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Abstract

Highly transient elastodynamic fracture processes in both homogeneous and bi-
material systems have been investigated. It is found that due to the wave character
of the mechanical fields during transient and dynamic crack growth, the customarily
assumptions of steady state and K%dominance may be violated. This may be par-
ticularly true during crack growth in laboratory size specimens where crack growth
seldom reaches steady state conditions due to the persistence of the initiation tran-
sients and the influence of reflected stress waves from the specimen boundaries. By
relaxing both restrictions of steady state and of K?dominance, and by permitting
the crack-tip speed and the dynamic stress intensity factor to be arbitrary functions
of time, the transient asymptotic elastodynamic field near the moving crack-tip was
established in the form of higher order expansion for both homogeneous solids and
bimaterial systems. In homogeneous solids, we considered cracks that propagated
along arbitrary smooth paths, while in bimaterial systems, we only considered crack
growth along a straight interface. The higher order coeflicients of the asymptotic
expansion were found to depend on the time derivative of crack-tip speed, the time
derivative of the dynamic stress intensity factors, and for crack propagating along

curved paths, on the instantaneous value of the local curvature of the crack path.

The issue of K?-dominance during dynamic crack initiation and transient crack
growth was further investigated by solving a particular transient initial/boundary
value problem. This corresponds to a planar dilatational wave impinging on a semi-
infinite crack in an unbounded elastic solid. The crack initiates under the influence
of the wave, and then propagates dynamically. Through comparison of this full field
solution and the equivalent K?-dominant field or the field represented by the higher

order transient terms, it is found that even for points which are relatively far away
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from the crack-tip, or for times very close to the crack initiation, the higher order
transient representation provides a very good description of the actual stress field.
The K9 dominant field, however, is incapable of approximating the complete stress

field with any accuracy (lack of K¢-dominance).

The implications of the above observations (possible lack of K¢-dominance) on the
interpretability of dynamic fracture experiments are also explored. The interpretation
of experimental data in past laboratory investigations of dynamic fracture events is
based on the assumption of K9 dominance. However, as we have seen theoretically
this assumption may often fail in laboratory situations. As a result, experimental
measurements must be analyzed by techniques that allow for the possibility of the
existence of transient higher order term effects. Several types of experiments are con-
sidered as examples. Plate impact experiments involving very high rates of loading
are first analyzed by both a K¢dominant and a high order transient approach. The
results clearly show the strong effects of transients on the interpretation of the data.
As a second example, the optical method of caustics is reanalyzed. A new way of
extracting the instantaneous value of the dynamic stress intensity factor K¢(t), which
takes transients into account, is proposed and verified theoretically. For the bimaterial
system, the issues are equivalent but much more complicated analytically. Here tran-
sient effects are found to be magnified by the material property mismatch between the
constituent solids. It is shown however, that the higher order transient analysis can
predict accurately the fringe patterns from actual experiment performed by means of

the CGS (Coherent Gradient Sensing) technique and high speed photography.

The observations of this thesis suggest that a variety of conclusions made in the
literature based on interpretations of experimental data on the basis of steady state

or K dominance may be suspect.
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Chapter 1

Introduction

1.1 Motivation

It is inevitable that all engineering structures contain or develop macroscopic cracks,
either due to existing natural defects or due to processes of fabrication and assembly.
If the applied loads in service are high enough, these macrocracks may grow and, under
certain circumstances, become unstable. An unstable crack propagates dynamically
in a solid, with a velocity equal to some substantial fraction of the material elastic
shear wave speed (~ 0.3c,). This rapid material separation would seriously damage
the integrity and function of the structure, and even lead to catastrophic failure. To
prevent the occurrence of such disastrous events, the discipline of dynamic fracture
mechanics, which is concerned with problems involving cracks in situations where
inertial or strain rate effects are important, has been developed and has become an

active area in mechanics during the past decade.

The origin of fracture mechanics is dated back to the 1920’s. It is commonly
acknowledged that the work of Griffith (1920) represented the birth of quasi-static
fracture mechanics as a quantitative science of material behavior. As for dynamic
fracture mechanics, the first classical and theoretical contribution seems to be the

one by Mott (1948), who included inertial effects into his analysis of rapid crack
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growth. Mott’s work essentially paralleled that of Griffith and was based on the

argument of equilibrium of energies.

Mathematically, if we consider a linearly elastic solid, the governing equation
of motion reduces to the linear wave equation (or system of equations). However,
for cases of dynamic crack initiation and growth, what we need to deal with is a
boundary/initial value problem which is far more complicated than the problem of
quasi-static fracture mechanics. This is because part of the boundary — the crack,
is moving during the fracture process, and generally the entire history of the mov-
ing boundary is not known prior, and it depends on the solution of the governing
equations. Inversely the solution also depends on the boundary conditions as well.
Consequently, even though the governing equation is linear, the entire problem be-
comes highly nonlinear. This is called moving boundary problem in mathematical
physics. For a moving boundary problem involving hyperbolic, second order equa-
tion (or equations), no general solution or general procedure to obtain the solution
has been discovered yet. Therefore, researchers have to invent various simplifications
regarding crack motion so that the mathematical models can be tackled. One of the
most famous solutions involving dynamic crack growth was given by Yoffe (1951).
She considered a steady state crack propagating in an unbounded elastic solid where
the crack length remained a constant. Other solutions which involved transient crack
propagation, among others, are those given by Cragg (1960), Broberg (1960), Baker
(1962), Achenbach and Nuismer (1971), and Freund (1973). As we have mentioned
earlier, in order to make the mathematical problem solvable, these solutions cor-
responded to very special geometrical configurations (e.g., unbounded bodies) and

simple loading conditions.

In contrast to most analytically studied problems, most of the experimental inves-
tigations in the laboratory are utilizing finite-sized specimens and the loading histories

are much more complicated than most analyses. As a result, it becomes necessary for
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the experimentalists to observe near the crack-tip and to interpret data in terms of
asymptotic representations of the crack-tip field. The relevant question then becomes
what is the universal asymptotic structure of the deformation with respect to an ob-
servation position very close to the stationary or moving crack-tip. For a stationary
crack subjected to quasi-static load, Irwin (1957) and Williams (1957) observed that
the elastic stress field near the crack-tip has a universal spatial structure, and the
magnitude of the stress field is controlled by a scalar quantity, the elastic stress inten-
sity factor. For the dynamic moving crack, Freund and Clifton (1974) have provided
a standard asymptotic method and have given the leading term of the asymptotic
expansion for the boundary/initial value problem of a moving crack. In addition to
the most singular asymptotic representation of the stress field, Nishioka and Atluri
(1983) and Dally (1987) also studied the higher order asymptotic expression for the

stress field near the tip of a moving crack under steady state conditions.

The interpretation of the measurement data in most of the experimental investi-
gation of dynamic fracture mechanics is based on the assumption that the near-tip
field is represented in terms of the leading term in the asymptotic expansion. This
is called the assumption of K¢-dominance. Also, the region where the leading term
of the asymptotic expansion can approximate the deformation field sufficiently well,
is referred to as the K%dominant region. However, recent experimental evidence
obtained by means of optical techniques, e.g., the method of caustics (Ravi-Chandar
and Knauss, 1984; Krishnaswamy and Rosakis, 1991; Rosakis et al., 1990) and the
Coherent Gradient Sensing technique (CGS) (Krishnaswamy et al., 1992), have shown
that the assumption of K“-dominance is often violated during the process of dynamic
fracture in laboratory specimens, and K?dominance is insufficient to characterize
the deformation field near the crack-tip. It was observed that the violation of the
assumption of K% dominance is often associated with the existence of highly tran-

sient crack growth motions as well as with sudden arrivals of stress waves reflected
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from the specimen boundaries. It is also believed that many long standing debates
in dynamic fracture mechanics may be traced to the transient nature of the fracture
event and consequently to the resulting lack of confidence on the conclusions of past

experimental studies which assume K% dominance.

The possible violation of the assumption of K¢-dominance, raises questions regard-
ing the interpretability of experimental data and partially motivates the theoretical

developments described in this thesis.

1.2 Overview of thesis

In Chapter 2, the transient mixed-mode elastodynamic crack growth along arbitrary
smoothly varying paths is considered. Asymptotically, the crack-tip stress field is
square root singular with the angular variation of the singular term depending weakly
on the instantaneous values of the crack-tip speed and on the mode-I and mode-II
stress intensity factors. However, for a material particle at a small distance away from
the moving crack-tip, the local stress field will depend not only on the instantaneous
values of the crack-tip speed and stress intensity factors, but also on the past history
of these time dependent quantities. In addition, for cracks propagating along curved
paths the stress field is also expected to depend on the nature of the curved crack
path. Here, a representation of the crack-tip fields in the form of an expansion about
the crack-tip is obtained in powers of radial distance from the tip. The higher order
coefficients of this expansion are found to depend on the time derivative of crack-
tip speed, the time derivatives of the two stress intensity factors as well as on the
instantaneous value of the local curvature of the crack path. It is also demonstrated
that even if cracks follow a curved path dictated by the criterion K¢ = 0, the stress
field may still retain higher order asymmetric components related to non-zero local

curvature of the crack path. For the first time, these results will shed new light on
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the experimental interpretation of dynamic crack curving and may help to establish

the criterion governing the crack growth along an arbitrary curved path.

To illustrate the importance of transient effects on the dynamic crack initiation
and growth, in Chapter 3, we revisit the problem of a semi-infinite crack loaded by a
planar stress wave. After a finite delay time, the crack starts to extend with a con-
stant speed. In this chapter, we use this particular problem to investigate the question
of the region of dominance of the mode-I asymptotic elastodynamic crack-tip fields.
The complete full field analytical solution of stresses surrounding the stationary and
moving crack-tip is obtained using the procedure outlined by Freund (1973, 1990).
This analytical solution is compared to the asymptotic structure obtained in Chap-
ter 2 and the coefficients of the higher order transient asymptotic representation are
determined. To demonstrate the importance of transient effects, the normal traction
ahead of the moving crack-tip is studied and compared to the field either represented
by K¢-dominance, or represented by the higher order transient asymptotic expansion
(see Chapter 2). The result shows that the higher order transient asymptotic expan-
sion 1s necessary to describe the near-tip field at a time close to the event of crack
initiation, or at a location relatively far away from the crack-tip. This study also con-
cludes that in the event where transient effects are severe and cannot be neglected,
the K{-dominant field cannot provide an accurate description of crack-tip fields and

should give way to the higher order transient asymptotic representation.

An experimental configuration which involves loading a half plane crack by a pla-
nar tensile pulse has been developed by Ravichandran and Clifton (1989). Using this
configuration, extensive observations have been made by Prakash and Clifton (1992)
on the process of crack initiation and growth in a hardened AISI 4340 VAR steel. Some
interesting phenomena regarding the time variation of measured particle velocities,
are observed in the work of Prakash and Clifton (1992). These phenomena cannot

be explained merely by the K¢-dominant representation of the initiating and growing
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crack-tip field. The problem studied in Ravichandran and Clifton (1989) and Prakash
and Clifton (1992) can be modeled mathematically by the solution given in Chap-
ter 3. In Chapter 4, we provide an interpretation to the experimental observations
made by Prakash and Clifton (1992). First, the higher order transient asymptotic
representation of the particle velocity field is derived by using the result given in
Liu and Rosakis (1992) (also see Chapter 2). Then we simulate the experimental
measurements of particle velocity by using the higher order transient representation
and by initially assuming constant crack-tip speed. The result of this initial simu-
lation shows that the higher order transient representation successfully captures the
crude features of the experimental results. To further investigate the influence of
transient effects, we subsequently relax the restriction of constant crack-tip velocity.
Motivated by the experimental measurements made by Zehnder and Rosakis (1990),
we introduce a fracture criterion that relates the dynamic stress intensity factor to
the speed of the propagating crack. By solving the crack-tip equation of motion,
all time-dependent quantities in the higher order transient asymptotic representation
are determined. The final simulation of the experimental observation shows that
the fully transient asymptotic field can describe the measured particle velocities very
well. The experimental observation can be interpreted more accurately by including
the effects of crack-tip acceleration and rapid changes of the dynamic stress intensity

factor associated with crack initiation.

In experimental investigations of dynamic fracture, optical techniques are the
mostly used diagnostic methods. Among them, the optical method of caustics has
been extensively utilized in the past two decades in studying dynamic crack initia-
tion, propagation and arrest phenomena. However, in analyzing the optical method
of caustics, several assumptions need to be made. Some of these assumptions have
been addressed and their influence on the interpretation of the caustic patterns have

been studied (Rosakis and Zehnder, 1985; Rosakis, 1993). Nevertheless, one of the
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important issues that has not been understood is the effect of lack of K¢-dominance,
resulting from transients, on the interpretation of the caustic patterns. In Chapter 5,
the optical method of caustics is re-examined by considering the presence of dy-
namic non-uniform crack-tip motion histories. Based on the higher order asymptotic
transient expansion obtained by Freund and Rosakis (1990, 1991), Rosakis, Liu and
Freund (1991), and on the results obtained in Chapter 2, in which dynamic transient
effects were included in the near-tip deformation field, the exact mapping equations
of caustics are derived for non-uniformly propagating mode-I cracks. The resulting
equations indicate that the classical analysis of caustics based on the assumption
of K¢-dominance, is inadequate to interpret the experimental caustic patterns when
dynamic transient effects become significant. In this chapter, an explicit relation
between the instantaneous value of the dynamic stress intensity factor K¢(t) and
the geometrical characteristics of the caustic is established. It is shown that for the
case of non-uniformly propagating cracks, the relation between the dynamic stress
intensity factor and the geometrical characteristics of the caustic pattern depends on
the crack-tip acceleration and on the time derivative of the dynamic stress intensity
factor, K¢(t). It also reduces to the classical relation between K¢(t) and the caustic
diameter for the case of K¢-dominance (when the crack-tip fields are well described
by the r~!/2 singularity in stresses). Two characteristic lengths of the caustic pattern
are proposed to be used in determining the dynamic stress intensity factor of the tran-
siently growing crack. In order to measure these two lengths accurately, a multi-point
technique is also developed in this chapter. The Broberg problem (Broberg, 1960)
is used as an example problem to check the feasibility of analyzing caustics in the
presence of higher order transient terms. It is shown that the value of the dynamic
stress intensity factor obtained by the proposed method agrees remarkably well with
the exact analytical value while large errors are introduced when the classical analysis

(K¢-dominant) of the method of caustics is used.
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In Chapter 6, we further extend our transient asymptotic analysis to the case of
an interfacial crack propagating transiently in a bimaterial system. In this chapter, a
higher order asymptotic analysis of the transient deformation field surrounding the tip
of a crack running dynamically along a bimaterial interface is presented. An asymp-
totic methodology is used to reduce the problem to one of the Riemann-Hilbert type.
Its solution furnishes displacement potentials which are used to explicitly evaluate
the near-tip transient stress field. Crack-tip fields corresponding to crack speeds up
to the lower of the two shear wave speeds are investigated. An experimental study
of dynamic crack growth in PMMA /steel interfaces using the optical method of CGS
and high speed photography, is described and provides motivations for the analysis.
Transonic terminal speeds (up to 1.4¢E™*) and initial accelerations (~ 108m/sec’)
are reported and discussed in the light of the phenomenon of lack of K“-dominance.
Transient effects are found to be severe and more important than in homogeneous
dynamic fracture. For subsonic crack growth, these experiments are used to demon-
strate the necessity of employing a fully transient expression in the analysis of optical

data to accurately predict the complex dynamic stress intensity factor history.

Finally, in Chapter 7, a summary of work in progress is made.



Chapter 2

Higher Order Asymptotic Analysis of a
Non-Uniformly Propagating Crack
Along an Arbitrary Path

2.1 Introduction

Since Irwin (1957) and Williams (1957) observed that the elastic stress field near
the tip of a static crack has a universal spatial structure, and the magnitude of
the stress field is controlled by a scalar quantity, the elastic stress intensity factor,
this quantity has played one of the most important roles in linear elastic fracture
mechanics. For propagating cracks, the early analytical results of Yoffe (1951), Craggs
(1960), Broberg (1960), Baker (1962) and Freund (1972), among others, revealed that
the asymptotic stress field near the moving crack-tip has a universal structure as well.
As stated by Freund and Clifton (1974), the stress field with reference to a Cartesian
coordinate system moving with the crack-tip of “all plane elastodynamic solutions for
(smoothly turning) running cracks, for which the total internal energy is finite,” can

be asymptotically described by the square root singular expression,

K K4 (2)
P \2nr \2rr

Here (r,f) is a polar coordinate system traveling with the crack-tip, Eiﬂ(H,v) and

Sls(8,0) + S (6,v) + 0(1) asr — 0. (2.1.1)

E%(G,v) are known universal functions of # and crack-tip speed v, and K¢(t) and
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K{,(t) are the mode-I and mode-II stress intensity factors, respectively. They are
dependent only on the specific geometric and loading conditions of a problem. In
addition to the most singular asymptotic representation of the stress field, Nishioka
and Atluri (1983) and Dally (1987) also developed the entire higher order asymptotic
expression for the stress field near the tip of a dynamically moving straight crack

under steady state conditions.

Expression (2.1.1) is strictly valid only in the immediate vicinity of the crack-
tip. To apply this expression over a region of finite extent, one must show that the
asymptotic solution indeed dominates over this region, and this domain is then re-
ferred to as a region of K9-dominance. Recent experimental evidence obtained by
means of optical techniques, e.g., the method of caustics (Krishnaswamy and Rosakis,
1991; Rosakis et al., 1990) and the Coherent Gradient Sensor technique (CGS) (Kr-
ishnaswamy et al., 1992), have shown that the assumption of K% dominance is often
violated during the process of dynamic fracture, and that the expression in (2.1.1) is
insufficient to characterize the deformation field near the crack-tip. It was observed
that the violation of the assumption of K¢-dominance is often associated with the
existence of highly transient crack growth motions involving crack-tip accelerations
as well as fast varying stress intensity factor histories, events that are typical of most

laboratory dynamic testing situations.

By using the asymptotic methodology introduced by Freund (1990), and by re-
laxing the assumption of K¢-dominance, Freund and Rosakis (1992) have provided a
higher order asymptotic expansion for the first stress invariant (quantity of interest
for both caustics and CGS) and showed that this expansion provides an accurate
description of crack-tip fields under fairly severe transient conditions. Later, Rosakis
et al. (1991) obtained the higher order asymptotic stress field near the tip of a
non-uniformly propagating mode-I crack. In a related study, Liu et al. (1993) have

also applied these results to the interpretation of optical caustic patterns and have
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confirmed the advantages of the higher order expansion in analyzing experimental

data.

Our purpose in this chapter is to understand the nature of the mixed mode
asymptotic field that dominates the region near a transiently propagating and curv-
ing crack-tip. In this chapter, we develop a new methodology to obtain the higher
order transient asymptotic elastodynamic field near the tip of a crack that propagates
non-uniformly along an arbitrary and smoothly curved path. Here, we consider crack
growth in a homogeneous, isotropic, and linearly elastic material. The deformation is
assumed to be plane strain. However, for plane stress similar results can be obtained
by changing the expression for some material parameters. By using the asymptotic
procedure proposed by Freund (1990) and utilized by Freund and Rosakis (1992), the
governing equation is reduced to a series of coupled partial differential equations, and
the problem can be further recast into a Riemann-Hilbert problem. Upon solving the
Riemann-Hilbert equation, the higher order near-tip transient elastodynamic asymp-
totic field can be obtained. The results show that the singular terms and the so-called
T-stress term have the same spatial form as those obtained under steady state con-
ditions. However, the dynamic stress intensity factors and the crack-tip velocity are
now allowed to be functions of time. The third term, on the other hand, depends
not only on the instantaneous values of the crack-tip speed and the stress intensity
factors, but also on the past history of these time-dependent quantities (i.e., on K}’(t),
K$,(t), and (t)). For a crack that propagates along a curved path, the third term
also depends on the curvature of the crack path at the crack-tip. Some implications
of these analytical results on the interpretation of experimental observations of crack

curving are also discussed.
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2.2 General formulation

Consider a planar body composed of homogeneous, isotropic, linearly elastic material.
In the body, there is an arbitrarily propagating crack. Introduce a fixed orthonormal
Cartesian coordinate system (1, z2) so that at a time ¢ = 0, the crack-tip happens to
be at the origin of the system. For any ¢ > 0, the position of the propagating crack-tip
is supposed to be given by (X1(t), X5(t)), see FIGURE 2.1. If the deformation is plane

£ &
A X2
) B(t)

s() Xi(t)
— l
_ X
- Xi(1) -

Figure 2.1: Crack growing along a smooth curved path under two-dimensional con-
ditions. The instantaneous crack-tip position is 1 = X;(¢), o = X,(t), and the
instantaneous crack-tip speed is v(¢) in the local ¢;-direction.

strain, we may consider the two displacement potentials, ¢(x1,z2,%) and ¥(zy, zy,t),

and then the two non-zero displacement components can be expressed by

Ua(Z1, T, t) = Py (T1, T2, t) + apt),p (21, za,t) (2.2.1)

where a, 8 € {1,2} and the summation convention is employed here. e,z is the

two-dimensional alternative symbol defined by

€12 = —en =1, €1 = e =0,



- 13 -

The components of stress for the material we consider can be expressed by the dis-

placement potentials like
'CZ )
o1 = c_;¢7aa —2¢,92 +21/),12]

-2
022 = L c_12¢,aa —2¢,11 _2¢,12] ) (2.2.2)

010 = H L2¢,12 +1,22 —1/),11]

/

where p is the shear modulus, and ¢, ¢, are the longitudinal and shear wave speeds

of the elastic material, respectively. In terms of the shear modulus p, ¢ and ¢, are

1/2 1/2
1
cF:{“+ -ﬁ} , cs:{ﬁ} : (2.2.3)
k=1 p P

where k = 3 — 4v for plane strain and & = (3 — v)/(1 + v) for plane stress, and p is

given by

the mass density of the material, v is the Poisson’s ratio. By changing the definition
for the longitudinal wave speed in equation (2.2.3), the solution corresponding to the
plane stress deformation can be obtained. Meanwhile, ¢; and ¢, in both plane strain

and plane stress, are related by

&:{”“1Fﬂ_ (2.2.4)

c k+1

The equation of motion in the absence of body force in the fixed coordinate system,

in terms of ¢(zq, z,t) and Y(zq, 22, t) is

1
¢aaa (:L'l,:llg,t) - Z§¢(w17x27t) = 0
! (2.2.5)

1
¢,aa($1,$2,t)—‘c_2¢($1,x2,t) =0

8

Now introduce a new moving coordinate system, (£1,{s), so that the origin of
the new system is at the moving crack-tip. The ¢ -axis is tangential to the crack

trajectory at the crack-tip and coincides with the direction of crack growth. The angle



~-14 —

between the £;-axis and the fixed z;-axis is denoted by 3(t), as shown in FIGURE 2.1.

Therefore, the relation between the coordinates in these two systems is

& = {z1 — X1(t)} cos B(t) + {x2 — Xa(¢)}sin B(¢) }
t2 = — {o1 — X3 (1)} sin B(t) + {22 — Xa(t)}cos B(2) |

(2.2.6)

In this new system, the equation of motion (2.2.5) for ¢(é1,&s,t) and (&, &2, t) will
be (Freund, 1990)

¢aaa ”% {¢7aﬂ éaéﬁ + ¢,a foz + 2¢7at éoz + ¢7tt } = 0
: (2.2.7)

¢7aa “Zlg‘ {"baaﬁ éaéﬂ + 1/’7& éoz + 2¢7at éa + ")batt} = 0

If the length of the trajectory that the crack-tip travels during the time interval [0, ¢],
is denoted by s(t), then the magnitude of the crack-tip speed v(¢) will be $(t), and
the curvature of the crack trajectory at the moving crack-tip, k(t), is given by

a8 _ B

R =35 = o)

(2.2.8)

In terms of the crack-tip speed v(¢), and the crack-tip curvature k(t), we have the

relation
&= —v(t)+vk(t)e, &= —v(t)k(t)é . (2.2.9)

As a result of equation (2.2.9), we can also express the 6"0, in terms of the crack-
tip speed and the crack-tip curvature. Now, the equation of motion (2.2.7) can be

rewritten as

é,11 + 2¢722+ {\/—¢31} - 1212¢7tt \

vk

T e {b,2 +281 0,10 —2620,11 } — 0,1 —E10,2 )} , (2.2.10)
i
o2k

{£z¢,n—2&£z¢ﬂz+él¢,m ~E16n—Eaba } = 0

2.2
G
2
2
]
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and

¢,11+ ¢,22+ {\/—?/),1} 2,1 Vot
\/_k

{l/’,z +261%,10 —2620,11 } —

P 511/),2)} ,  (2.2.11)

2k2

{fz’b,n —2&169% 12+ 195 — §11/J,1-—§21b,2} =0

where the two quantities a; and a, depend on crack-tip speed, and therefore depend

/

on time ¢t through

v3(t 1/
Oll,s(t) = {1 - 2( )} .
Cl,s
Notice that in equations (2.2.10) and (2.2.11), the derivative with respect to time, ¢,
is distinct from that in equation (2.2.5). Here, &, € are held fixed, whereas in (2.2.5),
&1,z are held fixed. Throughout this study, we will use 9/9¢, or { },; to denote the
differentiation with respect to time, ¢, where the moving spatial coordinates are held

fixed, while using { ' } denote the same operation but the fixed spatial coordinates
are held fixed.

At this point, we employ the standard asymptotic device used by Freund and
Rosakis (1992) for the analysis of transient mode-I crack growth. We assume that
&(&1, &2, ) and P(&1, €2, t) can be asymptotically expanded as

¢(€1’€27t> = i 6pm¢m(7717772)t) 9 ¢(€1>€27t) = ij: €pm1/)m(771,7727t) ? (2212)

m=0
as r = (£ + €2)'/2 — 0, where 5, = /e ,a € {1,2}, and € is a small arbitrary
positive number. The parameter € is used here so that the region around the crack-
tip is expanded to fill the entire field of observation. As € is chosen to be infinitely
small, all points in the ({1,¢:) plane except those very close to the crack-tip, are
pushed out of the field of observation in the (n1,7;) plane. If the trajectory of the
moving crack is smooth enough, the crack line will occupy the entire negative n;-axis
in this scaled plane. By taking ¢ = 1, the above equation will provide the asymptotic

representation of the displacement potentials in the unscaled physical plane as r — 0.
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In the asymptotic representation (2.2.12), the powers of € are such that

1
Pt =P + 5 m=0,1,2,---, (2.2.13)

so that the nontrivial solutions for ¢,,(m1,72,¢) exist. Since the displacement should
be bounded throughout the region, but the stress may be singular at the crack-tip,
Po is expected to be in the range 1 < py < 2. We also should have that

Pmtn m+n )t
6”m¢m(771, M2, t)

for any positive integer n. Meanwhile, as we return to the physical plane, we will

have

?S;""—Zéf}_gg%)t)_%o, as r=1/+E& -0, (2.2.15)

for any positive integer n, so that in the physical plane, (&,£&), ¢m(r,é2,t) are
ordered according to their contributions to the near-tip deformation field. The above

properties for ¢,, hold for ¥,, as well.

Substituting the asymptotic representations for the two displacement potentials
#(&1,&,t) and (&1, &, t), in equation (2.2.12), into the equations of motion (2.2.10)
and (2.2.11), we will obtain two equations where the left-hand side is an infinite power
series of €. Since € is an arbitrary number, the coefficient of each power of € should
be zero. Therefore, the equations of motion reduce to a series of coupled differential

equations for ¢, (71, n2,t) and (91, 72, t) as follows:

1 2 )
¢m711 +“—2‘¢m,22 = \/_ {'\/_¢m 2)1} + ¢m 45tt
o
1— o)k
(_——&—QL {Pm—2,2 +201m—2,12 —202Pm—2,11 }
’ . (2.2.16)
{ v (n2¢m—-4a1 _"771¢m——472 } + {772¢m 4511
- 2771772¢m~4,12 +7712¢m—4,22 '—771¢>m—4,1 -‘772¢m—4,2 } )
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and

1 1
¢m,11+a‘2‘1/)m,22 = } + 5 Pm—t5tt

(1—aj)k

+ {VYm-2,2 +2m¥m—2,12 =202 m—2,11 }

2
e . (2.2.17)
1-«o
—451 —TPm—452 } + (—"‘-— {7721/)m 4511
— 2002 Ym—a512 +T Va2 — N1 Prm—s,1 —N2Wrm—4,2 } )
for m =0,1,2,---, and where

¢m form >0 Y, form >0
Pm = Vm = (2.2.18)

0 form<0 0 form<0

It is noted that, for a crack propagating along a straight trajectory, k(t) = 0, and
equations (2.2.16) and (2.2.17) reduce to that given by Rosakis et al. (1991). The
term “coupled” is used above in the sense that ¢,, or 1, with higher values of m
will be affected by the solutions for ¢,, or t,, with lower values of m. Furthermore,
for the special case of steady state crack growth, the crack-tip velocity, v, will be a
constant, and at the same time, ¢, ;= V¥, = 0, for m = 0,1,2,---, which means
that ¢, and %, depend on ¢ only through the spatial coordinate 5;. In such a
case, the equations in (2.2.16) and (2.2.17) are not coupled anymore and each one
reduces to Laplace’s equation in the coordinates (n;, aym2) for ¢, and (1, a,n,) for
¥, respectively. The corresponding functions ¢,, and ,, are independent of time
in the moving coordinate system. The solution for this case is discussed by Dally
(1987) who attributes the original results to G. R. Irwin. However, for the transient
case, the crack may propagate along an arbitrary path, the crack-tip velocity, v(t),
may be a continuous function of time and so is the crack-tip curvature, k(t). Also,
B (M, M2, t) and ¥ (91,72, t) may depend on time explicitly in the moving coordinate
system. The only uncoupled equations are those for m = 0 and m = 1. As m > 1,
we can see from equations (2.2.16) and (2.2.17) that ¢m(n1,m2,t), of Yum(n1, ne,t) is

composed by two parts, one is the particular solution which is completely determined
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by the previous terms, the other part is the homogeneous solution which satisfies the
Laplace’s equation in the corresponding scaled coordinate plane. Suppose that there
is no traction applied on the crack faces, then the combination of the particular and
homogeneous solutions should satisfy the traction free condition on the crack faces. In
the following section, we will solve ¢,,(n1,72,t) and ., (11, 72, t) for the most general

transient situation of a crack propagating along an arbitrary path.

2.3 Solution for the higher order transient prob-
lem

As we have discussed in the previous section, in equations (2.2.16) and (2.2.17), the
only uncoupled equations are those for m = 0 and m = 1. As m > 1, the solutions for
Om(n1,m2,t) and (171, 72, ¢) will be affected by the solutions with smaller m. Thus,
in this section, we consider the situation of m = 0 and m = 1 first. After we get
solutions for m = 0 and 1, we will subsequently solve ¢,(n1,m2,t) and ., (91,72, t)

for higher order terms.

2.3.1 Solutions for ¢,.(11,72,t) and ¥,,(n1,72,t) for m =0
and 1

For m = 0, or 1, the equation of motion (2.2.16) and (2.2.17) reduce to

1
™y 3 7t 57 Pm 3 7t =0
P11 (01512 )+a,2(t)¢ 22 (11,72, 1)
(2.3.1)

1
my ) t o P 3 1t =0
Vmo (11,2, 1) + az(t)lb 22 (111, 712, )

8

They are Laplace’s equations in the corresponding scaled plane (11, a;(t)n,) for ¢y,
and (11, as(t)ns) for 9,,. The most general solutions for equation (2.3.1) can be
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expressed as

Gm (M1, m2,t) = Re{Fn(2151)}
(2.3.2)

d)m(nlﬂhv ) Im{G (Z87 )}

where the complex variables z; and z, are given by
zZi=1m+ ialn2 ) Zs =m + iasnil 3

and ¢ = v/=1. F,,(z;t) and G,,(2,;¢t) are analytic everywhere in the complex z-, or
zs-planes except along the nonpositive real axis. In the analytic functions Fy,(z;t)
and Gp,(2,;t), behind the semicolon, the time ¢ appears as a parameter. This suggests
that (1, n2,t) and ¥y (1,72, t) may depend on time ¢ not only through the complex
variables, z; and z,, but also explicitly through the time ¢ itself.

Associated with these ¢,, and t,,, the contributions to the displacement and stress

components are given by

u{™ = Re{F},(a1;t) + 0. Gl (251)}

, (2.3.3)
uf" = —Im {a F/,(2;t) + Gl (2051)}
and
a§’1") = ,uRe{(l +2af — a ) Fl'(z158) + ZaSG;(zs;t)} )
05’2") = —uRe {(1 + a ) Fl(z3t) + 205G (24 t)} , (2.3.4)
o™ = _puIm {ZalF,','L(zl;t) + (1 +a ) Gy (zs; )} )

where the prime represents the derivative with respect to the corresponding complex

argument.

Denote
Lm Q(z) = Q% (p)

n2—)0+
, z=m+an .
Lm Q(z) =Q (m)

172—0~
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As 1 < 0 and 7, — 0%, the traction free condition on the crack faces implies that
aggn)(nl,()i,t) = 0%’2”)(7)1, 0%,¢) = 0, or, in terms of the complex displacement poten-

tials, F,(z1;t) and Gy, (zs; 1),
(1 + o) {FiE(ms;t) + Fol (m3 t)}
+2pa;, {G:;i(m; t) + G, (m; t)} =0

, V m <0 y (23.5)
2pay {F:;:t(nl; t) — Fp (n; t)}

+a(1+ ) { Gt (m;t) — G (nust)} =0 |

where the overline stands for the complex conjugate. Here, it seems that we have four
unknown functions, Fy,(z;;t), Fin(zi5t), Gm(2s;t), and Gp(2s;t), while we only have
two independent relations in equation (2.3.5). However, these four functions can be
related by the fact that the displacement components and the traction components
should be continuous when they cross the real axis ahead of the crack-tip, or in terms
of the complex displacement potentials, F,(z;t) and G,,(z,;t), along 7, > 0 and
72 = 0, we should have

(1 + o2) {Fut(m;t) +F,, (m3t)} \
+2u0, {GZ:r(’h; t)+ G, (m; t)}
—u(1 + a?) {F,’,’f(m; t) + F—ﬁ(m;t)}

—2pa; {Giif(m;t) +@:;+(771;t)} =0
. V>0, (2.3.6)

2uon {Fp¥ (mi;t) = Fy (miit) }
+u(1+ a2) {GF (ms;t) — G (ms1)}

—2pcq {Fyy”(m;t) = il (1)}

—n(1+a2){G (ms;t) - Gl (m;t)} = 0 |
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and

{Frlrz+(nl; t)+F,, (m; t)} + {G::(Uﬁ t) + Gy, (m; t)} )

—{Fim s t) + ot (mit) } — 0 { Gin (m ) + Gy (m; )} = 0
, ¥V > 0. (237)

o {Fi(mst) = Fop(ni )} + {Git (mst) = G, (m3 1)}

—a {F (mst) = Fos (nit) } — { Gl (n38) = G (m3; )} =0 ]

For simplicity, define the following matrices

p_ | #AFa)  2ua Q p(l+a])  2pa
| 2 w140l | | 2w —p(tad) |

1 Qg 1 473
U proens 3 V = .
(87 1 — Q] -1

Also define the following complex vector

and

Fu(zit) = ( Fulzt), Gu(zt))"

where z = n; + 1. Then, the traction free condition on the crack faces, equation

(2.3.5), can be rewritten as
Pfri(m;t) + QF, (mit) = o, Vm <0, (2:3.8)

and the continuity condition of the displacement and traction ahead of the crack-tip,
equations (2.3.6) and (2.3.7), become
Pfit(ms;t) + QF,, (mst) — Pfar (mst) — QF., (mit) = o
, Vo >0. (2.3.9)
UFit(m;t) + Vo (1) = Ufi(mit) — Vo (m;t) = o

The continuity conditions in (2.3.9) can be rearranged as
Pft(nit) = QF (mit) = PFu(m;t) — QF (mit)
Ufi(mit) = VEn(mit) = Ufri(mit) = VE, (m;t)
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From the above equations, we may define two new functions by

Km(z;t) = Pfo(zt) — QF (1)
(2.3.11)

Om(2;t) = Ufro(231) = VI, (20)
Km(z;t) and 0,,(z;¢) are analytic functions throughout the z-plane except along the
cut occupied by the crack. From equation (2.3.11), it can be seen immediately that
equation (2.3.9) is satisfied identically. So, the issue now is to find the analytic

functions &,,(z;t) and 0,,(z; ).

Solve for 7 (z;t) and F.. (2;t) from equation (2.3.11) to get

fulzit) = PUHO,(510)- L kn(51)]
, (2.3.12)

Fm(zit) = QTTH {0, (2;t) — Lem(2;t)}

where

*

L=UP', L[=VQ', H=L-L.

Here, we have assumed that the inverse matrices P~! and Q! exist. Notice that the

determinants of P and Q are both equal to D(v), where
D(v) = doqas — (1 + ai)z

Therefore, we exclude the situation where the crack propagates with the Rayleigh

wave speed of the elastic material. This ensures the existence of P~ and Q.

Substituting the expressions in equation (2.3.12) into the traction free conditions

on the crack faces, (2.3.8), and notice that H # o for v(¢) # 0, we get

0, (m;t)— L &}t (m;t) + 0, (m;t) — L, (m;t) = o
, Vm<0. (23.13)

0. (m;t)— L &, (ni;t) + 0,4 (m;t) — L), (m;t) = o

Subtracting the second equation in (2.3.13) from the first one, we obtain

K(mit) — 6o (m;t) = o, V<o, (2.3.14)
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which implies that K,,(z;t) is continuous across the negative real axis except at the
crack-tip and therefore k,,(z;t) is analytic in the entire complex plane except at z = 0.
However, the condition of bounded displacement requires that | &,,(2;¢) | = O (|2|*)
for some o > —1, as |z| — 0. So that any singularity of &,,(2;¢) at the crack-tip is
removable. Therefore, £,,(2;t) is an entire function. Now, both equations in (2.3.13)
become

0,5 (mit) + 67 (mt) = (L+ B) wmlmst), Y <0, (2:3.15)

where

Km(n;t) = &) (n151) = Kk, (n151)

Equation (2.3.15) constitutes a Riemann-Hilbert problem. Its solution 8/ (z;t) is
analytic in the cut plane. Along the cut, 8;,(z;t) satisfies equation (2.3.15) for some
arbitrary entire function &,,(z;t). Also, from the requirement of bounded displace-

ments at the crack-tip, as |z| — 0,
| 00(258) =0 (]2]"), (2.3.16)
for some a > —1.

In equation (2. 3 15), the solution 8,(z;t) is composed by two parts, the homo-
geneous solutlon 0 (2;t), and the particular solution Om(z t). The homogeneous

solution Bm (z;t) can be obtained as (Muskhelishvili, 1953)

of o

6, (z;t)=2""a,, (1), (2.3.17)
where @,, (2;t) is an arbitrary entire function. The particular solution é;n(z; t) can
also be easily constructed by considering that k,,(z;t) is an entire function and by

using the identity theorem for analytic functions. The particular solution is given by

Al

0 (1) = % (z+ L) kn(zt) (2.3.18)
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The final solution for 8], (z;t) is then

0 (z;t) =z a,, (z;t) + % <L+ 1*}) Km(z;t) . (2.3.19)

Substituting equation (2.3.19) into (2.3.12), we have
fu(zt) =P {Z_l/zam(z; t)+ bm(z;t)}
: (2.3.20)
Fulzt)=Q7" {Z~1/2am(z; t) — b (z; t)}
where

a.(z;t) = H' a, (zt), b.(z;t) = %nm(z;t) .
Suppose that @,(z;t) and b,,(2;t) have the components like
an(t) = (a®(z38), o(z:0) )T
bu(z:t) = (85)(z:1), b (=1) )T }
By comparing the conjugate of 7:1(z;t) with f (z;t) in equation (2.3.20), and by
using the fact that

L 1 0
PQ [ }
we obtain
aD(z;t) —aD(zt) =0,  a@(zt)+3D(zt) =0
(2.3.21)
BV (5t) + 85 (z58) =0, b (z58) — 3 (z58) = 0

As a result of above relations, the four undetermined entire functions a{(z;t) and
b (z;¢) (a = 1,2) can be reduced to two by defining
1
An(zt) = S {aD(z) + 30 (5 0) + aD(z) — 7D (251))
(2.3.22)
e L) T8y 4 5@ gy 2 TP
B.(z;t) = 5 by (z;t) — by, (z;t) + 012 (2;8) +5,, (2;8)
Now we can express the function f, (z;t) in terms of the two undetermined entire
functions A,,(z;t) and B,,(z;t) by
1 —
Fulzt) = 2277 {P'An(zt) + Q7 'nAn(21)}
: (2.3.23)
L yp -1,7
+ 3 {P7'nBu(t) — Q7'nBn(xt)}



~ 95 —

where 7 = (1,1)7. Since A, (z;t) and B,,(z;t) are entire functions, they can be

expanded into Taylor series. Define

where A(I?,z (t), A

—{A (7:t) + Am(zit)} = EA %
3 {An(eit) = An(est)} = = i 3 i 0)2

%{Bm(z;t) + Bom(z;t) } Z BM(t)

%{Bm(z;t)_B t)}=— zZBHm (t)="

J

(2.3.24)

(I'}Zn(t) (")(t) and B}'}zn( t) are real functions of time ¢. Also, by

considering the properties of our asymptotic expansion, (2.2.14) and (2.2.15), for

m = 0 and 1, we have

F(zi5)

Gg(z33 t)

and

F'(z;)

Gy (z;t)

- S Rana - S ao
- i { B - L g
- -SR-S

v i (B - B
- -3 { o - LS aps
v i3 (LS - A

}

K

(2.3.25)

(2.3.26)
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By integrating the above expressions with respect to the corresponding argument
z1 or zs, we can obtain the final expressions of the complex displacement potentials
Fo.(zi;t) and G(2s5t) for m = 0 and 1. If the crack propagates along a straight
path, equation (2.3.25) actually has provided the complete solution for the steady
state problem under mixed mode loading conditions, while all coefficients do not
depend on time. It can be shown that the coefficients of the most singular terms,

AY (t) and AHO(t) can be rewritten as

4O () = \/% ) A9 (t) = ff;% ) (2.3.27)

where K%(t) and K?,(t) are the mode-I and mode-II dynamic stress intensity factors

at the moving crack-tip, respectively.

2.3.2 Solutions for ¢,,(n1,72,t) and Y, (71,72,t) for m = 2

For m = 2, the equations of motion (2.2.16) and (2.2.17) are coupled. They take the

form,

1
&2,11 (M1, M2, ) + 52*9752,22 (m,na2,t) =
f

{\/_%71 } ‘|‘ ) {02 +2m Po,12 —2m2¢0,11 }
(2.3.28)

1
Vao11 (M, M2, 1) + —5P2,22 (M, M2, ) =
aS

} + ) {%0,2 +2m1P0,12 —2m2%0,11 }

a22

where ¢o(n1,72,t) and o (1, 72, ) have been given in the previous section.

In order to obtain the next most singular term in ¢ (11, 72,t) and 92 (n1, 92, 1), we
should only consider the most singular terms in ¢o(11,72,%) and o(m1,72,¢). As a
result, ¢o(n1,72,t) and 1po(n1,12,t) can be written as

go(m,m,t) = Re{Ki(t)5"*} | wo(m,ms,t) = m{K,(t)=2*} ,  (23.29)
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where

41 +a?) B 8a, K
Kl(t) - 3\/2_7I';LD(U) I( 3\/2—7F/JD(1)) II(t)
8ay d 4(1+ a?)

