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Abstract

In this thesis, we find an exact formula for the weighted average of the symmetric

square L-values at the center. The average is taken over a Hecke eigen basis of cusp

forms of SL2(Z) with a fixed weight 2k. The weights are the n-th Fourier Coefficients

of these functions. The terms in the formula involve quadratic Dirichlet L-values at

the center, Confluent Hypergeometric functions, and some arithmetic functions.

The main ingredient, and the starting point, is a formula due Shimura, which

relates the symmetric square L-function of a Hecke eigen form f to the inner product

of f with the product of the theta function, θ; and a real analytic Eisenstein series

of half integral weight, E. We apply Michel-Ramakrishnan’s averaging technique on

Shimura’s formula to write the weighted average of symmetric square L-values in

terms of the Fourier coefficients of the Eisenstein series.

There are two complications. First, the levels of θ×E and f are different. Second,

E is not holomorphic. That is why we first take trace of θ×E, and then we take the

holomorphic projection. Computing the Fourier coefficients of the resulting function

gives us the exact formula desired.

Finally, we deduce the asymptotic behavior of these formulas as k →∞.
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Chapter 1

Introduction.

1.1 Definitions and Notation

Let k > 1 be a positive integer and H2k be the Hecke eigen-basis of S2k(SL2(Z)),

normalized so that the first Fourier coefficients are all 1. For f ∈ H2k, we will denote

its Fourier coefficients by cn(f) and normalized Fourier coefficients by λn(f):

f(z) =
∞∑
n=1

cn(f)e(nz) =
∞∑
n=1

λn(f)nk−1/2e(nz) (weight 2k, level 1)·

We will let θ(z) be the usual theta function:

θ(z) =
∞∑

n=−∞

e(n2z) (weight 1/2, level 4)·

For a positive integer N and a complex number s, E(z, s, 4N) will denote a non-

holomorphic (real analytic) Eisenstein series of half integral weight, which transforms

like a modular form of weight 2k − 1/2 and level 4N :

E(z, s, 4N) = ys/2
∑

g∈Γ∞\Γ0(4N)

j(g, z)1−4k

|j(g, z)|2s
(weight 2k − 1/2, level 4N)·

By abuse of notation, when N = 1 we will simply write E(z, s) for E(z, s, 4), since

we will mainly work with level 4. We will also apply similar abuse of notations later

on with the dual Eisenstein series.
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We use the standard notation

Γ = SL2(Z), Γ∞ =


 a b

0 d

 ∈ Γ

 , and Γ0(N) =


 a b

Nc d

 ∈ Γ | c ∈ Z

 .

z = x+ iy is a point in the upper half plane H, e(z) = e2πiz, and

j(g, z) =

(
4c

d

)
ε−1
d (4cz + d)1/2, for g =

 a b

4c d

 ∈ Γ0(4),

where
(

4c
d

)
is the Kronecker’s symbol, εd = 1 or i depending on d ≡ 1 or 3 (mod 4),

and the branch of square root is chosen so that
√

1 = +1.

For a real analytic modular form h1 and a real analytic cusp form h2, both having

the same weight 2k and level R, let

< h1, h2 >R:=

∫
Γ0(R)\H

h1(z)h2(z)y2k dxdy

y2
,

where H is the upper half plane, and z = x + iy. When R = 1, we will ignore the

index and simply write < h1, h2 >.

δ(x) will be the integer indicator function, i.e.

δ(x) = 1 or 0 depending on x is an integer or not.

For a non-zero integer n, < n > will denote its square-free part with the sign.

χn will denote the character defined by χn(d) =
(
n
d

)
. For a character χ, and a
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positive integer N , we let

L(s, χ) =
∞∑
n=1

χ(n)

ns
,

LN(s, χ) =
∑

(n,N)=1

χ(n)

ns
=
∏
p-N

(
1− χ(p)

ps

)−1

.

2F1 is the confluent hypergeometric function defined as

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, where (r)n = r(r + 1)...(r + n− 1).

We use the following conventions:

f(k) ≈ g(k) if lim
k→∞

f(k)

g(k)
= 1, and

|f(k)| << |g(k)| if there is a positive constant A s.t. |f(k)| < A|g(k)|, ∀k.

Finally, we let

ek =
(2k − 2)!

(4π)2k−1
·

1.2 Shimura’s Formula

By using the Euler product

L(f, s) :=
∞∑
n=1

cn(f)n−s =
∏
p

[(1− αpp−s)(1− βpp−s)]−1 (product over primes p),

one defines the symmetric square L-function as

L(sym2f, s) :=
∏
p

[(1− α2
pp
−s)(1− αpβpp−s)(1− β2

pp
−s)]−1.

By Theorem 1 in Shimura [8], L(sym2f, s) is a meromorphic function of s, with

possible simple poles at only 2k and 2k − 1. It also satisfies the following functional
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equation. The function

Λ(sym2f, s) = (2π)−2sΓ(s)Γ(s− 2k + 1)ζ(s− 2k + 1)L(sym2f, s)

is invariant under the transformation s ↔ 4k − 1 − s. We will call the center of

symmetry, s = 2k − 1/2, the central point.

An analogue of this result is known over arbitrary number fields by Gelbart and

Jacquet [1].

If we put

Λu(sym
2f, s) = Λ(sym2f, s+ 2k − 1),

then we have the unitary functional equation

Λu(sym
2f, s) = Λu(sym

2f, 1− s).

Moreover, by the formula (1.5) in Shimura [8], we have the following equation

relating the symmetric square L-function to the Eisenstein series and theta function:

2Γ(s/2)L(sym2f, s)

(4π)s/2ζ(2s− 4k + 2)
=

∫
Γ0(4)\H

f(z)θ(z)E(z, s+ 2− 4k)y2k dxdy

y2
· (1.1)

When s ∈ R, all the terms on the LHS of Shimura’s equation (1.1) are real, and

so, taking complex conjugate of RHS will not affect the identity. We can rewrite it

as
2Γ(s/2)(4π)−s/2

ζ(2s− 4k + 2)
× L(sym2f, s) = < θE(., s+ 2− 4k), f >4 · (1.2)

1.3 Exact Average Principle

Starting with Shimura’s Integral representation formula (1.2), we will apply the av-

eraging method, developed and used by Michel-Ramakrishnan [5], to represent the

average of symmetric square L-values in terms of the function θ(z)E(z, s). However,

there are a few complications. One is that the levels do not match. Another is that
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the function E(z, s) is real analytic but not holomorphic. To resolve these problems,

we will first take trace and then holomorphic cuspidal projection of θ(z)E(z, s).

Let Tr be the trace map sending (real analytic) modular forms of level 4 down

to (real analytic) modular forms of level 1, and Pr0
hol be the holomorphic cuspidal

projection of a real analytic modular form. Define the following function:

Gs(z) := Pr0
hol(Tr(θ(z)E(z, s))) =

∞∑
n=1

gn(s)e(nz).

Then,

2Γ(s/2)(4π)−s/2

ζ(2s− 4k + 2)
× L(sym2f, s) = < θE(., s+ 2− 4k), f >4

= < Tr(θE(., s+ 2− 4k)), f >

= < Gs+2−4k, f > · (1.3)

Averaging these equations over the orthogonal H2k, we get

2Γ(s/2)(4π)−s/2

ζ(2s− 4k + 2)

∑
f∈H2k

L(sym2f, s)

< f, f >
f = Gs+2−4k. (1.4)

We can rewrite this equation in terms of the Fourier coefficients as

2Γ(s/2)(4π)−s/2nk−1/2

ζ(2s− 4k + 2)

∑
f∈H2k

L(sym2f, s)λn(f)

< f, f >
= gn(s+ 2− 4k)· (1.5)

Note that, ζ(2s− 4k+ 2) has a simple pole at the central value s = 2k− 1/2. On

the other hand, L(sym2f, s) is regular by Theorem 1 in Shimura [8]. We deduce that

gn(s+ 2− 4k) has a zero at this point, and we can rewrite the equation as

4Γ(s/2)(4π)−s/2nk−1/2

(2s− 4k + 1)ζ(2s− 4k + 2)

∑
f∈H2k

L(sym2f, s)λn(f)

< f, f >
=

gn(s+ 2− 4k)

s− 2k + 1/2
·
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As s→ 2k − 1/2, we get

4Γ(k − 1/4)nk−1/2

(4π)k−1/4

∑
f∈H2k

L(sym2f, 2k − 1/2)λn(f)

< f, f >
= g′n(3/2− 2k)· (1.6)

To find these coefficients {gn}, we need to understand Tr(θ(z)E(z, s)) first. In

Chapter 2 we will find the Fourier coefficients of Tr(θ(z)E(z, s)) in terms of the

Fourier coefficients of the Eisenstein series.

Then, in Chapter 3 we will see how these Fourier coefficients are affected by taking

the holomorphic cuspidal projection.

We will spend Chapter 4 with calculations to find {g′n(s)}, which finally gives rise

to the main formula.

Before stating the Main Theorem, recall the following notations from Section (1.1):

For a non-zero integer n, < n > denotes its square-free part with the sign.

δ(x) = 1 or 0 depending on x is an integer or not, and ek =
(2k − 2)!

(4π)2k−1
·
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1.4 Main Theorem: The Exact Average Formula

at the Center

Main Theorem. For integers k > 1 and n > 0, we have the following formula at

the center of symmetry s = 2k − 1/2:

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek λn(f)

< f, f >
= An,k +

∑
m∈Z,m2 6=4n

L

(
1

2
, χ4<m2−4n>

)
ξn,k(m).

An,k =
δ(
√
n)

n1/4

(
Γ′(2k − 1/2)

Γ(2k − 1/2)
+A− ln(n)

2

)
, where A =

π + 6γ − 6 lnπ − 10 ln 2

4
·

The weights ξn,k(m) are positive for all but finitely many m. In fact,

ξn,k(m) > 0, whenever |m| > 2
√
n. Explicitly,

ξn,k(m) = β(4n−m2)γ(4n−m2)Fn,k(m).

