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I INTRODUCTION AND SUMMARY

A dynemic longitudinal stebility anelysis is made for a Canard (tail
forward) type esirplane in steady horizontel flight at Mach numbers of 1.7
end 1.3, Four different wing configurations (Fig. 1) are investigated:

Case I. Delts wing with the Mach wave sheed of the leading
edge. The planform of the deltae wing is characterized
by one=half the apex angle, w,. In this case it has been
teken to be 18°,

Case II. Delte wing with the Mach wave sheasd of the leading
edge (w, = 25°). |

Case III. Delta ﬁing with the Mach wave behind the lesading
edge (w, = 549).

Case IV. Rectangular, bi-convex, wing with an aspect retio of 2.

The shell or fuselage of the airplene consists of a conical nose and
cylindrical afterbody with no boat taeiling at the aft end. The stabilizing
surface is bi=-convex and rectengular in plan form with an aspect ratio of
2., Power is assumed to be supplisd by a constant thrust jet motor. Other
characteristics mey be found in Table I.

The design of the airplane is based on the Mach number of 1.7 at an
altitude of 30,000 ft. and a gross weight of 10,000 1lbs. Static stability
is assumed to be the major design variable. The dynemic stebility is
first investigated for e static stability just sufficient to allow a
four-g maneﬁver‘without exceeding a 20 degree angle of attack on the fin.
Then the static stability is increased in multiples of 2, 3, =nd 4, to

establish a trend.



It is found that the effects of compressibility have a powerful
influence on some of the coefficients of the stability quartic and hence
on the dynemic stability, and that dynemic instebility will result in

certain cases regardless of the amount of stetic stability provided.



II THEORETICAL CONSIDERATIONS

L. Equations of Motion and Condition for Stebility.

The Eulerian exss ("jumping" or moving exes) are used in describing
the motion of the airplane. These axes are fixed in space at any instant
but change their position from insteant to instant, coinciding at each
instant with a definite set of axes fixed in the airplane. The axes
fixed in the sirplane are celled the "wind axes" in which the x~-axis is
in the direction of motion. In other words, the x and z-axes assume
different positions relative to the sirplane for different altitudes of
flight.

Considering the simple case of small disturbances from steady
rectilinear flight, it cen be shown (Ref. 1, 2, 3) that the equations of
motion for an airplane split up into two independent sets of three
equations. One set which completely describes the longitudineal motion,
and the other set which completely describes the lateral motion. Assuming
small disturbences from the steady state and neglecting squares and
products of small guantities, the equations describing the longitudinal

motion of an airplsne are:
du_ . yx, + WX, - g0 cos 9, + X de
i u 0 q at

dw_ _ ;48 = B :
i - U 82 On uZ, + Wi, + Zq dt g® sin 6, (1)

K&z %0 - wi,+ Wiy + Mg 4O
at? at

or, in terms of the operator D =-%¥,
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(D-Xy)u = Xyw = (=g cos O+ XqD)@ = O

“Zu + (D=2, )w = (-g sin Oo+ Zgd + UD)e = O (2)

- My u-.lﬁw_é.vv'i-(Dz-.}&z D)o = 0

2

y Y fy

where U+ u and w are the components of the rectilinear velocity in the
x ‘end z-directions; 6 + 6, and q are the pitching displacement from the
horizontal end the pitching velocity, respectively; and X,, Zy, Mq, otCe,

are the resistance and rotary derivatives. For example,

= dX, = 32 , M, = M, etc. ,
Xy S Ly Er Al e (3)

where X, is the variation of dreg due to a change in velocity in the
x-direction, Z, is the variation of 1ift due to a velocity disturbance in.
the z-direction, Mq is the variation of pitching moment due to a velocity
of piteh, etc.

Expressing equation (2) in determinate form we have

D - x’u ..xw, ~(-g [¢10] -] Qo + qu)
_Zu D - ZW -(-g sin Go + ZqD + UD) (u’w,g) 2 0 (4)
_ My o My (0 - u D)
2 2 d
Ky %y

where F(D) [u,w,e] = 0 is & fourth order, linear, homogeneous differential

equation in (u,w,®) snd t. Hence,

(8 D%+ By D8+ €y D24+ Dy D + Ey)(w,w,0) = 0, (5)
for which the solution is

u, w, 8 ¥ Cje l‘ta- Coe AL + Cge A3t+ C40 AL , (6)

where the A are the roots of the "stsbility quartic"



F(A) = A17\4 + Blf + cllz + DA 4B o0, (7)

The condition for stability is that all the roots of the stability quertic
shall be pseudo-negative. According to Routh (Ref. 4), the rules for the
roots of this quartic to be pseudo-negative ere

By , By, 0y » Dy, By, Ry, 811 >0, (8)
whers

- 2 2
Ry = By € Dy - By“ Ey - A D,%. (9)

B. Equetions of Motion in Dimensionless Form.

The dimensicnless form of the stability equations has been used in
this anaslysis. Referring lengths to the shell diemeter and sreas to the
square of the dismeter, equation (4) mey be put into the dimensionless

form by letting

X, - X Zy = _ Zu, fE_ z . EELJ
- T K 2 4T
y
- xW =_ZW Mw '-'-mw
A == K 2 av’ (10)
h
x_d _ z_d M m
Xq=-_g__, Zq-"_ﬂ__l ._q_.:-_ﬂ__’
™ ™ K 2 T
y
and
, C U
g cos 85 = Z T
(11)

g sin Og

Z

where T = mU/éq'dz, Cy, is the totel lift coefficient referred to the

square of the shell diemeter, d is the shell diemeter, m is the mass of



the airplene, U is the steedy state velocity, end q' is the dynemic

pressure. Using this notetion equetiocn (4) becomes

Xu
(>\+ -;;) %‘*” (—;—_—C_;U + Xq)\)
Zz Lo L =
2y A+ 2 (15  tane, + 22X -UA) | =0 (12)
mg z
o i (X +mad)