K, (t) = —mf 7(t) +1 3vamuD (v )K}lz(t)

Substituting equation (2.3.29) into (2.3.28), we get

1 -
P2,11 +;§¢2’22 = Re {Rl(t)zll/2 — Si(t)z12 1/2}
i

, (2.3.30)
' 1 _ 1/2 -1/2
Va4 ogtan = In{R(0)5/ - S(t)7.:7}
where )
Rio(t) = Dl {K1,s(8)} + 5 Buo(t) + Mis(2)
1 ?
Sl,s(t) = "2'Bl,s(t) + Nl,s(t)
and VR
D} {K,(t)} = VK ,(t
o {KLa(0)} Msdt{f a(t)}
3v?o
Bis(t) = —K;,
Ls(t) 202’,30?,51{1’ (t)
3(1—af,)(1+ 302,
M) = i gjg . )K,,s(t)k(t)
O{l,s
3(]‘ - O5123)2
Nis(t) = 1—————K; (t)k(t
Le(t) = 9 PPy Ls (D)R(2) J
The most general solutions to equation (2.3.30) are
$a(m,m2,t) = Re { Fy(zi;t) + Z1fulz; ) + Ezzgl(zl;t)}
« , (2.3.31)

¢2<7717 n2, t) = Im {G2(zs; t) + ‘isfs(ZS; t) + Ezgs(zs; t)}

where .
frs(zsst) = ER,,s(t)z;’{z

1
gl,s(zl,s;t) = _ZSI,S( )le
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and Fy(z;t), Ga(z,;t) are two analytic functions in the corresponding cut planes.

It can be seen that fi,(z,;t) and g;4(21,;¢) are totally determined by the solutions
$o(m, n2,t) and o(n1, n2,t), and they depend on K¢(t), K¢(t), 9(t), and for a crack

propagates along a curved path, they also depend on the curvature of the path at the

crack-tip, k(%).

Associated with ¢o(n1,72,t) and ¥2(m1,72,¢), given in equation (2.3.31), the cor-

responding components of displacement can be expressed as

uf? = Re{Fi(t) + aGys:1)

+ [Efi(z5t) + Fai(zt) + filast) + 2201 (a15t)|

+ a, {Esf;(zs; t) + Eig;(zs; t) - fs(zs; t) - 22593(23; t)]} )

ug2) = —Im {azef(zl; t) + Go(z,;t)
+ o [Elf[’(Zl; t) + Elzgll(zl; t) — fl(zl; t) — 27!91(21; t)]

+ [Bafs (20 t) + B2 (203 1) + il t) + 22000 (2 t)]}

The stress components are

o@D = uRe { (14207 — a2) Fy'(z3t) + 20, G (231)
+(1+ 207 — 02) [2uff/(251) + Zhf (z51) + 200(251)]

+2 [(1 - O‘z) + %:«ZQ_S)] [fi(z;t) + 2Z1g{(z1; )]

1—oqf

/7

+ 20 [ESf;I(Zs; t) + Eggg(‘z3§ t) — 2g,(zs; t)]}

3

. (2.3.32)

(2.3.33)

(2.3.34)
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Jg) = —uRe{ (1 + ai) F(z15t) 4 2a,G5 (243 t)

+(1+02) [ e t) + i (zi1) + 2a1(z5)]

2.3.35)
2(a? — a?) _ ’ (
+2 [(1 —al) - ———(T!—_a?—} [fi (z3t) + 22191 (5 t)]
+ 2a; [Esf:(ZS§ t) + Egg;’(zs; t) - QQS(ZS; t)]} ]
and
o? = —pIm {20 F (2 8) + (1 + a?) GY(z,:t
12 = pim g 20 2(21, )+ (1+a; 2(25, )
+20q [2f] (25t) + 210 (215t) — 201(215t))
(2.3.36)

(1t 02) [l i)+ 2200 2t) + 204(2)

42 (1 — af) [fi(zs; t) + 2Z,9. (2 t)]} )

To produce a more compact form of the above expressions, one needs to define

the following quantities,

[u(uaﬁ) —2pa, ]

2uq —p(1+a?)

* p(l+ aﬁ) —2pa;, *
—2u0; p(l+ad) |’

and
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Also, let
fazt) = (Fazt), Go(zt))T
f(zt) = (filz0), filzt)

9(zt) = (alzt), g(xt)"

As in the procedure we used to obtained the complex displacement potentials for
m = 0 and 1, we may define two new functions ky(z;¢) and 0,(z;¢), so that the

continuity conditions ahead of the crack-tip are satisfied identically, as follows,

\

ra(zt) = P{F(zt)+2F"(5t) + 229" (5 1)}

- Q{F (5t +2F (1) + 27 (51)}

, (2.3.37)
+ 2M {f'(z;t) + 229/ (z:8)} — 2N {F (1) + 227 (2;1) }
+ 2P g(zt) -2 Qgl(xt) J
and
B:(=t) = U{fy(st)+2f(z1) + 2/ (=1)}
— V{F(=5t) +2F (5) + 27 (1)} . (2.3.38)

+ U {f(zt) +229(0)} - V {Fl=) +229(=5 1)}

where K,(z;t) and 0,(z;t) are analytic in the cut plane. In order to keep our notation

short, define a new quantity,
galit) = Fiat) 42 (50 + 29 (1)
+ 2P7'M [f'(z;t) + 22g'(2;t)] + 2P} P g(zt)

Now, the expressions (2.3.37) and (2.3.38) can be simplified to

ra(z;t) = Pg,(zt) — QFy(zt)
} , (2.3.39)
(#1)]

0y(zt) = Ugy(z:t) — Vgy(2it) — |a(z:t)- g
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where
a(zt) = 2(LM —1I)[f'(zt) + 229/ (% 1)]
+ 2 (L P l'ff) g(z;t)
. , (2.3.40)
q(zt) = 2 ( N, — J) (F'(2;t) + 229" (2;8)]
+ 2<*é—¥*’)g(Z;t) ‘
and
1 0 1 0
S I EE A Y
By solving equation (2.3.39), we obtained
gy(%t) = P H™ {o;(z;t)— L ro(z8) +q(=:8)— (z;t)}
(2.3.41)

gil=t) = Q7 H {0(=51) — Ika(z1) +a(z1)— @ (51)}
It can be seen that the above equation is very similar to equation (2.3.12), except the
term gq(z;t)— q (z;t) which is totally determined by the solution for m = 0. On the
other hand, it can also be shown that the traction free condition on the crack faces
reduces to

Pg;(m;t)+ Qgf(n;t) =0, VYm<O0. (2.3.42)

Substituting equation (2.3.41) into the above boundary conditions, and similar to
the procedure used in the case for m = 0 and 1, one can show that Ky(z;t) is an
entire function. Meanwhile, conditions (2.2.14) and (2.2.15) require that | ko(2;t) | =
O ( |#| ), as |z] — 0. Finally, equation (2.3.42) becomes

9'2+(771;t) + 65 (m1;t) = (L—}— L) Kao(m;t) + k(3 t) Vi <0, (2.3.43)

where
=t =~
Amit) =~ {a* ot + 4 mit) =@ (1) =@ (mit)} -

By substituting the expressions of q(z;t) and q (z;t) into above relation, we can get

K(n;t) =0, Vi < 0.
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Therefore, the equation that 85(z;¢) should satisfy, is
05 (3 t) + 05 (m;t) = (L+ L) Kao(m;t) , Vm<0. (2.3.44)

This is exactly the same as equation (2.3.15). One basic difference, however, is that

from the properties of our asymptotic expansion, (2.2.14) and (2.2.15), as |z| — 0,
| 05(z) | =0 (%), (2.3.45)

for some a > 0 (recall that before & > —1). As a result, the solution of 8,(z;¢) will

be

0 (z;t) = 2% ay (2;t) + % <L+ i) Ka(z3t) (2.3.46)

o . . . .
where @, (z;t) is an arbitrary entire function.

In constructing the solution for g,(z;t), only the leading term in (2.3.46) is con-
sidered. This is consistent with the fact that (2.3.29) contains only leading terms of
the solution for m = 0. The final solution for g,(z;?) is therefore

1 _ =
gx(z31) = 3 {P'nay(t) + Q 'nAy(t) } 212 (2.3.47)
for some undetermined complex function of time, A,(t).

Our final target is to find the function f,(z;t). After some manipulations, we

obtain

falzt) = izg Plndsy(t) + Q' nAy(t) } 2
; (2.3.48)

4
+ {T~(t) — Ruw(t)} 2*/?
where

7t) = (Ri(t), R(t))" . w(t)=(5(), S,(t))" ,
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and
(14+a®)m 1 2c,m
D(v) 8 D(v)
F = ?
20qmy (1 + a?)ym, 1
~ D(v) D(v) 8
[ (14 a?)my D (v) | 1 2aym; 204(1+ a?) ]
0_ D(v) D(v) 16 D(v) D(v)
2amy 2a(l+al)  (1+4ad)m, D (v) N 1
i D(v) D(v) D(v) D(v) 16 |

In the matrices above, the quantities m;, m,, and 1*) (v) are given by

_ 1 2 : (2.3.49)
m, — 5 {1 - O[s}
5 (v) = 4doga, + (1 + a?)? )

In this section, we have provided a procedure which allows us to investigate higher
order transient effects systematically. By imposing the boundary conditions along
the crack faces and the continuity conditions ahead of the crack-tip on the complex
potentials, the problem can be recast into the Riemann-Hilbert methodology and the
two complex displacement potentials can therefore be determined. To express these
complex potentials in the unscaled physical plane, we redefine the complex variables

21, and z by

Zls = 61 + ial,séZ ’ = §1 + 162 )

and let

Fm(z5t) = ( Fu(zt), Gu(zt))' , m=0,1,2.
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Then

3

Folst) = 5 {P7ndolt) + @ no(t)}

A0 = S {PTaA) - @A) 2
(2.3.50)

Falit) = 3{P 'mAat) + Q7 idx(t)}

4
b AT - ()
Notice that since A,,(¢) (m = 0, 1,2) are arbitrary functions of time, we have redefined
them in equation (2.3.50). Specifically, Ay(¢) is related to the so-called mixed mode

dynamic stress intensity factors, K¢(¢) and K%(t), by

Aot) = _ﬁ (K +i KL)) - (2.3.51)

The corresponding displacement potentials @, (€1, €2, t) and ¥, (&1, &2, t), will be given
by (2.3.2) for m = 0 and 1, and (2.3.31) for m = 2, respectively. Finally,

2

B(é1,&0,t) = Y dm(&r, &a,t) + O(17)

m=0

¢(€17€2at) = Z ¢m(€1>€27t) + 0(7’?)

m=0
where r, = /&3 + aisfg.

Equation (2.3.52) provides the first three terms of the asymptotic expansion for the

: (2.3.52)

two displacement potentials ¢(&;, €, ¢t) and ¥(&1, &, t) for a dynamic crack propagat-
ing non-uniformly along an arbitrary path. This expansion is based on an assumption
that the fields are indeed two dimensional right up to the crack-tip. It is observed that
the first two terms are the same as those obtained under the steady state mixed-mode
condition and the crack path is straight, except here the coefficients Aq(t) and A;(#)
are arbitrary functions of time and the crack-tip speed takes the instantaneous value
at time t. However, generally speaking, under the mixed-mode loading conditions,

the crack will no longer propagate along a straight path and it is commonly believed



_ 35—

that the crack will seek the direction where locally the mode-I condition prevails.
So the crack will propagate along a curved trajectory for the most general loading
conditions. Even if the loading condition is mode-I, and the crack does propagate
along a straight path, when the crack-tip speed is sufficiently high, the moving crack
will lose its stability and deviate from the original straight path to propagate along
a curve. The third term, or the higher order term in (2.3.52), takes into account
the recent past history of the mixed-mode stress intensity factors and crack motion.
This term involves the time derivatives of the dynamic stress intensity factors, K¢(t)
and K¢/(t), and crack-tip speed v(t). It also involves the crack-tip curvature k(t) as
well. From equations (2.2.16) and (2.2.17), it can be seen that as we go further to
the terms with m > 2, higher order time derivatives of K¢(t), K¢:(t), and crack-tip
speed v(t) must be involved, so is the time derivative of the crack-tip curvature k().
The procedure discussed in this section is constructive and it can be repeated to any

order.

2.4 The asymptotic elastodynamic field around a
non-uniformly propagating crack-tip

For the planar deformation of a homogeneous, isotropic, linearly elastic material, the
ordered array [Uq,€qp, Tagl, &, B € {1,2}, is said to be an elastodynamic state in the

absence of body force density, if the following conditions are satisfied

1 3
€ap = 5 (asp Hpoa)
Top = 2icas + /\517501[3 , a, BE {1,2} , (2.4.1)
Oaprg = Pl )

where p is the mass density and A, p are Lamé constants of the material. In addition,

the field quantities uq, €048, and o4 must satisfy the smoothness requirements outlined
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in Wheeler and Sternberg (1968).

In the Cartesian coordinate system (&1,£2), let @n(é1,&2,t) and ¢, (&1, &2, %) be
solutions of equations (2.2.16) and (2.2.17), m = 0,1,2,---, such that

¢m+n(§la 627 t) =0

¢m<§17627t) ’ as r — m -0 , m —= 0,1,2, v (242)
Yrmin (€1, £2,t)

¢m(§17§27 t)

for any positive integer n. Thus, ¢,,,(&1,&2,t) and ¥,,.(&1, &2, t) will be two asymptotic
sequences as r = (€2 + 63)1/2 — 0. Define ¢(&1,&2,t) and ¥(&1, €2,t) by

— 0

o]

$(61,€2,t) = Y dm(&r,6,1)

m=0

- (2.4.3)
(€1, 62,t) = D Pm(&r, ba,t)

m==0

Then, the array [uq, €ag, 0agl, @, B € {1,2}, will constitute an asymptotic elastody-

1/2

namic state as r = (€2 + £2)7'" — 0, if it satisfies

N

Uy = ¢7a +eaﬂ¢7ﬂ

1
Eap = ‘2' (uayﬂ +uﬁ7a) y a, 6 S {1,2} . (244)

Oap = 2{1€ap + Aeyylap |

Let the two displacement potentials be given by (2.4.3), where each term of the
asymptotic series is the solution which has been discussed in the previous section.
The asymptotic elastodynamic state near the tip of a non-uniformly propagating
crack along an arbitrary path, can therefore be obtained from relations (2.4.4). For
its importance in the experimental investigation, here we provide the asymptotic
expression of the stress components around the moving crack-tip by using the con-

stitutive relation (2.2.2). With respect to the £;-axis, we can observe that the two
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displacement potentials ¢(&1,€2,t) and ¥ (1, €2, t) are composed by two parts,

B(61,&2,t) = ¢V (&1, €2, 8) + 6761, 200)

, (2.4.5)
¢(€la 627 t) = ¢(I)(€17 625 t) + 1[)(11)(617 62) t)
such that
¢(I)(§17 “527 t) = ¢(I) (éla 627 t)
, (2.4.6)
¢ (1, =2, t) = —4"(&1, £25 1)
and
1/)(1)(617 "62) t) = “"b(l)(él; 527 t)
(2.4.7)

"p(n)(é.h “527 t) = ’lvb(n)(él) 627 t)

This separation is very similar to the decomposition of the deformation field into

mode-I, or the symmetric part, and mode-II, or the asymmetric part, when we deal

with near-tip deformation field of a straight moving crack and claim that the defor-

mation field is the superposition of these two modes. As a result of this separation,

in writing the expression of the stress components gog(é1,é2,t), a,8 € {1,2}, we

may also separate o44(¢1,&2,t) into two parts, the part aﬁf},(fl,gz,t) associated with
)

the symmetric deformation and the part 0,5(¢1, €2,t) associated with the asymmetric

deformation. Then we will have

Tap(biy &, t) = 05561, &0,8) + 00g (61,60,8) . o, B €{1,2}. (2.4.8)

In addition, define the scaled polar coordinates (r;s,8;5) by

re = (€ +a,e2)"

1 a’l,sz

0; , = tan
s é-l

For the problem of a transiently propagating dynamic crack along an arbitrary
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path, the asymptotic representation of the displacement potentials will be given by

4Kd( )1+ a? 3 36, 2a )
M s,.3/2 s 2
¢ (&1, &2 t) = 3uv/2r Do ) cos — + Do )Re{Al( )}ri cos 26,

+Re { [—Mm(t) + 2 (fz(t) - %SI(t))] cos %ﬁ

pD(v) 15
6 1 36
+ER(0)cos F ~ Lsittycos S+ 01)

4K(Iil(t) 20 3/2 . 30[ 14+« 2 ) .
327 D(v)rl s 1D (v )Im{Al( )}/ sin 26,

~Im { [ﬂzD;.Z:))‘%(t) + % (fl(t) - %Sl(t)ﬂ sin %ﬁ

1 . 0[ ]- . 39[ 5/2
+€Rl(t) sin + ZS’(t) sin 7} + O(r})

(2.4.9)

and

4KI() 2011 3/2 393 1+ a? 5 . \
- *Re{A4(t 20,
e m D) S e RelA )i

tRe { [ulz)—o([;)'flz(t) + % (fs(t) - %Ss(t))} sin 553

+éR (t)sma—-f- S(t)smgg} ri 4+ O(r?)

¢(I)(§1’ 6‘2? t) -

4‘[{(1( ) 1 + as 3/2 395 2@[
3uv/2r D(v) ° 8Ty +#D( )

+Im{ I:“!lwi(:%fb(t) + % (fs(t) - %SS(t)ﬂ cos 5263

1 b, 1 36, s/
+-6Rs(t)cos—2~—-153( ) cos —> 5 } +0(r?)

¢(II)(€17 627 )

Im{A;(t)}r? cos 26,

/

(2.4.10)

The stress components associated with the symmetric deformation in equation



(2.4.8) are

-39 -

0§ — — ——————

CcOs

o _ Ki(t) {(1 +20f —ad)(14a) 10 O 4doja,
" pN2m

da,(af —

pD(v

D(v) Sy T Dy

)

Re{A:(t)} + Re { [— 1501 + zii;g}))(l * aZ)Az(t)

)

ap\op — o

+(1+2a?——a3)fz(t)+<1‘2“3+ (o 2))R,(t>} cos

2
]._al

2

1+2a? —ao? 1—a? 2 __ .2
+[_+_uRl(t)_< 2a3+az(al 2a3))51(t)]cos§§l

8 1—q
1+ 2a12 - azS (t) oS 791 1/2
16 AN
15¢y 6, 1 34,
20,R Ay(t s (¢ = 4+ 2R,
+2a G{LND(U) 2()+g()}COS2+8R(t)cos 5
1 76, 1/2
+E53(t) CcoS 5 }1’3 -+ O(TI,s)
o _ Ki@) [ (1+ a3)2r_1/2 - [ g, gy o, \
PR 2 W 7T O B R T A
15(1 + a?)?
_R _ LN P s t 2
e{l: 4:[1/D(’U) A2( )+(1+as)fl(t)
1—a? af—-a? 6,
s _ s| R M
+ ( 5 1—a,2> z(t)] cos2

8§

a8

2

3

(2.4.11)

(2.4.12)
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and
M d .
Oy _ K§(t) 204(1 + a?) {Tl_1/2 sin jo_l _ rs_1/2 sin f_s_}
g p/2r D(v) 2 2
15(1 + o . 6 1 . 36
—2qqRe { [—%MJ-(—%ilAz (t) + gl(t)} smEI - ng(t) sin 7’
76
—-1%5'1(15) sin TI} r,1/2
(2.4.13)
15a4(1 + a?) . 1—a? A
— — 22 Ay (t 1 s{T = R4(t —
Re{ [P0 ) + (1 + a2 ut) + 15 R0 s
1+a? 1—a? .30, 1+a? .76
— *R,(t) — £ S,(t - ® Gy (t) sin —= 3 r1/2
[ 3 (1) 5 ()}sm 5 T Ss(t) sin 5 (s
+O(rl’3) J

The stress components associated with the asymmetric deformation in equation

(2.4.8) are

olp 20, K4,(¢) {1 +2af —a? 1. 6 1+a? _1/2 93} )
=— r,sin— — —2
p p 2w D(v)

2~ D) ° 2
+Im{ {— oau(L 1201 = 0) 4 1) — (14207 — o?) (1

2puD(v)
(A5 =) ]
N [1_+?_0é12—_“2. Ri(t) — (1 _20‘3 Lo (1“_’2_ ;12"3)> S,(t)] sin §29—’ , (2.4.14)
TR 2‘;‘;? =% 5, (4)sin ng} e
+2aslm{ [—1—54;1—;_(-5)3—)1‘12@) — gs(t)J sin % + %Rs(t) sin 353

1 . 76,
+1_655(t) sin 7} %+ O(ry,)
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o5 Kfll(t) 20,(1 + o) { —i2 ;O -1/2 smfi}
2

w w/r D M 2T
| -E2E2) ) - (14 i)
- (5% -2 r]sn
+ [1 —;asz(t) - (1 ;“3 _ ‘;’2_‘0‘(’1;3) s,(t)} sin%a’
+1 .;60[2 Sit) sm«7—§-} 1/2

30,

11+ a9) o oy o) sin 2+ LR.(1)si
_ZCYSII’II{{ 4:D() Ay(t) gs(t)} 5 +8Rs(t)

1 .76,
+ﬁ53(t) 5 } P2 4 O(ry,)

and

iy _ Kii(t) {40{1013 ~1/2 8_9_{ _ (1+a2)® T—1/2 oS 93}
pv2r | D(v) g 2 D(v) 2
150, o 1 36,
__20411111 { [E—D—-(-U—)AQ(I‘,) + gl(t)jl COS E -+ ‘é‘Rl(t) COS -—2—
70
+ Sl(t) cos 71} r,1/2
15(1 + a?)? 1—a? 8,
- J TR 2R, (¢t Zs
Im{{ 4uD(v) Ay(t) + 5 (t)| cos 5
—a? 3 1 7
[1 + o Ry(t) — as Ss(t)} cos gs + + % S (t) cos 2 }rl/z

+O(Tl,s)

Y

(2.4.15)

(2.4.16)

In the above expressions for components of stress, K¢(t) and K¢ (t) are the mixed-

mode dynamic stress intensity factors. The complex functions f; ,(¢) and g¢;,(¢) that
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appear in the expressions for displacement potentials and stresses, are given by

= (e - 1) oo (e DO 2 ) s
-21‘;:;3 R (t) + (23(:; + 2‘1“8(:)“3)) Ss(t)
0= mer (5 =) s
+ (% - %) Ri(t) - ((1 Z?;))m g((;’)) + %) Si(t)
()= (S5 2 Rt - (“ e D) 175) Si(t)
LT YO (2;”;:"; s 2“5&;‘“)“3)) 5.(t)
0= 50 s (575 4 22552)
+ (“—B%)—)ET— - %) R,(t) — ((1 “;?Z))m + g((;))) {6) S.(t) |

. (2.4.17)

where m;, m,, and ]3 (v) are functions of the crack-tip speed and are given in equation

(2.3.49). Also, more explicitly, we can express the quantities S;,(¢) and Ry,(t) in

terms of the mixed-mode dynamic stress intensity factors K¢(¢) and K¢(t), the time

derivative of the crack-tip speed

crack-tip k(t) as follows:

ok

s = { 2GS rtinn + 200 et yuc
-t - LS o)
Sty == {m—fggf)azc: Kityite) + (1:/;%)1(;(—)&2)2

v(t), and the curvature of the trajectory at the

(2.4.18)



— 43 -

and
___1 4/vd [Vo(l+a) 4. | v*(1+ad) 4 b \
mit =7 (S [ Dy 0] ~ B Ko
_ 204(1 - a)(1+3a?) 4
S ki)

(B [ ()] - prosis K (030

+ “ivor \aiddt | D(o) | T D(w)ada !
(1+a?)(1—a?)(1+ 3

”K}'(t)k(t)}

D(v)ay
. (2.4.19)
1 8vv d [y, 20201 4.
R0 = 75 (o [y 1) ~ Byata O

R L0
L [aAAOe) ] el
p2m {a?cg dé [ D(v) KH(t)} D(v)adct Kgi(8)o(2)
204(1 — a2)(1 + 3a?)
D(v)a?

Kf(t)k(t)}

In the expressions of the components of asymptotic stress field near the moving
crack-tip, (2.4.11) through (2.4.16), Ri(t) and R,(t) depend not only on the mixed-
mode dynamic stress intensity factors, K¢(t) and K¢, (t), and the crack-tip speed,
v(t), but also on the time derivatives of these quantities. Meanwhile, R;(t) and R,(t)
also depend on the trajectory curvature at the crack-tip k(t), as shown in equation
(2.4.19). Si(t) and S,(¢) also have these properties, but they do not depend on
the time derivatives of the mixed-mode dynamic stress intensity factors. In most
of the experiments, the study of the dynamic crack growth is under mode-I loading
conditions and the crack propagates along a straight path. Under this circumstance,
k(t) = 0, K§(t) = 0, and all quantities of the form Im{ - } disappear, and the
deformation field is symmetric. At this point, equations (2.4.11) through (2.4.13)
provide the stress field of a non-uniformly propagating mode-I crack. This is the

same as that given by Rosakis et al. (1991). If the crack-tip velocity, v(t), is a



— 44 —

constant, i.e., v(¢) = 0, and therefore, S;(t) = Ss(t) = 0, we can obtain the asymptotic
stress field corresponding to transient crack growth with constant velocity and varying
stress intensity factor (see Freund and Rosakis, 1992). A classical example of such a
transient crack problem is the one analyzed by Broberg (1960). Furthermore, if the
time derivative of the dynamic stress intensity factor, K%(t), is also zero, so are Ri(t)
and R,(t); we obtain the familiar asymptotic stress field for the steady state situation
up to the third term. This is the case considered by Nishioka and Atluri (1983), and
Dally (1987).

2.5 Discussion

In this chapter, a procedure for obtaining the higher order transient asymptotic rep-
resentation of the elastodynamic field around the tip of a propagating crack has been
developed. The crack propagates transiently along a smooth but otherwise arbitrary
path. The material is considered to be homogeneous, isotropic and linearly elas-
tic. The formulation is based on the two displacement potentials, ¢(¢1,&s,t) and
¥(&1,&3,t). These two potentials can be expressed in terms of the real and imaginary
parts of some complex functions, respectively. By imposing the continuity condi-
tion ahead of the crack-tip and the traction free boundary condition along the crack
faces, the problem can be recast into a Riemann-Hilbert problem. Upon solving the
Riemann-Hilbert problem, the two displacement potentials are obtained. Meanwhile,
the transient asymptotic representation of the near-tip stress field up to the third
term is also provided. The transient effects and the geometrical characteristic of the

crack path are included in this analysis.

The general form of the near-tip stress field, equations (2.4.11) through (2.4.16),
exhibits some noteworthy features. First, it is noted that the spatial structure in

the radial direction of the transient elastodynamic field is the same as that under
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the steady state conditions. The differences between the results for the transient
and the steady state analyses appear in the angular distribution. Secondly, it is
observed that the angular distribution for a mixed-mode curving crack is identical to
the one corresponding to a mixed-mode crack propagating along a straight line (see
Freund and Rosakis, 1992; and Rosakis et al., 1991). The information regarding the
path curvature k(¢) only appears in the coefficients of the expansion. It should be
also observed that in the local coordinate system (&, ¢2), the two components of the
crack-tip acceleration vector are ( 9(t), k(t)v*(t) ) at any instant. The above results,
as expected, contain both components of crack-tip acceleration in the coefficients of
the transient high order terms. In the case of a mode-I crack propagating along a
straight line (Freund and Rosakis, 1992; and Rosakis et al., 1991), only ©(¢) appears

in these coefficients.

Suppose that a crack propagates along a straight path, then k(¢) = 0 at any time
during the propagation. Under this situation, (2.4.11) through (2.4.16) provide the
customarily mixed-mode stress field for a mode-I and a mode-II straight crack, re-
spectively. However, as we have mentioned earlier, under the most general loading
conditions, the crack will grow along a curved path. When this happens, even though
the deformation field can be separated into a symmetric part and an asymmetric part,
the so-called mode-I and mode-II types will be coupled together. This happens since
in the higher order contributions to the expression of the stress components associ-
ated with the symmetric deformation, the crack-tip curvature k(¢) always appears as
a product with K¢ (¢) which is the dynamic stress intensity factor for mode-II. Simi-
larly, in the asymmetric deformation field, the crack-tip curvature k(¢) always appears
in a product with K¢(t) where K%(t) is the dynamic stress intensity factor for mode-1.
An interesting consequence of the above observation is the following. Suppose that
the propagating crack follows the path of K;(t) = 0 for any time (as proposed by
Cotterell and Rice (1980) for the quasi-statically growing crack). Then since k(#) will
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not be zero, the asymmetric part of the stresses will in general survive even if the
first term disappears. This may produce an experimental illusion of the existence
of a nonzero K¢, if the experimental data are recorded at some distance away from
the crack-tip. Rossmanith (1983) has studied the rapid curved crack propagation
using the dynamic photoelastic method. In the interpretation of his experimental
data, Rossmanith used the singular (or the K9-dominant) stress representation. He
found that the values of K§ and K¢ depend on the positions of measurement (or
depend on fringe order). By using the extrapolation, he observed that as the distance
from the moving crack-tip r — 0, or the fringe order tends to infinity, K¢ tends to
a finite value while K¢, becomes infinitely small. Similar experimental observations
have been reported by Chona and Shukla (1986), and by Shukla and Chona (1988),
who conducted extensive studies of this phenomenon. They also used dynamic pho-
toelasticity to investigate dynamic crack growth along a curved path. Although their
isochromatic data were analyzed on the basis of a mixed-mode, steady state higher
order expansion, they reported very small values of K¢; (up to 10% of K¢ at each
time). They observed that even if they force K¢ to vanish in their expansion, they
can still fit the higher order asymmetric isochromatic patterns by adjusting the co-
efficient of the third (r'/2) term in their expansion. This is exactly the term that in
the transient expansion involves the product k(¢)K¢(t) which appears in equations

(2.4.14) - (2.4.16).

To visualize the above discussions, consider the following special situation. Sup-
pose that at time £, locally, the crack-tip undergoes mode-1 deformation which con-
forms to the criterion proposed by Cotterell and Rice (1980). This criterion requires
that the crack will follow the path which will assure that K¢, = 0. Meanwhile, assume
that at this time, the crack-tip acceleration, the time derivatives of the stress intensity
factors, and the higher order coefficient A, (¢) all vanish. In addition, suppose that

the crack propagates along a curved path, so that the instantaneous crack-tip curva-
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Figure 2.2: Simulated photoelastic fringe patterns surrounding the tip of a crack
propagating along a curved path, (a) larger observation region, (b) observation in the
region very close to the crack-tip.
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ture is not zero. By using the higher order transient asymptotic stress representations
obtained in previous sections, the contours of the following field
N 1 ay — 09

m (1, €2) 5" K«Ii(t)/\/m’

are plotted. In (2.5.1), oy and o, are the two principal stresses, and R(t) is such

(2.5.1)

that k(¢) = 1/R(t). Notice that the contours of the field m(&;, ¢;) actually simulate
normalized photoelastic fringe patterns surrounding the moving crack-tip. These
simulated fringe patterns are given in FIGURE 2.2 where the Poisson’s ratio for the
solid has been chosen as v = 0.3 and the crack-tip speed has been set to v/c, = 0.35.
FIGURE 2.2(a) shows the fringe pattern observed in a relatively large region. The
fringe pattern is apparently mixed-mode. However, by recalling that locally, the
crack-tip field is pure mode-I, this apparent mixed-mode fringe pattern is due to the
“mode-coupling” that stems from the geometrical shape of the curved crack which
results in non-zero asymmetric higher order transient contributions. Although in
this case, the tangential acceleration of the crack-tip, ¥(t), is zero, the instantaneous
angular acceleration is finite and equal to k(t)v?(t). FIGURE 2.2(b) represents a
view of the same fringe pattern taken much closer to the crack-tip than the view
in FIGURE 2.2(a). FIGURE 2.2(b) clearly shows that the near-tip field is indeed
symmetric. The above observations suggests that the accurate measurement of the
dynamic stress intensity factors at a moving crack-tip requires that data points should
be chosen either very close to the crack-tip, so that K%-dominance is valid and can
be used, or otherwise a complete higher order transient asymptotic representation

should be used to interpret the measurements.

In conclusion we should point out that the field presented above contains, for the
first time, both the transient and the geometric features of crack growth. In this
sense, it is hoped that it may prove useful in studying crack-tip kinking or curving
even in laboratory situations where specimen size and geometry make the existence

of transients unavoidable.
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Chapter 3

Dynamic Crack Initiation and Transient Crack
Growth under Stress Wave Loading
Conditions — Revisited

3.1 Introduction

In the last decade, extensive theoretical and experimental studies have been carried
out on the subject of dynamic fracture under stress wave loading conditions. Due
to the high loading rates which exist during a dynamic fracture event, the effects
of material inertia and strain rate sensitivity cannot be neglected, and as a result
the material may exhibit totally different fracture behavior than the one exhibited
under quasi-static loading regimes. Because of the complex transient nature of the
crack initiation, growth and arrest problems, complete analytical solutions of even
elastodynamic problems are very scarce. Moreover, these analytical solutions are
only for those situations corresponding to very special geometrical configurations
and loading conditions so that the mathematical models are tractable. Some of the

theoretical and experimental studies on the subject are described below.

Baker (1962) studied the transient problem of a semi-infinite crack suddenly ap-
pearing in a pre-stretched elastic body and simultaneously propagating with a con-

stant speed. He used the Laplace transforms and the Wiener-Hopf technique to



~ 50 —

obtain the distribution of normal tractions ahead of the moving crack-tip, as well
as the asymptotic leading term of the stress field surrounding the crack-tip. This
leading term which is square root singular in stresses and whose amplitude is the
dynamic stress intensity factor K{(t), will be referred to in this investigation as the
“K¢-dominant field.” Achenbach and Nuismer (1971) observed that Baker’s result
was essentially the solution for the case of a planar step-stress wave with a wavefront
parallel to the semi-infinite crack impinging on the initially stationary crack. When
the stress wave hits the crack, the crack begins to grow with a constant speed. They
then extended the solution to include incident waves of arbitrary stress profile, and
also to include the case of oblique incidence. The unrealistic restriction of instant
crack growth when the incident stress wave reaches the crack-tip in the above so-
lutions was relaxed by Freund (1973), who introduced a finite delay time between
the two events of stress wave arrival at the crack and the onset of crack extension.
By using an elegant superposition procedure, Freund obtained the expression for the
dynamic stress intensity factor at the running crack-tip, and also generalized this
expression to the case of non-uniform crack growth speeds. He found that for an un-
bounded body subjected to time-independent loading conditions, the dynamic stress
intensity factor at the running crack-tip can be expressed as a universal function of
instantaneous crack-tip speed multiplied by the equilibrium stress intensity factor for

the given applied loading and the instantaneous amount of crack growth.

Since these early theoretical studies have revealed that the stress field near the
tip of a propagating crack can be represented in terms of a dynamic stress intensity
factor, analogous to that for a static crack, a large number of experimental investi-
gations has attempted to measure this parameter for various specimen configurations
and for various loading conditions. The eventual goal of these studies was to use the
dynamic stress intensity factor concept in the formulation of a dynamic fracture crite-

rion. From the experimental point of view, Ravi-Chandar and Knauss (1982) studied
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the dynamic fracture of a semi-infinite crack in an unbounded body subjected to a
uniform step pressure applied on the crack faces. The solution of this problem can be
obtained from the solution for the problem studied by Freund (1973) and described
above. By using the optical method of caustics, and by interpreting the experimental
results on the assumption of the existence of a K¢-dominant field, they found that
when the crack starts to propagate, a discrepancy exists between experimentally in-
ferred dynamic stress intensity factors and the theoretical predictions. For the same
problem studied by Ravi-Chandar and Knauss, Ma and Freund (1986) observed that
for a point which is fixed with respect to the moving crack-tip, a surprisingly long
time is needed for the stress intensity factor controlled field ( K¢-dominant field) to be
fully established. Their observation suggested that optical measurements (by caustics
or otherwise) performed at finite distances from the crack-tip and at times close to
crack initiation should not be interpreted on the basis of the assumption of the exis-
tence of a K¢-dominant field. The fact that the classical analysis of caustics assumes
K¢-dominance for a deformation field which does not conform with this assumption,
provided an explanation in the discrepancy between the theoretical and the exper-
imentally inferred stress intensity factors in the experiments by Ravi-Chandar and
Knauss (1982). A similar problem was studied experimentally by Kim (1985) using
the technique of Stress-Intensity Factor Tracer (SIFT). Other geometrical and loading
configurations were explored by Kalthoff et al. (1979), Kobayashi and Dally (1980),
and Rosakis et al. (1984) who utilized the double cantilever specimen, and by Zehn-
der and Rosakis (1990) who utilized the three point bend specimen. More recently,
a bifocal caustics arrangement was utilized by Krishnaswamy and Rosakis (1991) to
investigate the accuracy of caustics in measuring dynamic stress intensity factors in
the presence of transients. However, with the suspicion of the lack of K¢-dominance,
as further emphasized by Krishnaswamy and Rosakis (1991), the dependability of
stress intensity factor histories measured from various experimental techniques is still

questionable.
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By relaxing the assumption of K§-dominance, Freund and Rosakis (1992) and
Rosakis et al. (1991) have recently obtained a higher order transient asymptotic ex-
pansion for the stress field surrounding the mode-I moving crack-tip. The leading
term of this expansion corresponds to the classical square root singular field (K¢-
dominant field). The higher order, less singular terms in this interpretation are found
to involve coeflicients that are functions of the time derivatives of crack-tip speed as
well as the time derivatives of K¢(¢). When highly transient conditions exist, there
exist regions near the crack-tip where the higher order terms may be as important as
the leading square root singular contribution, and if so, K¢-dominance will be absent.
Such cases are typically ones involving large crack-tip accelerations or sudden crack
initiation or crack arrest events that may be a result of discrete stress wave arrivals.
Based on these results, Liu et al. (1993) re-examined the optical method of caus-
tics and provided a new interpretation technique for the analysis of caustic patterns
and the accurate inference of the dynamic stress intensity factors in the presence of
transients, in cases where strict K¢dominance is absent. The analysis of Freund
and Rosakis (1992) was generalized for the case of a mixed-mode crack propagating
along an arbitrarily curved path by Liu and Rosakis (1992). This analysis provided
the higher order transient asymptotic representation of the elastodynamic field sur-
rounding the crack-tip. The higher order terms were found to depend on the time
derivatives of the complex dynamic stress intensity factor K¢ 4+ K¢, the crack-tip
acceleration, as well as on the local value of the crack path curvature. For generally
anisotropic solids the same issues for a transiently propagating mode-I crack were
addressed by Willis (1992). The asymptotic analyses described above provide the
spatial structure of the field near the crack-tip when transient conditions exist. As a
result, they are necessary for the accurate interpretation of optical high speed pho-
tography measurements performed in laboratory specimens of finite size where steady
state conditions are usually the exception rather than the rule. Such measurements

may be performed by means of optical techniques such as photoelasticity, caustics or



~53 —

the Coherent Gradient Sensor (CGS). A discussion of the experimental verification
of the existence and the influence of transient higher order terms in dynamic fracture

is given by Krishnaswamy et al. (1992) and by Rosakis (1993).

The desire of producing very high loading rates and easily interpretable dynamic
crack initiation and growth experiments has recently motivated Ravichandran and
Clifton (1989) to devise a plate impact experimental configuration for the investiga-
tion of dynamic fracture. This configuration is capable of producing extremely high
loading rates K¢ ~ 10®MPa+/m - sec™! under stress wave loading and plane strain
conditions. The specimen configuration and loading condition they used, simulates
the problem of a plane strain semi-infinite crack subjected to a planar stress pulse
of finite duration. Consequently the experimental observations can be directly com-
pared with the analytical results given by Freund (1973). By monitoring the particle
velocity at a point some distance away from the initial crack-tip, Prakash and Clifton
(1992) have observed some interesting phenomena which cannot be explained merely

by the existence of a pure K¢-dominant elastodynamic field.

The ultimate purpose of this study is to provide an interpretation to the obser-
vation made by Prakash and Clifton (1992) for a suddenly initiating and transiently
propagating crack, within the framework of linear elastic dynamic fracture mechanics.
In this chapter, we revisit the problem studied by Freund (1973). Here, in addition
to the dynamic stress intensity factor history, we also try to obtain the full field an-
alytical solution for the stresses around the crack-tip. From the full field solution,
the coefficients of the higher order terms which appear in Rosakis et al. (1991) and
Liu and Rosakis (1992) are determined for this specific problem. To demonstrate the
existence of transient effects, we also study the normal traction ahead of the moving
crack-tip and compare it to the equivalent traction of the K¢-dominant field and the
field represented by the higher order transient terms. The result shows that even for

a point which is relatively far away from the crack-tip, or for times very close to crack
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initiation, the higher order transient representation provides a very good description
of the actual stress field while the K¢-dominant field is incapable of representing
the stress field with any accuracy. In next chapter, we use the result obtained in
this chapter to interpret the experimental observations of Prakash and Clifton (1992)
and to thus provide further evidence of the existence of measurable transient effects
in dynamic fracture. In the process we also provide indirect evidence supporting a
particular fracture criterion governing dynamic crack growth. This provides an addi-
tional example of the influence of transient effects in a new and important specimen

configuration for dynamic fracture studies under very high loading rate conditions.

3.2 Description of the problem

Let R be an unbounded two-dimensional region occupied by an isotropic, homoge-
neous, linearly elastic body. The region R contains a straight semi-infinite crack. Let
(%1, 22) be an orthonormal Cartesian coordinate system such that the crack occupies

the entire —oo < x; <0, z3 = 0, see FIGURE 3.1. Initially, the material surrounding

Figure 3.1: A semi-infinite crack loaded by a planar longitudinal wave.

the crack is at rest and stress free, and the crack-tip remains stationary. A planar
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longitudinal tension wave with a constant amplitude o*, propagates toward the crack
and the wavefront is parallel to the crack plane. At time ¢ = 0, the stress wave strikes
the crack and is partially reflected and partially diffracted. The diffracted waves ra-
diate from the crack-tip and propagate into the body. If the material occupying the
body is of limited strength, then the crack will start to grow at some later time, say
t = 7. In order to obtain the complete full field analytical solution for this transient
problem, we assume that the rate of crack growth v is a constant, but we will relax
this restriction in the second part of this study. If the deformation is assumed to be
plane strain, the displacement field surrounding the crack-tip may be generated from

two displacement potentials, ¢(z1, z2,t) and ¥ (x4, z2,t), by the following relation,

’U,a(.’lfl, xz,t) = qﬁ,a (.’L'l, .lfg,t) -+ 60,31/),[; (1131, T2, t) N (321)

where a, 8 € {1,2} and the summation convention has been used. e,z is the two-

dimensional alternator defined by
el = —eyn =1, e11 = e =0.

The components of stress associated with this deformation can be expressed in terms

of the displacement potentials as

62
11 = H {'clz‘(baaa —26,22 +2%,12 }

c2
G2 =l {le‘(baaa _2¢711 _2¢712 } 9 (322)

T2 = {2¢712 +,22 =Y, }
where y is the shear modulus, and ¢, ¢, are the longitudinal and shear wave speeds

of the elastic material, respectively.

