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Abstract

In this thesis, two different but related concepts in Asynchronous Transfer Mode
(ATM) are discussed. Due to its multirate nature, ATM creates new problems in
terms of switching and buffering. In the first part, the switching problems are in-
vestigated. The situation is rooted upon the multirate connections in a ‘circuit-
switching-like’ environment. The multirate nature of ATM results in the loss of
strictly nonblocking three stage space-division switches unless a ‘speed-up factor’ is
provided between the outside ports and the internal links of the switch. To keep this
factor to a minimum, call routing algorithms are considered as a possible solution.
Several call routing algorithms are compared in terms of their blocking probability
under various circumstances. A simple algorithm, named fixed priority routing al-
gorithm, stands out among these, both in terms of simplicity and low blocking rate.
Afterwards a bin packing model is used to investigate the reasons behind this.

In the second part, buffer management in ATM nodes is considered. In the tradi-
tional sense, the burstier the traffic is, the higher, it was believed, the cell loss will be
at a buffer into which a number of these sources are transmitting. It is shown that this
is not always the case and under the circumstances defined — the worst-case model
— other types of sources that output traffic that is less bursty might create higher
cell loss than burstier sources. All sources considered are leaky-bucket controlled and
stay within their contract limits with the network at all times. Initially greedy on-off
source and the three-state source types are compared. After establishing that the
comparison between these two in terms of cell loss rate is highly dependent on the
size of the buffer being transmitted onto, other source types that might create even
higher cell loss rates are searched for. One such characteristic group of sources is

found and is presented.
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Chapter 1 Introduction

With the rapid advance of communication technologies and on-line services, the last
decade observed skyrocketing bandwidth demands (Fig. 1.1) [23]. With the emergence
of new technologies, current telecommunication networks evolved towards the Inte-
grated Broadband Communication Network or as it is called these days, the Broad-
band Integrated Services Digital Network (BISDN). The direction taken recently by
BISDN is influenced by a number of parameters. The emergence of a large number of
communication services with widely varying and sometimes unknown requirements is

one of the most important.

Bandwidth Required
SO0 MDBDS .| T ORIy
Computer Modelin,
" =3
| E——————".3 )
200 MDD . L.
Multimedia @ I\
[@
Voice Mail and Transfg,\
—
TO0 M .|
Groupware £
C ] £ i
ST
= o
= Graphical User Interfaces
—=||l= and color files
™ Data Transfer
1991 Applications 1995

Figure 1.1: Emerging Technologies

Some of these new applications are video-on-demand, voicemail, video conferenc-

ing, videophony, high-speed data transfer, high-definition TV (HDTV), on-line shop-
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ping and educational services, on-line libraries, and networked parallel high-speed
computers. Each of these services have different requirements of bandwidth, delay,
jitter, error, loss, and quality of service (QoS) from the network. Furthermore, these
services will exist on different network levels, varying all the way from local-area

networks (LAN) to wide-area networks (WAN) and backbone networks (Fig. 1.2).

Campus Backbone

Workgroup

LAN

Figure 1.2: Global Network

Under these circumstances, there are a number of services that the network is
required to offer: high bandwidth and bandwidth on demand; a variety of QoS level
parameters and guaranteed service levels; point to point, point to multipoint, and
multipoint to multipoint connections; continuous and variable bit services; connec-
tion oriented and connectionless services; swift adaptation to varying parameters on
the network. Among the possible methods for time division multiplexing for multi-
rate services, not all of them can provide many of these necessary characteristics
efficiently [33]. In fact, most fall far short of accomplishing the goal due to the vast

differences in the parameters of various services and the bursty nature of the overall
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— and also single-source — traffic. Those that satisfy the multi-rate concept, though,

fail in some other aspect; complexity, flexibility, reliability, etc. (Fig. 1.3).

fixed bit rate variable bit rate
simplicity complexity
| | | I 1 i | |
circuit  multirate fast ~ asynchronous  fast frame frame packet
switching  circuit circuit transfer packet  relaying switching switching

switching switching  mode  switching

Figure 1.3: Switching Techniques

As an example, one can consider the one that’s been in use the longest: Circuit
switching or time domain multiplexing. In this technique, since every source has a
single spot allocated, there is no allowance for sources with different transmission
speeds, let alone a source with a varying speed. Its more modern version, multi-rate
TDM, can accommodate sources with different speeds up to a certain degree, but is
still too restrictive for general purposes (Fig. 1.4). The other end of the spectrum,

packet switching, though, is too unreliable in terms of delays due to its connectionless

nature?.
— e FRAME . -
SLOT
1211{N|N'1I """ \2\1]NIN'11 ¢
Single-slot TDM
single slot for a slow source multiple slots for a fast source
IZIIININ'W """ jzlltNlN‘li t

Multi-slot TDM

Figure 1.4: TDM (Circuit Switching) and Multirate TDM

Tn connection-oriented traffic, a link between the source and the destination is established before
transmission begins. In connectionless traffic, there is no established link between the two and
the source simply transmits into the network with the address of the destination contained in the
message.
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Among the various modes of transmission, Asynchronous Transfer Mode (ATM)
was selected by CCITT (currently ITU-T) in 1987 to be the transfer mode of the fu-
ture B-ISDN. Since then CCITT issued many recommendations, specifying the details
of ATM for use in B-ISDN. In addition, the ATM Forum was formed by companies
in the field and research institutions, including many universities and this organiza-
tion has been working to define the necessary specifications for ATM operation and
interoperability.

ATM is an attempt to meet all of the properties that the transfer mode for B-
ISDN was envisioned to have. Namely, supporting all existing services as well as any
possible future ones with yet-unknown characteristics; utilizing network resources as
efficiently as possible; minimizing switching complexity; minimizing processing time
at the intermediate nodes (to support very high transmission speeds); minimizing
the amount of buffering at the intermediate nodes (to bound transmission delays and
reduce buffer management complexity); guaranteeing performance requirements of
existing and expected applications.

ATM’s power, economy, scalability, and flexibility optimize it for such a role.
In essence, it is a type of virtual-circuit packet switching with fixed size packets.
It has various features that, by incorporating the most desired features of circuit
switching, extend the capabilities of current packet-switching networks to support
real-time traffic in an efficient manner.

Of course, since ATM is new, it comes with issues that are different from the
ones that apply to other previous systems. In this thesis, two of these problems
will be considered. The second chapter will introduce ATM in detail and provide
a background for the problems that will be in the later chapters. Chapter 3 will
be dedicated to the switching issues in ATM. Since the multi-rate nature of ATM
doesn’t allow the existence of strictly nonblocking space-division switches, the effort
will go into trying to minimize the blocking probability through the utilization of
clever call-routing algorithms within the switch. A number of call-routing algorithms
will be compared in performance, with call-blocking being the main criteria. In the

fourth chapter, a buffer management issue will be discussed. For buffers being fed by
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multiple leaky-bucket controlled sources, the worst-case situations will be considered.

The last chapter will include a conclusion for these issues.



Chapter 2 Asynchronous Transfer Mode — A

New Technology

Asynchronous Transfer Mode is enabling the fast introduction of a wide range of
advanced high-speed communications applications. ATM will provide a forward-
looking investment in the networks required to respond to tomorrow’s service and
revenue opportunities. By offering scalable rates from 1.5 Mbps to 155 Mbps and
higher, according to customer’s needs, ATM will make the WAN diminish in these
applications. On the other hand, in contrast to frame relay or other similar data
services, ATM will also accommodate delay sensitive traffic such as voice and video
easily, creating the foundations for emerging multimedia applications. Because of
its networking flexibility, open-ended nature, and potential to gather widely different

applications under a common roof, ATM has gained broad based support.

STS-1/0C-1 51.84 Mbps 28 DS1s or 1 DS3

STS-3/0C-3 155.562 Mbps 3 STS-1s, byte interleaved

STS-3¢/0C-3c 155.52 Mbps Concatenated, indivisible payload
STS-12/0C-12 622.08 Mbps 12 STS-1s, 4 STS-3cs, or any combination
STS-12¢/OC-12¢  622.08 Mbps Concatenated, indivisible payload
STS-48/0C-48  2488.32 Mbps 48 STS-1s, 16 STS-3cs, or any combination

Table 2.1: SONET Hierarchy

ATM is an outgrowth of B-ISDN standards and ATM traffic is intended to be
carried on the synchronous optical network (SONET) (Table 2.1 [22]). It is one of
the general class of packet technologies that relay traffic with respect to an address
contained within the packet itself. Unlike some other packet technologies like X.25
and frame relay, ATM uses very short, fixed-length packets called cells.



2.1 The ATM Cell

e bytes .
48 bytes 5 bytes
Information field Header

Figure 2.1: ATM Cell

The ATM cell (Fig. 2.1) is 53 bytes long, with a five-byte header and a 48-byte
information field. According to ITU-T recommendation, the bytes are sent in the
increasing order and the bits are sent in the decreasing order (Fig. 2.2). In all the
fields, the first bit to be sent is the most significant bit [18].

Bit

8 7 6 5 4 3 2 1
1 GFC VPI
2 VPI VCI
3 VCI
4 VCI PT CLP
Byte HEC
A
485 Cell Payload
¥

GFC:  Generic flow control
VPL: Virtual path identifier
VCI: Virtual channel identifier
PT: Payload type

CLP:  Cell loss priority

HEC: Header error control

Figure 2.2: ATM Cell (UNTI)

At the User-Network Interface (UNI), the header contains 4 bits for Generic Flow
Control (GFC), 8 bits for Virtual-Path Identifier (VPI), 16 bits for Virtual-Channel
Identifier (VCI), 3 bits for Payload Type (PT), one bit for Cell Loss Priority (CLP),
and 8 bits for Head Error Control (HEC) [29]. At the Network-Node Interfaces (NNI),
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GFC does not exist and its four bits are used to expand the VPI field to 12 bits. In
some cases, up to four bytes from the information field can be taken up from the
information field, depending on the ATM Adaptation Layer (AAL).

GFC provides flow control at the UNI for the traffic coming from the user and
going into the network (but does not control traffic in the opposite direction). The
GFC field has no use inside the network because the same task is supposed to be
handled by other mechanisms, so this field is used by the VPI to enhance virtual-
path addressing. The next two fields, VPI and VCI provide the ATM address. PT
indicate the type of information carried by the cell. This is to identify various types of
user data and also transfer operations and maintenance messages across the network,
between users and between user and service provider. The CLP bit tags the cell as
either high priority (CLP = 0) or eligible to be discarded (CLP = 1). The final byte,
HEC, is the header error control field. It can detect multiple bit errors and correct

single bit errors.

2.2 The Layered Model

A logical hierarchical architecture is used for ATM B-ISDN network (Fig. 2.3). The
model uses the concept of separated planes for the segregation of user, control, and

management functions [18], [25], [22].

