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SUNMARY

The existing theories of base pressure are described in
detail and are shown to be unsatisfactory. An "exact" analysis
is then made of the base pressure in an inviscid fluid, both
for two-dimensional and axislly-symmetric flow. It is shown
that for & given body there are, in general, an infinite number
of possible solutions satisfying all necessary boundary con-
ditions. For the particular case of inviseid flow about
projectile-shaped bodies only one solution is possible, but it
corresponds to zero base drag. This latter result is generalized
end the following conjecture made: it is impossible for a steady
axially-symmetric inviscid supersonic flow to converge toward,
and to meet the axis at a finite (non-zero) angle.

Since the inviseid-fluid theory does not adequately describe
the conditions in & real fluid, an approximate theory for base
pressure in a viscous fluid is developed. This latter theory
is based in part on the inviscid-flow caleulations and in part
on dimensionel esnalysis. It includes the effects of liach number,
Reynolds number, body shape, and type of boundary-layer flow.

A comparison of the theory with the available experimental data
indicates satisfaetory agreement.

It is shown that under certain conditions the airfoil
contour for minimum profile drag in & viscous fluid necessarily
has a blunt trailing edge. Approximate calculations indicate
that very substantisl reductions in profile drag are possible
by designing asirfoils with blunt trailing edges. Consideration
is briefly given to the interference of a support rod on base

pressure measurements in & supersonic wind tunnel.
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PART I. INTRODUCTION

The problem investigated herein is concerned with the
pressure acting on the base of & bodyvmoving at a supersonic
velocity. This problem is of considerable practical as well as
theoretical importance since in some cases the base dresg asmounts
to as much as two-thirds of the total drag of a body. In the
past ten years numerous measurements of base pressure have been
made both in supersonic wind tunnels and in free flight. These
experimental investigations have had no theory to guide them,
and as a result, the present day knowledge of base pressure is
very limited.

- The existing theories of base pressure are unsatisfactory
either for predicting the base pressure or for correlating the
various experimental measurements. These theories and their
many shortcomings are discussed in detail in part II of this
thesis. It is apparent that a completely new theory is needed.

The problem of base pressure in & real fluid is so
tremendously complicated that a satisfasctory mathematical treat-
ment of the real physicel situstion is hopeless in the present
state of gas dynamics. Accordingly, some simplified approach is
necessary. There are two such approaches that can be taken in
the present problem. First, the actual physical problem could
be idealized and an exact mathematicsl anslysis masde of base
pressure in an inviscid flow, Second, the actual physical
problem could be treated by an approximate mathematical analysis.
These two approaches are taken up in detail in parts III and IV,
respectively.

Although the central problem of this investigation is of



direct importance to the field of ballistics, it is to be
emphasized that the fundamental physical phenomena involved are
in principle exactly the same as those encountered in many
aerolynamic problems. The base-pressure problem may be thought
of as 2 special cese——and probably the simplest case—of the
many flow-separation problems ocecurring in supersonic aero-
dynamics. The problem of base pressure on a body without
boat-tailing is relatively simple compared 1o other separation
problems becsuse the point of separation always remains fixed
regardless of the ﬁach;number; Reynolds number, or type of
boundary~layer flow. The more general problem involves sepsration
on a curved surface where the point of separation varies with
each of the above-mentioned parameters. A satisfactory under-
standing of these more complex separation phenomena, however,
will probably not be reached until the more simple problem of

base pressure is well understood.
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PART II. EXISTING THEORIES OF BASE PRESSURE

The existing theories of base pressure are necessarily
phenomenological in nature. Bach theory follows the same general
pattern: a model of the mechanism which is assumed to govern
the flow is first set up, and then the laws of fluid mechanics
are applied to caleuléte the pressure scting on the base of the
body. The success or failure of such theories, therefore, de-
pends almost entirely on the correctness of the assumed flow
model on which each theory is based. Since the published liter-
ature on the existing theories of base pressure consists of only
three papers, two of which are rarely referred to, a complete
but brief account of these theories is given in the remainder
of this section.

To the author's knowledge the first attempt at formulating
& mechanism which governs the supersonic flow over the base of
a body of revolution was given by lorenz (reference 1). He
reasoned that due to the supersonic speed of the body there is
& tendency for a very low pressure to exist at the base, but
that & vacuum could not exist there since the maximum possible
velocity with which the air could flow laterally into the space
behind the base would be the kinetic velocity of the air molecules.
Although Lorenz did not employ this concept any further in order
to calculate the base pressure, it is not difficult to do so.
The final result is quite interesting even though the concept
on which it is based is incorrect.

From the simplified kinetic theory of a perfect gas the
mean kinetic velocity, L&i, of the molecules is known to be

given by
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where Gbis the velocity of sound of the fluid just outside the
dead-air region. LetlJbbe the velocity corresponding tod,, then

the pressure P, correspouding to this veloecity would be the saue

as the base pressure. The energy equation is
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where U, is the free-stream velocity. ZEquation (2.1] together

with the Pythagorean theorem and the concept of Lorenz gives
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The base pressure coefficient is determined from the velocity

by using the well-known reletion for isentropic flow
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Hence, according to the hypothesis of Lorenz,
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This equation is plotted in figure 1. As a basis of comparison

for the various theories, approximate experimental values taken
at relatively large Reynolds numbers (reference 2] are also
shown in this figure. Although Lorenz's concept is certainly
not correct, it may be seen from the curves that at Mach numbers
greater than sbout 3 the base pressure calculated from this er-
roneous concept is accidentally in gquite good agreement with
the experiments.

The first serious mathematical sttempt to develop & complete



theory for the base pressure was given by Gabeaud in 1931 (refer-
ence 3). He pictured the flow in the wake as consisting of =&
series of vortex rings periodically trailing from the base in
much the same way as vortex filaments are shed in the two-
dimensional Kérman vortex street. By assuming that the drag is
equal to the transport of momentum of the vortex rings, and by
utilizing an electro-magnetic enalogy (of questionable validity),

Gabesud ceslculated the base pressure ceefficient to be
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As is illustrated in figure 1, this theory does not even approxi-
mately agree with the experimental values. The above equation
indicetes & vacuum for the base pressure at Mach numbers greater
than about 2.4. Such a condition is an obvious impossibility.

A sufficient reason for the large discrepancy between Gabeaud's
theory and experiment is that the base drag at supersonic speeds
does not appear in the form of vortex rings in the weke of a

body; instead, it appears in the form of shock waves extending
laterally from the edge of the wake to distances far into the
fluid. Consequently, even though the mechanism pictured by Gabeaud
may be approximstely correct at low subsonic speeds (since it

is the exially-symmetric snalogy to the Kérmén vortex trail) it
must be discarded as & basis for calculation in supersonic flows.
In Gabeaud's theory there is, however, an interesting feature

which may be in qualitative &ccordance with experiment even

though the theory itself is based on entirely incorrect assunptions.

On passing through the speed of sound, the theory indicates &



sudden increase in the base drag. There is some recent experi-
mental evidence for the occurrence of such a phenomenon, but as
yet no definite eonclusions can be drawn.

About one year after Gabeaud's theory appeared, von Kdrman
(reference 4} set up a different model for determining the flow
over the base, He assumed that the ratio of the velocity of
the fluid Jjust outside the dead-sir region to the velocity of
the projectile was independent of Mach number, and hence equsal
to the value existing for low-speed flows, If L& is again the
veloeity of the fluid just outside the dead-air region, then
von Kérmen's assumption requires that

2
U
2

U
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From the equations for isentropic flow, the pressure coefficient
is related to the velocity ratio and the free-stream Mach number
by (2.2). Hence the final equation for the base pressure coef-

ficient according to von Kermén's essumption is
¥
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This function is also illustrated in figure 1. The values of

Py as determined from experiment range from sbout -0.20 to -0.24.

)
If -0.20 is used (this is the most favorable value to choose
for von Kédrmén's theory), then (2.5) gives the right order of
megnitude for the base pressure except at Mach numbers grester
than shout 4, for which this theory also gives a vacuum. There
is no evident reason for the basic assumption on which this

theory rests. Von Karmen, himself, terms it as only a "plausible"

assumption, without giving any Jjustification for it.



Lorenz, Gabeaud, and von Kdrmén esch had in mind the practical
problém of ealculating the base drag of a projectile. In retro-
speet it is somewhat surprising that of the three theories the
only one which is even in approximate agreement with experimental
measurements on projectiles traveling at Mach numbers greater
than about 2.5 is the theory based on the concept of lLorenz—

a concept which in principle is known to be completely incorrect.
This clearly illustrates that agreement between any phenomeno-
logical theory of base pressure and experimental measurements
does not necessarily mean that the phenomenological assumptions
on which the theory is based are even approximately correct.

The status of the existing theories of base pressure ap-
pears, therefore, to be as follows: they give, at best, only
the right order of magnitude for the base pressure, and this
for only a limited region of supersonic Mach numbers. The many
shortcomings of these theories are attributable to the fact that
the phenomenological assumptions on which they are based have
no sound theoretieal foundation.

It is clear that a completely different approach is needed
in order to develop a satisfaetor& theory. Moreover, it is also
evident that an exact mathematical treatment of the problem
would have to combine the effects of compressibility, viscosity,
and pressure gradient——this is certainly out of the question at
the present time. Accordingly, two other approaches can be
taken:

(1) &n exsct mathematicel treatment can be made of the idealized
physical problem of base pressure in an inviseid fluid; or
(2) an approximate mathematical treatment can be made of the

actual physical problem of base pressure in a real fluid.



The first approach is the more direct of the two, and is teken

up in some detail in part III. Unfortunately, the results of

part III indicate that a strictly inviscid-fluid theory cannot
possibly be satisfactory. Conseguently, the second approach is
then taken up in part IV. This latter approach uses dimensional
analysis as much as possible, and has for its goal the development
of a theory which is based on a minimum number of phenomenological
assumptions yet includes all the important variables (Mach number,
Reynolds number, type of boundery-layer flow, and body shape)

that are expected to have an appreciable effect on base pressure.



PART III. BASE PRESSURE IN AN INVISCID FLUID

Throughout part III the effects of viscosity are completely
ignored and the flow field determined for & strictly invisecid
fluid. Thus, for the time being, both the existence of boundary-
layer flow and the mixing of dead-air with fluid outside a free

streamline are excluded from consideration.

1. Two-Dimensional Inviscid Flow

(a) Semi-infinite two-dimensionsl body. In order to achieve

the greatest possible simplicity at the outset, the case of a
semi-infinite body will be considered first. By this is meant
a body of constant thickness which extends from the base to
"minus infinity™ (figure 2a)., It is assumed throughout this
jinvestigation that a dead-air region of constant pressure exists
just behind the bese., This assumption is necessary, since, if
no dead-air existed the flow would have to be deflected 90 degrees
by & single shock wave in order to bring the fluid to its original
free-stream direction. Sueh & situation clearly is impossible
because no flow can be deflected through more than 46 degrees
by a single shock wave.

The present problem, then, is to determine the detailed
flow pettern in the neighborhood of the base. Since the effects
of viscosity are at present excluded from consideration, the
problem is (by symmetry) exactly the seame as that of determining
the flow over a two-dimensional, flat, horizontal surface which
has & step in it (figure 2bj).