The equation of motion in the absence of body forces and in terms of ¢(x1, x4, )
and (x4, zs,t), reduces to

¢7aa (x17x27t)“a2¢.;(x17x27t) =0

] , (3.2.3)
'l/)wzoz (xla Za, t) - bz¢(x17 T, t) = 0
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where a = 1/¢; and b = 1/c,.

The crack faces remain traction free during the entire process, therefore the bound-

ary conditions will be
Taa(z1,05,8) = 0, —o<r <v(it—7)H(t—-1), a€{l,2}, (3.2.4)
where H(-) is the Heaviside step function.

At time t = 0, we can write the stress field inside the two-dimensional body as

vo* )
Ull(xthaO) = 1— VH(.’L'z)
022(21,22,0) = o"H(z,) d V(z1,22) ER, (3.2.5)
o12(z1,22,0) = 0 )

where v is the Poisson’s ratio of the elastic body.

To solve the above problem and obtain the complete full field solution, we will
use the procedure outlined by Freund (1973 and 1990), namely the method of lin-
ear superposition. As discussed by Freund, we consider the following four separate
problems shown FIGURE 3.2. In problem A, the incident planar longitudinal stress
wave with a constant amplitude ¢*, propagates through a body without a crack.
This stress wave will induce a traction on the plane which will be occupied by the
initial crack shown as the dashed lines in FIGURE 3.2. In problem B, we consider a
body containing a stationary semi-infinite crack subjected to a uniform pressure on
its surfaces. The magnitude of the pressure is equal to the amplitude of the plane
wave considered in problem A. The combination of solutions for these two problems
provides the solution for the problem of diffraction of a planar stress wave by a sta-
tionary crack. As a result of the stress wave diffraction at the crack-tip, a traction
distribution is generated along the plane ahead of the crack-tip. In order to extend,

the crack must in effect negate this traction distribution. Accordingly, in problem C,
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Figure 3.2: Schematic representation of the various boundary value problems con-
sidered in constructing the solution for constant speed crack growth under stress wave
loading conditions.

we study the case of the crack starting to grow with a constant speed v, at some
finite delay time 7 after the diffraction has occurred. During the growing process, a
traction distribution will appear on the newly formed crack surface and this traction

distribution will be equal but opposite to the traction distribution ahead of the crack-
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tip in problem B. Finally, in problem D, the crack propagates with the same constant
speed v as in problem C, and a uniform pressure with the magnitude o* is applied on
the newly created crack faces. The sum of solutions of these four problems provides
the final solution for the problem we considered in this study, i.e., the one that
corresponds to the case of a planar wave which strikes the crack and then, after some

finite time, the crack extends at a constant speed.

In the following section, we will give the analytical results pertinent to the prob-
lems discussed above with little development. Nevertheless, besides the history of the
dynamic stress intensity factor at the stationary and the moving crack-tips, which
has drawn most of the attentions in previous studies, we will also provide the full
field solution for the stresses surrounding the stationary and moving crack-tips. Due
to length limitation, we will omit most of the details in getting those solutions, how-
ever, the reader can acquire these details from Freund (1972, 1973, and 1990), and
Achenbach (1973).

3.3 Analytical solution for the elastodynamic
stress field

In this section, we study the four problems discussed in the last section separately.
The solutions of these four problems will provide the final solution for our initial

problem.

3.3.1 Problem A: Plane wave in an unbounded body

In this problem, we consider a planar longitudinal stress wave with a constant ampli-
tude ¢*, which propagates in an unbounded two-dimensional region. In the Cartesian

coordinate system shown in FIGURE 3.2, the wave front is parallel to the z;-axis, and
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the wave propagates in the direction of negative z,-axis. The wave speed is ¢ and

the moment that the wave front reaches the plane z; = 0, is designated as ¢ = 0. For

(A

this problem, we can write the in plane stress components 53 (z1, 3,t) as follows:

vo* )
qu)(x15x2at) = 1 — VH(t“I“C[xz)
059 (T1,22,t) = o H(t + qzs) ) V (z1,22) ER. (3.3.1)
Ui;)(.’ﬂl,ﬁg,t) =0 ]

Once again, H(-) is the Heaviside step function.

3.3.2 Problem B: Stationary crack subjected to suddenly
applied pressure

Let’s consider the unbounded two-dimensional region R. The Cartesian coordinate
system is chosen as in FIGURE 3.2, and the semi-infinite crack occupies the semi-
infinite line of —oco0 < #; < 0, o = 0. For time ¢ < 0, the body is stress free and
at rest everywhere. At time ¢ = 0, a uniformly distributed pressure with magnitude
c*, is applied on the crack faces. From the symmetry of this loading condition, we
can see that the deformation is mode-I type. Thus, we only need to consider the half

+
plane R, where

+
R={ (z1,22) | —0o<z1 <00, 0<z2< 00 }.

Let the two displacement potentials associated with this problem be ¢®(zy, z5,¢) and
. . . . . . +
PP (1, 22,t), then they will satisfy the equation of motion (3.2.3) in the region R.
The boundary conditions are
055 (21,0,t) = —0*H(t), —oco <2, <0
o3 (21,07, 8) =0, —co< ;<00 Vi>0. (3.3.2)

u(zB)(IC1,0+,t) =0 s 0 < r1 < 00
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The initial conditions are
¢(B)(x1,x2,0) = ¢(B)(x1,1:2,0) =0 L
. . ,  V(z,z2) ER . (3.3.3)
¢(B)($1a T2, 0) = ¢(B)(xl7 L2, O) =0

Meanwhile, since the displacement should be bounded throughout the region, or the

mechanical energy density should be integrable, but the stress may be singular at the

crack-tip, we also have

/ ( EXBﬁ)E(B) + pu® (B)) dA < o , YR C’l+€ . (3.3.4)
Rl

In solving the above initial/boundary value problem, a one-side Laplace transform
with respect to time ¢, and a two-side Laplace transform with respect to the coordinate
z; are used. The transformed solution for the two displacement potentials can be

expressed as (Freund, 1990),

(¢, 29,8) = z P(zl(c)e”s“(B)(C)wz
' (B) ? v T2 € (07 OO) 3 (3.3.5)
(¢, z,8) = % Q—#e"sﬁ(m(()”
where
B — 2¢? F_E_B)(O) . B 2a(B)(O FJ(rB)(O)
P )(C) CR(B)(C) ) F-E_B)(C) ’ Q( )(C) - R(B)(C) : F_E_B)(C) ’ (336)
and

RP(Q) = (8 =20) 4 40a™(()8™(()

(@) = (=¢)", g = (o)

a(B)
RO = o e |

In the above expressions, appropriate branch cuts have been chosen. Also, a(f)(( )=

(a + C)l/z, ¢ = 1/cr where cp is the Rayleigh wave speed of the elastic material, and

S®(¢) = exp {*%/ﬂbtan'l [4772\/(772 —a?)(b* — 772)} dn } .

(b2 — 2n?)? n+¢
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The subscript + indicates that the function is analytic in the half plane Re { > —a,

and this comes from the Wiener-Hopf procedure used to solve this problem.

In order to obtain the stress field surrounding the stationary crack-tip, we need
to perform the inverse transforms of those transformed stress components which can
be obtained from the expressions in equation (3.3.5). However, from the constitutive
relation (3.2.2), it can be seen that the stress components are related to the second
derivatives of the two displacement potentials, ¢®(zy,z5,t) and ¥p®)(z1,2,t). Let

(B)(C, z3,$) and ‘II(B)(C, &3, $) be the transforms of ¢>,(B) (1, 3,t) and ¢,f/§ (z1,22,t),

respectively. Then, we can write that

(Cafﬂz, )= 0— —1—35(;-36)—(9e”“""(la)(‘;)‘”':2
3 ; ; YV zy € (0,00), (3.3.7)
o Q) _sm
\1’23)((,332,3) = — . FaB >/ =58P ()
3 P )
where
(B)(O — C2P(B)(O Q(B)(C) - C2Q(B)(C)
P2(123)(<~) — (a2 _ Cz) P(B)(C) : Q(sz)(C) — (bz _ <2) Q(B)(O
PR(¢) = —¢a™®(¢)P™(C) QR = —(BP(OR™(Q)

Several observations can be made at this point: i) P{’(¢) and P3’(¢) are analytic
in the strip —a < Re { < a; P33’(¢) is analytic in the strip —a < Re ¢ < a, but
has a simple pole at ( = 0 ; ii) Q(B)(C) are analytic the strip —b < Re { < a, where
a, B € {1,2}; iii) All singularities and branch cuts lie along the real axis.

By using the Cagniard-de Hoop technique to the transformed second derivatives
in equation (3.3.7) and by using the above observations for the regions of analyticity

for each function, the second derivatives of the displacement potential associated with
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the longitudinal wave, ¢ (zq, z5,t), can be expressed as (see Appendix)

o* t 8C(B)
o7 onen) = 2 [ {0 B bar - ae - ar)

3\

*

(®) _o ™ I (®) p(B) (((B)~ 8C(B)* da* - H(t — 338
P33 (351,5'32,t)—7ru » m 3§ § (G )—— ¢ a7 - H(t —ar) , (3.3.8)

o (B)
/Im{Pf;)( =2 }dr H(t — ar)

o*
¢35 (z1,72,t) = _ﬂ

t 2
BNxy,22,t) = —~ cos § + i/ —a’sinf, (3.3.9)
T r?

and (r,0) are the polar coordinates centered at the crack-tip. ((**(z%,3,t) has the

where

same form as that in equation (3.3.9) except that z; should be replaced by z}. Also

* tz 2 i
wl = ;"2’ —_ $2 .

Similarly, the second derivatives of the displacement potential associated with the

transverse wave, ¥®)(z1, z,t), can be expressed as (see Appendix B)

lbvgﬁ) (%1, 0,t) = ;—; {/ [Q(B)(C(B))ac } dr - H(t — br)
, (3.3.10)

X®) (B3)+ (B (B)
+ [0 m QU] B )y - H(E - o)
where «, 8 € {1,2}, and
. t 2
(®(z1,29,t) = ——cosb + iy/— — b2sin . (3.3.11)
T r?
In addition, in equation (3.3.10), A®(8) = —bcosf, and 6’ = = — cos™'(a/b). Also,

RP(n) = H(t =[P (m)ze —n21]) ,  a<n<A®(9).

It should be noted that the second part of the right-hand side in equation (3.3.10)

provides information inside the head wave region.

By substituting equations (3.3.8) and (3.3.10) into the constitutive relation (3.2.2),

we can get the stress field surrounding the stationary crack-tip for problem B. As an



- 63 —

input to problem C, we need to know the normal traction o{’(z;,t), ahead of the
stationary crack-tip in problem B. It can be shown that (Freund, 1990)
* (B)
®) o ¢ F{(0) dn
o (z,t) = — / Im [—————— — - H(t —axq) , (3.3.12)
Dot =2{ [ n |r ol
(B)

or 0y ’(x1,t) may also be expressed as

p(u) = 97}— {/al/" Im {%ﬁ%ﬁ%} %‘—’} H (% - a> , (3.3.13)

where v = z;/t. It must be pointed out that the normal traction ahead of the

stationary crack-tip, o’ (21,t), or p(1/t), is a homogeneous function of z; and t of

degree zero. Finally, the dynamic stress intensity factor at the stationary crack-tip

for problem B is
20 [(1-=2v)qt
1—v m ’

K¥®(4) = 3.3.14
I

3.3.3 Problem C: Moving crack with varying traction
applied on its new surface

In this problem, we study the semi-infinite crack configuration considered in problem
B. At time t = 7, the crack starts to extend with a constant speed v. At the same
time, a compressive normal traction of magnitude of p(x,/t), given in (3.3.13), is
applied on the newly created crack faces, 0 < z; < v(t — 7). Since the traction
distribution (3.3.13) has the property of homogeneity, any fixed stress level in the
scattered field radiates out along the z;-axis at constant speed. As a result of this
observation, the solution for problem C can be further generated by the so-called

fundamental solution (Freund, 1990).

Consider the region R and a semi-infinite crack lying along the entire negative
r1-axis in the Cartesian coordinate system, (z1,z2). As time t < 0, the body is stress

free and at rest everywhere. At ¢t = 0, a pair of concentrated forces p(t), of the form,

p(t) = Do +P1t 3
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where po and p; are constants, is applied at the crack-tip and tends to open the crack.
At the same time, the crack begins to propagate with a constant speed v. Meanwhile,
the concentrated force p(t) also propagates with a constant velocity u < v toward
the moving crack-tip. Let ¢™(zy,z2,t) and ¥ (xy, x4,t) be the two displacement
potentials for the fundamental problem. Then, ¢™)(zq, z2,t) and ¢ (xq, zo,t) will
satisfy the equation of motion (3.2.3) and the same initial conditions (3.3.3). The

boundary conditions are

05y (21,07,8) = — (po + p1t) §(z1 —ut)H(t) , —oo < 1 < vt
0iP(21,07,¢) =0, —co< <00 y, V>0,

u$(21,07,8) =0, vt <z < 0
(3.3.15)
where §(-) is the Dirac delta function. By defining the moving coordinates (¢1,¢2)
through & = 1 — vt, & = 4, and applying the Laplace transforms with respect to ¢

and ¢;, the solutions in the transformed plane will be

8¢, &, 5) = 22 PO wa0er _ 21 PO e

33 : 34 [ \V/ 52 € (O’ 00)7
\II(F)(C,éz,S) - Po . Qi—gc)e—Sﬁ(C)EZ _h . _@_;é_@e—sﬂ((“)fz
g (3.3.16)
where
w{B(() = ¢*} Fi(w) _ W {B(¢) - ¢*} [Fy(w)]
PO="7"0r0 70O | 29 roR© [c - wJ
2wia(¢)  Fy(w) [’ _ 2wka(¢)  [Fie(w)]’
WO=—wr® 7O ) 29O=rgR0 [c —-w}

(3.3.17)
In the above expressions, prime denotes the derivative with respect to the argument

w, where w = 1/(v — u), and

R(Q) = 4Ca(OB)+ {0 -},

B a?(?  2a%( 1/2
Oz(C) = (a2“42+ B2 - h ) ’
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22 2.\ 1/2
ﬁ(()=( At 2“) ,

h

Q) = o f+c(><5)+(c>’ arl@) = {at (1-2) )"

S4(0) = exp{";lr"/li_ tan™" {47[7;23((:,;7))[5(,7—2—]12”} n(ij(} 7

in which h = 1/v. Also,

a b c

UETTR ®TTxehc T 1xoh

Similar to the procedure used in problem B, by defining
PY(Q) = CR(O) . B = (OP(O), PRC) = ~CalO)Pu(C)
Q) = CQu(0), Q%) =B (O)R), Q) = —¢BOQK(Q)

where k € {0,1}, the second derivatives of the displacement potential, ¢™ (¢, &s,¢)

3

can be expressed as

654 enent) = Lt { PG H (-t )
) o , (3.3.18)
B :_L/m(n o) { lﬂ(Cl) l}dT H(t _wl(r“el))
where o, 8 € {1,2}, and
t - R 3\
G(6,6,t) = — (E T s 91) cos O — ¢ 5 s
_ 2 9y 1/2
+i{(£_a_ ~t cos@,) - (_a_+a+) } sin §;
Tl 2 2
wi(r, b)) = m (a_ ; 8 cos + &= ;— a+)

The second derivative of the displacement potential, ™ (&;,£,,t), can be expressed
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as

¢,

sBeet = 2 lm o] a- o)

TH

b [ o (@) ] a6~ 0}

a4

_ h ¢ (1) 6(3](1 CH(t— w.(r..8
- {/w,(n,m [Q () (t = wil(rs,6.))

N /)\(9) Im Q(1)+( )) h(n )] dn'H(as-en)}

(3.3.19)
where a, 8 € {1,2}. In equation (3.3.19),
t b —b, b —b, )
(&, &,t) = — <;; -5 cos 03> cosf, — 5

t bo—b AN B
+i{<—— i +cosé’5) —<_ +> } sin f,
Ts 2 2 ’

- b_+0
ws(rs,0s) = 75 (b 2b+ cos @, + + +>

2

. b_.+b+ b_—b+ _ -1 2G,+ b_—b+
/\(93)———( 5 cos 8, + 5 , Oy =m—cos b_+b++b_+b+ .

d(n) = & (t — [B(n)€2 — n&1])

}7 G+§77§/\(93)-
h(n) = H (t — [ﬂ(’?)fz /131),

In equations (3.3.18) and (3.3.19), (11,4, 0:5) are two scaled polar coordinate sys-
tems defined by

-1 al,s§2

1/2
Tis = {é% + a?,sé%} 3 01,3 = tan 51 )

where



— 67 —

The components of stress field for the fundamental problem can be obtained by using

the constitutive relation (3.2.2).

Returning to problem C, let ¢™({y, {2, ¢;w) be any element of the fundamental
solution, such as the stress components, particle velocity, etc., and the dependence of
the fundamental solution on the parameter w is made explicitly here. Following the
analysis given by Freund (1973 and 1990), the corresponding element ¢/* (¢, &, ¢) for
problem C will be given by

h* T *(w
Q(C)(él,fz,t) = A q(F) <€1,€2> —,;(h* —_— ’UJ), ’w) ga)%ldw y A4 (61,62) 67-% R (3320)

where p*(w) = p((vw — 1)/w). It should be pointed out that in equation (3.3.20),
quantities po and p; that appear in the fundamental solutions have been changed to
Tw/h and 1, respectively. Finally, the dynamic stress intensity factor at the moving
crack-tip in problem C is given by

2¢t 1—21/
KO () = 20" k(o \[r {V i t—r} VisT, o (3321)

2(1—-v)

where k(v) is a universal function of the crack-tip speed given by
1—c¢/h

M) = e

(3.3.22)

3.3.4 Problem D: Moving crack with uniform pressure
applied on its new surface

Similar to problem C, we study the semi-infinite crack configuration considered in
problem B. At time ¢ = 7, the crack starts to extend with a constant speed v.
However, at the same time, a uniform pressure of magnitude of ¢*, is applied on the
newly created crack faces, 0 < z1 < v(t — 7). Let ¢™)(z1, z,¢) and ¥ (zy, zy,t) be
the displacement potentials of this problem. For analysis convenience, consider that

the crack-tip starts to extend at ¢ = 0 and obtain the displacement potentials for
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this new problem, denoted as problem M. Therefore, ¢™(z1, z4,t) and ™ (zq, x4, t)

satisfy the equation of motion (3.2.3), and the boundary conditions are

0-(21\;)(‘%170+7t) - “U*H(fl)H('Ut — .’tl)H(t) , —00 <1 S vt

oY (21,07,8) =0, —co<z <0 ¢, YiE>O0.
uy?(21,0%,¢) =0, vt < 17 < 00
(3.3.23)

In the moving coordinate system (&, ¢;), after the Laplace transforms are applied,

the solutions are

a™((, 6,5 = 2 . LD a0y
M* (;) , V& €(0,00), (3.3.24)
TO(( £y, 5) = % @ 84(C)e—sﬂ(C)Ez
where
POO(¢) = B¢ =2 Fy(h) Q)= o) Felh) g

(¢ —R)R() Fi(¢)’
where all quantities that appear in the above expressions have been given in the

solutions for problem C. By defining

PR(¢) = ¢*PM(C) QY = *Q™(C)
P3(Q) = *(OP™() o, QR () = BHOR™Q) ¢,
PE(¢) = —Ca)P™(C) RIY(C) = —CBOR™(C)

the second derivatives of ¢™({y,&s,t) and Y®(&y, &y, t) will be

*

7{'/11 wl(rl,ﬂl)

*

Vrap (1,60t) = :# {/wts(m,as) [Q(M)(Cs)acs}d (= wnlrs, 1)

N /a)\(os) [Im (Q(MH‘( )) h(n )] dn- H (6, — gH)}

+

(3.3.26)
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For problem D, we can get

¢vg)ﬁ) (619 627 t) = Qb,g%) (517 éth - T) ) "/}72:2 (éla 627 t) = Tﬁ,%) (éla 527t - T) . (3327)

The components of stress can be obtained from the constitutive relation (3.2.2). The

dynamic stress intensity factor at the moving crack-tip in problem D, is given by

2u(t —
K?(D)(t) _ 2a*k(v) y , t>1T1. (3.3.28)

Up to this point, we have obtained the analytical full field solution for each prob-
lem. Returning to our original problem which corresponds to a planar longitudinal
stress wave of constant amplitude o* which strikes a semi-infinite crack, and after
some time 7, the crack extends at a constant speed v, we can construct the final
solution. For 0 < ¢ < 7, the solution is given by the sum of problems A and B. For
t > 7, the solution is given by the sum of all four problems. Particularly, the dynamic

stress intensity factors at the stationary and moving crack-tips are

20 [(1 =2v)qt

, Vo<t<r,
() — 1—-v iy
7(t) = (3.3.29)
20%k(v) [(1—2v)qt
1—v T

, Vi>rT1.

It is clear from equation (3.3.29) that for an unbounded body under time-independent
loading conditions, the dynamic stress intensity factor at the running crack-tip can be
expressed as a universal function of instantaneous crack-tip speed multiplied by the
equilibrium stress intensity factor for the given applied loading and the instantaneous
amount of crack growth. It should be pointed out that the sum of problems B and
C will give the solution for the problem studied by Ravi-Chandar and Knauss (1982)
and analyzed by Ma and Freund (1986). However, since the problem is no longer self-
similar, the dynamic stress intensity factor at the moving crack-tip corresponding to

this problem will not have the property stated above.
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3.4 Higher order transient asymptotic represen-
tation of the elastodynamic field surrounding
the moving crack-tip

In the previous section, we have derived the full field analytical solution for the prob-
lem stated in Section 3.2. This solution has considered the transient nature of the
problem. As one can see that the expressions for the solution are complicated. In or-
der to use the solution in comparison with experimental observations, one is interested
in the asymptotic structure of this elastodynamic field, or the field very close to the
moving crack-tip. Recently, Freund and Rosakis (1992) and Liu and Rosakis (1992)
have developed the structure of the higher order transient asymptotic representa-
tion for the stress field around a transiently extending crack-tip in homogeneous and
isotropic linear elastic materials. Their asymptotic representation involves coefficients
which are complicated functions of time that cannot be completely determined by the
asymptotic analysis. The crack problem under consideration here is highly transient.
As such it is a good candidate to be used for obtaining the coefficients of the higher
order transient asymptotic representation of the elastodynamic field surrounding the
moving crack-tip. A comparison of the transient expansion with the actual full field

solution will give us an indication of how well this transient asymptotic representation

describes the actual field.

To obtain the asymptotic expansion of the elastodynamic field derived in the

previous section, we consider the quantity ¢,qq (¢1,&2,t). For problem A, as t > 0,

o 1-2p

o (€1,07,t) = W) (3.4.1)

In problem B, for finite ¢ > 7, by expanding the quantity ¢,®) (x,,0%,#) into a

oo
power series of §; where z; = & + v(¢t — 1), we get

o* 1
7(111) (ﬁl + ’U(t - T)7O+7t) -

p mngm(tHO(gl), as & — 01, (3.4.2)
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where
/ ’(n — c)(b2 27%)35% (—) dn ‘
m/b(n — a { *+16n*(n* — a?)(b% — n?)}
= a’(n — c)(¥* — 2n*)SE (—n) d
’ / \/———a{ b2 —2n)% — dn?V/n? — a®/n? — 62} ! J

and the function S{’(¢) has been defined in Section 3.3.2.

Q(B)

For the fundamental problem, it can be shown that

dF) (g, )
® (6,0t = L)l +a) {KI _(tw)
pD(v) V27
1 [a- w hwF, (w) hw?F’ (w) ~
NV [(wo(”) + z) <P0“—“t-372— + 2P1—717+2—*— , as & —> 07,
’F
+zp13”tl%(“’)] 1+ 0<é""/2>} CH(t—a-t)
(3.4.3)
where
c-  a- 4a?
wo(v) = - — o = 7 T a? + Ro(v) + So(v) ,
and

4 4 al +a?—2a2a?] )
RO(’U) ped —'5(;)—)' {(1 - as) - o,

4n2ﬂ(—n)la(—n)l} an
[8%(—n) — n?]*

b_
So(v) = -/ tan"l{

D(v) = 4doqa, — (1 + ai)z

From this result, as ¢ > 7, we can get the corresponding expansion for problem C

/

by using relation (3.3.20). After some manipulations and using the property of the

Heaviside function in (3.4.3), it can be shown that

1—a?)(1+a2) KX
Do = Emogited) Tl

o 2(1—of)(1+a?) \/E k()27 (t) \/Z s |
* 7 D(v) b T - +0(&")

as £, — 07,

(3.4.4)
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where K7°)(t) has been given in equation (3.3. 21) and

Aot _ V21 -2) \[ (v) +1
2(1 —v) \/ﬁ \/t/T__l

For problem D, it can be shown that as ¢ > 7,

(1-of)(1+ad) K@)

7(01D03(£170+7t) = D(’U) /1'\/275
, as{ —0F,
o 2(1—af)(1+a?) \ﬁz K@) [& a0
T D(v) Ve o or TG (3.4.5)
3.4.5

where K7™ (t) has been given in equation (3.3.28) and

wo(v) +1

Vi/T—1 '

Finally, by superposing the above asymptotic expressions for the four constituent

09(t) =

problems, the asymptotic representation of the quantity ¢,.q (é1,0%,¢) of our original

problem near the extending crack-tip is

A2 a2 d *
ban 600%,0) = S 1 Doy

o 2t-op)(itad) [b k)W) [& a0
T D(v) \/; - \F+0<s)

where K{(t) has been given in equation (3.3.29) and

, as{ — 0T,

(3.4.6)

() = 211_—25)“L Jli—_yﬂ(lm(t)
\/ 1—21/
M(t) = 2(1_1/ \/7 \/—/;

For a transiently propagating mode-I crack in a homogeneous, isotropic, linearly

elastic material, Freund and Rosakis (1992) have provided the higher order transient
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asymptotic representation for the first stress invariant. By using the notation of Liu

and Rosakis (1992), for a mode-I crack growing with a constant speed v, we have

braa (€1,07,8) = _3a _42221;" az)Ag(t) -1/
da,(1 — of) 15(1 — of)(1 + o?)
(1-o})A+ad)my 1+ao}] WA= (34D)
D(v) 2 ji Dl {AO(t)}
__2013(1 —af)ms 1/2 3/2
a0} 6 o) |
where
DH{Ao(t)} -—ch#])’@;zxo(t) me = (-a)

In equation (3.4.7), Ao(t), A1(t), and A,(t) are undetermined functions of time. They
cannot be determined by the asymptotic analysis itself. However, for the specific
problem at hand, these undetermined functions of time can be obtained by comparing

equations (3.4.6) and (3.4.7). This comparison yields:

o \/— V/2(1 - 2v) gk
Aolt) = 2(1—-v) a\ T
A(t) = o"- Z%z)l)sz—lglz)j ) Vit>r, (3.4.8)
B o 2(1 = 2v) ky(v)
As(t) = T CaT . 2(1—v) . \/iﬁ )
where
8ay(l1 —a?)m, 1+ of hk(v)

8 {2(1 —a})(1+ at)ymy
a;D(v)

PR}

The variation of the dynamic stress intensity factor K¢(t) with time ¢ is plotted in

T 15 a,(1 + e2)D(v) Jab

FIGURE 3.3 for different crack-tip speeds. In this figure, the dynamic stress intensity
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Figure 3.3: The dynamic stress intensity factor history for the stationary and prop-
agating crack under stress wave loading conditions.

factor is normalized by the critical value of the stress intensity factor at which the
stationary crack begins to extend, and the time ¢ is normalized by the delay time 7.
These numerical results are obtained by setting the Poisson’s ratio v = 0.3. Before
crack initiation, the dynamic stress intensity factor is a monotonic function of time.
After crack initiation, the dynamic stress intensity factor monotonically increases with
time as well. Although the crack-tip speed is constant, the problem we studied here
is characterized as transient, because as the crack starts to grow, the time derivative
of the dynamic stress intensity factor is not zero which is contrast with the steady
state situation. Notice that in FIGURE 3.3, at the time of crack initiation, there is
a sudden drop in the value of the dynamic stress intensity factor. This is due to
the release of deformation energy by the formation of new crack surfaces associated
with crack extension. In addition, the time histories of the coefficients in the higher
order transient asymptotic representation of a propagating crack, A4;(t) and A,(¢),

are presented in FIGURES 3.4 and 3.5 for different crack-tip speeds. Once again, their
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Figure 3.4: Time history of the coefficient A;(t) in the higher order transient asymp-
totic expansion for the moving crack under stress wave loading conditions.
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Figure 3.5: Time history of the coefficient A,(¢) in the higher order transient asymp-
totic expansion for the moving crack under stress wave loading conditions.
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time derivatives are not zero due to the transient nature of the problem.

3.5 An observation of the normal traction ahead
of the moving crack-tip

In previous sections, we have obtained the complete full field solution for the stresses
for the problem described in Section 2. We also obtained the coefficients A;(¢) and
Ay(t) of the higher order transient asymptotic expansion. In order to examine whether
the full field transient field is representable by either a K¢-dominant field or a higher
order transient asymptotic field, we will investigate the normal traction ahead of the
propagating crack-tip. In other words, we want to investigate the region of dominance

of the lowest order and the higher order asymptotic solutions.

By using the analytical results given in Section 3.3 regarding the stresses sur-
rounding the moving crack-tip, the normal traction ahead of the crack-tip, o, (&1,t)
can be calculated from the full field solution. Meanwhile, the normal traction can
also be represented by its asymptotic form (up to three terms) as

() = Kl g

V2T

where the dynamic stress intensity factor K§(¢) and the higher order coefficient A,(t)

15
4

AN +0(8), as& -0, (3.5.1)
have been given in the last section. Here, we have two choices for the asymptotic
representation. In regions near the crack-tip where the field is indeed K¢-dominant,
the first term on the right-hand side of equation (3.5.1) will adequately describe the
field. Otherwise higher order terms should be included in order to deal with the lack

of K¢-dominance.

In FIGURE 3.6, the distribution of the normal traction ahead of the moving crack-
tip is shown at different instants of time. It is calculated from the full field analytical

solutions presented in previous sections. Here, we have chosen that the Poisson’s ratio
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Figure 3.6: Distribution of normal traction ahead of the moving crack-tip at different
instants of time.

v = 0.3 and the crack-tip speed v = 0.3c,.

Quantitative comparisons of the near tip transient field with either the K¢-domi-

nant field or the higher order transient asymptotic field (three term expansion) are

given in FIGURES 3.7 and 3.8. In both figures, the normal traction ahead of the

moving crack-tip calculated from the analytical result is normalized by its asymptotic
representation. The Poisson’s ratio is chosen to be 0.3 and the crack-tip speed v is set
to be equal to 0.3¢,. In FIGURES 3.7, the variation of the ratio o (£;,t)/0% (£, t) with
respect to the nondimensional parameter £;/¢7 which represents the distance from
the moving crack-tip, is presented. Results for different instants of time after the crack
initiation are also presented in this figure. The hollow circles are the value obtained
by using the K¢-dominant representation, while the solid ones are those obtained by

using the higher order transient representation as the asymptotic description (3.5.1).
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Figure 3.7: Comparison of the K¢-dominant and the higher order transient asymp-
totic distributions of normal traction ahead of the moving crack-tip at different instant
of time after crack initiation.

To adequately describe the near tip field, the ratio o (¢;,t)/0("(€1,¢) should be close
to 1. However, from FIGURES 3.7, we can see that the K¢-dominant field deviates
substantially from the actual field even when the observation position is at a small
distance away from the crack-tip. For the establishment of the fully K¢-dominant field
near the crack-tip, a rather long time is needed. For example, at the position ¢ =
2¢;7, the time for the K¢-dominant field to be established is about ¢ = 107. However,
the higher order transient asymptotic representation can be seen to approximate the
near tip field much closer than the K¢-dominant field. Here, even at short times after
crack initiation, say ¢ = 27, and within a distance {; < 6¢7, the result obtained from
the higher order transient asymptotic field is about 90/observation can be made in
FIGURE 3.8. Here, the variation of the ratio o4(¢1,t)/0(" (£1,) is plotted against the

nondimensional time ¢/7 for different positions ahead of the moving crack-tip. In this
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Figure 3.8: Comparison of the time histories of the K¢dominant and the higher
order transient asymptotic representation of normal traction ahead of the moving
crack-tip at different distances from the crack-tip.

figure, attention is focused on a moving point which is at a fixed distance relative
to the crack-tip. The time required for the K¢-dominant field to be established is
then calculated. Once again, long times are required for the K¢dominant field to
approach the actual field, while at a fixed position relative to the crack-tip the field is
well described by the higher order transient representation even at times very close to
the crack initiation. Based on these observations, we conclude that conditions of K¢-
dominance exist either extremely close to the crack-tip or are eventually established
at long times after crack initiation. However, the higher order transient asymptotic
representation is more successful in describing the actual field even at times close
to the event of crack initiation or at distances relatively far away from the moving
crack-tip. Similar observations were also made by Ma and Freund (1986). They

considered the problem of a semi-infinite crack subjected to a uniform step pressure
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on its surface. After a finite delay time, the crack starts to propagate with a constant

speed.

3.6 Discussion and conclusions

Since Yoffe (1951) mathematically determined the stress field around the tip of a
steadily propagating crack with constant length, substantial progress has been made
in the areas of theoretical and numerical analysis of dynamic fracture events in brittle
materials. The uniqueness of the near tip stress field of a running crack was proved
by Freund and Clifton (1974). Their work also established that for a running crack
the near tip stress state can be characterized by a single parameter — the dynamic
stress intensity factor. However, interpretation of the stress field near the edge of a
crack in a loaded body in terms of a stress intensity factor must always be based on
the assumption that the dimensions of the body and the details of the loading are
such that a stress intensity factor controlled (K¢-dominant) field does indeed exist
and the size of this K¢-dominant field is sufficiently small compared to the crack
length, distance to the nearest boundary, or any other characteristic dimension of the
body. In addition to the limitation noted above concerning overall body dimensions
and crack length, the zone of influence of three-dimensional effects around the crack
edge should also be small compared to the K¢-dominant field, especially when the
case of a through thickness crack in a plate is considered. Typically, the plane stress
assumption is valid only for points at half of the plate thickness away from the crack
edge (Rosakis and Ravi-Chandar, 1986; Yang and Freund, 1985).

If a cracked body is subjected to stress wave loading and the crack growth process
is dynamic, there is yet another important factor which complicates the application
of the stress intensity factor idea under conditions of plane deformation. This factor

is due to the wave character of the mechanical fields in the body during crack growth.



- 81 -

Consider, for example, the case studied in the previous sections. This corresponds to
a semi-infinite crack in an otherwise unbounded elastic body subjected to stress wave
loading conditions. Even though this semi-infinite configuration strictly satisfies all
of the size requirements mentioned above, the application of the K¢-dominant field is
still imited. For the crack before initiation, when the incoming stress wave hits the
crack, the stress wave will diffract around the crack-tip. A cylindrical longitudinal
wave and a cylindrical shear wave will be emitted from the crack-tip and will propa-
gate into the body. The K¢-dominant assumption is valid only for points much closer
to the crack-tip than the distance of the cylindrical shear wave front from the crack-
tip. After crack initiation, the situation becomes even more complicated because
stress waves are continuously emitted from the moving crack-tip. This can be seen
by observing that the internal stress in the elastic body at a point on the prospective
fracture plane will gradually build up as the crack-tip approaches and that this grad-
ually accumulated stress is then suddenly released with the passage of the crack-tip.
As a result, the transient fields must radiate out continuously through the region sur-
rounding the crack-tip. This lack of K¢-dominance was studied theoretically by Ma
and Freund (1986) and was observed experimentally by Krishnaswamy and Rosakis
(1991) and Krishnaswamy et al. (1992) by using a bifocal caustics arrangement and
the optical method of CGS.

By studying the specific problem of a stress wave loaded semi-infinite precrack
which eventually extends with a constant speed, we show that the assumption of
K{-dominance is inadequate in describing the near tip stress state at short times
after crack initiation. For this problem, the transient effect is manifested through the
time derivative of the dynamic stress intensity factor even if the crack-tip speed is
constant. This study suggests that the use of the higher order transient asymptotic
representation provided by Freund and Rosakis (1992), and by Liu and Rosakis (1992)

1s necessary to represent the actual field near the moving crack-tip. Section 4 clearly
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shows that the coefficients of this expansion depend on the time derivative of the
dynamic stress intensity factor. It is further shown that by including this higher
order term in the asymptotic expansion, the nature of the near tip stress field is indeed
captured. Because of the loss of K¢-dominance, even when the body is unbounded
and the crack is semi-infinite, this study also suggests that the transient effects should
be considered when any attempt is made to interpret experimental measurements
performed at finite distances away from the moving crack-tip. In the second part of
this study, we will use the results obtained in this paper to interpret the experimental
observation made by Prakash and Clifton (1992) where crack initiation and growth

was studied under extremely high loading rates.
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Appendix

A Inversion of Laplace transforms — Cagniard-de
Hoop technique

Consider a quantity G((, z2, s) with the form

G((,2,5) = D) mra00m (A1)

s
where A(() is analytic in the strip —a < Re ¢ < a. The inversion of G((,zs, s) is

given by

1 Co+ioo
P — —{a(B)(C)m—Cm}Sd A2
B ens) =5 [T A ¢ (A.2)
where (o is real and —a < {p < a . Set

a®()zg —(z1=7>0, (A.3)

and solve equation (A.3) for (, we obtain

=
S =— T cosO+i i a’?sin @ , (A.4)
r

-1 2
r=y/z}+ 2%, 6 =tan~! = .

5}

where

Notice that
Im (Y = as 7 = ar

Im (® . A.5)
Im Gy _ =TFtanf, as 7 —> o0 (

From FIGURE 3.9 and the analysis above, we can see that the original integral contour
['; can be distorted into new integral contours (,( and ({2, and the new contour will

not intersect with the branch cuts as 6 changing from 0 to .

Now, we can express §(z1, 3, $) as

o) = = [ { 2 _ g <B>>‘%(B)}e°”dr. (A.6)

2w st or
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Figure 3.9: Distortion of the integral contour to evaluate the inversion of G((, z, s).
Notice that ({2 = Z(B) If A(¢) has the property A(() = A((), then

00 (B)
(a1, 22, 8) = — / { (g<B>)‘94 }e~“dr. (A7)

TS Jar
Furthermore,
1 o+i00 . .
g(z1,z2,t) = %/ g(x1,x2,5)e*ds . (A.8)

After some manipulations, it can be shown that

gz, 22,8) = = / t { (c<B>)BC(B)}d CH(t —ar), (A.9)

T r

where ([} (x1,z3,t) is given by equation (A.4), from which AR |97 can also be cal-

culated.

On the other hand, if G((, 2, s) has the form

G(C) T, 8 ) — "i(g) —sa(B)(C)xz ’ (A].O)
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where A(() is analytic in the strip —a < Re { < a. Write

A
A(Cv L2, 5) = iC) e—sa(B)(C)zz ’

then the inversion of A((,z2,s) can be obtained by using the Cagniard-de Hoop

technique we just discussed. It is

0o (B)
(Al(.’lll,il?z,s) = 1‘/;,. { (C(B)) C }G_STdT . (All)

T

Notice that for the Heaviside function H(z1), we have
/oo H(z)e *"dz; =1, forRe(>0.

From the composition product relation (van der Pol and Bremmer, 1955), the inver-

sion of G((, 3, s) which can be rewritten as

A(¢, za, s
G((,x2,8) = ‘“‘(—C—;zz”"‘z 1,
is given by
(1, T2, 8) = /_ Z a(23, 22, 8)H(ey — 27)da? (A.12)
or

o [ poo (@)
i ans) == | { [ [ (<<B>*)BCT ]e-"df} des (A.13)

T J—0 r*

(B)* T * . 2 2 ot *
Gy =——7cosbf* +1/— —a?sin ",
P T*Z

—1 22
=z}t + 2%, g* =tan™' = .
Ty

Also, by performing the inversion of the Laplace transform with respect to parameter

where

and

$, we can get

T J-—x

g(z1, 29, 1) = 1 /x { (C(B)*)BC(B)*} H(t — ar*)dz7 (A.14)

or

1 Min(a:l,w) (¢ ®>*
g(z1, x9,t) = —/ l { (C(B)*) C }d:c1 , (A.15)

T J—w
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where

Finally, we have

L O\ o
gz, T2,t) = = / Im § A(GY") =L dai - H(t - ar) . (A.16)
wy

T J-

Consider another quantity W((, z2, s) with the form

W((, zq,8) = we—sﬁ(}a)(oIz , (A.17)

52

where B(() is analytic in the strip —b < Re { < a. By definition,

. 1 Co+ioco _ wo—Coi Vs
w(zy, 2, 8) = 271'32’/( ~ B(()e (BB (Qza~Cm}sqe (A.18)
0 —100

where (o 1s real and —b < {, < a . Similar to previous discussions, we may set
,B(B)(C)$2 — C(L‘l =7>0 y (Alg)
and solve equation (A.19) for (. Then

(B) T T’ .
sy = ——cosf tiy/— —b2sinf . (A.20)
r r2

We also have the property that

Im(® =0, as 7 = br
Im (2 =Ftanf, as 1T — o . (4.21)
Re (7

But it can be seen that as 7 = br,
B = ~bcosh = XP(8) ,
and as a result, when 6 is changing from 0 to 7, A® () is in the range

< AP () <b.
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So, as f is greater than angle 6’ = m — cos™!(a/b), the distorted integral contour

will intersect with the branch cut, and we need to consider two cases separately.

For 0 < 6 < 6P, we can directly apply the same procedure for G({, z3, s), and if

B(() satisfies that B({) = B((), then

t o (B)
w(zy, e, t) = %/ Im {B( S_?)a—”} dr- H(t —br), (A.22)

br T

where ({3 (z1,z4,t) is given by equation (A.20), from which (% /87 can be calcu-
lated.

For 6 < 6§ < 7, from FIGURE 3.10, we have
W(zy, T2, 8) = Wo(z1, T2, 8) + Wh (21, 22, 8) , (A.23)

where by assuming that B(¢) = B((),

s

o0 ac®
e )= Im{B( gake } edr

and

1 pA®)
d(en ) =— [ Im{BH(n)} e BPmmmlagy

Moreover, it can be shown that

1t By OCY
wo(x1, z2,t) = - /br Im {B( £+))——aj_—+} dr - H(t —br) , (A.24)
and
1 2
wir(a,20,) = / Im { B*(n)} K®(n)dy , (A.25)
where

K2 (n) = H (¢ =[P m)z2 —na]) ,  a<y<AD(9).
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Figure 3.10: Distortion of the integral contour to evaluate the inversion of

W((, za,s).

