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ABSTRACT

The lateral migration of a deformable drop suspended in a uni-
directional shearing flow of a slightly non-Newtonian fluid has been
considered both theoretically and experimentally. Analytical expressions
for the migration velocity due to the separate effects of drop deformation
and fluid viscoelasticity were obtained for a two-dimensional flow, and
then extended to the case of a general quadratic flow. The direction and
magnitude of the migration velocity was calculated for the particular
cases of Poiseuille flow in a tube and linear shear flow, and compared
with experimental data.

The Couette flow problem was studied experimentally. The size of
the inner rotor of the Couette device was varied systematically to assess
the role of velocity profile curvature on drop migration. Both deformation
and non-Newtonian effects were considered. In all cases, the agreement
between experimental results and theoretical predictions was very good.
Significant observations that were not reported in previous studies in-
clude the migration of a deformable Newtonian drop to an equilibrium
position between the centerline and the inner rotor, and the close com-
petition between normal stress and shape deformation contributions for the

case of a Newtonian drop in a non-Newtonian fluid.
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CHAPTER I: INTRODUCTION



Introduction

Many problems related to multiphase flows arise in the study of
fluid-Tike materia]s. Industrial processes where multiphase flows are
important include: the transport of slurries in pulp processing or in
sewage disposal; the extrusion of molten plastics; the motion of oil
droplets in polymeric fluids during tertiary recovery; and the manufacture
of magnetic tapes or films. In nature, multiphase systems are encountered
in biological fluids such as blood, in porous media, and in atmospheric
aerosols. Thus, an understanding of multiphase flows is very useful in
scientific research as well as in industrial development.

One common objective in the study of multiphase flows is to predict
the bulk properties of the multiphase, suspension-like materials. Here,
two different methods are often used. In the 'phenomenological' approach,
the dependent variab]es.(e.g. the stress) are assumed to exhibit a
certain functional relationship to the independent variables (e.g. the
bulk strain rate in the velocity field). An obvious disadvantage of this
method. is that it is difficult to decide on (or guess) an appropriate
constitutive form for a given flow situation. .In addition, even if the
"correct" choice is made, the material parameﬁer§ still remain to be
evaluated. In the other approach, the bulk rheological properties of the
suspension are predicted statistically fromadetailed knowledge of its
'microstructure' (i.e. the orientation and position of a typical particle
in the suspension); Clearly, this procedure hinges on successfully solving
the hydrodynamic problem of particle motion in a given flow field, which is

usually difficult and simplifying assumptions must be introduced (the



most important of which is probably that of a dilute suspension according
to which the particles do not interact hydrodynamically). Nevertheless,
‘microrheology' is still an attractive alternative to the phenomenological
approach, since it involves no unknown material parameters other than those
that are already associated with the individual phases, and the bulk con-
stitutive relationship is predicted rathér than guessed. Comprehensive
reviews of this research area were published in the last decade by Brenner
(1970) and by Batchelor (1974).

Quite often, the theoretical analysis of fhe microstructure of a
suspension begins with the initial assumptions of Newtonian fluid be-
havior, zero Reynolds number, no shape deformation, and no interaction with
neighboring particles.. Of course, these effects may be included later,
using perturbation methods. However, the Stokes problem itself is
usually quite complicated, and there may be some doubt regarding the
usefulness, or even prudence, of carrying out the Jlengthy analysis
necessary to include secondary effects. This question is especially
relevant if the final objective is to determine the bulk properties of the
suspension. To examine this situation in detail, let us first return to
the original Stokes flow problem. Here, in general, the solution of the
equations of motion may be classified into. two types, one in which the
predicted 'final’ conffguration of a suspended particle (e.g. its position
and orientation for sufficiently large time) becomes independent of its
fnifiaT configuration, and a second in which the configuration for all times
is dependent on the initial configuratioﬁ. An example of the first type,
which we shall label as deférﬁfnéte, TS'fhé rotation of a prolate spheroid