2.2.1 Physical Layer

'The physical layer transports the ATM cells between points. It is composed of two
sublayers, the Physical Medium (PM) that supports the bit-transmission capabilities,
including the generation and reception of suitable waveforms, insertion and extraction
of symbol timing information, and electrical-optical and optical-electrical transforma-
tions and the Transmission Convergence (TC) that converts the ATM stream into bits
to be transported over the PM, including tasks of packing cells into appropriate PM

format and insertion of idle cells.
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Management Plane
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Figure 2.3: B-ISDN ATM Protocol Reference Model

Basically, the physical medium sublayer is responsible for the correct transmission
and reception of the bits. It is medium dependent (optical, electrical, etc.). Since it
is also responsible for bit timing, the transmitting entity needs to include the proper
bit timing information and line coding.

In the transmission convergence sublayer, cell delineation, recognizing the cell
boundaries, is a major task. For this purpose, the HEC field of the ATM cell is used.
The incoming stream is monitored for a 5-byte chunk with the correct CRC-8. When-
ever one is found, the monitoring is continued for another predetermined number of
cells to make sure that it really is a header. If this also is successful, a correct cell
header is assumed to be detected and the cell separations are defined accordingly. The
device stays in synch until a predetermined number of 5-byte assumed-headers with
errors are detected. This feature is also enhanced by scrambling the information field
to prevent any part of it from being misidentified as a header. Furthermore, since
once a header is detected, the system expects cells to continue coming in 53-byte
intervals, rate decoupling by insertion of empty cells is performed at this level.

There are different interfaces defined for possible transmission systems. These
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Transmission Convergence | Cell rate decoupling (with IDLE cells)

Header error check (HEC) generation/verification
Cell Scrambling/Descrambling

Cell delineation (using HEC)

Path signal identification

Frequency justification

Frame scrambling/descrambling

Frame generation/recovery

Physical Medium Bit timing

Line coding

Physical medium dependent scrambling/descrambling

Table 2.2: Physical Layer Sublayers and Functions

are SONET STS-3 interface for Synchronous Digital Hierarchy (SDH) and DS3, 100
Mbps multimore fiber, and 155 Mbps multimode fiber.

2.2.2 ATM Layer

The ATM layer, with characteristics fully independent of the physical medium used,
is the boundary between the functions related to the header and the functions to do

with the information field.

Generic flow control

Cell VPI/VCI translation

Cell multiplex/demultiplex

Cell rate decoupling (with UNASSIGNED cells)

Table 2.3: ATM Layer Functions

This layer provides the translation of the cell identifier (either only separately on
VPI or VCI or on both), required for demultiplexing/multiplexing or switching, and
performs the former. This layer is also where the cell header gets either included
or stripped off the cell before the cell is either received from or sent to the ATM
adaptation layer. Furthermore, this layer also performs management functions: It

provides the user with one of the available QoS classes. It monitors and implements
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the flow control mechanism, making sure that the connections stay within limits and
are not affected by connections that do not. Furthermore, it monitors the network for
congestion indication — whether it be from the header of an information cell or from a
management cell — and generates management cells accordingly for congestion control
(Rate-based Flow Control, Fig. 2.4, is the ATM Forum standard [21]). Other than
traffic management, some fault management is also implemented at this level. This
includes invalid VPI/VCI detection, connectivity verification, and alarm surveillance

for detection of VP/VC errors and generation and propagation of relevant messages.

ATM network

@’—/ _>_< Dl X >__Z g \@ End-to-end

End-station -~

X
X
O
z

(O—XH-X—X

Figure 2.4: Rate-Based Flow Control Types

2.2.3 ATM Adaptation Layer

The ATM adaptation layer (AAL) is certainly the most important feature of the
process. It is this level that provides ATM the versatility to carry many different

types of service from continuous processes like voice to the highly bursty transmis-
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sions generated by LANs within the same format by providing each service class the
functionalities required in reaching its desired quality of service. Since AAL is not a
network process but is performed by end-user equipment, it frees the network from
worrying about different types of traffic.

AAL supports higher layer functions of the user, control, and management planes
and supports connections between ATM layer and the higher level non-ATM layers.
Data received from higher level protocols is segmented or collected (according to the
class of information) to be placed into ATM cells. Cells received from the ATM layer
are reassembled to be forwarded in the proper format to higher layers.

AAL layer consists of two sublayers: segmentation and reassembly (SAR) and
convergence layer (CS). The intent of these sublayers is to convert whatever type of
data is to be transmitted into 48-byte payloads while maintaining the integrity and a
certain amount of identity of the data involved. The result of each sublayer’s process
is called a protocol data unit (PDU). The CS-PDU is variable length, according to
the particular AAL and/or the length of the higher layer data block provided. The
SAR-PDU is always 48 bytes long to fit in a cell payload field.

User Information
//7 /’7 k\ \%\
CSProcess .-~ .-~
L// e \§ N
CS-header | Data |Pad| CS-trailer (CS-header | Data  |Pad| CS-trailer
-
SAR Process \w \
SAR-header | Data | SAR-trailer SAR-header | Data | SAR-trailer
Cell header | Cell payload Cell header | Cell payload

Figure 2.5: AAL Process

In the AAL process on the transmitter side, the higher layer data is first passed
to the CS of the AAL. CS is meant to portion user data into fixed length PDUs

and wrap it with a header and a trailer containing information about the type and
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size of the CS-PDU as well as information to provide checks of PDU integrity at
the receiving end. The CS sublayer is further subdivided into two parts: common
part CS (CPCS), performing all CS functions common to all AALs, like multiplexing
and cell loss detection and service specific CS! (SSCS), performing service-specific
requirements of different applications, like timing recovery for real-time applications.
SAR receives the CS-PDUs and segments them (or gathers them in constant bit rate
services) so that when the SAR header and trailer are added, it becomes 48 bytes to
fit into the payload field of a cell. On the receiving side, SAR layer reconstructs the
CS-PDUs and passes them onto the CS sublayer (Fig. 2.5).

There are three sets of criteria used when defining different classes of traffic types

to be serviced by AAL:
e Time relation versus no time relation between the source and the destination.
e Constant versus variable bit rate.
e Connection-oriented nature versus connectionless.

These criteria provide an opportunity to classify all possible services into eight
classes out of which four are defined. (Table 2.4)

Corresponding to these four classes, standards define five different AAL protocols:

1. AAL Type 1; Constant Bit Rate (CBR) Services:

This AAL is used for CBR services that require a timing relation between the
two ends of the transmission. This allows the network to carry applications
like high quality audio, video, and telephony and also emulate DSn services. In
AAL 1, out of the 48 bytes of payload, four bits are used for sequence numbering
(SN) and another 4 bits for SN protection (SNP), leaving a net payload of 47
bytes for the cell. Out of the four SN bits, one bit belongs to the CS and the
other three are used to number the cells from zero to seven. This way cell loss
is immediately detected unless it occurs in multiples of eight cells. The CS bit

is used to let the receiver know that the cell contains clock information.

1This part may even be null if the service doesn’t require any specific functions
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Class A | Constant bit rate (CBR)

Connection-oriented

With timing relation

Ex. 64-Kbps voice and constant bit-rate video
Class B | Variable bit rate (VBR)

Connection-oriented

With timing relation

Ex. Encoded video

Class C | Variable bit rate (VBR)

Connection-oriented

No timing relation

Ex. Connection-oriented data transfer

Class D | Variable bit rate (VBR)

Connectionless

No timing relation

Ex. Data transfer between two LANs over a WAN

Table 2.4: B-ISDN Service Classes

2. AAL Type 2; Variable Bit Rate (VBR) Timing Sensitive Services:

This AAL is not totally defined yet. It is reserved for data services requiring
transfer of timing information between end-points as well as data. Compressed
video with its bursty nature is likely to be the main application. This way there
will be no need for the complex buffers and rate smoothing circuits now used to
produce DSO or DS1 interfaces. SAR structures for AAL 2 will most probably
include SN, SNP, IT (information type: beginning, continuation, or end of a
message), LI (length indicator: the number of useful bytes in padded cells), and
CRC fields.

3. AAL Type 3; Connection-Oriented VBR Data Transfer:?

This AAL is designed to transfer VBR services over pre-established connections.
It is intended for large, long period data transfer, like a file transfer or backup.
The SAR structure contains LI, CRC, IT, and SN fields. A further 10 bits are

reserved for use by higher layer protocols, leaving 44 bytes as the net payload

2AAL 3 and 4 are now obsolete since they were first joined together under the name AAL 3/4,
but even this was outclassed by AAL 5 later on.
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in the cell.

. AAL Type 4; Connectionless VBR Data Transfer:

AAL 4 is intended for transmission of VBR data without pre-established con-
nections. It is useful for short, highly bursty LAN traffic. It is especially efficient
in short message situations when the call set-up time could be comparable to
the message transfer time. It provides capabilities for both point-to-point and

point-to-multipoint services.

. AAL Type 5; Simple and Efficient Adaptation Layer:

AAL 5 is the newest (but still well-defined) AAL providing improved efficiency
over AAL 3/4. Compared to the other two, it has the same effective payload
usage for CS-PDU sizes of 88 bytes or less and has smaller overhead for larger
CS-PDUs. It also simplifies the SAR portion to pack all 48 bytes of the cell
information field with data. To allow these improvements, it assumes that only
one message crosses the UNI at a time, not allowing for interleaving of messages

on the same VC, but instead queueing them for sequential transmission.

Cell j

User Data
From Higher Layer

| Cell | }
To %% [ | |
Transpoet g g | I 1
Media S | l l
SONET Frame

Figure 2.6: Overall Lower Level Processes
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2.3 ATM Networking

ATM technology is connection-oriented, requiring end-to-end connections to be es-
tablished before the beginning of transmission. Communications are accomplished by
setting up a virtual channel between the sender and the receiver(s) and then transmit-
ting the information. (This allows network management to gather end-to-end data
on the network traffic and charge users only for the actual time they’ve accessed the
network.) These connections may be permanent (PVC — permanent virtual circuit)
or established on demand (SVC — switched virtual circuit).

An ATM connection is a concatenation of links that pass or process the signal.
This routing is accomplished by the concept of virtual channels and virtual paths.
A virtual channel is a connection between two communicating ATM transmitters. It
might consist of more than one hop and all communications proceed along this same
virtual channel, preserving the cell sequence and the QoS. Virtual paths are bundles of
virtual channels between two points and may contain many ATM links (Fig. 2.7 [24]).
While the virtual channels are associated with a virtual path, they are not unbundled
or processed separately (virtual-path routing). This routing information, most of the

time, has local meaning only because of the difficulty of end-to-end addressing in the

short address field size at the header.

STS-3¢
Physical
Link

Figure 2.7: Virtual Paths and Channels

Virtual paths provide a convenient way of bundling the traffic going in the same
direction and simplify switching by allowing the traffic to be switched according to a
shorter field. Apart from the fact that same VCIs can be used unambiguously with
different VPIs, assignment of VCIs and VPIs can be done on a per-node basis to

increase the availability of these identifiers (Fig. 2.8 [24]). Most of the time, VCI’s
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are changed on each hop, but VPIs last at least a couple of hops.

_______________________________________

Virtual Channel Switch
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Figure 2.8: An Example of Virtual Path and Channel Switching

At the switch, switching is performed by reading the routing field of the incoming
cell, performing a look-up on a table that gets updated every time connections are
set up or torn down to determine the outgoing port and the new routing identifiers,

and delivering the cell with the new header to the corresponding output port.

