(经此时保持投资 法保证
C	FFECERAM TO DETERMINE PARAMETERS OF MODEL AND PHOTOTYPE
C	RETAINING STRUCTURES EASED ON CENTRIFUGE EXPERIMENTS
C	
	CCMMCN/FED/4(1502,12),T(1502),AX(112),BX(112),CALI(15,2),X(10), X TCALI,ITM,NT,NA,NPCLY,NS2,NINT,F,ELM,FTM,AGS,GAMMAM, X NTYPE,FIM,NC,XP(S)
()))	CCHMEN/GFEEN/CMAX(2),CMIN(2),IPLTCD
6003	CCMMEN/ELACK/DIS(1502,3)
((64	(CAMCN/FINK/AL(1502), A2(1502)
(((5	CCMMEN/CHANCE/ICFI, ICPF, ECII, ECIF, NC
0006	
	LINENSIUN LISI(2,3)
	PLAN IN LEFT HELEFT (HELE) AND THE THE CARBON PROVENESS AND A THE ATMENT
	READ 102 SUPELASSUSEERSENTSTERSUPPASTELESSNASTELESSNASTELESSNASTEL
	PCZ-1.3P312
6612	FEAD 100 VACUUST24N022
(613	
(C14	1F (NEB • F • 1) NPE= 2
0015	$FEAU = 1(2 \cdot (xF(1) \cdot I = 2 \cdot NFF))$
С	
C	CNEGA = REN AT WHICH CENTRIFUCE CPERATES
C	SC = DISTANCE FROM AXIS OF CONTRIFUCE FOTATION TO TOP OF MUDDL
C	NALL (IN)
C	EIN = EI (F - MCDEL WALL (LE-IN + 2/IN))
C	FIN = FEICHT OF MODEL WALL (IN).
C C	FIM = FUNCAMENTAL FREGUENCY OF MODEL VALL (HZ)
C	CANYA = UNIT KEIGHT OF PROTOTYPE (AND MODEL) SOLL AT 16 (POF).
Ĺ	NECLY = LECER OF PULLYNERIAL DESIRED FLP LEAST-SCUARES FIT DE DATA
Ĺ	MUST EE GE-3 AND LE-(NSF4+1)
Ĺ	NS44 = NUMBER OF STRAIN GALE LUCATIONS AT THE UNITER OF MUDEL
Ĺ	NALL LYERILAL AZISI Niny - Nines de dechier internale dos leite lestints are l'anter
C C	ATON: THE WALL
C C	ALCOS (I = APEC
c C	NIVEF CANTILEVER WALL
Č	
Č	(1) = 1C(ATIENS CF STRAIN CAGES FREM TEF TC PETTEM
č	NC = NUMBER OF PRESSURE TRANSDUCERS
. Č	YP(1) = LECATIENS OF FRESSURE TRANSDUCERS FROM TOP TO BETTEM
C	
CCIE	N \$ 2 = N \$ 2 + 1
6617	>(1)=0.€
0018	x (NS2)=+1M
CC19 .	$NSF4\Delta = NS2$
1020	NFR=NFR+1
(C21	XP(1)=C.C
0022	x+{V+x}=+1x
Ĺ	CORENTAE CONVERTATIONAL ACCENEENTICS (ACC)
L r	LEILPRINE UNFFITHEILINE PULLLUNHILN (PUD)
0023	$k = \{0 + (k + 1) + 1 > 0\}$
0024	AG5=C.COCC28354*R*(CAECA**2)
-	

- 300 -

```
MAIN
```

	C
e e	$\Delta N I N I = F I \Gamma \Delta Y (N I N Y)$
	FET N/ANINT
1.1.27	
6628	
1025	
0030	
6631	$10 z \neq (1) = a \times (1 - 1) + F$
0032	
6633	$11 E \times (1) = -A \times (1) / H M$
0(34	E I = E I M * A G S # * 3
1635	F T = HIM # AGS
しくまた	F1=F1W/AGS
6137	GAP VAN=GAP NA* AGS
((3e	EAMMA=GAMMA/1728.0
6035	CAFFAh = GAFFAh / 1728.0
	C
0C4C	CALL EIGIT
• • •	C
(14)	N1N11=N1N1-3
1147	$CAFFAI = GAFFAF \neq 1728.0$
	$G \Delta F \forall A 2 = S \Delta F \forall \Delta \Rightarrow 1.72 E = 0$
0.045	PEINT 200
6445	PRINT 202.EMEGA.SO.R.AGS.HTM.HT.FIM.FI.FIM.FI.CAMMAL.GAMMA2.
6640	YNDELY NINTTINA N SDALNG
((4)	
6648	
((4)	
((5))	$LL \ge 0$ $J = I + I A$
6651	20 + (1, J) = - + (1, J) = - + (1, J) = - + - + - + - + - + - + - + - + - + -
	C
LCE2	21 DG 22 I=1,NS2
6653	22 X(I)=X(I)/FTM
C (54	IF(NA.EC.C)GC TC 24
0655	PRINT 203
uist	EC 23 I=1, NA
6657	$23 \text{ PRINT } 204 \cdot 1 \cdot (CALI(I, J) \cdot J = 1 \cdot 2)$
CCie	24 FRINT 205
6699	EC 25 1=1+NSF4
Cici	K = I + NA
CCEL	t = 1 + 1
0162	25 PKINT 236,1,(CALI(K,J),J=1,2),X(L)
0(73	EC_{26} I=1,NSR4A
0CC3	$26 \times (1) = \times (1) = 1$
0004	C
6615	IF(NS-NE-0)GC IC 61
	27 1 FEAN - FE-0 16F TO 29
1125	$ \begin{array}{c} \nabla - \nabla + \nabla +$
11/1	
	ZY FRINT ZUDITURLI
	L LMINIII, CMAXIII / ITI ELLATION ITZ TIME

- 301 -

MAIN

	C C		IFLICE = 'TIME PLOT CODE IFLICE = C FIRST 20% OF TIME FLOT IS AMPLIFIED
	C		IPLTCD = 1 REGULAR LINEAR TIME PLCT
0072	` ~		READ 105+CMIN(1)+CMAX(1)+CMIN(2)+CMAX(2)+IFLTCE
	(CALL MENENT
0073			IF INC.NE.01GC TO 70
CC 14 CC 75			
((1)	C		CALC FREES
0176 ·	ſ	30	IF(NA.EC.0)GC 1C 37
	č		FIND DISFLACEMENTS BY INTEGRATING ACCELEFCHETER RECORDS
	Č		THERE IS A EASELINE CORRECTION OF THE AUGELEROGRAPHS
1177	t		FISI(1.1)=1(FI
LC78			EIS1(2,1) = TCFF
6675			EISI(1,2)=ECII
((£C			LIS1(2,2)=EETF
LLE1			DIS1(1,3)=0.0
0.022			$E_1S_1(2,3) = C_1C_1$
C(23)		51	LL SI JEINA CALL EASCELL
0015		- 1	
CCEE			
CCE7		32	41(1) = 4(1, J)
C (Ε Ε΄			CALL INTEG(ITM, T, A1, A2, O)
C(25			(ALL INTEG(1)*, T, A2, A1, C)
			C(C(C = (L1S1(2 + J) + C1S1(1 + J) + A1(1) + A1(11M))/(1(11M) - 1(11))
((5)			LLLL=UISI(1+0)*AI(1)*UUU(*)(1) FF 33 1=1.1TW
0102		22	$\Gamma [S(1, 1) = \Delta] (1) + (CC(*T(1) + CEEF))$
6654		34	CENTINUÉ
	C		
((;;			IFINA.NE.1)UE TO BE
6650			
		24	
1100		22	
	C	* `	
0100		37	CALL YEISP
0101	· ·		IF (NA.EG.D)LC TC 39
0102			CC 3E I=1,ITM
0103			EC 38 J=1,NA
C1(4			f(I,J) = A(I,J) / (AGS + 3E6.22)
0105		38	$DIS(\mathbf{I}, \mathbf{J}) = DIS(\mathbf{I}, \mathbf{J}) / FTM$
0102		25	LL 441 1=1911M 3/3)-7/1)+5)K
0111	C	40	
	č		FLET AND PRINT OUT ACCELEREGRAPH AND DISPLACEMENT RECORDS
CICE	-		IF(NA.EG.D)CC TC 47
0105			CALL AFLET
C 1 1 C			CC 46 N=1,30

```
MAIN
```

0111	PEINT 200
6112	FFINI 210
£113	L=N*50
C114	EC 45 J=1,5C
0115	i = (1 - 50) + 3
C116	IF (1.GT.ITM) GC 1C 47
0117	IF (NA . EC . 1) GC TC 44
0118	IF (NA · EG · 2) CC TC 43
C115	FFINT 211,1,1(1),A(1,1),CIS(1,1),A(1,2),CIS(1,2),A(1,3),CIS(1,3)
ŭ120	6C TC 45
0121	43 FFINT 212,1,T(1),A(1,1),EIS(1,1),A(1,2),EIS(1,2)
C122	GC TC 45
u123	44 FFINT 213,1,T(1),A(1,1),CIS(1,1)
0124	45 CCNTINUE
C125	46 CENTINUE
C12c	47 CENTINUE
0127	
	C
0128	ϵ_1 CC ϵ_4 $i=1, \text{NFF}$
C125	$\epsilon_4 \rightarrow \epsilon_{(1)} = \lambda \epsilon_{(1)} + \tau_M$
6120	FKINI 20S
C131	
C132	£ / + 1 = +
C133	L = 1 + 1
0134	66 FFINT 206+1+(CALI(K+J)+J=1+2)+XP(L)
0135	$EC \in 7$ I=1,NFF
0136	67 >P(1)=XF(1)*+TM
0127	GC 1C 27
	C C
C138	7C CALL FRESS
C135	CALL SEEAF
0140	CALL MEMENT
0141	GC 1C 30
0142	17 (LNTINGE
01/2	
0143	
6144	
1145	
0140	
0147	
.148	
0140	2 () Τ(ΓΥΥ)(1ΤΙ) Ομι Ι(ΓΥΛ)(ΟΥ) (ΑΛΔ. /. ΟΥ.)ΑΛΔ. /. ΟΥ.)ΑΛΔ. /. ΟΥ. "ΦΑΣΑ ΔΕΣΕΣΕΣΕΣΕΣΕΣΕΣΕΣΕΣΕΣΕΣΕΣΕΣΕΣΕΣΕΣΕΣ
C149	2311 1 [[] / / 1 [] / / 1 [] / / 1 [] / / 1] / / / / / / / / / / / / / / /
6146	202 From 113.13 From 12.13 From
5 L L L L S	x_1, y_2 or is taken for the form of x_1, y_2 or x_1, y_2 or x_2, y_3
	XALX. TELETANCE FREM CENTRIENCE AXIS TO MICCUE DE MALL=1.E4.2.1X.
	XINCHESI.
	X/.1X. * CFAVITATIONAL ACCELERATION AT MIDDLE OF WALL=*.F9.2.1>.
	× G - S * • / / •
	X/, IX, "MCEEL FALL FEIGHT=",FIS.2,1>,"INCHES",I5X,"FROTOTYPE HALL FE
	x1GFT=*,F19.2,1X,*INCFES*,
	X/,1X, */CEEL FALL EI=*,F23,2,1X,*LE-IN**2/IN*,10X,*PRCTGTYPE ALL E
	x1=*,F23.2,1X,*L8-IN++2/IN*,

MAIN

,

	<pre>X/,1X,*MEDEL FUNDAMENTAL FRECLENCY=*,F5.2,1X,*FEKTZ*,16X,*PRETLIMPE X FUNEAMENTAL FRECUENCY=*,F9.2,1X,*FERTZ*, >/,1X,*CENSITY CF MEDEL SCIL=*,F15.2,1X,*FCF*,18X, *DENSITY CF PRET XCTYPE SCIL=*,F15.2,1X,*PCF*,//, >/,1X,*CFCLF CF PCLYNC#IAL IN LEAST-SCUARES FIT=*,15X,12, X/,1X,*NLMBER OF PCINTS AT WHICH DATA EVALUATION TAKES PLACE=*,I4, X//,*1X,*NLMBER CF ACCELEFCMETERS=*,I3, X/,1X,*NLMBER CF STRAIN GACES=*,I3, X/,1X,*NLMBER CF PRESSIEF GACES=*,I3)</pre>
0151	203 FCFMAT(//,1X,*CALIERATICN FACTORS CF TRANSDUCERS*, x/,1X,***********************************
(152	204 E(hMAT((x, 12, 2x, 2E2C, 3)
C153	205 FCFMAT(/,1X,*STFAIN CAGE*,13X,*SLCPE*,5X,*Y-INTERCEPT*, >12>,*LCCATION*,
	x /,1x, f,1,13x, ff, 5x, ff, x12x, ff)
0154	2C6 FCFMAT(6),12,2X,3E2C.3)
6155	2C7 FCFMAT(/,1X,* DELTA PEAM*,13X,*SLCPE*,5X,*Y-INTEFCEPT*, X /,1X,*
0156	2(& F(FMAI(/,1X,*)IME CALLERATION SCALE=*,E10,3)
£157	205 FEENAT(/.1x. PRESSURE (ACE'.11x. SICPE'.5x. Y-INTERCEPT'.
	<pre>>12>,*LECATION*,</pre>
C 15 £	<pre>21J FCFMAT(21X,*ACCELERCMETER NC.1 (TCP CF WALL)*,</pre>
	x1x, *
C155 C16C G161 G162	<pre>x*) 211 FCFMAT(1x,14,E13.3,6E15.3) 212 FLFMAT(1x,14,E13.3,4E15.3) 213 FCFMAT(1x,14,E13.3,2E15.3) 214 FCFMAT(1x,*NLMBER CF TIME STEPS=*,17,/)</pre>
0163 6164	