A reasonable quesfien to ask first is whether or not a

possible flow pattern can be constructed which satisfies all
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necessary boundary conditions including the requirement that
the pressure in the dead-air region be constent. This question
is easily answered in the affirmative by constructing such a
solution. For exemple, suppose the free-stream Mach number is
1.50 and some perticular value of the base pressure coefficient,

say Py=-0.30, is arbitrarily chosen. The base pressure coef-

ficient is defired by
b - Peo

B = 1o Ux (3.1)
where p, is the base pressure and p_, o_, end Ugare, respec-
tively, the pressure, density, and velocity of the free stream.
Since the base pressure is prescribed, the initial angle-of-
turning through the Prandtl-Meyer expansion at B (figure 2b} is
uniquely determined, and in this particular case is equal to
12.4 degrees. The pressure, and hence the velocity and Mach
nunber, must be constant along the free streamline BC. For the
particulsr example under consideration the Mach number along
the free streamline is easily calculated to be 1.92. In two=-
dimensional flow (with no interaction from a second family of
Mach waves) the pressure depends énly on the angle of inclination
of a streamline, hence it follows that BC is a straight line.
The triangle BCE is thus a region of uniform flow having the
same pressure as the dead-air region. 4&s the trailing shock wave
(figure 2b) extends outward from E to infinity, interference
from the expansion waves gradually decreases its strength until
it eventually becomes a Mach wave. That part of the shock wave
from ¢ to E must deflect the flow through the same angle as the
expension waves originally turned it (12.4 degrees for the par-

ticular example under consideration). This deflection certainly
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is possible since the Mach number in the triangle BCE is 1.92
which, sccording to the well-known shock relationships, is ca-
pable of any deflection smaller than 21.5 degrees. 4&s the flow
proceeds downstream from the trailing shock wave CEF, the pres-
sure gradually approaches the free-stream static pressure, thus
satisfying the boundary condition at infinity. The shape of
the slightly curved shock wave extending from E to infinity is
approximately & parabola with focus at the origin of the Prandtl-
Meyer expension wavelets.

It is evident that a possible flow pattern has been con-~
structed which satisfies all the prescribed requirements as
well as the necessary boundary conditions. The immediate question
to be asked now is whether the particular flow pattern constructed
is the only possible one for the particular Mech number (1.50)
under considerstion. The answer obviously is no, since there
is nothing distinguished about the number -0.30 which was arbi-
trarily chosen for the base pressure coefficient. Any value
less (in absolute magnitude) than -0.20 also would have permitted
a flow pattern to be constructed and still satisfy all boundary
conditions. On the other hand, consider what would happen if
values of the arbitrarily-chosen base pressure are gradually
decreased from that value corresponding to a base pressure coef-
ficient of -0.30. The angle-of-turning through the Prandtl-lleyer
expansion would increase and point C simultaneously would move
towerd the base. The base pressure can be decressed in this
manner only until & condition is reached in which the shock wave
at € turns the flow through the greatest angle possible for the
particular locel Mach number existing slong the free streamline.

The base pressure cannot be further reduced and still make it
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possible for steady flow to exist. The flow pattern corresponding
to this limiting condition of a meximum-deflection shock wave

can be considered as a ™distinguished"™ flow of all those pos-
gible. There are obviously an infinite number of possible flows
for a given free-stream Mach number, but only one distinguished
flow.

This distinguished or limiting value of the base pressure
coefficient can be easily calculated as a function of the free-
stream Mach number by inverting the above procedure of con-
structing possible flow patterns. Thus, for a given value of
the local Mach number along the free streamline & distinguished
flow pattern can be coxnstructed by simply’requiring that the
angle-of-turning be equal to the meximum deflection angle

possible for & shock wave at that particular local Mach number.

The appropriate value of the free-stream kach number is then 4i
rectly calculated from the angle-of-turning and the local Mach
number along the free streamline. This process can be repeated
for different values of the local Mach number along the free
streamline and a curve drawn of the limiting base pressure
coefficient as a function of Mach number. Such & curve is
presented in figure 3. The shaded area represents all the
possible values of the base pressure coefficient. For & given
Mach number M_, the upper bound of the shaded area corresponds
to the distinguished flow condition.

There is certainly no reason apriori to say that for a
given M the distinguished flow pattern represents that par-
ticular one which most nearly approximaetes the flow of a real
fluid. The curve representing these distinguished flow patterns

can be considered simply as being the curve of maximum base drag
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possible in an inviscid flow. This is the only interpretation
that will be given to this curve for the time being. Since it
is these distinguished solutions which will be singled out later
for further use, a specisl symbol Pbi will be used to designate
the base pressure coefficient of such flows. It is evident
from a comparison of figures 1 and 3 that the values of Pbi for
two-dimensional flow correspond to very high base drags, being
elmost as high as if a vacuum existed at the base. At present
thére is no experimental data available for two-dimensional
bodies, hence any conclusions obtainable from a comparison of
inviscid theory and experiment must await future experimental
results.

(b) Finite two-dimensional body. A superficial examination

of the flow pattern around finite two-dimensional bodies, such
as those sketched in figures 4& and 4b, will suffice to show
that in two-dimensional flow there is no essential difference
between the base pressure for & finite body end that for the
semi-infinite body. If the body is mede up of several straight-
line segments, as in figure 4a, then the base pressure would be
exactly that corresponding to a sémi-infinite body whose free-
stream Mach number is equal to the Mach number Ml existing in
the region of flow that is parallel to the original flow direction
(figure 4a). In two-dimensional flow it is also true that to
second order in the deflection angles the liach number Ml and
the pressure p; are equal to the corresponding values in the
free stream. Hence, for such body shapes the base pressure
coefficient is the same (to the second order) as for the semi-
infinite body at the same free-stream Mach number.,

If the body contour consists of curved lines, as in figure 4b,
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the situation is, for all practiceal purposes, still the same.
The Mach number Ml just shead of the first expansion wavelet
issuing from the base is not quite constant but varies slightly
from A to G. It is the Mach number and pressure distribution
along the line AG which determines the base pressure coefficient.
If the body curvature is not large, then the curvature of the
bow shock wave would not be large; hence the influence of the
Mach wavelets of the second family of characteristics (those
reflected from the bow shock wave} would not be large. The
pressure would then depend only on the angle of inclination of
the flow, as is the case for the semi-infinite two-dimensional
body.

A1l of the foregoing presupposes that the angleﬁ(figure 4b)
is less than the maximum shock-deflection angle possible for
the particular Mach number existing along the free streamline
BC. If €> is larger than this critical value separation would
necessarily occur upstream of the base in an inviscid
fluid.

In summary, it can be said that, for all practical purposes,
the distinguished base pressure céefficient for a finite body
in two-dimensional inviscid flow is the same as that for a semi-
infinite body. There are, however, an infinite number of possible

solutions for each body shape.

2. Axially-Symmetric Flow

(a] Semi-infinite axially-symmetric body. In principle,

exactly the same method of procedure can be used for inviscid
axially-symmetric flow as was used for inviscid two-dimensional

flow. Only the details of the method need to be different;
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they will be somewhat more involved and considerably more tedious
to carry out than the corresponding two-dimensionsl-flow calcu-
lations. In axially-symmetric flow the expansion wavelets
issuing from the corner of the base are not straight lines as
they are in Prandtl-lieyer flow. The flow conditions do not
depend solely on the inclination of the streamlines at a given
point, but depend also on the whole history of the flow upstream
of the Mach lines passing through that point. The free stream-
line cannot be straight but must be curved.

In order to construet possible flow patterns as was done
in the two-dimensional case, the method of characteristics must
be used and each flow pattern built ﬁp step by step. The hodo-
graph net in the velocity plane of each flow pattern must also
be built up step by step along with the net of Mach lines in
the physical plane. The details of the method of characteristics
for exially-symmetric flows will not be explained here as they
are described in detail in reference 6.

Using the characteristics method the inviscid flow field
corresponding to a given value of the base pressure coefficient
can be constructed for any given ﬁalue of the Mach number. The
shape of the free streamline is, of course, determined by the
condition that the pressure and hence the velocity must be
constant along it. An example of such a construction for a
free-stream Mach number of 1.5 is given in figure Ba. In this
particular case the base pressure coefficient which has been
chosen (arbitrarily) is -0.25. It is to be noted that there
is & striking difference between the axially-symmetric case
(figure 5a) and the two-dimensional case (figure 2b). The in-

viscid flow pattern for the sxially-symmetric case cannot be
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constructed all the way down to the axis of symmetry. This is
because the lMach number along the free stireamline in the case
under consideration is 1.84, which, at the most, is capable of
deflecting a streamline only 19.9 degrees by a shock wave. As
is illustrated in figure 5a, the angle of inclination of the
free streamline for this example is already 19.9 degrees at a
value of r/ro==0.552, where r is the radial distance from the
axis and r =D/2 is the radius of the body. Since the angle of
inclination of the constant-pressure free streamline would con-
tinue to increase monotonically as the axis is approached, the
flow pattern of figure 5a cannot be constructed farther than
the point shown (r/r,=0.552) and still leave a provision for
the flow to be deflected through & shock wave and become parallel
to the axis of symmetry.

This phenomenon is not a conseguence of the particular Mach
number and base pressure selected. In figures &b, bc, 04, and
be several other examples are presented which illustrate the
flow for different values of Mach number and for different values
of base pressure coefficient. In each case the free streamline
has been terminated at the point where the local angle of incli-
nation is equal to the angle corresponding to the greatest
possible deflection by a single shock wave. It is evident that
none of the flow patterns could be constructed down to the axis
of symmetry. Altogether, about five times as many flow patterns
were constructed (by the characteristics method) as are shown
in figure 5; in no case could the flow be constructed all the
way down to the axis.

It is not necessary, however, to discard such flow patterns

as useless solutions just because the flow cannot be constructed
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all the way to the axis. Instead, the particular flow field of
figure 5a, for example, can be considered as & possible flow
for a body of revolution which has & rod of dismeter 4=0.582D
attached to the base and extending along the entire axis down-
stream to infinity (figure 6). Ilioreover, if this is done, then
the trailing shock wave for such a flow turns the free stream-
line through the greatest deflection possible for that particular
free-stream Mach number., The flow field is therefore the
"distinguished"™ flow field of all those possible for the given
Mach number and the given type of configuration shown in figure
6. Just as in the casse of the two-dimensionel body, there are
also an infinite number of possible flow patterns for the body
of revolution with & rod attached. This is true because for a
given configuration (e.g. figure 5a) as many additional flow
patterns as desired cen be constructed by simply selecting the
base pressure to be any value larger than that corresponding

to the distinguished flow.

The distinguished flow pattern is to be given the same
physical significence for axially-symmetric flow as it was for
two-dimensionsal flow; i.e., the corresponding base pressure
coefficient (Pbi) represents the meximum base drag and hence
the meximum entropy incresase possible for an inviscid flow about
the given configuration.

Clearly, by choosing different values of the base pressure
coefficient for a fixed Mach number, the inviscid solutions
worked out by the method of cheracteristics enable a plot of
Pbi ageinst 4/D to be msde. By repeating this procedure for
several different values of the free-stream Mach number, Pbi

can be determined ss & function of both the Mach number and
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the ratio 4/D. The values of Pbi for /D=0 would correspond
t0o the case of the semi-infinite body without any rod attached,
and the values for d/D::l.O would correspond to the previously
treated case of two-dimensional flow.