Equation (12) may be put into nester form

(X+ xu) Xy ("iCLi'l‘_‘lX)
y
) [
Zu (A + Zw) ,('-‘?:CLtﬂV\ 6, 1—/%(.9_k ‘X) —_;0, (13)
la‘ \
/U My // My, (X + qu )
where
=Yr
ME 73T ed? (14)
X=™A=30a A (15)
The stebility quartic for the dimensiopless case then becomes
I*‘()\‘)=1*O'\‘?c +BAS + cA? L DA +E = 0. (16)

The coefficients of the new stebility quartic ere given in terms of



the dimensionless derivatives xy, Xy, X4, etc. in Appendix IV.

C. Approximate Factorization of the Stability Quartic.

Bairstow has shown (Ref. 5) that in certain cases the roots of =
quartic may be approximated with sufficient accuracy by the following

factorization:
2
P =[A° B)«+C][X B PR+ } °. (17)

The sufficient (but not necessary) conditions for this to be valid are,

¢ =8, ¢c®> 20E BC > 20D. (18)

The first term of the approximete factorisation gives what is called the
"short oscilletion", and the second term the "phugoid oscillation". The
period and time to demp to helf emplitude for the short oscillation are

given by

T, = —2W T ~ (19)

4/6—:.—(__%—_)? SEC..’

= ———— T sec, ; (20)

and for the phugoid oscillation by

2w Y
- sec. 21
Te [E _ Cb-BE ’ (21)
Cc 2ct
kA
t,, = 1386C o gec. (22)

:
2 cp-mEe

7.
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D. Resistance and Rotary Derivatives. *

The resistence and rotary derivatives are summarized in Appendix III
in both the dimensional end dimensionless form. The derivatives are
derived assuming small disturbances from the steady state and small angles
of attack. They are of the conventional form except for those which are
referred to u, the perturbation velocity in the x-direction. Here, the
variation of Mach number must be considered., For example, the actual

force in the x-direction is given by
: 2
mX =-) & Co(U+w). (25)

The summation sign represents the total of the contributions from the

shell, fin, and wing. Neglecting the products end squares of small

guantities,
) k3
K- B ST IR (g 0c]. (24)
w

The coefficient of dreg is assumed to be of the form

3C 2
Co = be + Cp, + T:[l + ‘f'(/B)]d- (25)
where /3= ,/M%-) R CDf is the friction drag coefficient, CDw is the

wave drag coefficient at zero lift, and the remaining term is the drag
increment due to 1lift which, in general, includes a correction factor for
second order effects, i.e., £(/3). In many instances f(/3) can be taken
to be zero. It is assumed for convenience that the friction drag
coefficient is independent of Mach number. The wave drag coefficient at

zero lift and the weve drag increment due to lift are both functions of

* Jot effects on the derivative m, end x, are neglected.



the Mach number, hence,

where a = free

Similarly it can be shown that

and
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IIT CALCULATIONS

A. Aerodynamic Coefficients.

The basic aerodynamic coefficients for the component parts of the
airplane ere given in Teble II for Mach numbers of 1.7 end 1.3. These
coefficients are derived in the manner indiceted in Appendix II and are
based on the characteristic area of the individual component. In applying
trese to the complete airplane, all coefficients are referred to the
square of the shell diameter, and the following assumptions are mede:

1. the principal of superposition applies;

2. the influence of body upwash on the fin, neglecting the
area of the fin occupied by the body, cencel the tip losses;

3. the influence of body upwash on the wing cen be approximated
by including the area occupied by the body;

4, downwash, or upwash, effects of the fin on the wing are
negligible;

5. base pressure drag on the shell is zero since the exhaust
jet of the motor occupies the full cross sectional area of

the body.

B. Static Stability and Aress.

The static stability is determined in the conventional manner.

Summing moments sbout the center of gravity,

pI ’ ' acl. U
3 0': +(X o + (S )w(ﬁ‘)w(x s % (30)

Cum (32), 00, + (3(



1l.

where (S'), = (S)f/hz, (x')f ’(x%/as etc., o0 = g, + o,

)e
Differentisting with respect to the angle of attack

dCm g—if)s(x')s + (S')+<3§'_')f(x')4 + (), %%)w(x')w. (31)

d o

The static stability is then given by

A Cm
s )-8

_dCm = e —— . (52)
dCo o Co
a &

The wing and fin areas are determined from conditions at the Mach
number of 1.7. The angle of incidence of the wing is taken to be zero,
snd, hence, the entire airplene flys at an angle of attack to obtain lift.
The engle of incidence of the fin (g; ) is chosen to give a reasonable
degree of static stability end yet provide sufficient margin to obtain a
four-g meneuver without exceeding en angle of ettack of 20 degrees.
Eighty per cent of the 1lift is assumed to be carried by the wing, and the
remainder by the shell and fin. With these considerations in mind, o
and ¢; are chosen to be 3 and 2 degrees, respectively. The arees for
the fin and wings, given in Table I, sre then obtained from the equeation

for the total lift:

80W
(8),, = (35)
o (ach)
20w - gd aCL)
(34)

(8), = ACL)O,
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Given the ereas, the sngle of atteck, the center of pressure of the
shell and essuming the wing center of pressure location to be (x')w = -1.50,
the location of the center of pressure of the fin is determined from the

equation of equilibrium,
— 3Ce ] ! é&-.) '] U bc ' —
Cn= (3%), (00 + (%(53 () e + (90 (3%) (=00 ()

Under the above conditions the stetic stebility at the Mach number of 1.7

Cm
dCu

becomes — = ,3169, besed on the shell dismeter.