Summarize the results for above two cases, we can write

t (B)
w(zy, x2,t) = 1 {/b Im {B( g_))ag—ﬁ] dr - H(t — br)

71" T

\B6) (A.26)
b [ 5] W e - - ) |

As a matter of fact, the second part in the right-hand side of equation (A.26) provides
the information inside the region of head wave. By denoting (,(IZL as f?, expressions
in (3.3.8) and (3.3.10) are obtained. By using the same technique, expressions in

(3.3.18) and (3.3.19) can also be obtained.
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Chapter 4

Comparison of the Theoretical Prediction to
High Loading Rate Plate Impact Fracture
Experiments in AIST 4340 Steel

4.1 Introduction

As a material parameter, the fracture toughness can only be obtained through exper-
imental measurements. Meanwhile, the fracture resistance of materials is generally
understood to vary with environmental conditions under which the experiment is
conducted, and with loading rates to which the specimen is subjected. Under impact
loading conditions, high loading rates are caused at the pre-existing crack-tip. In
dynamic fracture experiments, a parameter is defined to characterize the loading rate

under which the specimen is loaded, and it is

. K
K ==X (4.1.1)
to

where Kjc is the mode-I critical stress intensity factor at the instant of crack ini-
tiation (fracture toughmness) and tc denotes the time from the beginning of load-
ing to the instant at which fracture initiation occurs. Usually, the crack-tip load-
ing rates range from K; ~ 1 MPa,/m - sec™! for quasi-static loading to as high as
K; ~ 108 MPa,/m - sec™! for impact loading. Due to the presence of material inertia

and strain rate, the material may exhibit totally different behaviors from those under
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quasi-static loading conditions. To understand the mechanism of crack initiation,
propagation, and arresting, various specimen configurations and loading devices have
been designed, and extensive research has been carried out for various materials by us-
ing different experimental techniques. Using the method of optical caustics, Kalthoff
et al. (1979) have studied rapid crack propagation and arrest in double-cantilever
beam specimen made of Araldite B. Using the same experimental technique and
specimen configuration, Rosakis et al. (1984) studied crack growth in 4340 steel.
Kobayashi and Dally (1980) investigated the crack growth in double cantilever beam
4340 steel specimen but using the method of dynamic photoelasticity. Ravi-Chandar
and Knauss (1982) studied the dynamic fracture in Homalite 100 material under stress
wave loading. Zehnder and Rosakis (1990) have conducted studies on crack initiation
and propagation in 4340 steel using a three point bend configuration impacted by a

drop weight hammer.

The interpretation of experimental observations involving dynamic fracture under
stress wave loading has been proved to be difficult. This is because the specimen
configurations commonly used in laboratory testing, cannot be completely modeled
by existing mathematical methods, even when the material response is linear elastic.
In most experimental observations of dynamic fracture, finite-sized specimens are
used. The stress waves generated either by the external loading or by radiation from
the extending crack-tip, reflect back and forth inside the specimen so that the stress
state surrounding the crack-tip is too complicated to be analyzed. Even though
Beinert and Kalthoff (1983) have designed a specimen configuration which minimizes
the dynamic effects caused by wave reflection, direct mathematical analysis is still

impossible.

So far, the only geometrical configurations for which it is possible to obtain the
exact solutions for the elastodynamic fields by solving an initial/boundary value prob-

lem, are ones involving infinite straight cracks and unbounded bodies. For the prob-
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lem of semi-infinite crack loaded by a planar stress wave which after a finite delay
time starts to extend with a constant speed, the procedure of getting the complete
transient solution has been discussed by Freund (1973 and 1990). The time history of
the dynamic stress intensity factor was also obtained and was generalized to include
the situation where the crack propagates with a nonuniform speed. In Chapter 3,
we have revisited this problem and obtained the full field analytical solution for the
stresses surrounding the stationary and moving crack-tip. In addition, we have also
obtained the expressions for the coeflicients that appear in a newly developed higher
order transient asymptotic representation of the near tip field of a transiently growing
crack (Freund and Rosakis, 1992; Liu and Rosakis, 1992). We have shown that this
higher order transient representation is able to describe the actual near tip field very

well.

Ravichandran and Clifton (1989) have developed a novel experimental configura-
tion which involves loading a half plane crack by a planar tensile pulse. This exper-
imental method is designed to provide comparatively straightforward interpretation
of experimental observation within the framework of dynamic fracture mechanics.
In this configuration, a disc containing a pre-fatigued edge crack in its mid-plane is
impacted by a thin flyer plate of the same material. The resulting compressive pulse
propagates through the specimen and reflects from the rear surface as a step, tensile
pulse with a duration of about 1 usec. This plane wave loads the crack and causes
dynamic initiation and propagation of the crack. Within the duration of loading and
the extension of the crack, no unloading waves reach the crack-tip. Therefore, this
loading condition corresponds to a semi-infinite crack subjected to a finite duration
plane pulse. By using this experimental technique, one can attain loading rates of
approximately K; ~ 108 MPay/m - sec™!. This unique configuration allows for the
study of dynamic fracture processes which occur when the loading times are in the

submicrosecond range.
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Prakash and Clifton (1992) studied the process of crack initiation in a hardened
AISI 4340 VAR steel by using the high loading rate plate impact experimental proce-
dure described above. The total time period of their experiment was approximately
lusec. They monitored the motion of the rear surface of the disc at four different
points simultaneously during the experiment by using a multiple beam laser inter-
ferometer system. An important observation they made in these experiments is the
appearance of a clearly marked change in the free surface velocity at all four points
at times that correspond to the arrival of waves emanating from the crack-tip during
fracture initiation. Meanwhile, they also simulated the dynamic process numerically
using a visco-plastic finite difference code. The measured normal velocity of the rear
surface of the specimen at a typical monitoring point agrees well with computed scat-
tered fields except for the appearance of a sharp spike in the experimental data of a
very short duration. To provide an interpretation for the existence of these spikes,
Prakash et al. (1992) developed a mathematical model where they assumed that at
the moment of initiation, a small, but with finite size, hole suddenly appears at the
crack-tip. The stress field associated with this small hole radiates out into the body,
and the dominant singularity of this field is O(r~%/2) which is stronger than the singu-
larity caused by the sharp crack itself as the crack-tip is approached. In this case, the
jump in the particle velocity on the wavefront is infinite, a fact that is consistent with
the existence of a spike. However, one should recall that the measurements in their
experiments were carried out at points relatively far away from the initial crack-tip.
In such points, the information associated with the stronger singularity would die out
even faster than the term corresponding to the K¢-dominant field. This observation
has motivated us to seek a second, possible explanation for this phenomenon which
lies totally within the realm of classical transient elastodynamics of crack initiation

and growth.

In this chapter, we provide an alternative interpretation to the experimental ob-
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servations made by Prakash and Clifton (1992). In Chapter 3, we have obtained the
full field analytical solution for stresses surrounding the crack-tip. In addition, the co-
efficients in the higher order transient asymptotic representation developed by Freund
and Rosakis (1992) and by Liu and Rosakis (1992), have also been calculated. Based
on these results, we simulate the experimental observation by using some parameters
provided in the experiments. In the next section, the experimental technique and
procedure are briefly described. In Section 4.3, the higher order transient asymptotic
representation of the particle velocity field is derived by using the result given in Liu
and Rosakis (1992). In this asymptotic representation, transient effects including the
time derivative of the dynamic stress intensity factor and the crack-tip acceleration
are taken into account. In the same section, we use parameters from the experimental
measurement, namely, the delay time for crack initiation 7 and the amplitude of the
incident stress pulse *, to simulate the experimental output. This is done by using
the higher order transient representation and by initially assuming constant crack-tip
speed. The result shows that the higher order transient representation successfully
captures the crude feature of the experimental observation, i.e., a finite jump at the
time of crack initiation is observed. To predict the experimental observations more
accurately, we subsequently relax the restriction of constant crack-tip speed. To do so,
in Section 4.4, we first introduce a fracture criterion that relates the dynamic stress
intensity factor to the speed of the propagating crack. The fracture criterion is moti-
vated by the experimental measurements made by Zehnder and Rosakis (1990) on the
same steel. By solving the crack-tip equation of motion, all time-dependent quantities
in the higher order transient asymptotic representation are determined. The simula-
tion of the experimental observation shows that the fully transient asymptotic field
can describe the actual field very well. The information regarding the changes of the
dynamic stress intensity factor and the crack-tip acceleration associated with crack
initiation that are carried out by the term with r'/2, attribute to the formation of the

spikes seen in the experiments. Finally, some discussions are made and conclusions
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are drawn in the last section.

4.2 Description of the experiment

A very detailed description of the experiment has been provided by Ravichandran
and Clifton (1989) and by Prakash and Clifton (1992). The experiment is designed to
load a semi-infinite crack by a planar longitudinal tensile wave impinging at normal
incidence. The specimen consists of a round disc of 63mm in diameter and 8mm
in thickness, which contains a pre-fatigued edge crack that has propagated half way
across the diameter. The crack is situated at the mid-plane of the disc. The specimen
1s impacted by a plate flyer made of the same material as the specimen. The thick-
ness of the flyer is 3mm. Compressive waves of uniaxial strain are generated by the
impact. The wave propagating through the specimen reflects from the rear surface
and subjects the crack plane to a step tensile pulse. As the incident tensile pulse hits
the crack, part of it is reflected from the crack surface as a compressive wave and part
of it is diffracted at the crack-tip. The wave patterns of diffraction and reflection are
shown in FIGURE 4.1. As we can see from this figure, the transmitted wave ahead of
the crack-tip will be reflected from the front surface of the specimen and the reflected
compressive wave will be reflected from the rear surface of the specimen. Before these
two waves reach the crack-tip, the stress state near the crack-tip can be modeled as

a planar wave diffracted by a semi-infinite crack in an unbounded body.

The material used in the experiments is AISI 4340 VAR steel. This is a high-
strength, low-ductility, structural alloy having reduced levels of phosphorus and sulfur
to enhance the fracture toughness. Consequently, the choice of material allows the
experimental results to be interpreted within the framework of elastodynamic fracture
mechanics. The specimen is cut from a notched cylindrical bar in which a fatigue

crack has been grown by subjecting the bar to cyclical bending. In order to produce
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Figure 4.1: Wavefronts for the diffraction of a planar wave by a semi-infinite crack.

a homogeneous martinsitic microstructure, special care has been taken in the process

of heat treatment of the material.

The motion of four different points on the rear surface of the specimen is monitored
by using the interferometric technique. The experimental configuration is shown in
FIGURE 4.2. A fiberglass projectile which carries the flyer plate is accelerated by the
nitrogen gas releasing at prescribed pressure and is propelled down the gas gun barrel.
The velocity of impact is measured within an accuracy of 1% so that the amplitude of
the stress pulse 0* can be determined fairly accurate. The impact signal triggers the
recording system and the motion history of each point monitored on the rear surface
of the specimen is obtained. The duration of loading is determined by the thickness

of the flyer plate. For this special design of the experimental configuration and the



— 96 —

l 2.5" Diameter Tilt Adjustment

| Gas Gun Barrel

Prefatigued
Specimen

Specimen Holder

Catcher

To and from Laser
Interferometer System

|
l Fiberglass Projectile
I
|

Figure 4.2: Schematic of the experimental configuration.

specimen material, the loading duration is approximately lusec. Meanwhile, the
design of the experimental configuration ensures that within the duration of loading,
no unloading waves reach the crack-tip (see Ravichandran and Clifton, 1989; Prakash

and Clifton, 1992).

A typical recording of the experiment obtained by Prakash and Clifton (1992) is
shown in FIGURE 4.3. This figure shows the particle velocity-time profiles of the rear
surface motion at the four monitoring points ahead of the crack-tip. The horizontal
axis has been normalized by the characteristic time H/c;, where ¢ is the longitudinal

wave speed of the AISI 4340 VAR steel and H is the half thickness of the specimen.
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Figure 4.3: Experimental and numerical predicted (stationary crack) velocity-time
profiles at four different monitoring points, from Prakash and Clifton, 1992.

The measured particle velocity has also been normalized by the impact velocity Vj
which is 0.0854mm /psec for this particular experiment. The closest monitoring point
is located 0.68mm ahead of the crack-tip. The remaining three monitoring points are
spaced at 0.48mm intervals. In the figure, the solid lines correspond to the recorded
velocity-time profiles at those four monitoring points from A to D, which get closer
and closer to the crack-tip. The dashed curves correspond to the numerical simula-
tion of the experiment using the elastic-viscoplastic model of the material described
in Ravichandran and Clifton (1989), which assumes that the crack remains station-
ary. Agreement between the computed and experimentally obtained particle velocity

histories at the four monitoring points is seen to be very good up to the time which
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1s understood to correspond to the instant of crack initiation. After this time, the
experimental and computed velocity-time profiles deviate. An interesting observation
from this figure is the appearance of sharp spikes of very short duration at instant
corresponding to the crack initiation. As the stress wave emitted due to the crack
growth reaches the observation point, the particle velocity increases drastically and
then drops very quickly. In the following sections, we will provide an interpretation
of these spikes by using the analytical results obtained in Chapter 3 and the higher
order transient asymptotic representation developed by Freund and Rosakis (1992)

and by Liu and Rosakis (1992).

4.3 Higher order transient asymptotic represen-
tation of the particle velocity field

By using the asymptotic methodology introduced by Freund (1990), and by relaxing
the assumptions of K¢-dominance and steady state, Freund and Rosakis (1992) have
provided a higher order asymptotic expansion for the first stress invariant and have
shown that this expansion provides an accurate description of crack-tip fields under
fairly severe transient conditions. Rosakis et al. (1991) have also obtained all of the
components of the higher order asymptotic stress field near the tip of a non-uniformly
propagating mode-I crack. For the most general transient situation, i.e., a crack
propagates transiently along an arbitrary path, the asymptotic elastodynamic field
has been obtained by Liu and Rosakis (1992). In this section, we provide the higher
order transient asymptotic representation for the particle velocity field surrounding
the moving crack-tip. Based on this representation, we will further offer a possible

interpretation for the experimental observations described in the previous section.

By using the notation introduced in Liu and Rosakis (1992), for mode-I deforma-

tion, the two components of the higher order transient asymptotic representation for
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the particle velocity field surrounding a transiently moving crack-tip are:
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(4.3.2)

In expressions (4.3.1) and (4.3.2), v(¢) is the time dependent crack-tip speed, K¢(¢) is

the dynamic stress intensity factor at the moving crack-tip for mode-I deformation,

and A;(t), Az(t) are unknown coefficients of higher order terms. Functions f; ,(¢) and
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g1,5(t) are defined by
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and
D(v) = 4dajas — (1+a?)? )

D (v) = 4o, + (14 a?)?
. N 2(at—a))) (- (4.3.5)
m = = {(1 -« ) — L————--——)}

2
l_al

meo = {1-a) ,

(11,5, 61,5) are two scaled polar coordinate systems traveling with the crack-tip and are

defined by
1/2 _q og(t
Tl = {éf + azs(t)fg} , 01’3 = tan~! l,é )62 :
1
where the functions of time oy 4(t) are defined by

ans(t) = {1 B v;(t)}l/2,

l,s

and ¢, ¢, are the longitudinal and shear wave speeds of the elastic solid, respectively.
As we can see from equations (4.3.1) and (4.3.2), the first terms in the asymptotic
particle velocity field have the same form as those under the steady state conditions

and have r~1/2

singularities. However, here the crack-tip velocity takes the instanta-
neous value at each moment and the dynamic stress intensity factor K¢(t) may be an
arbitrary function of time. In the component ., the second term (spatially constant
term) also takes the form of steady state, but A;(#) may depend on time explicitly.
The third terms, which are proportional to r'/2, are totally different from the steady
state results for w4; and u; not only in their coefficients, but also in their angular
distributions. Here, the coefficient A»(#) may be an explicit function of time. From
the definitions, we also see that the differential operators D} ,{Ao(t)} depend on the
instantaneous values of the crack-tip speed and the dynamic stress intensity factor,
as well as their time derivatives. Meanwhile, B ,(¢) not only depend on the instan-
taneous values of the crack-tip speed and the dynamic stress intensity factor, but

also depend linearly on the crack-tip acceleration. In addition, the dynamic stress

intensity factor Kj(t) and the higher order coefficients A;(t) and A,(t) cannot be
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determined by the asymptotic analysis itself. They can only be determined by the
specific boundary and initial conditions of the problem. If the crack-tip speed v(t) is
constant, ie., if v(t) = 0, then By,(t) = 0, and D; {Ao(t)} will linearly depend on
the time derivative of the dynamic stress intensity factor. Under such circumstance,
expressions (4.3.1) and (4.3.2) correspond to transient crack growth with constant
velocity and varying stress intensity factor. This is still a transient problem. The
problem we solved in Chapter 3 belongs to this category. Furthermore, if the time
derivative of the dynamic stress intensity factor is also zero, then D} {Ao(t)} = 0 as
well. In this case, the higher order steady state expansion is obtained. However, the

coefficients A; and A, are now time independent.

For the problem at hand, we have obtained the full field analytical solution for the
elastodynamic field surrounding the crack-tip in Chapter 3. Also, we have obtained
the coefficients of the higher order terms A;(¢) and A,(t) for this problem. Therefore,
for the case of constant crack-tip velocity but varying dynamic stress intensity factor,
we can use expressions (4.3.1) and (4.3.2), with B, (¢) = 0 for this case, to predict the
particle velocity at any position and at any moment. To simulate the observations
given in FIGURE 4.3, we only need expression (4.3.2). However, since the measure-
ment is carried out at the traction free surface of the specimen and equation (4.3.2)
is for a point inside unbounded body (traction free condition is not met), the value
of the particle velocity 4, obtained from equation (4.3.2) has to be multiplied by a
factor of two to provide a proper comparison between the analytical and the exper-
imental results. For the particular test (shot No.8907, Prakash and Clifton, 1992),
the following parameters obtained from the experiment have been used in the simu-
lation: Impact velocity Vo = 0.0854mm/usec, Amplitude of the incident stress pulse
o* = 1941MPa, Delay time 7 = 0.1905usec, Material mass density p = 7600Kg - m~3,
Poisson’s ratio v = 0.3, Longitudinal wave speed ¢; = 5.983mm /usec, and Shear wave

speed ¢; = 3.124mm /psec.
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By using the parameters given above, FIGURE 4.4 shows analytical predictions
in which we have used the higher order asymptotic representation for the transiently
propagating crack with constant speed, to simulate the particle velocity at monitoring

point D. In FIGURE 4.4, the circles represent the experimental data while the various
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Figure 4.4: Analytical simulation of the experimental measurement at monitoring
point D by Prakash and Clifton (1992), shot No. 8907. Before crack initiation, full
field expression for the particle velocity is used. After crack initiation, three-term
transient asymptotic representation given in equation (4.3.2) with constant crack-tip
speed has been used.

lines stand for the simulated values. It should be pointed out that in FIGURE 4.4,
before crack initiation, the simulated particle velocity is calculated from the full field
analytical solution obtained in Chapter 3, while after crack initiation, expression
(4.3.2) is used. It can be seen that before crack initiation,the particle velocity cal-
culated by using the analytical solution, agrees well with the measurements. At the
very beginning, however, deviation exists between the theoretical prediction and the

experimental measurement. This is due to the fact that the specimen is preloaded by
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a compressive pulse resulting from the initial impact while the mathematical model
assumes that the body is loaded directly by a tensile stress pulse. After crack ini-
tiation, the velocity-time profile at point D is simulated by the three-term transient
asymptotic representation given in equation (4.3.2). Here, B;,(t) = 0, K¢(t) and
Aj(t) have been given in Chapter 3 (see equations (3.3.29) and (3.4.8) in Chapter 3).
One can see from this figure that by including the transient effect (through the time
derivative of the dynamic stress intensity factor K¢(t)), we are able to capture the
most important feature in the experimental observations for a particular choice of
crack-tip velocity, i.e., v ~ 0.33c,. At the instant of crack initiation, the particle ve-
locity at the monitoring point does not transit smoothly from the value corresponding
to the stationary crack to the value corresponding to the extending crack. This veloc-
ity has a jump at the moment associated with crack initiation and this jump depends

on the magnitude of the speed of crack growth.

At this point, some qualitative observations can be made from FIGURE 4.4. At
the instant of crack initiation, the crack first jumps from stationary to a velocity
about 0.3c, after that the crack-tip speed increases quickly and approaches the value
of 0.4¢c,. After crack initiation, the crack-tip speed oscillates about the level of 0.35¢,.
It seems that because of the applied stress pulse, deformation energy is accumulated
at the tip of the original semi-infinite stationary crack, and if the material is of
limited strength, the crack will start to grow and the deformation energy will be
released. Part of this released energy is consumed to form new crack surface, another
part becomes the kinematic energy of the crack-tip. However, this process is not
steady. The extending crack continuously increases its speed to approach a “steady”
state, i.e., the crack-tip speed approaches a constant value. Therefore, the formation
of the spikes in the experimental observations is attributed to the process of crack
initiation and then approaching the steady speed in a very short period of time. This

description is only a qualitative speculation and does not provide a complete picture
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about the dynamic crack initiation and transient crack growth since we have assumed
that the crack-tip velocity is constant when we simulate the experimental observation
in FIGURE 4.4, while change of velocity has been involved in this process. Notice
that in the higher order transient asymptotic representation of the field of particle
velocity, equations (4.3.1) and (4.3.2), the crack-tip acceleration plays a prominent
role. Therefore, if we can provide more accurate information regarding the crack-tip
speed during the extension, the picture of the transient crack growth will become
more complete. However, unlike the fracture experiments based on optical caustics
and CGS, the plate impact experimental technique cannot provide an independent
crack-tip velocity history. For this reason, in the next section, we will introduce a
criterion regarding dynamic crack growth first, and then we can predict the histories
of the crack-tip speed by solving the crack-tip equation of motion. After that, we will
simulate the experimental observation again by including all of the transient effects

(i.e., terms involving both K%(t) and (¢)).

4.4 Crack-tip equation of motion

If the history of the crack-tip motion is specified, then the surrounding mechanical
fields in an elastic body can be obtained in principle within the context of linear elastic
continuum mechanics, as long as the configuration of the body and the details of the
loading are also specified. However, since the motion of crack-tip is totally controlled
by the deformation state inside the surrounding material, the motion of the crack-
tip should not be specified a priori. Due to the fact that the constitutive equation
for the material does not include the possibility of material separation, we need a
mathematical statement of a crack growth criterion to be added into the governing
equations. Such criterion must be stated as a physical postulate on material behavior
and at the same level as the kinematical theorems governing deformation, momentum

balance principles, as well as the constitutive relation describing material response.
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The most common form for such a criterion is the requirement that the crack must
grow in such a way that some parameter defined as part of the crack-tip field maintains
a value that is specific to the material. This value, representing the resistance of the
material to the advance of the crack, is called the fracture toughness of the material,

and it can be determined through experimental measurements only.

During the process of crack growth, if the small scale yielding condition prevails,

a possible fracture criterion stipulates
K&(t) = K¢, , (4.4.1)

where the left-hand side is the dynamic stress intensity factor (in principle entirely
determined through an analysis of a boundary /initial value problem) and the right-
hand side represents a material quantity called the dynamic fracture toughness which
can only be determined through experiments. The dynamic stress intensity factor
K{(t) is known to be a function of crack length a(t), crack-tip speed v(t), and some
generalized measure of the applied load P(¢). It has also been suggested that the
dynamic fracture toughness must be dependent on crack-tip velocity (Freund, 1990;
Rosakis, Duffy, and Freund, 1984; Zehnder and Rosakis, 1990). Thus the fracture

criterion as given in (4.4.1) becomes
K{ (a(t),v(t), P(t),t) = Kig (v(t), ") - (4.4.2)

Equation (4.4.2) is an evolution equation for crack growth, i.e., a crack-tip equation
of motion, since it represents a nonlinear, first order differential equation for the crack

length a(t).

For the specific problem at hand, the dynamic stress intensity factor for the prop-
agating crack is given by

Kt = k(v)K}’g?\@ , (4.4.3)

where K} is the value of the dynamic stress intensity factor at the instant of crack

initiation (dynamic initiation toughness) and 7 is the delay time between the instant
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of stress wave arrival at the crack and the onset of crack extension (see Chapter 3).
k(v) is a universal function of the crack-tip speed v, such that k(v) = 1 at v = 0
and k(v) = 0 at v = cg, where cg is the Rayleigh wave speed of the material. As for
the dynamic fracture toughness, one usually assumes that it is only dependent on the

crack-tip velocity and on material characteristics. We can thus express K¢, as
K{(v) = Ki2f(v) , (4.4.4)

where K{p) is the quasi-static crack growth fracture toughness for the material (steady
state value of the resistance curve). f(v) is a function of crack-tip speed such that
f(v) =1 at v = 0. The relation between the dynamic initiation toughness K% and

K@ that appear in equations (4.4.3) and (4.4.4) is supposed to be
K% = oK, (4.4.5)

where a > 1. Since K@ corresponds to the quasi-static conditions, it represents
the situation where the loading rate is close to zero. Here, several effects have been
included into the number «. First, it has been observed that the critical value of
the dynamic stress intensity factor at crack initiation increases as the loading rate
increases. Secondly, in the laboratory situations, the crack-tip cannot be mathemat-
ically sharp, and the bluntness of the crack-tip will also increase the critical value for
initiation. Even for high strength materials like AISI 4340 steel, some initial plasticity
is expected to blunt the fatigue precrack. As a result, the number « is assigned to

accommodate the effects of loading rate and initial crack-tip bluntness.
Now the crack-tip equation of motion (4.4.2) becomes

\[ fo (4.4.6)

The form of the universal function k(v) can be simplified as (Freund, 1990)

k(o) = 220er (4.4.7)

V1—v/a
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Also for the purpose of present study and from previous experimental observations
regarding the relation between the dynamic fracture toughness and the crack-tip

speed, we choose the form of the function f(v) as

1+1t (7r v)
_an — 0 —
M 2 v,

f(v) = , 4438

where M and v, are two material constants. Notice that f(v) — 1 as v — 0

and f(v) — oo as v — v, so that v, represents a “terminal speed” that a crack
can achieve in this particular solid. In most of the dynamic fracture experimental
measurements, the terminal speed of a mode-I crack in the homogeneous material is
about 0.3 ~ 0.5¢cg. To determine the constants M and v,, for the material AISI 4340
VAR steel used in the experimental observations, we compare the curves given by
equation (4.4.8) to the experimental measurements obtained by Rosakis et al. (1984)
and by Zehnder and Rosakis (1990). These experimental measurements are shown
here in FIGURE 4.5. In this figure, the circles represent the value obtained from the
experiments, and the various lines are obtained from (4.4.8) for different value of M.
From this figure, we can see that v,, ~ 0.34c,. In the same figure, it seems that
M = 10 is best fitting for the experimental values. However, one should notice that
the material that the experiment used is 4340 steel (see Rosakis et al., 1984; Zehnder
and Rosakis, 1990) which is slightly different from the material used in Prakash and
Clifton (1992). The heat treatment processes are also different for these two materials.
As a result, the material used by Prakash and Clifton (1992) is more brittle than the
material used in Zehnder and Rosakis (1990). Another reason for this conclusion is
that the loading rates in the experiments by Prakash and Clifton (1992) are much
higher than the rate in Zehnder and Rosakis (1990). Under high strain rate, material
will also become more brittle. Previous experiments have shown that the more brittle
the material is, the more abrupt the K — v curve becomes. This suggests that larger
value of M should be used to simulate the experimental observations in Prakash and

Clifton (1992).
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and Rosakis (1990).

By substituting the expressions for k(v) and f(v) into the crack-tip equation of

motion (4.4.6), we get

1 T v v t

1+Mtan<~2—v—m—)—a(1-—~—) —:0, (449)
from which the time history v(¢) of the crack-tip speed can be obtained. Once the
crack-tip speed history is determined, the crack-tip acceleration can also be obtained
by differentiating the crack-tip speed profile. From equation (4.4.9), we can express

the crack-tip acceleration in terms of crack-tip velocity and time ¢ as:

o(t) = -2 2. o) : (4.4.10)

27 t/t
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where
{ T v \? v\2
)6
2 vn CRr
T CR v 1 T v } (7r v)z '
LR il 2.2 1 .
2M v, (1 CR)+{1+Mtan(2 vm) { + 2 Uy

Freund (1973) has shown that for an unbounded body under time-independent

g(v) =

loading conditions, the dynamic stress intensity factor at the running crack-tip can
be expressed as a universal function of instantaneous crack-tip speed times the equi-
librium stress intensity factor for the given applied loading and the instantaneous
amount of crack growth. Therefore, for the problem we considered in Chapter 3,
even when the crack propagates with nonuniform velocity, the dynamic stress inten-
sity factor K¢(t) is still given by equation (4.4.3), where the velocity v takes the
instantaneous value at each instant of time. As a result, the time derivative of the
dynamic stress intensity factor under this circumstance will be expressed in terms of

the crack-tip speed, acceleration, and the time ¢ as:

/
Kd(t) = Ki(t) {% + IZ((:))ﬁ(t)} . (4.4.11)

By applying the crack growth criterion (4.4.2), we have been able to determine the
time histories of crack-tip speed, crack-tip acceleration, and the time derivative of the
dynamic stress intensity factor. Consequently, the quantities that appear in the higher
order transient asymptotic representation of the particle velocity field surrounding the
moving crack-tip, i.e., D} ,{Ao(t)} and Bj,(t) in equation (4.3.4), can be determined
as well. However, the explicit expression for the higher order coefficient A,(¢) is
obtained under the condition that the crack propagates with a constant velocity (see
Chapter 3). Nevertheless, if we expand the field for the stationary crack subjected
to stress pulse (superposition of problems A and B in Chapter 3) to the third term
and compare this term to our expression for A,(t), we found that A,(t) has the

same property as the dynamic stress intensity factor, i.e., A3(¢) can be expressed as a
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function of instantaneous crack-tip speed times the equilibrium value of the third term
for the given applied loading and the instantaneous amount of crack growth. Based on
this observation, we conclude that for a crack propagating with a nonuniform speed,
the coeflicient of higher order term, A,(t), has the same form as that for constant
velocity except that the crack-tip speed takes the instantaneous value at each instant

of time.

The initiation and propagation of a semi-infinite crack subjected to the stress

wave loading conditions can be described by FIGURE 4.6. In FIGURE 4.6, the solid

K(Iic(V)A

\\\
~
~
\\
~
o >
m Cr v

Figure 4.6: Schematic description of dynamic crack initiation and propagation.

line represents the relation between the dynamic fracture toughness K¢, and the
crack-tip propagating speed v(t). The intersection of this curve to the vertical axis
is the value of the critical stress intensity factor of crack initiation under quasi-static
conditions, i.e., K{p. Also, this curve asymptotically approaches the vertical line

denoting the terminal speed of the crack-tip in this material. In the same figure, the

dashed line gives the relationship between the dynamic stress intensity factor K¢(¢) at
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the moving crack-tip and the crack-tip speed v(t). The point corresponding to v = 0
provides the value of the dynamic stress intensity factor at the stationary crack-tip
under stress wave loading. As v = cg, the dynamic stress intensity factor of the
moving crack will be zero. At the time ¢ = 7, the initial crack-tip speed and the new
value of the dynamic stress intensity factor just after initiation are determined by the
intersection point of the solid and dashed lines. As we can see from this geometrical
construction, the dynamic stress intensity factor suffers a drop relative to its value
immediately before initiation. For this particular loading condition and specimen
configuration, the initial crack-tip speed and the drop of the dynamic stress intensity
factor are completely determined by the shape of the solid line. In other words, they
are determined by the material property described by the crack growth criterion.
After crack initiation, since K§(#) is an increasing function of time ¢, the intersection
point will move upward along the crack growth criterion curve. The crack-tip speed
will increase as well and finally approach the terminal speed. In FIGURE 4.7, the
profiles of the crack-tip speed and crack-tip acceleration are plotted. Here, we have
chosen a = 2.0 and M = 600 to simulate a brittle material experiencing high strain
rate, and as the result of Zehnder and Rosakis (1990) suggested, we have also chosen
that the terminal speed v,, = 0.34c,.

By using the crack-tip velocity and acceleration histories given in FIGURE 4.7
which results from imposing the crack growth criterion depicted in FIGURE 4.5, and by
using the expressions for A,(t) obtained in Chapter 3, we simulate the particle velocity
at the monitoring point D again for the experiment presented in FIGURE 4.3. This
simulation is compared to the experimental results in FIGURE 4.8. In this figure, we
can see that the theoretical prediction is much closer to the experimental measurement
than the theoretical prediction obtained under the assumption of constant crack-tip
speed. By imposing the crack growth criterion, the crack-tip first jumps to a relatively

low initiation velocity and then quickly approaches its terminal speed. As a result,
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the particle velocity at the observation point D also jumps to a high value at the
moment of crack initiation at first, and then quickly decreases to the average value of
the particle velocity measured from the experiment at that point. Notice that even
though the theoretical prediction by our current higher order transient asymptotic
analysis has captured the essential feature of the experimental observation, the decay
of the particle velocity obtained from calculation is not as fast as the experimental
result. The reason for this difference is probably due to the fact that the measuring
point is relatively far away from the crack-tip, therefore even higher order terms in

the asymptotic expansion need to be used.
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Figure 4.8: Analytical simulation of the experimental measurement at monitoring
point D by Prakash and Clifton (1992), shot No. 8907. Before crack initiation, full
field expression for the particle velocity is used. After crack initiation, three-term
fully transient asymptotic representation given in equation (4.3.2) has been used.

In the theoretical simulations in the present and the previous sections, we choose

to compare the theoretical prediction and the experimental observation from point
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D only. For other points, like points A, B, and C in FIGURE 4.3, the results from
theoretical calculation and experimental measurements deviate progressively as the
distance from point D is increased. In particular, the further the horizontal distance
away from the crack-tip becomes, the larger is the deviation between the theoretical
prediction and the experimental measurement. The explanation for this deviation
is that when the stress wave diffracts at the stationary crack-tip, or emanates from
the moving crack-tip, cylindrical waves radiate from the crack-tip and propagate
towards the boundaries of the specimen. As these waves reach the boundary, various
kinds of waves are generated from the reflection of the incident wave. If the incident
cylindrical wave is longitudinal or transverse, both longitudinal and shear type of
reflection waves are generated depending on the incident angle. At the same time,
surface waves are generated as well. So the effects of these reflection waves influence
the experimental measurements. However, in our mathematical model, the specimen
is considered to be unbounded and the theoretical prediction cannot include the
free boundary reflection effects. The only point that an accurate simulation can be
expected from the theoretical model, is the point just below the crack-tip on the
boundary (see FIGURE 4.1). At this point, the reflection effect can be accounted for,
by multiplying the theoretical value by a factor of two. Unfortunately, there is no
further experimental data from such points available for our simulation. As a result,
a complete numerical simulation of the experiment is necessary. In such a simulation,
the data obtained from points just below the crack-tip can be compared with our

theoretical predictions.

4.5 Discussion and conclusions

In this chapter, the experimental observations made by Prakash and Clifton (1992)
are reinterpreted on the basis of the newly developed higher order transient asymp-

totic analysis by Freund and Rosakis (1992) and by Liu and Rosakis (1992). In this
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transient asymptotic representation, the leading term in the expansion of the local
stress field is the familiar stress intensity factor distribution, that is, it is square root
singular in the radial distance from the moving crack-tip and its coefficient is propor-
tional to the instantaneous value of the dynamic stress intensity factor, K¢(t). The
higher order terms, on the other hand, take into account the recent past history of
the stress intensity factor and crack motion. Therefore, the transient nature of the
local field is reflected in these higher order terms. It should be noted that from the
view point of asymptotic expansion, the coefficient of each term of the asymptotic
expansion carries different information about the deformation field. The coefficient
of the first term, K¢(¢), purely represents the intensity or the amplitude of the local
stress and deformation fields, and this coefficient depends on the overall specimen
configuration and loading condition. The coefficient of the second term, A;(t), also
possesses these properties. Inside the coefficients of the higher order terms, however,
more information will be present. One part of the information, like A,(t), etc. still
relates to the overall specimen configuration and loading condition. The other part
will relate to the crack-tip acceleration, time derivatives of the coefficients of the
lower order terms, and if the crack propagates along a curved path, as being shown
in Liu and Rosakis (1992) and in Chapter 2, it also relates to the shape of the crack
trajectory. At this point, we have clearly known the asymptotic structure of the defor-
mation field near a transiently moving crack-tip. Because each term in the expansion
1s associated with certain function of the radial distance from the crack-tip, therefore,
in order to correctly interpret the observation data in an experimental investigation,
either we can change the observation position continuously so that we can pick up
one specific information we are interested in, or we cannot choose the observation
point freely so that we have to resolve various information from the data we get. The
dependence of the leading term on the radial distance is 7~1/2, so the effects of this
term are restrained inside the region very close to the moving crack-tip. However,

the dependence of the higher order terms on the radial distance is r'/2 or higher.
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As a result, as the observation position is relatively far away from the crack-tip, the
effects of the higher order terms will become profound and cannot be neglected in

any attempt to interpret data obtained at that position.

The experimental configuration developed by Ravichandran and Clifton (1989)
and by Prakash and Clifton (1992) has the great advantage of being correlated to the
existing analytical results for two-dimensional dynamic fracture problems. However,
the technique utilized by Ravichandran and Clifton (1989) and by Prakash and Clifton
(1992) cannot access the crack-tip, so that the direct information about the crack-tip
speed and the intensity or the amplitude of the local stress and deformation fields
can only be inferred from the information obtained at positions far away from the
moving crack-tip. Nevertheless, this experimental configuration is still a very good
candidate for the study of dynamic fracture behavior of materials under very high
loading rates while the transient effects associated with the crack growth should be

taken into account in the interpretation.

In Chapter 3, the mathematical problem by which the experimental and loading
configuration can be modeled, is revisited, and the full field solution for the stresses
1s obtained. Meanwhile, the coefficients that appear in the transient asymptotic rep-
resentation of the deformation field are also be obtained for the situation of crack
propagating with constant speed. By including the higher order terms in the the-
oretical simulation, the result agrees fairly well with the experimental observations
(see FIGURE 4.4). We can conclude from FIGURE 4.4 that the near tip deformation
field is well described by the higher order transient asymptotic expansion, at least
qualitatively. Since the experimental technique cannot provide the complete histories
of the crack motion, we have to suppose that the crack growth is governed by a cri-
terion which relates the critical dynamic stress intensity factor and the moving speed
of the crack-tip. The mathematical form of this criterion is motivated by previous

experimental measurements. Through solving the crack-tip equation of motion, the
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history of crack-tip motion can be determined, so are those quantities related to the
transient effects. When all of these transient effects related quantities are cooperated
into the asymptotic representation of the particle velocity near the crack-tip, the sim-
ulation has become very close to the experimental observation. The meaning of this
simulation has two folds. One shows again the necessity of applying the higher or-
der asymptotic expansion which includes the transient history of the crack growth to
describe the near tip deformation fields. The other one shows that the crack growth
is indeed controlled by a material related criterion. This criterion gives the unique
relationship between the dynamic fracture toughness K¢, and the crack-tip speed v.
The existence of such a criterion in this simulation is supported by using the higher
order transient expansion, while the lack of the uniqueness of a relationship between
K¢, and v has been observed when the K¢-dominant assumption or the steady state
higher order expansion is used (see Kobayashi and Mall, 1978, and Ravi-Chandar
and Knauss, 1984). Therefore, the lack of the uniqueness of correspondence between
K¢, and v may be attributed by the fact that there is no K¢-dominant deformation
field surrounding the crack-tip close to the crack initiation as has been prevailed in

Chapter 3 and the study by Ma and Freund (1986).

However, some difficulties still exist preventing the complete simulation of the ex-
perimental observations by using the existing analytical solutions. This is due to the
presence of free boundary in the experimental configuration. Complicated wave re-
flections will occur when the stress waves emanated from the stationary or the moving
crack-tip reach the boundary. These reflections impose new difficulty for obtaining
complete analytical solution. As a result, in order to deepen the understanding of
the mechanism of dynamic crack initiation and growth, detailed numerical simulation

should be performed.
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Chapter 5

Interpretation of Optical Caustics in the
Presence of Non-Uniform Crack-Tip
Motion Histories

5.1 Introduction

In experimental investigation of dynamic fracture, the inherent time dependence of
crack propagating process requires that many sequential measurements of the field
quantities be made in an extremely short time, and these measurements should not
interfere with the crack propagating process itself. Therefore, most experimental
techniques for measuring crack-tip stress and deformation fields during rapid fracture
are based on optics. Optical techniques have a number of advantages for dynamic,
local crack-tip measurements. The specimen is observed continuously and crack paths
need not be known prior. There is no coupling between the optical and mechanical
processes, i.e., the method of measurement does not interfere with the process being
examined. The time response of the optical techniques is virtually instantaneous
compared to the time scale of the mechanical response. Finally, due to the local
nature of the measurements, optical methods can be expected to be sensitive enough

to detect local events such as the onset of crack initiation or arrest.

In the past few decades, a number of optical methods based on the principles
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of light wave interference have been introduced for the study of stress and strain
fields. Such techniques include photoelasticity, moiré deflectometry, coherent gradient
sensing (CGS), Twyman-Green interferometry, optical caustics, etc. However, each
optical method is characterized by a different set of restrictions in its applicability.
The application of photoelasticity, for example, is confined to transparent materials,
or to opaque materials with transparent coatings. Other methods require complicated
optical arrangements, or sophisticated image processing systems. As a result, they
suffer from severe light limitations and are not suitable for high-speed photography

applications.

The optical method of caustics, a technique based on geometrical optics, has sev-
eral advantages over the other optical methods which are mainly related to its sim-
plicity. It requires a simple optical set-up which does not involve the use of diffraction
optics. It can be used easily either in transmission or in reflection arrangements. Data
analysis is simple and does not require the use of complicated image processing tech-
niques. The simplicity of the technique makes it an ideal candidate for high-speed
photography applications. In particular, the fact that the physical principle of caus-
tics does not hinge on the availability of a coherent, monochromatic light source, has
allowed for the use of high-speed camera systems which utilize white light illumina-
tion such as the Cranz-Schardin type cameras. In addition, the lack of complicated
optical components, such as diffraction gratings, beam splitters, etc., in a caustic set-
up ensures minimal light intensity losses which are crucial for successful high-speed

photography, especially when the exposure time is in the order of nanoseconds.

The method of caustics has been initially introduced by Schardin (1959) and
Manogg (1964). Manogg used caustics in a transmission arrangement and gave the
first quantitative analysis. He was able to record changes in the optical path of rays
traveling through transparent plate at the vicinity of a crack-tip, where the elastic

stress field introduces changes in the refractive index as well as changes of plate
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thickness. The resulting difference in optical path produces a caustic pattern on a
screen placed behind the specimen. He showed that the geometrical characteristics
of the caustic depend on the nature and intensity of the crack-tip singularity and was

able to measure the intensity of the near-tip stress field.

After Manogg’s work, the method of caustics was extensively used by Theocaris,
who was also the first one to use this method in a reflection arrangement (Theocaris,
1970 and 1971). Later, Theocaris and Gdoutos (1974) applied the method of caustics
in reflection to experimentally examine the deformation fields near the tips of sta-
tionary cracks in metal plates, and this is the first application of the method to the
investigation of fracture in metals. Unlike the method of photoelasticity which gives
the information of the distribution of the maximum shear stress in a domain, the
method of caustics is directly related to the in-plane components of the gradient of
the first stress invariant, so it is much more sensitive to the singular stress distribution
than photoelasticity. Due to this advantage, the method of caustics is a very good
candidate to be applied to investigating the phenomenon of stress concentration at
any singular region, especially, at the vicinity of the crack-tip. Since the beginning
of 1970’s, the optical method of caustics has been developed into a successful experi-
mental stress analysis method and found wide applications, especially for the analysis

of dynamic fracture mechanics problems.

There are two sets of simplifying assumptions that are customarily made in the
various applications of the method of caustics. One regards the analysis of the optical
process (transmission or reflection) and the other regards the nature of the mechanical
fields under study. In each of them, assumptions and simplifications are made in
order to interpret the caustic pattern quantitatively. The limitations introduced by
the simplifications in the optical analysis of the method of caustics as well as an
exact geometrical optics interpretation of the technique were thoroughly discussed by

Rosakis and Zehnder (1985) and Rosakis (1993). However the corresponding issue
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regarding the assumptions made about the mechanical fields under study is more

complicated and troublesome.