The procedure outlined azbove has been carried out for free-
stream Mach numbers of 1.25, 1.5, 2.5, and 4.0. The reader will
be spared all the tedious details because they are not essential
for an understanding of the end resultsf The final curves of
Pbi against 4/D for constant values of the Mach number are shown
in figure 7. It is to be unoted that for each curve the value
of Pbi extrapolated to &/D=0 is so extremely small, even from
the most optimistic viewpoint, that it is not even of the same
order of magnitude as the experimentally measured values. In
fact, on the basis of the curves shown in figure 7, the only
possible base pressure coefficient for the inviscid flow over
& body of revolution without a rod behind it appears to be zero.
This means that the base pressure is equal to the free-stream
static pressure and the base dreg is zero. The distinguished
flow patterrn and the infinity of possible flows for &/D>0 de-
generate into a single trivial solution corresponding to zero
base drag for d4/D=0.

This result appears anomalous on first thought, particularly
when one remembers that the coefficient Pbi represents the
maximum possible base drag that can exist in en inviscid fluid.
An explanetion can be obtained from a consideration of the
equations of motion since they are the basis for the method of
charecteristics. This explanation, however, is not essential
for an understanding of the mein conclusions regarding base

pressure, and hence is presented as Appendix A. It may be noted
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here, though, that the considerations given in appendix & also
lead to the following generalization of the result just notead
for the particular case of base-pressure flows:

It is impossible for & steady axially-symmetric

inviseid supersonic flow to converge toward, and  (3.6)

to meet the axis at a finite (non-zero) angle.
As explained in appendix A, this statement is to be considered
as & conjecture rather than &s a rigorously-proven mathematical
theorem. Regardless of the extent of mathematicel rigor behind
the general statement (3.6), it is nevertheless certain that
the base-pressure flows for an axially-symmetric body in an in-
viseid fluid are radically different from those observed in a
real fluid. This strongly suggests that viscosity is the es-

sential variable determining the base pressure.

(b) PFinite exially-symmetric body. Due to the influence

of the ogival nose on any projectile-shaped body, the Mach number
Ml (figure 9a) and the pressure p; are different from their
respective values M, and p, in the free stream. In contra-
distinetion to the case of two-dimensional flow, this difference
would be considersble even if the body were composed of straight-
line segments and the afterbody were parallel to the undisturbed
flow direction. Actuslly there is a slight outward gradient in
the flow charscteristies just ahead of the base (subseript 1),
but for practical purposes M; end pj can be taken as the values
averaged from point A to point G (figure 9aj}. With this inter-
pretation, the base pressure on the finite body {with a rod
attached) must be the same as that scting on & semi-infinite

body which is immersed in & free stream of liach number and
pressure equal to Mj and pj, respectively.

It is clear that when there is no rod behind the body the
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same difficulty exists as in the case of the semi-infinite
axially-symmetric body; the flow cannot meet the axis of sym-
metry. This means that the free streamline must eventually
become parallel to the sxis as it passes downstream, as illus-
trated in figure 9b. Since the pressure at infinity is equal
to the free-stream static pressure, it follows that the only
possible base pressure in the strictly inviscid flow is again
the free-stream static pressure.

For present purposes it is sufficient to note that, except
possibly at very high Mach numbers, the pressure 2 is less than
Do+ This means that there must be a weak shock at the corner
of the base (figure 9b). The free streamline must then curve
slightly &s it treils downstream to infinity, eventually becoming
parallel to the axis.

The solution of figure 9b represents the only type of solution
possible for the finite axielly-symmetric body. The base drag
is zero, but the flow pattern is not what would precisely corre-
spond to & trivial solution (in the mathematical sense of the
word), &s is the case for the semi-infinite body. Nevertheless,
this singular solution for inviscid flow appesrently has no bearing
on any flow that has as yet been encountered in experimental in-
vestigations. Agasin it appears that viscosity must be the
dominating mechanism in determining the flow pattern in & real

fluid.

3. Non-Uniqueness of the Inviscid Base-Pressure Flows

The occurrence of more than one possible solution in a flow
problem with a fixed body shape is not new. The problem of non-

uniqueness arose in the early stages of airfoil theory for an
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inviscid, incompressible fluid. As is well known, a setisfactory
solution to this particular problem has been found in the use

of the so-called Kutta-condition. Thus, of the infinite number

of possible solutions for the inviscid flow over an airfoil at

e given angle-of-sttack, only one corresponds to a finite velocity
at the trailing edge. Use of the Kutta-condition to select this
particular solution is, therefore, & fairly straightforward
process.

When shock weves are allowed in an inviscid compressible
flow, it is too often the case that more than one type or location
of shock wave is possible within the realm of non-viscous theory.
Indeed, in the case of the central problem of this thesis it is
possible to fit an infinite number of possible shocks, all dif-
ferent, into a flow field and still satisfy all boundary conditions.
Unfortunately, no simple and direct criterion such as the Kutta-
condition is known for overcoming these non-uniqueness diffi-
culties which occasionally arise in compressible fluid flows.

Depending on the circumstances, and the particular suthor,

a variety of methods has been used in the past whenever it was
necessary to select a suitable flow solution from a possible
choice of more then one. The most common factors which have
been considered in deciding which flow to select are as follows:

1. Considerestion of the stsbility of the various inviscid
flows.

2. Consideration of the second law of thermodynamics or
of some not too well defined principle of maximum or
minimum entropy.

%. Consideration of the qualitative effects of viscosity
or of the guslitative combined effect of viscosity and
compressibility.

In the remaining part of this section these three considerations
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are separately discussed with particular reference to their
possible application to the problem of the infinite number of
possible base-pressure flows.

Stability comsiderations. A relestively simple example of

the use of stability considerations is the case of shock waves

in a converging-diverging channel. This has been treated by
Kantrowitz in reference 6. It is easy to see that for super-
sonic flow entering a converging-diverging channel there are

two possible locations for the shock wave, one upstream of the
throat and one downstream. Both solutions to the problem have
the same boundary conditions at the extreme ends of the channel.
The approximate calculations of Kantrowitz show thet when small
disturbances (pressure waves) are superimposed on each of these
two flows, the resulting motion of the flow with a shock upstreanm
of the throat is unstable, but with & shock downstream the motion
is stable. For these two flows, the consideration of stability
apparently provides a valid basis for deciding, on purely theo-
retical grounds, which solution most neerly approximates that
oceurring in & real fluid.

Recent work in transonie flow has provided another inter-
esting example of how an inviscid flow which satisfies all
equations of motion and boundary conditions may, nevertheless,
be unstable. In this case, the problem is to determine under
what conditions a given type of transonic flow may be expected
when two types (one with and one without shock waves) are
evidently possible. Guderley (reference 7) maintains, after a
rether long and involved mathemetical treatment, that the flow
without a shock wave is unsteble to infinitestimal changes in

the boundary contour of the body. From this result Guderley
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infers that the smooth-recompression type of flow does not oceur
in & resl fluid.

Although instability in the above cases seems to be an
appropriate consideration for maintaining thet certain inviscid
flows are not physically realizable, it is necessary only to
make a few simple observations in order to show that stability
in en inviscid fluid is not a valid criterion for choosing one
of the infinite number of possible base-pressure flows. JSuppose,
for exemple, the flow illustrated in figure 2b were suddenly
disturbed in a manner such thet point C (intersection of shock
and free streamline) would be displaced to a point G'. Then,
since a strictly inviscid fluid is not capable of interchenge
or mixing of the external air and the dead-air, the mass of air
in the dead-air space would have to remain constant during the
disturbed motion. The dead-sir volume would be decreased and
its pressure thereby increased over the values existing just
outside the free streamline. Thus, the resulting unbalanced
forces would cause the point of intersection of shock wave and
free streamline to move back toward C. Agein, if a disturbance
were to cause the steady-state position C to be temporarily
shifted to C", then, by the same type of reasoning, it follows
thet the unbslesnced forces would be stabilizing. It is to be
concluded, therefore, that the flow is stable even to large
disturbsnces. Since the argument leading to this conclusion
holds equally well for any one of the infinite number of possible
flows, regardless of Mach number, it is clear that the stebility
of the inviscid flows does not constitute a valid criterion for
selecting any particular one of the possible flows.

Entropy considerations. The use of the second law of
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thermodynamics to rule out simple expansion discontinuities in

g tube of uniform flow is well known. HMathemstically, both
compression and expansion discontinuities are possible in an
inviseid flow through a straight tube. A discontinuous expansion,
however, is accompanied by & decrease in entropy and is therefore
ruled out without further consideration. A closer investigation
shows that there is, in fact, no mechanism which could bring
about an expansion-discontinuity wave.

The second law cannot be used in the base-pressure problem
since every possible flow under consideration involves an increase
in entropy. The amount by which the entropy is incressed varies
continuously from zerc to a maximum value corresponding to the
distinguished flow pattern. Hence, if the megnitude of the
entropy increase is used as & criterion for determining which
of the infinite number of possible flows mos?t nearly corresponds
to the flow of a real fluid, then the condition of maximum entropy
increase would necessarily have to be selected in order to avoid
choosing the trivisl solution of minimum {(zero) entropy increase.
Such a procedure would single out the distinguished flow patterns.
It certainly is not obvious, however, that this procedure is
Justifiable.

If the system under consideration were & purely mechanical
one involving only kinetic and potential energies, then the
condition of minimum potentiasl energy would represent the state
of dynamic equilibrium, as is well known from experience.
Similarly, if the system under consideration were & purely
thermodynamic one involving only thermodynamic variables, then
it is also known that with the other external variables constant,

equilibrium would be attained only when a maximun value of the
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entropy is reached. Unfortunately, the flow of a compressible
fluid involves an interplay of both dynemics and thermodynamics,
and no simple principle for determining steady-state eguilibrium
is known. ZEven if such & principle were known, it would likely
be based on empirical evidence Jjust es are the above-mentioned
laws for dynamics and thermodynamics. Experiments, of course,
are necessarily made with viscous, heat-conducting fluids.
Therefore, it appears that an entropy principle could be logi-
cally used for selecting a solution only after the qualitative
effect of viscosity had been considered and shown to still

leave more than one possible solution from which to choose.

Even without analyzing the qualitative effects of viscosity,

it can be seen that the entropy increase alone is not a signifi-
cant parameter since such a criterion logicecally would have to

be applied to both two-dimensional and sxially-symmetric flow,
Unfortunately, if &/D is zero, the only possible axially-symmetric
inviscid-flow solution from which to choose on this basis is a
triviel one.

Viscosity considerations. Even when consideration is given

only to the qualifative effects of viscosity, the base-pressure
problem is relstively involved. For this reason, these con-
siderations are presented in a subsequent part (part IV} which

is concerned with the approximate treatment of base pressure

in a real fluid. It may be noted here that, according to the
considerations given in part IV, the viscous mixing of dead-air
and the outside flow is such as to make possible only one solution
for a given liach and Reynolds number. Accepting this result

for the time being, it may be concluded in view of the foregoing

consideretion on entropy, that the charascter of maximum entropy
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by itself does not justify the selection of a particular
inviscid-flow solution from the infinite number of possible

ones.

4, Summary of Results of Part III

The foregoing "exsct" mathematical treatment of base
pressure in an inviscid fluid has furnished two principal
results. First, for a given body shape and a given ilach number
there are an infinite number of possible solutions both for
two-dimensionsl, and for exially-symmetric flow with a rod
settached. Second, for a body of revolution, such as & projectile,
without a rod attached to the base, the only possible solution
corresponds to zero base drag. Iloreover, there is no justifiable
basis for selecting one particular flow from the infinite number
that are possible at a given Mach number.