2.4 Why ATM ?

The reason ATM generated so much enthusiasm is because it offers solid benefits.
The first one is the bandwidth efficiency, which ATM achieves by allowing sources to

seize bandwidth when a sufficient number of bits are generated. With no slots being
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assigned owners, no bandwidth gets wasted simply because the owner is not active at
the time.

ATM is also scalable; same 53-byte cell format is used over many different systems,
rates, and formats. Vastly different systems like LANs, switches, and public networks
can use the same format. This way, a cell generated by a 100 Mbps LAN (its outside
connection, that is) can be carried over a 45 Mbps DS3 to the central office and

switched into a 2.4 Gbps SONET transport system.

_|network transparency explicit identifier }
simplicity | fixed-length cells ||virtual circuit switching| flexibility

Information Header
User Information/AAL ATM layer

Figure 2.9: Simplicity and Flexibility

Moreover, ATM is application transparent. The cell size is a compromise to
accommodate the whole range of application from short periodic needs of speech
to long file transfers of data applications.® This is one of the chief benefits of ATM
in allowing mixture of data, voice, and video within the same application without
having to worry about compatibility between LANs and WANs.

ATM’s granularity allows the applications to be not limited to the fixed restrictive
granularity of today’s TDM networks. On a TDM system, if an application requires
more than DS0, but less than DS1, one has to either buy an entire DSO0 or find some
other applications to bundle them together on the DS1. Fractional T1 services are
not available on the local access level and even on the network level, they are in
increments of DS0. In other words, the user has to fit the network. In fact, this gets
even worse between DS1 and DS3 levels. With ATM, though, the network can be
tailored to fit the application by providing any speed with the same delay, continuity

and synchronization guarantees.

3In fact, it is also a compromise between Furopean and US standards. The information field
length of 48 bytes is compatible with both 32-byte and 64-byte systems.
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Another advantage of ATM is networking options. Apart from being the means for
virtual private data networking — bringing to data traffic the same advantages carried-
based virtual private networks brought to corporate voice traffic — the uniform cell
format will greatly simplify interconnecting the LANs and the WANs. The protocol
conversions will be avoided and only address manipulation will remain. Furthermore,
time-dependent traffic will be easily dealt with without any outside intervention into
the network.

ATM will pave the way for efficient high-speed networking necessary for most of
today’s and tomorrow’s applications. Its very fast switching and routing based on
the cell header, the characteristic nature of no processing above the cell level within
the network — unlike X.25 — short, fixed cell size — unlike frame relay — simplify and
speed up the handling of the messages and lead the way towards very high-speed

self-routing switches.
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Chapter 3 Call-Routing Algorithms

The switching concept in ATM brought with it some very new details. Even though,
neither circuit switching nor packet switching is new in idea or implementation, the
combination of these two has a flavor in itself. Circuit switching in itself is a quite
well-understood area. Along the same lines, packet switching has a lot of coverage
in queueing theory applications. However, ATM makes the application of the latter
more difficult by its introduction of fixed duration packets (cells) with non-poison
interarrivals and complicates the former with the possibility of a link being shared by

multiple connections. This chapter will focus on this second problem.

3.1 Circuit Switching

In the circuit switching case, the studies on space-division switches (Ex: Fig. 3.2)
made up of crossbars (Ex: Fig. 3.1) provide a lot of insight into building and operating
efficient switches (including most of the cases when time-division switches or even a

combination of the two can be modelled as a space-division only).

Figure 3.1: A Two by Two (2x2) Crossbar

From the beginning, it was obvious that crossbars with n terminals and n? cross-
points are nonblocking. Later on, C. Clos [7] published a paper on a family of switches,
named after him, where same nonblocking could be obtained with a network of cross-

bars with far fewer crosspoints. This was obtained by a necessary and sufficient
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Figure 3.2: Three-Stage, 4x4, Space-Division Switch Made up of 2x2 Crossbars

condition imposed on the crossbars of the different stages. A three-stage NxN mini-
mal Clos switch contains m nx(2n — 1) crossbars on the first-stage (N = mn), 2n—1
mxm crossbars on the center-stage, and m (2n — 1)xn crossbars on the final-stage.
The actual condition is on the input and output (considering that the switch is sym-
metric around the center) crossbars. If the first-state contains nxr crossbars, then
r > 2n — 1 is required for nonblocking (strict-nonblocking, actually, which will soon
be defined). In the later years, Benes [6] came up with his switch architecture made
up of 2x2 crossbars that provided a very convenient and simple architecture that led
the way to Banyan and similar other types; Cantor [8] provided efficient distribution
and collection networks; and Lee [5] introduced a simple close-approximation method
to calculate the blocking probability inside an given structured switch architecture.
This, later on, was modified by Pippenger [9] to provide more accurate results under
all conditions by relaxing the assumptions a bit. The idea was further modified to be
used in multi-rate networks [12], [13], [14], but only after a huge leap in the level of
complexity.

The key idea over here is that it is possible to have strictly nonblocking switches
in the circuit switching case but happens to be harder to accomplish for ATM space-
division switches. To understand this better, one should look into the different types
of nonblocking;:

In circuit switching (CS), a call request is a doublet {z,y}, where z is an input
port and y is an output port. In the multirate case (ATM), this becomes a triplet
{z,y,w} with w, b < w < B, being the weight or the bandwidth of the connection
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Strict-Nonblocking

Wide-Sense Nonblocking

Rearrangebly Nonblocking

Figure 3.3: Different Types of Nonblocking

as a percentage of the link capacity and possibly bounded by two network-imposed
limits. To define blocking, a couple of further definitions for the switch are needed:
(along the lines of Pippenger’s [9] terminology) For CS, a route is a set of contacts,
one in each stage, that when closed simultaneously, establish a continuous path from
an input to an output. A route is completely determined by specifying the nodes it
involves, so one may speak of a route as if it were a set of nodes rather than a set of
contacts. Two routes are compatible if they have no node in common. A state is a set
of routes each two of which are compatible. In a given state, a route is admissible if it
is compatible with every route in the state or in other words, the contacts it involves
are open and all the nodes it involves are idle. Under these definitions, for a given
network, a state, and a call request {z,y}, if there is an admissible route from the
input to the output, it is said that the request is linked; if not, it is blocked. Under
these definitions, a nonblocking network is termed strict-sense nonblocking if a route
can be found between an idle transmitter and an idle receiver without disturbing the
already set up calls no matter what the state of the network is and regardless of the
past history of the network.

In the ATM case (converting these definitions in the Turner and Melen sense [10],
[11]), a route will again be a path joining an input to an output, but together with a

weight. A route satisfies a request {z,y, w} if it connects z to y and has weight w.
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A set of call requests is said to be compatible if for any input and/or output z, the
sum of the weights of all connections involving x is < 3. A set of routes is compatible
if for all links /, the sum of the weights of all routes involving [ is < 1. A state is a
set of compatible routes for which for every internal link [, the sum of the weights of
all routes including ! is at most 1. A link or a switch y is said to be w-accessible in
a given state from an input z, if there is a path from z to y such that the weight on
every link in the path is at most 1 —w. Under these definitions, a network is strictly
nonblocking if for any state and any call request {z,y, w} compatible with it, there
exists a route, compatible with the state, to realize the request.

In other words, in both cases, strict-nonblocking is when, provided that the re-
quested input and output ports are available, the call can be routed through the
switch regardless of the state of the switch while the paths are being chosen ran-
domly among the available ones. The notion of randomness is important here when
placing the calls, though, because the next region that will be under inspection in this
chapter uses certain algorithms to place the calls to leave more space for the future
call requests. That way when choosing a path through the switch for each incoming
call request, a certain algorithm is adhered to. In CS there are families of switches
that are not strictly-nonblocking, but are wide-sense nonblocking under this definition
(e.g. Moore switch). The final field of nonblocking is when the state of the switch
can be altered to accommodate a new call request. A number of already existing
calls need to be rerouted to make room for a new call. This is named rearrangebly

nonblocking.

3.2 Call Blocking

As can be seen from the definitions in the previous section, the major difference
between CS and ATM is the bandwidth or the weight, w, of the ATM connection.
This is because in ATM, unlike CS, a user might be occupying a certain portion
of the link enabling users to transmit at almost any speed up to the link capacity.

Furthermore, only call rejection due to inability to route the call inside the switch is
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taken into consideration when defining blocking, due to the CS tradition. The call
request that is legally accepted and tried to be routed by the switch is the one that
complies with bandwidth requirements at the input and at the output ports — the
one that is compatible in both cases. This can be considered to be a very legitimate
exclusion to a great extent for the CS case because under normal circumstances only
one subscriber will be connected to an input port z; however, under ATM operation,
many transmitters may be connected to the very same input port, #, and many might
have access but not have a connection at that moment. Therefore, call requests that
are rejected due to this incompatibility should also be given attention to.

Here are three types of blocking that will be considéred: Internal blocking occurs
when at a state s, for a call request {z,y,w} that is compatible with input z and
output y, there does not exist a route inside the switch that can satisfy it. This is
the kind of blocking that is mentioned in the previous section and discussed in all
the sources quoted. Unless specifically noted otherwise, from this point on the term
‘blocking’ refers to this type. The other two types looked into, though, fall under
a category that would be termed incompatible under the definitions of the previous
section. Input blocking happens when for a request {x,y, w} with the addition of w,
the sum of the weights of all connections involving input = exceeds (3. Furthermore,
output blocking is when for a request {z,y, w}, with the addition of w the sum of the
weights of all connections involving output y exceeds (.

Consider an nxn switch with input and output ports of capacity 8. Each input
port has < N independent sources connected on it. A call request from source i will
be expressed as {z(¢), y(i), w(i)}, with z(7) being the input port source 7 is connected
to and y(i) an output port among all n equally likely output ports and (0 < b <)
w(t) (€ B < B < 1) the fractional bandwidth of the connection.

Definition 3.1 Input blocking occurs when a new call request, {z,y(5),w(j)}, has a

weight such that

> w(@)>p (3.1)

z(li:w



where

> w@) <p (3.2)
m(zﬁ:w
1]

In this case, this new call, {z,y(j),w(j)}, is rejected because the input cannot

accommodate that much more bandwidth at that time. Output blocking is the same

phenomena on output port y:

Definition 3.2 Output blocking occurs when a new call request, {z(j),y,w(j)}, is
such that
Z w(i) > 3 (3.3)
y(i)=y
where

> w(@) < B (3.4)

i
y(i)=y
1#j

Ez: Consider the 4x4 switch in Fig. 3.2 with b = 0.1, B = 0.8, 8 = 0.95 and the

present state with the following list of calls in progress:
{a,C,0.4} on links 1 and 6 {b,C,0.2} on links 1 and 6

{b,A,0.7} on links 2 and 7 {d, D, 0.3} on links 4 and 8
{d, B,0.5} on links 3 and 5

e Input blocking:

Call request {a, D, 0.65} cannot be accommodated since and input port «,
0.4 + 0.65 > 3 while
Z w(i) =04<6=0.95

i
z(i)=a

¢ Output blocking:
Call request {c, A,0.3} cannot be accommodated since at output port A,

0.7 + 0.3 > 3 while
> w(i)=07<p8

4
y{i)=A
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e Internal (switch) blocking:

Call request {a, B,0.45} cannot be accommodated because the path over links
1 & 5 is closed because 0.45 + 0.6 > 1 and the path over links 2 & 7 is closed
because 0.45+ 0.7 > 1 .