616

••	304	-
----	-----	---

ALGEGN

0001 SUERCUTINE ALGEGN (N, A, E, Y) C C SUBROUTINE CALLED IN SPLINE C CINENSICN 4(1500,3),U(1500,3),U(1500,3),E(1),Y(1) 6002 ε 6003 L(1,2) = L(1,2)(((4 L(1,3)=A(1,3) eurs. $\tilde{Y}(1) = E(1)$ 6006 DL 23 1=2.N I1=I-1 CC7 3373 [(1.2)=1.7 (((\$ L(1, 2) = A(1, 3)1010 $E(1,1) = \Delta(1,1) / \cup (11,2)$ ((11 L(1,2)=A(1,2)+D(1,1)*U(11,3) €€12 IF (ABS(L(I,2)).LT.1.0E-CS)GC TC 35 ((13 23 CENTINUE 6.14 23 Y(1) = E(1) - E(1, 1) * Y(11)Y(N) = Y(N)/U(N,2)0615 ([]) 1=1 1017 25 Il=I-1 Y(11) = (Y(11) - U(11, E) + Y(1)) / U(11, 2)601ê ((15 I = I - 10620 - IF(I.EL.1)GC TO 31 0021 CC 1C 25 1622 31 KEILEN 35 FFIN1 107 ((23 C 1124 107 FLEMAT(775X*7 IS A MATKIX SHICH REQUIRE PINCTING CR IS SINGULAR'). C 6625 FETUEN ((26 5 A B

	. APLC1
0001	SLERCUTINE AFLCT
	(
	C SUERCUTINE TE PLET ACCELEREGRAPHS AND CURRESPONDING DISPLACEMENTS C
0CC2	CCFMCN/FEC/A(15C2,12),T(15C2),AX(112),BX(112),CALI(15,2),X(10), X TCALI,ITM,NT,NA,NPCLY,NS2,NINT,F,EIM,FTM,AGS,GAMMAM, X NTYPE,FIM,NC,XF(5)
6003	(EMMCN/BLACK/DIS(1502,3)
(((4 ((5)))) (((5)))	CCFPCN/FIPR/FICISC2)+F2(1502) CCFPCN/GFAY/TITLE1(16),TITLE2(16) EIFENSICN F4(2),F0(2),CC(3),AMXX(3),CMXX(3),MAXX(3),MDXX(3), X FF(1),E00(1)
	$C \qquad A M I N = - A M A X C \qquad N M I N = - Y M A X C \qquad N M I N = X M A X C \qquad N M I N = X M A X C \qquad N M A X $
ι ίι7	READ 270, TMIN, TMAX, ANIN, AMAX, YMIN, YMAX
ίιε	EC 105 J=1,NA
ししじっ	$\frac{1}{10} = \frac{104}{10} = \frac{1}{10} = \frac{1}{10$
0011	$104 \ A2(1)=D1S(1,J)$
(012	(ALL EIGHAX(A1,ITM,AMXX(J),MAXX(J))
0013	1(5 CALL EIGMAX(A2+1TM, CMXX(J), MCXX(J))
6314	(1) TT= (AES(TMAX-TMIN))/E)
0015	CINTA=(AES(AFAX+/FIN))/2.5
6.01t 56.17	(INIY=(AES(YMAX=YMIN))/2.5
0016	TPT = + 1 + 7 5 + 0 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
(())	$Lhh=-f_{2}^{2}$
1120	4+>= 3.75*CINTA
UCZ1	YFN=-2.75+CINTY
1 622	$Y H X = 7.25 \pm C I N T Y$
((23	CC 125 I=1+3
01.24	125 E(C(1)=0.0
1624	$(k = 1_0)$
Lize	$EC = 1 \pm 0$, $I = 1 + NA$
1627	(ALL VLABEL(1.75,1.5,TNIN,TMAX,8.0,K,*TIME (T*F1)*,12,0,*(F4.1)*)
(625	(ALL SYSSYM(2.75,4.275,C.1,TITLE1,72,C.0)
1625	CALL SYSSYM (2.75,4.125,0.1+TITLE2,72,0.0)
6630	IF(I.NE.1)GE TC 131
0(31	(ALL VLAEEL(1.75,5.0,TMIN,TMAX,8.0,K,"ACCELERCAETER N.1. (TOP CF xhall)",33.0,"(F4.1)",4)
6632	131 CENTINUE
C (3 3	IF (I.NE.2) GC TC 132
0034	CALL VLAEEL(1.75,5.C,TMIN,TMAX,8.D,K,*ACCELERCHETER NC.2 (MCTTCM XCF WALL)*,36,0,*(F4.1)*,4)
0035	132 CENTINUE
6636	IF(1.NE.2)GL TO 133
C(37	(ALL VLAEEL(1.75,5.0.TMIN,TMAX,8.0,K,"ALLELERLMETER NC.3 (INTE A.
6638	メビレビオ * g ごく g ひ g * しだ 4 g エ J * g 4 J 1 みる - ビビトズ 1 Kl テ
1 1 1 1 1 1	

Α	F	L	£	٢	
-		-			

.

0039		(ALL VLABEL(1.75,1.5,YMIN,YMAX,2.5,2,"EISP (Y/H)",11,1,
		x*(f5.2)*,5)
1640		LALL VLAEEL(1.75,5.0,AMIN,AMAX,2.5,4. ALLEL (A/C)*,12,1,
		X*(F4+1)*+4)
	C	
0641		CALL PAGE
((42		LAE=0
6643		AA(1)=1.75
11644		27.2=(2) 44
6645		EE(1)=2.75
1646		EE(2)=2.75
UC47		(ALL XYPLET(2,A4,88,6.0,15.0,0.0,10.0,DC(,LAE)
0.:48		$F + \{1\} = 4 - C$
6646		$F \in \{1,2\} = 4 - C$
111.40		[A] XYELSI (2.44.88.0.0.15.0.0.0.10.0.0.(.148)
1 (4)		$FF(1) = f \cdot 2f$
0.052		FF(7)=4-05
0012		
1022		τριτική τροποιούματα τη του
1014		
11:55		EE(2)=7.5
1020		CALE ATTELTIZIAA EESUNCIIJINNU UNITUUNULULULULULULULULULULULULULULULULULUL
((5)		$FF(1) = 5 \cdot 15$
6058		$t \ge (1) = 1.5$
C C E S		EE(2)=4.C
0060		(ALL XYFLE7(2,AA,EE,C.C.15.0,C.0,16.0,DLC.4AH)
((€1		EE(1)=5+0
LCE2		Et (2)=7.5
υσεβ		EALL XYPEET(2,AA,BE,0.C,15.0,0.0,10.C,DEC,LAE)
	C	
6664		EC 136 J=1+11M
CC(5		(1, 1) ↓ = (1, 1)
1066	. 1:	$t = t^2(J) = L^2(J, I)$
C C E 7		$\Delta \Delta \Delta = (1) = \Delta N \rightarrow (1)$
6668		$E \in E(1) = T(P \Delta x X(1))$
CLES		CALL XYFLT(1, 2000, AAA, TMN, TMX, AMN, AMX, CCC, LAB, 1)
0170		$(\mathbf{i}) \times \times \mathbf{i} = (\mathbf{j}) \times \mathbf{i} \times \mathbf{i}$
0771		P[E(1)=T(NCXX(1))
0112		CALL XYEL1(1-FEP-AAA.INN *THX *YMN *YMX *FCC *LAB*1)
1172		CALL XYPICIALTY, T.AI, THA, INX, ANN, APX, ECC, LAG
6675		
((74		ιμισι τ ι κισιτι το τιστικό το κατά το κατά το κατά το κατά το τη κατά το τη από τη από τη από τη από τη από τη από τη
	,	CALE ATTECTIVE TO TARA TO ATTECT ATTECT
4670	- 10	COLUMPTINCE
6.55	С	2.) EFEWAY14E10 ()
(())	<i>c ć</i>	IU FURTHISCFLUBUE
11	L	F F 3 1 F 6
((/2		
6675		thu .

69574	3	0	1	

EASCCR

6661	SLERCUTINE EASCOR(J)
	(
	C SUFRICITINE TO CORRECT ACCELERIGRAPHS WITH RESPECT TO THE BASELINE
	C
01002	CCFMEN/FEC/4(1502,12),7(1502),AX(112),EX(112),CALI(15,2),X(10),
	X TCALI, ITM, NT, NA, NPCLY, NS2, NINT, F, ELM, HTM, AGS, GAMMAN,
	X NIYPE • F 1 M • N G • X P (S)
6063	CENMEN/BLACK/BIS(1502,3)
CLC4	$REAL \neq \varepsilon$ STCF (2,7)
CCIE	EIFENSICN EATA(2,1502), C(2)
LILE	EGUIVALENCE (CIS, CATA)
	C
LLET	IF(J.GT.1)GC TC 44C
6(10	LC 436 I=1,11M
LICS	426 [ATA(3,1)=1.C
(61)	$441 \text{ EC} 444 \mathbf{l} = 1_{\mathbf{p}} \mathbf{IT} \mathbf{M} \qquad \qquad \mathbf{k} = 1_{\mathbf{p}} \mathbf{IT} \mathbf{M} $
(311	[L]] [L]]]]]]]]]]]]]]
1012	444 [A] (2, I) = A(I, J)
6613	CF1SC=0.0
	C
uu:14	CALL LSGUAR (DATA, ITM, 2, C, CHISC, SICK)
	C
0015	L(-446)I=1,ITM
Cult	44c ℓ(],j]= ^([,j]) - (((]) + ((2) * T(]))
	C
CC17	RETURN 1 March
6615	END

007

- 308 -

BICMAX

C SUBREUTINE TE PICK OUT LARGEST VALUE OF A ONE DIMENSIONAL AFRAY A(K) C DIMENSION A(1) C C C C C C C C C C C C C C C C C C C
C SUBROUTINE TO PICK OUT LARGEST VALUE OF A ONE DIMENSIONAL AFRAY A(K) C DIMENSION A(1) C C U(13 AMAX=C.C UC64 DC 770 I=1.K C(15 IF(AES(A(1)).GT.ABS(AMAX))GO TO 765 CCCC GC TO 77C UC17 765 AFAX=A(1) C(C2 IF(AES(A(1)).F
C CCO2 C C C C C C C C C C C C C
CC02 DIMENSION A(1) C C LC3 AMAX=C+C LC64 DC 770 I=1+K CLC5 IF (AES(A(1))+GT+AES(AMAX))G0 TC 765 CCC4 GC TC 77C UCC7 765 AMAX=A(1) CC6 TC C(ATATA) F
C LLT3 AMAX=C.C LCG4 DC 770 I=1.K CLC5 IF(AES(A(I)).GT.ABS(AMAX))G0 TC 765 CCLC C TC 77C UCL7 765 AMAX=A(I) CLC2 KMAX=I CLC5 37C CLAINEE
L(13 AMAX=C.C LC64 DC 770 I=1.K CIC5 IF(AES(A(I)).GT.AES(AMAX))GG TC 765 CCC6 GC TC 77C UC17 765 AMAX=A(I) CCC8 KMAX=I CCC6 370 C(AIIN) E
LC64 DE 770 l=1,k CLC5 IF(AES(A(1)).GT.AES(AMAX))GD TC 765 CCC6 GC TC 77C UCC7 765 AFAX=A(1) CCC8 KMAX=I CCC6 370 C(A) IN F
CI(15) IF(AES(A(1)).GT.AES(AMAX))GG_TC_765 GC(c) GC TC_77C UC(7) 765 AFAX=A(1) CC(2) KMAX=I C(C2) 370 C(A) IN F
CCCC GC TC 77C UCL7 765 #FAX=A(1) CCC2 KMAX=I CCC2 77C C(A) IN F
UCL7 765 APAX=A(1) CCC9 KPAX=I CCC5 320 C(A) IN F
C
CR10 FEILRN
LCII END