These results indicate that viscosity must be the essential
variable in determining the base pressure. It is concluded,
therefore, that a satisfactory theory of base pressure must
necessarily include the effects of viscosity. OSince an accurate
mathemetical treatment of base pressure in a resl fluid is at
present out of the guestion, and since the results of an accurate
mathematical trestment of the idealized fluid flow are un-
satisfactory, the remaining slternstive is to develop an
approximate theory for a real fluid flow. This is done in

part IV,
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PLRT IV. BASE PRESSURE IN A VISCOUS FLUID

Although viscosity hes not previously entered the consider-
ations, an important effect of it is already evident from the
results of part III., This is the pronounced effect of a rod
behind the base of a body of revolution. Thus, the displacement
effect of the boundary layer can be expected to have a strong
influence in sxially-symmetric flow but not in two-dimensionsal
flow. Considerations such as these suggest ways of approxi-
mately calculeting the base pressure. Before proceeding with
the development of a phenomenological theory of base pressure,
however, it will prove advantageous first to discuss the
gualitative effects of viscosity on the inviscid flow patterns,
and then to calculaste roughly the displacement effect resulting

from the mixing of a supersonic stream and & Gead-air space.

1. Quelitative Effects of Viscosity on the Base-Pressure Flow

{(a) Two-dimensional flow. A sketch showing the gqualitative

flow characteristics for the inviscid flow in the region of the
base is given in figure 10. The flow starts with a lach number
My, pressure pjy, and boundary-layer thickness 51. Because the
base pressure is consideraoly lower then the pressure pj, &
small fan of expansion wavelets originates at point A. The
existence 0f & dead-air region in a smell volume immedistely
behind the base is a result of the separation at point B. Hence
it may be deduced that the pressure along the streamline BC is
approximately constant. For the case of laminar flow in the
boundary layer, transition begins somewhere near point D and

after passing through the region of the trailing shock wave
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the flow in the wske becomes completely turbulent. The quali-
tative form of the boundasry-layer profiles at two stations
between points B and C must take on the same nature as those
existing at the boundery of a supersonic jet issuing into a
room. Because of the viscosity of the fluid, the dead-air is
induced into & slow circulatory motion im the directions in-
dicated by the smell arrows in figure 10. The resulting mixing
process causes the voundary layer to thicken as it approaches
point C. Due to the adverse pressure gradient in the neighbor-
hood of the trailing shock wave, the boundary-layer thickness
must further increzse somewhat as it passes from about point C
to point E. The dimension t in figure 10 will be referred to
simply &s the "wake tnickness".

With this quelitative picture of the flow processes in
mind, & brief description can be given as to how the base pressure
arrives at its stesdy-state equilibrium value. To fix conditions
in mind, suppose a jet of air is pumped Irom the body into the
dead-air region and then is suddenly stopped. &t the instant
the jet is turned off, point C is far downstream of its equi~-
librium position. Due to the scavenging effect of the outside
flow on the mass of dead-sir, some of this dead-air would be
removed, thus lowering the pressure of the dead-air region and
permitting the angle-of-turning at the corner to be increzsed.
The larger angle-of-turning increases the velocity outside the
boundary layer, which in turn increases the scavenging action,
thereby again lowering the pressure and stsrting the cycle over
again. Thus, point C moves rapidly to =2 position as close to
the base as possible.

There are, however, &t lesst two factors which prevent
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point C from going as far toward the base as that point which
roughly represents the maximum-entropy solution for inviscid
flow. First, as C moves toward the base the pressure ratio of
the trailing shock wave increases, making it more difficult for
the scavenged air to overcome the pressure rise of the shock
wave and flow downstream. Second, it is likely that some
mechanism also occurs near the corner which opposes the turning
of a boundaery layer through a relatively sharp angle. The
individusel importance of these two factors which oppose the
movement of‘point C toward the base is not known at present.

In any event, it seems clear that some position of equilibrium
is soon reasched. Hence the quaslitative effect of viscosity is
such as to select (and slightly modify) one solution from the
infinite number of possible ones in an inviscid flow. It is
this same gualitative effect of viscosity which justifies the
use of the Kutte-condition in airfoil theory. Apparently this
phenomenon is quite genersal.

Returning now to the guestion of non-uniqueness of the
inviscid flows, it is clear that use of the over-all entropy
increase as a criterion for selecting one of the inviscid flows
cannot be justified, since the quaslitative effect of viscosity
is to make only one flow possible. 4any Jjustification for using
the maximum-entropy solution in formulating & theory of base
pressure (as is done later on) must come Ifrom considerations
other than thet of the entropy increase alone.

(b) Axially-symmetric flow. Since figure 10 represents

only the qualitative flow characteristics near the base, it may
be thought of also as representing these characteristics for an

axially-symmetric flow. Evidently the same general reasoning
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applies here as was used in the two-dimensionsl case., Compared
to the two-dimensionsl case there is, however, an additionsl
reason for further spreading of the streamlines in the boundary
layer as the trailing shock wave 1is approached. Since the
radius of & streamline in the boundary layer continually
decreases as the treiling shock wave is approached, further
spreading is brought about in order to keep the pressure and
cross-sectional area along these streamlines approximately
constant.

From figure 7 it is apparent that the displacement effect
of the boundary layer is much more important in axially-symmetric
flow then in two-dimensional flow. For exially-symmetric flow
this effect must be comsidered in any theory which satisfactorily
represents the flow conditions of a real fluid. It is evident,
therefore, that the mixing process of the dead-air and the
outside stream is of considerable importance. These effectis
are discussed from & quantitative point of view in a later
section which is concerned with the approximate theory of base

pressure in a real fluid. (See section 2d.)

2. An Approximate Theory for Base Pressure in a
Viscous Fluid

(a) Assumptions of the theory. The qualitative behavior

of the base pressure coefficient as a function of boundary-
layer thickness can now be determined from the results of the
preceding sections. It is clear that for a fixed Mach number
the prinecipal variable affecting the base pressure coefficient
will be the boundary-layer thickness (81) just ahead of the

base., Moreover, when the boundary-layer thickness beconmes
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lerge compared to the diameter of the body, the base pressure
coefficient must approach zero, i.e., the base pressure musty
approach the free-stream static pressure. Hence, on a curve
showing base pressure as & function of boundary-layer thickness,
the portion representing very thick boundary leyers can be
sketched immediately, as indicated by part CD of the curve in
figure 14. However, it is not this part of the curve that is
of primary practical interest; rather, it is the portion
indiceted by BC. Since the wake thickness must approach zero
as the Reynolds number is increased indefinitely, it follows
that the remaining portion of the curve (from B to 4) must
come down to the origin for an infinite value of the Reynolds
number*. The wake thickness varies quite slowly with Reynolds
nunber, hence the portion AB represents only a small rainge of
51/D, and should be quite steep, as indicated schemsatically

in figure l4.

Figure 14 is only qualitative and therefore mey be
considered as representing the case of either laminar or
turbulent flow in the boundary layer ahead of the base. To be
sure, the asctuel curves may be considerably different in the
two cases, but there is no apparent reasson for their qualitative
shape to be different. For two-dimensionesl flow, however, the
gualitative behavior of the base pressure coefficient for very
small values of boundary-layer thickness must be essentially

different from that sketched in figure 14, since it is possible

* If the boundary lesyer was removed the portion AB would be
considerably different. 4As long as the Reynolds number is
finite, the mixing process would cause the wake thickness to be
sppreciable even though 5=0. In such & case the curve of base
pressure coefficient for small values of &/D would be as
indicated schematically by the dotted line A'B in figure 14,
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for very low base pressures to exist in two-dimensionzl flow,
even in en inviscid fluid.

If it is assumed thaet the flow separates from the corner
of the vbase and not from & position farther upstream, then for
s given type of boundary-layer flow the principal variables
of the problem are P, P,» Uy T 81,13 , and gb , as
illustrated in figure 15. It is assumed that only the conditions
in the immediate neighborhood ahead of the base aifect the base
pressure. From dimensional enalysis it follows that the above
seven varisbles must be connected by a functional relation

*
involving four independent dimensionless parameters. Hence,

Pb r,"E: T:j; 'S:(Mu 2 P) (4.1)
Although such a relation may be of some help in correlating
experimental measurements, the appearance of the angle of
boat-tailing (@)) mekes further analysis very difficult.
Accordingly, only rectangular base shapes (@r=0) will be con-
sidered in the anslysis which follows. This leads to the first,
and perhaps most fundamental assumption of the theory:
(i) The ovase pressure coefficient P% depends only on the
type of boundasry-layer flow, the ilach guaver Ml, and
the dimensionless boundary-layer thickness 51/3,
which exist just upstrezm of the base.
It is evident from (4.l1) that some assumption must be made

s to the veriation of base pressure coefficient with 81/D if

If desired, the dimensionless varisble p /py could be
used in place of Pb. The variable P} has been chosen for the
present investigation since it is directly proportional to
the base drag, whereas Pb/Pl is not.
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ahy explicit formulas are to be obtainecd. For the particular
curve sketched in figure 14, =zn assumption of a straight line
for the interval BC appears to be a good approximation. Of
course, it is not known that the actual shape oi the curve
will be very close to thet indicatecd in the sketen, but it is
obvious that, at least for some range of values of 6U/D, a
straight line will be a good approximation. It seems desirable,
therefore, to simplify the problem by assuming a linear
relationship and then justify it by a comparison with experi-
ments. Designating by P; the intercept of the straight line
which best approximates the actual curve, the second basic
assumption of the theory can be stated as follows:

(ii) At & given Mach number the change in base pressure
coefficient (éka==Pz-Pé) due to the effects of
viscosity is proportional to the dimeunsionless
boundery-layer thickness 0,/D.

One conseguence of assumption (i) is that a common basis
for comparison can easily be made for different body shapes,
because &t supersonic speeds the difference between My and M,
and between P and p_, is practically independent of the
viscosity of the fluid and dependent only on the shape of the
body. Assumption (i) also implies that the effect of increasing
the length of a body (holding all other parameters constant)
is in principle the same as the effect of decreasing the
Reynolds number of the flow, since both of these gffects
increase the boundary-layer thickness., It can be foreseen,
thereiore, that in the subsequent analysis the length-dismeter
retio and the Heynolds number (based on body length) combine

into & single parameter which depends only on the type of



34

boundary-layer flow. (See part ¢ of this section.)

Assumption (ii) hss many consequences which will soon be
elaborated on. In fact, it is essentislly this assumption
which ensbles equations to be obtained in closed form expressing
the base pressure as a funcetion of Reynolds number. Although
the resl justification for meking assumption (ii) must come
from & comparison of theory and experiment, there are certain
theoretical considerations which make this hypothesis of
linesrity appear at least reasonable for all Mach numbers.
Thus, if it is assumed that the effects of viscosity on base
pressure are governed to a large extent by phenomena occurring
neer the cornmer of the base, then assuaption (ii) appears quite
reassonable. Without being forced, the fluid particles in the
boundary layer cannot make the same sudden turn at the base
that the fluid particles externasl to the boundary layer are
attempting to make. It is well known in fluid mechanics that
the existence of & force along any surface enclosing fluid
particles must always show up in the form of & transport of
momentum ecross that surface. For small values of 81/D the
traensport of momentum in the boundary layer is proportional
to the thickness of thet layer, and hence the quantity ATy
should also be proportional to 61/D, since it is essentially
a force. OF course, experiments are necessary to determine
just how wide a range of Reynolds number can actually be covered
and still have the curve remein approximately linear. The
extent to which the available experiments justify assumption
(ii1) is discussed in pert V.