3.3 Routing Algorithms

The necessity of efficient routing algorithms for ATM switching originates from the
very fact that ATM is a multirate environment. On top of the two-dimensional
switching problem is another dimension added with the introduction of weight. This
results in the possibility one port blocking up a percentage of multiple internal links
inside the switch because that single port can support many calls — unlike the CS
case. At this point, the limiting factor, 3, at the input and output ports becomes
important. This speed limit is given as a fraction with respect to the speed of the
links inside the switch itself. This means that the internal links are faster than the
input and output ports by a factor of 1/3, called the speed-up factor. This, it turns

out, is an absolute necessity for strict-nonblocking in ATM.

Theorem 3.1 (Turner-Melen) A three-stage Clos switch made up of dzm first-
stage crossbars, (n/d)z(n/d) center-stage crossbars, and maxd third-stage crossbars is

strictly-nonblocking if

Bd —w J

max{l — w, b} (3:5)

m > 2 max
b<w<B

In fact, another similar but simpler theorem provides more insight into the 3

factor being considered:

Theorem 3.2 A three-stage Clos switch made up of dem first-stage crossbars, (n/d)z(n/d)

center-stage crossbars, and mzd third-stage crossbars is strictly-nonblocking if

[m/2]
bS i vd=1 (3:6)

forb=0, B=[.
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Proof:

To an arbitrary state, a new connection {z, y, w} needs to be added. On the input
crossbar of z, there total sum of inputs can be (d — 1) 8+ (8 — w) = d 3 — w. Since
the network is symmetric, making less than half the center stage crossbars accessible
from z and y will create blocking since this will ensure that there is no center stage
crossbar accessible by both. To prevent this, the weight that can be shared on these
links should be able to accommodate w:

Bd—w w
" Tmj2] ©

or

Since 0 < w < 8 and this equation needs to be satisfied for any value of w, the value

of w that gives the largest right hand side is w = 3.

2(521+6<“”E%ﬁ>

This can be rearranged to give

1

[m/2]
[m/2]+d—1

g <

This means that for a 16x16 three-stage switch made up of 4x4 crossbars on all
stages, the biggest possible 3 is 0.4, meaning that the internal links have to be at
least 2.5 times faster than the ports. If a minimal 16x16 Clos switch with 4x4 center-
stage crossbars is considered under this light, it can be seen that the maximum value
for 5 is at most 4/7. An increase that doesn’t live up to the almost doubling of
the crosspoint count. In other words, on top of the necessary distribution stage in
the CS switches, there is now the speed-up factor added. The internal links have to
be operating at faster speeds than the external ports. This is certainly possible at

around OC-3 speeds, but as one goes higher up the hierarchy, the task gets harder to
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realize.

The reason why things change in this fashion is due to the possibility of having
multiple connections on a single port with ATM. In CS, since only one connection
could exist on any one port and that single connection had to go through one certain
path through the switch, only one path was used up per active port. On the other
hand, in ATM many connections can exist one a single port and these connections
might be routed through different paths or through the same path. Since it is possible
to have these connections going through different paths inside the switch, one port
can block a fraction of multiple internal paths, resulting in future connections to have
limited bandwidth resources left through the switch.

It is intuitive that a more orderly way of positioning the call requests on the switch
will provide more free space than a random positioning as was envisioned in the idea
of strict-nonblocking. There comes the idea of using call-routing (or call-packing)
rules. This creates the larger set of wide-sense nonblocking networks. The goal in
this section, though, is not to create nonblocking, since it seems to be quite difficult
for ATM, but to reduce blocking probability for a given value of 3 so that lower
speed-up factors can be utilized.

There are four main call-routing algorithms that will be investigated:

Balanced Routing Algorithm: For a call-request, {z,y,w}, among all the exist-
ing routes between input x and output y, the one that has the most available
bandwidth on is chosen to route the call provided that the available bandwidth

is greater than w. If no such path exists, the call is rejected.

Maximum Utilization Algorithm: For a call-request, {z, y, w}, among all the ex-
isting routes between input z and output y, the one that has the least available
bandwidth on is chosen to route the call provided that the available bandwidth
is greater than w. If this link does not have enough free bandwidth, then the
algorithm is repeated without taking this link into consideration. This proce-
dure is repeated until either a path with sufficient available bandwidth is found

or no more possible paths are left, in which case the call is rejected.
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Fixed-Priority Algorithm: All the center-stage crossbars are prioritized at the
beginning. For a call-request, {z,y,w}, among all the existing routes between
input = and output y, the one that goes through the highest priority center-
stage crossbar is chosen to route the call provided that the available bandwidth
on it is greater than w. If this link does not have enough free bandwidth,
then the algorithm is repeated without taking this link into consideration. This
procedure is repeated until either a path with sufficient available bandwidth is

found or no more possible paths are left, in which case the call is rejected.

Maximum Switch-Utilization Algorithm: For a call-request, {z,y,w}, among
all the existing routes between input = and output y, the one that goes through
the center-stage crossbar that has the highest aggregate traffic on is chosen to
route the call provided that the available bandwidth on it is greater than w. If
this link does not have enough free bandwidth, then the algorithm is repeated
without taking this crossbar into consideration. This procedure is repeated until
either a path with sufficient available bandwidth is found or no more possible

paths are left, in which case the call is rejected.

Ez: Going back to the switch in the same state as in the example on page 24, a

call request {a, B,0.2} will be routed through the path
e 1 & 5 under fixed priority algorithm;
e 2 & 6 under maximum utilization algorithm,;
e 1 & 5 under balanced loading algorithm;
e 1 & 5 under maximum switch-utilization algorithm;

whereas a quite similar call request {a, B,0.3} will have to use the path 1 & 5 under
all algorithms since the path 2 & 6 can’t support it.

Together with these four a few other routing algorithms will be considered occa-
sionally as well as random routing where a path is chosen at random and checked to

see if it has enough available bandwidth.
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3.4 Comparison Of The Algorithms

These call-routing algorithms were compared over extended simulations on various
switches, but predominantly on an 8x8 three-stage space division switch with 2x4s
on the first stage, 4x4s on the center stage, and 4x2s on the final stage (Fig. 3.4).
For the most part, ten sources are connected to each input port even though there
are instances when this number will be varied intentionally. The output ports are
simply sinks. A silent source comes alive at any time instance, n, with probability
« and an active source ends transmission at any time instance with probability 4,
giving the active and silent periods average holding times of (1—§)/4? and (1 —a)/a?
respectively. When a source becomes active, it assumes a weight, w, randomly from
a uniform distribution between b (> 0) and B (< § < 1). An output port is also

randomly chosen from among all the output ports, each being equally likely.

Figure 3.4: Sample Switch

When such a call request, {z,y,w} arrives at the input port z, the system first
checks to see if with the addition of w, the total weight at port x exceeds 3 and rejects
the call if it does while recording the attempt for input blocking. If there is enough
space at the input, then the output port y is checked for the same purpose and if the
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total weight exceeds 0 after the addition of w, the call is rejected and the attempt is
taken down as output blocking. If the output port has enough space to accommodate
this new call, then the system attempts to find a path, able to accommodate weight,
w, through the switch, using the call-routing algorithm under investigation. If such a
path exists, the link is established and w amount of resource is written off as reserved
at the input port, output port, and on the internal links for the duration of the
transmission and if no such path is found, then the call is rejected, recording the

attempt as switch blocking.

3.4.1 Simple is Good ?

Later on, the complexity of these algorithms will briefly be mentioned, but it is
not very difficult to see that among these algorithms, fixed-priority algorithm is the
simplest one. The first and main result is about this algorithm — and the other ones,

t00.

Conjecture 3.1 Among the four routing algorithms considered, for a given set of
parameters, b, B, 3 where 0 < b < B < 3 < 1, fized-priority algorithm provides the

least blocking.

The most striking result of this chapter is that, the fixed priority algorithm, with
all its simplicity provides the least blocking. The experimental data that supports
this conjecture can be seen in the following three figures (Figs. 3.5, 3.6, 3.7). As can
be seen, the least blocking is experienced when operating with fixed-priority. The
second best is maximum switch blocking. The worst is balanced routing and in fact
it is on occasion even worse than random routing. This pattern holds true on all three
graphs (and on all other data obtained).

Couple of other interesting concepts can be observed on this set of data that

surface on every other simulation:

e For a fixed b, the blocking probability increases with increasing B = .
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Figure 3.5: Blocking Probability Varying With Respect to B. b= 0.10, 3 = B

e For a fixed B = 3, the blocking probability first increases and then decreases

with increasing b.

e Algorithms based on center-stage crossbars do better than algorithms based on

individual links.

The reasons why all these are happening are occasionally not so apparent but
understandable when they are figured out. First of all, the reason why balanced
routing does such a lousy job is simple: It litters the links with low bandwidth
calls and due to this, cannot find available bandwidth for high bandwidth calls in
the future. As a simple example, a situation when four calls of bandwidths b + ¢
arrive at the same input can be considered. Now these will most probably be routed
through four different links. In the future all calls arriving before any of these calls
get disconnected that have a bandwidth greated than 1 —b— ¢ will have to be rejected
because of these earlier low-bandwidth calls. In fact, the reason why balanced routing
is slightly worse than random routing is that in random routing, these four calls have

better probability of not being on four different links, leaving behind bigger chunks
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of available bandwidth.

The real questions are why fixed priority is the best and why maximum loading
is worse than the two crossbar-based algorithms. It is extremely hard to answer
these questions, especially the first one. Some insight into these questions will be
provided, though. The latter question is a bit easier to handle. Maximum loading
algorithm takes links one at a time. In other words, it makes a decision based on one
link between either the first and the center stages or the center and the third stages.
However, this decision affects both links on either side of the center stage. It is quite
likely that this decision is made based on a link that was heavily loaded because of
other calls that are connected to links on the other stage other than the link that
the call in question will be on. (To clarify it a bit, consider the top center-stage
crossbar and the third link out of it connecting to the third stage. This link might
be heavily loaded due to the first and fourth links coming from the first stage, but
the call request in question might be coming from the second link.) Then it is likely
that one link might be getting loaded because of a decision based on another link.

On the other hand, with the crossbar based algorithms, the decision is being made
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Figure 3.7: Zero-Blocking Lines
The area below each line contains that {b, B} pairs that do not create any blocking.

based on neither of the links, but the crossbar. This provides a longer global decision
rule rather than rules based on short-lived transients on links. The links on both
sides of the center-stage crossbar is likely to be loaded if the crossbar is loaded in the
maximum switch loading algorithm and certain crossbars are always loaded together
with their links in the fixed priority.

This leaves some space for explaining why fixed priority does marginally better
than maximum switch routing. Even though this question remains to be investigated
further, one reasonable assumption is that the latter rule creates more frequent tran-
sients when one crossbar gains supremacy over the others while the former is a stable
situation on all times.