- 309 -

CRUNCH

0 C C 1	SUERCUTINE CRUNCH
	(
	C
	C FLUTTING AND CUTFUT
	C PARAMETERS CHOSEN ARE STATIC, MAXIMUM DYNAMIC, AND FINAL STATIC
	C
002	CENMEN/FEC/A(1502,12),T(1502),AX(112),EX(112),CALI(15,2),X(10),
	X TEALI, ITM, NT, NA, NPELY, NS2, NINT, F, EIM, FTM, AGS, GAMMAN,
	X NIYPE,FIM,NG,XF(S)
0003	<pre>- CENMEN/BLUE/x1(112),x2(112),X3(112),TT(1502),XX(1502,112),XM(1),</pre>
	> YM(1), TF(1), ITFA>, IXFAX
	C
,	C FIND MAXIMUM PARAMETER AND CERKESPENDING TIME AND LECATION
	C
() (4	5-111A
1115	EALL MAXAFF(XX,ITM,NINTT,XXMAX,ITMAX,IXMAX)
	C
ICUE	EC = 14.0 = I + N I N T
6667	>1(I)=>×(I,I)
UCUE	X2(1)=XX(11M4X,1)
LICS	14) Y2(1)=XX(11+,1)
(010	メト (1) = メメナムメ
0011	YF(1)=-AX(1XMAX)/HTM
ē(12	$1 \wedge (1) = 1 (1 \wedge \Delta) + \mathbf{f} 1^{\vee}$
6(13	EE 141、1=1,IT格
1014	$1 \rightarrow 1$ $T = x \times (1, 1 \times 2 \times 3)$
	C
6615	FETURN
((1))	ENE

((()		SLERCUTINE DEPIV(N,F,Y,CY)
	C	
	ć	SUPERITINE TO NUMERICALLY EXPERIENTIATE & SET OF N POINTS (1.1)
	Ż	$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$
	C	COING A AIF UNDER FINITE EIFFERENDE SUFEFE
	Ĺ	
6662 - C		EINENSICN Y(1), CY(1)
	С	
(((3		N=N-2
[[[4		f(2) = 1 + 2
(((+		$2 \cdot [Y(1) = (-50, 0 \times Y(1) + 56, 0 \times Y(1 + 1) - 72, 0 \times Y(1 + 2) + 32, 0 \times Y(1 + 3) - 6, 0 \times Y(1 + 4))/$

llle		
<i>LL</i> []		4 LY(1)=(Y(1~2)-6.0*Y(1+1)+3.0*Y(1+1)-Y(1*2))/(12.0*F)
6668		N = N + 2
LLES		N = N - 1
0010		$EL \in I = K \cdot N$
6611		6 [Y(1)=(5(C*Y(1)+SL_(C*Y(1-1)+72,C*Y(1-2)+32,C*Y(1-3)+6, 3*Y(1-4))/
		>{24.0*+}
	ſ	
6612		6 E 7 1) G N
1114		
L(12		CP L

DEFIV

CCC1 SLEFCUTINE EIGIT С SLERCUTINE TO READ AND SCALE VALUES FROM THE DIGITIZER (FORMAT(1018)) C C CCC2 (LANCA/RED/A(1502,12),T(1502),AX(112),EX(112),CALI(15,2),X(10), X ICALI, ITM, NT, NA, NPCLY, NS2, NINT, H, EIM, HTM, AGS, GAMMAN, × NTYPE, FIM, NG, XP(S) 6003 CCMMEN/BLUE/X1(112), X2(112), X3(112), TT(1502), XX(1502,112), XM(1), X YM(1),TM(1),ITMAX,IXMAX 1.6(4 - CENMEN/FINK/A1(1502), A2(1502) CC+MCN/CFANGE/ICPI.ICPF.ECII.ECIF.NC CCC5 LLLE FEAL*8 SICH(2,7) 11(7 EINENSIGN 14(1502,12), IT(1502), IXEASE(21), IYEASE(21), XBASE(21), X YEASE(21), EATA(3,21), C(2), TMAX(12), ITMM(12), ICHECK(12) LLLS EGUIVALENCE (IA, 4), (IT, T), (IXEASE, XBASE), (IYEASE, YEASE) C (NA=NUMBER OF ACCELEREMETERS (UP TO 3) C NC=NLHEER OF CANTILEVER DISPLACEMENT TRANSDUCERS (UP 10 2) С NF=NUMBER OF PRESSURE TRANSDUCERS NT=NUMBER OF TRACES EICITIZED (UP TO 12)=ACCELFROMETERS + STRAIN GAGES Ú С * PRESSURE TRANSDUCERS С (ALI(I,J)=CALIBRATICN FACTORS FOR EACH TRACE Ċ (ALI(1.1)=SLOPE OF CALIBRATION ι LALI(1,2)=Y-INTERCEPT OF CALIERATION C Y=CALI(I,1) # X+CALI(I,2) 4(1,J) IS THE AHRAY OF DIGITIZED POINTS С С TOALISTIME CALIMENTICN SCALE C CUS READ SHI.NA.NS.NP.NC 0010 NT=NA+NS+NF ((1) N=NT+NC CC12 READ 502,((CALI(1,J),J=1,2),I=1,N),T(ALI С £ SET UP DIGITIZER COCHDINATES WITH FIXED TRACE С (013 DC 305 J=1,5 1014 11=(5+j)-4 CC15 12=11+4 6616 RE40 503,((IXEASE(I),IYEASE(I)),I=11,I2) 1017 DC 302 K=11,12 6618 IF(IXEASE(K).EC.555555)00 TC 306 6119 XEASE(K)=FLC4T(IXEASE(K)) CCZU 302 YEASE(K)=FLCAT(IYEASE(K)) 305 CENTINE ((2) C(22 306 **=K-1 0023 DC 307 1=1,KK UCZA $EATA(1,1) = \times EASE(1)$ 6025 LATA(2,I) = YEASE(I)1:026 3.1=1.C [ATA(3,I)=1.C 6.427 CHISG=C.C £ 6622 CALL LSGLAR(EATA, KK, 2, CHISC, STCR) ٢ C(25 $4C = XE \neq SE(1)$ CCEO $EL = C(1) + (x \in A \leq E(1) \neq C(2))$ 6631 (C=XEASE(KK)

- 311 -

EIGI1

- 312 -

61611

0032			DC=C(1)+(XEASE(KK)+C(2))
((33			+ YFC=((CC-AC)**2)*((EC-EC)**2)
0034			HYTC=SCKT(HYPO)
1025			SINN=(DC+EC)/HYPC
0036			$C(S_{N}=(C(-A()/HYPC))$
	C C C		FEAD IN DICITIZED TRACES
(C37		-	DC_3EC_J=1,N3
6638			EE 311 K=1,300
6(35			I = (5 + K) - 4
1040 100			
0041			▶ L F U SU S & (1 (1 + 1 F (2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
(2/2			16/17/11 FC CCCCCCCC 3C 310
6644			11 (1) (1) = 1 (1) = 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (
CC 45	-	10	4(L,J)=FI(ZT(IA(L,J))
1.046	-	11	CENTINUE
L (47	3	12	[]] = L - 1
	С		
	(EASELINE CLARECTION
1.1.15	L		
1646			
0050			$Y(=\Delta(1, J))$
6651			$X \times (I, J) = (I \times C - AC) \times CCSN + (I \times C - BC) \times SINN)$
0352	1	15	L(1, J) = -((XC - AC) + SINk) + ((YC - EC) + CCSk)
	r		
	C.		
	C		THE XX(1, J) ARRAY STERES TIME VALUES TEMPERAKILY
			THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY
			THE XX(I,J) ARRAY STORES TIME VALUES TEMPORARILY
			THE XX(I,J) ARRAY STORES TIME VALUES TEMPORARILY * * * * * * * * * * * * * * * * * * *
			THE XX(I,J) ARRAY STORES TIME VALUES TEMPORARILY * * * * * * * * * * * * * * * * * * *
			THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY * * * * * * * * * * * * * * * * * * *
			THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY X X X X X X X X X X X X X X X X X X X
6(53	C C C C C C C C C C C C C C C C C C C		THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY X X X X X X X X X X X X X X X X X X X
6(53 6(54 6(54	C C C C C C C C C C C C C C C C C C C		THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY X X X X X X X X X X X X X X X X X X X
UC53 UC54 UC55 UC55	C C C C C C C C C C C C C C C C C C C		THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY * * * * * * * * * * * * * * * * * * *
0053 0054 0055 0055 00557	υ υ υ υ υ υ υ υ υ υ υ υ		THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY * * * * * * * * * * * * * * * * * * *
0053 00555 000555 00055 0005		4)	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY</pre>
00053450785 000555785 000555785		4)	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY</pre>
000534507853 0005555555 0005555 000555 000555		4)	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY</pre>
00000000000000000000000000000000000000		-4)	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY</pre>
00000000000000000000000000000000000000		4)	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY</pre>
00000000000000000000000000000000000000		4)	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY</pre>
00000000000000000000000000000000000000		243	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMPERAKILY</pre>
		-4 -3 -4 -3 -4 -3 -4 -5 	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMFORAKILY</pre>
60000000000000000000000000000000000000		4 3 4 4 3 2 4 5	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMFORAKILY</pre>
		24) 24 8 24 8 24 9	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMPERARILY * * * * * * * * * * * * * * * * * * *</pre>
00000000000000000000000000000000000000		24) 24 2 24 5	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMPERARILY * * * * * * * * * * * * * * * * * * *</pre>
00000000000000000000000000000000000000		243 248 248 248	<pre>THE XX(I,J) ARRAY STERES TIME VALUES TEMPERARILY * * * * * * * * * * * * * * * * * * *</pre>
00000000000000000000000000000000000000		243 248 248 248	<pre>1+E XX(I,J) ARRAY STERES TIME VALUES TEMFERANTLY # # # # # # # # # # # # # # # # # # #</pre>

10000	313	****
	DIGI	1

.

QC72 UC75 UC74 CC75 CC75 CC76 CC77	355 357	GC TE 357 CCNTINLE EC 355 1=2, ITM A(1,J)=A(1,J)-A(1,J) A(1,J)=C.G CLNTINUE
C (7 E ((7 S C (E (C C C 360 C	SCALE RECORDS DC 360 I=1+ITM >x(I,J)=TCALI#>x(I,J) A(I,J)=A{I,J}*CALI{J,1}*CALI{J,2}
CCE1 CCE2 CCE2 CLE4 CLE5 CCE6 CCE7	C C 365	<pre>PCCEL PARAMETERS HAVE NOW BEEN SCALED IF (NA.EC.O)GE TC 370 ITM1=ITM-2 CC 365 I=1,IIM1)x(I,J)=xx(1+2,J) A(I,J)=x(1+2,J) ITM=ITM1 GC TC 225</pre>
0028 0029 0031 0031 0033	C 370 375 380 C	1
((54 0(55 0055 (057 (155	281 C	CC 381 I=1,NT IF(ICHECK(I).NE.O)STCP CCNTINUE CALL BICHAX(IMAX,NT,TMX,ICUM) IM)=IMX+FIM
<pre>(15) (15) (15) (15) (15) (15) (15) (15)</pre>	382 363 384 385	<pre>IM J= IM X= IM IF (IM X . CE . 3 . 0) GC TO 382 I W X * 150 . 0) + 1 . 0 I W = I W X * 150 . 0) + 1 . 0 I W = I W X + 1 I (1)=0 . 0 CC 382 I = 2 . I TM I (1)= (FLCAT(I-1)/150 . C) / F 1M CC IC 386 I W = ((TM X - 3 . 0) * 75 . 0) + 451 . 0 I TM = I TM + 1 I (1)=0 . 0 CC 384 I = 2 . 450 I (1) = (FLCAT(I-1)/150 . C) / F 1M CC 385 I = 451 . I TM I (1) = (FLCAT(I-226) / 75 . 0) / F 1M IF (I TM . LE . 1500) GC TC 388</pre>
0114 C115	C C C	PRINT 601,ITM ITM=1500 SMCCTH CUT DATA WITH CUBIC SPLINE

EIGIT

	,	
1310	266 DC 357 J=1.51	
C117	136-1766 ()	
0118	1111-VV15 () 1111-VV15 ()	
(115		
0120		7.7.1
0121	LELL SPLINE(11)S\$PI\$AZ\$11#\$1\$	112
0122	U(-35t-1=1,11M)	
U123	396 F(1, J) = 11(1)	
C124	397 AUNTINUE	
		OTTRACH FICHLACENERT MALLE
	C FEAD IN INITIAL AND FINAL DI	GITTZED LISPLACEMENT VALUES
	C AT TOP AND ELTITER OF WALL	
0125		cur
UIZE		
C127	ICFF=FLCAI(IIOPF)	
0128	ECTI=FLCAT(IEUTI)	
0125	ELIF=FLUAT(IEUTE)	
0120	h = N + 1	
(131	M2=NT+2	
C132	IF (NC.EC.O)GL TC 359	
0133	TCPI≈TCPI*CALI(MI,I)+CALI(MI	,21
6134	1(FF=T(FF*(AL1(M1,1)+(AL1(M1	22)
C135	IFINC.EC.I)CC TE 399	
013£	ECTI=ECTI*CALI(M2,1)+CALI(M2	(*2) · · · ·
0137	ECIF=ECTF+CALI(M2+1)+CALI(M2	,21
C138	355 CONTINUE	
0139	NT = NA + NS	
	C	
0140	EUI FEFMAT(415)	
C141	502 FCFMAT(8F1C.C)	
C142	103 FEFMAT(ICIE)	
	C	
1143	EGA ECENATEIX, ****EFECK*** - TEA	(E J = *, 12, * ICFE(K(J) = *, 13, *, 1=*, 14,)
	x# >X(I-1,J)=*,F1C.2,* XX(I.	1]=*,F10.2]
0144	601 FCFMAT(1F1,1X, "ACTUAL NUMBER	CF TIME STEPS WAS \$+14+/+1X+
	XIENLY FIRST 1500 TIME STEPS	COULD BE USED DUE TO STORAGE LIMITS !!
	C	
6145	FETUEN	
C14t	END	