For n 6= 0, we write n = 2dn1 with n1 odd. Then

β(n) =
∑

a,b>0, (ab)2|n1

µ(a)√
a

(
−4 < n >

a

)

γ(n) =



d/2 d even, n1 ≡ 1 (mod 4),

d/2 + 2−
√

2 d even, n1 ≡ 3 (mod 8),

d/2 + 2 +
√

2 d even, n1 ≡ 7 (mod 8),

d/2− 1/2 d odd.

Finally,

Fn,k(m) =


√

2π
2n1/4

(−1)kΓ(k−1/4)
Γ(k+1/4) 2F1

(
k − 1

4
, 3

4
− k; 1

2
; m

2

4n

)
if m2 < 4n,

1
2n1/4

(
4n
m2

)k−1/4
Ik

(
m2−4n
m2

)
if m2 > 4n,

where Ik(c) =

∫ ∞
0

uk−3/4 du

(1 + u)k+1/4(1 + cu)k−1/4
·
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In Chapter 5, we will investigate the asymptotic and deduce two Corollaries:

Corollary 1. For a fixed square integer n, letting k →∞,

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek λn(f)

< f, f >
=

1

n1/4

(
Γ′(2k − 1/2)

Γ(2k − 1/2)
+A− ln(n)

2

)
+O

(
1√
k

)
·

In particular, when n = 1, we have

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek

< f, f >
=

Γ′(2k − 1/2)

Γ(2k − 1/2)
+A+O

(
1√
k

)
·

Assuming that L(sym2f, 2k − 1
2
) ≥ 0 for all f ∈ H2k, we get

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
<< k(ln k)4.

An analogous result for the case n = 1 was recently proved by R. Khan [4] with

an error term of O(k−1/20+ε). Corollary 1 improves the bound on the error term to

O(k−1/2) and extends the result to arbitrary n. More importantly, ours is an exact

formula, and the error term is also given explicitly by the Main Formula.

Corollary 2. For a fixed non-square integer n, we have

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek λn(f)

< f, f >
=
∑
m∈Z

L

(
1

2
, χ4<m2−4n>

)
ξn,k(m)·

As k →∞,

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek λn(f)

< f, f >
= O

(
1√
k

)
·
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1.5 Some Comments

(A) By Shimura’s formula (1.2), L(sym2f, s) or Λ(sym2f, s) is essentially given by

the scalar product < θE(·, s + 2 − 4k), f >. On the other hand, J. Sturm’s expres-

sion for the Fourier coefficients of the series E(z, s) involves a quadratic Dirichlet

L-function, L(s+ 2k − 1, χ−4<n>) (see Section 2.6). So the nth Fourier coefficient of

E(z, s + 2 − 4k) involves L((s + 2 − 4k) + 2k − 1, χ−4<n>) = L(s − 2k + 1, χ−4<n>)

which becomes L(1/2, χ−4<n>) at the central point s = 2k − 1/2.

This explains the occurrence of the central values of Dirichlet L functions in the

Main Theorem.

(B) Perhaps, it is most interesting when n is non-square. Because, in this case our

formula relates a finite weighted sum of Symmetric Square L-values at the center to an

infinite weighted sum of quadratic Dirichlet L-values at the center. Both L-values are

expected, by the Generalized Riemann Hypothesis, to be non-negative. Even though

we are far from proving either, we hope to understand, in a sequel, the compatibility

aspect of these two L series.

(C) Assuming the non-negativity condition in Corollary 1, the bound we get for an

individual L(sym2f, 2k− 1/2) is k1+ε which is weaker than the convexity bound k1/2.

(D) For k = 6, S2k(Γ) is one dimensional and H12 = {∆} where

∆(z) = q
∏
n≥1

(1− qn)24 =
∞∑
n=1

τnq
n (q = e(z)).

In this case, the Main Theorem relates the product of τn and L
(
sym2∆, 11

2

)
to an

infinite weighted average of quadratic Dirichlet L-values at the center.
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Chapter 2

Computation of Trace.

2.1 Definition of Trace

In this chapter we will find the Fourier coefficients of the trace of θ(z)E(z, s) in terms

of the Fourier coefficients of the Eisenstein series. First, let us explain what we mean

by this trace map.

Let M̃2k(Γ0(N)) be the set of modular forms of level N and weight 2k, which are

real analytic but not necessarily holomorphic.

For N |M , we define the trace map

TrMN : M̃2k(Γ0(M))→ M̃2k(Γ0(N))

as follows:

TrMN (h)(z) :=
∑

γ∈Γ0(M)\Γ0(N)

h|γ(z)

where for any γ =

 a b

c d

 ∈ SL2(Z),

h|γ(z) = (cz + d)−2kh(γz).

Remark 2.1. Note that

1) h|γ1γ2 = (h|γ1)|γ2·

2)h|γ doesn’t depend on the right coset representative γ.
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3) For any element g ∈ Γ0(N), as γ runs through a list of right coset representatives,

γg runs through a list of right coset representatives as well. Hence, the image TrMN (h)

is a modular form of level N .

4) It is not difficult to show that for a cusp form f with weight 2k and level N and

a real analytic modular form g of weight 2k and level M where N |M , one has:

< f, TrMN (g) >N=< f, g >M .

To proceed we need to find a set of right coset representatives of Γ0(4)\Γ first.

2.2 A set of representatives for Γ0(4)\Γ

Lemma 2.2. The set of matricesg0 = I, g1 =

 1 0

2 1

 , g2+j =

 0 −1

1 j

 , j = 0, 1, 2, 3


is a set of representatives for the right cosets of Γ0(4) in Γ = SL2(Z), i.e.,

Γ =
5⊔
j=0

Γ0(4)gj.

Proof. We need to show that any g ∈ Γ is in exactly one of these cosets. Let

g =

 a ∗

c ∗

 ∈ Γ. Since det(g) = 1, we know that gcd(a, c) = 1. So t = gcd(4, c) =

gcd(4a, c) is a divisor of 4. Hence, t = 1, 2, or 4. Also, in any case, there exists

relatively prime integers m and n such that t = 4am+ cn.

Case 1: t = 4. In this case, c is a multiple of 4, and g is already in Γ0(4) = Γ0(4)g0.

So, there is only one right coset in this form, and a representative is

g0 =

 1 0

0 1

 .
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Case 2: t = 2. In this case, c is even but not divisible by 4. So

2 = 4am+ cn

implies that n is odd, and since it is relatively prime with m, we conclude that

gcd(4m,n) = 1. So, there exists a matrix h =

 ∗ ∗

4m n

 ∈ Γ0(4). Note that

hg =

 ∗ ∗

4m n

 a ∗

c ∗

 =

 ∗ ∗
2 ∗

 ∈ Γ0(4)g.

Replacing g with hg (in the same right coset), we may assume that c = 2, i.e.,

g =

 a ∗

2 ∗

 .

Given two matrices g and g′ in Γ,

Γ0(4)g′ = Γ0(4)g ⇔ g′g−1 ∈ Γ0(4).

Let

g =

 a b

2 d

 and g′ =

 a′ b′

2 d′

 .

Observe that both d and d′ are odd because det(g) = det(g′) = 1. So,

g′g−1 =

 a′ b′

2 d′

 d −b

−2 a

 =

 ∗ ∗

2(d− d′) ∗

 ∈ Γ0(4),

meaning that there is only one right coset in this form, and a coset representative,
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for instance, is

g1 =

 1 0

2 1

 .

Case 3: t = 1. In this case, c is odd, and 1 = 4am+ cn. Letting

h =

 c −a

4m n

 ∈ Γ0(4),

we see that

hg =

 c −a

4m n

 a ∗

c ∗

 =

 0 ∗

1 ∗

 ∈ Γ0(4)g.

Hence, we may assume that a = 0, c = 1. Then, det(g) = 1 implies that

g =

 0 −1

1 ∗

 .

Let

g =

 0 −1

1 d

 , g′ =

 0 −1

1 f

 ∈ Γ.

g′g−1 =

 0 −1

1 f

 d 1

−1 0

 =

 ∗ ∗

d− f ∗

 ∈ Γ0(4)⇔ d ≡ f (mod 4).

So,

Γ0(4)g = Γ0(4)g′ if and only if d ≡ f (mod 4). (2.1)

Hence, there are exactly four right cosets in this case, one for each number modulo
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4, and we introduce the following four coset representatives:

g2 =

 0 −1

1 0

 , g3 =

 0 −1

1 1

 , g4 =

 0 −1

1 2

 , and g5 =

 0 −1

1 3

 .

So far, we have proved that any element g ∈ Γ is in one of the 6 right cosets, with

representatives given as above. To prove the claim, it remains to check that these 6

cosets are different. Given

h =

 ∗ ∗

4m n

 ∈ Γ0(4), and g =

 a ∗

c ∗

 ∈ Γ,

we have

hg =

 ∗ ∗

4m n

 a ∗

c ∗

 =

 ∗ ∗

4ma+ nc ∗

 .

Note that n is odd because det(h) = 1. So,

gcd(4ma+ nc, 4) = gcd(nc, 4) = gcd(c, 4).

Observe that, gcd(4, c) depends only on the right coset Γ0(4)g, but not on the coset

representative g. This shows that the right cosets we have found in different cases

above are different. Finally, we have already seen that the right cosets of g2, g3, g4

and, g5 are all different; thus, the lemma is proved �

2.3 Transformation formulas for θ(z)

Recall that

θ(z) =
∞∑

n=−∞

e(n2z) (weight 1/2, level 4).

Let

θg(z) = (cz + d)−1/2θ(gz) for any g =

 a b

c d

 ∈ SL2(Z).
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In this section we will find transformation formulas for θgj(z), j = 0, ..., 5.

Lemma 2.3. We have the following transformation formulas:

θg1(z) = θ(z/4)− θ(z), and

θgj+2
(z) =

1− i
2

θ

(
z + j

4

)
for j = 0, 1, 2, 3.

Proof. We will use the following properties of the theta function repeatedly in the

proof:

θ(z + 1) = θ(z), θ

(
−1

4z

)
=

√
2z

i
θ(z), and θ

(
z +

1

2

)
= 2θ(4z)− θ(z).