Among the three minor observations listed above, the first two deserve some ex-
planation, too. For a fixed b, as B increases, the possibility of a small-bandwidth
call occupying a link and blocking a high-bandwidth call increases. (It becomes more

probable that the second call will have a bandwidth 1 — b — € after a former one of

b+e¢.) This explains the increase in blocking as B increases. The other observation is a
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bit more complicated since the blocking probability first increases and then decreases
with increasing b. The high end is easier to consider. For a fixed B, there comes a
point where the value of b is such that there can only be a single call on any port.
This is exactly like the circuit switching case, which does have strictly nonblocking
switches. Of course, the situation is helped with the existence of routing algorithms.
As an example consider § = 1.0 and b = 0.5 + €. There can exist only a single call on
one port. This not only reduces the blocking probability, but also provides nonblock-
ing after a certain value. Of course, this effect of increasing difficulty of having many
calls on one port with increasing b is trying to pull the blocking probability all the
time. However, it is losing to some other factor for low values of b. That other factor
is the increase in the average bandwidth rejected when a call is blocked as b increases.
This also affects the previous situation explained at the top of the paragraph. At
one point, though, the effect of the possible number of calls on one port gets more
prominent and the blocking probability begins to decrease. (This makes the number
of simultaneous possible connections on a port important. It will most probably be

large on NNI nodes, but might be small at UNIs.)

3.4.2 Light Traffic

The results of the previous section are obtained under fairly heavy traffic conditions
where a = 0.9 and § = 0.55 for each source and with ten sources per port. If the same
situations are simulated under lighter traffic the same results hold but with greatly
reduced blocking probabilities (Fig. 3.8).

In fact, not only that the blocking probabilities of the algorithms balanced routing
and maximum loading are reduced, but those of maximum switch loading and fixed
priority disappear altogether. This effect is also observed when the number of sources
connected to a single port is reduced. The latter is due to the effect of both the
reduced traffic intensity and the reduced number of possible simultaneous connections.
Even though it appears as if the performance difference between different algorithms

reduces as the offered traffic is decreased, it should be noted that balanced routing
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still performs very poorly compared to others. In the situation when only two sources
per port are investigated, not only does balanced routing still provide blocking, but it

provides blocking on the order of 10~° whereas none of the others go anywhere above

1078,

3.4.3 Other Types of Blocking

This is the point where other types of blocking come in and stain the picture. When
taken into consideration, due to the high number of persistent sources, input and out-
put blocking happen to dominate over internal blocking. Same data displayed above

also shows that internal blocking is as low as about one per cent of all the bandwidth
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blocked and that when looked at under this light all four routing algorithms have
absolutely comparable blocking probabilities. This seems to make the algorithms ap-
pear useless. However, one must consider that at user-network interface switches, the
number of users per port will most probably not be very high and the users will not
be extremely insistent. Even for light traffic, the algorithms provide better results.
Inside the network itself, at the node-network interfaces, though, the number of users
will be high and the traffic will be heavy most of the time because it is multiplexed
traffics of many users. However, at these junctions, the switches and the switch port
will be operating at higher hierarchy speeds and each single connection will have a
share as a fraction of 8. This will prevent input and output blocking to a great extent

and justify the usage of an efficient routing algorithm; namely, fixed-priority.

3.4.4 Other Requirements

One other area of comparison is the set-up delay created by these algorithms and
also their memory requirements. Inspecting each one-by-one, balanced routing, for
each arriving call on an dxm first stage crossbar, needs to make m comparisons first
between the two links of each path and m — 1 more to find the one with the lightest
weight on. This is the same for maximum loading. Fixed priority does not need to
do any of these while maximum switch loading needs to do the m — 1 comparisons
of the sort. Each algorithm has to do two additions and two comparisons to see if
the links of the path found can support the new connection, but this is common to
all so need not be considered. Clearly fixed priority is the fastest. One way to speed
up balanced routing, maximum loading, and maximum switch loading is to keep
the necessary aggregate sums in a sorted lookup table. This brings up the topic of
memory requirements. (It also puts some non-realtime work on the switch controller,
but since it is not realtime, it is favorable against a sort that has to be done while
the call request is waiting.)

Each algorithm has to keep track of the available bandwidth on each link at all

times to start with. Other than that, if one decides to keep the necessary sorted items
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in the memory for faster call set-up, then all three algorithms other than fixed priority
require m memory segments that need to be updated with adjusted and resorted data

after every connection or hang-up while fixed priority doesn’t need any.

3.5 On-Line Bin Packing

In an attempt to explain the behaviour of the routing algorithms, the classical com-
puter science bin packing problem can be taken as an analogy. In the general bin
packing problem, there are one-dimensional bins and incoming one-dimensional bricks
that need to be placed inside the bins. The number of bins are unlimited and a new
bin is created every time a brick cannot be placed in the already existing bins. The
incoming bricks have their sizes as random variables with a specified distribution
(mostly specific to the problem being considered). Since in the general problem, both
the number of bricks and the number of bins are indefinite, as a comparison, the

tail-end distributions of the number of bins used are considered.

/’f 1 | |

.........

Figure 3.9: On-line Bin Packing

The on-line bin packing problem has a number of widely-known algorithms for
brick placement. The two that will be considered are quite similar to two that were
used for call-routing in the previous section. These two algorithms are known as First
Fit (FF) and Best Fit (BF) algorithms. The names are quite descriptive of the way
they work. In the FF algorithm, the brick is first attempted to be placed in the first
bin. If it doesn’t fit, then the second bin is tried and then the third, etc. If none of the

existing bins have enough space to accommodate this brick, a new bin is ‘activated’
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and the brick is placed in this one. In BF, the existing aggregate brick levels inside
the bins are considered. The bin that contains the most gets the first pick for the
new brick. If the brick doesn’t fit there, then the bin with the next highest brick level
is tried. This procedure is repeated until either the brick gets placed into one of the
already active bins, or a new bin has to be activated for it and it gets placed there.

If they don’t already sound similar to fixed priority and maximum loading, they are!

3.5.1 Analogy

The way the ATM switch fits the bin packing model is with the internal links viewed
as bins and the call requests are bricks. The weight of the call is the random variable
that needs to be stacked into these bins. There are a number of differences between

this restricted problem and the general bin packing problem. These variations are:
e The number of bins are finite and fixed.
o Bricks have a lifetime; they appear and after some time disappear.

e There are two layers of bins.

Figure 3.10: ATM Switch Links As Bins

The classical bin packing problem as described above in the general sense has
exactly the opposite results in terms of algorithms. The expected waste under FF
grows faster than that of BF. It is shown over and over again (tightening the bounds)

that BF performs better than FF [1], [2], [3] even in bounded space [4]. These results
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seem to contradict the behaviour of call routing algorithms, but thanks to the three
major differences, they can be totally different problems with different outcomes. One

needs to look carefully to find which one(s) of the differences create this major change.

3.5.2 Effects of Differences

It is essential to figure out among the three differences listed previously which, if any,
of the restrictions create a change. To accomplish this, first the situation is considered
with a finite number of bins. This is a case that is similar to what is referred to as
K-bounded bin packing where there can only be K active bins at a time and if a
brick cannot be placed in any of these, one bin gets deactivated and a new empty
one is activated (like a truck loading area with K parking spaces. A truck has to
leave before a new truck can begin loading). In the ATM switch, the number of bins
is permanently fixed. When such a situation is looked into with a fixed number of
bins and a predetermined number of bricks with sizes of random variables uniformly
distributed between 0 and 1, it is observed (Figs. 3.11, 3.12, 3.13) that BF creates less
blocking than FF (of course, there actually is no blocking in the original bin packing
problem because there are infinite number of bins, but when the number of bins is
finite, then the bricks that cannot be placed in any bin are discarded and this is again
the criteria used for comparison) in total agreement with the general bin packing
results.

This can also be observed in a very simple example with two bins of unit capacity

and and four bricks with random heights.

Theorem 3.3 Given two bins of unit size and four incoming ordered bricks with x; is
the height of the ith brick where z; is a uniformly distributed random variable between
0 and 1, the FF has a higher blocking probability in terms of number of bricks and
also brick height.

Proof: Until the third brick, the two algorithms will obviously perform the same:
The first two bricks will either go into the same bin (z; + x5 < 1) or into two separate

bins (z1 + z2 > 1). If the former, then there will be no difference between algorithm
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Figure 3.11: Finite Number of Bins and Bricks. {The number of bricks is scven times
the number of bins.)

performances all the way through brick four because the third brick will certainly be
accepted and the the fourth will either find a place in both algorithms or be rejected
by both. On the other hand, the latter case can create a fork in algorithm performance
if 1 < z5. In that situation BF will try to put the third brick in the second bin first
and will place it into the first only if it doesn’t fit in the second. FF, though, will
try to put it in the first bin first. In the situation x3 + 2o, < 1, BF will place the
third brick in the second bin whereas FF will place it in the first bin. However, since
1 —z; > 1 — x5 placing the third brick in the second bin will leave much more space
for the fourth brick. In other words, FF has a higher probability of rejecting the
fourth brick than BF. Since in all other possible scenarios, both algorithms reject or
accept a brick together, FF will have a higher blocking rate than BF.

Ez: Let z; = 0.5, 22 = 0.6, 23 = 0.3, and 24 = 0.45. In both algorithms, z; will
go into the first bin and x5 into the second bin. Then FF will place z3 into the first

bin and BF will place it inside the second bin. Because of this placement, FF will
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have to reject x4, but BF will be able to place it in the first bin.

Since the first difference didn’t help much, the finite brick lifetimes concept is the
next one to be looked into. This way the bricks not only appear randomly, but also
disappear, making space for newly arriving bricks. In this model, only a single state
change per time instance is allowed. A departure takes place with probability 6, an
arrival takes place with probability « and with probability 1 — « — § there is no state
change. This model also agrees with the general bin packing in terms of BF still being

better than FF (Fig. 3.14).
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Figure 3.14: Finite Number of Bins; bricks have a lifetime. o = § = 0.42

This leaves only one more avenue of approach. The layering of bins. Before
looking into it in detail, there is one simple observation. Even though the occupancy
of the first bin in FF is not of any special interest, it can easily be determined. For
this purpose, the following problem can be considered: An ordered list of n bricks
of various sizes with z;, 0 < z; < 1, being the height of the ¢th brick is introduced,
starting from the lowest indexed brick, to be placed into a bin of unit size. The

cumulative height of bricks accumulated inside the bin after ¢ bricks is 7} and a new
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i + 1th brick is admitted if and only if 7; + 2,1 < 1 and it is discarded (i.e. blocked)
otherwise. Under this model, what is the expected value of the height of the bricks

accumulated inside the bin after n bricks?

i+] n

ﬁm!ﬁﬁr% %

Figure 3.15: Single Bin

E{T,} =?

To answer this the contents of the bin can be defined recursively:

T, =

Tii+w T +x; <1 ,
(3.7

T 4 otherwise
T1 = I (38)

where all z;s are independent, identically distributed random variables between 0 and
1 according to some given pdf, g(-).