The foregoing two assumptions are the foundation on which

the approximate theory of base pressure is developed. Equations
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for the base pressure coefficient are obtained by first using
assumption (i) to determine the effect of body shape, and then
using assumption {(ii) to evaluate the effect of Reynolds number.

(b) Effects of body shape. As was pointed out in part II,

the conditions ahead of the base (Ml and pl) differ from the
free-stream conditions by an amount which can be calculated

from the pressure distribution over the body. By definition,

P =T P 1———[”’" T (Ao Te) - °°U? -R] (4.2)
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In this equation, Gg and Eﬁ represent the stagnation densities
corresponding to conditions in the free-stream and to conditions
just shead of the base, respectively. Hence if AN«arw;wL,

then it follows that
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where AD, is the loss in total pressure on passing through the
bow shock wave, and may ordinarily be neglected except possibly

at very high supersonic Mach numbers. From the energy equation
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hence the combination of (4.3), (4.4}, and (4.5) gives
ql A AM APO
X+ (2N - — 4.6
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The pressure coefficient Pl is related to AM and AP, by

?: AT = "2-"1 ﬁ,fgfg -1 - = """—'"—"H%\_M: :‘_:‘(\“ﬁ)o) -1
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_ 2 aM - AP
M (1+ 5 M) ™M, T, (4.7)
Substituting (4.7) into (4.6) yields the relation
9 _ - Mo o Ty AP
_C_ta =i+e =1+ (5-1)F, m:(vr le)E- (4.8)
The equation for base pressure (4.2) is then
P, =B (+&) + P (4.9)
or, since both & and Pl are smell compared to unity,
P = (B+B)(1+¢€) (4.10)

The quantity &€ is ordinarily quite small, hence (4.10)
states that the base pressure coefficient is essentially the
sum of Pé end Fj, the former being independent of body shape
end the latter being dependent only on body shape. In extreme
cases there may be a considerable pressure gradient along the
straight eylindrical part of the afterbody. It is for this

reason that the coefficient Pl has been defined as the average
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pressure coefficient along the line 4G, as indicated in figures
4b, 9a, 10, and 15, Usually the pressure distribution along the
surface of the cylindrical afterbody is given, hence the value
of Pl mey be taken as the average value which would exist
“along the length of the dead-air region if the cylindrical

part of the body were to replace that dead-air region. Roughly
spesking, this procedure corresponds to selecting the value

of Pl which would exist at a distance of about one diameter
benind the base. For large length-diameter ratios this
averaging technique is not necessary since the gradients are
very small on such bodies, but for & body whose base 1is near
the end of an ogival or conical nose, a large error would be
introduced if this technique were not followed.

Summerizing the results obtained thus far in this section,
assumption (i) allows the base pressure to be separated into
two components, one which is affected by viscosity (Pé) and one
which is not (Pl). The component Py, which depends on the body
shepe end the Mach number, can be calculated from known methods
of determining pressure distributions in an inviscid supersonic
flow. The next step is to develop an eguation for PL &8s &
function of the independent varisbles of the problem.

L
(e¢) Effect of Reynolds number. The coefficient Pb mey be

written as follows
* ]

BB ooy
Pb* Pb Pb

*

where Pb represents the intercept of the base-pressure curve on
. . . *

the Pé axis. As long as the afterbody is not boat-taileq, Py

is independent of body shape. Using assumption (ii),
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P o)
?f‘— | C‘—D_1 (4.11)

where Cl is o constant which is independent of the viscosity of
the fluid, but possibly dependent on the Mach number. It is to
be noted that in the equations developed thus far no mention

has been mede as to whether the boundary layer is laminar or
turbulent. According to the assumptions of the theory, (4.11)
should be applicable to both cases, with the provision that the
constant C; may have a different value for laminar flow in the
boundary layer than for turbulent. Likewise, P; may be expected
to depend on the type of boundary-layer flow.

In developing expressions for 81/D as a function of the
independent variables of the problem, namely, Reynolds number
and length-diameter ratio, the case of laminsr flow in the
boundary layer will be considered first. From dimensional
analysis and the usual considerations of the terms involved in

the boundary-layer equations, it follows that

D(%‘)fg‘i = ‘S—(Mm, body shape)

Here L., the length of the body, has been selected as the charac-
teristic length for determining the boundary-layer thickness 61.

Rewriting this equation,

& . ) ]E(Meﬂ body shape) -t b (4.12)

o gL fre D

where Cz is & function of the Mach number and body shape, but

independent of viscosity. The body shape affects the boundary-

layer thickness principally through the action of the pressure
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gfadients set up by the particular contour of the body. If the
effects of pressure gradient on the thickness of the boundary
layer just ahead of the base are negligible compered to the
effects of Reynolds number eand length-diameter ratio, then
(4.12) is applicable to any body shape or length. Hence, for

leminar flow in the boundary layer, (4.11) becomes

P = 1= 2 L ,
?: )\ @ D (4.13=-1)

The new constant I whieh will probably vary somewhat with
Mach number, must at present be determined from experimental
data.

If the turbulent boundary-layer profile is approximated
by a one-seventh power law, it turns out that the ratio 81/3 is
inversely proportional to the one-fifth power of the Reynolds
number. (See reference 17, for exsmple.) This result, which
has been corroborated by experiments with low-speed subsoniec

flows, leads immediately to

P Sy L

——— —

’F-’% =17 R% D (4.13-T)
b

for turbulent boundary-layer flow. From the above two egquations
it is evident that an essential difference between the effects
of the two types of boundary-layer flow is that the variation of
base pressure with Reynolds number is much slower for & turbulent
boundary layer than for a leminsr one. (See section V.)

Thus far the effects of body shape and viscosity have been
separately analyzed. KEquations for the base pressure coefficient
on a given body are obtained by combining (4.10) and (4.13).

For laminar flow in the boundary layer,
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R _ (1-—@-% +B)(‘+E)

Sok YRe v (4.14-1)
b
and for & turbulent boundzry layer,
Po_/y-tL B
-P-‘; = (1 RYED T P (1+€) (4.14-T)

b

Thus the genersl problem of determining the base pressure
for a body whose length, ogive shape, supersonic Mach nuamber,
and Reynolds number are srbitrary, is reduced to the problem of
determining the guantities a, (or at) and PZ as a function of
the Mach number.

It is to be noted that under the assumptions of the theory,
equations (4.14-L) and (4.14-T) should be applicable to two-
dimensionel flow as well as axielly-symmetric flow, provided
the appropriate §alues of &4 (or at) and P; are used. »t present
there are no experimental date avaeilable on the base pressure
of two-dimensional models, but there are some data aveilable on
bodies of revolution. Before making & comparison of the sabove
two equations with the experimental data, however, it will be
adventageous to develop an approximate method of caleculating
P* as a function of Mach number.

b
(da) Effect of Mach number. In order to utilize the inviscid

flow patterns (part III, section 2) in estimating the variation
of base pressure with Mach number, it is necessery first to
estimate the wake thickness. Here there is an essential difference
between the cases of laminar and turbulent flow in the boundary
layer.

For leminar flow, the boundary layer is usually thin (as

compared to the locel radius) along most of the free streamline.
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One would expect, therefore, that an approximate calculstion of
the wake thickness could be made by using two-dimensionsal
laminar-mixing calculstions and applying & simple area-ratio
correction to account for the additional spreading of the stresm-
lines which is brought about by having axisl symmetry in the
actual problem.

For turbulent flow, the boundary layer is &already quite
thicek as it spproaches the base. Nioreover, the rate of mixing
is very much gﬁ;ter than for the leminar boundary layer. The
thickness of the mixing region is of the same order of magnitude
as the radius for almost the entire length of the free streamline.
Consequently, the application of two-dimensional mixing celcu-
lations to the case of turbulent flow cannot be Jjustified. In
order to estimate the wake thickness in this case, other methods
must be used, such s measuring the wake thickness Irom schlieren
or shadow-photographs of the flow over & projectile. This is
done in part V.

For laminar flow in the boundary layer, nowever, an
epproximate calculation of the wake thickness can be made without
much difficulty. ZFigure 16 illustrates the pertinent phenomena
involved. If the velocity profiles between B and C are assumed
to be similar, then from dimensional analysis and analogy to

boundary-layer flow it follows that

Uo = O = const. = K
8,_1/—‘ /v ) (4.15)

for two-dimensional flow at a given Iach number. Here x is
the distance upstream from the corner of the base to a hypo-

thetical point where & pure mixing process would have begun in
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order to produce a profile of thickness Bz_at B. The distance
Q is measured as indicated in figure 16. Equation {(4.18) can
8lso be obtesined directly from the results given in appendix B.
Relatively large stresses are set up in the dead-air
region the instant the boundary layer leaves the corner of the
base. Since the desd-air cannot sustain these large shearing
stresses, the transformstion from the boundary-layer type
profile &t A to the mixing profile at B (figure 16) must take
place rather rapidly. This means thet near the corner the rate
0of mixing is greater than the rate calculated on the assumption
of similar profiles. Hence by taking 6i=51the calculations
should tend to underestimate the final thickness 63. Using

5 5 (4.15) can be written as

S, . kK (@.)22_2@: Jc%" LKLR
D DVl Vs Re D* = ReDD
where V_JJ has Ubeen substituted for 81 4pplying & simple area-
e

ratio correction to account for the three-dimensional effect,

5 -

where t, the wake thickness, is as indicsted in figures 10 and

£y _ tecz_L_{_L_+_'s&]
(6) ~ "Re DLD C'D (4.16)

The value of C may be taken as 5.6(1+—O.86E§) eaccording to

l6. Then

the calculations of lLees (reference 16). The only remaining
unknown in (4.16) is K, the constant of proportionality for
laminar mixing of a supersonic streasm and & dead-air space.

This constent could easily be estimated for low speed flows by
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the usual integral methods of treating boundary-layer flow,

such as may be found in references 8 and 9, for example. With
only slight modifications, these integrsl methods could be
applied to compressible flows if it is assuwmed that the Prandtl
number is unity. As far as the estimation of the wake thickness
(when calculating the base pressure) is concerned, such a
procedure would be sufficiently accurate.

On the other hand, the "exact" solution to the problem of
leminar mixing of a compressible (or incompressible) stream and
a dead-air region apparently has not as yet been worked out.
This sccurate solution is of interest in itselfi end has sppli-
cations to problems other than those concerned with bease pressure.
An understanding of the methods used in the exact solution of
this problem is not necessary for the purposes at hand, hence
the detailed calculations are given in appendix B. The results

of these calculstions, presented in figures 12 and 13, yield

K =15 (L + .086M")

2
hence G§)=’7.6 for all Mach numbers. The thickness of the mixing-

layer profile has been arbitrarily taken at the points where
the velocity differs by one per cent from its asymptote. As is
shown later on, (4.16) underestimates the wake thickuess for
low supersonic Mach numbers, and overestimates it for very
high supersonic Mach numbers.