The first two are famous formulas, whereas the third one can be obtained easily

by using the Fourier expansion.

Transformation formula at g1:

θg1(z) =

√
1

2z + 1
θ

(
z

2z + 1

)
=

√
1

2z + 1

√
−2z − 1

2iz
θ

(
−2z − 1

4z

)
=

√
−1

2iz
θ

(
−1

2
+
−1

4z

)
=

√
−1

2iz
θ

(
1

2
+
−1

4z

)
=

√
−1

2iz

(
2θ

(
−1

z

)
− θ

(
−1

4z

))
=

√
−1

2iz

(
2

√
z

2i
θ
(z

4

)
−
√

2z

i
θ(z)

)

= 2

√
−1

2iz

√
z

2i
θ
(z

4

)
−
√
−1

2iz

√
2z

i
θ(z) = θ(z/4)− θ(z).

Transformation formulas at g2, g3, g4, and g5. For j = 0, 1, 2, 3 we have:

θgj+2
(z) =

√
1

z + j
θ

(
−1

z + j

)
=

√
1

z + j

√
z + j

2i
θ

(
z + j

4

)
=

√
−i
2
θ

(
z + j

4

)
=

1− i
2

θ

(
z + j

4

)
.
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2.4 Transformation formulas for E(z, s)

Recall that for a positive integer N ,

E(z, s, 4N) = ys/2
∑

g∈Γ∞\Γ0(4N)

j(g, z)1−4k

|j(g, z)|2s
, (weight 2k − 1/2, level 4N).

We also define the dual Eisenstein series F as

F (z, s, 4N) = (
√

4N z)1/2−2kE

(
−1

4Nz
, s, 4N

)
.

In particular,

F (z, s) = (2z)1/2−2kE

(
−1

4z
, s

)
.

For any g =

 a b

c d

 ∈ Γ, let

Eg(z, s, 4N) = (cz + d)1/2−2kE(gz, s, 4N).

In this section, we will find Egj(z, s) for j = 0, ..., 5 in terms of E and F .

Proposition 2.4. We have the following transformation formulas:

Eg1(z, s) = 2sE(z/4, s, 8)− E(z, s), and

Egj+2
(z, s) = 21/2−2kF

(
z + j

4
, s

)
, for j = 0, 1, 2, 3.

Proof. Transformation formula at g1:

Let R1 be a set of representatives for Γ∞\Γ0(4),

W1 = {(c, d) ∈ Z2 | gcd(4c, d) = 1, c1 = 2c+ d > 0, d1 = d},

and

V1 = {(c1, d1) ∈ Z2 | gcd(4c1, d1) = 1, c1 > 0, c1 odd}.
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Note that there is a one to one correspondence among R1,W1, and V1: a b

4c d

 ∈ R1 ↔ (c, d) ∈ W1 ↔ (2c+ d, d) ∈ V1.

On one hand,

Eg1(z, s) = (2z + 1)1/2−2kE

(
z

2z + 1
, s

)
= (2z + 1)1/2−2kIm

(
z

2z + 1

)s/2 ∑
g∈R1

j
(
g, z

2z+1

)1−4k∣∣j(g, z
2z+1

)
∣∣2s

= (2z + 1)1/2−2k ys/2

|2z + 1|s
∑

(c,d)∈W1

ε−1
d

(
4c

d

)
( 4cz

2z+1
+ d)1/2−2k

| 4cz
2z+1

+ d|s

= ys/2
∑

(c,d)∈W1

ε−1
d

(
4c

d

)
((4c+ 2d)z + d)1/2−2k

|(4c+ 2d)z + d|s

= ys/2
∑

(c1,d1)∈V1

ε−1
d1

(
2c1 − 2d1

d1

)
(2c1z + d1)1/2−2k

|2c1z + d1|s

= ys/2
∑

c1 (odd)>0

∑
gcd(4c1,d1)=1

ε−1
d1

(
2c1

d1

)
(2c1z + d1)1/2−2k

|2c1z + d1|s
·

On the other hand,

E(z, s) = ys/2

1 +
∑
c>0

∑
gcd(4c,d)=1

ε−1
d

(
4c

d

)
(4cz + d)1/2−2k

|4cz + d|s


= ys/2

1 +
∑

c (even)>0

∑
gcd(4c,d)=1

ε−1
d

(
2c

d

)
(2cz + d)1/2−2k

|2cz + d|s

 .

Adding these two equations for Eg1(z, s) and E(z, s) we get:

Eg1(z, s) + E(z, s) = 2sE(z/4, s, 8)·
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Transformation formulas at g2, g3, g4, and g5. For j = 0, 1, 2, and 3 we have:

Egj+2
(z, s) = (z + j)1/2−2kE

(
−1

z + j
, s

)
= (z + j)1/2−2k

(
z + j

2

)2k−1/2

F

(
z + j

4
, s

)
= 21/2−2kF

(
z + j

4
, s

)
.

2.5 Fourier Coefficients of Tr4
1(θ(z)E(z, s))

From the definition of trace and the transformation formulas derived earlier, we get

G̃s(z) : = Tr4
1(θ(z)E(z, s)) =

5∑
j=0

(θ(z)E(z, s))|gj =
5∑
j=0

θgj(z)Egj(z, s)

= θ(z)E(z, s) + (θ(z/4)− θ(z))(2sE(z/4, s, 8)− E(z, s))

+
1− i

21/2+2k

3∑
j=0

θ

(
z + j

4

)
F

(
z + j

4
, s

)
.

Remark 2.5. G̃s(z) is z → z + 1 invariant. So are
∑3

j=0 θ
(
z+j

4

)
F
(
z+j

4
, s
)

and

θ(z)E(z, s). We conclude that θg1(z)Eg1(z, s) is also z → z + 1 invariant. This is not

a surprise and could be derived by noticing that the right coset Γ0(4)g1 is invariant

when we multiply with

 1 1

0 1

 on the right. Using this with

θ

(
z + 1

4

)
− iθ

(z
4

)
= (1− i)θ(z),

(which can be proved easily using the Fourier expansion of θ), we conclude that

E

(
z + 1

4
, s, 8

)
+ iE

(z
4
, s, 8

)
=

(1 + i)

2s
E(z, s).
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Let the Fourier expansion of G̃s be:

G̃s(z) =
∑
n∈Z

g̃n(y, s)e(nx).

Also, let the Fourier expansions of E and F be:

E(z, s, 4N) =
∑
n∈Z

An(y, s, 4N) e(nx), and

F (z, s, 4N) =
∑
n∈Z

Bn(y, s, 4N) e(nx).

By considering the contribution of each term θgj(z)Egj(z, s) towards g̃n, we get

g̃n(y, s) =

(∑
l∈Z

e−2πl2yAn−l2(y, s, 4)

)
+

(
2s
∑
l odd

e
−2πl2y

4 A4n−l2 (y/4, s, 8)

)
+

4×

(
1− i

21/2+2k

∑
l∈Z

e
−2πl2y

4 B4n−l2 (y/4, s, 4)

)
·

Note that the term (θ(z/4) − θ(z))E(z, s) has no contribution in g̃n, and the

contributions of θgj+2
(z)Egj+2

(z, s) are equal for j = 0, 1, 2, 3.

Next, let us see what these Fourier coefficients An and Bn are.

2.6 Fourier Coefficients of E and F

The formulas in this section are due Shimura [8] (Proposition 1) and Sturm [9]

(Lemma 2). Note that our definition of E and F is slightly different than their

definition of E and E∗. To be more precise, we have

E(z, s, 4N) = ys/2EJS(z, s, λ, ω0) and

F (z, s, 4N) = (4N)−
λ+s
2 ys/2E∗JS(z, s, λ, ω0),

where ω0 is the trivial character, λ = 2k − 1/2, and to avoid confusion we used EJS

and E∗JS for Sturm’s definition of E and E∗.
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Fourier Coefficients of F (z, s, 4N). First we need to define bn and τn.

We start with bn:

b0(s, 4N) = b∗0(s, 4N) =
L4N(2s+ 4k − 3)

L4N(2s+ 4k − 2)
·

For a non-zero n:

bn(s, 4N) =
L4N(s+ 2k − 1, (−4<n>N

.
))

L4N(2s+ 4k − 2)
βn(s, 4N),

and

b∗n(s, 4N) =
L4N(s+ 2k − 1, (−4<n>

.
))

L4N(2s+ 4k − 2)
β∗n(s, 4N),

with < n > denoting the square-free part of n when n 6= 0:

βn(s, 4N) =
∑

µ(a)

(
−4 < n > N

a

)
a1−2k−sb3−4k−2s,

and

β∗n(s, 4N) =
∑

µ(a)

(
−4 < n >

a

)
a1−2k−sb3−4k−2s,

the sums being over positive integers a, b satisfying (ab)2|n and gcd(ab, 4N) = 1.

Next, τn is defined using the equation

∞∑
n=−∞

(z + n)−α(z̄ + n)−β =
∞∑

n=−∞

τn(y, α, β)e(nx).

It can be written in terms of the Whittaker function as:

iα−β(2π)−α−βτn(y, α, β) =


nα+β−1e−2πnyΓ(α)−1W (4πny, α, β) if n > 0,

|n|α+β−1e−2π|n|yΓ(β)−1W (4π|n|y, β, α) if n < 0,

Γ(α)−1Γ(β)−1Γ(α + β − 1)(4πy)1−α−β if n = 0,
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where the Whittaker function is

W (y, α, β) := Γ(β)−1

∫ ∞
0

(1 + u)α−1uβ−1e−yudu·

It is first defined for Re(β) > 0 and then extended to all β analytically with a

functional equation

W (y, α, β) = y1−α−βW (y, 1− β, 1− α).

With these definitions,

F (z, s, 4N) =
∑
n∈Z

Bn(y, s, 4N)e(nx),

where

Bn(y, s, 4N) = (4N)1/4−k−s/2ys/2bn(s, 4N)τn

(
y,
s+ 4k − 1

2
,
s

2

)
·

Fourier Coefficients of E(z, s, 4N). For An, we need one more definition. Let

cn(s, 4N) =
∑

4N |M |(4N)∞

(
M∑
p=1

(
M

p

)
ε−1
p e(np/M)M1/2−2k

)
M−s.