Let F;(t) be the cdf of T;, i.e.
F,(t) = Pr{T; <t} (3.9)

For example, Fy(t) =t where 0 <t < 1.
For the case in which z;s are uniformly distributed between 0 and 1, the cdf will

be given by:

Theorem 3.4 For the single bin situation, given that x; is a random variable uni-
formly distributed between 0 and 1, the cdf of the occupancy function after i bricks
18

F#)=t, 0<t<1,i>1 (3.10)
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Proof: Suppose T;_; = u for some u < t. Then

Pri{T, <t} = Pri{z; <t—u}+ Pr{z; >1—u}

= Git—u)+1-G(1 —u)
which gives for the uniform distribution:

Pr{T <t} — /t ((t = ) + u)dFs 1 (u)

0
i
- t/ dF;_(u)
0
= tF_(t) =t

= ¢
In the more general sense, the cdf would take the shape:
4
Fi(t) = / (Gt —u) + 1 — G(1 — w)dF,_4(u) (3.11)
0

Given the cdf, the mean height of bricks inside the bin can be calculated and the

answer to the initial question is:

n

E{TL,} =
n—+1

(3.12)

To explain the effects of the double layer of bins, a simpler model can be made
use of. In this model, there are multiple sources and some sources have access to only
some of the bins. The simplest example of this situation is with two sources and two
bins (Fig. 3.16) and this example will be used to show the effects.

The two sources submit bricks in a probabilistic manner in such a way that when
a brick arrives to the system, with probability p it comes from source (b) and with
probability 1—p it comes from source (a) (0 < p < 1). However, while a brick arriving

from source (a) can be placed into either one of the bins — according to the algorithm



46

source a source b
|
i |
v V
bin bin
1 2

Figure 3.16: Two Bins and Two Sources. The Lopsided Model.

being used — a brick from source (b) can only be placed in the second bin. The bricks
are being accepted or rejected as described before. Under these circumstances, first
a simple situation is better to consider to get some insight:

In the case with two bins and two sources, one with access to both bins and the
other to only one, consider a brick arriving from each source. The probability that
the third brick will be blocked is higher in FF if p is small and higher in BF if it is
large. Here are the details of this simple situation which will be generalized: A brick
with size €, 0 < €, < 1, arrives from source (b) and a brick of size €,, 0 < ¢, < 1 — ¢,
arrives from source (a). Under FF, ¢, will go into the second bin and ¢, will be placed
in the first whereas in BF both will be placed in the second bin. At this point, what
is the probability that the third brick will be blocked ? In BF, if the third brick
arrives from source (a), it can’t be blocked because the first bin is empty and if it
arrives from source (b), it will be blocked if it is bigger than 1 — (e, + ¢€,). Therefore
the overall probability that the third brick will be blocked under BF is (e, +€,)p. On
the other hand, for FF, if the third brick is from source (b) it will be blocked if it
is larger than €, and if it is from source (a) it will be blocked if it is larger than the
bigger one of 1 — €, and 1 — ¢,. Therefore, the overall blocking probability for the
third brick under FF is pe, + (1 — p) min {e,, €}

plea+e) <=> pe+ (1 —p) min {e,, &}
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Dég <L (1 —p) min{e,, €}

There are two equally-likely cases to consider:

e ¢, < ¢. In this case, the decision simplifies to
? \
pe, <=> (1—p)e,

One can easily see that BF has higher probability to block the third brick when
p>1/2 and FF when p < 1/2.

® ¢, > ¢,. This time the relationship is:
Deg <L (1-p)e

In this case, it is a bit more complicated. BF has higher probability to block
the third brick when p > ¢,/(€,+¢,) and FF when p is smaller. The mean value

of €,/(€, + €5) comes out to be 0.153426.

In this example, all this shows that when p is chosen to be small, BF is better
and when p is large, FF is better (Fig. 3.17). Needless to say, among all three-brick
combinations possible, this is the only case when the algorithms behave differently.

The situation above can be generalized to cover any number of bricks:

Theorem 3.5 For the lopsided two-bin model, for p sufficiently small, BF performs
better and for p sufficiently large, F'F performs better on the average in terms of

blocking probability.

Proof:

Consider the general case after n bricks where the level inside the first bin is =
and the level inside the second bin is y. The n + 1st brick can be from either one of
the sources. If it arrives from source (b), then both algorithms will react the same

and try to place it in the second bin and block it if this is not possible. If the brick
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Figure 3.17: Simulation Results With Two Bins and Three Bricks in The Lopsided
Model

arrives from source (a), though, things might be different. If it is blocked, it’ll be
blocked by both algorithms. If it is possible to admit it, though, it might be placed
differently. Even in this case, if z > y to begin with, again both algorithms will do
the same thing. However, in the situation when x < y, BF will try to place it in
the second bin first and FF will try to place it in the first bin first. If both of them
are successful at their attempt, the problem reduces to the previous example for the

n + 2nd brick, with height z:
ply+2)+(1-ple <=> py+(1-p)minfz + 2y}

Again the same two situations with first z + 2 < y and the breakpoint p = 0.5 and
the second z + 2 > y with a complicated breakpoint of p = (y — z)/(z +y — ) which
is another random variable.

This shows that for this two-bin case, the result always holds true on the aver-

age because in the only case where the algorithms react differently, this effect holds
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(Figs. 3.18, 3.19). Of course, it is true that when one algorithm rejects one brick, it
might mean space for the next brick that might not find space in the other algorithm,
but since the result holds true for any number of bricks, it will dominate on the av-

erage. These results with five and ten bricks can be seen in the following two graphs

respectively.
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Figure 3.18: Simulation Results With Two Bins and Five Bricks in The Lopsided
Model

3.6 Conclusion

The lopsided model with two bins actually represent the second stage of the three-
stage ATM switch pretty nicely and explain what is happening. The reason why BF
can’t outperform FF is due to the intervention of the second source introduced. As p
grows larger, more bricks are being introduced by this other source and these ‘alien’
bricks are ‘confusing’ BF. On the other hand, FF has no problems with this because

that algorithm is totally independent of the current status of the bins themselves.
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Figure 3.19: Simulation Results With Two Bins and Ten Bricks in The Lopsided
Model

In the ATM switch, this is exactly what is happening between the center and third
stages. The decisions made by the maximum loading algorithm is dependent on the
traffic on two links on either side of the center-stage. The second layer of links, keep
getting ‘extra’ calls to carry from the first stage based on decisions made on the first
layer of links. This ruins the strategy of maximum loading algorithm and algorithms
that don’t depend on the traffic on the links win.

This chapter shows that even though it is much simpler than many others, fixed
priority algorithm can be a very good candidate for routing decisions inside ATM
switches. Using this algorithm, the blocking probability on the call level can be

greatly reduced and also the speed-up factor can be kept at reasonable levels.
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Chapter 4 Buffer Management

ATM networks allow for the input traffic from the user to vary both from one call
to another and also within one call. Since CBR service provides a fixed-bandwidth
transmission circuit, it is fairly easy to deal with in terms of its instantaneous traffic
load on the network. However, the situation is totally different for VBR services
intended for bursty traffic. These applications, such as transaction processing appli-
cations and LAN interconnections, can send data at high burst rates as long as the
overall transmission rates don’t exceed a specified average. On top of this, the new
classes being considered and defined, UBR (unspecified bit rate) with data being sent
across the network with no guarantee when or if the data will arrive at its destina-
tion and ABR (available bit rate) with similarities to UBR but containing minimum

bandwidth guarantees and flow control, complicate the network traffic further.

Class of | Bandwidth | Delay variation | Throughput | Congestion

service | guarantee guarantee guarantee feedback
CBR YES YES YES NO
VBR YES YES YES NO
UBR NO NO NO NO
ABR YES NO YES YES

Table 4.1: Service Class Differences

The primary role of traffic control and congestion control is to protect the network
and the user in order to achieve network performance objectives. An additional
role is to optimize the use of network resources. The traffic control and congestion
control mechanisms should not rely on other higher layer protocols which are either
application or service specific. However, protocols may make use of the information
in the ATM layer to increase their efficiency.

There are two levels of congestion and control involved with ATM: the call level

and the cell level. With ATM connections there is a unidirectional specifying of the
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Quality of Service (QoS) parameters. These parameters are specified at connection
setup and are guaranteed by the network. To guarantee the QoS, the network must
be able to obtain enough information from the user about the connection and be
able to ensure that no other connections that share the resources degrade the QoS.
A user must enter into a contract with the network about the parameters of the call.
Then the network will implement traffic control to avoid problems with degraded QoS
before they occur. This includes Network Resource Management (NRM), Call Ad-
mission Control (CAC), Usage Parameter Control (UPC), and selective cell discard.
The network will also control the case where congestion does occur by implementing
Explicit Forward Cell Indication (EFCI), selective cell discard and reaction to UPC
failure.

Within the ATM cell there are a number of bits available for congestion and
priority setting. These include the Payload Type Indicator (PTI) and the Cell Loss
Priority bit (CLP) both of which are contained in the header of the ATM cell. The
first bit of the PTT tells that the cell is a user cell and the next bit tells if congestion
has been experienced by the cell in the network. The last bit differentiates between
two different types of ATM-SDU’s. The CLP bit is for high and low priority setting
of the cells. This can be done by the user and/or by the network. A cell entering
the network with low priority is subject to being discarded by the network in times
of congestion.

Traffic control is necessary to protect the network so that it can achieve the re-
quired performance objectives. UPC enforces a contract between the user and the
network about the nature of the call. This prevents any one user from causing exces-
sive traffic and hence degrading the quality of service provided to the other users. It is
necessary to determine what is the worst traffic a user can inflict on the network while
still abiding by UPC. The Leaky Bucket Algorithm is commonly used to implement
UPC.
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Figure 4.1: Leakv-Bucket Algorithm
4.1 Leaky-Bucket Algorithm

On an ATM network, at the beginning of a transmission, a ‘contract’ needs to be
accomplished between the source and the network. The traffic contract specifies the
negotiated characteristics of a connection. A connection traffic descriptor is the set
of traffic parameters in the source traffic descriptor, the cell delay variation toler-
ance, and the conformance definitior. The coniormance definition is used to decide
which cells are conforming in the connection. A typical conformance definition is the
leaky-bucket (Fig. 4.1) [28] or Generic Cell Rate Algorithm (GCRA) although many
such algorithms may be used in tandem. The CAC will use the connection traffic de-
scriptor to allocate resources and to derive parameters for the UPC. Any connection
traffic descriptor must be enforceable b the UPC. Even though a cell is found to
be nonconforming, that does not mean that the connection is not conforming. The
precise definition of a compliant connection is left to the network operator. However,
a connection where all the cells are conforming is compliant. The traffic contract
consists of the connection traffic descriptor and a requested QoS for each direction of
the connection. This includes the definition of a compliant connection. The private
UNI may support a different traffic to the public UNL

The contract must contain the Peak Cell Rate (PCR) of the source traffic, the cell
delay variation, and the cell delay variation tolerance. Sustainable cell rate and burst

tolerance are optional parameters. For best-effort! traffic the only parameter specified

1The network will make its “best effort” to deliver the traffic, but without any guarantees.
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is the PCR and the network may not reject the call because that bandwidth is not
available but it may impose a different PCR. CAC is used to decide if a connection
should be accepted or continue to be accepted in the network. It is required that
the traffic contract be accessible to the CAC. The prime concern is to achieve the
required QoS for the new or renegotiated connection as well as to ensure that the
connection will maintain the QoS of all the other connections in the network. As
well as deciding to accept the connection, the CAC must determine the parameters
needed by the UPC and route and allocate the resources to the connection. Even
if high and low priority are not set the network may set them for nonconforming
cells. UPC is the set of actions the network take to monitor and control traffic. This
includes the validity of the connection. The operation of the UPC shall not violate
the QoS objectives of a compliant connection. However, the excessive policing actions
on a compliant connection are part of the overall network performance degradation
and so safety margins should be engineered to limit the effect of the UPC. The UPC
can also fail to take action on a noncompliant connection. Policing actions on the
nonconforming cells are not to be allocated to the network performance degradation
of the UPC. At the cell level the UPC may pass a cell, change the priority of the cell
or discard the cell. A low priority cell is discarded by the UPC if it is nonconforming.
Following the UPC shaping may be implemented on the conforming cells to reduce
cell clumping. It is optional for the network operator to allow the UPC to initiate
the release of a noncompliant connection. When two levels of priority are used the
UPC may discard high priority cells even though if the UPC were performed on the
high priority alone the cells would be conforming.