#n a.uniaxial extensional flow to a final orientation in which the axis



of revolution is aligned with the principle axis of the flow [Bretherton
(1962)1. In this case, it is clear that small, instantaneous departures
from 'Stokesian' behavior (due to non-Newtonian fluid properties or in-
ertia, for example) will only cause small; insignificant changes in the

final configuration. However, for indeterminate Stokes problems, small

changes can lead to large, cumulative effects in thé particle configur-
ation,with important consequences for the rheological behavior of the
suspension. Clearly, it is for this second class of problems that a per-
turbation analysis is most useful. Examples of flow situations of this type
include the orientationofa transversely isotropic particle in sedimentation,
the orbit of the same particle rotating ina simple shear flow, and the 1a£era1
position of a spherically isotropic particle relative to the bounding
walls in a unidirectional shear flow [Leal (1979)]. In all of these cases,
the configuration of the particle becomes determinate only when small de-
partures in particle geometry, fluid properties or inerfia are present. Thus,
the orientation of a transversely isotropic particle sedimenting in & qui-
escent fluid remains fixed at its initial value formotion in a Newtonian fluid at
zero Reynolds number [Cox (1965)], but will become either vertical or hori-
zontal if inertia or non-Newtonian rheology [Brunn (1977)] are present. Clearly,
the existence of a preferred equilibrium orientation will affect the dkag'on
each particle and hence the overall sedimentation rate of the suspension.

In this dissertation, we consider the phenomenon of lateral mi-
gration of a neutrally buoyant drop in shearing flows, in the presence
of non-Newtonian fluid properties and particle shape deformation. A
theoretical ana]ysié for the case of a two-dimensional flow is given in

Chapter II. This is generalized in Chapter III to include all quadratic



flows. Finally, in Chapter IV, we report an experimental study on the

migration of a deformable drop in Couette flow.



References

Batchelor, G. K. 1974 Ann. Rev. Fluid Mech. 6, 227.
Brenner, H. 1970 Ann. Rev. Fluid Mech. 2, 137.
Bretherton, F. P. 1962 J. Fluid Mech. 14, 284.
Brunn, P. 1977 J. Fluid Mech. 82, 529.

Cox, R. G. 1965 J. Fluid Mech. 23, 625.

Leal, L. G. 1979 J. non-Newt. Fluid Mech. 5, 33.



CHAPTER II: THE MOTION OF A DEFORMABLE DROP
IN A SECOND-ORDER FLUID



8.

J. Fluid Mech. (1979), vol. 92, part 1, pp. 131-170 131
Printed in Great Britain

The motion of a deformable drop in a second-order fluid
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The cross-stream migration of a deformable drop in a unidirectional shear flow of a
second-order fluid is considered. Expressions for the particle velocity due to the
separate effects of deformation and viscoelastic rheology are obtained. The direction
and magnitude of migration are calculated for the particular cases of Poiseuille low
and simple shear flow and compared with experimental data.

1. Introduction

Recently, the dynamics of fluid-like materials which consist of two distinct phases
has been the subject of intense investigation from both an experimental and a theor-
etical point of view. The present paper is concerned with one aspect of this general
problem; namely, the cross-flow migration of small particles in a suspension which
is undergoing a shearing flow at small Reynolds numbers. When cross-flow migration
occurs, the particle concentration distribution becomes non-uniform with important
consequences in the overall flow characteristics of the suspension. In addition, any
effective material property whose magnitude is dependent upon the local particle
concentration will also become non-uniform. One technological problem where such
effects are important is the processing of two-phase (or fibre/particle filled) plastics.
In this case, the particulate phase is ordinarily added to the polymer matrix in order
to change one or more of the bulk properties of the composite material. However, in
some cases, the particulate is simply added as a filler in order to decrease the quantity
of polymer which is required per unit volume of product; for this purpose, the least ex-
pensive filler is, of course, small air bubbles. For these composite-media processing
problems, the objective is usually a uniform concentration of particulate in the
final product; however, in the case of added ‘filler’ material, one might alternatively
require that the concentration of particulate at the surfaces of the finished product
be small (or zero), in order to enhance its appearance. Regardless of the detailed
objectives in processing applications, however, it is clearly important at the design
and development stage to understand the mechanisms and dynamics of cross-flow
particulate migration for rigid particles, bubbles or drops in a non-Newtonian sus-
pending fluid. The present investigation is thus concerned with cross-flow migration
for neutrally buoyant drops which are suspended in a non-Newtonian fluid that is
undergoing a quadratic, unidirectional shearing flow. In this case, in the absence of
external body forces, the mechanism for any particle migration must be purely
hydrodynamic in origin. The focus of our present work is the development of further
understanding of these hydrodynamically-induced migration mechanisms.