Then

E(z, s, 4N) =
∑
n∈Z

An(y, s, 4N)e(nx),

where

An(y, s, 4N) = ys/2b∗n(s, 4N)cn(s, 4N)τn

(
y,
s+ 4k − 1

2
,
s

2

)
if n 6= 0,

A0(y, s, 4N) = ys/2
(

1 + b∗0(s, 4N)c0(s, 4N)τ0

(
y,
s+ 4k − 1

2
,
s

2

))
·

Now that we have a Fourier expansion for the trace, and the levels are set, we are

ready to take the holomorphic projection.



22

Chapter 3

Holomorphic Cuspidal Projection.

3.1 Definition of holomorphic cuspidal projection

Gross-Zagier [2] (Section IV.5) summarizes the definition of holomorphic projection

in the following proposition:

Proposition 3.1. Let F̃ be a complex valued C∞ function on H which transforms

like a modular form of weight 2k for Γ with the Fourier expansion:

F̃ (z) =
∞∑

n=−∞

ãn(y)e(nx).

If F̃ (z) = O(y−ε) as y →∞ for some ε > 0, then

F (z) = Pr0
hol(F̃ (z)) =

∞∑
n=1

ane(nz)

is a holomorphic cusp form of the same weight 2k for Γ, where

an = projn(ãn(y)) =
(4πn)2k−1

(2k − 2)!

∫ ∞
0

ãn(y)e−2πnyy2k−2 dy.

Moreover < g, F >=< g, F̃ > for all g ∈ S2k(Γ).

To apply the proposition to Tr(θ(z)E(z, s)), first we need to check the growth

condition required by the proposition.
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3.2 Growth Condition

We would like to take the holomorphic projection of Tr(θ(z)E(z, s)) when s > s0 =

3/2−2k is a real number in some small neighborhood of s0. The reason for considering

not a single value but infinitely many s values near s0 is to be able to take the

derivative of the Fourier coefficients later on.

Lemma 3.2. When s > s0 is a real number close to s0, Tr(θ(z)E(z, s)) satisfies the

growth condition stated in the proposition above. More precisely, there exists some

r > 0 such that for any s ∈ (s0, s0 + r),

Tr(θ(z)E(z, s)) = O(y−u), as y →∞, where u = s− s0 > 0.

Proof. We will prove the lemma by checking the growth condition for each summand

of trace separately, starting with θ(z)E(z, s) itself. To simplify the notation, let

u = s− s0, α = s/2 + 2k − 1/2, β = s/2.

θ(z)E(z, s):

E(z, s) = ys/2 +
∑
n∈Z

bn(s, 4)cn(s, 4)τn(y, α, β)e(nx).

The first term in the product is

bn(s, 4) =
L4(s+ 2k − 1, χ−4<n>)

L4(2s+ 4k − 2)
βn(s, 4),

where

βn(s, 4) =
∑

µ(a)

(
−4 < n >

a

)
a−ub−2u

√
a

,

the sum being over positive odd integers a, b such that (ab)2 divides n. Since each

term in absolute value is less than or equal to 1, and the number of terms is no more

than n2, we deduce that |βn(s, 4)| ≤ n2. Also, it is not difficult to prove that

|L4(s+ 2k − 1, χ−4<n>)| ≤ 4 < n >≤ 4n.
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On the other hand, as s→ s0, 2s+4k−2→ 1, so the denominator L4(2s+4k−1)

goes to infinity. Hence, its reciprocal is bounded, say by 1. We conclude that, in some

s-neighborhood of s0, |bn(s, 4)| ≤ n3 for non-zero n. When n = 0, note that

b0(s, 4) =
L4(2u)

L4(2u+ 1)
=

(1− 2−2u)ζ(2u)

(1− 2−1−2u)ζ(2u+ 1)

has a double-zero at u = 0 because of the (1 − 2−2u) and ζ(2u + 1) terms. So,

|b0(s, 4)| << u2.

The second term, cn(s, 4), is given as an infinite summation:

cn(s, 4) =
∑

4|M |4∞

(
M∑
p=1

(
M

p

)
ε−1
p e(np/M)M1/2−2k

)
M−s,

which (by letting M = 2j) can be written as

∞∑
j=2


∑2j

p=1

(
2
p

)j
ε−1
p e(np/2j)

2j

 2−ju.

For non-zero n, let n = 2dn1 where n1 is odd. When j > d + 3, the summation

over 1 ≤ p ≤ 2j can be split into four parts, one for each odd p-congruence class

modulo 8. The terms
(

2
p

)j
ε−1
p , depend only on p modulo 8, and in each congruence

class we are summing the roots e(np/2j), which form powers of a nontrivial root of

unity, e(p/2j), each power counted with the same multiplicity. We conclude that the

sum is zero, and the only contribution is when j ≤ d+ 3. Hence,

|cn(s, 4)| ≤
d+3∑
j=2

2−ju ≤ d+ 2 << n.

For n = 0, we have

|c0(s, 4)| =

∣∣∣∣∣∣∣
∞∑
j=2


∑2j

p=1

(
2
p

)j
ε−1
p

2j

 2−ju

∣∣∣∣∣∣∣ ≤
∞∑
j=0

2−ju =
1

1− 2−u
<<

1

u
·
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Next, we bound the τn terms. By Lemma 4 in Shimura [8],

yβW (y, α, β) and yαW (y, β, α)

are both bounded when y > 1 as s→ s0. Since α > k and β > −k, we have

|W (y, α, β)| << y−k and |W (y, β, α)| << yk.

Using the relation between the Whittaker function and τn we get the following

bound for n 6= 0:

|τn(y, α, β)| << |n|k+1yke−2π|n|y.

For n = 0, τ0(y, α, β) has a simple pole at u = 0, and from

iα−β(2π)−α−βτ0(y, α, β) =
Γ(α + β − 1)

Γ(α)Γ(β)
(4πy)1−α−β,

we deduce that

|τ0(y, α, β)| << y−u

u
·

Combining these bounds and summing over n ∈ Z, we get

E(z, s) = O(y−u) as y →∞.

Also, it is easy to see that θ(z) = 1 +O(e−y). These two bounds combine to give

θ(z)E(z, s) = O(y−u).

(θ(z/4)− θ(z))(2sE(z/4, s, 8)− E(z, s)):

E(z, s, 8) = ys/2 +
∑
n∈Z

b∗n(s, 8)cn(s, 8)τn(y, α, β)e(nx).

Applying the same ideas as before, we note that b∗n(s, 8) = bn(s, 4) is bounded by

n3 and cn(s, 8) is bounded by a multiple of n. So, the Eisenstein terms are bounded
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by y−u as before. In θ(z/4) − θ(z), the constant terms cancel each other. Hence, it

decays exponentially as y →∞. We conclude that

(θ(z/4)− θ(z))(2sE(z/4, s, 8)− E(z, s)) = O(e−y/4) as y →∞.

∑3
j=0 θ

(
z+j

4

)
F
(
z+j

4
, s
)
:

Let us check θ(z)F (z, s) first. The rest follows by the substitution z → (z + j)/4.

F (z, s) = ys/2
∑
n∈Z

4−s/2−k+1/4bn(s, 4)τn(y, α, β)e(nx).

Using the same bounds from before for bn(s, 4) and τn(y, α, β), we also get that

F (z, s) is bounded by a constant times y−u, so is the product θ(z/4)F (z/4, s). Simi-

larly, the other terms are bounded by y−u as well, and we conclude that

3∑
j=0

θ

(
z + j

4

)
F

(
z + j

4
, s

)
= O(y−u) as y →∞

This finishes checking the growth condition, since u = s − s0 > 0 when s > s0.

Although we are restricted to take holomorphic projection only for s ∈ (s0, s0 + r),

it is not a problem for our purposes. Our goal is to find the derivative of the Fourier

coefficients of the holomorphic projection at s = s0 and for this, knowing these

coefficients for an infinite sequence of s values converging to s0 suffices.

Now, we are ready to take holomorphic cuspidal projection of Tr(θ(z)E(z, s)) for

s values larger and close to s0.

3.3 Holomorphic Cuspidal Projection

of Tr(θ(z)E(z, s))

Recall that

Tr(θ(z)E(z, s)) =
∑
n∈Z

g̃n(y, s)e(nx) ∈ M̃2k(Γ).
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So far, we have computed these coefficients g̃n in terms of the fourier coefficients

of E and F :

g̃n(y, s, 4) =

(∑
l∈Z

e−2πl2yAn−l2(y, s, 4)

)
+

(
2s
∑
l odd

e
−2πl2y

4 A4n−l2(y/4, s, 8)

)

+4×

(
1− i

21/2+2k

∑
l∈Z

e
−2πl2y

4 B4n−l2(y/4, s, 4)

)
·

Let the holomorphic cuspidal projection of Tr(θ(z)E(z, s)) be

∞∑
n=1

gn(s)e(nz) ∈ S2k(Γ).

For a positive integer n, we write these coefficients gn using the definition of

holomorphic cuspidal projection:

gn(s) = projn(g̃n(y, s)) =
(4πn)2k−1

(2k − 2)!

∫ ∞
0

g̃n(y, s)e−2πnyy2k−2dy·

Using the formula we derived earlier for g̃n(y, s), we get

gn(s) = 2δ(
√
n) projn

(
e−2πnyys/2

)
+
∑
l∈Z

b∗n−l2(s, 4)cn−l2(s, 4)projn

(
e−2πl2yys/2τn−l2(y, α, β)

)
+
∑
l odd

b∗4n−l2(s, 8)c4n−l2(s, 8)projn

(
e
−2πl2y

4 ys/2τ4n−l2(y/4, α, β)

)
+ 22−4k−2s(1− i)

∑
l∈Z

b4n−l2(s, 4)projn

(
e
−2πl2y

4 ys/2τ4n−l2(y/4, α, β)

)
·

From the definition of projn, it is immediate that

projn(ã(y/4)) = proj4n(ã(y)).
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Using this formula in the above equation for gn and letting

Pn(m, s) = projn
(
e−2πmyys/2τn−m(y, α, β)

)
(for integers m ≥ 0, n > 0) ,

we get

gn(s) = 2δ(
√
n) projn

(
e−2πnyys/2

)
+
∑
l∈Z

b∗n−l2(s, 4)cn−l2(s, 4)Pn(l2, s)

+ 2s
∑
l odd

b∗4n−l2(s, 8)c4n−l2(s, 8)P4n(l2, s)

+ 22−4k−s(1− i)
∑
l∈Z

b4n−l2(s, 4)P4n(l2, s).