In linearly elastic dynamic fracture mechanics, the method of caustics was first
used in experiments involving very rapid crack propagation and stress wave loading
by Kalthoff et al. (1976), Katsamanis et al. (1977), Theocaris (1978), and Goldsmith
and Katsamanis (1979). In each case, it was assumed that the elastic stress field at
the vicinity of a rapidly propagating crack-tip has precisely the same spatial variation
as the elastic stress field near the tip of a stationary crack. That is, the influence
of inertial effects on the spatial distribution of the crack-tip field was not taken into
account. Kalthoff et al. (1978) introduced an approximate correction factor to ac-
count for the error introduced when the static local field is used in the interpretation
of caustic patterns. Rosakis (1980) presented the exact equations of the caustic en-
velope for elastic specimen containing a rapidly growing crack. He also presented the
caustic equations for the case of mixed mode plane stress crack propagation. The
above analyses all assume that the deformation field near the propagating crack-tip
is K¢-dominant. This means that the stress field at a finite region near the crack-tip
can be approximated accurately by the elastodynamic asymptotic singular solution
(to within some acceptable error). Based on this assumption, many experimental in-
vestigations of the dynamic crack initiation, propagation and arrest have been carried

out since then.

Recent experimental investigation by Krishnaswamy and Rosakis (1991) and an-
alytical results by Freund and Rosakis (1990, 1992) have found that the analysis
of caustics based on K§¢-dominance may not always adequately characterize the be-
havior of the deformation field at the vicinity of a transiently propagating dynamic
crack-tip. Indeed the assumption of K¢-dominance is often violated during dynamic
crack growth. By relaxing the assumption of K¢-dominance, Freund and Rosakis

(1992) have suggested that under fairly severe transient conditions, a representation
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of the crack-tip field in the form of a higher order expansion (involving time deriva-
tives of crack-tip velocity and stress intensity factor) should be used to interpret the

experimental observations.

In this chapter, we will re-examine the optical method of caustics by considering
non-uniform crack growth histories. In Section 5.2, the formation of the caustic image
is briefly reviewed. In the following section, the exact mapping equations of caustics
and the initial curve equation are derived for a non-uniformly propagating mode-I
crack. This derivation is based on the theoretical results of Freund and Rosakis (1990,
1992), Rosakis et al. (1991), and the results given in Chapter 2, which allow both the
crack-tip speed and the dynamic stress intensity factor to be arbitrary differentiable
functions of time. Then the explicit relation between the dynamic stress intensity
factor, K%(t), and two geometrical dimensions of the caustic pattern, is established.
It is shown that the classical analysis of caustics is a special case of this result under
the condition of strict K¢dominance. In Section 5.4, a multi-point measurement
technique is established to accurately measure the two geometrical dimensions used
in the transient interpretation of the caustic pattern. In order to verify the accuracy
of the analysis developed in Sections 5.3 and 5.4, the Broberg problem is considered
as an example problem of transient crack growth in Section 5.5. The exact caustic
patterns are generated by using the solution of Broberg problem. These patterns are
subsequently analyzed by using both the classical analysis and the newly modified
method proposed in the previous sections. The results show that the value of the
dynamic stress intensity factor obtained by the modified method agrees remarkably
well with the exact analytical value while large errors are introduced when the classical
analysis (K¢-dominance) of the method of caustics is used. In the final section, some

comments and discussions are made.
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5.2 Method of caustics

5.2.1 Mapping equations

Consider a plate specimen of uniform thickness, h, in the undeformed state. Let its
mid-plane occupy the (z1,z3) plane of an orthonormal Cartesian coordinate system.
As the specimen is subjected to applied loads, non-uniform gradients in the optical
path of light transmitted through it, or reflected from its surface, are generated. For
a transparent specimen, the gradients in the optical path are due to non-uniform
changes in the thickness of the plate and also due to stress induced gradients in the
refractive index of the material in the specimen interior. For an opaque specimen, the

gradients in the optical path are due to non-uniform surface elevations of the plate.

Cousider further a collimated beam of light traveling in the zs-direction, normally

incident on the plate, as illustrated in FIGURE 5.1. Under certain stress gradients, the

Specimen Virtual Screen Specimen Real Screen
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Figure 5.1: Caustic formation in (a) reflection, (b) transmission.

reflected or refracted rays will deviate from parallelism and form an envelope in the
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form of a three-dimensional surface in space. This surface, which is called the caustic
surface, is the locus of points of maximum luminosity in the reflected or transmitted

light fields.

The deflected rays are tangent to the caustic surface. If a screen is positioned
parallel to the z3 = 0 plane so that it intersects the caustic surface, then the cross-
section of the surface can be observed on the screen as a bright curve (the caustic
curve) bordering a dark region (the shadow spot). Suppose that the incident ray, which
is reflected from or transmitted through point p(zy,z2) on the specimen, intersects
the screen at the image point P(X7, X3). The (X;, X3) coordinate system is identical
to the (z1, ;) system, except that the origin of the former has been translated by
a distance z to the screen (zp can be either positive or negative). The position of
the image point P will depend on the gradient of the optical path change AS(z1, z3)
introduced by the specimen as well as on the distance z, and is given by (Rosakis
and Zehnder, 1985):

X =z +2V(AS(z1,22)) , (5.2.1)

where X = X,€a, T = 746, a € {1,2}, €a denote unit vectors, and ‘V’ denotes
the two-dimensional gradient operator. Relation (5.2.1) describes the mapping of the

points on the specimen onto the points on the screen.

5.2.2 The initial curve and its significance

If the screen intersects the caustic surface, then the resulting caustic curve on the
screen is the optical mapping of the locus of points for which the determinant of the

Jacobian matrix of mapping equation (5.2.1) must vanish on the specimen, i.e.,

J(z1, 9; 20) = det {Xa,ﬂ(xl, za, zg)} = det {Jaﬁ + 20(AS),ap } =0. (5.2.2)

Equation (5.2.2) is a necessary and sufficient condition for the existence of a caustic

curve. The locus of points on the reference plane (z1,z2,z3 = 0) for which the
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Jacobian vanishes is called the initial curve whose geometry is described by equation
(5.2.2). All points on the initial curve map onto the caustic curve. In addition, all
points inside and outside this curve map outside the caustic (Rosakis and Zehnder,
1985). Since the light transmitted through or reflected from both the interior and the
exterior of the initial curve maps only outside the caustic, the area within the caustic
remains dark and is customarily referred to as the shadow spot. Also since the light
that forms the caustic curve originates from the initial curve, essential information

conveyed by the caustic comes from that curve only.

Equation (5.2.2), defining the initial curve, depends parametrically on zy. Thus,
by varying zo, we may vary the initial curve position. If zo is large, the initial curve
will be far from the crack-tip. If zp is small, the initial curve will be close to the
crack-tip. Variation of 2z can easily be achieved experimentally by simply varying
the focal plane of the recording camera system. This is an essential property of the
method of caustics, and it can be utilized to “scan” the near-tip region to obtain
information regarding the nature of the deformation field at different distances from
the crack-tip. This property has been used by Krishnaswamy and Rosakis (1991)
in the bifocal caustic technique to study the extent of K¢-dominant region. For the
present work, we require that the initial curve is located outside the near-tip plastic

and three-dimensional zones.
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5.3 Interpretation of caustic patterns in the
presence of transient effects

5.3.1 Caustics generated by non-uniformly propagating
cracks

For opaque specimens, caustics are formed by the reflection of light rays from the
polished specimen surface. The shape of the caustic curve depends on the near-tip
normal displacement uz of the plate surface, initially at 3 = h/2, where h is the
undeformed specimen thickness. For transparent specimens the optical path change
AS depends on both local changes in thickness and on local changes in refractive

index. The change in the refractive index An is given by the Maxwell relation,
An(z1,22) = Dy {011 + 022 + 033} (5.3.1)

where D, is the stress optic constant and o¢;; are the nominal stress components. The
above relation is strictly true for mechanically and optically isotropic linear elastic

solids.

For a cracked linear elastic plate of uniform thickness and finite in-plane dimen-
sions, the optical path difference AS, in general will depend on the details of the
three-dimensional elastostatic or elastodynamic stress state that would exist at the
vicinity of the crack-tip. This will be a function of the applied loading, in-plane
dimensions and thickness of the specimen. In the present work, we assume that
the two-dimensional asymptotic analyses may provide adequate approximation for
AS(z1,3). In particular, it has been suggested that conditions of generalized plane
stress will dominate in thin cracked plates at distances from the crack-tip larger than
half of the specimen thickness (Rosakis and Ravi-Chandar, 1986; Yang and Freund,
1985), which implies that if the initial curve is kept outside the near-tip three dimen-

sional zone, the resulting caustic could be interpreted on the basis of a generalized
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plane stress analysis. Furthermore, in this chapter, we also assume that the initial
curve is always kept outside the plastic and the fracture process zones, and this en-
ables that the asymptotic elastic analysis can be employed to interpret the caustic

pattern.

Under the aforementioned conditions, the optical path difference AS(zy, ;) will
be (Rosakis, 1993)

AS(.’El, 1152) = ch ‘{6’11(.’1}1, .’122) -+ (}22(.1'1, IL'2)} y (532)

where

(Dl — %(n — 1)) = ¢, , for transmission

for reflection

| «

and E and v are the Young’s modulus and Poisson’s ratio of the material, respectively,
Cs is called the stress-optical coefficient, and 11 and &, are thickness averages of the
stress components in the solid. These stress components will be provided by the
generalized plane stress solution of the elastostatic or elastodynamic problem under

investigation.

Consider a planar, mode-I crack that grows through a two-dimensional, homo-
geneous, isotropic, linearly elastic solid, with a non-uniform speed v(t), along the
positive zj-direction. Let ({1,{2) be the coordinate system which translates with
the moving crack-tip and the §-axis coincides with the crack propagating direction.
The asymptotic stress field around the tip of a non-uniformly propagating dynamic
mode-I crack has been presented by Rosakis et al. (1991), which can also be obtained
from the stress field given in Chapter 2 by imposing the conditions of mode-I straight
crack. By using the notations defined in Chapter 2, for generalized plane stress, the

thickness averaged sum of the two normal stress components is
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and p and g are the mass density and the shear modulus of the elastic material,

respectively. Notice that for making the notation short, here the undetermined func-

tions of time have been redefined as Ag(t), A;(t), and A,(t), where Ay(t) can be

directly related to the dynamic stress intensity factor K¢(t).

By substituting the above expression for the first stress invariant into the optical

path difference relation (5.3.2), the mapping equation (5.2.1) becomes

36,
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In the expressions above, Ao(t) is determined by the dynamic stress intensity factor
history, K¢(t), and the propagating speed of the crack-tip, v(¢). D}{Ao(t)} depends
not only on K%(t) and v(t), but also on the time derivatives of these quantities.
Besides K{(t) and v(t), B;(t) also depends on the acceleration of the crack-tip. From
the first stress invariant, equation (5.3.3), we can see that the dynamic transient
effects, D} {Ao(t)} and Bj(t) inter the expression only through the third terms. If
we also want to investigate the higher order time derivatives of K{(t) and v(t), we
have to use higher order terms in the asymptotic expansion of stress. The coefficients
Ag(t), A (t) and flz(t) cannot be determined by the asymptotic analysis. Their values
can only be determined for particular initial/boundary value problems. It should be
observed at this point that the ; variation of the higher order terms in relation (5.3.3)
is different from that of the steady state higher order expansion presented by Dally
et al. (1985). Relation (5.3.3) reduces to the steady state case only if both K¢ and v

are constant.

We can also see from above expressions that if the crack-tip speed v(t) is a con-

stant, i.e., v(t) = 0, and therefore, By(t) = 0, equations (5.3.4), (5.3.5), and (5.3.6),
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give the caustic mapping equation and the initial curve equation corresponding to
transient crack growth under constant velocity and varying stress intensity factor.
Furthermore, if the time derivative of the dynamic stress intensity factor, K}i(t) 1s
also zero, D} { Ao(t)} will be zero. In such a case, equations (5.3.4), (5.3.5), and (5.3.6)
describe the caustic curves corresponding to steady state crack growth evaluated on
the basis of a three term steady state expansion for the stresses. If in addition, A,
vanishes, these relations exactly reduce to the results obtained under the assumption
of K¢-dominance (Rosakis, 1980). For stationary cracks (v = 0), D} {Ao(t)} and By(t)
all vanish even if K; # 0. Depending on whether the loading is dynamic or not, A,
may be either a constant or a function of time. If A, happens to be vanish, then a
situation of K;-dominance is established outside the near-tip three dimensional zone

and the equations of the caustics reduce to those of an epicycloid (Theocaris, 1981).

5.3.2 Relation between the dynamic stress intensity factor
and the geometrical dimensions of caustics

For a given specimen with a straight mode-I crack, if the initial conditions and the
boundary conditions are prescribed, and also if the crack propagation history, i.e., the
propagating velocity of the crack-tip v(¢), is known, then the history of the dynamic
stress intensity factor, K§(t), can be determined. Consequently, D} {Ao(t)} and B(t),
which depend on the dynamic stress intensity factor and the crack tip velocity as well
as on their time derivatives, can also be determined, and so can the coefficients
Ay (t) and Ay(t). According to equations (5.3.4), (5.3.5), and (5.3.6), the shape of the
initial curve and the caustic pattern corresponding to this dynamic crack propagation
process for each instant of time, can be calculated. However, in laboratory situations
the inverse problem is encountered. That is the values of K¢(¢), D} Ao(t)}, Bi(t),
Ay(t), and A,(t) have to be determined from the caustic pattern. Indeed, in dynamic

fracture experiments we need to establish a method of inferring the stress intensity
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factor history from local near-tip measurements, since the boundary/initial value
problem is usually too difficult to solve. In this section, we provide the main steps of
the derivation of the relation between the dynamic stress intensity factor and some
experimentally measurable quantities (i.e., geometrical characteristics of caustic and

crack-tip velocity).

Since the caustic mapping equations (5.3.4) and (5.3.5), and the initial curve
equation (5.3.6) are too complicated, we now make the assumption that v/q < 1.
This assumption is realistic since in most solids terminal crack growth velocities do not
exceed a speed of 0.2¢;, or approximately 0.5¢cg before branching. cg is the material
Rayleigh wave speed in plane stress. It is thus felt that assuming v/¢; < 1 will lead
to a useful and accurate simplification for the mapping equations. By making this

simplification, equations (5.3.4) and (5.3.5) become

A _ 6 o _ 9 )
X; = rcosb + K(t)r; % cos == — A(t)r; /* cos —2—l
1 ~1/2 6 56,
- §B(t)r, Y (cos 5 ~ cos 7)
: , (5.3.7)
6 NP 36, ., - 6
X, = L oy {K(t)rl 32 gin 24 A(t)r, Y2 gin 2
(67] 2 2
1., _ . 6 . 56
+ EB(t)Tl 172 (3 sin + sin 7) } J

and the initial curve equation associated with the above mapping equations are ob-

tained by requiring that the Jacobian of the above transformation vanishes, i.e.,

3 . - 5, 9
1—=(1-a})K(t)r, 52 cos 2L — ~a?K*(t)ry®
2 2 4
1 - - 36, 3 ., A 1,4
+ {5(1 — a})A(t)r;] 32 cos 7’ + 5&,2K(t)A(t)r,’4 cos O — Za,zA2(t)rl_3}

_.g(t) {l

4

~

_|_

N

36
[(3 + Sa?) cos 7’ —-3(1 - a?)

701J
cos —
2

1
A(t)(1 + 3 cos 20,)r;° + §B(t)(1 + 3 cos 26; — 4 cos 391)rl_3} =0

-3/2
L} /

— 302K (t)r;* cos b,

(5.3.8)
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A
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Kj(t)

8

1502 .

{2

cf

Ax(t) + Dy{Ao(t)}

|

A

B(t) = zochp(c} — )Bi(t)

Foy - (et =D+ o)
 daa — (14 a?)? )

For given experimentally obtained caustic patterns and an appropriate numerical

scheme, equations (5.3.7) and (5.3.8) can be used to obtain the values of f((t), A(t),

and B(t) as functions of time.

Since the initial curve equation (5.3.8) is still too complicated to use, and in
an attempt to retain some of the simplicity of the classical analysis of caustics one
can introduce a simplifying assumption regarding the nature of the initial curve by
assuming that the initial curve remains a circle of radius ro(¢) in the scaled polar

coordinate plane (1, 6,), i.e.,

o

which implies that the size of the initial curve is only determined by the instantaneous

3

X 2/5
Eme} = ro(t) (5.3.9)

value of the dynamic stress intensity factor, as well as the propagating velocity of
the crack-tip, rather than the time derivatives of these quantities. By substituting
1 = 1o(t) into the mapping equation (5.3.7), the parametric equations of the caustic

are obtained as follows:

1 2 391 A(t)TO 01 B(t) (91 59[ )
— =cos b + — { cos — — — COS — — ~— COS$ — — COS —
To 3oy K(¢) 2 2K(t) 2 2
Xz sin 91 2 . 391 A t)?"o 91 B(t)T’O . 9[ . 591
— = — < 8in — — — sin — = 3sin — + sin —
ro o 3 2 K@) 2 2R(t) 2 2

(5.3.10)
For A(t)ro/K(t) — 0 and B(t)ro/ K (t) — 0, equation (5.3.10) reduce to the paramet-

ric equation for dynamic caustics obtained on the basis of K¢-dominance (Rosakis,
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1980). The validity of the assumption regarding the circularity of the initial curve

will be justified in section 5.5 in connection to the Broberg problem.

The two caustic curve dimensions chosen in this analysis are the maximum trans-
verse diameter D of the caustic and the distance between the point of intersection of
this diameter with the Xj-axis and the front point of the caustic. This length will
be denoted by X. These lengths are shown in FIGURE 5.2. If the end point of the

XT (P, %)

Crack

Figure 5.2: Evaluation of the dynamic stress intensity factor K%(t) by measuring
two geometrical dimensions, D and X.

caustic diameter has coordinates X{™ and X3, respectively, and if the front point of
the caustic curve, has coordinates X" and X~ = 0, then one can use the mapping

equation (5.3.10) to write

X = 1o+ K(t)rg®* — A(t)ry*?
: (5.3.11)
X =0
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and
. ~ 39(1)) R B H(D) )
X = rocos8” + K(t)rg 32 cos T — A(t)rg 1% cos -
1. B Q(D) 59(D)
- EB(t)TO 1z <cos 17 — cos 2’
ro sin 85> . 36> . o> |7 (53.12)
XP = PP 4o R (g sin e — A(t)rg ™ sin 2
(84 2 2
1. ) 5g®)
+ —2-B(t)r0 172 (3 sin —-lé— + sin 2’ J

where 6 is the angular coordinate of the point (ro,#{"’) on the initial curve that
maps onto the point (X{*, X5”'), where X, is a maximum. Since at this point, X, is

a local maximum, the following condition has to be met

dX
37,2 =0, as 6 =6, (5.3.13)

The relations between the experimentally measurable quantities, D and X, and

the points (X{™, X5”) and (X{, X3), are
D=2X", X=XP_-xP. (5.3.14)
Then, the relations that should be used to obtain the unknown coefficients, are

. 3/2 a(D) \
) — 204 A(t)rg 7 sin —-’2—

D sing> 2 . 36"
— = 2 -+ n
To e 7} 3

. : 1) (D)
+ wB(t)r, 3/2 (3 sin ——%— + sin 5021

S|

9 2 39(1)) . 3 (D)
= (1—!—— — cos B® — — cos 2’ —A(t)ros/2 1—cos—912—)

30{[ 3C¥[

1 . _ g 54P)
+ §B(t)r0 3/2 (cos ’7 — cos 2’

7/

(5.3.15)
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and

1 (98X 6> 3\ 1 . ;>
— <—2> = (COS Lt cos—— | — —agA(t)r 32 cos 2o
To 691 91=9§D) aq 2 2 2

(5.3.16)

. 3 fP) 5
+i—alB(t)r03/2 (3COSIT + 5 cos 2’ =0

In the above expressions, relation (5.3.9) between K (t) and ro has been used. It seems

that there are only three equations in (5.3.15) and (5.3.16), but four undetermined

parameters, ro(or K(t)), 6, A(t), and B(t). However, if the crack propagating

velocity, v(t) and thus v(¢) are independently known, then B (t) is related to K (t) by
A 20(t) -
B0 =20k,

apcy

and thus é(t) and K (t) are not independent variables. So actually there are only
three undetermined parameters, and they can be obtained by solving the equations
(5.3.15) and (5.3.16). By eliminating A(t), and B(t) from equations (5.3.15) and

(5.3.16), we obtain the relations

(D) )
2~ o) -ty n i

To

20(t)D 6™
+ (4)2 {92(95D))—2g£(9§D’)tan—’5~}-bq : (5.3.17)

ag ¢

2U(t)X To
= RO+ e R0 % J

S |

where

: G(D) 2 39(1))
a(8”) = 2<Sml + = sin — ,
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2 6> 595‘”)
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@6 = 3 (3 sin-—lé- + sin 5

®) 2 2 6> b
f(67) = 1+3—— 1+zy-—2— sec7—~l cos 6>
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+ — |- —sec— }cos

o \3 2 2
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f(6) = 3_CY1{<4 - 386017 cos——lg— + |4 — 5sec IT) cos 21 } .
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In equation (5.3.17), the prime denotes the differentiation with respect to the argu-
ment, 6{”. Consequently, when D and X are measured, ro and 6 can be obtained
by solving equation (5.3.17), and therefore, the dynamic stress intensity factor, K¢(t),

can be obtained from relation (5.3.9).

To be more explicit, we solve the first equation in (5.3.17) for ro, which then can

be expressed as

-1 A
D {1—Mt @} {l_l_\]i_*_Zv(t)D. Go(6) } |

To = —— o) an
T alt™ U al?) 2 2 afcd  [Gi(6)]?

(5.3.18)
where
(D) (D)

6 0
G1(8”) = 91 (67) = 20,67 tan ", Ga(6”) = a(6°)) — 265(65")) tam -

By using equations (5.3.9) and (5.3.18), the dynamic stress intensity factor can be

expressed as

5/2 1 (D) (D) y —=5/2 )
Ko = (DY o )

3agchzoF(v) | g1(6 91(8) T
o2 . (5.3.19)

1 1 20()D Gy(6)
X 9 + 4 7 ; 2
A [Gi(6)]

The above expression still contains an undetermined parameter, 6. However, if the

second equation in (5.3.17) is solved for ry, we can get that

-1

X 1 1, 26X fo(8)

0= 7770 ) 5 -

RO |27\ 47 afd [ )

Consequently, the angle 6 that appears in equation (5.3.19) is the root of the
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following trigonometric equation,

X _ AW 1, |1 20X AED)
D Gi(6™) ]2 4 ofct [fl(agm)]z
) (5.3.20)
1 1 20(8)D  Gy(6™)
“Neztat wa (ID) ?
A (o))

Under the fully transient dynamic condition, equations (5.3.19) and (5.3.20) give
the final relation between the dynamic stress intensity factor, K¢(¢), and the experi-

mentally measurable quantities, D and X.

It should be pointed out that for the case of non-uniformly propagating crack, the
dynamic stress intensity factor, K¢(¢) measured from the caustic patterns, is explicitly
related to the crack-tip acceleration, v(t). It is also implicitly related (through 6\>)
to K%(t). The coefficient Ay(t) can also be obtained in the following way,

2 1 9(D) ’ To 3/2 21)(t)D To 5/2
0= 2 o) ()" 502 ()" . o

and

A - 2 { Ap) sty d [0"3/2(’5) (Z‘E)w 05/2” . (5.3.22)

1502 | zochp(c? — ) 307 dt o D
where ro/D is given by equation (5.3.18) and 6{" by equation (5.3.20) in terms of the
measurable quantities X and D. Once the caustic diameter D is measured at different
times, /ig(t) is determined from (5.3.22), provided that many sequential measurements
of caustic patterns are available and if the time derivative in the formula can be

evaluated by some numerical procedures.

In an experimental situation, caustic patterns are photographed and D and X are
measured. Equation (5.3.20) is then used to obtain 6", substitute it into equation

(5.3.19) and thus obtain K§(t). From equations (5.3.21) and (5.3.22), coefficient A,(¢)

can also be determined.
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A

For the case of constant velocity, B(t) = 0 (v(¢) = 0), equation (5.3.19) corre-
sponds to transient crack growth under constant velocity and varying stress intensity
factor. Equation (5.3.20) then gives an explicit relation between X/D and 6. If
the time derivative of the stress intensity factor, K¢(t), is also zero (steady state),
then D}{A¢(t)} = 0. For both ¢(t) = 0 and steady state, the relation between the
dynamic stress intensity factor, K¢(¢), and the caustic diameter, D, has the same
form. The only difference comes in the value of 8, which is directly related to the

ratio X/D. For the transient constant velocity case (9(t) = 0, K¥(t) # 0),

9 A 5/2
Agt) = 24 { Al 8 . d (ﬁﬁ-)—) H (5.3.23)

T 1502 | zochp(cE — c2) | 3ajv dt
(5.3.24)

For the steady state case (9(t) = 0, K%(t) = 0),

;o 4c} A
7T 1502 zochp(E — )’

or, in this case, A, is directly related to the caustic diameter.

Furthermore, if we only retain the singular term in the asymptotic stress expan-
sion, then in the caustic mapping equation (5.3.7) and the initial curve equation
(5.3.8) A(t) and B(t) will be zero, and equations (5.3.7) and (5.3.8) reduce to the
same equations used in the classical analysis (Rosakis, 1980). If we still make the as-
sumption of (5.3.9), the unknown parameters will reduce to two (i.e., K¢(¢) and 6{°)),
and so we only need to measure one quantity from the caustic pattern, say the diam-
eter, D. By using the first equation in (5.3.15) and equation (5.3.16), the dynamic
stress intensity factor corresponding to the classical analysis can be determined. Now

equation (5.3.19) becomes

K{() (5.3.25)

it {gl(D )}5/2'

- 3aychzoF(v) 6>
Also, if A(t) and B(t) are set equal to zero, the maximum condition (5.3.16) requires

that

9(1)) 39(13)
g6 =2 (99-5—’—— +oos =] =0, (5.3.26)

aq
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and this will provide the value of 8 as a function of crack-tip velocity v. Now define

)= i {gf(él;z’)}S/? ’

where C(v) is a function of the crack-tip velocity, v. Equation (5.3.25) can be rewrit-

ten as
D5/2
4(t) = —_— 5.3.
le(t) C(v)107ZOCh 7 ( 27)

which has the same form as that given by Rosakis et al. (1984). Equation (5.3.27)
is the result of the classical analysis of the caustic pattern and is widely used in the
experimental interpretation of caustics corresponding to elastodynamic crack propa-

gation.

Moreover, as v = 0 (stationary crack), oy = 1, F(v) = 1, and ¢,(6>) = 0 gives
9> = 6y = 72°, and g;(6{”) = 3.17. Therefore, C(0) = 1 and (Theocaris, 1981 and
Beinert and Kalthoff, 1981)

2@(&)5/2'

d —
K1) = 3chzy \3.17

(5.3.28)

This equation holds not only for the stationary crack subjected to dynamic loading,

but also for static problem, where K¢(t) should be replaced by K.

5.4 Multi-point measurement technique
5.4.1 Description of the multi-point measurement method

Traditionally, in experimental investigation of the dynamic propagation of a mode-
I crack, by using the optical method of caustics, only one characteristic dimension
of the caustic curve is measured. It is the maximum transverse diameter, D, and
this dimension is directly related to the dynamic stress intensity factor, K¢(t), at

the propagating crack-tip by equation (5.3.27) given in the previous section. This
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analysis of caustic pattern is based on the assumption that the deformation field near
the propagating crack-tip is K¢-dominant, which means that the stress field at a
finite region near the crack-tip can be approximated accurately by the elastodynamic
asymptotic singular solution. This interpretation method is thus called classical anal-
ysis of method of caustics. By relaxing the assumption of K¢-dominance, we have
developed a new interpretation method about the caustic patterns obtained from the
dynamic fracture experiments. This new method is based on a fully transient higher
order asymptotic expansion of the stress field around the propagating crack-tip. In
this analysis, influence of transients resulting from the existence of non-uniform K¢(¢)
and v(t) histories (effects of K¢(t) and (t)) is included. In the new interpretation
method, instead of just measuring one characteristic length, two caustic curve di-
mensions need to be measured. One is still the maximum transverse diameter, D,
the other one is the distance between the point of intersection of the diameter, D,
and the Xj-axis in the reference plane and the front point of the caustics, X (see
FIGURE 5.2). The dynamic stress intensity factor at the crack-tip and the coefficient

of the high order term can be explicitly related to these two dimensions.

Since the accurate measurement of the two geometrical dimensions, D and X,
is a crucial aspect of the new interpretation method, one question has been asked.
How can the two geometrical dimensions be measured very accurately, especially the
distance between the point of intersection of the diameter, D, and the X;-axis in the
reference plane and the front point of the caustics, X, because practically, it is hard
to tell the exact position of the diameter D. To cope with this problem, one option
is the so-called multi-point over-deterministic data reduction technique. Recently,
Rossmanith and Knasmillner (1991) have developed an interactive image processing
system and studied the multi-point measurement technique systematically. The basic
principle of this technique is measuring the coordinates of a series points along the

caustic curve and substituting these coordinates into the mapping equations and the
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initial curve equation. By solving the over-deterministic system of equations, the
unknown coeflicients in the mapping equations and the initial curve equation can be
obtained, and therefore, the dynamic stress intensity factor can be determined. Liu
(1989) has used the multi-point measurement technique to get the two dynamic stress
intensity factors, K¢(¢) and K¢/(t), from the caustic patterns of a crack propagating
along a curved path. Similar technique has also been used by Sanford and Dally
(1979) in the photoelastic fringe patterns to determine the stress intensity factor at

the crack-tip.

Unlike other optical techniques, such as photoelasticity and coherent gradient
sensing technique (CGS), we have to consider two planes in the method of caustics.
One is the specimen plane from where the information of deformation is picked up and
some parameters have to be determined. The other one is the reference plane which is
located some distance away from the specimen plane, and the distance is denoted by
zo. The mapping equations provide the corresponding relation between the points on
the specimen plane and the points on the reference plane. The initial curve equation
defines the region from where the information is conveyed. When we measured the
coordinates of points along the caustic curve on the reference plane, because the
coefficients are unknown, we do not know what points on the specimen plane are
actually associated with those points on the caustic curve. If we directly substitute
those coordinates into the mapping equations and the initial curve equation, we will

end up to a huge, highly nonlinear system of equations.

To avoid solving a highly nonlinear system of equations, in this section, we will pro-
pose another approach which can be used to measure the two geometrical dimensions,
D and X, very accurately, so that we can take the advantage of the explicitness of the
interpretation method developed in the previous section. By using this approach, the
dynamic stress intensity factor, K¢(t), and the coefficient of the higher order term

can be obtained directly. The basic idea of this approach is also measuring the coor-
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dinates of a series points along the caustic curve. But instead of substituting them
into the mapping equations and the initial curve equation, we try to find a curve in
the reference plane that best fits those points. Whence this curve is found, the two
geometrical dimensions, D and X, are measured numerically from this curve other
than directly from the caustic pattern. Since with respect to the fitting curve, the
numerically measured dimensions, D and X, can be thought as exact, the crucial
aspect will become to the accurate measurement of the coordinates of points along
the caustic curve. Based on today’s image processing technique, this goal can be

easily achieved.

5.4.2 Method of multi-point measurement

For measuring of the coordinates of points along a caustic curve, a Cartesian coordi-
nate system (Xl,Xz) is placed in the reference plane so that the X, -axis is parallel
to the direction of crack propagation. Since we only consider the mode-I type of
deformation, we can always choose that the Xj-axis coincides with the crack line.
Therefore, the caustic pattern is symmetric about the X;-axis, and this will simplify
our analysis. If the location of the crack-tip were known, then system (X, Xz) could
be placed so that its origin is at the crack-tip. In general, however, the exact posi-
tion of the crack-tip is unknown a prior, we can put the origin of system (Xl,Xz)

anywhere along the crack line (see FIGURE 5.3).

Suppose that along the caustic curve, the two polar coordinates are related by
N A
P = anfa(d), (5.4.1)
n=1

where fn(é), n=1,2,---, N, are known functions of §, and a,,, n = 1,2,---, N are
constants. For mode-I type of deformation and the choice of our coordinate system,

we know that

fa(—0)=fu(d), n=12---,N. (5.4.2)
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Figure 5.3: The choice of coordinate system and the multi-point measurement along
the caustic curve.

A

Let (7;,6;),1 = 1,2,---, M, be the coordinates of points measured along the caustic

curve. Define a function

M N 2
®(ar,ag,---,ay) = Z [ﬂ — Z anfn(H,-)} . (5.4.3)
=1 n=1
The numbers a,,n = 1,2, -+, N, are chosen such that ®(ay, ay, -+ -, ax) is minimized,

or the non-dimensional error function e(NN) yields minimum, where ¢(N) is defined

by

1 /®
N)=—\+- 4.
e(N) o\ 77 (5.4.4)
It can be shown that to minimize ®(oy, ag, -+, an), or ¢(N), a, (R =1,2,---, N)

should satisfy a system of linear equations,

N
> AwnQm = b, n=12---,N, (5.4.5)

m=1
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where
M -~ A
Avm = Zf ( )fm( i)
= 5.4.6
. (5.4.6)
b, = Z i fn(6:)
By solving ay,,n = 1,2,---, N, from equation (5.4.5), the two Cartesian coordinates
that describe the fitting curve on the reference plane are given by
A A N A A
Xi(6) = > anfu(f)cosb
=1
5.4.7
o v o (5.4.7)
X5(0) = > anfu(f)siné
n=1
If we solve the value ég, such that
(0 =0, as  6=16,, (5.4.8)

then, the two characteristic dimensions of the caustic pattern, D and X, are given by

N
D = 2 Z Ay, fr (o) sin 6y
n=1

(5.4.9)

H

X Z o { £a(0) = fa(Bo) cos 6o }

n=1

It is noted that the process from equation (5.4.7) to equation (5.4.9), is accurate
within the error of the fitting, which can be characterized by the magnitude of the
error function, e(IN). Also, there is no restrictions on how many terms of f,(4) and
what kind of fn(é) we should use to fit the curve. Since we are seeking the fitting
function with respect to each of the caustic pattern, we may choose any kind of fn(é),

and the number of terms as many as we want, until each of the caustic pattern is best

fitted.
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5.4.3 An example

To illustrate the measurement method discussed above, we will consider an example
and study the effects that will affect the accuracy of the measurement. The caustic
pattern presented in FIGURE 5.4 is generated by the full solution of Broberg problem
(we will discuss this solution in section 5.5), which includes the transient effect of

the time derivative of the dynamic stress intensity factor. A Cartesian coordinate

£ 4

Figure 5.4: Caustic pattern generated from the full solution of Broberg problem.

system is chosen so that the caustic pattern is symmetric about the X;-axis. In
order to study what influence of different position of the origin on the accuracy of the
measurement, we put the origin of the coordinate system at four different locations:
i) approximately at the center of the caustic pattern, A; ii) away from the center
but still inside the caustic pattern, B; iii) at the edge of the caustic pattern, C; iv)
outside the caustic pattern, D. From the practical experience, we will measure the
points along the caustic curve but avoid the region that very close to the crack faces

where the optical image will not be very clear (the shaded area in FIGURE 5.4). As
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for the fitting function fn(é), we simply choose the polynomial, i.e.,
Fa() = 62-1) n=12--+,N. (5.4.10)

The total number of the measuring points is M = 30.

In FIGURE 5.5, the measuring points and the fitting curves are plotted. The

by | %,

(a) ®

Az, Ay,
u ; D z
(©) @
o measuring point, —— N =2, ----- N=3, ———- N=4, - N=35

Figure 5.5: The measuring points and the fitting curves with different term number,
N: (a) the origin position is A; (b) the origin position is B; (c) the origin position is
C; (d) the origin position is D.

number of terms associated with those fitting curves, N, varies from 2 to 5. When
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the origin of the coordinate system is chosen approximately at the center of the caustic
pattern, from FIGURE 5.5(a), we can see that even by using just two terms, the data
points are fitted remarkably well. As the origin of the coordinate system is positioned
at the other three locations, B, C, and D, it can be seen from FIGURES 5.5(b), (c),

and (d), that when NV > 3, the data points can be fitted quite well.

To make the observation more quantitatively, the variation of the error function
(V) with respect to the number of terms, N, is presented in FIGURE 5.6. From this
figure, we can see that when the origin is positioned at A, the magnitude of ¢(N) is
about 1% as N = 2, and then drops to the magnitude about 0.5% as N > 3. For
the cases of B and C, the magnitude of e(N) is 4% and 2% for N = 2, respectively,
and then drops significantly as N > 3. We also observe that for the case that the
origin is located at B, the magnitude of e(N) is well below 0.5%. But as the origin
is at the point D, the magnitude of (V) is always about 4%. From FIGURE 5.7, it
can be observed that even when we use as many as 30 terms in the polynomial, the
magnitude of (V) is still at the level of 3.5%, nevertheless, it declines very slowly.
Above observations suggest that the best position of the origin of the coordinate
system, is between the center and the tail of the caustic pattern. If the origin is
outside the caustic curve, the fitting is relatively poor. However, if we choose other
fitting functions instead of polynomials, this should be improved even when the origin

is located outside the caustic pattern.
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Figure 5.6: Variation of the error function ¢(/N) with the term number N for different
locations of the origin.
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Figure 5.7: Variation of the error function ¢(N) with the term number N as the
origin is located at D.
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5.5 Application of the modified interpretation
method to Broberg problem

5.5.1 The caustic pattern corresponding to Broberg
problem

In order to illustrate the effect of the higher order terms in caustic patterns obtained
for the case of highly transient crack growth problems, and to check the ability of
equations (5.3.19) and (5.3.20) to furnish the correct values of K¢(¢), the solution of
a particular elastodynamic boundary value problem is considered. This is the plane
stress problem of a crack growing symmetrically from zero initial length at constant
velocity under uniform remote tensile stress o,. The plane of deformation is the
z}, zy-plane and the crack lies in the interval —vt < z} < vt, z}, = 0, where v is
the constant speed of either crack-tip. This is the problem first analyzed by Broberg
(1960) and later, by Cherepanov and Afanasev (1973) and Freund (1990) using a

different approach.

An expression for the first stress invariant directly ahead of the crack tips is

obtained by Freund (1990). On the line z), = 0,

o111 + 099 = '—20'00 I(U/CS) (1 - C—§> ‘/;t/xi —‘i(i——df 5 (551)

v et ) Jijq (v-1 —¢)

oo

where I(v/c,) is a known function of v, and

(-2
(€2 —e?)* (-1 + )

&) =

Focusing on the crack-tip moving in the positive «}-direction, and expanding equation

(5.5.1) in powers of z; = z} — vt near z; = 0, we obtain

Kjl t 12 1L [1  f'(1)v 1/2 3/2
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where
2(1 + a2)(af —a2)
D(v) ’

W(v) =

and the dynamic stress intensity factor for this problem is

i) = SLW/)DO) o (5.5.3)

If the expansion (5.5.2) is compared with the general expansion (5.3.3), in which
Bi(t) = 0 (9(t) = 0), and 6, = 0, r; = z;, and terms of like powers in distance from
the crack-tip are collected, then explicit relations for the coefficients in the expansion

are obtained as

iy - 20 KK _ 2 ) o

12 3 Oq(l — ag)

%

2
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2
3
D) = (1- %) o 20 2

_ V21— o)A+ ad)l(v]e) 0 1
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15 (4 4o}  vf(1/v) (1 — a?) g ot )
Since the coefficients D} {Ao(t)} and A,(t) are proportional to 1 /V/%, the third term
in the near-tip asymptotic expansion of the first stress invariant is very large during
the early stages of crack growth, possibly dominating the square root singular term.
As a result, even though the crack-tip speed is constant, transient effects do exist in

the near-tip field.

For this particular problem, we normalize the caustic mapping equations (5.3.4)

and (5.3.5), and the initial curve equation (5.3.6) with the length ro = (3alK/2) i
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This length is related to the value of the dynamic stress intensity factor, K¢(t), of

Broberg problem by equation (5.3.9).

The normalized caustic mapping equations and the initial curve equation then

become
X 2 -3/2 36
ket R (ﬁ) cos O + — (ﬂ) cos 4
To To 3ag \ro 2
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where the functions f2;(6;), and g2(6;) have been defined in section 5.3 (see equation
(5.3.6)). We can see that the coeflicients of higher order terms in the nondimen-
sional caustic mapping equations and the initial curve equation, are proportional to a
nondimensional parameter ro/vt. Relations (5.5.3) and (5.3.9) provide an expression
of ro/vt with respect to time after crack initiation and zy as follows,

ro —{ 3 (I+a)l(v/es) coo }2/5 <¢z()_h>4/5 |

cst

5.5.7
42 1—a? 1—-v ( )

vt
where ¢ is a material constant and is given in equation (5.3.2). For a given exper-
imental set up and specimen, ¢, 0, and h are fixed. In particular, the distance
between the specimen and the focal plane of the recording camera, z, is set prior to

the experiment.

As t = oo, the ratio ro/vt vanishes and equations (5.5.4) ~ (5.5.6) reduce to the
classical analysis of dynamic caustics obtained on the basis of K¢-dominance. Indeed
this is consistent with the fact that as t — oo,

. V7 I(v/e,)D(v)os [U
I(;l(t)“‘—z—' Ozz(l-—af) 2‘--)07

which indicates that steady state and K¢-dominant conditions are approached. For a
fixed time ¢ > 0, the ratio ro/vt may vanish only as zo — 0. For this case, the initial
curve shrinks to the crack tip and even if K¢(t) # 0, the caustic is generated from a
K}i-dominant region. For a fixed zp, at short times after crack initiation, ro/vt — oo
(K#(t) - o), and therefore transient effects are predominant. So the change of
the nondimensional parameter ro/vt from zero to infinity characterizes the relative

influence of transients on caustic shape and size.