0022-1120/79/4196-6280 $02.00 © 1979 Cambridge University Press
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Prior to outlining the research which is reported here, we will briefly review those
previous experimental and theoretical studies which pertain directly to the problem
of cross-stream migration of drops in either Newtonian or non-Newtonian fluids.
The migration of drops of one Newtonian fluid in a second Newtonian fluid at zero
(i.e. very small) Reynolds number was studied experimentally by Goldsmith & Mason
(1962) for three-dimensional Poiseuille flows, and by Karnis & Mason (1967) for
Couette flows. In both cases, migration due to drop deformation was observed to
occur toward the centre-line, whereas no migration will occur if rigid spheres are used
in the experiments. In an attempt to explain this phenomenon, Chaffey, Brenner &
Mason (1965, 1967) considered the motion of a deformable drop in a simple shear flow
near a single wall using the method of reflexions. They found that the drop would
migrate away from the wall, in apparent qualitative agreement with the experimental
observations. Later, Haber & Hetsroni (1971), Wohl & Rubinow (1974) and Wohl
(1976) all considered the motion of a deformable drop in a unidirectional shear flow
with a shear gradient, with wall effects being neglected except in the determination of
the bulk velocity profile. With the exception of Haber & Hetsroni (1971) who appar-
ently made algebraic errors, these theories also showed migration in the direction of
the centre-line in Poiseuille flow, though obviously the detailed dependence on system
parameters is different from the linear shear flow result of Chaffey et al. (1965, 1967). It
may be noted that neither theory provides a good fit to the actual experimental
trajectory data — in spite of statements to the contrary in the original papers. In
addition, the results of Wohl (1976) and Woh!l & Rubinow (1974) show a predicted
migration velocity for three-dimensional Poiseuille flow which is approximately ten
times as large as the predicted value in two-dimensional Poiseuille flow, all other con-
ditions being exactly the same. In our opinion, this result is contrary to one’s intuitive
sense, and casts considerable doubt on the accuracy of both analyses. Finally, it may
be reiterated that the Chaffey et al. (1965, 1967) theory is for a single plane boundary,
whereas the available experimental work pertains primarily to circumstances where
there are either two walls or a circular tube as the bounding surface. On the experi-
mental side, it should also be remarked that the range of parameters tested so far is not
extensive; for example, the ratio of internal to external fluid viscosities was always
close to zero in the experiments of Mason and co-workers.