We will spend the next chapter with calculations to evaluate g′n(s0).
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Chapter 4

Calculations for the Main Formula.

4.1 Calculations for bn, cn, and Pn(m, s)

In this section, we will make calculations for the terms bn, cn and Pn(m, s) at the

point s0 = 3/2− 2k. Let us start with Pn(m, s).

4.1.1 Calculations for Pn(m, s).

Recall that

Pn(m, s) = projn

(
e−2πmyys/2τn−m

(
y,
s+ L

2
,
s

2

))
(for integers m ≥ 0, n > 0) ,

where τn and projn are as defined in the previous chapters.

Let

s0 = 3/2− 2k,

u = s− s0,

α = s/2 + 2k − 1/2, α0 = s0/2 + 2k − 1 = 1/4 + k,

β = s/2, β0 = s0/2 = 3/4− k.
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♣ For 0 ≤ m < n, let c = n−m
n
· Then we have

Pn(m, s0) = projn
(
e−2πmyy3/4−kτn−m (y, α0, β0)

)
=

(4πn)2k−1

(2k − 2)!

∫ ∞
0

e−2π(m+n)yyk−1/4τn−m (y, α0, β0)
dy

y

=
2π
√
i(−1)k(4πn)2k−1

Γ(k + 1/4)(2k − 2)!

∫ ∞
0

e−4πnyyk−1/4W (4π(n−m)y, α0, β0)
dy

y

=
2π
√
i(−1)k(4πn)k−3/4

Γ(k + 1/4)(2k − 2)!
Jk(c),

where

Jk(c) =

∫ ∞
0

e−yyk−1/4W (cy, α0, β0)
dy

y
·

There are a few definitions of confluent hypergeometric functions which are closely

related:

W (y, α, β) =
1

Γ(β)

∫ ∞
0

(1 + u)α−1uβ−1e−uy du,

U(a, b, z) =
1

Γ(a)

∫ ∞
0

ta−1(1 + t)b−a−1e−zt dt,

Mk,µ(z) = z1/2+µe−z/21F1(1/2 + µ− k, 2µ+ 1; z),

Wk,µ(z) =
Γ(−2µ)Mk,µ(z)

Γ(1/2− µ− k)
+

Γ(2µ)Mk,−µ(z)

Γ(1/2 + µ− k)
·

The relations being

W (y, α, β) = U(β, α + β, y) and

Wk,m(z) = e−z/2zm+1/2U(1/2 +m− k, 1 + 2m; z).

Combining them, we get

W (y, α0, β0) = W (y, 1− β0, β0) = U(β0, 1, y) = y−1/2ey/2W1/2−β0,0(y).
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Let us rewrite Jk(c) using this relation:

Jk(c) =
1√
c

∫ ∞
0

e−(1−c/2)yyk−3/4Wk−1/4,0(cy)
dy

y
·

The following formula (Bateman [7], page 216) relates the Laplace transform of

the Whittaker function Wk,m to the Hypergeometric function 2F1:

∫ ∞
0

e−pttvWk,µ(at)
dt

t
=

Γ(µ+ v + 1/2)Γ(v − µ+ 1/2)aµ+1/2

Γ(v − k + 1)(p+ a/2)µ+v+1/2

×2F1

(
µ+ v + 1/2, µ− k + 1/2; v − k + 1;

p− a/2
p+ a/2

)
·

With the following substitutions:

p→ 1− c/2, a→ c, k → k − 1/4, v → k − 3/4, µ→ 0,

the formula reduces to

Jk(c) =
Γ(k − 1/4)2

√
π

× 2F1

(
k − 1

4
,
3

4
− k;

1

2
; 1− c

)
·

Hence,

Pn(m, s0) = (1 + i)
√

2π(−1)k(4πn)k−3/4 Γ(k − 1/4)2

Γ(k + 1/4)(2k − 2)!
× 2F1

(
k − 1

4
,
3

4
− k;

1

2
; 1− c

)
·
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♣ For 0 < m = n we have

Pn(n, s) = projn
(
e−2πnyyβτ0(y, α, β)

)
= projn

(
e−2πnyyβiβ−α(2π)α+βΓ(α + β − 1)

Γ(α)Γ(β)
(4πy)1−α−β

)
= i1/2−2k22−α−βπ

Γ(α + β − 1)

Γ(α)Γ(β)
projn

(
y1−αe−2πny

)
= i1/2−2k22−α−βπ

Γ(α + β − 1)

Γ(α)Γ(β)

(4πn)2k−1

(2k − 2)!

∫ ∞
0

y2k−αe−4πny dy

y

= i1/2−2k22−α−βπ
Γ(α + β − 1)Γ(1/2− β)

Γ(α)Γ(β)

(4πn)α−1

(2k − 2)!

=
(1 + i)(−1)k

√
2π(4πn)k−3/4

(2k − 2)!

(πn)u/2Γ(u)Γ(k − 1/4− u/2)

Γ(k + 1/4 + u/2)Γ(3/4− k + u/2)
·

♣ For 0 < n < m, let c = (m− n)/m. We have

Pn(m, s) = projn
(
e−2πmyyβτn−m(y, α, β)

)
= projn

(
e−2πmyyβiβ−α(2π)α+β(m− n)α+β−1e−2π(m−n)yΓ(β)−1W (4π(m− n)y, β, α)

)
=

i1/2−2k(2π)α+β(m− n)α+β−1

Γ(β)
projn

(
yβe−2π(2m−n)yW (4π(m− n)y, β, α)

)
=

i1/2−2k(2π)α+β(m− n)α+β−1

Γ(α)Γ(β)
projn

(
yβe−2π(2m−n)y

∫ ∞
0

(1 + u)β−1uα

e4π(m−n)yu

du

u

)
=

i1/2−2k(2π)α+β(m− n)α+β−1

Γ(α)Γ(β)

(4πn)2k−1

(2k − 2)!

∫ ∞
0

(∫ ∞
0

y2k−1+β

e4πm(1+cu)y

dy

y

)
(1 + u)β−1uα

du

u

=
i1/2−2k22k−1/2πα(m− n)α+β−1

m2k−1+β

n2k−1

(2k − 2)!

Γ(2k − 1 + β)

Γ(α)Γ(β)

∫ ∞
0

(1 + u)β−1uα

(1 + cu)2k−1+β

du

u
·

At the center, s0 = 3/2− 2k, we get

Pn(m, s0) =
(1 + i)(4π)k−3/4Γ(k − 1/4)

(2k − 2)!

n2k−1

mk−1/4
Ik(c),

where

Ik(c) =

∫ ∞
0

uk−3/4 du

(1 + u)k+1/4(1 + cu)k−1/4
·
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Remark 4.1. Note that, in all the cases, we have the relation

Pn(m, s) = 41−αP4n(4m, s).

We summarize these calculations in the following lemma.

Lemma 4.2. We have the following values for Pn(m, s0), where n > 0 and m ≥ 0:

(1) If 0 ≤ m < n, letting c = n−m
n

,

Pn(m, s0) = (1+i)
√

2π(−1)k(4πn)k−3/4 Γ(k − 1/4)2

Γ(k + 1/4)(2k − 2)!
×2F1

(
k − 1

4
,
3

4
− k;

1

2
; 1− c

)
·

(2) When 0 < m = n, Pn(n, s) has a simple pole at s = s0 and,

Pn(n, s) =
(1 + i)(−1)k

√
2π(4πn)k−3/4

(2k − 2)!

(πn)u/2Γ(u)Γ(k − 1/4− u/2)

Γ(k + 1/4 + u/2)Γ(3/4− k + u/2)
·

(3) If 0 < n < m, letting c = m−n
m

,

Pn(m, s0) =
(1 + i)(4π)k−3/4Γ(k − 1/4)

(2k − 2)!

n2k−1

mk−1/4
Ik(c),

where for c ∈ (0, 1),

Ik(c) =

∫ ∞
0

uk−3/4 du

(1 + u)k+1/4(1 + cu)k−1/4
·

4.1.2 Calculations for bn(s)

Recall that for non-zero n,

bn(s, 4N) =
L4N(s+ 2k − 1, (−4<n>N

· ))

L4N(2s+ 4k − 2)
βn(s, 4N),

and

b∗n(s, 4N) =
L4N(s+ 2k − 1, (−4<n>

· ))

L4N(2s+ 4k − 2)
β∗n(s, 4N),
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with < n > denoting the square-free part of n,

βn(s, 4N) =
∑

µ(a)

(
−4 < n > N

a

)
a1−2k−sb3−4k−2s,

and

β∗n(s, 4N) =
∑

µ(a)

(
−4 < n >

a

)
a1−2k−sb3−4k−2s·

The sums are over positive integers a, b satisfying (ab)2|n and gcd(ab, 4N) = 1.

Also,

b0(s, 4N) = b∗0(s, 4N) =
L4N(2s+ 4k − 3)

L4N(2s+ 4k − 2)
.

To simplify the notation, let us introduce

bn(s) := bn(s, 4), βn(s) := βn(s, 4).

Note that

bn(s, 4) = b∗n(s, 4) = b∗n(s, 8),

and that they all vanish at the center, s0 = 3/2 − 2k, because the denominators,

L4N(2s + 4k − 2), have a pole at this point. For our computations we still need to

know their derivatives.