The 1ift coefficient slopes are different st a Mach number of 1.3
then at a Mach number of 1.7, while the aress and wing and fin locations
remein fixed. The sirplene is thus required to fly at different engles
of attack, with different fin incidences, to obtsin the required lift and
to maintain equilibrium. The new angles of ettack and fin incidences are
obtained using the equation of equilibrium end the equation for the totsal
1ift, as before.

The static stebility at the design Mach number is varied in multiples
of n =2, 3, 4, to determine the effect on the dynemic stability, and to

esteblish a trend, i.e.,

d Cm
dC

n(.3169). (26)

This is accomplished by moving the wing aft from the center of gravity.
Wing end fin areas and fin location remeain fixed, but the angle of attack
and fin incidence change for eech condition.

The center of pressure locations, angles of attsck, snd stetic

stebility, as determined by the procedure outlined sbove, ere given in
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Taeble III.

C. Dynamic Stability Derivatives eand Coefficients of the Stability Quartic.

The resistence and rotaery derivatives,as presented in Appendix III, ere
calculeted in Tables IV-A through D. These are determined for the various
degrees of static stability (n) at Mach numbers of 1.7 and 1.3 for esach
wing configuration. The aserodynamic coefficients are referred to the square
of the shell diesmeter esnd are besed on the angles of attack given in Table
III.

The coefficients of the stebility quartic as defined in Appendix IV,

sre then determined in Taeble V.

D. Roots of the Stability Quartic.

The roots of the stebility quertic are determined for the dynemically
stable cases by means of Beirstow's approximate factorizetion. These are
presented in Table VI. The period and time to damp to helf. emplitude are

given where applicable.
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IV RESULTS AND DISCUSSION

A, General Discussion of the Nature of Instability.

The conditions for stebility and the neture of instebility which cen
arise are exsmined first in the general case and then in the particuler
case of supersonic motion. It was shown that the conditions for stability
are

B, C. D. E. and R > 0O,

where

R=BCD- D? - B?

E.

Considering a stable airplane it is apparent thet if B, D, and C decresase
and pass through zero independently then R will decresss ond reach gero
first., If E decremses and passes through zero then R incresses. Hencs,
the only way in which stability can chaenge continuously over into
instability is for R or E to pass through zero first,

To exemine the resulting motion which occurs under these circumstances,

Bairstows approximaté factorization of the stability quartic may be

utilized.
F(A’):[X1+ BA + C] [ l’a+ QECL,_B—E-A’ + —g-} = 0.

The resulting motion for the "short oscillation" is given by

Generally speeking (B/?)2~<. C and B is always positive, hence the
resulting motion is damped oscillation.

The resulting motion for the "phugoid oscillation" is given by
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- C.e (- oF + /D) - E) + C, e(— b.F. - [bF)*- _g)’

x (88)
where D.F.(demping factor) = ;% Ezfiigisﬂz (39)

Considering the case when D.F. > O and E/C > 0, the following
generalizations may be made:

demped oscillation will occur if E/C > (D.F.)%,

subsidence will occur if E/C <. (D.F.)%.
Suppose E/C > (D.F.)Z, then as D. F. goes from (+) to (-), the motion
goes from damped oscillation to divergent oscillation. Hence, D.F. = 0

is the boundary between dsmped end divergent oscilletion. Or, explicitly,

_LDC~BE -0
Z c* ’ (40)
This can be written as
R - D% =0, (41)

where in general DP<<.R and we cean say D.F. = O corresponds to R = O
Hence if R goes through zero from (+) to (~) the motion changes from =
demped oscillation to an undamped oscillation.

If we take D.F., B, G, D, and R > 0 and let E go from (+) to (~),
then if E/C < (D.F.)2 we go from subsidence to divergence.

In general then (1) if R goes through zero the motion goes from
damped to divergent oscillaetion, end (2) if E goes through zero the motion
goes from subsidence to divergence.

To study the particular cese of dynamic stability at supersonic¢ speeds,
the coefficients of the stability quartic must be examined in detail. It
was previously pointed out that the effects of compressibility enter
directly only into the stability derivatives x, 2,, and m . The signs

*x R = 0 is actuelly the rigorous boundary between divergent and demped
oscilletions.



of these terms may be affected by the relative magnitude and signs of the
compressibility correction factors. Hence, to sxamins the motion at
supersonic speeds, it is necessary to determine in particular the effects
of these terms on the coefficients of the stability quartic. The
coefficients given in Appendix IV may be further simplifiqd when mq appears
in the expressions for ¢ and D in such a manner as to be small compared to
the other terms. The coefficients then become :

B =x,+zy +-mq

C = pumy

- 1 (42)
D = pmyxy -um,(xy 4 5Cr,)
E = %CL/‘(mwzu - Myzy) .

Considering the coefficients separately, one can arrive at the following
conclusions:

l. The second and third terms in coefficient B are always positive
and of the same order of megnitude, while the first term may be either
positive or negative but is of a lower order of magnitude than the other
terms. Therefore B will always be positive.