- 315 -

INTEG

0001		SLERCLTINE INTEG(N,X,Y,SY,K)
	(
	C	SUEFELTINE TO NUMERICALLY INTEGRATE & SET OF N DATA POINTS (X.Y)
	c	(VER & PRESCHIEFE INTERVAL ISTAC THE TRAPEPORTAL FULF
	č	THE INTEGRAL BETWEEN X(1) AND X(1) WITH BE EVALUATED AT EACH STED T
	č	KED FREER FE INTEGRATION NAINT/INEC
	ĩ	kal FREFRE FEINFERDATION DENERGED
	r	
((0))	L	TTRENSTEN VILL SVILL VILL
16.52	C	
	C C	IF WE SE INCOME S
		AFTN SEW STAGE AL S
		$\nabla V = i \chi$
ILCO		LL 1 1=2 ; NN
((()		$1 \{Y(1) = \{Y(1-1) + ((X(1) - X(1-1))/2, 0) \neq (Y(1) + Y(1-1))\}$
CLCE		
	C .	
ίις		5 NN=N-1
0010		SY(N)=C.C
6611		$EL \in J=1,NN$
0012		L 4 = 1
0.013		<pre>6 SY(I)=SY(I+1)+((X(I+1)-X(I))/2.0)*(Y(I)+Y(I+1))</pre>
6614		S CENTINE
	C	
0015		A SUT 3 A
ulle		ENI

 316	

FAF

1001	SUERCLYINE MAPIX, Y, Z, XMAX, XMIN, YMAX, YMIN, ZMAX, ZMIN, NXX, NYY, NCTR)
	C SUBECUTINE TO MAKE CONTOUR PLOTS OF A RECTANGULAR GRID CONTAINING COORDINATES (X,y) AND CORRESPONDING FUNCTION Z(X,y)
0((2	EIPENSION X(1),Y(1),ECC(3),CIR(E1),XX(4),YY(4),ZZ(4),XC(4),YC(4), X XL(1),YC(1),Z(1502,1)
CCC3 (CC4	UL 2 I=1,3 2 ECC(1)=0.0
	C SET LE CENTEURS
(((5 () 0 () (7 () (7 () (7 () (7 () (7) () () (7) () () () () () () () () () (<pre></pre>
0011 0013 0013 0014 0015 0014 0015 0014 0015 0021 0022 0022 0022 0022 0022 0022	$ \begin{array}{c} \zeta \\ & \zeta \\ $
0030 (031 0033 0034 0035 0035 0036 0037 0035 0036 0037 0035 0042 0042 0042	C TO TEPELETE C 5 [=C C[17] II=1,4 wu=NCD(II,4)+1 IF(CIR(K).GT.22(II))GC TC 7 IF(CIR(K).GT.22(JJ))GC TC 10 GE TE 17 7 IF(CTR(K).LE.22(JJ))GC TE 10 GE TE 17 10 L=L+1 IF(22(II).EC.22(JJ))CE TE 12 ZSL=(CIR(K)-22(II))/(Z2(JJ)-22(II)) y((L)=xx(II)+(xx(JJ)-xx(II))*2SL YE(L)=Yy(II)+(YY(JJ)-YY(II))*2SL GE TE 17

	r A r
T 1 4 4	12 X((L)=XX(11)
1145	Y(11)=YY(11)
((40	17 CENTINLE
	(
	C FLCTIINC
	Ĺ
1647	IF(L.EC.O)GC IC 50
6648	IF(L.GT.2)CC TC 40
0045	-CALL XYFLET(L,XC,YC,XMIN,XMAX,VMIN,YMAX,ECC,LAE)
6650	4) CENTINUE
0751	50 CONTINUE
	(
1(52	FEILFN
0053	ENC

F A F

- 318 -

FAXAFR

(())	SLEFELTINE MAXARR(A,KX,KY,AMAX,KXMAX,KYMAX)
	C
	C SLERCUTINE TO PICK OUT THE LARGEST AESOLUTE VALUE OF A
	C INC-DIMENSIONAL FRAY A(KX,KY)
	ſ
((02	EIMENSIEN + (1502,1)
	C
6663	0. C=X4 44.
CLC4	-DC 770 I=1.KX
(((5	.EC 770 J=1,KY
LLLE	$1F(AES(A(1,)) \cdot GT \cdot AES(AMAX))CC TC 765$
(((7	GC 1C 77C
ιίιε	$(L, I) \Delta = X + A \Delta = Z + I \Delta$
1615	κ x γ γ x = 1
0130	к у А Д X = J
0011	77° CENTINLE
0.012	RETURN .
CC13	END

- 319 -

MEMENT

6661		SUEACUTINE MOMENT
	ſ	
	C C	SECTIONS TO ETAS MONENTS ALSO THE LASS FOR ALL TINE
	C (SUPPLYING TO FIND PERFORMATION OF WHIT FOR ALL TIPE
	L	A LEAST-SELAKES FLEYNCPIAL FIT WILL TO MALE UN THE STRAIN GAGE DATA
	ι	PFICE FILL GENERALE ECCNERRY CENERIES AT THE BUTTLE OF THE RALL
	<u>C</u>	SE TEAT À GUINTIE SPLIKE FIT CAN BE MADE
	С	-
CLC2		.CCMMENJRECZ4(1502,12),7(1502).AX(112),EX(112),CALI(15,2),X(10).
		X TCALI, ITM, NT, NA, NPELY, NS2, NINT, F, EIR, HTM, AGS, GAMMAM,
		X
0603		CCFFCN/CFFFN/CMAX(2) = CFFN(2) = TFFTCD
1004		([MMEN/R] E/x] (112), x2(112), x2(112), TT(1502), xx(1502, 112), xM(1).
		$\mathbf{v} = \mathbf{v} + $
0005		ε
		LIPEPSILP AP(10), LP(10), LP(13, 10), L(11), EU(E), SI(2), S2(2), LS(2), S2(2), LS(2), S2(2), S2
CLÍC		[4]4 S1/**(*E*,*NT*/,S2/***+/*,*E1*/,LS/Exe/
	C	
6619		READ 701+CMIN+CMAX
	C	
6(1)		NF=NFCLY+1
0611		N 5 1 = N 5 7 - 1
	ſ	
10212	C	
1112		
6610		
0014		FF ANGLI-COU
0010		
6616	202	PP I=NS1
1.017	614	I = (I) = (I)
ulb .		DL 605 I=1,NFT
CC15	£15	L 4 1 4 (3 + I) = 1 + 0
0020		C+1SG=(.C
6621		CL 606 I=1,3
6622	t(o	EC(1)=0.0
	С	
<u>0023</u>		E(≥50 I≈1,I3M
((24		EC 6505 HEININT
(()) -	4865	$\frac{1}{1} \left\{ 1 \right\} = x \left\{ \left\{ 1, 1 \right\} \right\}$
r c c c c		(A + b) = b + b + b + b + b + b + b + b + b + b
16.20		CALL 1991 CC (NAN 1988 AVI (930) 34
		F (\ Z \ F - 1 Z \ \ Z \ L \ Z \ Z \ \ Z
0.020		
6125		$F = \{x_1 = 1 \leq 1 \leq y_1\}$
0030		ZP (5) = 15 (66)
	C	EL 607 J=2,N\$1
	C 6(7	(J)=A(I,J+A+L)
0031		$\mathcal{E}C = \mathcal{E}I\tilde{\sigma} = \mathcal{I}_{+}^{+} NFT$
6332		E + I + (1 + (-1)) = X + (1)
0033	€10	EATA(2, J-1) = AM(J)
1634		NFI=NPI-1
	C	
00.24	~	CALL ISCLER (LATA .NET.NE.C.C.LISS, STER)
	ſ	
1136	ĩ	A E 1 - N E 1 + 1
(()) (())7		nri-nrita Tri Ala Jaka A
CC21		して てんに リーサッロー
ししごと	61 6	
*C*ENT

$(C40)$ $(E17 \ IN \ (J) = 0.0$ $(C41)$ $DC \ 618 \ J = 2.0 \ S2$ $C(42)$ $DC \ 618 \ K = 1.0 \ F$ $(C42)$ $CC \ 618 \ K = 1.0 \ F$	
$\begin{array}{c} CC41 & DC & 618 & J=2, NS2 \\ CC42 & DC & 618 & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & K=1, NF \\ CC42 & CC & CC & CC & CC \\ CC42 & CC42 & CC & CC & CC \\ CC42 & CC42 & CC42 & CC42 & CC42 \\ CC42 & CC42 & CC42 & CC42 & CC42 \\ CC42 & CC42 & CC42 & CC42 & CC42 & CC42 \\ CC42 & CC42 & CC42 & CC42 & CC42$	
C(42 EE 618 K=1,NF	
ししつ ご じ じ じ じ じ じ じ じ じ じ じ じ じ じ じ ひ ひ く じ じ ひ ひ く じ じ ひ ひ く じ い ひ ひ い い い い い い い い い い い い い い い い	
$U_{U_{1}}$ $I_{U_{1}}$ I_{U	
	•
C CALCULATE BELINDARY CENEITIENS AT BETTEM OF THE	MALL
1045 EC 620 J=1.NF	
C(4) = E(4) = E(4) + C(3) + X(N(3)) + A(3) + C(3)	
(C47 EC(5)=EC(5)+FLE&T(J-1)*((J)*X(NS2)**(J-2)	
(C46 62) EC(0)=EC(6)+FLCAT(J+2)+FLCAT(J+1)+C(J)+X(NS2)**	(J-3)
(C45 IF(NTYFE.NE.1)GC TC 624	
$LCSC \qquad E(L4) = C \cdot O$	
C	
C CALCULATE MEMENTS WITH CUINTIC SFLINE	
C(51 - EZ4 CALL CUINT(NS2, X, AM, NINT, AX, TS, EC)	
(
C152 EC 625 J=1, NINT	
0.024(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
CC54 ESTINUE	
CESSO DE EN25 I=1,ITM CECECECECE	
C EC ELGS J=1, NINT C	
(0, 1) = 1 + (1) = 1 + (1) +	
C CALL INTEG (NINT, AX, TK, TS, O)C	
C DL 6020 J=1, NINT C	
$(6020 \times (1, 1) = 1 \le (1))$	
CEC25 LENTINEF LECELECCCCCCCCCCCCC	
C C	
LC55 FFITE(21)XX	
LCEE ENDEFILE 21	
GLS7 REWIND 21	
C	
(15) EC 652 $I=1,11M$	
$L(\epsilon_0)$ $E(\epsilon_{52} \mathbf{j}=1,N N T $	
$(c_1) (52) \times (1, J) = \times (1, J) = + T M / EIH$	
6C62 CC 655 I=1, NINT	
$((e_3)) = (1) = (1) + T_V / E_1 N_1$	
1.004 $2.01) = 2.01) + 1.000$	
$C(c5) = b55 \times 3(1) = x 3(1) = FTM/EIM$	
CCCCC > F(1) = XF(1) = FTM/EIM	
$U_{V}(f) = [1, 656, 1=1, 1]M$	
((6) (5) (1) = 11(1) + TM/EIM	
C	
C(69 NSC=NS1-1	
L(658 I=1.NS0	
(71) 658 EP([]=-X([+1)/HTM	
CC72 EC 660 I=1,3	
((73)) = (((1)) = (0))	
LAE=0	
((75) (1NTX=(AES((MAX(1)-(MIN(1)))/2.5)	
$C(7\epsilon)$ CINTE=(AES(LWAX-EFIN))/2.5	
U(77) YM IN = -4. C* C IN TX	