For a non-zero n =< n > m2, where < n > is a square-free integer, we have

b′n(s0) =

(
L4(s+ 2k − 1, (−4<n>

.
))

L4(2s+ 4k − 2)
βn(s)

)′ ∣∣∣
s=s0

= lim
s→s0

(
L4(s+ 2k − 1, (−4<n>

.
))

(s+ 2k − 3/2)L4(2s+ 4k − 2)
βn(s)

)
=

L4(1/2, (−4<n>
.

))

lims→s0(s− s0)L4(1 + 2(s− s0))
βn(s0)

=
2L4(1/2, (−4<n>

.
))

limv→1(v − 1)L4(v)
βn(s0) (v = 1 + 2(s− s0))

=
2L4(1/2, (−4<n>

.
))

(1− 2−1) limv→1(v − 1)ζ(v)
βn(s0)

= 4L (1/2, χ−4<n>) βn(s0) (using Ress=1ζ(s) = 1)·
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Here,

βn(s0) =
∑(

−4 < n >

a

)
µ(a)√
a
,

the sum being over positive odd integers a, b satisfying ab|m.

Next, let us see what happens when n = 0:

b0(s) =
L4(2s+ 4k − 3)

L4(2s+ 4k − 2)
=

(1− 2−2s−4k+3)ζ(2s+ 4k − 3)

(1− 2−2s−4k+2)ζ(2s+ 4k − 2)
·

Note that, as s→ s0 = 3/2− 2k, 2s+ 4k → 3. The numerator has a simple zero,

and the denominator has a simple pole. Hence, b0(s) has a double zero at s = s0.

4.1.3 Calculations for cn(s)

Let u = s− s0 = s+ 2k − 3/2. Recall that

cn(s, 4N) =
∑

4N |M |(4N)∞

∑M
p=1

(
M
p

)
ε−1
p e(np/M)

M1+u

 ,

where M |(4N)∞ means that all prime divisors of M are also divisors of 4N , and

εp = 1 or i depending on p ≡ 1 or 3 (mod 4).

We will find the values of cn(s, 4) and cn(s, 8). From the definition, note that they

only differ by M = 4 terms. This simple observation gives us the following relation:

cn(s, 4) = cn(s, 8) + (−1)
n(n+1)

2
1− i
41+u

·

We will first calculate cn(s, 8) and then use this relation to find cn(s, 4).
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When n = 0,

c0(s, 8) =
∑

8|M |8∞

∑M
p=1

(
M
p

)
ε−1
p

M1+u
=
∞∑
j=3

∑2j

p=1

(
2
p

)j
ε−1
p

2j(1+u)

=
∞∑
j=3

(1 + (−1)j(−i) + (−1)j + (−i)) 2j−3

2j(1+u)

=
∞∑
j=3

(1 + (−1)j)(1− i)
23+ju

=
1− i

4

∑
j≥4, even

1

2ju
=

1− i
4u+1(4u − 1)

and

c0(s, 4) =
1− i

4(4u − 1)
·

Note that c0(s, 8) and c0(s, 4) both have a simple pole at s = s0 with residue:

lim
s→s0

(s− s0)cn(s, 8) = lim
s→s0

(s− s0)cn(s, 4) =
1− i
4 ln 4

·

Next, for non-zero n,

cn(s0, 8) =
∑

8|M |8∞

∑M
p=1

(
M
p

)
ε−1
p e
(
np
M

)
M

=
∞∑
j=3

Sn(j)

2j
,

where

Sn(j) =
2j∑
p=1

(
2

p

)j
ε−1
p e
(np

2j

)
.

To compute Sn(j), let us first investigate the product
(

2
p

)j
ε−1
p . Using

(
2

p

)
=

 +1, if p ≡ 1, 7 (mod 8)

−1, if p ≡ 3, 5 (mod 8)
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and the definition of εp, we get

(
2

p

)j
ε−1
p =



1, if p ≡ 1 (mod 8),

(−1)j(−i), if p ≡ 3 (mod 8),

(−1)j, if p ≡ 5 (mod 8),

(−i), if p ≡ 7 (mod 8).

By grouping p terms (ranging from 1 to 2j) that are congruent modulo 8, we get

Sn(j) =
∑
p≡1(8)

e
(np

2j

)
+ (−1)j(−i)

∑
p≡3(8)

e
(np

2j

)
+ (−1)j

∑
p≡5(8)

e
(np

2j

)
+ (−i)

∑
p≡7(8)

e
(np

2j

)
=

(
e
( n

2j

)
+ (−1)j(−i)e

(
3n

2j

)
+ (−1)je

(
5n

2j

)
+ (−i)e

(
7n

2j

))
×
(

1 + e

(
8n

2j

)
+ ...+ e

(
(2j − 8)n

2j

))
= e

( n
2j

)(
1 + (−1)j(−i)e

(
2n

2j

))(
1 + (−1)je

(
4n

2j

))
×
(

1 + e

(
8n

2j

)
+ ...+ e

(
(2j − 8)n

2j

))
·

Note that the last factor

1 + e

(
8n

2j

)
+ ...+ e

(
(2j − 8)n

2j

)
=


2j−3, if 2j | 8n,

0, if 2j - 8n.

So, we have

Sn(j) =


2j−3e

(
n
2j

) (
1 + (−1)j(−i)e

(
2n
2j

)) (
1 + (−1)je

(
4n
2j

))
, if 2j | 8n

0, if 2j - 8n.

This last condition encourages us to write n as 2dn1, where n1 is an odd integer.

We will consider cases separately depending on how large j is compared to d.
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♦ For 3 ≤ j ≤ d; e(n/2j) = e(2n/2j) = e(4n/2j) = 1 and

Sn(j) =


0, for odd j

2j−2(1− i), for even j.

♦ When j = d+ 1; e(n/2j) = −1, e(2n/2j) = e(4n/2j) = 1 and

Sn(d+ 1) =


0, for even d

2d−1(i− 1), for odd d.

♦ When j = d+ 2; e(n/2j) = in1 , e(2n/2j) = −1, e(4n/2j) = 1, and

Sn(d+ 2) =


0, for odd d

2din1(1 + i), for even d.

♦ When j = d+ 3 ; e(n/2j) = (
√
i)n1 , e(2n/2j) = in1 , e(4n/2j) = −1, and

Sn(d+ 3) =


0, for odd d

2d+1(
√
i)n1(1 + in1+1), for even d.

♦ Finally, for j > d+ 3 as we have seen earlier Sn(j) = 0.

We now have all the information we need to calculate

cn(s0, 8) =
∞∑
j=3

Sn(j)

2j
·

We will look case by case as d varies.
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♠ For d = 0,

cn(s0, 8) =
Sn(3)

8
=

(
√
i)n(1 + in+1)

4
=


0, if n ≡ 1 (modulo 4)

(
√
i)n/2 if n ≡ 3 (modulo 4).

♠ For d = 1,

cn(s0, 8) = 0.

♠ For d ≥ 2 even,

cn(s0, 8) =

( ∑
3≤j even≤d

1− i
4

)
+

(1 + i)in1

4
+

(
√
i)n1(1 + in1+1)

4

=
d− 2

2
× (1− i)

4
+

(1 + i)in1

4
+

(
√
i)n1(1 + in1+1)

4
·

♠ And for d ≥ 3 odd,

cn(s0, 8) =

( ∑
3≤j even≤d

1− i
4

)
+
i− 1

4
=
d− 5

2
× 1− i

4
·

Finally, to find the values cn(s0, 4), we use the formula

cn(s0, 4) = cn(s0, 8) + (−1)
n(n+1)

2
1− i

4
·

Let us summarize these formulas in the following lemma.
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Lemma 4.3. For a non-zero integer n = 2dn1 where n1 is odd, we have

cn(s0, 8) =



0 d = 0, n ≡ 1 (4)

−
√

2×
(

1−i
4

)
d = 0, n ≡ 3 (8)

√
2×

(
1−i

4

)
d = 0, n ≡ 7 (8)

0 d = 1

d−4
2
×
(

1−i
4

)
d ≥ 2 even, n1 ≡ 1 (4)

d−2
√

2
2
×
(

1−i
4

)
d ≥ 2 even, n1 ≡ 3 (8)

d+2
√

2
2
×
(

1−i
4

)
d ≥ 2 even, n1 ≡ 7 (8)

d−5
2
×
(

1−i
4

)
d ≥ 3 odd

and

cn(s0, 4) =



d−2
2
×
(

1−i
4

)
d even, n1 ≡ 1 (4)

d+2−2
√

2
2

×
(

1−i
4

)
d even, n1 ≡ 3 (8)

d+2+2
√

2
2

×
(

1−i
4

)
d even, n1 ≡ 7 (8)

d−3
2
×
(

1−i
4

)
d odd

Also, letting γ(n) = 2(1 + i)cn(s0, 4) + 1, we have

γ(n) =



d/2 d even, n1 ≡ 1 (4)

d/2 + 2−
√

2 d even, n1 ≡ 3 (8)

d/2 + 2 +
√

2 d even, n1 ≡ 7 (8)

d/2− 1/2 d odd.

4.2 Calculations for g′n(s0)

Recall that

gn(s) = 2δ(
√
n)projn

(
e−2πnyys/2

)
+
∑
m∈Z

bn−m2(s)cn−m2(s, 4)Pn(m2, s)

+ 2s
∑
m odd

b4n−m2(s)c4n−m2(s, 8)P4n(m2, s) + 22−4k−s(1− i)
∑
m∈Z

b4n−m2(s)P4n(m2, s).
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Taking the derivatives at s = s0, we get

g′n(s0) = 2δ(
√
n)
(
projn

(
e−2πnyys/2

))′ |s=s0 + 2δ(
√
n) (b0(s)c0(s, 4)Pn(n, s))′ |s=s0

+2δ(
√
n)
(
22−4k−s(1− i)b0(s)P4n(4n, s)

)′ |s=s0
+

∑
m∈Z, m2 6=n

b′n−m2(s0)cn−m2(s0, 4)Pn(m2, s0)

+ 2s0
∑
m odd

b′4n−m2(s0)c4n−m2(s0, 8)P4n(m2, s0)

+ 2s0−1(1− i)
∑

m∈Z,m2 6=4n

b′4n−m2(s0)P4n(m2, s0).