2. The derivative my, represents the static stability and is always
positive, therefore, the coefficient C will always be positive if there is
a reasonable margin of static stability.

3. The sign of coefficient D will depend on the magnitude of the
respective terms and on the signs of x, and my only,since my and
(%, =5C;,) ere always positive.

4, Similarly, the sign of coefficient E will depend on the magnitude

of the raspective terms and on the signs of z,; and m, only, since my, e&nd

18.



z; are always positive,

Hence, it is seen thet the dynamic stability and resultant motion-of
an airplane, provided with a ressonable margin of static stability and
flying at supersonic speeds, depend only upon the signs of coefficients
D and E, and that these coefficients are positivs or negestive devending

on the signs and magnitude of the terms which saccount for compressibility.

B. Specific Results of this Anslysis.

The stability quartic coefficients obtained for the various conditions
investigeated in this analysis are given in Table V. It is seen that B and
C are always positive as previously indicated, and that D end E are
negative in certain cases, giving rise to instability. The coefficients

D end E are plotted in Figs. 2 and & against static stability (dCy/dcp),

and for all practical purposes they vary linearly., It is seen that D
is always positive for the cases investigated st M = 1.7 and incrsases
with dCM/ﬁCL. At M = 1.3, D is negative for Cases I and II, but become
positive with increesing dCy/dCp. It is positive for Csse III but de-
croases and becomes negative. For Case IV, it is negstive and nearly
constant throughout the range investigated. Hence, D cen be made positive
by varying the static stability in all cases except IV.

The coefficient E increases with increasing ststic stability at
M = 1.7. For Gases I and II, it is negative for low values of dCM/BCL
but becomes positive., At M = 1.3, E decreases with increasing static
stability. For Ceses I, II, and IV, it is negative and never becomes
positive for positive values of dGM/HCL. For Cass 1IIL, it is positive

for the practical range of dCM/aCL.
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It is evident that Cases I, II, and IV, are alweys unstable at M = 1.3.
This is entirely due to the effects of compressibility which enter into
the coefficient E in a predominating manner through the stability
derivative m,. The predominating effect of this term may be clearly seen
by examining columns 14 and 15 of Table V. It is interesting to note that

the derivative,

4*x' Mix Q  (9C,
By = 7 Kyz [CL+ 253 df3 boc)] ) (43)

appears in the analysis only because of the compressibility effects,
since the summation of the Cp part of the expression is identically equal
to zero. The resulting motion for the unstable ceases cited above will be
divergence.

The physical interpretation of this may be seen by examining the
terms m, and mg. Neglecting the effect of the shell, for discussional
purposes, we need only consider the moments due to the fin and wing. In
general, except for Case III, if we consider a small increase in forward

velocity, the moment increment due to the chenge in Mach number, i.e.,

3 (st
Kx' SBA\S=)™ (44)

decreases more rapidly for the fin than for the wing. This gives rise to
a negative pitching moment, end hence the airplane goes into a dive. If

we consider a small down gust,the moment increment due to the gust, i.e.,

. (3cC
sz 30:.)“ s

(45)

decrsases more rapidly for the wing than for the fin, since static stability

is positive, This gives rise to a positive pitching moment tending to
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restore the sairplane to equilibrium. Actually these effects ers simul-
taneous. For instance, when the airplane pitches due to an incresse in
forward velocity end goes into a dive, the angle of attack is effeciively
reduced. This is essentially the ssme as a small down gust, hence, there
is a tendency to restore equilibrium if the moment due to the down pgust
overpowars that dus to the increass in forward velocity. Such a condition
leads to stability. On the other hand instebility will result if the
diving moment due to the increase in forward velocity is predominate.

As might be expected, a further deduction of this enalysis is that
the direct effects of compressibility on dynamic stability at supersonic
speeds become less important as the Mach number increases.

The roots of the stability quartic, the time to demp to helf-emplitude,
and the period, ere given for the stable cases in Table VI. 'The periods
for the short and phugoid oscillation show the essentinsl difference
between the two. Both types of motion appear to be unobjsctionable since
the short oscillation has & small period which damps out repidly, and the
phugoid oscillation has a very long period which damps out slowly. tlhe
letter motion is unobjectionable because the long period allows plenty of

time for corrsctions to be applied.



V CONCLUSIONS

The effects of compressibility have a powerful influence on the
dynamic stebility quartic coefficient E for supersonic speeds in the range
of kach numbers whers the variation of lécL/écL is relatively large. This
is due primerily to the derivative m  which appears only because the
effects of compressibility have been considered. This influence is felt
even at M = 1.7 for ordinarily reasonable values of static stebility.

It is found that the delta wing, with the Mach wave ahead of the
leading edge, and the rectangular wing (Ceses I, II, and IV) for a Canard
type airplane are unstable under the assumptions made in this anelysis.
Cases I and II mey be made stable by choosing @& fin with the same planform
as the wing. Under these circumstances, the variation of BCL/éoL with
Mach number will be the same for both fin and wing assuming upwash or
downwash effects are conétant. The derivative m,, then, is effectively
reduced to zsro, since, for the shell the variation of 'B(aj/éog with
Mach number is small. With the sssumption made in this snalysis ’BCL/éo<
varies with Mach number in a different manner for the rectangular fin

than for the rectangular wing, therefore this reasoning does not apply

to Cass IV.