Unlike the case of two Newtonian fluids where migration occurs (at zero Reynolds
number) only as a result of particle shape deformation, cross-flow migration is known
to occur in non-Newtonian fluids for both rigid and deformable particles. Experimental
studies of neutrally buoyant spheres and Newtonian drops in viscoelastic, as well as
purely viscous, fluids have been reported by Gauthier, Goldsmith & Mason (1971a, b),
following an earlier study by Karnis & Mason (1966). For a rigid sphere in a viscoelastic
fluid, migration is observed to occur in the direction of decreasing absolute shear rate
for both Couette and Poiseuille flows. Newtonian drops, on the other hand, migrate
toward the centre-line in Poiseuille flow but at a rate greater than that for either a
rigid particle in a viscoelastic fluid or a drop in a Newtonian fluid, while in a Couette
flow, they migrate to an intermediate position between the ‘centre-line’ and the
outer cylinder wall. These results were interpreted qualitatively by Mason and co-
workers as resulting from a superposition of the viscoelastic migration effect for a
particle of spherical shape and the deformation induced migration of a Newtonian
drop in a Newtonian fluid. Unlike the Newtonian migration of a deformed drop, there
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have been relatively few theoretical investigations which pertain to cross-flow migra-
tion in a non-Newtonian fluid. This is most likely a result of anticipated uncertainties
in the selection of a reasonable constitutive model for non-viscometric flows, as well
as the obvious difficulty in solving the equations of motion after the choice has been
made. In our opinion, however, the usual constitutive equation dilemma is frequently
not as serious for low Reynolds number motions involving small particles, as for non-
viscometric flows in general. This is due to the fact that the creeping motion solutions
for a Newtonian fluid in these cases often exhibit an ‘indeterminacy’ in the configu-
ration of the particle relative either to the undisturbed bulk flow or to the container
boundaries, and it is the ‘resolution’ of this ‘indeterminacy’ which is often the
primary goal of the non-Newtonian analysis. For this type of problem it is sufficient,
in at least a qualitative sense, to consider the influence of small instantaneous de-
partures from Newtonian fluid behaviour acting over a large time (i.e. to consider
particle motion for a long period of time in a nearly Newtonian fluid). Two important
examples of ‘configurational indeterminacies’ which may be treated with an analysis
of this type are the steady-state orbit of rotation of an axisymmetric particle in simple
shear flow (Leal 1975) and the steady-state position of a particle relative to container
boundaries in a unidirectional shearing flow. The latter is the problem which we are
investigating in the present paper. It is essential to note that the appropriate con-
stitutive model for non-viscometric flows which are nearly Newtonian is, unlike the
case of a general non-viscometric flow, well-known to be the Rivlin—~Ericksen fluid
provided the motion is both weak and slow in a rheological sense. This model may be
obtained, via the so-called ‘retarded motion’ expansion, from almost all of the
currently popular nonlinear constitutive models. The case of the lateral migration
of a rigid sphere in a quadratic, unidirectional undisturbed flow was considered
previously by Ho & Leal (1976), who used the second-order Rivlin-Ericksen fluid
model, thereby including normal stress contributions to the particle motion, but
excluding shear-rate dependent viscosity. The analysis of Ho & Leal (1976) was
considerably simplified, not only by use of the second-order fluid constitutive model,
but also by employing the reciprocal theorem approach of Cox & Brenner (1968) and
Ho & Leal (1974) to enable the migration velocity to be calculated without any need
to determine the non-Newtonian contribution to the velocity and pressure fields in
the suspending fluid. The result of Ho & Leal’s (1976) theory predicts migration
toward the outer cylinder and is therefore in apparent qualitative agreement with
available experimental data.

In the present paper, we consider the related problem of the migration of a fluid
drop in a unidirectional shearing flow, both with and without shear-rate gradients.
Both the suspending fluid and the fluid inside the drop are assumed to be adequately
modelled as second-order fluids ~ thus extending the domain of application somewhat
beyond even the available experiments where the drop fluid was always Newtonian.
The primary thrust of our present research is a systematic assessment of the co-
existing roles of drop deformation and viscoelastic fluid behaviour in the migration
of a drop. In effect, we investigate the relevance of Gauthier ef al.’s (19714, b) ‘expla-
nation’ of the existing experimental observations which suggest an ‘additive’ effect
of deformation in a Newtonian fluid and viscoelastic behaviour for a spherical drop.
In so doing, we re-examine the problem of deformation-induced migration in a New-
tonian fluid, as well as the more general non-Newtonian problem described above.
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In the following two sections, we shall outline the formulation of the problem, and
obtain, by a perturbation expansion and the reciprocal theorem, a general expression
for the migration velocity. In §4, we obtain solutions for the Newtonian velocity
fields that are required for evaluation of the migration velocity formula. This includes
the motion of a deformable drop in a unidirectional shearing flow which is bounded
by two plane walls, and the translation of a spherical drop through a quiescent fluid
normal to two parallel plane walls. The migration velocity is evaluated and discussed
in various limiting circumstances in §§5-7. In the case of migration in a quadratic
velocity profile, we also use the method of Chan & Leal (1977) to generalize our
results to a general (three-dimensional) quadratic shear low. Finally, in §8, we com-
pare our results with the experimental observations of Mason and his co-workers.