- 321 -

FCFENT

0078		YMAX= C.ORCINIX
((75		>NIN=-7.5+CINTC+EWIN
0330		XMAX= 7.5+CINTC+CMIN
• • • •	ſ	[[670]]=1.3
	c .	66 TC (661.663.665).J
	C 661	$\Gamma \Gamma = 462$ $I = 1.5$ M
		F7 (13+2a)//F(1637)/F/F/F/F/F/F/F/F/F/F/F/F/F/F/F/F/F/F/F
	C .	
	C 663	$EL \in E4 = I_{I} NSO$
	L EE4	IN([]=2.0##(ITMAX,I+NA)*FTM/ELM
	C	
	C 665	EC EEE I=1,NSO
	CLEE	4N(1)=2.C+2(1TM, [+NA]+FTM/EIN
	C 667	CALL XYFLI(NSO,AP,EM,XMIN,>PAX,YMIN,YPAX,EEC,LAE,Z)
	(67)	CENTINEE
	r i	
CCEL	-	$\Gamma(-67)(-1=1.2)$
1167		$C(-T(-1+F)_{-}+F^{2}_{-}+F^{2}_{-})$
1153	4 - 1	
CLC2	661	
6624		FP (2) = > 1 (4 ()
0005		AN (3)=A1 (55)
CCEE		FF(4)=X1(6E)
61.67		CE TE EET
CCEE :	663	LF(1)=>2(2E)
6685		AF(2)=>2(47)
6050		AN (3)=X2(55)
CC51		\$1(4)=>2(68)
ú152		GE TE EET
6053	tt5	AN(1)=>3(26)
1154		4+121=>3(47)
0005		(k(3)=YR(FC)
1155		FN 101-F2 (2)1
1150		μη επιμηματικός Γελική του προτεκός του
6657	(7)	
ιιςε	e ru	
	£.	
0055		(ALL FAPENICI)
01C6		(ALL FAFLET(S1,S2,LS,UMIN,UMAX)
	С	
0101		CC 68C I=1,I1M
0102		EC 680 J=1,NINT
6103	333 1)>([,j]=>×([,j)+EIM/HTM
••••	 C	
6164	701	FEEWLY(ZE1).0)
01C7	r	
0105	C I	SETIEN
0100		E LI CHANA ANN ANN ANN ANN ANN ANN ANN ANN ANN
UILE		E M L

PAGE

- 322 -

0001	SUBROUTINE PAGE
	C SUBROUTINE TO SET UP PLOTTING ON AN 8-1/2 X 11 INCH AREA
0002	DIMENSION A(2),B(2),DCC(3)
0003	DC 120 1=1.3
0004	120 ECC(I) = 0.0
0005	
0006	A(1) = 0.0
0007	$A(2) = 11 \cdot 0$
0008	B(1) = 0.0
0009	B(2)=0.0
0010	CALL XYPLCT(2, A, B, 0. 0, 15. 0, 0. 0, 10. 0, DOC, 1 4B)
0011	A(1) = 11.0
0012	B(2)=8.5
0013	CALL XYPLCT(2, A, B, 0, 0, 15, 0, 0, 0, 10, 0, DCC, LAB)
0014	A(1) = 0.0
0015	$A(2) = 0 \cdot 0$
0016	CALL XYPLCT(2+A+B+0+0+15+0+0+0+0+0+0CC+L4B)
0017	A(2) = 11.0
0018	B(1)=8-5
0019	CALL XYPICT(2+4+8+0+0+15+0+0+0+10+0+D0C+LAB)
	c .
0020	RETURN
0021	FND
	· ·

 3	23	
v	20 27	

PAPLCT

0001	r	SUBROUTINE PAPLOT(S1,S2,LS,DMIN,DMAX)
	С · · С ·	SUBROUTINE TO PLOT GUT, ON A SINGLE 8-1/2 X 11 PAGE A CONTOUR MAP OF A PARAMETER ALONG WITH PLOTS OF STATIC INITIAL AND FINAL VALUES AS WELL AS MAXIMUM DYNAMIC VALUES
0002	С	CCMMCN/RED/4(1502,12),T(1502),4X(112),BX(112),CALI(15,2),X(10), TCALI,ITM.NT.NA.NPCLY.NS2.NINT.H.FIM.HTM.AGS.CAMMAM.
		X NTYPE,FIN,NC,XP(S)
0003		COMMON/BLUE/X1(112),X2(112),X3(112),TT(1502),XX(1502,112),XM(1), X YM(1),TM(1),ITMAX,IXMAX
0004		CCMMCN/GREEN/CMAX(2), CMIN(2), 1PLTCD
0005		CCMMCN/SRAY/TITLE1(18),TITLE2(18)
0006		DIMENSION S1(1),S2(1),LS(1),DOC(3),4A(2),BB(2),T1(+),T2(3),T3(1), X LT(4),CX(10),CY(10),CZ(10),PX(1),PY(1),TD(1)
0007		DATA T1/'LOC4', 'TICN',' (X','/H)'/, T2/'TIME',' (T','*F1)'/,
	с	X = {3/*X/H*/+14/*/*F1*/+LT/10+12+3++/+10/******
0003		DC 701 [=1,3
0009	701	DCC(1)=0.0
0010		DC 702 I=1,ITM
0011	702	T(I)=T(I)+F1M
0012	r	NINT=NINT-3
0013	C .	CALL PAGE
0014		LAB=O
0015		CALL VLABEL(1.5,2.0,CMAX(1),CMIN(1),5.0,5,T1,LT(1),1.*(F3.1)*,3)
0016		CALL VLABEL(7.5,1.5,CMAX(1),CMIN(1),2.5,2,T3,LT(3),1,1(53.1),3)
0017		CALL VLABEL(7.5,1.5,CMIN,CAX,2.5,2,S2,LS(2),0,*(F5.2)*,5)
0018		CALL VLABEL(/.5,5,0,0,0,0,1,0,0,4,2,5,2,5,2,5,2,1,1,1,1,1,5,2,1,5,1,5
0019		S 4R(-1-0-0+(-0-0+(-1-0+(-1-0+(-1-0+0)/2-0)/2-0)/(-0-0)/(-
0021		CALL SYSSYM(1.0.1.15.0.1.TITE1.72.0.0)
0022		CALL SYSSYM(1.0,1.0,0.1,TITLE2,72,0.0)
0023		IF(IPLTCD.EC.O)GC TC 703
0024		CALL VLABEL(1.5,2.0,CMIN(2),CMAX(2),5.0,5,T2,LT(2),0,!(F4.1)',4)
0025		CALL VLABEL(7.5,5.0,CMIN(2),CMAX(2),2.5,2,T4,LT(4),0,*(F+.1)*,4)
0026		
0027	703	$\begin{array}{c} \text{Lall } \forall L \text{ abel}(1, 2, 7, 2, 0) \\ \text{Lall } \forall L \text{ abel}(1, 2, 7, 2, 0) \\ \text{Lall } \forall L \text{ abel}(1, 2, 7, 2, 0) \\ \text{Lall } \forall L \text{ abel}(1, 2, 7, 2, 0) \\ \text{Lall } \forall L \text{ abel}(1, 2, 7, 2, 0) \\ \text{Lall } \forall L \text{ abel}(1, 2, 7, 2, 0) \\ \text{Lall } \forall L \text{ abel}(1, 2, 7, 2, 0) \\ \text{Lall } \forall L \text{ abel}(1, 2, 7, 2, 0) \\ \text{Label}(1, 3, 2, 2, 0) \\ \text{Label}(1, 3, 2, 2, 0) \\ \text{Label}(1, 3, 2, 2, 2, 0) \\ \text{Label}(1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,$
0025		CC = CMAX(2) - CMIN(2)
0030		$P = 0 \cdot 2 + (C + C M N 2)$
0031		$PB=0.8 \pm CC + C \pm IN(2)$
0032		PC=0.05*CC+CMIN(2)
0033		PD=0.15*CC+CMIN(2)
003+		PE=0.1 + CC + CMIN(2)
0035		$PF=0.6\times U_{+}U_{+}M_{1}N_{1}Z_{2}$
0020		CALL VLADEL($4,0,2,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0$
0.02 1		CALL VLADEL($2.12.2.2.2.4.4.7.5.5.5.7.5.7.5.7.5.7.4.0.4.5.4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7$
0039		CALL VLABEL(8.75,5.0, PA, PF, 0.625, 1. TD, 4, 0, '(F4.1)', 4)
	с	
0040	704	41(1)=1.5
00+1		AA(Z)=6.5
0042		5511/=/.U PP/21-7 0
0045		DE12/~feV

PA	PL	CT.
----	----	-----

0044				CALL XYPLCT(2,44,88,0.0,15.0,0.0,10.0,DOC,LAB) AA(1)=6.5
0045				BB(1)=2.0 CALL XYPLCT(2,AA,BB,0.0,15.0,0.0,10.0,DUC,LAB) AA(1)=7.5 DB(1)=7.5
0050				AA(2)=10.0 BB(2)=4.0
0052				CALL XYPLCT(2, 44, 88, 0.0, 15.0, 0.0, 10.0, 00C, LAB) A(1)=10.0
0054				BB(1)=1.5
0.056				AA(1)=7.5
0059				44(2)=10.0
0059				BE(2)=7.5 CALL XYPLCT(2+AA+BB+C+0+15+0+0+0+10+0+D0C+L4B)
0061 0062				AA(1)=10.0 BB(1)=5.0
0063		с		CALL XYPLCT(2,44,88,0.0,15.0,0.0,10.0,D0C,L48)
0064				IF(IPLTCD.NE.O)GC TC 712 CA=CC/(2.0*(PA+CMIN(2)))
0066				CE=(1.0-CA)*CMIN(2)
0068				DA#CC/(2.0*(CMAX(2)-PA)) DB#((CMAX(2)+CMIN(2))/2.0)-(DA#PA)
0069				DC 710 I=1.ITM
0070				IF(T(I).LT.PA)GO TC 708
0071				GE TC 710
0073			103	T(I) = (T(I) + CA) + CB
0074		С	710	CONTINUE
0075			712	NS=NT-NA
0077				Cx(1) = -x(1+1)/HTM
0078			714	CY(1)=0.0
0079				IF(NG+EG+O)GC TO 718 DC 717 f=1-NC
0081		r	717	CZ(I) = -XP(I+1)/HTM
		Č		SCALE PARAMETERS FOR CONTOUR PLOTTING
0082		U.	718	CINT= (ABS(CMAX(1)-CMIN(1)))/5.0
0083				XMIN=-/.U#CIN1 XMAX= 3.0+CINT
0085				CINT=(ABS(CMAX(2)-CMIN(2)))/5.0
0086				TMIN=-1.5*CINT
0001		С		1*4X=13+7*(1N)
		с С		PLCT CONTOURS
8800				IF (NC.EC.O) GC TO 720
0090	÷		720	CALL ATMETING: UT: UT: THIN: THAX: XMIN: XMAX: COC: LAB: 4) CALL XYPITINB: CY. CX. THIN: THAY: YMIN: YMAY: DDC - FAR: 3)
0091				$AA(1) \neq CMIN(2)$

P	4	Р	L	C	T	
---	---	---	---	---	---	--

- 325 -

0092 0093 0094 0095 0096 0097 0098 0098 0099 0100		BP(1)=BX(IXMAX) AA(2)=CMAX(2) BE(2)=BX(IXMAX) CALL XYPLCT(2,AA,BB,TMIN,TMAX,XMIN,XMAX,DOC,LAB) AA(1)=T(ITMAX) BB(1)=-CMIN(1) AA(2)=T(ITMAX) BB(2)=-CMAX(1) CALL XYPLCT(2,AA,BB,TMIN,TMAX,XMIN,XMAX,DOC,LAB)
0101		PX(1) = T(ITMAX)
0102		PY(1) = BX(IXMAX)
0103		CALL XYPLT(1.PX, PY, TMIN, TMAX, XMIN, XMAX, DOC, LAB, 1)
0104		CALL MAP(T.BX.XX.TMAX.TMIN.XMAX.XMIN.DMAX.DMIN.ITM.NINT.21)
	Ċ.	
	Ċ	PLOT INITIAL AND FINAL STATIC PARAMETERS AS WELL AS MAXIMU4 DYNAMIC CNES
0105		CINTX=(ABS(CMAX(1)-CMIN(1)))/2.5
0106		CINTT = (ABS(CMAX(2) - CMIN(2)))/2.5
0107		CINTD=(ABS(DMAX-CMIN))/2.5
0108		YXIN=-4.0+CINTX
0109		YPAX= 6.0*CINTX
0110		XMIN=-7.5=CINTD+DMIN
0111		XMAX= 7.5*CINTC+CMIN
0112		CALL XYPLT(1,XM,YM,XMIN,XMAX,YMIN,YMAX,DOC,LAB,1)
0113		IF(NC.FO.0)GC TO 722
0114		CALL XYPLT(NC+CY+CZ+XMIN+XMAX+YMIN+YMAX+DDC+LAB+4)
0115	722	CALL XYPLT(NB+CY+CX+XMIN+XMAX+YMIN+YMAX+DCC+LAP+3)
0115		$\Delta \Delta (1) = 0.0$
0117		$AA(2) = 0 \cdot 0$
0118		BB(1) = -CMAX(1)
0119		BB(2) = -CMIN(1)
0120		CALL XYPLOT(2, AA, BB, XYIN, XMAX, YMIN, YMAX, DOC, LAB)
0121		CALL XYPLCT(NINT,X1,BX,XMIN,XMAX,YMIN,YMAX,DCC,LAB)
0122		CALL XYPLCT (NINT, X2, BX, XMIN, XMAX, YMIN, YMAX, DOC, LAB)
0123		CALL XYPLGT(NINT, X3, BX, XMIN, XMAX, YMIN, YMAX, DCC, LAB)
0124		YMIN=-5.0*CINTD+DMIN
0125		YVAX= 5.0*CINTD+CMIN
0126		XMIN=-7.5*CINTT
0127		XMAX= 7.5+CINTT
0128		IF(IPLTCD.NE.O)GC TO 726
0129		IF(TM(1).LT.PA)GC TO 725
0130		TM(1)=(TM(1)+DA)+CB
0131		GC TC 726
0132	725	TN(1) = (TM(1) + CA) + CB
0133	726	CALL XYPLT(1,TM,XM,XMIN,XMAX,YMIN,YMAX,DOC,LAB,1)
0134		BE(1)=0.0
0135		BE(2)=0.0
0136		AA(1)=CMIN(2)
0137		AA(2)=CMAX(2)
0133		CALL XYPLOT(2,44,88,XMIN,XMAX,YMIN,YMAX,DOC,LAB)
0139		$L \Delta B = -1$
0140		CALL XYPLOT(ITM, T, TT, XMIN, XMAX, YMIN, YMAX, COC, LAB)
	C	
0141		IF(IPLTCD.NE.O)GC_TC_734
0142		PG=(CMAX(2)+CMIN(2))/2.0
0143		DC 729 I=1,1TM

.