20.
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aPPTRDIK 1

SIGE CUWVLHTION AL NUGMEECLATURE

A, 8ipn Convention.

(U +u)

~~(6,+©)

vm‘i



B. Nomenclsture.

U Steedy state velccity of flight (ft./sec.).

L Free streem density (slugs/cu.ft.).

q' Dynemic pressure (1b./sq.ft.).

M Mach number.

Y AT

g Acceleration dus to grevity (ft./sec.?).

u Perturbation velocity in x-direction (ft./sec.).

w Perturbetion velocity in z-direction (ft./sec.).

q Perturbation velocity in pitch (red/sec.).

N Angle of flight path with the horizontal (rad.).

e Deviation in anguler displacement in pitch from the
steady state (rad.).

nX Actuel force in the x-direction (1b.).

mZ Actual force in the z-direction (1b.).

mM Actual pitching moment (ft.-1b.).

m Mess of the airplsne (slugs).

Xy Zys My Derivetives representing change of drag, lift, end
moment due to u.

Xys Zyr My Dimensionless form of the above.

Xyr Lygs M, Derivatives representing chenge of dreg, lift, and
moment due to w.

Xys Zys Ty Dimensionless form of the sbove.

Xq, Zq, Mq Derivetives representing change of dreg, 1lift, and
moment duvue to velocity of pitch.

xq, zq, mq Dimensionless form of the above.
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Ay Bys Cps
Dy, By
&, B, C, D,
E

Tg» Tp

tie0tLp

S

(x')ss (x')f

(x*)y
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Dimensionless dyneamic stability paremeter

(= mU/?q'dz).

Dimensionless dynamic stability parsmeter (= m/&’ds).
Actuel roots of the dynesmic stebility quartic.

Roots of the dimensionless form of the stebility
quartic.

Actusl coefficients of the dynemic stebility quertic.

Coefficients of the dimensionless form of the stebility
quartic.

Period for the short and phugoid oscillation.

Time to damp to half emplitude for the short and
phugoid oscillation.

Lift coefficient.

Moment coefficient.

Total drag coefficient.

Skin friction drag coefficient.
Weve dreg coefficient.

Static stebility paremeter (= 1, 2, 3, 4).

Airplene engle of atteck (rad.).

Fin engle of incidence (rad.).

Fin angle of attack (rad.).

Distance of the center of pressure of the shell, fin,
and wing to the c.g. in terms of diemeters,

Diemeter of the fuselege or shell (ft.).



"

o

(A, (a1,
(A1),

(81, (81,

W

y

K
y

Subscripts
(),
(g
)y
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Total length of the airplane (ft.).

Span (ft.).

Chord (ft.).

Meximum thickness of the surfsce (ft.).

Meaximum thickness in percent of meximum chord.
One-half the spex angle of the delts wing (degrees).
Wetted surface aress of the shell, fin, and wing in
terms of the square of the shell dismeter.

Surfece areas of the fin eand wing in terms of
square of the shell diameter.

Gross weight of the airplane (1b.).

Cehter of gravity position from the aft end of the
sirplene (ft.).

Moment of inertie sbout the y-axis (1b.-ft.-sec.2).

Radius of gyretion (ft.).

For the shell or fuselege.
For the fin.

For the wing.



28,

APPENDIX 11

AERODYNAMIC COEFFICIENTS USED IN THE STABILITY ANALYSIS

A, Shell or Fuselsge.

1. The lift coefficient slope and center of pressure is estimated by
Tsien's method (Ref. 6) based on the linesrized equations of motion for an

exial body of symmetry.

2. Varietions of the 1lift coefficient slope with Mach number, %ﬁ(%%)’

is estimated by assuming e linear veristion of %%f with Mach between

M=1,2 and 1,7. This assumption was substantiated by a study of numerocus

calculations in which the variation of 35: with Mach number was neerly

linear for shell lengths greater then 10d.

3. The skin friction drag coefficient, CDf’ is assumed to be constent
at 0,003 based on the wetted surfaée erea, This is assumed to be the
case for each of the airplane's components.

4. The wave drag coefficient at zero angle of attack, CDW, is
estimated from figure 2, Ref. 7, which is an interim report on Kopel's
celculations for drag of cones by the Taylor Maccoll method.

5. Variation of the wave drag coefficient with Mach number, %bé CDW,
is estimeted from figure 2, Ref, 7.

6. The drag coefficient due to 1lift is sssumed to be directly
proportional to the angle of attack and the 1ift coefficient, i.e.,

ot %%‘).
7. Variation of the drag coefficient due to 1lift with Mach number is

assumsd to be
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YN

S is the seme as in paragraph 2, above.

whers %—{3 (

B. Fin.
1. For the 1lift coefficient slope it is assumed theat the two
dimensional thin airfoil theory is epplicable since it is believed that

the influence of the body upwash will approximetely cancel the tip losses,

hence, ¢

o/

r

3

R

2.
P
In computing the total lift coefficient the body area is neglected. The

center of pressure is assumed to be constant at the mid-chord,

2. Variation of the 1ift coefficient slope with Mech number is simply

d ‘a_c—':)-__'__ QCL.
= 527 5«

3. The wave drag coefficient at zero angle of attack is based on the

two dimensional airfoil theory for bi-convex airfoils, i.e.,

CD =

-

n
3

ule

4. Variation of the wave drag coefficient with Mach number is simply

Cb“ :-[—‘B'Cnu'

S
I3
5. The drag coefficient due to lift and its variation with respect

to Mach number is found in the seme manner as indicated for the shell,

C. Wing - Case I and II.

1. The lift coefficient slope for the delta wing with the Mach cone
ahead of the leading edge was determined by Stewart, (Ref. 8) to be

>Co 2% tan un

— —————————— Y

S £ (k)
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where w, is one-half the apex angle of the delte and E(k') is the complete

elliptic integrel of the second kind having s modulus
; 2 2
K'=,/V -8B tan ws

The center of pressure is constant &t two-thirds the meximum chord aft of
the wing apex.