Ferhaps more important than the actuzl numerical values
given by (4.16) is the genersl trend it indicates for the
variation of t/D with Re. As the Reynolds number is increased
both the base pressure and Q/D decrease; hence the resulting

variation of wake thickness must be somewhat slower than the
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fourth power of the Reynolds number. This, of course, neglects
any eifect which may result from intersction of the trailing
shock wave and the boundary layer. In any event, (4.16) indi-
cates that the weke thickness should remain reasonably constant
over a relatively wide range of Reynolds number.

Suppose, for the time being, thet the wake thickness re-
meined exactly constant as the Reynolds number was increased
to & very large value. Then the base pressure would approach
P% and the flow pasttern would approach that corresponding to
the inviscid flow over a body with a rod attached. Conse-
quently, as long as the wske thickness is well defined (reasonably
steady wake), it may be expected that the value of Pbi (figure 7)
corresponding to & value of 4/D egual to the wake thickness (t/D),
would be approximately equal to PY¥. Thus,

*

—~ . d t
P = P corresponding to = ==.
b bi P € D D

(4.17)
It is to be noted that the only Jjustification claimed for this
relation is that it appears very reasonsble on the basis of the
discussion of the qualitative effects of viscosity given in
section 1 of part IV. Equation (4.17) cznnot be expected to
yield anything more then & rough approximstion if the wake
thickness and the treiling shock wave are unsteady.

Figure 24 shows some shadowgraphs* of projectiles in free
flight. The boundary layer is laminer in figure 24a (M =1.68)

and the wske thickness seems fairly well defined. On the other

hand, for the turbulent boundary layer the weke is definitely

* fThese shadowgraphs were made available to the author
through the courtesy of A. C. Charters, Ballistic Research
Laboratories, Aberdeen, Iid.
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uhsteady at Mach numbers near 1.3, as is illustrated by figure
24b. FYortunately the fturbulent wake becomes much more steady
at higher Mach numbers; the steadiness is greatly improved at
Mach numbers near 1.8, and quite sharply defined at lach numbers
higher than about 2, as is illustrated by figures 24c¢ and 24d,
respectively.

Spark photographs sre not as yet available for projectiles
with laminar boundary-layer flow below a Mach number of 1.5.
However, on the basis of the available spark photographs, it
mey be surmised that for laminsr boundary-layer flow the theo-
retical calculation from (4.17) of Mach number effect on base
pressure should be applicable at least in the range of Mach
numbers beyond about 1.5 (presuming that the assumptions leading
up to (4.17) are correct). For turbulent boundary-layer flow
the theory cennot be expected to apply for kach numbers less
than about 1.5, since the wake becomes very unsteady in this
region. The extent to which these expectations are verified by

experiments is discussed in part V.
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PART V. COMPARISON OF THEORY AND EXPERIVERT

Comparison with wind-tunnel data. Unfortunately, the most

complete set of wind-tunnel data is classified at the present
time. Consequently, a comparison of the theory with the wind-
tunnel date is given separately in the form of a confidential

addendwn t0o this thesis.
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Comparison with free-flight data. The available Ifree-flight

experiments are concerned almost entirely with the effects of
Mach number on base pressure. Before the theoretical calculation
of the effect of Mach number can be made, however, it is
necessary first to determine the wake thickness t/D as a function
of Mech number. Equation (4.16) for t/D provides an estimate
which should be sufficiently accurate for llach numbers higher
than about 2 because of the insensitivity of P; to t/D in this
renge. For Mach numbers lower than about 2, though, a more
accurate estimate is needed. In order to provide such an esti-
mete some measurements of t/D have been taken from approximately
fifty spark Sh&dOWgraphS* of various projectiles in flight.
Figure 20 shows the results of these measurements together with
the values indicated by (4.16) for a laminar boundary layer. a4s
is evident from this figure, equation (4.16) underestimates the
woeke thieckness for laminar flow at low Mach numbers and slightly
overestimates it at high Mach numbers. The region of under-
estimation is to be expected for the reasons already given in
part IV, section 2d. The good agreement at Mach numbers between
3 and 4 is probably due largely to the manner in which the
thickness of the mixing layer was defined. The definition used
would tend to overestimate the wake thickness at very high super-
sonic Mach numbers.

It is now possible to compare the theoretical and experimental
values of Pﬁ. For & Mach number of 1.5, the wake thickness for

laminar boundary-layer flow is approximately 0.55, as indicated

* fThese spark photographs were made avsilable to the author

through the courtesy of A. C. Charters, Ballistic Research
Laboratories, Aberdeen, Md.
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in figure 20. Using this value of the wake thickness, {(4.17)
and figure 7 yield a value of -0.25 for Pg. This latter value
compares very well with the value of PE as determined from the
intercept of the line representing the experimental wind-tunnel
data.

The base pressure coefficient for different Mach numbers
(but for & constant Reynolds number and L/D ratio) would be
nearly proportional to Pz if the constants a, and at appearing
in (4.1%3-L) and (4.13-T) did not depend on the lMach number. As
mentioned in section 2¢ of part IV, it is to be expected thet
2, and 8, will vary somewhat with the Mach number. Nevertheless
{4.17) should give the right order of magnitude for the base
pressure even if it is assumed that these two constants are
independent of the Mach number. Figure 21 illustrates the
approximate agreement (based on this assumption) between (4.17)
and the experimental data of reference 2. These free~flight
data are for turbulent boundsry-layer flow with the Reynolds
number varying from about 2.8 x 106 to 8.6 X 106 over the range
of Mach number covered in the firings. From this figure it may
be seen that (4.17) does in fact provide a good approximation
to the base pressure coefficient at all Mach numbers higher
thaen about l.5. When future experiments provide information
on the variation of a, and 8 with Mach number, a more stringent

comparison with the theory can be made than that shown in

figure 21.
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PART VI. RESULIS OF THEORY APPLIED 70 OTHEZR PROBLENS
INVOLVING FLOW SEPARATION

Although the available experiments corroborate the theory
of part IV gquite well, it may develop that certain modifications
to the theory will be indicated by future experiments covering
a wide range of both Mach number and Reynolds number. When
such experiments have clearly outlined the range of validity
of the theory, it can then be applied with confidence to yield
guantitative information about meny related problems involving
separsation in supersonic flow. A detailed anslysis of such
problems on the bvasis of the present status of the theory
appears inadvisable at this time for two reasons: first, the
variation of the constant a, (or at) with Mach number has not
been verified experimentally, and second, there are no experi-
mental data available for two-dimensional flow. Nevertheless,
it seems desirable to indicate briefly some possible extensions
of the theory as well as to discuss the types of problems
(other than the base pressure of projectiles) to which the

theory can profitably be applied.

l. Airfoil Shape for Minimum Profile Drag.

It is usually assumed apriori in analyses of airfoil shapes
for minimum drag, either for an inviscid or & viscous flow, that
the desired contour will have sharp leading and trailing edges.
That this assumption is unjustified can easily be seen from the
results of part IV. OSuppose, for example, that one could find
the contour y=y(x) which had the minimum drag possible of all

contours with pointed leading and trailing edges [y(0)==0,
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y(é)==0]¢ This contour can be considered as having zero base
area. Now suppose that part of the contour aft of the maximum
thickness point is modified to a contour y(x) which has a
trailing edge of height h, as indicated on the upper airfoil
shown in figure 22. Then the drag coefficient Cp of the modified

airfoil would be

CD = CDm + ACDB +ACDF (6.1)

where CDm is the minimum profile drag possible for contours
with pointed trailing edges, and Cpyp represents the "fore dragh,
defined as the total drag minus the base drag (CDB)' Since the
trailing edge is originally sharp, the ratio of boundary-layer
thickness Eilto the height h is originally infinite. Hence

for small h ,

_[aC, 8, J0RTY _
ACy, = (ah"h__t‘ - hsl{a(%)] ©

'z 00

Tjon

. . )
The increment in fore drsasg, however, is not zero since (Eﬁfé) * o.
h=0

In fact, on the basis of linesrized theory,
¢ 2
_ dy ; ot
CD = AK (dx)dx + | skin friction

(o

m

This equation, of course, assumes thet flow separation does not
seriously alter the "effective shape™ of the airfoil over the
rear portion. Under conditions where this assumption is valid

it follows that :
- gd\*_ (dyy
ACDF = A g E( X) (d)b de (6.2)
[e]
where A is & positive constant which depends on the Mach

number, and § is the ordinate of the modified sirfoil with

the blunt trailing edge. If the new shape is obtained by
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§imply rotating the rear portion of the contour about the maximum
thickness point (point O on the upper airfoil in figure 22)
until the base is of height h, then

h

- h
J=y rxggp = Y¥EX oce =gt (6.3)

end by neglecting terms involving €z , (6.2) reduces to
C

AC, = 2Ae gb%%‘ ax = 2A€ (YY) = -A€t (6.4)

where t is the maximum thickness of the airfoil. It is clear
from (6.4) that Cp_ is negative since (%%DF) = —'% <O,
‘ F -0

and hence & slightly blunt trailing edge will produce less drag
than a sharp one.

In order to estimate the approximate magnitude of the drag
decrease that may be expected by using a blunt trailing edge,
& particular example will be considered. Suppose that the
Reynolds number is about 106 and the boundary layer flbw is
laminar. In order to simplify the calculations, let both airfoils
consist of straight-line segments (as indicated by airfoils 1
and 2 in figure 22). Using the subscripts 1 and 2 to denote
the original and modified airfoils, respectively, their drag

coefficients are

2 2

Co, = C\DFi = 4% + skin frietion = (\*“\\4%

2 2 n

CD2 = Cp + C"e = %g(z—m +skin frietion — B &
2

according to the linearized theory. In these equations © is
the thickness ratio of the airfoil, B =VM ;-1 , k is the
fraction of the profile drag attributable to skin friction, and

Yl=:éﬁ5' The fractional decrease in profile drag brought about
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by the modified airfoil is

2 2 2
ACD CD\— CD?_ _ 46\ - ez(z-_YD + B?bnea

Co Co 4 (\+ KYS*

(6.5)

1
For the particular case where K =1.5, ©,=9,=0.1, and ‘Q=O.4,

the ratio O = 671 1 45 easily calculated to be 0.16, and
h  VRe O

the retio X is approximately O.l. In axially-symmetric flow

Py~ 1P} for 8,/D=0.16. Using this same ratio, Bp= 4P, for

two-dimensional flow, and using P}= Pbi= -0.54 for K _=1.5

(figure 3), then (6.5) becomes

£Co ~ 0,19
v}

which is a substantial reduction in profile drag. It is to be
noted that the modified airfoil has & higher section modulus
than the original double-wedge airfoil. The drag decrease is
considerably larger if the comparison between the two airfoil
shapes is based on sections of equal bending strength (equal
section moduli). For such a comparison, 2 ez 2-n

2 ! Z'Y\?’

by elementary strength of materials. Substituting this into

(6.5) gives e, By [ZT
ACy _ A~ 2 & tvam?

"Co, 4 (14K (6.6)

Using the same values of Yl , M, and ©, as above, the drag

reduction in this latter comparison is

ACD ~
oo ™ 0.30

D,
Experimental investigations should be conducted in order
to see if such large savings in drag are actually possible.
From the practical point of view a blunt trailing edge might

impair control effectiveness, and hence such contours would
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yrobably be most suited for airfoil sections not ineorporating
control surfaces. However, this is a matter which must be

decided upon from the results of experimental investigations.