Recall the following equations we derived in the previous section:

Pn(m, s) = 41−αP4n(4m, s)

bn(s) = b4n(s)

cn(s0, 8) = cn(s0, 4)− (−1)
n(n+1)

2
1− i

4

cn(s0, 4) = c4n(s0, 4)− 1− i
4

b′n(s0) = 4L(1/2, χ−4<n>)βn(s0)·

Using these equations above, and letting β(n) = βn(s0), we get

g′n(s0) = 2δ(
√
n)
(
projn

(
e−2πnyys/2

))′ |s=s0
+2δ(

√
n)

(
b0(s)

(
c0(s, 4) +

1− i
2

)
Pn(n, s)

)′
|s=s0

+ 2s0−2(1− i)
∑

m∈Z,m2 6=4n

b′4n−m2(s0)γ(4n−m2)P4n(m2, s0)

= 2δ(
√
n)
(
projn

(
e−2πnyys/2

))′ |s=s0
+2δ(

√
n)

(
b0(s)

(
c0(s, 4) +

1− i
2

)
Pn(n, s)

)′
|s=s0

+ 2s0(1− i)
∑

m∈Z,m2 6=4n

L(1/2, χ−4<4n−m2>)β(4n−m2)γ(4n−m2)P4n(m2, s0).
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Rewriting formula (1.6) after scaling, we get

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek λn(f)

< f, f >
=

(2k − 2)!

4(4π)k−3/4nk−1/2Γ(k − 1/4)
g′n(s0)·

Now we plug in g′n(s0) above with the values of Pn(m, s0) we found earlier and

deduce the following proposition.

Proposition 4.4.

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek λn(f)

< f, f >
= An,k + Bn,k,

where

An,k =
(2k − 2)!

4(4π)k−3/4nk−1/2Γ(k − 1/4)
× 2δ(

√
n)
(
projn

(
e−2πnyys/2

))′ |s=s0
+

(2k − 2)!

4(4π)k−3/4nk−1/2Γ(k − 1/4)
× 2δ(

√
n)

(
b0(s)

(
c0(s, 4) +

1− i
2

)
Pn(n, s)

)′
|s=s0

Bn,k =
∑

m∈Z,m2 6=4n

L (1/2, χ4<m2−4n>) ξn,k(m).

The coefficients ξn,k(m) are given by

ξn,k(m) = β(4n−m2)γ(4n−m2)Fn,k(m)

with

Fn,k(m) =


√

2π
2n1/4

(−1)kΓ(k−1/4)
Γ(k+1/4) 2F1

(
k − 1

4
, 3

4
− k; 1

2
; m

2

4n

)
if m2 < 4n

1
2n1/4

(
4n
m2

)k−1/4
Ik

(
m2−4n
m2

)
if m2 > 4n.

Lemma 4.5. ξn,k(m) > 0 whenever m2 > 4n.

Proof. First, note that Fn,k(m) > 0 for m2 > 4n. Also, from Lemma 4.3, it is easy

to see that γ(n) ≥ 0 for all n. Moreover γ(4n−m2) > 0 for all m,n.
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Finally, for positivity of β(n), let n = 4rm2t where m is odd and t is square-free.

Then

β(n) =
∑
ab|m

µ(a)√
a

(
−4t

a

)
·

Note that we are summing over the terms µ(a)√
a

(−4t
a

)
which is a multiplicative

function. Hence, it suffices to find the last sum for a prime power:

∑
ab|pα

µ(a)

(
−4t

a

)
a−1/2 = 1 + α− α

√
p

(
−4t

p

)
> 0.

We conclude that β(n), being a product of these over p|m, is positive as well �

4.3 Simplifying An,k

•
(
projn

(
e−2πnyys/2

))′ |s=s0
projn(e−2πnyys/2) =

(4πn)2k−1

(2k − 2)!

∫ ∞
0

e−4πnyyk−1/4+u/2 dy

y

=
(4πn)k−3/4Γ(k − 1/4 + u/2)

(4πn)u/2(2k − 2)!
·

Taking the derivative at u = 0, we get

(
projn(e−2πnyys/2)

)′ ∣∣∣
s=s0

=
(4πn)k−3/4Γ(k − 1/4)

2(2k − 2)!
×
(

Γ′(k − 1/4)

Γ(k − 1/4)
− ln(4πn)

)
·

•
(
b0(s)

(
c0(s, 4) + 1−i

2

)
Pn(n, s)

)′ |s=s0
First, we will deal with each term, finding their first two coefficients of the Laurant

expansions, around the point s = s0 using the standard little-o notation.

b0(s) =
L4(2s+ 4k − 3)

L4(2s+ 4k − 2)
=

(1− 23−2s−4k)

(1− 22−2s−4k)

ζ(2s+ 4k − 3)

ζ(2s+ 4k − 2)

=
1− 2−2u

1− 2−1−2u
× ζ(2u)

ζ(1 + 2u)
·
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We have already computed c0(s, 4) earlier as c0(s, 4) = 1−i
4u+1−4

· So,

c0(s, 4) +
1− i

2
=

1− i
4
× 22u+1 − 1

22u − 1
·

Multiplying these two, we get

b0(s)

(
c0(s, 4) +

1− i
2

)
=

1− i
2
× ζ(2u)

ζ(1 + 2u)
·

As u→ 0,

ζ(2u) = −1

2
(1 + 2 ln(2π)u+ o(u)), (using ζ(0) = −1/2, ζ ′(0) = − ln(2π)/2)

ζ(1 + 2u) =
1

2u
+ γ + o(1) =

1

2u
(1 + 2γu+ o(u))

(
using lim

s→1

(
ζ(s)− 1

s− 1

)
= γ

)
,

and so b0(s)

(
c0(s, 4) +

1− i
2

)
=
−u(1− i)

2
(1 + (2 ln(2π)− 2γ)u+ o(u)).

Next, we use the calculations for Pn(n, s) with n = 1 to get

Pn(n, s) =
(1 + i)(−1)k

√
2π(4πn)k−3/4

(2k − 2)!

(nπ)u/2Γ(u)Γ(k − 1
4
− u

2
)

Γ(k + 1
4

+ u
2
)Γ(3

4
− k + u

2
)
·

As u→ 0, we have

Γ(k − 1
4
− u

2
)

Γ(k + 1
4

+ u
2
)Γ(3

4
− k + u

2
)

=

(
Γ(k − 1

4
)− 1

2
Γ′(k − 1

4
)u+ o(u)

)(
Γ(k + 1

4
) + 1

2
Γ′(k + 1

4
)u+ o(u)

) (
Γ(3

4
− k) + 1

2
Γ′(3

4
− k)u+ o(u)

)
=

Γ(k − 1/4)

Γ(k + 1/4)Γ(3/4− k)
×
(

1−
(

Γ′(k − 1/4)

Γ(k − 1/4)
+

Γ′(k + 1/4)

Γ(k + 1/4)
+

Γ′(3/4− k)

Γ(3/4− k)

)
u

2
+ o(u)

)
.

Gamma function has the property that Γ(x)Γ(1− x) = π/ sin(πx)·

Taking logarithmic derivatives of both sides, we get

Γ′(1− x)

Γ(1− x)
=

Γ′(x)

Γ(x)
+ π cot(πx).
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In particular, letting x = k + 1/4, we have the two relations

Γ(k + 1/4)Γ(3/4− k) = (−1)kπ
√

2 and

Γ′(3/4− k)

Γ(3/4− k)
=

Γ′(k + 1/4)

Γ(k + 1/4)
+ π·

Also, Γ(z) has the following expansion at 0:

Γ(u) =
1

u
(1− γu+ o(u)) ·

Combining these, we get

Pn(n, s) =
(1 + i)(−1)k

√
2π(4πn)k−3/4

(2k − 2)!

(nπ)u/2Γ(u)Γ(k − 1
4
− u

2
)

Γ(k + 1
4

+ u
2
)Γ(3

4
− k + u

2
)

=
1

u
× (1 + i)(4πn)k−3/4Γ(k − 1/4)

(2k − 2)!

×
(

1 +

(
ln(πn)

2
− γ − Γ′(k − 1/4)

2Γ(k − 1/4)
− Γ′(k + 1/4)

Γ(k + 1/4)
− π

2

)
u+ o(u)

)
.

Finally, we add the pieces together and get

b0(s)

(
c0(s, 4) +

1− i
2

)
Pn(n, s) =

−(4πn)k−3/4Γ(k − 1/4)

(2k − 2)!

×
(

1 +

(
2 ln(2π)− 3γ +

ln(πn)

2
− Γ′(k − 1/4)

2Γ(k − 1/4)
− Γ′(k + 1/4)

Γ(k + 1/4)
− π

2

)
u+ o(u)

)
·

After simplifications, we end up with

(
b0(s)

(
c0(s, 4) +

1− i
2

)
Pn(n, s)

)′
|s=s0 =

(4πn)k−3/4Γ(k − 1/4)

(2k − 2)!

×
(
−2 ln(2π) + 3γ − ln(πn)

2
+

Γ′(k − 1/4)

2Γ(k − 1/4)
+

Γ′(k + 1/4)

Γ(k + 1/4)
+
π

2

)
.

Combining these two calculations gives

An,k =
δ(
√
n)

2n1/4

(
Γ′(k − 1/4)

Γ(k − 1/4)
+

Γ′(k + 1/4)

Γ(k + 1/4)
+
π

2
+ 3γ − 3 ln(2π)− ln(n)

)
.
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Now, starting with the identity Γ(x)Γ(x + 1/2) =
√

2π 21/2−2xΓ(2x), and taking

logarithmic derivatives, we derive the relation:

Γ′(x)

Γ(x)
+

Γ′(x+ 1/2)

Γ(x+ 1/2)
=

2Γ′(2x)

Γ(2x)
− 2 ln 2.

Using this identity with x = k − 1/4 above, we simplify An,k to

Proposition 4.6.

An,k =
δ(
√
n)

n1/4

(
Γ′(2k − 1/2)

Γ(2k − 1/2)
+
π + 6γ − 6 lnπ − 10 ln 2

4
− ln(n)

2

)
.