- 326 -

```
PAPLCT
```

0144	IF(T(1).LT.PG)GD TO 728
0145	T(I) = (T(I) - CB)/DA
0146	GC TO 729
0147	728 T(I)=(T(I)-CB)/CA
0148	729 CONTINUE
0149	IF(TM(1).LT.PG)GC TO 732
0150	TM(1)=(TM(1)+DB)/DA
0151	-GC TC 734
0152	732 TM(1)=(TM(1)-CB)/CA
	с .
0153	734 DC 735 I=1.ITM
0154	735 $T(I) = T(I) / F1M$
0155	NINT=NINT+3
	C
0156	RETURN
0157	END

- 327 -

PAPRNT

0001	<u> </u>	SUBPOUTINE PAPRNT(IPARM)
	C C	SUBROUTINE TO PRINT OUT PARAMETERS
0002	U	CCMMCN/RED/A(1502,12),T(1502),AX(112),BX(112),CALI(15,2),X(10), X TCALI,ITM,NT,NA,NPDLY,NS2,NINT,H,EIM,HTM,AGS,GAMMAM, X NTYPE,FIM,NC,XP(9)
0003		-CCMMCN/BLUE/X1(112),X2(112),X3(112),TT(1502),XX(1502,112),XM(1), X YM(1),TM(1),ITMAX,IXMAX
	C	-
0004		NINT=NINT-3
0005		TA=T(1)≠F1M
0006		TB=T(ITMAX)*FIM
0007		TC=T(ITM)*F1M
0003		DC 61 N=1,3
0009		PRINT 200
0010		GC TC(51,52,53,54),IPARM
0011		51 PRINT 201
0012		GC TC 57
0013		52 PPINT 202
0014		GC TC 57
0015		53 PRINT 203
0016		GG TC 57
0017		54 PRINT 204
0018		57 PRINT 220,TA,TB,TC
0019		L=N≑50
0020		DC 60 J=1.50
0021		I = (L - 50) + J
0022		IF(I.GT.NINT)GC TD 62
0023		$\mathbf{T} \mathbf{X} = -\mathbf{B} \mathbf{X} (\mathbf{I})$
0024		60 PRINT 221.I.X1(I).X2(I).X3(I).TX
0025		61 CENTINUE
0026		62 CENTINUE
0020	r	
0027	Ū	DC 81 N#1.15
0028		PRINT 200
0029		GC 1C(71.72.73.74). IPARM
0030		71 PRINT 201
0031		66 TC 77
0032		72 PRINT 202
0033		6C TC 77
0034		73 PRINT 202
0035		6C TC 77
0035		74 PRINT 204
0027		77 TX=-BX(IXMAX)
0038		PRINT 222.TX.TX
0039		1 = N*50
0040		DO 80 J=1,50
0041		Ĩ≠(L-50)+J
00+2		k = I + (N - 1) * 50
0043		KK=K+50
0044		IF(KK.GT.ITM)GO TO 82
00+5		TY = T(K) + F1M
0046		TZ=T(KK)+F1M
0047		80 PRINT 223.K.TT(K),TY,KK,TT(KK),TZ
00+8		SI CENTINUE

-	3	2	8	
---	---	---	---	--

```
PAPRNT
```

	3	PAPRN
0049 0050	82 CONTINUE NS=(2*N-1)*50	
0051	TE(K.FO.NS)GC TO 86	
0052	DG 85 I=K.NS	
0053	$TY = T(I) \neq FIM$	
0054	TELLOT JTAIGO TO 8	6
0055	85 PRINT 224.I.IT(I).T	- Y
0056	86.CCNTINUE	
0.057	-NINT=NINT+3	
005.	c ,	
0058	200 FCRMAT(1H1)	
0059	201 FCRMAT(31X, * * * *	* * * * * * *
	X /,31X,** MOMEN	T (M*H/EI) **,
	X /,31X,** * *	* * * * * *)
0060	202 FCRMAT(25X,** * *	* * * * * * * * * * * * * * * *
	X /,25X,** SHEAR	(Q/(0.5*RC*G*(H**2))) **
	X /,25X,** * * *	* * * * * * * * * * * * * * * * * * * *
0061	203 FORMAT(25X, * * *	* * * * * * * * * * * * * * * *
	X /,25X,"* EARTH	PRESSURE (P/(RC#G*H)) **,
	X /,25X,** * * *	* * * * * * * * * * * * * * * * * * *
0062	204 FORMAT(29X, * * * *	* * * * * * * * * * *
	X /,29X,** DISPL	ACEMENT (Y/H) *',
	X /,29X,** * * *	* * * * * * * * * * *
0063	220 FORMAT(17X, STATIC	+10X, "MAXIMUM DYNAMIC", 6X, "FINAL STATIC", 6X,
	X*LOCATION*+/+12X+*(T*F1)=*,E10.3,3X,*(T*F1)=*,E10.3,3X,*(T*F1)=*,
	XE10.3,5X,*(X/H)**/	12X; '
	X	t)
0064	221 FORMAT(6X,14,E19.3,	2E20.2, F10.3)
0065	222 FOPMAT(10X, MAXIMUN	DYNAMIC', 8X, TIME', 14X, MAXIMUM DYNAMIC', 8X,
	X*TIME*,/,12X,*(X/H)	=**F5*3*9X**(T*F1)**15X**(X/H)=**F5*3*9X*
	X * (* + F 1) * , / , 10 X , *	
	Χ	
0066	223 FCRMAT(6X,14,2E15.3	+7X+14+2E15+31
0067	224 FERMAT(6X,14,2E15.3	•
	C	
0068	RETURN	
0069	END	

PRESS

0001			SUBREUTINE PRESS
	C		
	ι c		SUBROUTINE TO DERIVE EARTH PRESSURES BY SHEAR DIFFERENTIATION
	C C		OR BY GUINTIC SPLINE FITS OF PRESSURE TRANSDUCER DATA AS DONE
	L C		IN SUBROUTINE MOMENT
0000	ι		
0002			CLMMUN/RED/A(1502,12),T(1502),AX(112),BX(112),CALI(15,2),X(10),
			X ILALI, ITM, NT, NA, NPCLY, NS2, NINT, H, EIM, HTM, AGS, GAMMAM,
0000			X, NIYPE+FIM, NC, XP(9)
0003			CCMMUN/BLUE/X1(112),X2(112),X3(112),TT(1502),XX(1502,112),XM(1),
000/			X YM(1),TM(1),ITMAX,IXMAX
0004			CLAMEN/GREEN/CMAX(2), CMIN(2), IPLTCD
0005			CLAMEN/YELEUM//R(112), IS(112)
0000			KERL#S SICK(11,25)
0001			$V_{1} = V_{1} = V_{1$
0002			$A_{1} = B^{*}(10) + D^{*}(10) + D^{*}(10$
0005	r		DATA 31/ PKES + SUKE / SUKE / K SUKE / B SUKE /
0000	U		READ OOL DULL DULL
0005	r		KEAD 991, UMIN, UMAX
0010	ι		$\mathbf{N}(\mathbf{T} = \mathbf{V}(\mathbf{T} \mathbf{N})\mathbf{T} = \mathbf{A}$
0011			
0012			
0013			
0014		800	
0015		900	
0010	Ċ		CHE DENIVINIAN IN
	r		FIND LOCATION OF DESCRIPT DESCRIPTION
	ř		TIND LOCATION OF PRESSURE RESULTANT (RECENT
0016	C		
0017			
0019			
0019			$\frac{\partial (0 - 0 + 1)}{\partial (1 - 1)} = \frac{\partial (1 - 1)}$
0020			$\forall \pi [\Delta X (J + 1) + \Delta X (J + 1) + 2 > 0$
0021			
0022		815	$Y \Delta = Y \Delta + Y \star D \Delta$
0023			RE(I) = YA/AR
0024			DC 820 J=1.NINT
0025		820	$\{\mathbf{L},\mathbf{I}\}$
0026		825	CONTINUE
	С		
0027		327	CALL CRUNCH
	С		
0028			DC 830 I=1.ITM
0029			DC 830 J=1,NINT
0030		830	XX(I,J)=XX(I,J)/(GAMMAM+FTM)
0031			DC 835 I=1,NINT
0032			X1(I)=X1(I)/(GAMMAM*HTK)
0033			X2(I)=X2(I)/(GAMMAM*HTM)
0034		835	X3(I)=X3(I)/(GAMMAM*HTM)
0035			XM(1)=XM(1)/(GAMMAM*HTM)
0036			DC 836 I=1,ITM
0037			RE(I) = -(RE(I)/HTM)
0038		836	TT(I)=TT(I)/(GAMMAM#HTM)
0.000	С		
0039			UL 840 I=1,3

0001

PRESS

!

0040		840	DCC(I)=0.0
0041			LAB=C
0042			CINTX=(ABS(CMAX(1)-CMIN(1)))/2.5
00+3			CINTD=(ABS(DMAX-DMIN))/2.5
0044			YMIN=-4.0*CINTX
0045			YVAX= 6.0*CINTX
0046			XMIN=-7.5*CINTD+DMIN
0047		-	$XM\Delta X = 7.5 \pm CINTO \pm CMIN$
0047		-	$\Delta \Delta (1) = 0.0$
0040			RR(1)=DF(1)
0047			CALL YVDIT/1.AA.BB.YMIN.YMAY.VMIN.YMAY.OOC.LAB.11
0000			RR/11-DC/ITWAY
0051			CALL VVDLTTT AA DD. VHTE VVAY VMTE VMAY DDC. LAB. 01
0052			CALL ATPLITIGATIOD AND INFAPAARIMING THAN FOULFLAD FOF
0053			DOLLIERCITIA A DO VATA VALV VALV VALV DOC LAR 51
0054	-		UALL ATPLICITAAT COTATINTATAATTINTTAATOOUTLADTJ
	C		
0055			1 F (N 4 6 E 6 0) GU U 940
0056			NSO = NW - 2
0057			DO 856 I=1,NS0
0058		858	BN(I) = -XP(I+1)/HTN
0059			DC 860 I=1,3
0060		660	CCC([)=0.0
0061			148=0
0062			CINTX=(AES(CMAX(1)-CMIN(1)))/2.5
0063			CINTD=(ABS(DMAX-DMIN))/2.5
0064			YVIN=-4.0+CINTX
0065			YMAX= 6.0*CINTX
0066			XMIN=-7.5*CINTD+DMIN
0067			XMAX= 7.5*CINTD+DMIN
8400			DC 870 J=1.7
0060			GC TC (861-863-865)-J
0000		861	BC = 862 = 1 - NS0
0070		867	$\Delta N(T) = \Delta (T) = T + \nabla T + Z (C \Delta M A A + HT N)$
0071		-302	
0072		017	
0075		003	D = 0 + 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
0074		504	AMAIJEAAIIMAAAITATIJAPPAAMDIMI
0075			
0076		865	
0077		865	$AM(1)=A(1 M_{1} +N)/(GAMMAM#HIM)$
0078		367	CALL XYPLI (NSO, AM, BM, XMIN, XMAX, YMIN, YMAX, DUC, LAS, 2)
0079		870	CONTINUE
0080			GC TC 940
	C		
0081		900	NPP=NPCLY+1
0082			NPT=NC+1
0083			NH=NPT+1
0084			AM(1)=0.0
0085			DC 905 I=1,NPT
0086		905	DATA(3.1)=1.0
0087			CHISC=0.0
	С		
0088	-		DC 930 I=1,1TM
0089			DO 907 J=2,NPT
0090		907	$\Delta M(J) = \Delta (I, J + NT - I)$
0091			DC 910 J=2.NPT
-0092			DATA(1, J-1)=XP(J)
0012			