2. Wind-Tunnel Support Interference

When a body of revolution is tested in & wind tunnel it
almost always is supported from the rear by a cylindrical rod.
As a result the messured values of base pressure may be consider-
ably affected by the presence of the suppbrt‘ The support
interference is a complicated function of the diameter of the
support rod, the unobstructed length of the rod, the Mach number,
and the Reynolds number. If, as is often the case, the support
is long enough so that the only appreciable interference arises
from the "dismeter-effect" of the rod, then the results of
parts III and IV enable an estimate to be made of the order of
magnitude of this interference on base pressure,

For & fixed Mach =and Reynolds number, an increase in the
support dismeter 4 brings about two different effects: first,
the wake thickness is increased thereby causing the absolute

value of P} to be increased (cf. figure 7), and second, the

appropriate dimensionless boundary-layer thickness D%:i is
incressed thereby causing P, /Pf to be increesed. These two
effects oppositely influence the base pressure, the first
tending to decrease it and the second tending to increase it.
If the Mach number is high, say near 3, then the first
effect is negligible for all values of the ratio a/D. (See

figure 7.) At high supersonic Mach numbers an increase in

support diameter can therefore be expected to result in an
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increase in the base pressure (& decrease in the absolute value
of the base pressure coefficient). This is illustrated schemati-
cally in figure 23. The amount of this increase, however, is
difficult to estimate since it depends on the effects of
viscosity at high Mach numbers——an almost completely unexplored
field.

For intermediate Mach numbers, say near 2, the two above-
mentioned opposing effects of an increase in support diameter
would largely compensate one another if the values of d4/D are
not large. In such cases the interference normelly would not
be an important cohsideration.

If the supersonic Mach number is low, say near l.5, then
for small velues of the ratic d/D the first effect predominates
and an increase in support diameter will result in a decrease
in base pressure, as illustrated in figure 23. For very large
values of the ratio d4/D, the second effect must of course
predominate and an increase in support diameter will then result
in an increase in base pressure. As d4/D—>1, the base pressure
approaches a velue approximately equal to f&.

Using equation (4.13) and the curves in figure 7, the order
of magnitude of the interference in the important region of low
supersonic Mach numbers can easily be estimated. Such an
estimate indicates thet for Mach numbers near 1.5 (or slightly
lower) approximately a 20-30 per cent increase in base drag
coefficient may occur as a result of the presence of a moderately
large support (d/Dnﬁo.G). Thus it is clear theat support
interference in this region of low supersonic Mach numbers

should be given careful consideration. Unfortunately, support
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interference measurements have not been made in most of the
existing wind-tunnel investigations. Accordingly, it is not
surprising that these experimental results are often

inconsistent.
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CONCLUSIONS

In the course of the investigation the following general
conclusions have been drawn:

{1) The existing theories of base pressure are unsatis-
factory either for predicting the base pressure or for corre=-
lating experimental measurements.

(2) The exact inviscid-fluid theory of base pressure does
not adequately describe the actual phenomenon involved,
particularly for axiaslly-symmetric flow. HNon-unigueness
difficulties occur in the inviscid base-pressure flows, and
apparently there is no simple way in which they can be overcome.

(3) Viscosity is the essential mechanism in determining
the base pressure, at least in axially-symmetric flow.

The following specific results have been obtained from an
analysis of base pressure in an inviscid fluid:

(4) TFor a given body shape and a given free-stream Mach
number there are an infinite number of possible solutions (each
satisfying all necessary boundary conditions} both for two-
dimensional, and for sxially-symmetric flow With a rod attached
to the bhase.

(8) For inviscid axially-symmetric flow without a rod
attached to the base only one solution is possible, but it
corresponds to zero base drag.

This latter result is believed to be & special case of a
more general result which is conjectured as follows: it is
impossible for a steady axially-symmetric inviscid supersoniec
flow to converge toward, and to meet the axis at a finite

(non-zero) angle.
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The approximate theory developed for practical applications
to base-pressure problems in a viscous fluid indicates that:

(6) At & given Mach number, the base pressure on a body
without boat-tailing can be expressed as the sum of two
components, one of which is independent of viscosity but
dependent on body shape, and the other which is dependent only
on viscosity.

(7) The effects of length-diameter ratio and Reynolds
number can te combined into a single parameter which depends
only on the type of boundary-layer flow.

(8) The variation of base pressure with Reynolds number
is slower for a turbulent boundary layer than for a laminar
one.

{9) 4 substantial decrease in profile drag of two-
dimensiongl airfoils is possible by designing the airfoil
contour with a blunt trailing edge.

(10) The effect of support interference on base pressure
measurements in a supersonic wind-tunnel depends to a great
extent on the Mach number, and is most important in the lower

region of supersonic velocities.
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APPENDIX A., AXIALLY-SYMMETRIC FLOWS CONVERGING TO TEE AXIS

In order to explain the rather anomslous result obtained
in part III, section 2, it is advantageous to first consider
the basic equations of motion on which the method of characier-
istiecs is based. The familiar differential equation for the
velocity potential of an inviseid axieslly-symmetric compressible

flow is
Q

2 2
(1= )% =257 Oar ¢ (- )9 * 7 =0 (A.1)
where x is the coordinate measured parallel to the direction of
the undisturbed stream and r is the radial coordinate. If a
transformation is made to a new system ( & , T ) of curvilinear
coordinates, where § and N are distances measured along the
two lfach lines issuing from a point, then the equation of motion
for the velocity potential becomes simply (the details of the
algebra involved in making this transformation may be found in

reference 5, § 21)
d* _ sin'. oQ
aE, aq - r or (A.2)

where X is the local Mach sngle. It is to be noted that the
new variables have the simple physical significance that lines
of & = constant and Yl==constant are the kach lines of the flow.
The derivative of the velocity potential in any given direction
is the projection of the velocity vector along that direction,
and the order of differentiation in (A.2) can be interchanged.
Hence by letting

A3Q _ 09 _ (he3)
SE i on =
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and
élﬁl = U = W sind
oY

where w is the velocity veetor inclined at an angle © with

respect to the axis, it follows that

dP: S\r;dqu dqu Sir;o(vd& (4.4)

Thus, CMQ is the increment in the projection of the velocity
veetor along the & direction when passing a distance CWL in
the physical plane along the 7] direction, and Ck} is the
inerement in the projection of the veloecity vector inm the YL
direction when passing a distance df; along the & direction.
Bquations (A.4) are the fundamental equations used in the step-
by-step construction of a supersonic flow by Sauer's method of
characteristics.

The reasons for the singuler behavior as the flow approaches
the axis of symmetry can now be explained with the help of (A.4).
Suppose a series of steps were laid off in the physical plane
in the manner indicated by the sketch shown in figure 8a. The
small increments (dE and dIl) along the Mach lines are laid
off such.that they are ealways smell compared to the distance
from the axis r and also such that d-E/r and dﬂ/r are always
very nearly equal to a constant for all steps. If it were
necessary to express the length of these steps more precisely

they could be written as

é‘;:e[lJr@(E)] 2%11 where € <<

It is necessary to consider only the order of magnitudes in the

following discussion; hence such factors as {1 *‘C§Eﬂ] which
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would otherwise appear throughout are omitted for the sake of
simplicity. It is to be noted that if such a flow converging
to the axis is possible, then there would be an infinite number
of such steps along the streamline AB in figure 8a.

Now consider the increments in the hodOgraph plane corre-
sponding to those laid off in the physical plane (figure 8aj.
Figure 8b illustrates the way according to (4.3) and (A.4) in
which such increments must be laid off in the hodograph plane.
Poihts having the same number in figures 8a and 8b represent
the same point in the flow. let the smallest average kiach angle
slong the steps in the physical plane be K,, , and the smallest

vertical velocity component be U, , then
1
dp > V€ any = constant

and
R
dq 7 V€ simd = constant

for 8ll of the steps slong AB., This means that every increment
in the hodograph plane is greater than & constant value. This
value cannot be zero unless points 1 and & are identical, which
would represent the exceptional eése of a "reversed" conical
flow. On passing from point A to point B there are, however,

an infinite number of such increments. They must be laid out
along the arc of & circle in the hodograph plane since AB is a
streamline of constant pressure. This meahs that before reaching
point B the inclination angle of the velocity vector must be
greater than 46 {or even 90) degrees. Because this situation
obviously prevents a shock wave from being fitted into the flow,
8 contradiction results with the assumption that such a flow is

possible. Hence no such flow can be possible.
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It is realized that the foregoing argument would not be
termed a rigorous mathematical proof. Such a proof of the above
result seems at this time to be quite difficult, particularly
when one considers that the governing equations are necessarily
non-linear. The preceding discussion does, however, point out
the reason for the inelipnation angle © of the streamline in-
ereasing at an excessive rate as the axis is approached. The
- gource of the trouble is inherently tied up with the last term
in the equation of motion (A.l), since it has r in the denominator
and a non-vanishing factor‘in the numerator. The equations of
irrotationality, momentum, and continuity which combine to form

(A.1) can written separately as

ow 08
Y oaw 2 = . ‘ .
>n 3< o irrotationality
3
é\—'\—[ + & a—g = 0O momentum
Q5 oW 05 (pIus irrotationality)
A ow _ 98 _ wsing _ o continuity
tan’ol 35 on r = (pIus momentum and

irrotationality)

where S is a distance measured albng the stresmline, and M is
a distance measured normal to the streamline. It is evident
from these equations that the appearance of r in the denominator
of both (A.4) and (A.1) stems entirely from the continuity
equation. This leads to a qﬁalitative explanation of the
observed behavior near the axis of the inviscid base-pressure
flows. Consider the changes that must occur omn going from, Say,
point 1 %o point 3 in the physieal plane (figure 8a). If the
flow were two-dimensional, then the free streamline would be

straight and G%'would‘equal 633, thereby preserving the cross-
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sectional area between two adjacent streamlines on passing from
1 to 3. The term involving 1/r does not oceur for plane flow
and no difficulties arise. In the sxislly-symmetric case, the
fundemental condition is again that the cross-sectional area
between adjacent streamlines must be preserved, since Wy = Wge
This means that adjacent streamlines spread apart as the axis

is approsched. In order to have the pressure et point 3 equal
equel to that at point 1, the free streasmline curves toward the
axis, permitting adjacent streamlines to spread, thereby ellowing
the continuity equation to be satisfied. Because of the 1/r
term in the continuity equation, the curvature increases more
and more as the axis is approached. Hence, even before the axis
is reached, the inclination of the free streamline exceeds the
largest value which any oblique shock wave can possibly overcome.

The foregoing considerations easily lend themselves to
several other interesting extensions. 1f, for example, the
particular flow under consideration were not irrotational, then
an additional term would appear on the right side of each of
equations (A.4). These additional terms would involve the ro-
tation but not the radius r, and hence would have a normal
behavior as the axis is approached. Rotation would have no
effect on the arguments which followed (A.4). The impossibility
of base-pressure flows converging to the axis must, therefore,
be extended to include flows with or without rotation.