A qualitative discussion of the influence of higher order terms and crack tip velocity
on the caustic and initial curve shapes is presented in FIGURE 5.8 and FIGURE 5.9.
FIGURE 5.8 shows the influence of crack-tip speed on the caustic mapping for ro/vt =

0.3. Tt is obvious that in the range 0.1 < v/¢, < 0.5, changes in crack-tip velocity
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CRACK

Poisson's ratio v = 0.3, ro/vt = 0.3

Figure 5.8: Three-term simulations of the initial and caustic curves corresponding
to the Broberg problem for different crack-tip speeds, and for ro/vt = 0.3.

do not markedly influence the caustic shape. The initial curve also remains almost
circular. The results displayed in FIGURE 5.9 are more striking. Here, the crack-
tip speed is fixed (v/c, = 0.3). The ratio ro/vt is varied to investigate the effect of
transients. Indeed, variation of ro/vt from 0 to 0.5 (see FIGURE 5.9(a)) creates rather
large variations in caustic shape. The value of ro/vt = 0 corresponds to caustic shape
obtained by the classical (K¢-dominant) analysis of caustics. The differences in D and
X observed for other values of o /vt are an indication of the error in K¢ measurement
if the classical analysis of caustics is used. On the other hand, it is very interesting
to note that the initial curve is hardly influenced by the value of rq/vt. It remains
almost perfectly circular with a radius r; = ry as assumed by equation (5.3.9) of our
analysis. The major assumption pivotal to the derivation of the relation between
K{(t), D, and X (equations (5.3.19) and (5.3.20)) is the circularity of the initial
curve (equation (5.3.9)), and we feel that this provides a strong justification for our
simplifying assumption. In FIGURE 5.9(b), ro/vt is varied from 0 to 1.0. Here again

the assumption of the circularity and size of the initial curve still remains valid. The
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only difference to FIGURE 5.9(a) is that the center of the circle is slightly moved
backwards. However the caustic shape changes drastically from the K¢-dominant

shape.
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CRACK

Poisson's ratio v = 0.3, v/cg = 0.3

(b)

Figure 5.9: Three-term simulations of the initial and caustic curves corresponding
to the Broberg problem for different values of ro/vt: (a), from 0 to 0.5; (b), from 0
to 1.0, which represents the scale of transient effects, and for v/c, = 0.3 .
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5.5.2 Comparison of the dynamic stress intensity factor
obtained from different measurement methods

The main purpose of this section is to verify the feasibility and accuracy of the
measurement method proposed in section 5.3 (equations (5.3.19) and (5.3.20)). This
method provides a relation between the dynamic stress intensity factor at the tip
of a transiently propagating crack in terms of experimentally measurable dimensions
of the caustic curve. We are also interested in comparing values of K¢ obtained
from various measurement techniques, and to access their relative accuracy. More
specifically, the classical analysis of caustics, which is based on the assumption of
K¢-dominance, will be compared with the method presented above. To implement
this objective, the exact caustic patterns are generated for the Broberg problem by
using equations (5.5.4) — (5.5.6). Then measurements are performed on these exact
caustic patterns either by the classical analysis method or by the method proposed
in section 5.3 combining with the multi-point measurement technique discussed in

section 5.4.

In the classical analysis of the caustic pattern, the only quantity to be measured
is the diameter of the caustics, D, and this quantity is related to the dynamic stress
intensity factor, K¢(t) by relation (5.3.27) for different crack propagating velocities.
In the method presented in section 5.3 (equations (5.3.19) and (5.3.20)), the determi-
nation of K{(t) also requires the evaluation of another parameter, 6°). To calculate
6>, two dimensions of the caustic need to be measured. One is the transverse diam-
eter, D, and the other, X, is the distance from the intersection of this diameter with
the X;-axis to the front point of the caustics. The parameter 6" is then given by
solving equation (5.3.20), which involves D and X as well as their ratio. Since the
velocity of the crack is constant in the Broberg problem, equation (5.3.20) implies
that 4" is a function of the ratio X/D only. FIGURE 5.10 presents the variation of

the parameter 8>’ versus the ratio X/D for different crack-tip propagating velocities.
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As we can see from this figure, the parameter 6’ is very sensitive to the ratio of X /D,
but is not sensitive to the crack-tip speed. The effect of transience on X/D is shown

in FIGURE 5.11. FIGURE 5.11 gives the variation relation between the ratio X/D and
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Figure 5.10: Value of the parameter HI(D), solved from equation (5.3.20), versus the
ratio X/ D, for different crack-tip speeds.

the nondimensional parameter ro/vt. It is shown that when the stress state around
the crack tip deviates from K¢-dominance (ro/vt — oo), the ratio X/D deviates from
its steady state value which implies that the caustic becomes more elongated in the

X-direction due to the existence of transient effects for this particular problem.

Quantitative estimates of the error incurred by the classical interpretation of caus-
tics during crack growth are presented in FIGURE 5.12. Here the ratio
d d
KI(caustic)/I{I(theo.)

is presented as a function of the parameter ro/vt for different crack-tip velocities. As

anticipated earlier as ro/vt — 0, the classical analysis becomes accurate (either zero
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Figure 5.11: Ratio X/D versus the non-dimensional parameter rq/vt for different
crack-tip speeds.
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Figure 5.12: Comparison of the dynamic stress intensity factor inferred from the
modified method and the classical analysis for different values of rq/vt, and for dif-
ferent crack-tip speeds.



- 160 -

initial curve or long times after initiation). However as ro/vt — oo, we observe large
deviations of KId(caustic) relative to K}i(theo.)’ which is known prior (see lines with
square symbols). The figure also presents the same ratio obtained if the numerically
constructed caustics are analyzed on the basis of our improved method (equations
(5.3.19) and (5.3.20)). As it is obvious from the lines marked by the circles, errors
of less than 5%, which are acceptable in the experimental investigation of dynamic

fracture mechanics, are obtained. In both cases it is shown that the effect of velocity

is small especially when the improved analysis is used.

An alternative representation of the above results is given in FIGURE 5.13, FiG-

URE 5.14, and FIGURE 5.15. Here K}i(caustic)/K?(theo.) is plotted versus time from
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Time after Initiation, t (usec)

Figure 5.13: Variation of the ratio K;i(caustic) /K}i(theo‘) with the time after crack
initiation for different crack-tip speeds. The material parameters correspond to 4340
steel.

crack initiation. The results of both improved and classical analyses of caustics are
included. FIGURE 5.13 shows the variation of this ratio for a variety of crack-tip ve-

locities for material parameters corresponding to 4340 steel, zy = 2.0m, and specimen
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Figure 5.14: Variation of the ratio Kf(caum-c) /K}i(theo.) with the time after crack
initiation for different load levels, o,/ E.
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Figure 5.15: Variation of the ratio K}"(mustic) /K}i(theo_) with the time after crack
initiation for varying experimental parameter z,.
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thickness h = 0.01m. FIGURE 5.14 shows the same ratio as a function of time for
different values of 0.,/ E, but the material parameters correspond to PMMA. This
figure indicates that for higher load level, the transient effect is much more significant
than that for the lower load level, especially at the time near the crack initiation.
This reflects the fact that at a specific time ¢ and fixed zo, higher ¢, /E implies

larger initial curve radii (see equation (5.5.7)).

FIGURE 5.15 shows the dependence of this ratio on zy. Here, it is evident that as z

is decreased (the initial curve shrinks to the crack-tip) the value of K }i( obtained

caustic)
from the classical analysis of caustics slowly approaches K;l(theo.)‘ Nevertheless, large
errors still persist near initiation. From the practical point of view, this is not a
consolation since acceptable reductions of zo (and thus ry) are limited by the size of
the near tip three-dimensional zone (~ 0.5h). Here the advantage of the modified
interpretation becomes clear since accurate results can be obtained with relatively

large values of zy corresponding to caustic measurements outside the near tip three-

dimensional zone.

5.6 Discussion and concluding remarks

Motivated by recent experimental evidence (Krishnaswamy and Rosakis, 1991; Krish-
naswamy et al., 1990) that show the inadequacy of the classical analysis of caustics
in furnishing accurate values of K¢ in the presence of transient effects, a modified
analysis of the technique is presented here. This analysis is based on a fully transient
higher order expansion recently developed by Freund and Rosakis (1992) and by Liu
and Rosakis (1992). The improved analysis of caustic patterns includes the influence
of transients resulting because of the existence of non-uniform K¢(t) and v(t) histories
(effects of K§(t) and 9(t)). The analysis can be used to obtain K{(t) as well as the

values of higher order terms in terms of the geometrical characteristics of the caustic
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curves. The resulting expressions contain the classical results (static or dynamic K¢-
dominant analyses) as special cases. The relative performance of the improved and
the classical analyses is compared. This is done by considering the Broberg problem
as an example model of transient crack growth. Based on the full Broberg solution,
the caustic curves are first constructed numerically. These curves are then analyzed
to obtain K{(t), as would be done in an experiment, and to compare with the theo-
retically known K¢(t) time history. When the caustics are analyzed on the basis of
equation (5.3.27) (classical K§-dominant analysis) very large errors are obtained at
times close to crack initiation. As a matter of fact, for this problem, such errors are
unbounded as ¢ — 0. On the other hand, when equations (5.3.19) and (5.3.20) are
used in the analysis of the caustic patterns, the measured K¢(t) agrees very well with
the theoretical value (to within 5%). This clearly indicates that the improved analy-
sis of caustics, based on the higher order transient expansion, is capable of providing
accurately the dynamic stress intensity factor history even if the crack growth event

1s very transient.

Another noteworthy fact is that the crack-tip propagating velocity is assumed to
be known in the analysis. However in real applications, the crack-tip position is only
approximately known, since the crack-tip is covered by the dark shadow spot. This
problem can be overcome either by simultaneously using some other measurement
techniques which can provide the crack-tip position at each instant of time, or by
the following iteration procedure. At the beginning of the iteration process, we can
assume that the caustic diameter D passes through the crack-tip. As a result, X
represents the distance from the crack-tip to the front of the caustic curve. After the
crack-tip position is determined by this assumption, an approximate crack-tip velocity
history can be deduced. By carrying out the measurement method we proposed in
section 3.3, all parameters will be determined. If we now go back to equation (5.3.11)

to calculate the “real” distance from the crack-tip to the caustic front, then the



- 164 —

velocity history will be corrected. This procedure will be repeated until the crack-tip

velocity converges at each instant of time.

The shortcomings of the classical analysis of caustics discussed in this chapter
may have far-reaching consequences. In particular, caution should be exercised in
the interpretation of experimental measurements obtained by caustics in the past,

especially when highly transient crack problems were studied by the technique.

During the recent two decades, the optical method of caustics has been widely
used in experimental solid mechanics, especially in the study of dynamic fracture
processes. Another method, which is also widely adopted, is photoelasticity. The
history of photoelasticity is much longer than the method of caustics and therefore
can be thought as well developed. Nevertheless, due to the simplicity of the method
of caustics either in the experimental set up, or in the data analysis, both techniques
remain appealing as powerful candidates in the study of fracture processes. However,
serious discrepancies have been reported in the literature by a number of different
researchers using the classical interpretation of caustics or photoelasticity. Nigam
and Shukla (1988) have compared the methods of photoelasticity and transmission
caustics by performing experiments on identical specimens under identical loading.
Their results show that while both methods work well for static problems, the method
of photoelasticity gives values for the dynamic stress intensity factor which are about
30% — 50% different than those obtained through the method of caustics. In section
5.5, we have shown by using the Broberg problem, that for transient crack propaga-
tion with constant velocity, the value of the dynamic stress intensity factor obtained
through the classical analysis of caustics can indeed produce differences of that mag-
nitude or even higher. This provides a qualitative explanation to the different results
in K¢(t) obtained from these two techniques in Nigam and Shukla’s paper. It should
be pointed out that in the interpretation of their photoelastic fringes, Nigam and

Shukla used a two-dimensional “higher-order” expansion suggested by Dally et al.
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(1985). This expansion is based on the steady state asymptotic representation of
the stresses around the crack-tip. As was shown in this chapter, only at the region
very close to the crack-tip, the transient effects will not be felt strongly. Outside this
region the dynamic transient effects will affect the stress distribution. This issue was
also discussed by Krishnaswamy et al. (1990) by using the CGS method. It has also
been shown by Rosakis et al. (1991) and Liu and Rosakis (1992), that the asymp-
totic expansion of stresses under the fully transient condition is different from that
obtained under the steady state condition. The steady state, higher order expansion
can be approximately used only when the time derivatives of all the coefficients are
negligibly small and the crack-tip velocity is essentially constant. If these conditions
are violated, the results of the steady state approximation are questionable. Nonethe-
less, use of a higher order steady state expansion is bound to be an improvement over
the assumption of strict K{-dominance. As a result, the values of K¢(t) obtained
by photoelasticity in Nigam and Shukla’s paper are expected to be close to the real

value of K¢ rather than the one obtained by the classical analysis of caustics.

A long standing issue of fundamental importance in dynamic fracture research
is the connection between the dynamic fracture toughness, K¢,, and the crack-tip
speed. The debate, for the most part, has centered around the question of whether
a unique, material dependent relationship exists between K¢, and v. Kobayashi and
Dally (1980), Rosakis et al. (1984), and Zehnder and Rosakis (1990), among others,
provide data sets that seem to indicate that a relation between K¢, and v exists and
may reasonably be viewed as a material property. For most materials tested, K,
was found to be a weakly increasing function of crack-tip velocity, for low velocities,
followed by a strongly increasing branch as the crack-tip speed increases. The location
of the steep branch depends on the material under consideration. The conclusion of
the existence of a unique curve is usually made in the presence of experimental scatter

in both Kf; and v(t). In particular, it should be emphasized here that the data sets
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provided by Rosakis et al. (1984) and Zehnder and Rosakis (1990) for AISI carbon
steel, if collectively viewed, are characterized by a scatter in K¢, of the order of
30% for crack-tip velocities in the range of 400m/sec to 900m/sec. Nonetheless it
should also be remembered that the dynamic stress intensity factor was inferred by
using the classical analysis of caustics which assumes K¢-dominance and neglects the
history dependent, transient nature of the field. In addition, it should be recalled
that two different specimen and loading geometries were used. Further, even within
one specimen geometry, the resulting crack growth histories were intentionally varied
(by controlling the starter notch radius), in order to span a representative range of
crack-tip velocities. This is a common practice of most experimental investigations in
this field. The above observations clearly indicate that each of these experiments was
characterized by very distinct transient crack growth histories. Finally, and as was
observed by Zehnder and Rosakis (1990), if data from a single specimen were used
to explore the variation of K¢ and v, very smooth curves resulted. However, if such
variations were collectively viewed, then the resulting data scatter was of the order

of 30% in K¢,.

Given the above observations, it is therefore conceivable that the observed maxi-
mum scatter between tests may be due to phenomena of the type observed in section
5.5, i.e., to errors associated with the classical analysis of caustics when strict K¢-

dominance is violated.

Another series of experiments leading to results that have yet to be explained
are those reported by Dahlberg et al. (1980) and Kalthoff (1983), which seem to
indicate that the dynamic fracture toughness could be specimen dependent. The claim
of specimen dependence is made in the presence of 20% differences between curves
obtained for each specimen configuration. In this case, as well, the observations
related to the work of Rosakis et al. (1984) and of Zehnder and Rosakis (1990)

are relevant. Here again the crack growth histories varied from configuration to
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configuration and from specimen to specimen. As a result, it may be possible to
attribute the apparent specimen dependence of K%, vs. v to the specimen dependent

transient nature of the region where the caustic measurement was made.

On the basis of some crack propagation experiments in which the optical method
of caustics was used, Takahashi and Arakawa (1987) proposed that the instantaneous
value of dynamic fracture toughness of their material depended on the instantaneous
crack-tip acceleration. As shown in Freund and Rosakis (1992), Rosakis et al. (1991),
and Liu and Rosakis (1992), however, the near-tip stress field expansion involves
crack-tip acceleration in its third or higher order terms. As a result, caustic patterns
obtained from regions where higher order terms are important will exhibit acceleration
effects. However, if caustics from such a region are interpreted on the assumption of
K¢-dominance then it would appear that the instantaneous value of stress intensity
factor, and thus of fracture toughness of the material, depends on the instantaneous

acceleration of the crack-tip.

The above comments are also relevant to the works of Kobayashi and Mall (1978)
and Ravi-Chandar and Knauss (1984) who suggested that although an average in-
creasing trend in K¢, with crack-tip velocity seems to exist, no clear, unique relation
between K¢, and v could be found. Here again the question of transience in the
interpretation of caustics becomes important. As discussed by Freund and Rosakis
(1992), this becomes more transparent in the second reference, since there, the an-
alytical time history of K¢ is available to be compared with the one inferred based
on caustics. Indeed it is shown that the classical analysis of caustics is adequate in
predicting K¢(t) during loading , up to the point of crack initiation. After initiation

of dynamic crack growth differences of over 50% to the theoretical value are seen.

We would like to conclude this discussion by pointing out that the above obser-

vations on past experimentation (including our own work) are by no means meant to
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discredit the use of caustics as an experimental tool in dynamic fracture studies. On
the contrary we attempt to provide means to improve the accuracy of interpretation of
this method which we believe to be a formidable tool for the study of transient crack
problems. Indeed, given the extraordinary experimental simplicity of the technique
and the large numbers of raw re-analyzable data already available, this seemed to be
a worthwhile task. In addition, we believe that the time for taking final positions in
the debate regarding the existence of a unique K%, vs. v curve has not arrived yet.
Our current observations merely suggest that the existing arguments (including our
own in the past) based on experimental interpretations (for both photoelasticity and
caustics) which neglect the transient nature of crack growth cannot be conclusive. We
believe that further experimental study or even re-interpretation of raw experimental
measurements using the recently available transient results is required to assess the

possibilities and to resolve this issue once and for all.
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Chapter 6

Highly Transient Elastodynamic Crack
Growth in a Bimaterial Interface

6.1 Introduction

Advanced multiphase materials such as fiber or whisker reinforced composites have
seen widespread applications in recent years. It has been recognized that interfacial
fracture may play an important role in determining the overall mechanical response
of such multiphase systems. It is the low fracture toughness of these materials, which
may result from debonding between different phases, that limits their use in en-
gineering applications. Therefore, the scientific understanding of the mechanics of
crack formation, initiation, and crack growth in bimaterial interfaces is essential for

the effective study of failure processes of these advanced composite materials.

The earliest study of interfacial fracture appears to be by Williams (1959), who
examined the local fields near the tip of a traction free semi-infinite interfacial crack,
lying between two otherwise perfectly bonded elastic half spaces. He observed that,
unlike in homogeneous materials, the interfacial crack exhibits an oscillatory stress
singularity. Since then, Sih and Rice (1964), and Rice and Sih (1965) have provided
explicit expressions for the near-tip stresses and related them to remote elastic stress

fields. The works of Erdogan (1965), England (1965), and Malyshev and Salganik
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(1965) have also further examined two-dimensional singular models for single or mul-
tiple crack configurations in bimaterial systems. Recent progress in static interfacial

fracture includes work by Rice (1988), Hutchinson and Suo (1991), and Shih (1991).

Depending on the nature of loads that the composite structure is subjected to, the
debonding process may take place dynamically. If the interface is already weakened
by pre-existing flaws, these flaws may serve as sites of initiation of cracks which propa-
gate unstably along the interface under the right circumstances. Such situations have
motivated attempts to analyze dynamic crack propagation in interfaces. However,
due to the complexity of the problem, thus far, only a few theoretical results of dy-
namic bimaterial crack growth have been obtained. Among others, Gol’dstein (1967),
Brock and Achenbach (1973), Willis (1971, 1973), and Atkinson (1977) have provided
crack line solutions of particular fracture problems. Although these analytical results
have provided some insights of the near-tip dynamic behavior, in order to effectively
formulate and apply crack initiation and growth criteria in bimaterial systems, we
need knowledge about the complete spatial structure of the field surrounding the

moving interfacial crack-tip.

More recently, experimental investigations of interfacial crack-tip deformation
fields have been carried out by Tippur and Rosakis (1991) and Rosakis et al. (1991)
using the optical method of Coherent Gradient Sensing (CGS) (Rosakis, 1993) and
high speed photography. The bimaterial system they used was a PMMA /aluminum
combination. They observed substantial crack-tip speeds (up to 90%cEMMA) associ-
ated with crack initiation and growth. Motivated by these observations, Yang et al.
(1991) provided the asymptotic structure of the most singular term of the steady
state elastodynamic bimaterial crack-tip fields. In the work of Wu (1991), similar
conclusions were reached. In addition, Deng (1992) obtained the asymptotic series
representation of the stress field near the tip of a running interfacial crack in a bima-

terial system under steady state conditions. Also motivated by the experiments of
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Tippur and Rosakis (1991), Lo et al. (1992) have performed a numerical analysis of

the same bimaterial system as was used in the experiments.

The question of whether there exists a K¢-dominant region surrounding the crack-
tip (i.e., a region where the stress field can be well described by the leading singular
term only), or in fact whether steady state crack propagation constitutes a good as-
sumption in analysis, are issues to be verified by experimental observations. New
experimental evidence, which will be described in this chapter, emphasize the exis-
tence of substantial crack-tip accelerations in addition to very high crack-tip speeds.
The existence of high accelerations violates the conditions under which the steady
state assumption may confidently be applied. Motivated by the above experimental
evidence, in this chapter, we investigate the asymptotic structure of the near-tip field
in a bimaterial system, where a highly transient elastodynamic crack growth history
has occurred. To do so, we employ the asymptotic procedure proposed by Freund
(1990) and utilized by Freund and Rosakis (1992) in studying the transient growth
of a mode-I crack in a homogeneous isotropic material. The same procedure was
employed by Liu and Rosakis (1992) in studying the mixed-mode transient growth of
a crack along an arbitrary curved path in a homogeneous isotropic solid (see Chap-
ter 2). For anisotropic solids, transient crack growth under mode-I conditions was

recently explored by Willis (1992).

In Section 6.2 of the present study, the general formulation and properties of
the asymptotic procedure are described. By using this asymptotic methodology, the
equation of motion is reduced to a series of coupled partial differential equations.
In Section 6.3, the solution for the higher order transient problem is obtained. By
imposing the boundary conditions along the surface of the interfacial crack and the
bonding conditions along the interface ahead of the crack-tip, our problem can be
further recast into a Riemann-Hilbert problem. Upon solving the Riemann-Hilbert

equation and evaluating the Stieltjes transforms, the higher order near-tip transient
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elastodynamic asymptotic field can be obtained. In Section 6.4, the asymptotic elas-
todynamic stress field surrounding the interfacial crack-tip is studied. The first stress
invariant is provided explicitly. The properties of the interfacial mismatch parameters
are studied in Section 6.5. These depend on the properties of the bimaterial combi-
nation and the crack-tip speed. In some of the available experiments by Rosakis et al.
(1991), and the experimental evidence described in this chapter, it has been observed
that an interfacial crack can reach speeds amounting to a considerable fraction, or
even exceeding the lower Rayleigh wave speed of the two constituents of the inter-
face. Recognizing that our analysis need not be limited to a velocity regime below
the lower Rayleigh wave speed, in Section 6.6, we extend our solution to the case
when the crack is traveling at a speed between the lower Rayleigh and shear wave
speeds. Finally, in Section 6.7, recent experimental evidence of a transient higher
order stress field in bimaterial fracture specimens is presented. The transient theo-
retical fields obtained in previous sections are used to quantitatively analyze optical
interferograms obtained in real time high speed photography of dynamic bimaterial
experiments in a PMMA /steel system. In addition, we present experimental evidence
of transonic crack growth histories involving maximum speeds between 60% and 80%
of the dilatational wave speed of PMMA. For comparison purposes, one should note
that typical terminal crack-tip speeds in homogeneous PMMA are of the order of only
20% of the dilatational wave speed.

6.2 General formulation

Consider a planar body composed of two homogeneous, isotropic, and linearly elastic
materials which are bonded along a straight line interface. A crack propagates non-
uniformly along the interface, see Figure 6.1. Introduce a fixed orthonormal Cartesian
coordinate system (zi, ;) so that the r;-axis lies on the interface and coincides with

the direction of the propagating crack. Suppose that the crack propagates with a non-
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Figure 6.1: Schematic of dynamic growth of a crack along the bimaterial interface.

uniform speed, v(t), and the crack faces satisfy traction free boundary conditions. At
a time ¢t = 0, the crack-tip happens to be at the origin of the system, so the growth
of the interfacial crack at any ¢ > 0 is characterized by the length I(t) (v(t) = I(t)),
which is the distance from the origin to the moving crack-tip. If the deformation is
assumed to be plane strain, for each of the two materials comprising the interface, the
displacement field may be generated from two displacement potentials, @x(z1, xs,t)
and Yp(z1,22,t), where k € {1,2}. Here, the integer k is assigned to distinguish
between the two different materials. In Figure 1, material-1 is the one shown above
while material-2 is the one shown below the interface. Then, in either one of the two

materials, the two non-zero displacement components can be expressed as

U (L1, T2, t) = Pya (21, T2,t) + apthg (1, 22,1) , (6.2.1)

where a, 8 € {1,2}. Similarly, in either one of the two materials, the components
of stress can also be expressed in terms of the displacement potentials which have

been given in Chapter 2. The corresponding plane stress solution can be obtained
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by changing some material constants. In the absence of body forces, the equation of
motion for each material that constitutes the bimaterial system is the same as that

given in Chapter 2.
We now introduce a new moving coordinate system, (£;,&z), by
b=z = 1(t), =13 . (6.2.2)

This system is such that its origin is translating with the crack-tip. In this new

system, the equations of motion for ¢({y,&2,t) and (&1, &2, t) become (Freund, 1990)

2 .
(1 2 (f)) by11 +P,20 +v(§) P+ 2vgt)¢,1t ——12—(/5,tt =0
! ! ! ! (6.2.3)
2 .
(1 - vc(zt)) Vo1 9,22 -I-vg)'%l +21;(2t)1/),1t—‘c}§1/),tt = 0

Notice that, similar to the notation used in Chapter 2, we use 3/d¢, or { },; to
denote differentiation with respect to time, ¢, when the moving spatial coordinates
(&1, &2) are held fixed. The notation { . } denotes the same operation when the spatial

coordinates (z1, ;) are held fixed.

Once again, like in Chapter 2, we employ the standard asymptotic device used
by Freund and Rosakis (1992) for the analysis of transient crack growth in homoge-
neous materials. We assume that ¢(&;,¢s,t) and (&1, €, t), for each material, can be

asymptotically expanded as

$(€1,62,t) = D ePmdu(m, 2 t)
m=0 , (6.2.4)

Y€1, &,t) = ispm¢m(nla n2,t)

as r = (€ + &2)Y? — 0, where 1, = {u/e ,a € {1,2}, and ¢ is a small arbitrary
positive number. Under this asymptotic expansion, the crack line occupies the whole

negative n;-axis. By taking ¢ = 1, the above equations will provide the asymptotic
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representation of the displacement potentials in the unscaled physical plane for each

of the materials, respectively.

The asymptotic representation (6.2.4) possesses some properties, namely,

1 A
Pm+1=Pm+§’ m=0,1,2,---
Pm+n mn ,t
P Gmtn (M1, M2, E) 50, as =0 : (6.2.5)
Epm¢m("17 7727t)
¢m+n(€17€2at)
Imnich 57 4 as r=4/+& >0
bm (&1, €2, 1) ’ Y ’

for any positive integer n, and 1 < po < 2. Notice that from equation (6.2.5), in the
physical plane, (£1,&2), dm(&1,&a,t) are ordered according to their contributions to
the near-tip deformation field. The above properties for ¢,, hold for ,, as well.

Substituting the asymptotic representations for ¢(&1, &3, 1) and (&1, &2, 1), (6.2.4),
into the equations of motion, (6.2.3), we obtain two equations whose left-hand side
is an infinite power series in ¢ and whose right-hand side vanishes. Since € is an
arbitrary number, the coefficient of each power of ¢ should be zero. Therefore, the

equations of motion reduce to a series of coupled differential equations for ¢,,(n1, s, )

and ¥, (11, 72,t) as follows (Rosakis et al., 1991; Freund and Rosakis, 1992):

Pm11 +_21—‘¢m722 = - Z(t){ l/z(t Brn— 2,1} + L s Pttt
] (t) af (t)cf af(t)cf
2ot . , (6.2.6)
VYmy11 + peTe )¢m322 *W{ V2 () 2,1} + 2@ — g Pm—att
for m = 0,1,2,---, and the quantities oy and o, depend on the crack-tip speed, and

therefore on time ¢ through

a(t) = {1 - ”2§t)}1/2 . (6.2.7)

{¢m for m >0 {1/)m for m > 0

0 form<?O0

Also

bm = (6.2.8)

0 form<0
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Equation (6.2.6) can also be obtained from equations (2.2.16) and (2.2.17) by setting
the curvature at the moving crack-tip, k(¢) = 0, since we are considering a straight

propagating crack.

In what will follow, for our convenience, we drop the subscript which is used
to distinguish between the two materials. However, we should keep in mind that
the above asymptotic form of the equations of motion (6.2.6) hold for each of the
materials with the appropriate elastic constants. The term “coupled” is used above
in the sense that the higher order solutions for ¢,, and ,, will depend on the lower
order solutions for the same quantities. It is noted that, for the special case of steady
state crack growth, the crack-tip speed, v, will be a constant, and at the same time,
Omyt = Ym,y =0, for m = 0,1,2,---. This means that ¢,, and 1,, depend on ¢ only
through the spatial scaled coordinate 7;. In such a case, the equations in (6.2.6) are
not coupled anymore, and each one reduces to Laplace’s equation in the coordinates
(11, aqna) for ¢, and (01, asma) for ¥,,. For steady state conditions, the functions ¢,
and ,, are independent of time in the moving coordinate system. For the transient
case, however, the crack-tip speed, v(t), may be an arbitrary smooth function of time,
and also ¢,, and %,, may depend on time explicitly in the moving coordinate system.
The only uncoupled equations are those for m = 0 and m = 1. For m > 1, we can see
from (6.2.6) that the solutions for ¢,,, and ,, are composed of two parts. One is the
particular solution which is wholly determined by lower order solutions for ¢,,, and
Y. The other part is the homogeneous solution which satisfies Laplace’s equation
in the corresponding scaled coordinate plane. The combination of the particular and
homogeneous solutions should satisfy the traction free conditions on the crack faces
as well as the bonding conditions along the interface. In the following sections, we will

solve for ¢,,, and ., for the most general transient situation, and for both materials.

It should be noted that the steady state problem could be solved using the effi-

cient Stroh formulation. This formulation reduces the two spatial and one temporal
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variables to only two spatial variables and takes advantage of a well known formalism
to solve the steady state crack problem (Yang et al., 1991). However, this approach,
although it can be easily be extended to anisotropic solids, is strictly restricted to

steady state conditions and cannot be used for our present purposes.

6.3 Solution for the higher order transient prob-
lem

Similar to the procedures used in Chapter 2, in this section, we consider the situation
of m = 0 and m = 1 first. After we get solutions for m = 0 and 1, we will subsequently
solve for higher order ¢,, and ,, in each material. The method and procedure used
in this section are very similar, or even identical to those used in Chapter 2. However,
because the situation becomes more complicated for the bimaterial system, for sake

of self-containedness, I will repeat every step which is necessary to solve the problem.

6.3.1 Solutions for ¢,(n1,72,t) and ¥n,(n1,72,t) for m =0
and 1

For m =0, or 1, (6.2.6) reduce to

1
¢m,11 (771, 7]2,t) + %@mzz (ﬂla 772»t) =0

: (6.3.1)
Vmo11 (M, M2, ) + — s Vms22 (M, m2,8) = 0

ai(t)

The above equations are Laplace’s equations in the corresponding scaled planes
(m, aumy) for ¢y, and (91, a,n2) for . As we have mentioned earlier, the subscript
k is omitted here, but the above equations hold for both materials that constitute the
bimaterial body.
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The most general solutions for equations (6.3.1) can be expressed as

¢m(771, N2, t) = Re{Fm(zl; t)} 3 ¢m(771, N2, t) = Im{Gm(zs; t)} s (6'3'2)

where the two complex variables z; and z, are given by
z1=m+ iaan ’ zZs=m + iasn2 3

and ¢ = y/—1. For the bimaterial system, For(zi;t) and Gri(zs;t) are analytic in
the upper half complex z;z—, or z;—planes for k = 1 (upper material), and analytic
in the lower half complex zj—, or z;—planes for k = 2 (lower material). The complex
conjugates of these functions are also analytic on the plane obtained by reflection
along the real axis, e.g., F1(Z;;t) is an analytic function on the Z; plane. Since ay
and «; are different for each material, the scaled complex variables z and z, will also
be different. For fully transient problems, in the analytic functions F;(z;t) and
Gmi(2s;t), time ¢ appears as a parameter. This suggests that these functions will
depend on time ¢ not only through the complex variables, z; and z,, but also directly

through time ¢ itself.

The displacement and stress components associated with these ¢,, and ,,, are

given by
uf™ = Re {Fy, (1) + Gl ()}
7 (6.3.3)
w™ = —Im { F!, (z;t) + G (2,;)}
and
aﬁ") = HRe{(l + 20 — a?) Fa(zi;t) + 2“SGZ1(Z3;t)} \
0'%1;) — ——/J/R,e {(1 + a,g) F,;,,(Zly t) -+ 2013G;;(Zs; t)} 3 (634)
0_%7;,) _ —ll,Im {2alFrlr:(Zl7 t) -+ (1 + a?) G:;(Zs; t)} J

where primes denote the derivative with respect to the corresponding complex argu-

ments.
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For any analytic function ©(z), define the following,

: — Ot
nzll_ff)%+ Qz) = Q% (m)

z=m +1n2 .
lim Q(z) = Q" ()

n2—0~

For 7 < 0 and 7, — 0%, the traction free condition on the upper crack face gives

{o5}, = {5}, =0,
or, in terms of the complex displacement potentials F,,(z;;t) and G, (2;¢),

{1+ a2) [Frtms t) + F (mit)] + 20, (Gt (mst) + G (mit)] }, = 0

9

{2nea [Frtnst) = T (mst)] + w1+ 02) [ (s 8) = G (mit)] = 0
(6.3.5)

For 7, < 0 and ns — 07, the traction free condition on the lower crack face gives
(o), = (o), =0,

or

{n(+ ) [Frm(m;t) + Fof (n1;8)] + 2na, (G (13 t) + Gof (s )] J, =0

{2mar [Fm(mit) = Ff (mst)] + (1 + 02) [ Gl (mis 8) — Gt (s 0]}, =0
(6.3.6)

The above equations, (6.3.5) and (6.3.6), hold for 5; < 0.

Along the interface, or 7, > 0 and 5, = 0, the bonding conditions should be

satisfied, which implies that
{oi'}, {8}, =0, {7’} —{o’} =0

(4}, =), =0, ()~ o), =

7V771>07 7]2:Oa
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or, in terms of Fy,(z;;t) and Gp,(zs;t), from traction continuity,
{0+ a2) [Frt(nist) + T (m5)] + 20, (Gt (3 t) + o (ms58)] },

—{w(1+ ) [Frm(ni;t) + Frf (ms1)] + 2pa, [GZ»_(’“’ )+ Gl (mit)]}, = 0

{2uau [Frt(mst) = Fo (ns)] + m(1 + 02) |Gt (m3t) = G (n138)]
— {200 [Flm(mst) = Fol (m3 )] + w(1 + o?) [Giif(m; t)— G, (m;t)| }2 =0 |
(6.3.7)
and from displacement continuity,
{[Fot nst) + Fr (05 8)] + @, [t (m138) + G (m13)) }, ‘
- {[Fr/n_(nl;t) +7::(771;t)] + [Gf;(nl;t) +Z§::(771;t)] }2 =0
(6.3.8)
{on [FiF(m;t Fg(m;t)] + |Gt (m3t) = G (m3 1)}
— {at [ (mit) = Fon (mst)] + [Gin (0138) = Gon (3 8)] }, = 0
The above equations, (6.3.7) and (6.3.8), hold for 5, > 0.
For simplicity, define the following matrices for each material, k € {1, 2},
p(l+a?) 2pa, (1 + o) 2o
Py = ’ Qk =
2p0q /L(l + af) k — 2p0y _/1'(1 + ag) k

1 g 1 Qg
U = ,  Vi=
(8% 1 b - (X -1 k

Also define the following complex vector for each material,
Fuk(z8) = ( Fur(2:4), Grr(z31))"
where z = 9, + #7;. From above definitions, the boundary and bonding conditions,
equations (6.3.5), (6.3.6), (6.3.7), and (6.3.8), can be rewritten as
Pifri(mit) + @ Frm(mit) = o

. } . V<o, (6.3.9)
Pyfra(m;t) + QyF ma(m;t) = o
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and

Pifui(m;t) + @ Fo(m5t) — Pofin(m;t) — QuFmy(m;t) = 0

, Vg > 0.
—_ _ —_
Usfi(mst) + Vi (i) = Usfimy(mst) — Vo Foa(mst) = o
(6.3.10)
Further, the bonding conditions in (6.3.10) can be rearranged as
"t =4 "— —l—
Pifmi(mit) — Qufma(mit) = Pafrp(mist) — Q1 i (mst)
, Vi >0.
— _ —f
Ui fri(m5t) = VaFa(mst) = UsFrmy(mit) = Vi Foy (n151)
(6.3.11)

In the above equations (6.3.11), the left-hand sides are the limiting values of functions
which are analytic in the upper half plane. The right-hand sides are the limiting values
of functions which are analytic in the lower half plane. Since the limiting values are
the same along the positive real axis, the function Pyf”,(z;t) — Q,F . (2;t) defined
in the lower half plane, is the analytic continuation of the function P.f/  (z;t) —
Q2._f‘:;2(z;t) which is defined in the upper half plane, and vice versa. This results

from the continuation properties of analytic functions. As a result, we can write

Pifr (2;t) — QuFma(2it) = K(z5t),  z€SY
: (6.3.12)
— _
Pofpa(zt) — Qi fma(23t) = km(z5t),  2z€ S
and
]
Uifri(z;t) = Vafa(zt) = 0n(z5t), z€ St
: (6.3.13)
—/
Uafra(25t) = Vif i (25t) =0n(zt),  z€ S5
where
. {(n, ) | —co<m < o0, 7;>20}—-C
st = ,
{(m, in2) | —c0o<m <00, 7, <0}—C
C = {(m,ing)] —co<y <0, 9=0}.

km(2;t) and 6,,(2;t) are analytic functions throughout the z-plane except along the

cut C which is the entire non-positive real axis. From the above equations, it can
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be seen immediately that equations (6.3.10) are satisfied identically. So, the question
now is to find the analytic functions k,,(z;t) and 6,,(z;t) in the cut-plane ST U S~.

Solving for £, (z;t) and F.,(z;t) from equations (6.3.12) and (6.3.13), we get

mk

fiizt) =P H™? {Bf,n(z;t)—- i2 K,m(z;t)}

) ze St (6.3.14)
Fra(5t) = Q7T H T {0),(2;t) — Duki(2;1)}
and
x —1 *
fol8) = =Py H - {80,(50) L1 mn(511))
,  z€S .  (6.3.15)

Faalsit) = ~Qi H {00,(:) — Larn(s:1)}
The definitions of matrices Ly, l*}k, H, and I*I , as well as the properties of these
matrices are given in Appendix A. Matrices P and @, have been defined above.
In obtaining (6.3.14) and (6.3.15), we have assumed that the inverse matrices Py’
and Q' exist. Notice that the determinants of Py, and Q. are both equal to Dy(v),
where
Dy(v) = {4a1as — (1 + a§)2}
k

Therefore, in this analysis, we exclude the situation where the interfacial crack prop-
agates with either of the two Rayleigh wave speeds of the bimaterial system which

are the real roots of Di(v) = 0. This ensures the existence of P;' and Q; .

Substituting equations (6.3.14) and (6.3.15) into the traction free conditions on
the crack faces, (6.3.9), we get
H {Oii(m;t)— L, nf;(m;t)} — H {6, (n1;t) — Lok (m;1)} = o
. . N Vm < 0.
H {Hg(ﬂﬁt)“ L, "";(771315)} - H {Oﬁj(m;t) - Ll"ifﬁ(fh;t)} =0
(6.3.16)

Adding the two equations in (6.3.16), and using the fact that HH # o for a crack

propagating with a nonzero speed, we obtain

Km(mst) — ko (n5t) =0, Vi <o0. (6.3.17)
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This implies that &,,(z;t) is continuous across the cut except at the crack-tip and
therefore &,,(z;¢) is analytic in the entire complex plane except at z = 0. However,
the condition of bounded displacement requires that | £,,,(z;t) | = O ( |2|* ) for some
a > —1, as |z| = 0, so that any singularity of k,,(z;t) at the crack-tip is removable.

Therefore, £,,(z;t) is an entire function. Now, both equations in (6.3.16) become

*

H 0,f(n1;t) — HO,, (n1;t) = Rkm(n15t) V<o, (6.3.18)
where
Em(mit) = k% (m;t) = K, (m; )

Rzﬁig —-HLz :& L1 _H.i-ll

Equation (6.3.18) constitutes a Riemann-Hilbert problem. Its solution 8/ (z;t) is
analytic in the cut-plane S* U S~. Along the cut, 8,,(z; ) satisfies equation (6.3.18)
for some arbitrary entire function K, (z;t). Also, from the requirement of bounded

displacements at the crack-tip, as |z| — 0,
| 0.(z8) [=0 (I21") (6.3.19)

for some o > —1.

In equation (6.3.18), the solution 8/, (z;t) is composed of two parts, the homoge-
ol ~
neous solution @, (z;t), and the particular solution B:n(z; t). We will consider these

two solutions separately.
HOMOGENEOUS SOLUTION:

The homogeneous solution is obtained by solving
* ol+ ol-

HO, (m;t)~-HO, (m;t)=0, Vg <0. (6.3.20)

By using the solution given in Appendix B and by imposing restriction (6.3.19), we

can write the solution to the above equation as follows:

ol

0. (z¢t) = P AL /01m (z6)¢C+ P l(ém (z;¢) 2 , (6.3.21)



where

E TID ee— n 3 g )
2r 1473 Vhizha

and jzlm (z;t), ém (z;t) are arbitrary entire functions. The parameters ¢ and 5
defined here are known functions of crack-tip speed, v, and material properties. Their
functional dependence on these variables is discussed in Appendix A and Section 6.5.
For v = 0, €(v) reduces to ¢ which is the oscillatory index that appears in the

quasi-static interfacial crack problems (Williams, 1959; Rice, 1988).