2. Formulation of the problem

We consider the motion of a neutrally buoyant drop freely suspended in a fluid
which is undergoing a unidirectional, quadratic shearing flow. The fluid is confined
between two parallel plane walls separated by a distance d; hence the undisturbed
flow is assumed to be two-dimensional. The two fluids are both assumed to be Rivlin-
Ericksen fluids, as discussed above, with zero shear viscosity u, for the suspending
phase and f, for the fluid inside the drop. The whole motion is further assumed to be
dominated by viscous and pressure effects, so that the inertial terms in the equations
of motion can be neglected entirely. In order to write the governing differential
equations and boundary conditions in non-dimensional form, we define a character-
istic length a and a characteristic velocity Ga, where a is the radius of the drop at
zero deformation and G is an average shear rate for the bulk flow. The stress tensors
for the two fluids are non-dimensionalized using #,G and G respectively. In addi-
tion, we choose a co-ordinate reference system with origin O which is fixed, for con-
venience, at the centroid of the drop, thus translating relative to a fixed reference
frame with the velocity of the drop, which we shall denote by U The position vector
at material point R, measured relative to O, will be denoted as x, while the complete
dimensionless velocity, pressure and stress distributions, including the disturbance
motion induced by the particle, are denoted in the two fluids as (U, P, §) and (U B, S)
respectively.

With these conventions and assumptions, the equations of motion for the suspending
fluid may be written in the familiar form

V.§=0 V.U=o, (2.1)
where S = — Pl + Dy, +A[Dy,. Dy + €, Dp) + A%ey(Dyy): Dyyy) Dyyy
+ 63 Digy +6,(Dgy- Dy + Dy . Diyy)] + O(A?); (2.2)

and Dy, are Rivlin-Ericksen tensors given by
D(D = VU + (VU)T,

)
D = 3 D+ U.VDy+ D). (VU)T+VU. Dy, (2.3)

d
D(3) = a D(2’+ U.VD(Q"‘ D(Z)‘ (VU)T + VU . D(z).
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Here A and ¢, are dimensionless parameters, defined as A = ¢;G/u, and €, = ¢,/P,
respectively (¢, and ¢, are dimensional normal stress coefficients; cf. Ho & Leal
1976). We note that A is effectively the ratio of an intrinsic relaxation time scale for
the fluid to the convective time scale of the fluid’s motion. As indicated in (2.2) it
will be assumed that A is small in the present analysis so that the second-order fluid
model is applicable and non-Newtonian contributions to the fluid’s behaviour are
automatically assumed to be small. ¢,, on the other hand, is of order unity (see §5.1).
Similarly for the fluid inside the drop, we obtain

v.S=0 Vv.U=o, (2.4)
where  § = —Pl+Dy+A[Dy. Dy +& Dp] + A2[&,(Deyy: Biy) Dy + & Doy
+&(Dg. D+ Diy. D)l + 0(A%) (2.5)

with 5(,,, defined analogously to D, but using U instead of U. In this case, \ and &
are defined using quantities relevant to the drop fluid. In this paper, we are interested
in studying the case where the non-Newtonian properties of both fluids contribute
to migration. The exact relationship between A and A in this situation will be con-
sidered in §5; for now, we shall simply assume that they are of the same order of
magnitude.