The UPC and CAC are operator specific and should take into account the traf-
fic contract to operate efficiently. It is specified that the signaling should take into
account experimental traffic parameters that could be proprietary to either the man-
ufacturer or network operator. It is optional to allow the the operation of these
parameters across the UNI by mutual agreement. It is optional for the user to be
allowed to mark cells as low and high priority. It is also optional for the network to

mark cells as low priority if they are not adhering to the traffic contract. The cell
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loss ratio for low priority cells must be higher than for high priority.
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Figure 4.2: Leaky-Buclk=t Algorithm

The leaky-bucket algorithm (Figs. 4.2, 4.3) is a UPC standardized by the ATM
Forum [29]. The operation of the leaky-bucket algorithm under the ‘bucket’ concept
is that a splash is added to the bucket (counter increment) for each incoming cell
when the bucket is not full. When the bucket is full, cells cannot pass through to
the network unmarked but the bucket leaks away at a constant rate. A more formal
definition should be made taking into consideration the rates and a “token pool” idea.
The important parameters to be defined in this system are the token regeneration
rate (leak rate of the bucket), R, the size of the token pool (bucket capacity), M, and
the peak cell emission, p. Every time a cell arrives at the server, it needs to obtain
a token to pass through into the network untagged. If there is at least one token
at the token buffer at that time (n > 1), the cell passes through and the number of
tokens at the buffer, n, get decremented by one. If there are no full tokens, then the
cell either gets tagged as a nonconforming cell and is released into the network or
is removed. It is also possible to have a cell buffer to buffer such cells until a token
arrives at the token buffer. For the analysis in the rest of this chapter, it is assumed
that if the cells cannot pass the leaky-bucket unmarked then they are lost and are
not taken into account in the cell loss rate. (This is because the network will only
give guarantees to the unmarked cells and the marked cells should not interfere with
the unmarked ones.) The token get replenished at a constant rate R, but the buffer

size can never exceed M (n < M).
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The UPC standard of the ATM Forum is actually a double leaky-bucket that
controls the two different cell rates R and p, each with a separate bucket. The peak
rate, p, is controlled by the first leaky-bucket with a token buffer of 1 tokens and a
token replenishment rate, p, and the second bucket operates as explained above. For
a cell to be a conforming cell, it needs to be conforming with both buckets at the

time it is transmitted.
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Figure 4.4: Double Leaky-Bucket Algorithm

The main utilization of the leaky-bucket algorithm as a traffic shaper is to ‘smooth
out’ the traffic and reduce its burstiness. This allows the network to multiplex the
traffic much more easily by reducing the burst collisions, the duration of the burst
collisions and to reduce the cell loss rate (CLR). The effects of this will be observed

in later sections.
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Figure 4.5: Input and Output Cell-Streams For a Leaky-Bucket with M = 2 and
R=05

4.2 Traffic Types

Leaky-Bucket Input

time

time

A simplified ATM switch (node) model consists of N users feeding a finite FIFO
buffer of capacity B cells (Fig. 4.6).
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Figure 4.6: Simplified Model

The arrival process from the users is in general random, but for the worst case
analysis it is assumed that the UPCs are heavily loaded and that the UPC algorithm
makes the arrival process to the FIFC buffer deterministic. There are two types of
arrival patterns, z[n], that will initially be considered after the UPC and both of them
are periodic. Due to the packetized nature of ATM and the synchronous operation of
SONET, this traffic is described in a discrete fashion rather than a continuous fashion
for the whole analysis, with the cell arrivals taking place at 53-byte intervals. The
service process is also deterministic (at rate r). The cells that arrive at the FIFO are
either served at the service rate, r, or are queued if another cell is being served at
the moment. A cell is lost when a cell arrives, but cannct be served immediately and
cannot be queued either due to the buffer being full. The worst case traffic is defined

to be the one which creates the highest cell loss at the FIFO for a certain type of
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UPC, the leaky-bucket in this analysis.

For the most part of the analysis, the homogeneous case with all the sources
transmitting the same traffic type will be considered. However, the phase difference
between sources will be random. In other words, even though the individual traffic
patterns are deterministic and periodic, the aggregated incoming traffic at the FIFO

buffer will be a sum of the individual sources with a random (and discrete) phase.

Definition 4.1 Let z[n| be the outgoing traffic with period T' from one source. The
incoming traffic at the FIFO buffer from N sources is

X[n] =5 z[n—ny (4.1)

where n;s are independent, uniformly distributed random variable between 0 and T .

Definition 4.2 Let g te the buffer occupancy in ¢ FIFO buffer of size B. Cell loss

occurs at a time n. if and only if
Xn)+qg—r>2B

at which time exactly X[n. + q —r — B cells are discarded.

When considering which types of sources will produce the worst performance in
the network while still maintaining the contract, the first point to note is that the type
of source will not allow the leaky-bucret to ever overflow and will always comply with
the contract. In other words, the total available number of cells that are allowed to
enter the network will enter to produce the lowest performance. Two types of sources
that have been proposed as possible worst types are a two-state source (greedy on-off
source) and a three-state source (Fig. 4.7).

The greedy on-off source emits a burst of cells at the peak cell emission rate until
the bucket runs out of available tokens and then falls silent waiting for the token buffer
to fill up. This occurs periodically depending on the parameters of the system. The

three-state source is similar to the greedy on-off source except that it keeps emitting
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Figure 4.7: Source Types

cells at the average rate (R’ arter the burst. Therzfore its operaticn is to emit a burst
of cells at the peak cell emission rat= w1asil the bucket runs out of tokens and then
emit cells at the token-replenishment rate of the leaky-bucket for some time and then
fall silent to allow the tokens to fill up. This would then be repeated again. What
can be seen is that the three-state source would have a longer period than the greedy
on-off for the same system parameters.

The general belief is that the greedy on-off source gives rise to the worst case
traffic as it would have the largest variance possible. However, the three-state source

has been proposed [32] as producing longer queues and therefore larger loss.

4.3 Discussion of Previous Studies

An initial study of the three-state source compared its performance to that of the
greedy on-off source, for a large nuber of sources into an infinite buffer [32]. The

following parameters describe the traffic in those simulations:
Greedy On-Off Source: N=9¢,r=1,p=0.1, R=001, B=9.1

Three-State Source: N =99, r =1, p=0.1, R=0.01, B=9.1, T" = 1000
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In two different simulations, 99 sources of one type were fed into the buffer many
times with their phase differences with respect to each other being randomly varied
at each separate case. The parameters given above produce overall periods of 1000
cells for the greedy on-off and 2000 celis for the three-state, resulting in a number of
all possible phase alignments of 1000% and 2000 respectively. These sources are all
transmitting into an infinite FIFO buffer.

It was found in those simulations that the three-state sources produced higher
buffer occupancy than the greedy on-off sources for the duration that the two sit-
uations were simulated. The survivor function, P[@) > ¢, was obtained where Q
was the buffer occupancy. This function was then assumed to approximate the cell
loss in a finite buffer. In other words, it was concluded that for an integer B, if
Privee—state(Q@ > B) > Pon_07¢(Q > B), then the three-state source would cause a

higher cell loss at a finite buffer of size B.

10 : :
1 < - —— Greedy On-Off
10 \\:: | ——~ Three-State
Ny
10°

Survivor function, P(Q>q)
=

o 50 100 150 200 250
a (cells)

Figure 4.8: Simulation Results For Buffer Occupancy in an Infinite Buffer [32]
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Even though later on in this chapter, it’ll be presented that the end-result has a
high level of truth in it, the assumption above about the relationship between infinite
and finite buffers is not true in this situation. It would only be true for input traffic
that would be statistically independent of the queue lengths, which is not the case
here as the input traffic is periodic and deterministic.

The fact of higher buffer occupancy in the infinite case does not necessarily mean
higher cell loss rates in the finite buffer when the arrival process is deterministic. For
deterministic arrivals the loss in a finite queue is not necessarily related to the buffer
occupancy in the infinite case but more on the method of arrivals, or the process of
arrivals, past the finite places in the queue. This problem was simulated [31] and these
conclusions help to explain the results obtained therein. Furthermore, the survivor
function P[@ > g¢] can provide more conflicting results if viewed carefully. As an
example, here is a simple situation with M = 2, p = 1, R = 0.5, and » = 1. For
the three-state source, T™ is left as a variable and the overall period of the source is
T (T = 6 for the greedy on-off case). Then the exact frequency that each possible

queue occupancy is going to occur at can be calculated:
- PlQ=0]= (T - 7)/7°

- PlQ=1]= (75T — 4.5T + 12) /7%

- Pl[Q=2]=(.25T%-23)/T"

- P[Q =3]= (5T —2)/T?

The survival function can then be obtained and looked into for different values of
T*. When it is plotted for three different values of T~ T = 6 for greedy-on-off, and
T = 8 and T = 24 for three-state — it is clearly seen (Fig. 4.9) that up to ¢ = 3 cells,
the three-state sources create a higher buffer occupancy, but just before ¢ = 3, there
is a crossover.

In other words, the buffer occupancy for the infinite buffer and the cell loss rate in
a finite buffer do not provide a one-to-one relationship in this case. In fact, almost in

all cases, the traffic that creates a lower buffer occupancy in the infinite buffer causes
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B PIQ > ¢ Cell Loss Rate
Greedy | Three-State | Three-State | Greedy | Three-State | Three-State
On-Off T =238 T =24 On—-0Off T=28 T=24

1| 0.194 0.234 0.262 0.111 0.094 0.038

2| 0.028 0.031 0.017 0.028 0.016 0.002

Table 4.2: Buffer Occupancy and Cell Loss Rate

a higher cell loss rate in the finite buffer (Table 4.2). This shows that the survival

function for an infinite buffer cannot be used to make conclusions on the finite buffer

situation for this deterministic traffic pattern.

4.3.1 Positive Slope

Why is this so ? This can be investigated using a continuous time model which

afterwards can be discretized.