By substituting equation (6.3.21) into equations (6.3.14) and (6.3.15), we get

o/t i, . © . © *
foi (5t)= PTTH™ {z‘5+“ Am (z8)C + 2777 By (1) ¢
—u y 2 € S+a
Faa(zit) = QiU o4 Sy (5)¢ + 574 B (50)
(6.3.22)
and
o/l 1 * —1 1, © 1 . ©O *
For (zit) = —P5  H {5757 oy (s5)C 42775 B (550) &
—n , 2E€S7.
-1
Foolzt) = —Q7 {-wﬂeAm(zﬂ¢4,fﬁﬂeBm 21) }
(6.3.23)

Notice that the following identities hold,

B¢ =Yt g gl
h%l - h12h21

x 1 hi2ha x ~1x 21 p ’
S LTITRNI YO - gy S LU R

and

—61['

1+ 4=

3 1_ﬁ:

cosh e cosher ~

Without losing generality, we may absorb the factor \/hizha1/(h?, — hishy) into
the entire functions, Am (z;t) and Bm (z;t). By taking the conjugate of the function
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FII oll

£ mi1(z;t) in equation (6.3.23) and comparing it with the function f,,, (z;t) in equation
(6.3.22), and also by using the properties of matrices Py and @), we can obtain a

relationship between the entire functions Am (z;t) and Bum (z;t) as follows,

Meanwhile, by using the fact that

Pl ¢ = Qi'¢, P C= P¢,
we can get the solutions,

ol C‘A’P—lc —mQ—lg

) = 1> —‘"HE m ¢ %1 S ——-—ze . ¢ S+
Fm (5) = cosher A H)+ —oier cosh em A (1), 2 €
N7 e € —1C ﬁwQ—lc ’

) = ——+ZE m -t 2 ———ze m t S_
Fima (5:1) cosh em HO+ e cosh er A (1), 2 €

(6.3.24)

or, in terms of Fy,(z;;t) and G,,(zs;t), for the material above the interface,

N

ot (14 a?) — 2nas] e~ e 9
Fu(28) = — ( ()) cosher ! Am (2;%)
[(1 o)+ MaJe T T

m{z1;t

pD(v) cosh emr “ Am(231)

(6.3.25)
ol [2al _ 77(1 + aZ)] ecT 1l o
S;t e = 8 2 m S;t
Gon (758) uD(v) cosh emr z Am (2531)
2 1 2 —em _l_ ;o
200 + (1 + a?)]e TG ()
pD(v) cosh er )

For the material below the interface, the solution is also given by equation (6.3.25)

with the parameter er changed to —en.
PARTICULAR SOLUTION:

Since K,,(z;t) is an entire function, the particular solution é:n(z t) can be easily

constructed. Suppose é:n(z; t) is also an entire function, which implies that

A4 A= Al
0, (m;t) =0, (n;t) =0,,(m;t),
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then from equation (6.3.18), we get

Al

* -1
6., (m;t) = {H —H} Rem(m;t) , Vg <0. (6.3.26)

By using the identity theorem for analytical functions, it can be shown that for any

27
A * -1
0 (zt) = {H —H} Ren(z:t) . (6.3.27)
By substituting this particular solution into equations (6.3.14) and (6.3.15), we
have
~ * -1 ¢
f:;l(z;t) = P;! {H —H} {L2 —Lz} Km(z;t)
) , z€ST, (6.3.28)
= * - *
Foo(zt) = Q5 {H —H} {Ll —Ll} Ko (2 1)
and

AN

Fra(zt) = P! {EI —H}”l {1*31 —Ll} K (2;t)

1 , z€S".  (6.3.29)
~=I" s — *
Fui(zt) =—Q7" {H —H} {L2 —Lz} Km(2;t)
Notice that

(I21)k 0

* -1  x h
{H —H} {Lk —Lk} — | . ked{L,2}).
0 (li2)k
h12

If the entire function &,,(z;t) is expressed as
-
km(2t) = (£ (z8), KD (z8) ),

=t
then, it can be shown that by comparing the conjugate of f,,,(z;¢) in equation (6.3.29)
with };l(z; t) in equation (6.3.28), we have

R (1) + R () =0, sP(zt) —FD(zt)=0.
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Define a new entire function A,,(z;t) by

~

An(zi) = 3 {[s0(556) = R 0)] + [ (0 + 7D (50}

Also let

wy = ( ()i (l2)k )T .

har 7 hag
By relating K, (2;t) to A (2;t), and by using the above definition, equations (6.3.28)
and (6.3.29) give

Foi(zt) = PTlwyAp(zit) — QTlwaAn(5t) , z€ St
(6.3.30)

X4

Tzt = P;'w, A, zt —Qz_l'wlzm zt), ze€S”
m2 2

In order to express the particular solution in terms of F,,,(z;;t) and G,,(zs;t), we

need to define two parameters, w; and w, that only depend on the crack-tip speed,
{al(l——aﬁ)} {as(l—az)}
D(v D(v
wy = L ()2 1, W = H ()2 1.
{al(l—as)} {as(l-as)}
nD(v) |, nD(v) |,

Then, for the material above the interface, the particular solution can be expressed

as
A 1 1+ a2 20, A )
Fl(zt) = — 2 — A (2t
m(zl7 ) /,LD(’U) {(1+wl 1+ws) (Zla )
14a? 20, \F
— 2 An(z;t
<1+wl+1+ws) (2 )}
(6.3.31)
A 1 2qq 1+ a2\ -«
Gl (z5t) = — =] Ap(zt
m(z ) /,I;D('U) {(1 +wl 1+w3) (27 )
2&1 1+012 Y
— 2 Azt
<1+wz+1+ws> (z’)} J

For the material below the interface, the particular solution is also given by equations

6.3.31) with w; and w, changed to w;! and w_!, respectively.
g 1 s p y

By adding the expressions in equations (6.3.25) and (6.3.31), and by integrating

with respect to the corresponding arguments, the final solutions of F,,(z;t) and
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G (2s;t) for the material above the interface, for m = 0, 1, can be obtained as
[(1+ a?) — 2na,] €™ 34ie
£ Azt
pD(v) cosh err “ (z:1)

(14 0) + 2nu] = 5oic
pD(v) cosh er !

1 1+ a? 2a 1+ a? 2a —
_ s d Bm 1) — s s Bm ,t 2
pD(v) {<1+wl 1+w3> (z1;t) <1+wz + 1+w8> (=i )}zz

Fo(z;t) = —

(6.3.32)
and
[2(1’[ - 77(1 + az)] T 3+zr: )
Gnl(zst) = £ : An(zst
(#31) pD(v) cosh enr ? (#1)
o+ 1(1 + )] = 3i
8 m S;t b
+ pD(v) cosh exr 2 An(zit)
1 20y RN 20y 1402\ —
- 2 Bm £y t) — £ Bm Y t 2
,uD(v){(l—}—wl 1+ws> (2531) <1+wl+1+ws) (= )}Zs )
(6.3.33)

where the entire functions, A,,(z;t) and B,,(z;t) are defined by

d2
dz?

2
L e, () = o4 4 (510),

o {ZB zt} Azt)

and they can only be determined by the far field conditions. The solutions for the
two displacement potentials, @, (171, 72,t) and (91, n2,t), will be given by equations
(6.3.2).

Since A (z;t) and By,(z;t) are entire functions, they can be expanded into Taylor

series,

Ao(z;t) = Y AP (#)2", Bo(zt) ZB(")
= n=0

N (6.3.34)
Azt =S AP @), Bi(zt) ZB(")

n=0

As we have mentioned in the previous section, in the unscaled physical plane, (&, &),
Om (&1, &2,t) and ¥, (&1, €2,t) should be ordered according to their contributions to

the near-tip deformation field. By imposing this property, i.e., equation (6.2.5), to
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the representations of ¢y, (11,n2,t) and ¥, (91, n2,t), for m = 0 and 1, we can obtain
restrictions on the entire functions A,,(z;t) and B,,(z;t). In the Taylor expansion
(6.3.34), AP (t) # 0 and Bfo)(t) # 0, but A”() = 0. In other words, the leading
terms of ¢ and 1), are of order z*/2, whereas the leading terms of ¢; and 1, are of
order z?. Meanwhile, it can be shown that the coefficient of the leading term, A(()O)(t),
in (6.3.32) and (6.3.33), is directly related to the complex dynamic stress intensity
factor K4(t) defined by YANG et al. (1991) through the relation
1 K(¢)
VT ()

As a matter of fact, in the unscaled plane, ({;,&;), and for m = 0, equations (6.3.32)

AP(t) = (6.3.35)

and (6.3.33) are identical in spatial structure to the complete solution for the steady
state propagating interfacial crack in a bimaterial. By using entirely different method-
ologies, the most singular solution of the steady state problem was obtained by Yang
et al. (1991) and the complete solution of the steady state problem was given by
Deng (1992). However, in the present analysis the functions AU () and B{"(t) are

allowed to be functions of time.

6.3.2 Solutions for ¢,,(n1,72,t) and ¥,,(n1,m2,t) for m = 2

For m = 2, the equations of motion (6.2.6) are coupled. They take the form,

1 1/2
¢2a11 (7717 n2, t) + _2¢2722 ("1» 2, t) - - 2 92 Re {vl/zF(;(zl; t)},
aj arq ¢
,  (6.3.36)

1
Yo,11 (1, M2, 8) + &glﬁz,zz (m,me,t) = —

where Fy(z;;t) and Go(z,;t) correspond to the solution of (6.2.6) for m = 0 and are
given by equations (6.3.32) and (6.3.33).

In order to obtain the next most singular term in ¢,(n1,72,t) and 3 (1, 92, 1), we

should only consider the most singular terms in Fy(2;;t) and Go(z,;t). Therefore, for
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the material above the interface,

Fo(t) = ao(t) Ao(t)zf ™ + bo(t)Ao(t)2 "
: (6.3.37)

Golzit) = eo(t) dalt)zi ™ + dof®)Ao(t)F ™
where Ay(t) = A(()O)(t), given in (6.3.35), and

_ [ +e?) —2pai]e”
a(t) = pD(v) cosh err ’

_ [(1+a)+217a8]e en
bolt) = pD(v) cosh exr ’

— 2 €T
iy = Bausaradler
pD(v) cosh emr

200 + 01+ ap)]e™
pD(v) cosh er

d()(t) =

For the material below the interface, we need to change the parameter er to —en.

Substituting (6.3.37) into (6.3.36) and carrying out the differentiation with respect
to time, (6.3.36) becomes

1
¢2711 (nla 7727t) + ?¢2722 (7717 7727t) =
l

(21\/_Re {zef [ o(t)ao(t)z)* — Xo(t)bo(t)z,_ié] z,% In z
Y0 Bo(eyaa(t) + BoltWu(t)=] = H L, (6338)

{adz (\/—Ao(t)ag( )) + \gz(j‘léo(t)ao(t)} $tic

|5 (Vedutom)) + Bucomo)]
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and

1
Ya,11 (M1, M2, t) + 5%,22 (m,n2,t) =

flm{ze\/‘ [Ao() o(t)2 — Ao(t)do(t)zT ]zs In z,

a22

_ Vv,

20y,

[# () + L] 4

8

+ {% (Voalt)do(t)) + 0 Bt )} }

[BO( Jeo(£) = + Bo(t)do(t)= -“] 7%z, (6.3.39)

20,

where

Aoft) = (-;- +ie) Aolt) , Boft) = (; +ie) (-;: +ie) Aoft)

The most general solutions to equations (6.3.38) and (6.3.39) are
balm, o t) = Re { Po(ait) — 2F (a ) — 22 F (1)}

, (6.3.40)
ba(m,ma,t) = Im {Ga(z4i) = 2,6 (z4i) — 22G(21)}
where ) o -
F(z;t) = Di{ao(t)}z> + Di{bo(t)}27
+ ‘é’{K’(t)QO(t)Z%“LiE + Ki(t)bo(t) “}lnz
é(z, t) = _Z)S{C()(t)}zg'*’i6 + —D—s{do(t)}zg-—ie
+ é{Ks(t)CO ,22'“6 +K (t)do ze}lnz )
and

F(zt) = Bi(t)ao(t)z3t* + By(t)bo(t)z2 7"

G(zt) = By(t)eo(t)zz™ + B, (t)do(t)22
The two operators Di{-} and D,{-} are given by

o0y = i (3459 & e G+ 4

+ %p(t) (% +ie) Ao(t) + iévmp(t)Ao(t)} |

2al,s
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where p(t) is a real function of time £. Also

(-3— dic) Aalt) . Ki(t) = v A(t)

2 .2
2al,scl,s

vay,s

B[,s(t) = —

3 .2
8al,scl,s

In (6.3.40), F(z;t), F(z;t), é(zs;t), and G(z,;t) are totally determined by the
complex potentials Fy(z;;t) and Go(zs;t), given in equation (6.3.37). The coefficients
of functions F'(z;t), F(z1;t), G(2,;t), and G(z,;1) are related to the crack-tip acceler-
ation, the time derivative of Ay(t), as well as the crack-tip speed and Aq(t) themselves
through the definitions of D;{Ao(¢)}, Bis(t), and K;s(t). It should be noted at this
point that these definitions reduce to the equivalent ones corresponding to the tran-
sient crack growth in homogeneous materials. Indeed, if € is set to be zero, the
expressions for Dy ,{Ao(t)} and B;,(t) that appear in Freund and Rosakis (1992) are
obtained. Once again, it is clear that for the steady state situation, functions ﬁ’(zl; t),
F(z;t), G(z;t), and G(z,;t) will vanish. The undetermined functions Fy(z;t) and
G(zs;t) are analytic in the upper half plane for the material above the interface,
and in the lower half for the material below the interface. These functions are at the
moment unknown and will be determined below by using the boundary and bonding

conditions.

Associated with @a(m1,72,t) and ¢3(n1,72,t), the components of displacement will
be

WP = Re{F' (z1;1) + asGy(25; 1)
Y

-

— oy [5Gz ) + B2 (25) — Gleit) — 22,6 t)}}

(z1;t) + z,zF (z1;t) + F(zl; t)+ 22113’(21; t)]

. (6.3.41)
v = Im {a,Fz'(zl;t)+G'2(zs;t)

- o [3113’/(21; t) + 2 F'(z5) — F(z; t) = 22 F (= t)]

A

= G (i) + B (2 ) + Clenst) + 22,6z t)]}
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and the components of stress
o? = ,uRe{ (1 +2af — az) F(z;t) 4+ 22,G5 (253 t)

- (1 + 2af — ai) [EIF"(ZI; t) + 2 F" (2 t) + 2F (23 t)]
sia . ) , (6.3.42)
- 2 [(1 - a2) + M:{ {F'(zl; t) + 2z F' (25 t)]

g 1—a?

- 2a, [Esé"(zs; t)+ 73@"(z3; t) — Zé(zs; t)}}

P = -/LRG{ (1 + ag) F(z1;t) + 2a,G5(z5; 1)

— (14 a2) BF"(z5t) + 2 B (25 t) + 2F (25 t)]
2(a? — a?) : (6.3.43)

- 2 [(1 — oz§> T&?—J [ﬁ"(zl; t) + 221F'(21; t)]

- 2a, [Esé!"(zs; t) +Z2G" (2z5; 1) — 2G(zs; t)]}
and

off = —plm {2alF2"(Zl; t)+ (14 a?) Gy(2sit)

— 20 [2F" (2 ) + B F(2151) — 2F (a51)] (6540
6.3.44

= (14 0?) [7.G" (2 t) + 22G" (2 1) + 2G (245 1)]

— 2(1-a?) [@(zt) + 22,G (5 t)]}

To produce a more compact form for the boundary and bonding conditions, one needs
to define the following quantities: First let It"’k, ék, U k, and ‘*’k be obtained from
matrices Pg, Qy, Uy, and Vi, respectively, by changing the sign of the off-diagonal
elements, and let
M, = [um(v) 0 ] ’ N, = {,um(v) 0 ] ’
0 un(v) |, .
where

m(v) = (1 —-aﬁ) -



- 194 -

Also, define complex vectors, £ (z;t) = (Far(z;t), Gar(2; )T, Falz; t) =

(Fk(z7 t)7

Gr(z; )T, Fi(z:t) = (Fi(2;t), Gi(2;1))T. Then, by using the above definitions, the

traction free condition on the crack faces will be

P, [f'1'+(n1;t)—7715"1/+(7h, t)—nify (m;t )]

+Q, [7'1'"(771#)—171?1/_(771, )= n2Fy (m; )]

~2M £ i)+ 2m B i )] = 2N [Fy i) + 2Py (st
2P, Fi(m;t)~2Q, Fr (m;t) = o

Pz[ 3 Omit) = mFy (mit) —nlFy (mt )}

-+

Qs [T mit) = mF, (mst) = niFy (mit)

—2M, [ £y (ni3t) + 2m Fy (m; t)] — 2N, [?,;(m; £) + 20 Fy (1 t)}

* 2

x . +
—2P; fy(m;t)—2Q, fy(m;t) =0
The continuity of traction along the interface will reduce to

{P1 {f&’*(m;t)-mﬁl+(m, t)—nify (m; )]
+Qu [Fmst) = m T, (mst) = 2t F, (i)

el — e

—2M, [3”'1+(n1;t)+2mf'1+(m;t)] — 2N, [fl (m;t) +2mFy (m;t)

—2 Py Fmit)-2Q, F (i)
P [ Omst) — mF i) — B FY 0]

+Q, [flzl+(7h, t) — ’71},2, (n1;t) — ﬂf?ﬁ(’h;t)]
= ~ - =+ =+
—2M, [fz (m;t) +2mf, (m;t)] — 2N, [fz (m;t) +2m £, (”l;t)]

“2P*'2};(W1; )—2é2fz(771, )}“0

, Vi < 0.

(6.3.45)

7V771 >07

(6.3.46)
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and the continuity of the displacement along the interface will be
{U1 [f'f“(m; t) = m ¥y () — 0l Fy (s t)]
+V [?'f(m; )~ mfy (m;t) = niFy (m; t)]

-, [}f(m;t) + 27715‘?(771;?5)] -V Fl_(m;t) + 2771—5;1_(771#)]}

, Vi > 0.
- {Uz [f’{(m; t) —mFy (m;t) —n2Fy (m; t)}
+V, [?';’(m; £) = mFy (1) = 2 Fs (m; t)]
- I}z [}'2_(771;'5) + 2771};(771;15)] - ‘72 [?:(ﬂﬁt) + 2771?;(771;'5)]} =0
(6.3.47)

Similar to the procedure in the previous section, by rearranging the bonding con-
dition (6.3.46) and (6.3.47), we may introduce two new functions «(z;t) and 6(z;¢),
which are analytic in the cut-plane S* U .S~. In order to keep our notation short, we

define some new quantities,
Al ~
gi(zt) = Filzt) — 2filzt) — 2° Fr(2t)

., y . , ke{l2)
— 2P M [Fu(zt) + 2:Fu(zt)] — 2P7" Py Fi(z5t)

Therefore, we can write that
K(z;t) = P1gy(2;t) — Qyg(%:t)

_ } , zeSt,  (6.3.48)
0'(z;t) = U1g:(2;t) — Vagy(z:t) + q4(2; 1) — g,(z; 1)

and

K(z;t) = Pagy(2;t) — Q.9 (%;1) }
- , z€S5 ., (6.3.49)
9,(23t) =Ua,g,(2t) — V1g,(%;t) + q4(z;t) — q:(%t)

where
qi(2;t) = 2 (L My — I) [};(2375) + 22};(2;”] +2 (Lk Py - T}k) Fulzt)
i (zt) =2 (ik Ny — J) [Fulzit) + 2:Fu(z0)] + 2 (Lka - ‘*/k) Filzt) |
(6.3.50)
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and
1 0 1 0
I‘[o 1] ? J‘[o -1} '
Vector q,, (z;t) is related to vector q,(z;t) by

* T T
4 (5t) = (651, —a0=0 ) st = (=0, =)

This notation will be used throughout the paper to signify this operation. In calcu-
lating q, (2;t) and g, (z;t) in equation (6.3.50), we have used the fact that

P'M:=Q;'Ny, P Pi=Q;'Q,, ke{L,2}

By solving equations (6.3.48) and (6.3.49) for g,(z;t) and g,(z;t), we obtain

0:(zt) = PPH{8/(0)- L wlsi) — [au(s5) ~ duls:1)|

_ , zE€ ST,

7a(:i) = Q3" H {0/(t) - Lun(sit) = |au(ast) - da(est)] |

(6.3.51)

and
gi(sit)=—P;' H {9'(z;t)- Ly s(z1t) - [‘12(z§t) ~§1(Z;t)]}
,Z2 €S

90 = -Qr H {00~ Lun(0) — [aa(s50) ~ an(50)] )

(6.3.52)

It can be seen that the above equations are very similar to equations (6.3.14) and
(6.3.15) with the exception of terms q,(z;t) — g,(2;t) and g,(2;t) — q,(z;t), which

are totally determined by the solution for m = 0.

By substituting equations (6.3.51) and (6.3.52) into the traction free boundary
condition (6.3.45), one can show that x(z;t) is an entire function. As a result, the

boundary condition (6.3.45) will reduce to

*

H 0" (n;t) — HO' (n;t) = Re(nst) + &(m;t), Yo <0,  (6.3.53)
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where

* -+

k(m;t) =H {qif(m;t) —q, (m;t)} —H{qz’(m;t) -51_(771;'5)} :

Equation (6.3.53) also represents a Riemann-Hilbert problem for 6'(z;t). It re-
quires that 6'(z;t) is analytic in the cut-plane St U S~, and along the cut satisfies
the above equation. By using the properties of our asymptotic expansion, equation

(6.2.5), it can be shown that 8'(z;t) should vary as,
| 0'(z;t) | =0 (|2]"), as |z|—>0, (6.3.54)

for some o > 0. The complete solution of (6.3.53) is generated by splitting the

problem to the following two parts.

of
To obtain the first part, let @ (z;¢) be an analytic function in the cut-plane
St U S, such that

* ol+ ol—

HO (n;t)—HEO (m;t) = Re(m;t), Vim<0. (6.3.55)

This is exactly the same as equation (6.3.18). One basic difference, however, is that
of

unlike the previous case, here @ (z;t) has to satisfy (6.3.54) (recall that before,

a > —1). As a result of this observation, in the material above the interface, the

solution for g, (2;t) is given by

o(1) [(14+a?) - 2na,]e™ 1., o )
) = — s +e ¢
9 (51) pD(v) cosh emr A (58)
(14 02) 1 2maJe 4 %
— 1€ .t
puD(v) cosh er 7 a5 t) ’
1 1+ a? 2a, 0 1+ ao? 20, \ o
_ s 't _ s .
pD(v){(l—}-wl l—l-ws) Bz (1) (1+w;+1+w3>32(z’t)}z

(6.3.56)
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and
o(2) [20{1 — «,7(]_ + ag)] ec™ L
. = € t
i (=) uD(v) cosh er 227 Az (23)
ot n(ltade s
pD(v) cosh ex ;
1 20y 1+ a; 204 1+a2\
8 't
+HD(”){<1+wz 1+ws) (1+wl+1+w3)32(z, )}2 )
(6.3.57)
where

0 o(1) o(2) T
= (8 0,8 @)

and the entire functions ;12 (z;¢) and 1032 (z;t) can only be determined by the far field
conditions. Similarly, the solution for &2 (z;t), in the material below the interface,
can be obtained by changing the corresponding parameters in equations (6.3.56) and

(6.3.57).

The second part of the solution is obtained by letting

Al

0 (zt) = 6'(z;t)— 5/ (z;¢)
ai(zt) = gi(zt)— gy (51)

Then, 91(2; t) will be analytic in the cut-plane S* U S, and satisfy

*

H O (nit) — HO (mist) = &(nuit), VY <0. (6.3.58)

Because the right-hand side of equation (6.3.58), K(n;;t) is totally determined by
the solutions ¢o(71,72,t) and o(m, 92, ), é,(z;t), and therefore, §,(z;t) are also

completely determined.

By using the results in Appendix B, we can write

é,(z;t) = i;lr—z:/_o {j\l;- . Lﬁ((;)l)[’&(nl;t) + ..1._ . L(z) f’ I%(ﬂl;t)} dy
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where

L(z) = Zatie

The explicit dependence of g, (z;¢t) on z can be obtained from equation (6.3.50),

au(zit) = tefao(t),colt)}= + Efbo(t), do() =37
+ ¢ (3+ 2ie)(LpMy — Dki{ao(t), co(t)}2zz™Inz ; ,  (6.3.60)
+ € (3—2ie) (LM — DEi{bo(t), do(t)}22 " In 2
where operators like £;{ao(t), co(t)} and kg{ao(t),co(t)}, etc., are given in Appendix
A. From the definitions for g, (2;t) and the above, one can get

zt _21: zt) = Z%He—gz%_ie+€'€z%+iﬁlnz—égzénklnz
ql 3 2
. (6.3.61)

q,(z;t) — q,(z;t) = yzatie ﬁz%““ téczit lny —é €27 " nz
where quantities of B, v, £, and ¢ are also given in Appendix A. It should be noted
here that 3 and -« depend on the crack-tip speed and the complex parameter Ay(t),
as well as their time derivatives. However, & and ¢ depend only on the crack-tip speed

and the complex parameter Ag(t). The right-hand side of equation (6.3.58), &(n1;t),

becomes
R(nst) = é wa(—n)2tIn(—m) + & Da(—n1)7 " In(—ny)
) v T <0 ’
+ wi(-m)2 3t -I—wt( 771) "
(6.3.62)
where

wimife Fres om)

w;=1 {e"” HpS+ e"'H‘y} — e {6_67’ HE¢ - e“Hc}
Once again, it can be seen that wy does not depend on the time derivatives of the com-

plex parameter Ag(t) and the crack-tip speed, while w; depends on these quantities.
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The functions inside the integrand of equation (6.3.59) can be rewritten as

'A"'(Ul, t) - . mwe ) » . —2te )
o —te {e wqln(—mny) + € wa(—m) " In(—m)
+tw; + (*‘—’t(_nl)_%ﬁ}
A (6.3.63)
'i(:h» 2 = —ge " {é wa(=m)*In(—m) + é wgln(—mn)
L (m)
—%-wt(—Th)me + Cf’t} )

In order to obtain the solution for é,(z;t), we recast equation (6.3.59) into the
form of a Stieltjes transform by using (6.3.63). However, one can see that for our
case, a closed form evaluation of the Stieltjes transform integral is very difficult. At
the beginning of this section, it has been mentioned that only the most singular terms
in the solution of Fy(z;t) and Go(z;t) are considered. This implies that we are only
interested in the region where |z| — 0, i.e., very close to the interfacial crack-tip. As
a result, instead of evaluating the entire Stieltjes transform, we only need to study
the asymptotic behavior of that transform as |z| — 0. The details of this asymptotic
analysis are given in Appendix C. If only the leading terms in the Stieltjes transform
are retained, by using the results provided in Appendix C, the solution for é,(z; t)

can be obtained as

Al

0(zt) = ¢ [Cdz%“f - Z‘dz%‘“} (In2)* + [Ctz%"'“ - th%‘“] Inz
B . (6.3.64)
+ [Cttz-%_”é - CttZ%_iE} +0 (l2])

where in developing the above equation, the relation

]
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has been used, and the following notations have been defined:

—TE

Ca = 867rA1Fwd
G = {”“’t“;i;ﬁ;r—e)f s}
o - e e

In constructing the entire solution for g,(z;t) and g,(z;t), the leading terms in

(6.3.56) and (6.3.57), are considered. This is consistent with the fact that (6.3.64)

contains only leading terms of the same order. The final solutions for g,(z;t) and

g,(z;t), are therefore

gi(z;t) = é{Pflﬂ'lCdZ%“é -

HPrE G-

+{P;1H‘1(cn—ﬁ)z%+“— PH (G- )}

€™ -1
L PTG

cosh e

e Az (t) + ————

and

* —1 1
ga(=t) = "é{Pz_l H (g2°

-1

— {P;1 H

- {P2_1 I,:I_l (et "7) Z%He - Q2_1H”1 (Z“ 'B)

_mP_1 1 o
____._€ 5+ie As (t)

cosh e

where ;12 (t) = ;12 (05¢).

(Ct — c) Z%'He

* -1 _
-1 H Cdz5~ze} (ln Z)2

QU (G- 28 s

Q¢

7 () 4+ 0 (J2])

cosh er

+ie QZ—IH—IZdZ%—iE} (hl 2)2

~Q;'H™ ({,-¢¥) z%—“} Inz

}

Jaft) 40 (I2])

"—lE

Z2

-1
EWQZ C ——tE

“cosher

, z €87,

(6.3.65)

7265_7

(6.3.66)
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Our final target is to find the complex potentials f,(z;t), £ € {1,2}. After some

manipulations, f{(z;t) and f,(z;t) can be expressed as

\

1(zt)=¢ {P;lH“ICG,z%‘H6 -Qit H Zdz%_“} (In z)*
+{ [PH (€ - )+ ¢ walao(t), )]

ot B (6= £9) e watn(n, (o) 4+ +
,z€ S, (6.3.67)

+ { [Pflﬂ'l (€ — B) + 'wﬂ{ao(t),co(t)}] e
_ [ - i (Ztt ~7) —ﬁﬂ{bo(t),do(t)}] z%—ie}

eewp;lczl o e—Eﬂ'Ql—lcz%_ieT

3t t)+ 0
cosh e A (1) + cosh er At) +0 (2]) J

and

x —1 1, 1.
Fleit) = —e{ P B (et - QR T f sy

{7 69— 2wttty
— (@7 HT (C,— ¢ €) + & War{bo(t), do(t)}] z%-iﬁ} In z
, €S, (6.3.68)

B { {P‘? i (Cee = 7) — werlao(?), co(t)}] L

— [@:'H™ (S — B) + Bua{bo(t), do(t)}] Z%—ie}

- -1 -1 —_
€ €7l"P2 CZ%—*'l'é ° ee’sz Cz%—ie/ol

t
cosh ew A2 () + cosh ew

() +0 (J2])
where the operators wgk(-, ) and wy(-,-) are given in Appendix A. By integrating
the above two expressions with respect to the complex argument z, we can finally

obtain the complex potential f(z;t) = ( Far(z;t), Ga(z;t) )" for both materials.

Since equations (6.3.67) and (6.3.68) are directly related to the stress components

around the interfacial crack-tip, some of the noteworthy features of the asymptotic
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field can be studied through them. The most interesting feature is that there exist
two terms in the above equations, which are totally different in nature from the
terms found in the solution of a crack propagating transiently in a homogeneous
material. The first of these terms is that associated with z'/?(In z)2. This term is
clearly associated with the interfacial nature of crack growth since it is proportional
to the quantity €. This quantity is also related to the transient nature (existence of

non-zero accelerations) of the problem. By observing that

_de do
T de At

é
One can easily see that ¢ and thus the z'/2(In 2)? term vanish either when the crack-tip

speed is constant and/or when the material mismatch parameter € vanishes.

The second term is that associated with z'/2In z. The coefficient of this term is
related to the complex parameter Ao(t) and also depends on the crack-tip speed, as
well as on their time derivatives. So it depends on both () and K%(t). It can be
seen that for constant speed transient crack growth (v = 0, K, # 0), this term will
still be present. Indeed the r'/?Inr term has been observed by Willis (1973), who
studied a particular constant velocity, transient interfacial crack growth problem.
Both of these two terms which include logarithms will vanish at the same time only
if the situation is strictly steady state. Otherwise one or both will be present. These
logarithmic singularities are the consequences of the existence of both the interface
and the transient nature of the propagating crack. For the case of crack growth in a
homogeneous material (¢ = 0), B = v and € = ¢, see Appendix A. This is true even
if crack propagation is transient. As a result, it can be shown that wy = w; = 0, and
consequently, ¢4, C;, and ¢,, will vanish. The logarithmic terms also disappear. In
this case, the transient field reduces to the one obtained by Liu and Rosakis (1992)
which does not feature any logarithms. It should be stated at this point that transient
higher order terms involving logarithmic singularities have also been observed in the

solution of dislocation lines propagating transiently in elastic solids (Callias et al.,
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1990, and Markenscoff and Ni, 1990). These terms were shown to vanish when the

dislocations propagated with constant speed.

In this section, we have provided a procedure which allows us to investigate higher
order transient effects systematically. By imposing the boundary and bonding con-
ditions on the complex potentials, the problem was recast into the Riemann-Hilbert
problem. By solving the Riemann-Hilbert equations, and by evaluating the Stieltjes

transforms, the higher order terms were obtained.

6.4 The asymptotic elastodynamic field around a
non-uniformly propagating interfacial
crack-tip

In the Cartesian coordinate system (&;,¢2) which is translating with the interfacial
crack-tip, let ¢, (&1,&0,t) and ¢, (&1, &2,t) be solutions of equations (6.2.6), m =
0,1,2,---, such that

¢m+n(€17 627 t)
¢m(€17 52) t) =0

¢m+n(€1a 627 t)
'/)m(fl’ 62, t)
for any positive integer n, and define ¢(¢1,&2,t) and (&1, &, t) by

Hnt) = 3 dmllr,bnt)

m=0

, asr=4/8 4+ 50, m=0,1,2,---, (6.4.1)

-0

_ (6.4.2)
"/)(fl)é%t) = Z ¢m(€17£27t)
m=0

Then, as discussed in Chapter 2, the asymptotic elastodynamic state surrounding the

interfacial crack-tip can be constructed.

For its importance in the experimental investigation described in Section 6.7,

we only provide the asymptotic expression of the first stress invariant around the
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interfacial crack-tip. However, in order to shorten our expression, some notation
needs to be defined first. In the expressions below, the superscript (1) or (2) denotes
the components of the vectors defined in Appendix A and in previous sections. For

the material above the interface, we may define the following quantities,

Qt) = -m{[(wai)humashﬂ] ()
— [+ )z + 20k ] ¢V}
Qu(t) = -m{[(l+a)h11+2ashn] 9%
+[(1+a2hiz + 2000 | T
Qu(t) = —-m{ (1 + 02)ha1 + 20,han | (¢ — € ¢W)
~ (04 0o+ 20,m] (¢ = € €) } + € w0l {aol®) coft)}
() = “m{[(l+a)hu+2ash21 ( —(1))
+ [+ a2)hoa + 200hnr] (€7 @) - e mPao(t), do(t)}
Dult) = —m{[( + 02kt + 20kt (G — B)
— [+ o)+ 200 ] (6 = B2) } + 0l {ao(®) o)}
Qu (t) = —m{[(ua Va1 + 20hay ( ~<1))

+ [+ aha + 2a0ha] (¢ =7 |~ wf{bo(t), do(t)}

Now, one can show that by using equations (6.3.32) and (6.3.67), the first stress
invariant in the material above the interface will be given by

011 + 092

o ~%+i€ ) —l——zc
ety = Re{ o ao(®)z T+ Ao(h(0)



where
Au(?)
Au (t)

By(t)

Bu (t)

Ciu(t)
Ai(t)

As (t)
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|
lH

— A (05 7= B (0 G (03]
+ [At(t)zf*“ + Btz T b (1) - By (t)zlz,‘f‘“] In 2
+ o [nd(t)zf“ﬁ_ oy (t)zf‘“] (ln z,)z} +0(la]). (6.4.3)

Qu(t) - 2Lt 0D) {(g + ie) Di{ao(t)} + ¢ Kz(t)ao(t)} — 2By(t)ao(t) ,

(; ~ i€) Difto(t)} + ¢ Ra(t)bo(t)} + 2Bu(t)ult)

{
= (5 +i€) (5 + ) Difaolt)} — 261 + ie) Ki(t)ao(t

2(1+ a})
1—af

(-;- + ie) Bi(t)aol?) ,

(5- i) (5 — ie) Ditbo(} + 261 — i) K(t)o(t

22D (2 i) Bt

(G+¢) Baott), Cut) = ~ (5+¢) Biltolt)
fu(t) - 22D (24 i) Kigonts)

. (1) + 0% jlf?é (3 - ie) Rttt
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B(t) = —é (g +ie) (-;- +ie) Ki(t)aolt)

B (t) = e(-;i ~ic) (% — i) Ft)bolt)

. v K%(t)
—1 . .
4\/27ra,2c,2 (?’_ +ie> (_1_ +ie)
2 2

In expression (6.4.3), functions of time Ao (1), A (t), and As (t) are undeter-
mined by the asymptotic analysis. On the other hand, functions Ay(t), Byu(t), Cu(t),
Au (t), ---, are known in terms of Ao (t), the crack-tip acceleration ©(t), and the
time derivative of Ao (t). As a result, these functions are also undetermined by the
asymptotic analysis. However, their dependence on time derivatives of v(¢) and ;10 (t)

constitutes the mathematical demonstration of transient effects.

It 1s often convenient to express the first stress invariant in terms of real quantities.
For any complex function of time W (t), let its magnitude be denoted by |W|, and
its phase be denoted by ®(W). Meanwhile, a scaled polar coordinate system (r,6;)
centered at the moving crack-tip is defined by

Cvlfz

1

1/2 _
n={g+ag}" , 6=t

The first stress invariant in the material above the interface can therefore be expressed

as

011 + 022

—_——r y cos(elnr 3 sin(elnr) pr '/
o7 —any = Ao (O] {Zo(60) cos(elnr)+ So (8) sinfelar) | r

4o, o .
* pD(v)(1+ ws)! Az (t)] cos @(41)

+ € {Ed(e,) cos(elnr)+ ﬁd (6;) sin(eln rl)} rll/2(ln r)?

+ {Zt(Gl) cos(elnry)+ S (6;) sin(eln rl)} r,l/z Inr



5aB) = ao(t)e cos (% + @(22)> + Bo(t)e cos (5 _ @(,?12)) ,

£a(0) = - {ao(t)e—fﬂz sin (-‘921 ¥ @(22)) — bo(t)e sin (% - @(2@)} ,
) = 10 cos (5 + 8(0) = | e ]ecos (% + 860
200 = {10l sin (§ + 500 + 16 @01 s (L + 020 )},

S(8) = Al oo (%M(A >) | e 0] co (J+<I><2L>

2401 %sin (F + 2(0 >) s (01 sin (5 -+ 2000 )
4l sin (849 +1 A 0 sin (3 + 200}
e~ sin (%9-. — &(B, )) +| By (t)]e (?’—2@ - @(ét))

€4 194(8)|e™% cos (% + @(Qd)) + | Qa ()] cos (-21 + @(ﬁ@) } o,
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Su(l) = JAu(t)]e= cos (% + @(Att)) ] A ()] cos (% T @(2@)
Bl cos (5 8(8)) ~ | B (0]e cos (5~ 8(0)
£ [Cut)]e cos (12"—’ _ @(ctt)) | G (D] cos (-2_ _ @(c’iut))
- {1l in (%4 0040) - lesin (F + 230 Lo
b {Bdolein (' - 0(8)) - e 01 sin (5 - 050 o

6 x 9 ;
_ é{md(t)le_ee’ cos (5’ + <I>(Qd)> — | Q4 (£)]e cos <-2£ + <I>(Qd)> } 62,

a8 = {1l sin (548040 +1 e (0fersin (+ i) ) }
b 1B sin (G - #(50) + 1 B (0)esin (5~ a(5u)
+  |Cu(t)]e™ sin (770’ - <I>(Ctt)> + | Cu (t)]e? sin <-7—§l - @(étt))

- {10l cos (%4 8040 4 e e cos (2 + 8000

30,

- {lBt(t)te‘“" cos <379’ — @(Bt)) + | Br ()]e® cos (..2_ — & ég) } 9,

. (6 x . (8 *
+ é{lﬂd(t)|e_€6' sin (El + @(Qd)> + | Q4 (t)]e* sin (El + @(Qd)> } 67

The first term in equation (6.4.4) has a square root singularity and oscillatory na-
ture. It is associated with the complex dynamic stress intensity factor K¢(¢) (defined

by Yang et al., 1991) which is related to the complex coefficient ;-10 (t) by
K4(t) = —2v21 Ao (t) .

The second term is the so-called T-stress term, and is independent of position. The
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first two terms have the same spatial form as those obtained under steady state
conditions by Deng (1992). However, the remaining four terms, proportional to the
square root of the radial distance from the crack-tip, are more complicated and have
some unusual features. The part associated with | ;12 (t)| has the same form as
that predicted by the steady state solution and is of order r'/2. The term of order
r'/2(Inr)? has a coefficient proportional to é = ¢/(v)d(t). This term vanishes either
when v = 0 and/or € = 0. The remaining two terms contain the functions X;(6;),
it (61), £4:(8;), and E*jtt (6;) which depend on the time derivatives of the complex
dynamic stress intensity factor and the crack-tip speed, i.e., they depend on transient
effects. These parts also vanish for steady state crack growth. The term of order
r1/21nr was first observed by Willis (1973) who analyzed the stresses in the case of
constant speed, transient interfacial crack growth. In this case, © = 0, K¢ # 0, and
the only surviving terms will be of order r'/?Inr and r'/2. If the two elastic materials
that constitute the bimaterial system become identical, the terms associated with
r1/?(Inr)? and #'/?Inr will disappear. However, in this case, the functions Y(61)
and itt (6;) do not vanish and reduce to the ordinary transient term given by Liu and
Rosakis (1992) in studying the transient growth of a crack in homogeneous materials.
It is significant to note at this point that transient effects may noticeably change the
r and 6 structure of the field from that predicted by the steady state approximation

(e.g., existence of logarithmic r'/2Inr and r'/?(Inr)? terms).

6.5 Properties of the mismatch parameters in dy-
namic interfacial fracture

In the analysis of an interfacial crack dynamically propagating along the interface,
there are two mismatch parameters which depend not only on the properties of the
materials that constitute the bimaterial system, but also on the crack-tip velocity.

The properties of these parameters are very important since we have seen that the
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asymptotic representation of the crack-tip field is drastically changed due to their

presence. One of these parameters is defined by

1. 1-p h11
=—ln—=, === 6.5.1
o 114 = Thhm (6.5.1)
while the other one by
ha
— 6.5.2
"=\, (65.2)

In the above two definitions,

{2ala3 —(1+ aﬁ)} {Zalas -1+ ai)} )
hiy = -
1 2

uD(v)
o (1 —az)}1 N {2_3_;%%1%5)}2 , (6.5.3)

s
R N A o
= (i-5)"

To illustrate the properties of the mismatch parameters, we choose a bimaterial

system composed of PMMA and AISI 4340 steel. We denote PMMA as material-1,

h12 =

where

02\ /2 5
(1 - —) , D) =4wa, — (1 + ai)

c?

and AISI 4340 steel as material-2. The mechanical properties for these two materials
are listed in the table below.

Table: Properties of selected materials’

Parameter | u(GPa) | v | ca(m/s)* | c(m/s)** | cs(m/s) | cr(m/s) | p(kg/m5)
PMMA 1.20 0.35 | 2081.7 1761.5 1004.0 937.8 1190.0
AISI 4340 80.0 0.30 | 5978.8 5401.9 3195.8 2959.8 7833.0

*plane-strain **plane-stress

For both plane strain and plane stress, FIGURE 6.2 presents the variation of the

parameter 17 with respect to the crack-tip speed. We can see that 5 varies smoothly

1The parameters for PMMA are from CYRO Industries, Woodcliff Lake, NJ 06675; The pa-
rameters for AISI 4340 steel are from Aerospace Structural Metals Handbook, Battelle Columbus
Laboratories, Columbus, Ohio
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Figure 6.2: Velocity dependence of mismatch parameter 5 for plane stress and plane
strain.

from 1.0 for the stationary interfacial crack, to co as the crack-tip speed approaches
the shear wave speed of PMMA (c(Y). However, the situation is different for the
parameter 3. In FIGURE 6.3, we can observe that if the crack-tip speed is less than

the Rayleigh wave speed of PMMA (cg)), B varies smoothly and tends to —1 when

the crack-tip speed is very close to cg). Since D;(v) will change sign as the crack-tip

speed crosses cg), B jumps from —1 to 1, and then tends to co as the crack-tip speed

tends to c{!). FIGURE 6.4 shows the variation of 3 when the crack-tip speed is bigger

than cg) . FIGURE 6.5 presents the behavior of the parameter € when the crack-tip

speed is below the Rayleigh wave speed of PMMA. It shows that e tends to oo as the
(1)

crack-tip speed is very close to ci’. However, as the crack-tip speed crosses the speed
cg), since /3 is larger than 1, € will become complex, and thus e can be written as

. 1. 8-1

FIGURE 6.6 gives the variation of the real part of € (i.e., 2) with respect to the crack-tip
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Figure 6.3: Velocity dependence of mismatch parameter 3 for plane stress and plane
strain.
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Figure 6.4: Velocity dependence of mismatch parameter 3 for plane stress and plane
strain at the vicinity of the shear wave speed of PMMA.
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(1)

speed when the interfacial crack is running at speeds between c’ and c{!). We can
see that the real part of e changes from —oco to 0 when the crack-tip speed is in the

range of cg) <v<ch,

6.6 The asymptotic field of an interfacial crack
propagating at a speed between the lower
Rayleigh and shear wave speeds

In recent experimental investigations, described in Section 6.7, bimaterial specimens
composed of PMMA and AISI 4340 steel have been tested dynamically. This bimate-
rial combination exhibits a remarkable stiffness mismatch. It was observed that under
impact loading conditions, interfacial cracks may propagate at speeds exceeding cg),
see Section 6.7. This experimental observation motivates our attempt to investigate
dynamic crack growth in interfaces at speeds exceeding the lower Rayleigh wave speed.
In homogeneous materials, an infinite amount of energy has to be transmitted to the
crack-tip to maintain extension at the Rayleigh wave speed if the dynamic stress in-
tensity factor is non-zero (Freund, 1990). This makes it impossible for a crack in a
homogeneous solid to exceed the Rayleigh wave speed of that material. However, for
a crack growing along a bimaterial interface, it has been shown that as the crack-tip
speed approaches the lower Rayleigh wave speed, say cg), only a finite amount of
energy has to be transmitted to the crack-tip if the dynamic stress intensity factor
is non-zero (see Yang et al., 1991). Accordingly, there is no energetic restriction for
an interfacial crack to exceed the lower Rayleigh wave speed. Indeed, the experimen-

tally obtained velocity histories reported in Section 6.7, see FIGURE 6.14, are seen to

largely exceed the Rayleigh wave speed of PMMA.