We next turn to the undisturbed bulk flow. It is obvious that the undisturbed
velocity, pressure and stress fields, (V, @, T), together with the corresponding Rivlin-
Ericksen tensors E,, should also be assumed to satisfy creeping flow equations
analogous to (2.1)-(2.3). These equations will not be repeated here. As indicated
above, we assume that the bulk flow, when measured relative to fixed laboratory co-
ordinates, is steady, unidirectional and two-dimensional. Since we are interested in
shearing flows with a shear gradient, we may write the undisturbed flow relative to
reference point O as .
V = (a+fz;+ yz3) e, - U, (2.6a)
with

@ = 2y, + (B + 2yx;)2 (1 + 2¢,) A + 12yx, (B + 2yx,)% (e, + €,) A2 + constant. (2.6b)

Examples of flow types described by (2.6a) and (2.6b) include the simple, linear shear
flow and the plane Poiseuille flow, both of which are illustrated in figure 1. For the
“simple shear flow, the coefficients are

a=Vs p=V,{ y=0, (2.7)
whereas for the Poiseuille flow, they are
a = 4Vm5x8(1 —8), ﬂ = 4mex(1 -23)8, v = _4Vmax§2- (2.8)

V,, and V., are both measured relative to the fixed laboratory reference frame. In
(2.7) and (2.8), s is the dimensionless distance from a wall and { is the drop radius to
gap width ratio, given by { = a/d. Although the assumption of a two-dimensional
undisturbed flow may seem unduly restrictive, we have previously shown (Chan &
Leal 1977) that the results may be extended to the corresponding three-dimensional
flows, provided that hydrodynamic interactions between the particle and bounding
wall are negligible. In that paper, a general method was developed by which the motion
of a spherical particle in a general quadratic unidirectional flow of a second-order
fluid was obtained completely from the detailed results of Ho & Leal (1976) for the
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(a)

L

)

5=0

FIGURE 1. A side view of a drop in: (a) a simple shear flow;
(b) a two-dimensional Poiseuille flow.

particle motion in a two-dimensional quadratic, unidirectional flow. In the present
work, the method of Chan & Leal (1977) is again applied to extend our detailed
results for a two-dimensional quadratic unidirectional undisturbed flow to the cases
of a three-dimensional Poiseuille low and of a Couette flow. The latter are of particular
interest because most of the experimental studies of particle migration have been
carried out for Poiseuille and Couette flows. The initial choice of a two-dimensional
undisturbed flow geometry is made largely due to the relative simplicity of the
resulting analysis.

For our present case, the boundary conditions at large distances from the drop are

U-V as r = |x|—>o00,
U=V - f], on the walls. } (2.9)
On the surface of the deformed drop
U="0, (2.10a)
U.n=0U.n=0, (2.10b)
S.n=x«S.n % (R Rz) (2.10¢)
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Here « is the viscosity ratio (i.e. x = fi/u,) whereas R, and R, are the principal radii
of curvature. ¢ is a comparison between viscous forces and the interfacial tension o,
and is given by &8 = au,G/o. In the present work, we shall restrict our attention to
the case of small deformations from the spherical shape, with the spherical shape
being preserved by interfacial tension. Hence, we shall assume that ¢ is a small
parameter. Thus, in the perturbation expansion which follows, we shall adopt the
procedures outlined by Taylor (1932, 1934) and Frankel & Acrivos (1970), in which
the velocity, kinematic and shear stress conditions are satisfied at each order, and the
deformation of the drop is then calculated using the normal stress condition, (2.10¢).

It should be noted that a second asymptotic limit exists where the drop shape
remains near to spherical; namely, the case of a very viscous drop (i.e. x - c0) which
was also considered by Taylor (1934) and Frankel & Acrivos (1970). There, the velocity
and stress continuity conditions are satisfied on the surface of the drop at each order,
and the non-zero normal velocity which results must be balanced by a deformation
term. It can be easily shown in this case that the migration velocity to O(1/«) is
identically zero, due to fore-aft symmetry of the deformed drop plus alignment of
its major axis with the axis of the undisturbed velocity field. Thus no further con-
sideration will be given to deformation-induced migration in the limit « — co in the
present paper. The migration due to deformation in the limit § < 1 which we shall
study is restricted to x < O(1/8). On the other hand, the Newtonian velocity fields
in §4, and the normal stress-induced migration calculations for a spherical drop in
§5 are both valid for all values of «.