If the particular flow under consideration in figure 8a
were the flow over & solid body instead of a base-pressure flow,
then once agein only slight modifications in the preceding
argument would become necessary. Thus, in figure 8b, instead

of AB tracing out an arc of a circle in the hodograph, it would
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trace out a line very neerly parallel to the velocity vector,
since © 1is approximately constant along 4B, Foint 3 in the
physical plane of figure 8a would then be determined by the
point labeled 3' in the hodograph plane of figure 8b. Again,
there would be an infinite number of finite steps in the hodo-
graph plane, and they would not, in general, necessarily form
a convergent seguence. This means that before reaching the axis
the Mach number would be decreased too much to allow a shock
wave to deflect the flow back to the original direction of the
free stream. An exception, as remarked before, is the case of
*reversed™ conical flow wherein point 3' coineides with point 1
in the hodograph plane. Even in this exceceptional case where
the flow can be constructed down to the axis there is no apparent
way in which the flow field can be constructed any farther,
since a shock wave cannot be fitted into the conical flow pattern
in order to make the over-all flow possible. These consider-
ations lead to the following conjecture which has already been
stated in part III: |

It is impossible for a steady axially-symmetrie

inviseid supersonic flow to converge toward, and (3.6)

to meet the axis at a finite (non-zero) angle.
This has the interesting conseguence that the'inviscid super-
sonic flow over a thin body of revolution pointed at both ends
(without cusps) is, in general, not possible without separation

oceurring somewhere along the surface of the body.
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APPENDIX B. LAMINAR MIXING OF A SUPERSONIC STREAM
A -AIR REG

In order to maske the laminar-mixing problem amenable to
ealculation, the usual assumptions will be made that the layer
affected by viscosity is thin and has zero pressure gradient
along the direction parallel to the main stream (figure 11).
The Navier-Stokes equations of motion for the steady flow of a

viscous compressible fluid are (in cartesian tensor notation)
aU,,' —_ - gp ) [ Q&: a_u'_K ] - 2 _a____ au&
SUedy, = x| X, F(ax%+ ax; 3 dX (F' )

In view of the assumptions made above, the Navier-Stokes equation
for i=1 (X, =X,U,= U} simplifies to the familiar boundary-layer
equation
U -

Qu,é-)z * @U (j 'b\j(f‘ ) momentum (B.1)
while the equations for i=2 and i=3 (X,=Y,X,=%, U,=V, and
UL, =W} reduce to zero on both sides. The equation giving the
balance of energy for the steady flow (without the addition of
externsl heat) of & viscous compressible fluid with coefficient
of viscosity /L , coefficient of heat conduction ,X , and specific

heat at constant pressure Cp, is
2
(CPI WP 2 (2)«1 QuK\J _ 2 /Uy
S = Kax 5&( \ fl X, OX B(aXJ
In view of the assumptions made, this eguation reduces to the

usual energy equation for laminar boundary-layer flow

2
QMB(BCLT) + @U'D(C(QT) ‘g%()@\) }1( ‘j\) energy (B.2)

In sddition to equations (B.l) and (B.2) the eguation expressing

conservation of mass is needed.
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d(ew A(RV)
= * =— =0 continuit (B.3)
3X 3y continuity
For a given gas the variation of »L and Cp with temperature is
known, hence the foregoing system of equations is completed by

the addition of the equation of state

T _ Se
To €

In order to solve the above system of equations, the following

(B.4)

assumptions will be made:
(i) All velocity profiles in the mixing region are similar.
(i1) Cg = constant.
(iii) The Prandtl number, Pr==5%#:= 1.

~ N
{iv) ﬁiw==(%:) where n is approximately 0.76 for air.
(o]

The first two of these assumptions are slmost always made. The
third assumption introduces an appreciable error into the temper-
ature profile if the actual Prandtl number of the fluid is much
different from unity, as is the case for air where Fr=0.733.
For the purposes at hand, however, only the veloecity profile is
desired. At moderate supersonic ﬁaeh numbers the use of Fr=1
does not introduce more than about two per cent error in the
velocity profile. The small difference between the velocity
distributions of laminar boundary layers for Pr =1 and Pr= 0.733
is clearly shown by the calculations of Emmons and Brainerd
(reference 10). 4Accordingly, in the present calculations as-
gumption (iii) will not appreciably affect the final velocity
distributions.

As was first pointed out by Prandtl in reference 11, and

later used to advantage by Busemann and Crocco (references 12
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ahd 13, respectively), the consequence of assumption (iii) when
applied to boundary-layer flow is that the temperature becomes

g function only of the velocity. Thus

CeT = {—(uq (B.5)

Substituting (B.5) into (B.2) and using (B.l) in conjuction with
assumption (iii}, it follows that the energy eguation is auto-

matically satisfied if

Integrating this equation, using the boundary conditions
T.—.Tm -Fc;Y L,L:uoo
T':- o {»o\' L,L:'—O

gives

T T u'L T U:
fy=GT= Cplg -5 L‘Ujm[CP(Tw"d\)* > }

2 (B.6)

as the relationship between velocity and temperature. The
temperature of the dead=-air region Ta will be approximately
equal to the stagnstion temperature of the free stream. Since
the temperature determines the density, (B.6) enables the
density to be calculated as a function of the velocity.
Following the method first given by von Mises (reference
14) and later used by von Kédrmén and Tsien (reference 15), a
transformation is made to a new set of independent variables
(\V , X ) where TP is the stream function. By using yp as one
of the independent variables the continuity equation (B.3) is
identically satisfied, and the velocity components are given

by
. 8wV __ €3V
U=% 3y V="% 3 (B.7)

The only egquation now remaining to be satisfied is the momentum
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equation (B.l). The formulas for making the transformation to

the new coordinaste system are®

(29 } a‘lf\ oy (bx) 1}’)

(ax) ax(au) T g);,(gx) - _%(%L * (%\
It follows that
eu(38) ~ ev(3y), = eu(3H)
3] -
pou), = 1 (59),
Hence the momentum egquetion in the ( X ,IP ) system beconmes

Qw%%t = ( }Ug allf) (B.9)

This can be put in dimensionless form by introducing the variables

\

(B.8)

v

and

] M
u=‘6® P—/u
X - % ¥ (B.10)
" V- —
Q UL
S )

where )/ is the kinematic coefficient of viscosity and L. is
any characteristic length. For the sake of simplicity L. could

be taken as unity if desired. In dimensionless form (B.9) becomes

%%:= (E’ )‘ikau) . (B.11)

* QOccasionally the variables held constant in & differentiation
process will be indicated in order to avoid ambiguity.
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According to the similarity hypothesis (i) it is necessary that
Uf==tf(c) where [, is some Qimensionless variable involving
both l,l/* and X" . Hence £:=V/*PX*(1 where P and ¢ are pure
numbers which must be determined by the condition thst both

sides of (B.1l) are functions of L only. Letting
X x %
g9(l) = eu }1 (B.12)

then the right side of (B.ll) can be written as

du,aC _ ¥ d
29T o) = S35z oy Xt T) = x Sy (q(t) oy )
from which it is obvious that in order for the right side of
(B.11) to be a function only of [ , it is necessary that p==1.
Wiith p=1 (B. ll) reduces to

1L - 4 (00%)

Therefore, in order for the entire equation to be a function

only of [ , it is also necessary thet q=-3}, hence

(_:‘V*- V4

Vi? JT]—E;Tk {B.13)

The ordinary differential equation for the velocity distribution

now reduces to

e

Z du’
2 dt

2o

(q(c,) ) (B.14)

In the form written, this is a linear differential equation

whose solution can be obtained by two simple quadratures:
4

W = C, g _Fg_dc + C, (B.15)

[



where -S'EL'd‘
F=e (B.16)

The boundary conditions are
W=t at { =co
=0 at Z=-oo
hence !
* E *
uw = CS _.(_3_.. d.z + LLO (B.17)

(o]

* *
where W, is the velue of W at C-‘-O. The constent C must

satisfy .
*
‘_ LL.O LLO
—B_-' = ——o—————-——
.9 3
~oo

*-
Equation (B.17) is an integral equation for W |, since
* . .
both F and 9 are functions of W . By simply estimazting a
%
reasoneble solution for U as & function of , & first

*
approximation 1U. to the true solution is then
L4

u'* =CE "_g_ dl', + QLL’:

o
(2]

1

The zero order gpproximetions OF and ;3 can be calculated

*
directly from L by using
n-\
%*

* * *
gy = gup = T u

in conjunction with (B.6). If this process is repeated until

the kzg»approximation is the same zs the (k-l)Eﬁ-approximation
(to the degree of accuracy desired), and (B.18) is simultaneously
satisfied, then the solution to the problem is obtained.

The iteration process turns out to be rapidly convergent
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and three or four iterations are suifficient to obtain the function
%

Uf = W(Z) . In order to chenge this back to the physical

coordinates (x,y) a simple guadrature is necessary. By definition

of the stream function,

(52020 - Gl = o¥ = B2 - )

or, by using (B.7}) and (B.13),

Uzx 9L + 3¢ um dx. —.:_% L,-Qél;clx

Hence, with x held eonstdnt integration gives

y/0s - g , ot

from which %% as a function of Y,/-Ye
a0

VX
is to be noted that no graphical or numerical differentistions

can be determined. It

are needed in the above iteration process — only quadratures
are required.
Numerical caleulations have been carried out for two cases:

(1) M,L=0 {incompressible flow)
0.76

(2) Mco: 2.0 ) Td =TO=T®(\+!§M:) 3 #z}lw(—:%w)

The results are shown in figure 1l2. The effect of increasing
the Mach number is simply to increase the thickness of the
mixing region. This increase in thickness is due to the heating
efiect of compressibility which causes the density to be
decreased and hence the distance between streamlines to be
increased. Since this is the same mechanism which increases the
thickness of the boundary layer along a flat plate, one would
expect that the ratio BNV/%M=O’ where O is the "thickness" of
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the boundary leyer, would be approximately equal in the two
types of laminar flow. Theat this actually is the case, at
least for M_=~ 2.0, is illustrated in figure 13. The curve in
this figure represents the known increase of boundary-layer

thickness for flow over a flat plate. This curve is represented

by 5 2
M~ 1 “’.08571\/\00

8M:o

according to Lees (reference 16). As is evident from figure 13,
the point representing the thickness for the laminar mixing
process falls very near the curve representing the thickness

for boundary-layer flow along a flat plate.
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FIGURE 4a:- TWO-DIMENSIONAL BODY WITH
STRAIGHT SIDES

FIGURE 4 b:~ TWO-DIMENSIONAL BODY WITH
CURVED SIDES
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b) Mm_=25 R=-02I5 (C) M_=25 P,=-0.90

FIGURE 5:- CONTINUED
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FIGURE 5 .- CONTINUED
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FIGURE 5:— CONTINUED

P=-0.l
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FIGURE G:- AXIALLY-SYMMETRIC SEMI-INFINITE
BODY WITH ROD ATTACHED.
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AXIS OF SYMMETRY

FIGURE &a:- ASSUMED FLOW IN THE PHYSICAL PLANE
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FIGURE 8b:- INCREMENTS IN HODOGRAPH PLANE

CORRESPONDING TO FIGURE 84a.
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FIGURE 9b:- FINITE AXIALLY -SYMMETRIC BODY;
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FIGURE |0:- SKETCH OF THE VISCOUS-FLUID FLOW
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FIGURE 13:- MACH NUMBER EFFECT ON THICKNESS OF
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FIGURE 14 :- QUALITATIVE EFFECT OF BOUNDARY-
t AYER THICKNESS ON BASE PRESSURE.
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FIGURE 24 :- SHADOWGRAPHS OF PROJECTILES IN FLIGHT,
(COURTESY BALLISTIC RESEARCH LABORATORIES,
ABERDEEN, MD.)




(C) M_=1.88, TURBULENT

(d) M_=2.33 TURBULENT

FIGURE 24 :- CONTINUED




99

(e) M_=364, TURBULENT

FIGURE 24 :- CONCLUDED