- 331 -

PRESS

			•
0093		910	DATA(2,J-1) = AM(J)
0094	c		NP (=NP (=1
0095	r		CALL LSQUAR(DATA,NPT,NPP,C,CHISQ,STOR)
0096			NPT=NPT+1
0097			DC 917 J=1,NW
0098		917	AM(J)=0.0
0099		-	DO 918 J=2.NW
0100		-	DC 918 K=1.NPP
0101		918	AM(J)=AM(J)+C(K)*XP(J)**(K-1)
0102			NW1=NM-1
0103			DC 922 J=1.Nk1
0104			XP1(J)=XP(J)
0105	_	922	$\Delta M (J) = \Delta M (J)$
	C		CALCULATE DDECCUDEC LITH CHOTE COLINE
	ι r		CALCULATE PRESSURES WITH LUDIC SPLINE
0107	ι		
0106	r		UALL SPLINEINRLAXPISABLENINISAKSISI
	C		FIND LOCATION OF PRESSURE RESULTANT (RE(I))
0107	U		AB=0.0
0108			YA=0.0
0109			DC 925 J=1.NI
0110			DA=0.5*(AX(J+1)-AX(J))*(TS(J+1)+TS(J))
0111			Y = (AX(J+1) + AX(J))/2.0
0112			AR = AR + DA
0113		925	YA=YA+Y+DA
0114			RE(I)=YA/AR
0115			DC 927 J=1,NINT
0116		927	XX(1,J)=TS(J)
0117		930	CONTINUE
0118			GC TC 827
	С		
0119		940	CALL PAPENT(3)
0120			CALL PAPLOT(S1,S2,LS,OMIN,DMAX)
	С		
0121			DC 943 I=1,ITM
0122			DC 943 J=1,NINI
0123	-	9+3	$XX(I_{9}J)=XX(I_{9}J)*(GA**AM*+I*)$
	С		
0124		991	FLKMA112F10.0)
	C		
0125			KETUKN
0120			ENU

QUINT

0001		SUBROUTINE CUINT(NN.X.Y.M.S.T.BC)	
	С		
	Ċ	SUBROUTINE TO FIT A CUINTIC SPLINE TO A SET OF DATA PI	CINTS (X.Y)
	ċ	BC ARE BOUNDARY CONDITIONS	
	č	B(1) = Y(1): B(12) = Y*(1): B(13) = Y**(1):	
	č	$BC(4) = Y(NN) : BC(5) = Y^*(NN) : BC(6) = Y^*(NN)$	
	č		
0002	C		
0002		DIMENSION DUVOR DIMENSION V/11.V/11.V/11.V/5001 4/50 501 9/501 H	16 61 516 71
00005		DIMENSION ALLISTINGS CECEDON	10101101011
00//4	ŗ	CEREMITORFEET JRAMINT IN 1500745EC(500)	
0005	ι	TEINN OF SOLLOP TO DO	
0005			
0000		$V = V(A_m)$	
0007			
0003			
0009			
0010		5 UUNTINUE	
0011		N6=N#6	
0012		DU 15 I=1,N6	
0013		B(1)=0	
0014		DC 15 J=1,N6	
0015		15 A(J,I)=0.0	
0016		DC 25 I=1.3	
0017		25 A(I,I)=1.0	
	С		
0019		B(1) = BC(1)	
0019		B(2)=BC(2)	
0020		B(3)=BC(3)	
0021		B1N6-21=BC(4)	
0022		B(N6-1)=BC(5)	
0023		B(N6) = BC(6)	
	. C		
0024		DC 40 I=1,NM1	
0025		B(4+(1-1)*6)=Y(1+1)	
0026		IR=4*(I-1)*6	
0027		IC=6 * I * 1	
0028		A(IR, IC) = 1.0	
0029		IC=1C-1	
0030		DC 35 J=1,5	
0031		35 A(1R+J, 1C+J) = -1.0	
0032		$\Delta RG = H(I)$	
0033		IR=3+(1-1)=6	
0034		IC = (1 - 1) + 6	
0035		CALL SUBULARG.U)	
0036		DG 37 JC=1.6	
0037		DG 37 JR=1.6	
0038		37 A(IR+JR+IC+JC)=U(JR+JC)	
0039		40 CONTINUE	
v v ./ /	r		
0040	<u>ر</u>	CALL SUBU(HIN)+U)	
0041		TR=N6-3	
0042		1C=N6-6	
0042			
0044		DO 50 JR=1.6	
0045		50 A(1R+1R, 1C+1C)=11(1R+1, 1C)	
U L L L	r		
	ι L		

CUINT

	CECSOV IS A SYSTEM SUBROUTINE C
0046	CALL ECSOV(N6, A , B , 10, 1.0 E-4, C , T , 0)
0047	DC 60 I=1,M
0048	IF(S(I).LT.X(I)) GC TO 53
0049	DC 52 J=1+N
0050	IF(S(I).LE.X(J+1)) GO.TO 55
0051	- 52 CONTINUE
0052	- GC TC 55
	000000000000000000000000000000000000000
0053	53 PRINT 106, I
005+	GC 10 60
0055	55 CONTINUE
0056	SX=S(I)-X(J)
0057	T{I}=C(1,J}+SX*(C(2,J)+{SX/2.}*(C(2,J)+{SX/3.}*{C(4,J)+{SX/4.}*
	X(C(5,J)+(SX/5。)*C(6,J)))
0058	IF(JWANT_EC.O) GC TC 60
0059	SEC(I)=C(3,J)+SX*(C(4,J)+(SX/2.)*(C(5,J)+(SX/3.)*C(6,J)))
0060	60 CONTINUE
0061	RETURN
	C
0062	99 PRINT 107
	C C C
0063	105 FCRMAT(/, THE, I5, TH ELEMENT OF THE ARRAY S IS CUT OF RANGE, /, X' ERPCR MESSAGE FROM QUINT, /)
0064	107 FERMAT(/,* N IS LARGER THAN 501*,/, X* ERROR MESSAGE FROM CUINT*,/)
	C
0065	RETURN
0066	END

0001	r		SUBROUTINE	SHEAR				
			SUBREUTINE PRESSURE DI	TO DERIVE SH ISTRIBUTION I	EAFS BY MCM NTEGRATION	ENT DIFFER	ENTIATION	0R ·
0002	L	3	COMMON/PED/	(A(1502,12),7 TCALI,ITM,NT	(1502),AX(1 ,NA,NPOLY,N	12),BX(112 S2,NINT,H,	1.CALI(15. EIM.HT4.A3	2),X(10), S,GA44AM,
0003		, ,	CCMMON/BLUE	E/X1(112),X2(YM(1),TM(1)	112),X3(112 .ITMAX.IXMA), TT(1502) X	.XX(1502.1	12),XM(1),
0004			COMMON/YELL	_Ch/TR(112),1	S(112)			
0005			DIMENSION S	51(2),52(3),1	S(2)			
0006			DATA SI/ SH	1E4 R . / . S2/	" C/ (P ' AE/	K','AE)'/,	LS/5,11/	
	С							
0007			READ BO1.DM	IN, DMAX				
	С							
0008			DC 725 I=1.	.114				
0009			DC 709 J=1.	NINT				
0010		709	TR(J)=XX(I	, J)				
0011			IFING.NE.01	GO TO 712				
0012			CALL DERIVE	ININT . H. TR. TS	51			
0013			GC TC 714					
0014		712	CALL INTEG	(NINT, AX, TR, 1	(5,0)			
0015		714	DC 720 J=1.	NINT				
0016		720	XX(I,J)=TSI	())				
0017		725	CENTINUE					
	C							
0018	r.		CALL CRUNCH	1				
	č		P & E / K & E = 0 . 5	5*R[*G*(H**2)	- FROM M-0	ANALYSIS		
0010	ι		DC 127 1-1	TTM				
0019			DC 727 1-1	T L NOT L NOTINIT				
0020		707	YY(1, 1)=YY	11.11/10.5*0	NNAN+ (-TM++	211		
0021		121	00 735 I=1.	L L L N T N T		<i>c</i> , ,		
0022			Y1(1)=Y1(1))/(0.5*04***	**(HTM++2))			
0023			Y2(1)~Y2(1)	//n.5*CANMAN	44 (HTM##2))			
0021		725	X2(1)=X2(1)	1/(0.5*GAMMA)	*(HTM**2))			
0020		())	XX(1)=XX(1)	1/(D.5*GAN¥A)	**(HTM**2))			
0020			NC 736 1=1.	ITN				
0028		736	TT(I)=TT(I))/(0_5*GAMMA)	(HTN**2))			
0020	r	. 50						
0020	C		CALL PAPEN	T(2)				
0020			CALL PAPED	1151.52.15.01	(IN.DMAX)			
00,50	c							
0031	. •		DC 744 1=1	• I T M				
0032			DC 744 J=1	NINT				
0033		744	XX[I,J]=XX	(I.J)*(0.5*G)	144A4* (HT4++	2))		
	c							
0034		801	FCRMAT(2F1)	0.0)				
	С							
0035	-		PETURN					
0036			END					

SHEAP

- 334 -

0001	SUBROUTINE SPLINE(NN,X,Y,M,S,T)
ſ	C SUBROUTINE TO FIT A CUBIC SPLINE TO A SET OF NN POINTS (X,Y)
0002	
0002	CLAMPUN/WHITE/IWANITUER(1900) DIMENSION X(1).Y(1).S(1).T(1) &(1500.3).B(1500) D(1500) HITEON
(
0004	IF(NN.GT.1501)GC TC 50
0005 -	N = NN - 1
0006	NM l = N - l
0007	DC 5 I=1,N
8000	5 H(I) = X(I+1) - X(I)
0009	DC 15 I=1.NM1
0010	
0011	A(1,2)=2=0
0012	A 1 1 2 2 - 1 4 0 15 - R (1 2 - 4 0) - 2 4 1 4 2 1 - 2 4 1 4 1 1 2 4 1 1 - 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 1 2 4 1 1 1 2 4 1 1 1
0014	$\Delta(1, 1) = 0$
0015	$\Delta(N \times 1, 3) = C$
0016	CALL ALGECN(NMI, A, B, P)
0017	DC 45 I=1.M
0018	IF(S(1).LT.X(1))GC TC 26
0019	DC 25 J=1+N
0020	IF(S(I).LE.X(J+1))GC TC 28
0021	
0022	
0022	
0023	26 PRINT 106-1
0024	
0025	28 IF(J.EQ.1)60 TC 30
0026	IF(J.EC.N)GO TO 40
0027	T(I)=(P(J-1)*(X(J+1)-S(I))**3+
	XP(J)*(S(I)-X(J))**3+(6.0*Y(J+1)-H(J)**2*P(J))*(S(I)-X(J))+
	X(6.0*Y(J)-H(J)**2*P(J-1))*(X(J+1)-S([)))/(6.0*H(J))
0028	
0029)+++++++++++++++++++++++++++++++++++++
0030	CC_LO_42
0031	40 T(1) = (P(1-1)) + (Y(1+1) - (T(1))) + + 2 + 6 + (D + Y(1) + 1) + (P(1) - (T(1))) + (P(1) + (P(1))
	$X \{ \{ \{ \{ 0, 0\} \} \{ \{ 1, 1\} \} \} \} \} \{ \{ \{ \{ 1, 1\} \} \} \} \{ \{ \{ \{ 1, 1\} \} \} \} \} \{ \{ \{ \{ 1, 1\} \} \} \} \} \} \{ \{ \{ \{ 1, 1\} \} \} \} \} \} \{ \{ \{ \{ 1, 1\} \} \} \} \} \{ \{ \{ 1, 1\} \} \} \} \} \} \} \} \} \} \} \} \} \} \} \} \} \}$
0032	45 CENTINUE
0033	IF(IWANT.EC.O)RETURN
0034	DC BO $I=1.M$
0035	IF(S(I)-LT-X(1))GC TC 52
0036	DC 50 J=1.N
0037	IF(S(1).LE.X(J+1))GD TC 54
8600	50 CENTINUE
0039	52 PRINT 106,1
0040	54 TE(J_E0_)160 TC 60
0042	IF(I_FQ_N)GD_TC_7D
0043	$DER[1] = (3 \cdot 0 + (P(J) + (S(1) - X(J)) + 2 - P(J-1) + (X(J+1) - S(T)) + 2) + 2 - P(J-1) + (X(J+1) - S(T)) + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$
	X6.0+(Y(J+1)-Y(J))-H(J)*+2+(P(J)-P(J-1)))/(6.0+H(J))
0044	GC TC 8C
0045	60 DER(I)=(3.0*P(J)*(S(I)-X(J))**2*6.0*(Y(J+1)-Y(J))-H(J)**2*P(J))/

.