2. Varistion of the lift coefficient slope with Mach number is

a'n'/o’tah w, | E(K)-K(K)
> 3% B} §°

where K(k!) is the complete elliptic integrel of the first kind.
3. The weve drag coefficient at zero angle of etteck was found by

Puckett (Ref. S) to be

C - ?-—Y-f G'g‘(n‘v) F (" V) -+ | loq nr - ‘o& %
wTwB ) r(1-v)? (l -¥)t r( -9 L frmi=t Anet-t

-ty -V 3
4+ SIn — -~ S\ —
rn n K

where r is the distance from the trailing edge of the delte wing to the
meximum thickness point end n = cot Wo/ﬁ‘ o G's(n,r) and F'(n,r) are
functions of r and r es defined by Puckett in the given reference.

4, Variation of the wave dreg coefficient with Mech number is given

by
b [} (]
2 () = zn B55©) B3 [vwlo_w
r(V-v)* (-v)? r(i=v) L rnr-0)"

n logn
(na._‘)'%’z



5o The drag coefficient due to lift was found by Stewart and Puckett

C. [| _ K }
d e 2E(K)] -

(Ref. 10) to be

(U4

6, Varistion of the drag coefficient due to 1ift with Mach number is

given by

a_[g_&(.__k'__)]: 2w tanw, | E(K)-K() _ K | EG) - 2K(K)
o3 [ o« 2e(K) (')* [E(k.)]z 2 [E.(k‘)]’

D. Wing - Case III.

1. The 1lift coefficient slope for the delte wing with the Mach cone
behind the leading edge was found by Puckett (Ref. §) to be identical to
thet for the two dimensional thin eirfoil, i.e.,

oC. _ 4

—

dx B

The center of pressure is sgain at two-thirds the meximum chord aft of
the wing apex.

2. Varistion of the lift coefficient slope with Mech number is simply

e éjﬁ)__ 1 9C,
NP\~ T 3 J«

3. The wave drag coefficient at zero sngle of atteck wes found by

Puckett (Ref. ) to be

-1 -1
2n” cos n Txsm vn
CDU 4 2 ——— ~+ LY
wpEa-v?) At —=n* v/ 1 —vtnt

29,



30,

where the symbols are as defined under part C, paragreph 3.
4, Veristion of the wave dreg coefficient with Mach number is given
by

k3
P) 2N n
55 (Cou) = S U | SR—

z 3
17/3 (l—r") i —-nt { —ytnt ZY(I—Y‘"P\") 7T

cos’'n stn ' vn

e tpte——— —-—--———-—'—,s
G _nl)’/'l. r(._rth'l) 23

5. The dreg coefficient due to lift and its verietion with respect

to Mach number is found in the same manner as indicated for the shell.

E. Wing = Cese IV.

1. The lift coefficient slope for the rectangular wing is given by
the two dimensional thin airfoil theory and includes a correcticn for

tip losses, i.e.,

éc(.=i(|—__'——- .

The center of pressure in per cent of chord from mid-chord is given by

!
12ZRB-6

2. Variation of the lift coefficient slope with Mach number is given

» Q_(i&—)--i -
P/ T 32 ARB

3. The wave dreg cosfficient st zero engle of sttack is given by

2
o
3

w

16
Cow = 73



3l.

4, Variation of the weve dreg with Mech number is given by

) = -4
S_ﬁ'(cbu) = /3 (cbw) .

5. The drag coefficient due to lift and its verietion with respect to

Mach number is found in the seme manner as indicated for the shell.
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APPENDIX 111

SULMARY OF LOKGITUDIEAL STABILILY DERIVATIVES

Dimensional Form Dimensionless Form
- 2ad 'd 3Cow 29 AT . - acbw
A= 'm [CD aﬁ{éﬂ T8 (au)}} Xu ‘Z &C" 28 { Y éB ad
2ad? M% S ac] - M D /oC
Z.:=) mo [C“ 25 a/s(sf) z2u =) | Cor 72 BG5S

2. 2
My S 294’ %' M D /3 __E d*x M« D acu>
K:’ZmU Ky [CL* F1 S/’B( u) M = Ky C+ 77 e)/S(au

'd YA =N L oCu
2.7 ”:\u[ ® 3:?] ZW‘XZ{C"* a«}
|d3 ' SC. _ Z . d?xl 3¢

2
q'd¥ 2 ¢, -Z.‘_.d L3 éCL]
%‘“Zm Ky [C"* SI} mATL T [ "3
Y
Rote

herodynemic Coefficients are referred to a?
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APPENDIX 1V

COEFFICIENTS OF THE STABILITY QUARTIC

In the general case the coefficients of the stability quartic are as
follows:
A=l

B = Xy + 2y * mq

<2
1]

mq(zw + xy) + my( - zq) + XyZy~ XyZy= Xgly

D= mq(xuzw - XyZy) * mwgptxu - % Cppmtean €, + xqzy = xuzq)
*mu(ﬁ/‘xw - %'CL/4+xwzq - XgZy)

E = %wl/“[?w(zu - x, ten 8,) - m,(z, - x, ten Goﬂ )

appear in the equations in such a manner as to be

Usually x, and 2z

! q

negligible compared to other terms. If xyzw and xwzy &re small also,
and, if we consider the special case of horizontal flight, then the
coefficients become :

A=1

B=xy + zyw *+ g

C = mglzy + xy) +pmy

b= mq(xuzw - Xyly) * pIXy “/‘mu(xw - %01

E = 30pmlmyzy = MyZy) -






Mach
No.