We now proceed formally to the solution of our problem, via a double asymptotic
expansion in A and 4. Thus, we let

1> A,8> A%28,0%...
and write, for the particle velocity
0, = 00 1200 4 600 + 22000 4 26090 1+ 52000+ ., (2.11)

fJ{,‘” is the translational velocity of a Newtonian, spherical drop in a two-dimensional,
quadratic shear flow of a Newtonian fluid, whereas U{» represents the non-Newtonian
(normal-stress) contribution to the translation of a spherical drop, and so on. We
may also write down formal expansions for the velocity, pressure and stress fields.
For the suspending phase, these are

U = UO® 4+ AUD 4 §US + A2UAY 4 AJUAND 4 §2U6H |
P = PO AP 1 §P® 1 \TPON | \5PAD 4 52Pe 4 (2.12)
S = SO £ ASM) 4 §SO 4 A2§AN L AFSAD 4 §2§06H 4

whereas for the fluid inside the drop, we obtain

T = U0+ ATW 4 0@ + 22040 4 AsT@0 4 206 4
b=

Pin 4. POy APO 4 §PO) 4 A2POY 4 ASPOD 1 g2Pen 4

1
s (2.13)

§ = - SwH L §O L AN 4 §S® 4 254N 1 A58 4 5266 4 .

Orf s
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Here, 51 and S% are needed to satisfy (2.10¢) for a quiescent spherical drop, while
the terms with superscripts (0) denote the Newtonian velocity, pressure and stress
fields. The first non-Newtonian correction to fluid motion inside and outside the
spherical drop occurs at O(A), which then represents the contribution from the two
separate second-order fluids. Similarly, the first deformation corrections (with the
fluids assumed to be Newtonian) are denoted by superscripts (¢). Inherent in the form
of these asymptotic expansions is the possibility that the non-Newtonian fluid pro-
perties and the drop deformation (for Newtonian fluids) will each provide an inde-
pendent first-order contribution to fluid motion and particle migration, with their
interaction occurring only at O(A8). Obviously, the higher order non-Newtonian and
deformation corrections will occur at O(A%) and O(8?%), respectively.

The shape of the drop should also be considered in the context of the expansions
(2.12) and (2.13). Since the Newtonian velocity field alone is sufficient to cause de-
formation of a Newtonian drop at O(d), it is obvious that the O(A) non-Newtonian
velocity field will cause deformation at O(A5), and so on. Hence on the surface of the

drop, we let :
F=r—-1-8fO-A5fO00_52fe8_ =0, (2.14)

where f@, fA% and f¢® denote the deformations at O(8), O(A8) and O(d?) respectively.
Of course, it is inherently assumed from the form of (2.14) that these shape functions
@, fA and 9 at any material point on the surface will only depend on its angular
position relative to the centroid O of the drop, and not on the radial position 7 itself.
The outer normal and the principal radii of curvature are now easily expressed in
terms of the shape functions as

n = VF/|VF|
= e,— VO _ A3V 00 _ gV L VSO V@) e]—...  (2.15)
.}_;_ +_1%. = V.n = 2—8[2f® + VO] — AS[ 2109 4 V28]
PP _srpapen_ofape y waen (2.16)

We now substitute (2.12), (2.13), (2.15) and (2.16) into boundary conditions (2.10a)-
(2.10¢). Any quantities that are to be evaluated on the surface of the drop will be
approximated by a Taylor’s series expansion about 7 = 1 using (2.14). Hence we have,
in effect, reduced the problem to that of a spherical drop. After some straightforward
algebra, velocity, kinematic and stress conditions at r = 1 may be obtained at each
order of our perturbation expansion. We shall present these equations as we need
them in subsequent sections.