The source traffic can be characterized using the steo function:
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xon—off(t> - pu(t) "pu{t - Ton)a 0<t<T (42)
Tihree—state(t) = pu(t)— (p— R)u(t —T,,) — Ru(t=T"), 0<t<T (4.3)

where

4

{ 1 ift>0
u(t) =

0 otherwise

The buffer occupancy is the accumulation of traffic inside the buffer when the
input rate, z(t), is higher than the output rate, r(¢), which is r for all values of ¢.
With the two representations above being one period of the source traffic, the buffer

occupancy in an infinite buffer will vary with respect to time according to:

T

q(t) = / z(t) —r(t) dt (4.4)
0
which will translate into:

Gon—off(t) = maz{0, t{p(u(t) —uw(t —T,n)) —ru(t)}, 0<t<T (4.5)
chree—state(t) = maa:{(), t (pu/t) - (p - R) U(t - Ton) (46)
— Ru(t—T")—ru(t)}, 0<t<T (4.7)

For a suitable choice of parameters satisfying p > r, p > R > r, it is clear
that inree_state(t) Will have values greater than a fixed number B more often than
Jon—off(t), i.e. higher buffer occupancy. However, when it comes to a finite buffer,
the situation changes. The best question to provide insight would be “when are cells
lost 77 That was defined in definition 4.2 for the discrete case. When applied to the

continuous case, the condition will be:

/tt w(tydt— [ r(t)dt+qlt— At > B (4.8)

—At oLt

When each component of the equation above is inspected, one can see that cell



loss can only occur if

dq(t)

which happens only during the peak rate burst duration of the source traffic. The
important point here is that both traffic types have the same duration for this period.
In other words, the cell loss that they will experience will be exactly equal in terms
of cells, but when normalized for a per unit time basis, due to the longer period,
three-state source has a lower cell loss rate (CLR). The actual reason for this is that
the buffer occupancy does not take into consideration the time variable. On the other
hand, CLR is on a per unit time basis resulting in the conclusion that even though
two sources might be losing the same number of cells within a single period, the one

with the shorter period will lose many more in the long run (Fig. 4.10).

(1) x(t)
Y e
Input Traffic
Rp---- B
T ‘ T T '
q(®) I (5)
i /
\ Buffer Occupancy
) (infinite buffer)
t t
q®| . . CELLLOSS o, CELLLOSS
Buffer Occupancy
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Figure 4.10: Comparison of Finite and Infinite Buffers For Continuous-Time Case
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However, that is the simplistic approach of a single phase combination. Does this
result still hold true for all possible random phase combinations 7 The answer is both

yes and no.

4.4 Two Sources

The problem contains both continuous and discrete variables and therefore it is im-
portant to distinguish between the two types. A simplified model similar to [30] is
considered where there are two identical, independent users feeding a finite buffer. If
the users were not independent then the worst case would be the greedy on-off source
with all sources emitting together in phase. However, when the users or sources are
independent then the phase between the sources is a random variable. This gives
rise to the probability of cell loss because there is a probability of phase difference
between the sources. It is assumed that the two sources are randomly phased, which
means one source can be considered as a reference source and the other is then a
random amount out of phase. The amount out of phase will determine the number
of cells lost. The more in phase the more loss is expected. The probability of each of
the possible combinations of out of phase is just the reciprocal of the number of the
possible combinations.

Two possibilities are considered: Either two greedy on-off sources or two three-
state type sources. The cell losses for all distinct combinations of the two traffic
patterns are calculated and averaged and the cell loss rate for each scenario is com-
pared. There are a number of constraints on the problem due to the discrete nature

of the variables:

1. The sources may be out of phase only in one cell time units which means that

integration cannot be used.

2. The on period of the on-off source is the time taken for the leaky-bucket to run

out of tokens while emitting at the peak rate and also to emit any cells which
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arrive during this time. In the discrete case for p = 1 this is equal to

Ton = (M = R)/(1 - R)] (4.10)

Cells are only lost as integer units — no fractional cell loss. Therefore it is
necessary to ensure that in using general formulas the cell loss is truncated to

an integer. The case of M > 1 is investigated.

The discrete nature of the cell also implies that the FIFO buffer size must be

an integer: B € Z*

The service process can be assumed to be continuous. This means a cell can be
served as it arrives. Alternatively, one can think of the server waiting until the

cell has fully arrived before starting to serve it.

The comparison of cell loss from both source types in the two identical user system

is revisited assuming the cell arrival and service processes are discrete. The cell loss

rate is computed as the total number of cells lost in one period divided by the total

number of cells emitted in one pericd. The total rumber of cells lost in any one

period is the average of the cells lost by each combination of the two traffic patterns.

It is assumed that the minimal phase difference between two sources is one cell time

and there are T' (T is the period) combinations of the two traffic patterns. The

total number of cells emitted in one period T' equals 2RT". Furthermore the following

stipulations are placed on the parameters :

The service rate is at least equel to the peak cell emission rate, p <r

The leaky-bucket rate is less than or equal to half the peak cell rate (and hence

the service rate), R < p/2

Together the peak cell emission and the leaky-bucket rate exceed the service

rate, p+ R>r

The buffer size must be small enough so that cell loss is guaranteed when both

sources are in phase, (2p — r)7T,, > B
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These stipulations ensure that cell loss only occurs when at least one of the sources
is emitting at the peak rate. If the service process is assumed to begin as the cell is
arriving, the server is named a fast server. Then the cell loss for two greedy on-off
sources, x places out of phase with each other, is denoted by CL (z) and is calculated

in Equation 4.11
CL(z) =maz{0,[(2p — r)(To, —x) — B]} (4.11)

where the symbols have the usual meanings. Similarly the cell loss for the three-state

sources can be represented by Equation 4.12.
CL(z) = maz{0,|(2p — r)(To, — )+ (p+ R —r1)(z) — B} (4.12)

Alternatively if it is assumed that the server waits until the cell has arrived in the
buffer before starting to serve the cell, i.e. the slow server, then the expression for

cell loss are modified for the greedy on-off source as follows in Equation 4.13
CL (z) = maz{0, [(2p)(Ton — z) — (Tp —x — 1/p)r — B} (4.13)
and for the three-state slow server the celi loss will be given in Equation 4.14.
CL (z) = maz{0, [ (2p)(Ton — 2) = (Ton —z — 1/p)r + (p+ R —r)(z) — B]} (4.14)

To calculate the CLR z is allowed to vary over all phase possibilities and then averaged
over the number of combinations and also normalized by the period of each source.
The number of cells transmitted by both sources will be 2RT and the number of
phase combinations will be 7', so the CLR is given by Equation 4.15.

_ S0 CL(x)

CLR -

(4.15)

To show that there is no single worst type traffic for two identical sources, a
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counter example to the traditional theory of the greedy on-off being the worst case is
presented. This example shows that the three-state source can produce higher CLR
for integer values of variables chosen. As mentioned previously two different types of

servers are initially considered: The fast serving server and the slow serving server.

4.4.1 Fast Serving Server
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Figure 4.11: Fast Server, (A) Greedy On-Off Source, (B) Three-State Source
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Assuming that the cell is served as it arrives here is an example showing the three-
state source gives rise to greater cell loss in a finite buffer than the on-off source. The

following system parameters are used :

p, peak cell emission = 1

- 7, service time = 1

- R, leaky-bucket rate = .5

- M, leaky-bucket capacity = 8

- B, buffer size = 12

- T* (for three-state source) > ((2p — 7)Tor, — B)/(p— R) =6

It takes 8 cell times to use the tokens up but in that time 4 more cells are allowed
through because of the constant replenishment rate of the tokens and while they
provide service 2 more arrive and then finally one arrives and the token-buffer is
empty. Therefore the amount of time that the source is on and emitting cells at the
peak rate is given by T,, = [(pM — R)/(p — R)| = 15. When the bucket is full it
takes M /R seconds to empty normally; however, here one time period has already
elapsed so T,55 = 15.

There are 30 phase combinations for the greedy on-off source patterns; however,
sources that are too far out of phase do not give rise to cell loss. For the greedy on-off
sources by examining Equation 4.11 it is concluded that sources that are 3 or more
time units out of phase do not produce any cell loss. It should be remembered that
this loss can occur when the second source is a little advanced from the reference and
also when it’s so advanced that it is almost back in phase with the reference. This
can be seen in Figure 4.11. The cell loss for the two state sources is in total 9 cells,
which is calculated from 3 cells lost when in phase, 2 cells lost when either one out of
phase and also 29 out of phase, and 1 cell lost when either two out of phase or 28 out
of phase. For all other phasings there is no cell loss. Therefore using Equation 4.15

the cell loss rate can be calculated to be 0.01.
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For the three-state sources, there are 36 possible phase combinations and by ex-
amining Equation 4.12 loss can occur up to 4 units out of phase. The total number
of cells lost over all possible phasings can be seen in Figure 4.11 and is 15 cells. By
using Equation 4.15, the loss is calculated to be 0.01157. Therefore the three-state

source produces higher loss than the greedy on-off source for the fast server.

4.4.2 Slow Serving Server
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Figure 4.12: Slow Server, (A) Greedy On-Off Source, (B) Three-State Source

If the service process is assumed to begin serving a cell only after it has fully arrived

into the buffer, there is a similar counter example. The following system parameters
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are used :

- p, peak cell emission = 1

- 7, service time = 1

- R, leaky-bucket rate = .5

- M, leaky-bucket capacity = 8

- B, buffer size =14

- T* (for three-state source) > ((2p — r)T,, — B+r/p)/(p— R) = 4

Similar to the fast serving server T,, = To¢s = 15. For the greedy on-off sources
by examining Equation 4.13 it is concluded that sources that are 2 or more time units
out of phase do not produce any cell loss. This can be seen in Figure 4.12. The cell
loss for the on-off sources is over all possible phase combinations equal to 4 cells and
by using Equation 4.15, the cell loss rate can be calculated to be 0.00444.

For the three-state sources cell loss can occur up to 2 time units out of phase. This
is concluded by examining Equation 4.14 for the cell loss for a three-state source and
this is also seen in Figure 4.12. Here in total 6 cells are lost over all possible phase
combinations and so again by using Equation 4.15 the cell loss rate can be calculated
to be 0.00519. Therefore the three-state source produces higher loss than the greedy
on-off source for the slow serving server, too.

Therefore regardless of how the service is achieved in the buffer there is an example

of the three-state source producing more loss than the greedy on-off source.

4.5 Effect of Buffer Size

However, the example presented in the previous section doesn’t mean that the three-
state source is worse than the on-off source in general. In fact, if the very same
example is considered for other value of B, an interesting situation is encountered:

The answer to the question which source type creates higher CLR is dependent on
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the size of the buffer {Fig. £.13). When there is no buffer (B = 0) the two sources are
creating the same amount of cell loss (this will be proven to hold true for N sources
in a later section). As B increases, first the greedy on-off source achieves a higher
CLR, but as B further increases, the CLR for the three-state source becomes higher.
At the end, they reach the zero-loss state when the buffer size becomes sufficiently

high (B = 15 in this case).
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Figure 4.13: CLR vs Bufter Size For The Two Types of Traffic

From this example alone, it is apparent that:

e neither the gready on-off sourcs. ror the three-state source create a CLR that

is uniformly higher overall.
e the characteristics of cell loss is heavily dependen