In the analysis of previous sections, the governing equations hold for crack-tip

speeds in the range 0 < v < (!, if material-1 is more compliant than material-2.
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Also, the development of the asymptotic stress field around the tip of a non-uniformly
propagating interfacial crack is dependent on the complete solution of the Riemann-
Hilbert problem. However, from the procedure provided in Appendix II, we can
see that there are no restrictions imposed on crack-tip speed from this procedure.
The only consequence of the restriction that the crack-tip speed is in the range of
0<v< cg), is that all parameters appearing in the solution are real. Nevertheless,
the mathematical approach is not limited by this restriction, even if some of the

parameters become complex. Therefore, we can directly extend our solution to the

case where the crack-tip speed exceeds the lower Rayleigh wave speed.

Suppose the properties of the materials constituting the interface are such that
N < cg), and cg) < v < V. As we have shown in the previous section, the
parameter 7 remains real, but ¢ becomes complex and is given by equation (6.5.4). If
only the leading term is considered, under the requirement of bounded displacement,
or integrable mechanical energy density (Freund, 1990), the two complex displacement

potentials in equation (6.3.32) for the material above the interface, become

2y ;7r *
Fast) = -Gt BT iy
(24+¢€)(14+i€)uD(v)sinh ex (6.6.1)
2 —em . ’ o
[(]’; + as) _i: 277013] ¢ - z[z-ic‘A‘O(t)
(2—1€)(1—i€e)uD(v)sinh en
and
_ 2 ;ﬂ' * )
GO(Zs; t) — [?ka’l 77(]*-‘ + as)] € _ ZE-HGAO(t)
(2+7i€)(1+¢€)uD(v)sinh en (6.6.2)
{zal + 77(1 + Ozi)] e " Zz—izzo(t)
(2—i€e)(l—i€euD(v)sinheéx °

for an arbitrary complex function Ag(t). To obtain this result, the definition of € in
the speed range cg) < v < V), equation (6.5.4), has been used. For the material
below the interface, we need to change € m to — ¢ x in the above expressions. By
setting

Ao(t) = A(t)e'®® |
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the first invariant of stress for the material above the interface becomes
4(af —a?) A(
o1+ 09 = 2na, cosh e (m — 6))
D(v)sinh € 7 { ’ [ ]

(6.6.3)
— (1+a?)sinh ré (m — 91)] } cos (2 Inr + @(t))
It can be observed that oscillations still exist along the radial direction. However,

there is no singularity at the propagating crack-tip.

At a position, r, ahead of the interfacial crack-tip, the traction on the interface

can be expressed as
N02(r; t) + io12(r; 1) = —29ric Ag(t) . (6.6.4)
At a position, r, behind the interfacial crack-tip, the crack face displacement difference
1s found to be .
5 (r;t)  2qhyy T

d1(r;t = — - - Ao(t) . 6.6.5
(rst) = n sinhenw 14z¢€ olt) ( )

If the interfacial crack extended an amount §, then the energy released by this exten-

sion, AW (4d) can be calculated by

1 79
AW () = 5 /0 {022(60;8)62(8 — E138) + 013 1)1 (6 — Ei30)}dEy . (6.6.6)
By using (6.6.4) and (6.6.5), we can express the above equation as
2h 2 1+ze —ie
AW (8) = MMIm {/ (=& *é dfl} . (6.6.7)
sinh € 7 0 147¢€

Further, it can be shown that

5 1+ze —ze 5 1— ze
0 142 p 0
Therefore, the energy release rate at the tip of an interfacial crack moving at speeds

in the range cg) <v <V g, will be

G = lim AW(9)

lim == = 0. (6.6.8)

This result may be anticipated since in this range of speeds, both stress and strain
are bounded. Equation (6.6.8) states that if the speed of the interfacial crack is in
(1)

the range ¢’ < v < ¢1), no energy is needed to create new surfaces.
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6.7 Experimental evidence for the importance of
transient effects in the dynamic fracture of
bimaterials

To investigate the validity of the analysis presented in this work, a sequence of dy-
namic impact experiments of bimaterial specimens has been performed by Rosakis
and Lambros (1993), Rosakis et al. (1993), and Lambros and Rosakis (1994). Stress
waves generated by impact, load an interfacial pre-crack, which subsequently prop-
agates dynamically along the bimaterial interface. High speed interferograms of the
near-tip region of the propagating crack are recorded. The optical method used is the
newly developed method of Coherent Gradient Sensing (CGS) (Tippur et al., 1991;
Rosakis, 1993) described below.

6.7.1 Experimental technique (transmission CGS)

Consider a planar wavefront normally incident on an optically and mechanically
isotropic, transparent plate of initial uniform thickness h and refractive index n.
As shown in FIGURE 6.7, the specimen occupies the (z;,z;) plane in the unde-
formed configuration. When the specimen undergoes any kind of deformation (static
or dynamic), the transmitted wavefront can be expressed as S (z1,22,23) = x3 +
AS(z1,23) = constant, where AS is the optical path change acquired during refrac-
tion. As discussed in detail by Rosakis (1993), AS is related to the deformation state
by the relation,

1/2

AS(r,23) = 2h(n—1) [ esod(zo/h) + 21 [ "2 And(as/h) (6.7.1)

The first term of equation (6.7.1) represents the net optical path difference due to

the plate thickness change caused by the strain component ezs. The second term is
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due to the stress induced change of refractive index of the material. This change in

refractive index An is given by the Maxwell relation,
An = Dy (011 + 022 + 033) , (6.7.2)

where D, is the stress optic coeflicient and o;; are Cartesian components of the
nominal stress tensor. The above relation is strictly true for isotropic, linearly elastic
solids. For such solids, the strain component €33 can also be related to the stresses,
and equation (6.7.1) then becomes:

AS(z1,22) = 2he, | v { (011 + 25) [1 ~ D, (——‘3’-3-3———-)} } d(zs/h) , (6.7.3)

v(o1 + T22)

where

v(n — 1) vDi+ ———
E K

Ca:Dl—'

and E, v, and ¢, are the Young’s modulus, Poisson’s ratio and stress optical coefficient

of the material, respectively.

A schematic of the experimental apparatus is also shown in FIGURE 6.7. When
the transmitted wavefront emerges from the specimen after being distorted, it passes
through two high density gratings, G; and G, of pitch p, separated by a distance
A. The gratings have their rulings parallel to either the z; or z, directions. The
action of the gratings is to displace (shear) the diffracted beam and recombine it with
itself, thus creating an interferogram after G,. The filtering lens L processes the light
emerging from G, and its frequency content (diffraction spots) is displayed on the
back focal plane of L. By physically blocking all diffraction orders except for either
the +1 orders, information regarding the gradient components of AS(z, ;) along
either the x; or zj-axis is obtained on the image plane. The camera is kept focused
on the specimen plane. For grating rulings perpendicular to the z,-axis, the resulting

fringe pattern is proportional to d(AS)/0z4, a € {1,2}.
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A first order analysis described by Tippur et al. (1991), or a higher order Fourier
optics analysis by Lee et al. (1993), have shown that the resulting fringes can be

related to gradients of AS(z, ;) as follows:

O(AS)  kap
—_a_.’l,‘a— = A 3 a € {1,2} 5 (674:)

where

m for a=1, m=0,+£1,42,-..
ko, =
n for a=2, n=0+1,+2,--.

and m and n are the fringe orders for the z;, z; gradient contours respectively.

Invariably a near-tip three-dimensional region will exist in any real specimen ge-
ometry. However, outside this three-dimensional zone, a plane stress approximation
will be valid. A numerical study of each particular specimen configuration is needed
to identify the extent and exact location of such a plane stress region. Such a cal-
culation has been performed by Lee and Rosakis (1992) for a three point bend bi-
material specimen. A rather large two-dimensional plane stress region was seen over
a significant portion of the specimen. In this region, o33/v(o11 + 032;) (a measure of
three-dimensionality) tends to zero. For points outside the three-dimensional region

(033/v(011 4 022) — 0), the optical path difference in equation (6.7.3) will simplify to
AS(.’BI, 562) ~ Cah {&11(.161, .'1,'2) + 6’22(.’61, .’L’Q)} ; (675)

where 11 and 63, are thickness averages of the stress components in the plate.

As a result, for points outside the near-tip three-dimensional region, the CGS
patterns assume a simple interpretation in terms of two-dimensional stress field ap-
proximations. In particular, equations (6.7.4) and (6.7.5) now indicate that fringes
obtained from regions surrounding the three-dimensional zone can be related to the

in-plane gradients of 711 + G99 as follows:

ot dn) _ mp

a.’El A
o , mn=0,41,42, (6.7.6)

0(011 + 022) np

B -
¢ 8232 A
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where in the case of transmission ¢, is the stress optical coefficient of the material

(e.g., PMMA).

6.7.2 Experimental set-up and procedure

Bimaterial specimens used in the dynamic experiments are of the three point or
one point bend configuration and are made from 9mm thickness sheets of commer-
cially available poly-methylmethacrylate (PMMA) (material-1) and AISI 4340 steel
(material-2). The bonding procedure is outlined in Tippur and Rosakis (1990). A
bond strength calibration experiment was also performed in that study, demonstrat-
ing that the bond toughness was at least as much as that of a homogeneous PMMA
specimen. This fact testifies to the strength of the bond and becomes important in

the discussion of the dynamic experiments presented bellow.

The bimaterial specimens have either a pre-cut edge notch, or a sharp pre-crack of
length 25mm along the interface. The specimens are either impact loaded in a drop
weight tower (Dynatup-8100A) or a high speed gas gun. After the impact event, the
crack propagates dynamically along the interface. The transmission CGS technique in
conjunction with high speed photography is used to record dynamic fields around the
crack-tip (only on the PMMA side, of course). A rotating mirror high speed camera
(Cordin model 330A) is used. A Spectra-Physics Argon-ion pulse laser (model 166)
is used as the light source. By using short pulses of 30nsec duration, we are able to
freeze even the fastest of running cracks and thus produce a sharp interference pattern
during crack growth. The interframe time (controlled by the interval between pulses)
1s typically set at lusec for a total recording time of 80usec. The laser pulsing is

triggered by a strain gauge on the specimen that senses the impact.

True symmetric one or three point bend loading cannot be achieved since it is

extremely difficult to apply the impact load exactly on the interface, which is very
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thin. In addition since the wave speeds of PMMA and steel are vastly different, the
loading history at the crack-tip would be completely different if the specimen were
impacted on the PMMA or the steel side. Thus it was chosen to impact the specimen

a small distance (7mm) into the steel side of the bond.

A sequence of high speed interferograms from a PMMA /steel test is shown in
FIGURE 6.8. This is a three point bend test conducted in a drop weight tower. The
impact speed was 4m/sec. When the crack initiates (t = Ousec), intense stress waves
emanate from the crack-tip. These waves are visible in FIGURE 6.8 as discrete kinks
in otherwise smooth fringes and as circular lines centered at points along the crack
line (see frames at ¢ = 16.5usec and ¢ = 23usec). This observation is a reliable sign

of a highly dynamic event, as will be discussed later.

6.7.3 Analysis of experimental data

In subsequent sections we shall present an analysis of CGS interferograms of dynamic
bimaterial specimens first using a K¢-dominant assumption and then using the higher

order transient field described in Section 6.4.

Singular field (K¢-dominance)

The governing relations for CGS (6.7.6) can be used to estimate fracture parameters
from points outside the three-dimensional zone of a given interferogram. One could
expect that the plane stress region surrounding the near-tip three-dimensional region
would be well described by the most singular term in the asymptotic expansion for
stress, i.e., that a K9-dominant region would exist somewhere around the crack-tip.
This is something to be verified though and should not be taken for granted, especially

in regions relatively far from the crack-tip or in experiments showing transient effects
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t =95 usec, v = 640 m/sec t=16.5 usec, v = 790 m/sec

TTRETET oL
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t =23 psec, v = 800 m/sec t =32 usec, v = 880 m/sec

Figure 6.8: Selected sequence of CGS interferograms of a growing crack in a three point bend
interfacial drop weight tower experiment. (Only PMMA side of PMMA/steel specimen is shown)
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(e.g., rapidly changing crack-tip speed). In such cases the deformation field around
the crack-tip may be better described by a higher order analysis.

As was stated earlier (see Section 6.4), for cracks propagating dynamically under
steady state conditions in bimaterial specimens, Yang et al. (1991) and the first part
of the present analysis observed that near the crack-tip the stress field assumes the

form,

0ap = Re Ko 59(6,v) + Im Ko 509, v) (6.7.7)
V2rr [ %P Vorr | *#

where (r, ) are polar coordinates of a coordinate system translating with the crack-
tip at speed v, and K¢ is the complex dynamic stress intensity factor. The material
mismatch parameter € = ¢(v) is now a function of crack-tip speed and of the elastic
moduli of the materials of the bimaterial system. Analytical expressions for a”r((fﬂ) and

&g@” are given by Yang et al. (1991).

By using equation (6.7.7) and after some algebraic manipulations, 61, + &35 can

be written as

Alt 6
011+ 09y = \/_2(71__2‘1 {(1 +a? - 277013) e ") cos <—él- —®(t) —eln rl>

0
+ (1 +a? + Znas) e~ (=0 ¢os <§l + @(t) + €ln Tz)}

(6.7.8)
where
Alt) = (0;‘) (;)i;)slh}((ag)l , K4t) = K{(t)+iK$(t), ®(t) = tan™! 11218 :

and a;,, 15, and ; ; have been defined in previous sections. The mismatch parameters
n and € are functions of crack-tip speed and of material properties. These functions
are given in Section 6.5 and appear in FIGURES 6.3 and 6.5, respectively. Note that
equation (6.7.8) is the first part of equation (6.4.4) in Section 6.4. The field quantity

of interest in analyzing the CGS patterns for material-1 is ¢,hd(611 + 699)/0z1. By
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differentiating equation (6.7.8) with respect to z1, we have

h@(&u + 6'22) Co»h’f'l_s/Qe_e(W_al)A(t) )
Co =
3131 2\/ 2T
36,

X {-— (1 +a? — 277013) e?(m=0) cos (7 —®(t) —eln rl)

— (1 +a?+ 27)as) cos <%0—l + ®(t) + €ln m) , (6.7.9)

36
+2¢ (1 + a? — 277%) e2e(7=00) gin <—2—£ —®(t) —eln 7‘1)

36
—2¢ (1 +a? + 2770z3) sin (—2—£ + ®(t) + €ln 7'1) }
where A(t) is as defined in equation (6.7.8) and 0 < 6; < «.

From the above discussion it becomes obvious that extraction of parameters like
K% is now possible provided that experimental data are gathered from a region near
the moving crack-tip characterized by the structure presented in equations (6.7.8)
and (6.7.9). In a laboratory specimen of finite size where transient effects may be
important, the field may not be K¢-dominant and the use of a higher order analysis
may be necessary. The necessity of a higher order analysis in the interpretation
of optical data from crack growth in homogeneous specimens was demonstrated by
Freund and Rosakis (1992) and Krishnaswamy and Rosakis (1991). An equivalent
analysis for a transiently propagating interfacial crack has been provided in previous

sections and its effect on data interpretation is discussed in the next section.

Higher order transient analysis

In Section 6.4, a higher order expansion for the trace of the stress tensor in plane stress
is shown in equation (6.4.4). By differentiating with respect to the z; coordinate, we

obtain a relation for the z;-gradient of 61 + 649, which is relevant to the analysis of
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CGS interferograms,

(011 + 022) 51 _ * . ~3/2
(@l —ad) [ Ao(2)] {HO(HI) cos(elnr;)+ Io (6;) sin(eln rl)} T /

where

Io(6:)
Tlo (6))
I1,(6:)
I ()
I14(6:)

T4 (6)

+ € {Hd(ﬁl) cos(elnr)+ ﬁd (6;) sin(eln rl)} rl_l/2(1n r)?
+ {Ht(()z) cos(elnr)+ 0. (6;) sin(eln 7'1)} rfl/z Inr
+ {Htt(ﬂl) cos(eln r;)+ I*Itt (6;) sin(eln 7'1)} rl_l/z

+ | A(t)] {Hz(el) cos(eln r;)+ I (6;) sin(eln r,)} 2

-+ 0(7"1) )
(6.7.10)

- 8(04)) -1 &4 (1% cos ( + 2(20).
- 5(Q0) +1 & ()" sm( °20)
_ ) | A ()] cos<__<1>,4t

'~ a(5)) - B () cos (3 - 08

2¢ {|Qd(t)|e“9’ sin (%’ - @(gd)) — | Q4 ()| sin (%’ - @(éd)> } o,
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The functions of time Ag(t), A3(¢), Au(t), - - -, that appear in the above expressions,
are related to functions Ag(t), A2(t), Au(t), - - -, in equation (6.4.3) by

alt) = (—3+i) Ao (), ) = (54i) L),
Ault) = (5 +i€) Ault) + A + Bu(t),

.:ltt t) = - iG) ;ht (t)+ ;lt (t)+ étt t),

R

NIW = |-

+ ie) By (t) + Bi(t) + 2Cu(t) ,

_ ie) B (t)+ B, (t)+2 Cu (t),

3

+ie) Cult),  Cul(t) = (-5 —ie) Cut (1)

+ie) Ault) +260u(t) + Bult)

l\DII—-A DO |

) (8) + 2¢ O (8)+ Be (1)

o
=
~—~
o~
g
Il
/—\ TN TN /‘\ TN TN TN

vie ) Bult),  Bil) = (3 —ic) Bio),

Mlv—l

Qu(t) = (-;- vie) (), 2u() = (3ic) hur).
This gradient contains 4 orders in r;. They are r, 8/ 2 T -t 2(lnr) T 121y ry, and
T, Y2 It also contains 28 undetermined constants. The first two constants | Ao|
and ®(Ao) are related to |K%| and @ (or K¢, K) of the expression of Yang et al.
(1991) (see equation (6.7.9)). In fact the most singular term of equation (6.7.10)
reduces to equation (6.7.9). Under steady state conditions, equation (6.7.10) reduces
to an expression with 4 terms which are identical to the first 4 terms of the higher
order steady state expression derived by Deng (1992). The transient contributions
to the expression for the gradient (6.7.9) are those that exhibit an r, Y *(Inr)? and

T 210 r, radial dependence. It is worth noting that most of these transient terms

are multiplied by the quantity ¢, the rate of change of the oscillatory index with time
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(é = €'(v)?). Thus, to a certain extent, é is a measure of transience of the propagating
crack. If ¢ = 0, most, but not all transient terms disappear. Those that remain are
those related to the rate of change of the complex stress intensity factor. Note that
it is possible for € to be small even if a large acceleration exists, but €'(v) is small.
Conversely it is possible to have a large € corresponding to small v but large €'(v). It
should be noted that €'(v) tends to infinity as v tends to cg), see Figure 5. Whether
or not € can be used as a reliable measure of transience will be investigated in the

subsequent section.

It is clear at this point that analysis of the fringe patterns obtained from a dynamic
experiment can be made using either equation (6.7.9) or equation (6.7.10). The
choice of one or the other depends on whether a region of K%dominance has been
established somewhere outside the near-tip three-dimensional zone. Use of either
equation allows estimation of the time variation of the relevant parameters. This is
done by performing a least squares fitting procedure to data points digitized from the
CGS interferograms obtained during an experiment. Of course the crack-tip speed
v(t) is measured independently. There are 2 undetermined parameters in equation

(6.7.9) and 28 undetermined constants in equation (6.7.10).

6.7.4 Results and discussion

The velocity and acceleration histories corresponding to the sequence of photographs
in FIGURE 6.8 are shown in FIGURES 6.9(a) and 6.9(b). This is a test performed
in a drop weight tower under the relatively small impact speed of 4m/sec. Indeed
the terminal speed in this test seem to be about 90% of the Rayleigh wave speed
of PMMA, cg), see FIGURE 6.9(a). In contrast, previous experience with dynamic
crack growth in homogeneous PMMA specimens of the same configuration show a

maximum speed of about 0.35cg). Note also that in this particular bimaterial case
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Figure 6.9: Velocity, (a) and acceleration, (b) time histories for the experiment
shown in FIGURE 6.8.
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there is a very large crack-tip acceleration (approximately 107g, where g is the ac-
celeration of gravity) immediately after the crack initiates, see FIGURE 6.9(b). This
would suggest that transient effects would be present close to initiation (¢ = Ousec).
As was mentioned earlier the rate of change of the oscillatory index with time (¢) may
be considered a partial measure of transience. For the same test as FIGURE 6.8, we
have plotted € and ¢é versus time in FIGURES 6.10(a) and 6.10(b). In FIGURE 6.10(b),
€ exhibits a local maximum at about ¢t = 10usec after initiation. It then starts increas-
ing again after 25usec. At short times after initiation, €/(v) is close to zero although
¥ is large (107g). This accounts for the initially low values of é. In this regime tran-
sient effects are demonstrated through large changes in the complex dynamic stress
intensity factor. As time increases the combination of €(v) and © results in a local
maximum in €. At later times (¢ > 25usec) and as the crack-tip velocity approaches

the Rayleigh wave speed of PMMA, ¢ increases again.

To demonstrate the need of a transient analysis in interpreting experimental data,
let us now attempt to analyze the frame of FIGURE 6.8 at t = 9.5usec. This cor-
responds to a local maximum value of € in this particular test. By following the
fitting procedure described in Section 6.7.3, we can obtain the coefficients of either
equation (6.7.9) or equation (6.7.10). The result of such a fit for the K9dominant
field (equation (6.7.9)) is shown in FIGURE 6.11(a). The diamonds are digitized data
points from the interferogram at ¢ = 9.5usec. The solid line is the contour of the
quantity 9(611 + G32)/0z1 calculated numerically by using the results for K¢ from
the fit generated by the same data points. As can be clearly seen, equation (6.7.9)
cannot represent the data to any reasonable extent. The deformation field of this
particular picture therefore is nowhere near K% dominant. In fact the main feature
which is that the fringes vertically approach the interface cannot be captured at all
by equation (6.7.9). The result of the fit of the transient higher order field (equation
(6.7.10)) derived earlier is shown in FIGURE 6.11(b). The data points are exactly the
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Figure 6.10: Time histories of mismatch parameter ¢, (a) and its time derivative,
(b) for the experiment shown in FIGURE 6.8.
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Figure 6.11: Comparison of digitized data points from the interferogram correspond-
ing to t = 9.5usec in FIGURE 6.8 with, (a) a K9 dominant fit, equation (6.7.9); (b)
a higher order transient analysis fit, equation (6.7.10). (Crack lies along the negative

r1-axis)
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same as before and the solid line is the result of the fit. Clearly the fit is very good
over a large area of the specimen. All features of the field are successfully captured
by equation (6.7.10). This shows that the K-dominant analysis cannot be used for

cases where € is high.

To further investigate the effect of é on the interpretation of optical data, we
chose to analyze an interferogram corresponding to the minimum value of ¢ within the
duration of the test. This occurs at t = 23usec. FIGURE 6.12(a) shows the result of the
K9-dominant fit to the experimental data. As the crack-tip is approached, equation
(6.7.9) seems to adequately describe the experimental measurement. However, as the
distance from the crack-tip is increased, K9 dominance is lost. Nevertheless, the lack
of K% dominance in FIGURE 6.12(a) (¢ ~ 1.0 x 10%sec™!) is not as dramatic as in
FIGURE 6.11(a) (é ~ 1.2 X 10*sec™"). FIGURE 6.12(b) shows the result of the fit of
the transient higher order field to the same experimental data as FIGURE 6.12(a).
The fit is now much better over the whole range of radii. The above observations
show that in general a transient analysis of data is necessary if fracture parameters

such as K% are to be obtained with confidence.

6.7.5 Transonic terminal speeds

The next cycle of experimentation involved bimaterial specimens loaded at higher
loading rates than in a drop weight tower. This was achieved by using a high speed
gas gun. A one point bend impact geometry was used. Again the issues of crack-tip
loading history, as dependent upon PMMA or steel side impact, arise. It was chosen
to impact the specimens on the steel side, to remain consistent with the drop weight
tower tests. The gas gun projectile was 50mm in diameter and the impact velocity
was 20m/sec, thus resulting in considerably larger near-tip loading rates than in the

drop weight device. A sequence of interferograms from such a test is shown in
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Figure 6.12: Comparison of digitized data points from the interferogram correspond-
ing to ¢ = 23psec in FIGURE 6.8 with, (a) a K?-dominant fit, equation (6.7.9); (b) a
higher order transient analysis fit, equation (6.7.10). (Crack lies along the negative
T1-axis)



- 237 -

FIGURE 6.13. Its corresponding v(t), 0(t), €(t) and €(¢) plots are shown in FIG-
URES 6.14(a), (b), and 6.15(a), (b). In general terms the results are similar to those
obtained from the drop weight tower experiments. A main difference is that the speed
and acceleration are much higher. In fact the crack-tip speed seems to exceed the
Rayleigh wave speed of PMMA after a relatively short time. In some cases (as in
FIGURE 6.14) the velocity even exceeds the shear wave speed and approaches the
longitudinal wave speed of PMMA, thus entering the transonic speed range for the
PMMA side.

For a crack speed less than the Rayleigh wave speed, we can repeat a fitting
procedure exactly as before. For the frame at ¢ = 8usec in FIGURE 6.13, the result of
such a fit is shown in FIGURE 6.16. Here the white lines, obtained from plotting the
field of equation (6.7.10) using the values of the fitted parameters, are superposed on
the actual picture (instead of the digitized points as in FIGURES 6.11 and 6.12). The
illustration is the same though, i.e., that a transient field is necessary to describe a

picture such as this which corresponds to a high ¢ and acceleration.

Unfortunately given the existing theoretical analyses, we do not have the tools
to fit any field to interferograms having a speed in the transonic range for PMMA
(M) <w< cl(l)). These large speeds were observed in a number of tests involving one
point bend interfacial specimens containing sharp pre-cracks lying along the interface.
When a specimen containing a blunt starter notch was impacted, recorded crack-tip
terminal speeds were even higher; at some cases approaching the longitudinal wave
speed of PMMA. Such a velocity history is given in FIGURE 6.17. Here the maximum
crack-tip speed is estimated to be 0.9c§1). These observations are very interesting
because to our knowledge no evidence of transonic or supersonic crack propagation has
ever been seen in homogeneous materials even though a large number of the theoretical

studies exist on the subject (Freund, 1990). It is believed that transonic crack growth

is possible in a bimaterial situation because of an energy transfer mechanism from
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t= 13 usec, v = 1100 m/sec t=16.5 usec, v = 1100 m/sec

Figure 6.13: Selected sequence of CGS interferogram of a growing crack in a one

point bend interfacial gas gun experiment. (Only PMMA side of PMMA /steel spec-
imen is shown)
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Figure 6.14: Velocity, (a) and acceleration, (b) time histories for the experiment
shown in FIGURE 6.13.
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Figure 6.15: Time histories of mismatch parameter e, (a) and its time derivative,
(b) for the experiment shown in FIGURE 6.13.
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Crack-Tip

Figure 6.16: Comparison between the CGS fringe pattern and the fitted higher order

transient stress field, equation (6.7.10), for a propagating crack in a PMMA /steel
interface.
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the stiffer to the softer material. It can be seen in FIGURE 6.13 that the nature
of the fringes changes, approximately around the time at which the crack-tip speed
exceeds the Rayleigh wave speed. A sequence corresponding to the same test whose
velocity is shown in FIGURE 6.17(blunt starter notch) is presented in FIGURE 6.18.

In these pictures, we see an even more drastic change in the nature of the fringe

2»0 ¥ ¥ ¥

Speed, v (x10°® m/sec)

. 0 ] 8 2
0 5 10 15 20

Time, t (usec)

Figure 6.17: Velocity time history for the experiment shown in FIGURE 6.18.

patterns as the crack-tip speed exceeds both Rayleigh and shear wave speeds. To
see this effect clearly, compare the second frame in FIGURE 6.18 to the sixth frame.
Finally, additional visual proof of the existence of large transient effects is shown in
FIGURE 6.19. We are now in the process of developing an analysis for the propagation
of an interfacial crack at speeds exceeding c¢{!). Tt is hoped to be able to predict fringe

patterns as those observed in FIGURES 6.13, 6.18, and 6.19.
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t =85 usec, v = 1100 m/sec t=11.5usec, v = 1210 mfsec t = 15 psec, v = 1300 mfsec

Figure 6.18: Selected sequence of CGS interferograms of a growing crack in a one
point bend interfacial gas gun experiment. (A blunt starter notch was used)
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Bt

t =155 usec, v= 1190 m/sec t=18.5 usec, v = 1470 m/sec

Figure 6.19: CGS interferograms providing visual evidence of the highly transient
nature of dynamic interfacial crack growth.
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6.8 Conclusions

Experimental observations of high speed (transonic terminal speeds) and high ac-
celeration (10%m/sec’) crack growth in PMMA /steel interfaces are reported for the
first time. Motivated by these observations, a fully transient higher order asymptotic
analysis of dynamic interfacial crack growth is performed. This analysis is valid for
crack-tip speed in the range 0 < v < ¢V (¢lV) is the shear wave speed of PMMA).
Explicit expressions for stresses are provided. In addition to the classical #~1/2, r©,
and rY/2, ..., terms of steady state expansion for the stresses, new transient contri-
butions of order r'/?Inr and rl/z(ln r)? appear. The structure of the near-tip field
obtained by the analysis is found to describe well the experimentally obtained stress
fields. For subsonic crack growth, the experiments demonstrate the necessity of em-
ploying the fully transient expression in the analysis of optical experimental data.
Terminal speeds of up to 90% of the plane stress dilatational wave speeds of PMMA

are observed.



— 246 —

Appendices

A Definitions and properties of matrices used in
Section 6.3
Let Py, Q,, Uy, and V; be defined as in Section 6.3, and Ly and Ly be given by
L, =U,P;', Li=V.Q;!.
Matrices H and I'*{ are defined as,
H=L,—L,, H=L, —L, .

By algebraic calculations, it can be shown that for k € {1,2},

L= (hi)e (h2)k } | P (L)e  —(ho)k } |
(l2l)k (lll)k - (121)k (lll)k
where
2aqa5 — (1 + o) as(1 — a?) (1 —a?)
I = 5 ! _ ¢ X 87 l [ S .
( ll)k { [LD('U) ka ( 12)k MD('U) . 3 ( 2l)k ,LL_D(U) k,
and
D(v) = dagas — (1 + a?)? .
Therefore,
[ hii his ] * [ hi1 —hio }
H = y e ,
hor his —hyr Ry
where

hyy = (111)1 - (111)2 ) hiy = (112)1 + (112)2 5 hoy = (121)1 + (121)2 .

Notice that
H ﬁ:i{ H = (h%l - hlghgl).{ 5
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where I is the 2 x 2 identity matrix. Thus,

1 - « ~1 1
H'=-——— _ H, H =———+—H.
R}y — hazho hii — higha
Also, it can be shown that
L, ik:Ek Ly , ke {1,2}.

A sequence of operator definitions follows. These are related to the analysis in
Section 6.3.2. Let p(t) and ¢(¢) be two real functions of time # and define the vector

operators

di{p(t),q(t)} = { Di{p(®)}, D{a(®)} };
ki{p(t),qt)} = { Ki(t)p(t), K.(t)a(t) }y
bi{p(t), ()} = { But)p(t), Bs(t)a(t) }x

where operators Dy ,{-} and functions K ,(t) and B ,(¢) have been defined in Section

6.3.2. With the above definitions,
te{p(t), q(t)} = (34 2ie) (Le My — I)di{p(t), q(t)}
+ 26(LeM — I) ki {p(t), q(t)}
+ 2 {(1 + 2i€) (LuMy — I) + Ly Py — t*fk} bi{p(t), ¢()} |

where My, Py, and U have also been defined in Section 6.3.2. In addition, for any

given operator

mi{p(t), ¢t} = { mM{p(t), o)}, mP{p(t), a(t)} ),

the associated operator my {p(t), ¢(¢)} is defined as

e {p(t), a0} = { m{p(t), a(t)}, —m@{p(t),q)} } .
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Also vectors B, v, &, and ¢, are defined as
B = t1{ao(t), cot)}— t2 {bo(t), do(t)}
v = ta{ao(t), co(t)}— £ {bo(t), do(t)}

£ = (3 +2ie) {(L1M1 — )k {ao(t), colt)} — (iz M, — I) ez {bo(t), do(t)}}

¢ = (34 2i¢) {(L2M2 _ 1) ka{aolt), co(t)} — (1?31 M, - I) kr {bo(t), do(t)}}
and operators wqr{p(t), ¢(t)} and wu{p(t), q(¢)} as

wa{p(t) a0} = (5 +ie) {2PF Mo+ (5 +ie) I} hafo(e), o)}

wadp(®),a®)} = (5 +ic) {2PT M+ (5 +i€) I} didplt), o)}

+ 26{ Py My + (1 +ie) I} ki {p(t), o(1)}

+ (2P Py 421 4 2i0) Py M G +&) T} bedplt), (1))

B Solution of the Riemann-Hilbert problem

Consider the problem formulated as following: Find a function
0(z) = (61(2), 82(2) )",

z = 1 + 1y, which is analytic in the whole z-plane except along the branch cut

—oo < 11 <0, n; =0, and satisfies the equation,
H 6% (p) — HO (1) = w(n) , Vm<0, (B.1)
where I*f and H are 2 x 2 matrices, defined in Appendix I, and

w(m) = ( k1(m), wa(m) )T )
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with #; and x; are known functions of 5. Near the origin, function 0(z) should

satisfy the requirement that
18(z) =0 (]}, as |z| =0, (B.2)

for some real number «, and generally, o > —1.

In order to obtain the solution to the above Riemann-Hilbert problem, the eigen-
values and eigen-vectors of H, and H need to be studied first. By solving the
equation

det {H — M} =0, (B.3)

where I is the identity matrix, the eigen-values for H are found to be

A1z = hiy £ 4/ hisha . (B.4)

The expressions of functions hqy, h1z, and Ay in our problem are dependent upon the
mechanical properties of the constituents of the bimaterial system and the speed of
propagation of the interfacial crack. hqy,hia, and hy; ensure that the eigen-values,
A1 and Ay, are real, provided that the crack-tip speed is less than the lower Rayleigh

wave speed of the bimaterial. The corresponding eigen-vectors are
w® = (1, +9)7 | (B.5)
where the parameter 7 is defined by
L)
Rz

It can be shown that the eigen-values for H are the same as those for H, which are
given in (B.4), while the corresponding eigen-vectors are

* (1,2)

w =(1,Fn)" . (B.6)

Define the matrix B, by
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and set

H=-B'HB, H = B'HB,

and

0 (z) = B(z), & (m) = B 's(n) .

Then, equation (B.1) becomes
* ,<>+ , 27 o
HO (m)—H' 6 (p)=x(m), Vi <0, (B.7)
or, in component form,
ot o= °
A2 8 (m) — AL 6, (m) =K1 (m)
N v 7 < G. (88)
ot o o
A1 By (m) — A2 6y (m) =Fa (m)

It can be seen from above analysis that H and H can be diagonalized simultaneously
by the same transformation. Therefore, the originally coupled equations (B.1) can be

reduced to the uncoupled equations (B.8).

If we express the ratio A;/A; as having the following dependence on 3:

M 148

_3\;_1—,3’

then the parameter S must be expressed as,

ﬁ N Vh12h21 .

As a result, the solution for the first equation in (B.8) can be obtained as

51 (2) 1 / ”1 (r)dr

I(z) " amidonIrinyr == AV (B-9)

<
where A4 (z) is an arbitrary entire function. C is a contour along the entire branch
cut, and extends from negative infinity to the interfacial crack-tip. The function L(z)
is given by

L(z) = z~3thitic (B.10)
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where
1 lnl——ﬂ
€= —n ——
2 1487

and k; 1s an real integer. Integer k; is chosen so that
| L(z) [ =0 (=), as |z] =0,

which complies with the restriction of equation (B.2).

Similarly, we can obtain that

b)) _ 1 [ Ra(dr e
f(z) 2w //C )\17;‘*‘(7_)(7_ _ Z)+ B (z) , (B.11)

where 1%’ (z) is also an arbitrary entire function. I stands for the complex conjugate

of L.

Returning to the original function 8(z),

o(z) = — /C{l LG) pry+ L. LG i*n,(T)} dr

ari Jo \ X L¥() AT (r) TP (Ba)
+ L(x) A+ B () ¢
where 1
]. - * 1 —‘1
T = o, = U
n 1 -n 1
and
C:(lvn)T’ 32(17—77)1-'

C Some asymptotic results of the Stieltjes trans-
form

In solving the Riemann-Hilbert problem, we need to evaluate the integral

I(z) = ’ f—(~——n—1—)dnl . (C.1)

-c0 T — Z
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Setting t = —1y, we get

I(z) = —jgw g—%dt . (C.2)

As we can see from equation (C.2), —I(z) is the Stieltjes transform of function f(#).
Here we want to study the asymptotic behavior of the Stieltjes transform as z — 0.

Alternatively, we may set A = 1/z to get
I(z) = —AH[f; N, (c.3)

where

H[f; \] = /Ooo lffit dt . (C.4)

Studying the asymptotic behavior of (C.2) as z — 0 is equivalent to studying the

asymptotic behavior of (C.4) as A — co.

Suppose that f(t) is locally integrable in (0, 00). Recall that the Mellin transform
of f(t) is defined by

Mifis) = [ f)at (C.5)
and set
h(t) = I'};_t .

Then, by using the Parseval formula, we can obtain that

Hf A = —— / T A Mk M1 — s]ds | (C.6)

N 2Tt Jr—ico
where the constant r is such that Re(s) = r lies in the common strip of analyticity

of the Mellin transforms M[h; s] and M[f;1 — s].

After some manipulations, it can be shown that

s

Mlh;s] = (C.7)

sinws
where M[h; s] is analytic in the strip 0 < Re(s) < 1. In analogy to the particular

problem of interfacial fracture that we are interested in, we will define the function
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f(t) as,
£(t) = = ()’ (C.3)
where oo = £2¢, or 0, and 3 = 0, or 1. For this function, the Mellin transform M[f; s]

only exits in the generalized sense. Let

F(8), te(0,1] 0, te(0,1]
fi(t) = ; fa(t) =
0, te€l,00) f(t), tel,00)

Then, we may write

HpN =50 = [ %0, =1, (©9)
and
Hf; Al = Ly(A) + Ly (A) . (C.10)
Also let
Gy(s) = Ml sIM[f;1 —s],  j=1,2. (c.11)
Then,

G(s) = M[h; s\M[f;1 — 5] = Ga(s) + Ga(s) .

In addition, from the Parseval formula,

1 rj+i00 s )
L)) = ‘25/”_,@ A7 G(s)ds j=1,2, (C.12)
and
e 5)d C.13
271'2 Z/rj-—zoo - ( . )
Using the specific function f(¢) chosen in (C.8), it can be shown that

1

Gi(s) = — : NI (C.14)

[s — (1 +1a)]P* sinns

In the above we can see that Gi(s) is analytic in the strip 0 < Re(s) < 1. Since
M[f2;1 — s] is analytic in the half plane Re(s) > 1, and M[h; ] can be analytically
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continued into the entire s—plane as a meromorphic function, G(s) is a meromorphic
function in the half plane Re(s) > 1 with simple poles at s = 2,3,---. Then in
equation (C.12), we can always choose that 0 < r; < 1 and 7, > r;. Observe that if

s = $1 + 182, G1(s) has the property

Lm Gi(sy +1is3)=0, ry < 81 <7y . (C.15)

[s2]—=o0
Therefore, we can apply Cauchy’s integral theorem to equation (C.13), which results
n

H[f;A] = Z res {‘)\—SG1(5)} + '2—:7% j{f‘z*rioo AT G(s)ds . (C.16)

r1<Re(s)<rs 2400

For our case, it is easy to show that G(s) = 0. So finally, we get

A8 s
H[f; )] = Z res{[s—(l—i—ia)]ﬂ“ . sinws} . (C.17)

r1<Re(s)<rs

Letting ry — 400, we get an infinite asymptotic series for H[f; A] as A = co.

By applying the above analysis to our particular problem, for a # 0, we will

obtain following asymptotic results:

O (=) In(—n) o : 72 coshma . 1
/ dpp = ——2"Inz - ———2 - —
—o0 m —z sinh Ta sinh” 7o o?
+ O(lz)
0 (=)™ T e i
d — e e O
Lo =~ Lo 2] Cas 0,

2

/0 l_n_(__’ll_)dm = %(lnz)?’—f-%"f'o( l21)

-0 M —Z

o1
/ dgy = Inz+0(]2])
—o0 Il — 2 7

(C.18)
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Chapter 7

Summary

The purpose of this investigation was to understand the influence of transient effects
during the process of dynamic fracture in homogeneous solids and bimaterial combina-
tions. The first effort was to develop a fully transient representation of the asymptotic
field surrounding the moving crack-tip. This asymptotic representation is able to take
all the transient effects into account, including the crack-tip acceleration, the time
derivative of the dynamic stress intensity factors, and the geometrical characteristics
of the crack path. All these effects, actually, represent the past history of the growing
crack. This is unlike the representation which is based on the assumption of the exis-
tence of a region dominated by only first term of the asymptotic K¢-dominant field.
After this transient asymptotic representation was established, we continued our ef-
fort in justifying the necessity of applying it to the interpretation of experimental
observations of dynamic fracture. To do so, we reconsidered the issue of the domain
of dominance of the Kf-dominant field and showed that the K%dominant assump-
tion is insufficient to describe the near-tip deformation field. In addition, we have
shown that the new higher order transient asymptotic representation can successfully
characterize the near-tip field. This was achieved by comparison of our higher order
expansion to known full field analytical solutions and to actual experimental mea-
surements obtained by means of high speed photography and optical methods. As

a result, it becomes apparent that accurate extraction of fracture parameters from
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experimental measurements requires the use of the higher order transient represen-

tation. For dynamic fracture along bimaterial interfaces, similar considerations were

emphasized.

In particular, the basic issues studied in this thesis can be summarized as follows:

A. Homogeneous Solids

1. Establishment of a higher order fully tramsient asymptotic expansion at the

vicinity of a crack-tip propagating dynamically along a smooth arbitrary path.

2. Use of known full field solutions of particular transient problems to verify the

necessity of the transient expansion and to investigate regions of K?-dominance.
3. Interpretation of plate impact experiments using the higher order transient anal-
ysis.

4. Analysis of the optical method of caustics using the transient expansion and
investigation of errors resulting from use of the classical (K¢-dominant) analysis

of caustics.

B. Bimaterial Systems

1. Establishment of the higher order transient asymptotic expansion for cracks
propagating dynamically in bimaterial interfaces. Study of the interplay of

transients and materials property mismatch.

2. Direct comparison of the predicted analytical near-tip structure to the results

of optical CGS experiments in PMMA /steel bimaterial interfaces.

3. Investigation of the conditions under which CGS experiments should be ana-

lyzed by taking transients into account and study of regimes of K?-dominance.
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