1.7

1.3

i

| oo

CDf is based on wetted aree

Component

Shell

Fin

Wing Cese
Wing’ Case
¥Wing Case

Wing Case

Shell
Fin

Wing Case
Wing Cese
Wing Cese

Wing Case

I

I1I

Il

Ii1

Ref.
Ares

Fin

Wing

k3]

TABLE II

¢.p. Location

1.4744 aft of tip

50c aft l.e.

67¢ "
67¢ "
67c "
.4630c "
1.634 eaft
£50c afd
.67¢c "
67¢ "
67¢ "
.4282¢ "

"

2]

of tip

l.o.

A drag correction fector hes been included in this term.
The term is: M

where

M= 1.3

M= 1.7
#

__9__{:29;
273 B

Case
Case
Case
Casge

I

I

I
I1

&' ]
P =Z2E(x)

{38 -2

wonon M

0.04973
0.10462
0.056008
0.10746

(74
)
£

(4
R

2.264
2.910

2.3806

1.412
4.815
1.889
2.562
4.815

3.3657

n

BASIC AERODYNAMIC COEFFICIENTIS

0.0895
0.03879
0.01333
0.02334
Q.03080

0.0387¢

0.1096

0.06420
0.013586
0.01891
0.05661

0.06420

-=Q0,01880

~-0,02822

0,01839

0.04056
~0.02609

~0.02822

~0.03380
-0,07728
0,01906
0.02876
-0.09048

~0.,07748

-0,01986
-0,029866
0.,01407
0.04263
=0.02637

=0,02966

=0,03438
-0,07862
0.01939
0.02926
~-0,09205

~0,07862

0,06672
-2.117
-0.28855
-0.56362
-2.117

"1- 347

0.06272
-5.798
-0.27229
-0.69311
-5.798

-2. 508

-0.07013

-20225

0.05266 2

0.11295 £

-2 .225

"1'416

0.05363

-5.898

0.05069 &

0.10643 &

-5.898

"'2 L] 348

35

A
AR 9B\dx
0.14025
~4.450
~0.60687
21.16357
~4.450

~2.832

0.10725
-11.793
~00 55400
~1.20674
-11.793

"4 0695
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Mach.
No.

v]..7

1.3

=

Jro

n

Compﬁhent

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

3 G
9 oL

1.448
2.017
19.230
22.692

do

do

do

1.412
3.338
20.949
25.699

do

do

do

" 07566

«17607
1.00686
1.25869

07164
23359
« 965340
1.25843

.06803
. 28496
+ 90533

1.26832

. 06478
« 33164
« 86206
1.25848

«116563
« 02184
1.71402
2.16139

. 10944
.41848
1.62560
2.15162

«10394
« 50641
1.54209
2.15144

09897
1.46839
2,15139

. 12743
00416
03616
16774

do

do

do

12743
.00416
03611
16771

do

do

do

D
w

.08950
. 02689
«14783
026422

do

do

do

« 10950
04451
«15027
20428

do

do

do

For wings of cases I and II the drag due to 1lift is given by :

4% _ 2¢,_ except for wings of ceses I and II.

al

o

ol C
ol ol

~sE@] <

Sl

SCL
Sl

00396
01637
03269
06202

« 00365
02701
. 02981
.06987

00320
04026
«02643 -
06989

« 00290
. 05453
02396
08139

.00945
03103
07783
. 11831

.00848
056246
.06984
. 13078

00765
076562
06300
< 14717

.00694
.10217
05713
.16624

22089
. 04642
«21667
.48398

«22048
-06806
«21329
-49183

.22013
«07131
.21041
-5018b

-0B5568
«20794
.51 336

« 24639
07970
.26421
«59030

-24541
.10113
.2b622
60276

« 24458
«12519
.24938
«61916

« 24387
« 16084
- 24351
63822

(74

o

o
1N

(Y
[

15152
36214
1,24928
1.76274

« 14528
46678
1.18318
1.79324

- 13606
56992
1.12352
1.82950

. 12966
«66328
1.06982
1.86266

« 23106
64368
1.90269
2.77733

.21888
83696
1.80214
2.85798

+ 20788
1.01082

‘1.71168

2.93038

. 19794

1.16806

1.62983

2.99683

TABLE IV-A DYNAMIC STABILITY DERIVATIVES - CASE I

T

M

2/3 93 VE

- 00019
-.01176
00155
=.01001

-.01986
=.02066
+16603
.11661

00017
b .00159

«00015
-.03078
.00126
-002938

do

-00014
-004169
00114
=.04041

do

~=+03438
b band .05451
«21504
« 126156

« 00036
~-.03801
00376
-.03389

.00032
- . 06426
00337
- 06057

do

.00029
- 09373
- 00304
-.08040

do

. 00026
-+12516
-00276

© =.12213

do

MY Met®y raC
Cou 2R (5=

-.020656 °

M% /¢
23 In 3&) *u
«00367 20122
- . 15462 .01411
=-.17610 37425
- . 30706 «58958
00348 « 20078
-.17844 01686
-, 16675 « 37071
-.34171 . 5885856
« 00330 . 20042
-.2178%7 « 01997
~.16834 « 06769
00314 20011
- . 25357 02333
=-.16077 « 36511
=-.40120 « 588656
.004 359 21237
"039413 --01282
--25134 -48301
-.64108 - 68266
00416 «21136
-.51248 -.01764
-.25808 47463
-, 74640 66834
. +00395 021049
-.61893 -, 02306
-.22613 46746
-.,84111 65450
00376 . « 20976
-.715621 -.02882
- . 02677 64224