SPLINE

- 335 -

- 336 -

S	Ρ	L	I	V	E		

	(L, L) + × 0. ∂) X
0046	06 JT 30
0047	70 DER(1)=(-3.0*P(J-1)*(X(J+1)~S(1))**2+6.0*(Y(J+1)~Y(J))+
	XH(J) * *2 * P(J-1))/(6.0 * H(J))
0048	80 CONTINUE
0049	RETURN
0050	90 PRINT 107
	C .
0051	106 FCRMATLED THE *,15, TH ELEMENT OF ARRAY S IS DUT OF RANGE
	XERROR MESSAGE FROM SPLINE 1
0052	107 FORMAT ("O N IS LARGER THAN 1501, SCRRY")
	C
0053	RETURN
0054	END

SUBU

0001	SUBROUTINE SUBU(X.U)
	CSUBROUTINE CALLED IN CUINT
0002	DIMENSION U(6,6)
0003	DC 5 I=1,6
0004	DC 5 J=1,6
0005	5. U(I,J)=0.0
0006	- DC 15 I=2,6
0007	15. $U(I,I) = X$
0008	DC 25 I=1,5
0009	$25 \cup (1+1,1)=1.0$
0010	U(2,3)=0.5*X*X
0011	U(3,4)=U(2,3)
0012	U(4,5) = U(2,3)
0013	U(5,6)=U(2,3)
0014	U(2,4)=U(2,3)*X/3.0
0015	U(3,5)=U(2,4)
0016	U(4,6)=U(2,4)
0017	U(2,5)=U(2,4)*X/4.0
0018	U(3, 6) = U(2, 5)
0019	U(2,6)=U(2,5)*X/5.0
	C
0020	RETURN
0021	END

- 338 -

YDISP

0001				SUBROUTINE YDISP
		С С		SUBROUTINE TO DETERMINE DISPLACEMENTS BY DOUBLE INTEGRATION OF MOMENTS
0002		C		CCMMON/RED/A(1502,12),T(1502),AX(112),BX(112),CALI(15,2),X(10), X TCALI,ITM,NT,NA,NPCLY,NS2,NINT,H,EIM,HTM,AGS,GAMMAM,
0003			-	CCMMCN/BLUE/X1(112),X2(112),X3(112),TT(1502),XX(1502,112),XM(1), X YY(1),TM(1),TTMAX,TXMAX
0004			-	CCMMCN/YFLLCW/TR(112), TS(112)
0005				CCMMCN/BLACK/DIS(1502,3)
0006				DIMENSION SI(3),S2(1),LS(2)
0007				DATA' \$1/*DISP*,*LACE*,*MENT*/,\$2/*Y/H*/,LS/12,3/
		С		
0008				READ(21)XX
0009				READ 381, DMIN, DMAX
0010	1.17			$DU_{201} = 1, 11M$
0011			201	
0012		r	201	$D_1 S(1, J) = D_1 S(1, J) \neq E_1 M$
		C C		DETERMINE DISPLACEMENTS
0012				DC 250 1=1-11M
0014				DC 212 J=1,NNT
0015			212	TR(1) = XX(1, 1)
0016				CALL INTEG(NINT-AX-TR-TS-1)
0017				CALL INTEG(NINT-AX-TS-TR-1)
0018				EE = (TE(1) - TE(NINT) + DIS(1,2) - DIS(1,1))/(AX(NINT) - AX(1))
0019				FF=DIS(1,1)-(EE*AX(1))-TR(1)
0020				DC 237 J=1+NINT
0021			237	XX(1,J)=(TR(J)+(EE*AX(J))+FF)/EIM
0022		с	250	CENTINUE
0023				CALL CRUNCH
		С		
0024				DC 274 I=1,ITM
0025				DC 274 J=1.NINT
0026			274	MTH({L₀I}XX=(L₀I)XX
0027				DC 277 I=1.NINT
0028				X1(I)=X1(I)/HTM
0029				X2(1)=X2(1)/HTM
0030			277	X3(I)=X3(I)/HTM
0031				XM(1)=XM(1)/HTM
0032				0C 278 I=1,ITM
0033			278	TT(])=TT(])/HTM
0001		L		
0034				$\begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A \downarrow I \\ A \downarrow I \end{bmatrix} = \begin{bmatrix} A $
0035	-	r		UNEL FARLUITSIJSZJESJUMINJUMAXI
0026		L		
0030				
0038			280	200 200 0-14/01/01
0030			200	
0040				
0041			289	
		C	ເປັນ	
		~		

YDISP

0042	r	381	FCRMAT(2F10.0)
0043 0044	U		RETURN

- 340 -

BLK DATA

0001	BLOCK DATA
0002	CCMMCN/WHITE/IWANT, DER(1500)
000?	CCMMON/PURPLE/JWANT,FIR(500),SEC(500)
0004	DATA IWANT/0/,JWANT/0/
0005	END

APPENDIX C

LIST OF SYMBOLS

Symbols are defined where they first appear in the text. A summary of the symbols employed and their dimensions is given in this appendix.

LOWER CASE SYMBOLS

Symbol	Definition	Dimensions
a	externally applied acceleration	LT ⁻²
a _R	set of dimensionless external acceleration ratios	-
đ	thickness	L
du	digitizer unit	
e	void ratio	
fa	elastic strength of aluminum	FL^{-2}
f _m f _p	frequency of vibration of model, prototype	r^{-1}
f ₁	fundamental frequency	T^{-1}
g	gravitational acceleration	Lr^{-2}
^g m ^g p	gravitational acceleration of model, prototype	LT^{-2}
h	height	L
i	angle of backfill slope	o
k	number of dimensionless groups	-
1	length of beam	L

Symbol	Definition	Dimensions
n	number of drainage boundaries	nangkan ngan digan tahun tahun (yan) dari seber milan migar ngan yapang
n	number of parameters	-
t	time	Т
tc	consolidation time	T
^t cm ^t cp	consolidation time of model, prototype	T
t _{mtp}	model, prototype time	Т
^u o	externally induced displacement	L
^u om ^u op	externally induced displacement of model, prototype	L
^u oR	set of dimensionless externally induced displace- ment ratios	L
v	lateral velocity	LT ⁻¹
x,y,z	length and distance in coordinate directions	L
У	wall displacement	L

- 342 -

UPPER CASE SYMBOLS

Symbol	Definition	Dimensions
A	constant of integration	under an generaliser of descending of the product of the second second second second second second second second
В	constant of integration	L
C _a	expression dependent on Mononobe-Okabe parameters	
C _v	coefficient of consolidation	$L^2 T^{-1}$
E	Young's modulus	FL^{-2}
EA	Young's modulus of aluminum	FL^{-2}
E _m E _p	Young's modulus of model, prototype	FL. ⁻²
E _R	set of dimensionless Young's modulus ratios	
EI	stiffness per unit width of wall	FL^2L^{-1}
F	typical force dimension	F
F()	function of	-
F.S.	factor of safety	
G	shear modulus	${\rm FL}^{-2}$
G _m G _p	shear modulus of model, prototype	FL^{-2}
G()	function of	-
G.S.	Ground surface	
H	height	L
HA	height at which resultant force acts	L
H f	depth of frost cover in front of wall	L
H _m H _p	height of model, prototype	L
I	moment of inertia per unit width of wall	$L^{4}L^{-1}$

Symbol	Definition	Dimensions
ĸ _A	coefficient of static active lateral earth pressure	₽. ₩
^K AE	coefficient of total active lateral earth pressure	
K _{PE}	coefficient of total passive lateral earth pressure	
L	typical length dimension	L
	length scale of model, prototype	L
L _R	set of dimensionless length ratios	
М	typical mass dimension	М
М	moment	FLL ⁻¹
MA	active static moment	FLL ⁻¹
MAE	active total (static + dynamic) moment	FLL^{-1}
MD	design moment	FLL ⁻¹
M	overturning moment	FLL ⁻¹
M _R	resisting moment	FLL ⁻¹
MMI	Modified Mercalli Intensity	
N	centrifuge gravitational acceleration scale factor	
N	ratio of prototype to model length scales	
Р	pressure	FL^{-2}
P	externally applied load	F
PA	active static resultant wall force	FL ⁻¹
P _m P _p	externally applied load of model, prototype	F
PAE	total (static + dynamic) active wall force	FL^{-1}

.

Symbol	Definition	Dimensions
P _{PE}	total (static + dynamic) passive wall force	FL ⁻¹
P_{R}	set of dimensionless external load ratios	-
Q	shear force	FL ⁻¹
Q	externally applied stress	FL^{-2}
Q _m Q _p	externally applied stress of model, prototype	FL^{-2}
Q _R	set of dimensionless externally applied stress ratios	
RA	maximum static active pressure	FL^{-2}
RAE	maximum total (static + dynamic) active pressure	FL^{-2}
RW1	Retaining Wall #1	
RW2	Retaining Wall #2	-
S	unit section modulus of cross section	$L^{3}L^{-1}$
т	typical time dimension	T
T	time factor of consolidation	•
T _m T _p	time factor of consolidation of model, prototype	
W	weight of soil wedge behind wall	FL^{-1}
W	weight of backfill	FL^{-1}

- 345 -

- 346 -

GREEK SYMBOLS

Symbol	Definition	Dimensions
β	angle of wall back slope	0
γ	unit weight of soil	FL ⁻³
δ	angle of wall-soil friction	ο
0	$\tan^{-1}[k_{h}^{\prime}/(1-k_{v}^{\prime})]$	
V	Poisson's ratio	-
$v_{m}v_{p}$	Poisson's ratio of model, prototype	_
ρ	mass density	ML ⁻³
$\rho_{m}^{}\rho_{p}^{}$	mass density of model, prototype	ML ⁻³
σ _c	internal stress	FL ⁻²
^o cm ^o op	internal stress of model, prototype	FL ⁻²
σ _{oR}	set of dimensionless internal stress ratios	
đ	angle of internal friction of soil	0
ΔP_{AE}	active wall force increment due to earthquake load	FL ⁻¹

APPENDIX D

FINITE ELEMENT COMPARISON

For an analytical comparison, it was decided to perform a finite element analysis on the wall-soil system of test 1CN0002 using the linearly elastic structural analysis program SAPIV (Bathe, et. al. [1]).

The finite element grid was first drawn up as shown in Figure D.1 with the retaining wall (shown with speckles) embedded in the soil. Prototype dimensions were used (i.e., wall height was 18 ft) and the boundaries were determined to be those existing in a postulated prototype centrifuge bucket (i.e., 50 times larger than their actual size). The wall illustrated is much thicker than that which would be the prototype (1 ft thick vs. 3.15" thick if it were aluminum), but its Young's Modulus was chosen much less so that the stiffnesses EI would be the same. This was done in order to get a more suitable aspect ratio for the elements which form the wall and base. Incompatible modes were used in the wall and base quads in order to have better bending behavior in these elements, especially since the wall was modelled with only one layer of elements.

Unfortunately, the soil elements had to be attached to the beam (wall) elements as there was no provision in the code to have sliding between elements. This would have been more desirable.

- 347 -

- 348 -

The soil shear moduli were determined from the relationship given by Seed and Idriss [54] between the shear modulus and the confining pressure:

$$G = 1000 K_2 (\sigma'_m)^{1/2}$$

in which

G = shear modulus of soil

 σ'_m = mean principal effective stress.

 K_2 = a parameter which is primarily a function of void ratio and strain amplitude

Because of the high strain range involved in a retaining wall problem, K_2 was chosen from the extreme right of Figure D.2 to be 4. The soil moduli were then calculated from equation (D.1) for the various depths, making some adjustments for the soil in the vicinity of the toe of the wall for the fact that the soil level in front of the wall is lower than that in back.

First of all, the problem was run for a static gravity body load in the negative vertical direction. The problem was then run dynamically as a forced response problem using modal superposition and the free-field acceleration record (prototype) of test 1CN0002 (Figure 5.5a) in the horizontal direction. The damping used was assumed 10% of critical. The total dynamic response was then obtained by superposition of the static response and the lateral dynamic one.

(D.1)

FIGURE D.2 - FROM (54)

The first six natural frequencies of the finite element system were found to be 1.188 Hz, 1.388 Hz, 1.45 Hz, 1.987 Hz, 2.449 Hz, and 2.536 Hz. Only the 6th frequency of 2.536 Hz even resembled the actual fundamental frequency of 2.57 Hz and its mode shape is most likely very different.

Figures D.3, D.4, and D.5 illustrate the static and maximum dynamic displacement, pressure, and moment distributions along the wall for both the centrifuge model test and the finite element problem. As can be seen from these figures there is virtually no correlation between the two in any of the cases.

From this illustration one can see the perils in using elastic theories (which are the basis for the finite element program used) in trying to model the retaining wall problem which after all is the classic most simple plasticity example. Elastic solutions for retaining wall problems should be avoided.

- 353 -