By combining Propositions 4.4, 4.6, and Lemma 4.5 we arrive at our destination.
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4.4 Main Theorem: The Exact Average Formula

at the Center

Main Theorem. For integers k > 1 and n > 0, we have the following formula at

the center of symmetry s = 2k − 1/2:

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek λn(f)

< f, f >
= An,k +

∑
m∈Z,m2 6=4n

L

(
1

2
, χ4<m2−4n>

)
ξn,k(m).

An,k =
δ(
√
n)

n1/4

(
Γ′(2k − 1/2)

Γ(2k − 1/2)
+A− ln(n)

2

)
, where A =

π + 6γ − 6 lnπ − 10 ln 2

4
·

The weights ξn,k(m) are positive for all but finitely many m. In fact,

ξn,k(m) > 0, whenever |m| > 2
√
n. Explicitly,

ξn,k(m) = β(4n−m2)γ(4n−m2)Fn,k(m).

For n 6= 0, we write n = 2dn1 with n1 odd. Then

β(n) =
∑

a,b>0, (ab)2|n1

µ(a)√
a

(
−4 < n >

a

)

γ(n) =



d/2 d even, n1 ≡ 1 (mod 4),

d/2 + 2−
√

2 d even, n1 ≡ 3 (mod 8),

d/2 + 2 +
√

2 d even, n1 ≡ 7 (mod 8),

d/2− 1/2 d odd.

Finally,

Fn,k(m) =


√

2π
2n1/4

(−1)kΓ(k−1/4)
Γ(k+1/4) 2F1

(
k − 1

4
, 3

4
− k; 1

2
; m

2

4n

)
if m2 < 4n,

1
2n1/4

(
4n
m2

)k−1/4
Ik

(
m2−4n
m2

)
if m2 > 4n,

where Ik(c) =

∫ ∞
0

uk−3/4 du

(1 + u)k+1/4(1 + cu)k−1/4
·
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Chapter 5

Asymptotic Behavior as k →∞.

From the main formula we have

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek λn(f)

< f, f >
= An,k + Bn,k·

We will find the asymptotic of this formula as k →∞ by finding the asymptotic

of the terms An,k, Bn,k.

5.1 Asymptotic of An,k

Recall that

An,k =
δ(
√
n)

n1/4

(
Γ′(2k − 1/2)

Γ(2k − 1/2)
+A− ln(n)

2

)
·

By taking logarithmic derivatives of the identity Γ(x+ 1) = xΓ(x), we get

Γ′(x+ 1)

Γ(x+ 1)
=

1

x
+

Γ′(x)

Γ(x)
·

It follows that Γ′(2k−1/2)
Γ(2k−1/2)

≈ ln k, and we conclude

Lemma 5.1. As k →∞, we have

An,k ≈
δ(
√
n)

n1/4
ln k.



49

5.2 Asymptotic of Bn,k

We will first bound the Fn,k(m) terms appearing in Bn,k. Recall that

Bn,k =
∑

m∈Z,m2 6=4n

L (1/2, χ4<m2−4n>) β(4n−m2)γ(4n−m2)Fn,k(m)

Let m0 > 0 be the smallest integer such that m2
0 > 4n.

• Case 1: m2 < m2
0. In this case, m2 < 4n as well, and we have

Fn,k(m) =

√
2π

2n1/4

(−1)kΓ(k − 1/4)

Γ(k + 1/4)
2F1

(
k − 1

4
,
3

4
− k;

1

2
;
m2

4n

)
.

From Stirling’s formula, we have

Γ(k − 1/4)

Γ(k + 1/4)
= O

(
1√
k

)
·

It remains to bound the Gauss hypergeometric function 2F1, which is defined as

F (a, b; c; z) = 2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where (r)n = r(r + 1)...(r + n− 1).

The series converge when |z| < 1, assuming that c is not a non-positive integer.

For 0 < x < 1, we can write F
(
k − 1

4
, 3

4
− k; 1

2
;x
)

in terms of the Legendre

functions P µ
ν (formula 15.4.23 in Handbook of Mathematical Functions [6]).

F

(
a, b;

1

2
;x

)
= π−

1
2 2a+b− 3

2 Γ

(
a+

1

2

)
Γ

(
b+

1

2

)
(1− x)

1
2

( 1
2
−a−b)

×
(
P

1
2
−a−b

a−b− 1
2

(
√
x) + P

1
2
−a−b

a−b− 1
2

(−
√
x)
)
·

Letting a = k − 1/4, b = 3/4− k gives

F

(
k − 1

4
,
3

4
− k;

1

2
;x

)
=

Γ (k + 1/4) Γ (5/4− k)

2
√
π

(
P 0

2k−3/2(
√
x) + P 0

2k−3/2(−
√
x)
)
·
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Using the relation

Γ(5/4− k)Γ(k − 1/4) =
π

sin(πk − π/4)
= −
√

2π(−1)k,

we get

F

(
k − 1

4
,
3

4
− k;

1

2
;x

)
=

(−1)k+1
√
π√

2

Γ (k + 1/4)

Γ(k − 1/4)

(
P 0

2k−3/2(
√
x) + P 0

2k−3/2(−
√
x)
)
·

By formula 8.10.7 of Handbook of Mathematical Functions[6], we have the follow-

ing asymptotic for the Legendre function. As ν →∞, we have

P µ
ν (cos θ) =

Γ(ν + µ+ 1)

Γ(ν + 3/2)

(
π sin θ

2

)−1/2

cos

((
ν +

1

2

)
θ − π

4
+
µπ

2

)
+O

(
1

ν

)
·

Letting ν = 2k − 3/2, µ = 0, we get (as k →∞)

P 0
2k−3/2 (cos θ) =

Γ(2k − 1/2)

Γ(2k)

(√
3π

4

)−1/2

cos
(

(2k − 1)θ − π

4

)
+O

(
1

k

)
= O

(
1√
k

)
·

Hence,

F

(
k − 1

4
,
3

4
− k;

1

2
;x

)
= O(1)·

We deduce that

Fn,k(m) = O

(
1√
k

)
·

Since we have finitely manym such thatm2 < 4n, the L, β, γ terms are all bounded

by some constant, depending on n but not k. Thus we proved that for any fixed n,

letting k →∞, we have

∑
m∈Z,m2<4n

L (1/2, χ4<m2−4n>) β(4n−m2)γ(4n−m2)Fn,k(m) = O

(
1√
k

)
·

• Case 2, m2 > m2
0: In this case, m2 > 4n as well, and we have

Fn,k(m) =
1

2n1/4

(
4n

m2

)k−1/4

Ik

(
m2 − 4n

m2

)
,
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where

Ik(c) =

∫ ∞
0

uk−3/4 du

(1 + u)k+1/4(1 + cu)k−1/4
·

Note that, for m2 > 4n we have the following inequalities:

0 < γ(4n−m2) < 4(m2 − 4n) < 4m2

|L(1/2, χ4<m2−4n>)| < 4(m2 − 4n) < 4m2

0 < β(4n−m2) < (m2 − 4n)2 < m4.

On the other hand,

Ik

(
m2 − 4n

m2

)
=

∫ ∞
0

uk−3/4 du

(1 + u)k+1/4(1 + m2−4n
m2 u)k−1/4

≤
∫ ∞

0

du

(1 + u)(1 + m2−4n
m2 u)

≤ m2

m2 − 4n

∫ ∞
0

du

(1 + u)2
=

m2

m2 − 4n
≤ m2·

Then we get∣∣∣∣∣∣
∑

m∈Z,m2>m2
0

L (1/2, χ4<m2−4n>) β(4n−m2)γ(4n−m2)Fn,k(m)

∣∣∣∣∣∣
<< 22knk

∑
m>m0

1

m2k−21/2
< 22knk

∫ ∞
m0

dx

x2k−21/2

=
(4n)k

(2k − 23/2)m
2k−23/2
0

<<
1

k

(
4n

m2
0

)k
·

• Case 3, m2 = m2
0:

Fn,k(m) =
1

2n1/4

(
4n

m2
0

)k−1/4

Ik

(
m2

0 − 4n

m2
0

)
·

We have

∣∣∣L(1/2, χ4<m2
0−4n>

)
β(4n−m2

0)γ(4n−m2
0)Fn,k(m0)

∣∣∣
<< Fn,k(m0) <

1

2n1/4

(
4n

m2
0

)k−1/4

m2
0 <<

(
4n

m2
0

)k
·
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Note that 4n
m2

0
< 1, so the bounds in the last two cases decay exponentially with

k. Thus, by adding the three bounds we got above, we have shown

Lemma 5.2. For fixed n, as k →∞, we have Bn,k = O
(

1√
k

)
·

5.3 Asymptotic of the Main Formula

The Main Theorem has two immediate corollaries. When n is square, the dominant

term is An,k, and we deduce

Corollary 1. For a fixed square integer n, letting k →∞,

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek λn(f)

< f, f >
=

1

n1/4

(
Γ′(2k − 1/2)

Γ(2k − 1/2)
+A− ln(n)

2

)
+O

(
1√
k

)
·

In particular, when n = 1, we have

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek

< f, f >
=

Γ′(2k − 1/2)

Γ(2k − 1/2)
+A+O

(
1√
k

)
·

Assuming that L(sym2f, 2k − 1
2
) ≥ 0 for all f , we get

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
<< k(ln k)4.

In the last statement, we used the following bound for < f, f > from [3], (2.3):

< f, f > << (4π)−2k(2k − 1)!(ln k)3.

In particular, each L-value, L
(
sym2f, 2k − 1

2

)
, is bounded by k1+ε; whereas the

convexity bound is
√
k.

On the other hand, when n is not a square, An,k vanishes because δ(
√
n) = 0.

Corollary 2. For a fixed non-square integer n, we have

∑
f∈H2k

L

(
sym2f, 2k − 1

2

)
ek λn(f)

< f, f >
=
∑
m∈Z

L

(
1

2
, χ4<m2−4n>

)
ξn,k(m) = O

(
1√
k

)
·
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