u

07933

.04145

» 83076
. 96164

07512
-065495
- 786656
291672

07133
06709
« 74699
- 88641

06752
07807
. 71129
« 85728

.11992
-.07229
1.46268

1.51031

-11560
-.09400
1.38562
1.40512

- 10789
-.11362
1.31696
1,31033

< 10273
-.13118
1.26307
1.22462

-.06099
-.02283
« 12730
043568

-, 06775
-.03000
« 16059
06284

-.05484
-.03662
.17154
- 08008

“005222
~.04262
« 19051
09667

=.09027
. 03946
« 22413
« 17332

-.08b51
056131
« 26523
.23103

-.08121
06197
. 50219
. 28295

-, 07733
07161
« 93662
. 32990

Xw

03783
.08804
.12121
. 24708

. 03682

.11670 °

. 11489
«2674)

.035402
+ 14248
.10910
« 28560

058239
+ 16582
. 10388
« 950209

LO0BT77T

" .16092

. 09429
. 31298

06472
- 20924
08927
< 3H52S

«06197
«25271
. 08480
+ 38048

«04949
. 23201
08072
WA2222

- 8529
1.0319
9.7233

11.5881

8527
1.0877
9.7216

11.5920

«8326
1.0441
9.7202

11.5969

8324
1.0612
3.7190

11.6026

.8292
1.7088
10.6066
13,1446

-BEBY
1.7197
10.6026
15.1510

8283
1.7317
10. 58992
13.1692

« 8279
1. 7445
10,5962
15.1686

My

-.64033
- 56531
1.48990

28626

=.64020
~.56649
1.86101

65432

~.64007
-.57011
2.23211
1.021963

-.68996

=.57401

2.603156
1.38918

~.62417
-,93292
1.625256

.06816

-.62581
- 93876
2.02968

A6T11

=-.62560 .

~-. 94538

2453596

86615

- 62523
-. 962383
2.85810
1.26264

-.28471
-.47049

.18182
~-.57338

-.26958
jed 062364

+21580

=.67792

e 25605
~-.76141
« 24526

- 77218 -

- 24377
-.68614
" 27287
-.85754

-.42571
-.86996
14144
=-1.14423

-.40323
-1.11818
16789
-1.35412

-.3B297
=1.35048
19063
~1.54282

- . 56469
~-1,560560

21166
-1.71564

~6.2684
-5.b145
14.5850

2.8021

-6.2672
=H.5456
18.2183

6.40565

~6.26569
=5.5811
21.8510
10.0040

-6.2648
=5.6152
25.4832
15.5992

=6.1103
~-0.1326
15.9089

+6670

-6.1068
=9.1899
19.8693

4.5726

-6.1037
-J.2H42
25.8270

8.4691

=6.1011
=9, 3227
27,7832
12.35594

3.

4.8191
S$.0104
2.2349

-7 10.0644

4.8182
5.0273
$.48%5
11.3530

4.8172
3.0467
5.0178
12.8817

4.8163
30675
6.8255
14,7093

4,.56995
4.9855
2.4379
12.0229

4.5969
65.0167
3.8036
13.4172

44,5946
5.0518
5.4715
165.1179

4.5926
5.0893
7.4412
17.1231






Mach
No.

1.3

Component .

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

Shell

Fin
v ng

Total

Shell
Fin
Wing
Total

Shell
Fin
Wing
Total

aCL
QoL

1.445
2,017
19.230
22.692

do

do

do

1.412
5. 558
31.818
36.568

do

do

do

5

07566

« 17607
1.00686
1.268569

07164
- 25359
« 96340
1.25843

06803
.28496
.90653
1.25852

« 06478
« 53164
.86206
1.256848

076564
« 37367
1.70220

-2.}5141

07157
+ 46670
1.61279
2,15126

06801
55092
1.53262
2.15156

. 06478
62695
1.456978
2.15147

G
D
T

12743
.00416
02767
» 16921

do

do

do

12744
00416

~ .02761

+»16921

do

do

do

~ do

do

« 10950
004451
207408
.52809

do

do

do

AP
ph

« 00396
01637
05268
07201

«0038656
02701
04723
07779

00320
.04026
04269
. 086056

.00290
.05453
05862
. 09605

00404
.04183
,08107
« L5694

00368
« 06530
081756

-15068 )

00328
.09082
07382
. 16802

00297
11774
06697
18768

TABLE IV~C DYNAMIC BTABILITY DERIVATIVES - CASE IIT

p

v 22089
.04642
28454
«55185

.22048
«05806
«27903
56757

«22013
07131
227439
56583

«21983
.08H5E8
« 27042
«57bB3

« 24098
. 09050
«49275
82423

« 24067
.11397
48344
«83798

« 24022
. 13969
47551
«8b6552

« 23991
16641
46866
. 87498

My
2/ arsc"w
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