It should be emphasized here that a full solution of the above problem at any order
in A or 8 will yield an expression at the same level in A or ¢ for the cross-flow migration
velocity. However, at any point beyond the initial Newtonian velocity fields for a
spherical drop, the required analysis becomes exceedingly tedious and subject to
uncertainty in the numerical accuracy of the many algebraic manipulations. Thus, in
the next section, we describe the development of a theoretical expression for the
lateral velocity of a deformed drop which can be evaluated at any order in A or 4,
using only the velocity and pressure corrections in the fluid at one order less in A or §
(i.e. at O(1) for the O(A) and O(J) contributions to the migration velocity).
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3. The reciprocal theorem

For problems in which perturbation expansions are used to extend results beyond
the domain of zero Reynolds number for a particle of fixed shape in a Newtonian fluid,
it is often possible to obtain, by use of the reciprocal theorem of Lorentz, macroscopic
properties of interest (e.g. force and torque) at any order, without detailed calculations
of the velocity field at that order; instead, only lower order solutions are needed for
the velocity and pressure fields. This approach was outlined by Cox & Brenner (1968)
in connexion with the problem of inertia-induced migration of a rigid sphere. Later,
Ho & Leal (1974, 1976) also used the same method for their inertial and non-Newtonian
migration calculations. So far, however, no one has applied the theorem to the case
of a fluid drop. Since the derivation of the theorem is an important (and interesting)
part in the development of our analysis, we shall present it in detail here, even though
the rigid sphere problem has been treated thoroughly by previous authors.

To apply the reciprocal theorem to the calculation of lateral migration velocities,
we must first consider the ‘so-called’ complementary problem of the motion of a
Newtonian drop translating perpendicularly to the walls in a quiescent Newtonian
fluid. The equations of motion outside the drop are simply

V.t=0, V.u=0, : (3.1)
where t=—¢ql+a (3.2)

a is, of course, the rate-of-strain tensor. Similar equations are satisfied by (i, g, f)
inside the drop. The boundary conditions at large distances are

u-—> —e; asr -,
} (3.3)

u= —e; onthe walls.

The shape of the drop and the boundary conditions on its surface remain to be dis-
cussed. In general, it is necessary to assume that the particle in the complementary
problem has the same shape as the ‘real’ one under consideration. However, in §2,
we have effectively reduced the full problem to that of a spherical drop with a series
of boundary conditions on the surface. Hence, we may now conveniently choose the
drop for the complementary problem to be also spherical, so that the boundary
conditions on r = 1 become

u=1i, (3.4a)
u.e,=i.e, =0, (3.40)
(I—e,e,).(t.e,) =«(l—e,e,).(t.¢,). (3.4¢)

We see from (3.4c) that only shear stresses can be matched in our present problem of
an undeformed sphere. Hence, a discontinuity in normal stress will usually exist on
the sphere surface. (Equivalently, we may imagine that a force is being applied in
the normal direction to prevent the sphere from deforming.) This discontinuity
vanishes only for the well-known case of translation in an unbounded fluid medium,
and even in this case, it is non-zero if wall reflexions are included.

We are now ready to apply the reciprocal theorem. For the fluid outside the drop,
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it is desirable to use disturbance quantities which approach zero far away from the
particle. Therefore, we write

[(V.S=V.T).(u+e)—(V.t).(U-V)]dV =0, (3.5)
Vs :
where V, is the entire volume outside the drop. Rearranging, we get

fV.[(S—T).(u+e3)—-t.(U-V)]dV=f [(S=T): Vu—t: V(U=V)]dV. (3.6)
vy Fr

The second integral may now be easily simplified using the definitions of §, T and ¢,
and the continuity equation. For the first integral, we apply the divergence theorem

to obtaint ,

f V.[(S—-T).(u+e,)-t.(U-—V)]dV=—f [(S=T).(u+e)~t.(U=V)].nd4,
14 4

! T (3.7)
where A4, is the spherical drop interface. Hence, for a neutrally buoyant drop

(i.e.fd‘(S—T).ndA - o),
-L‘[(s—T).u—t.(U-V)].ndA

= '\fy [(Dyw.Dy—Ey. Ey) +€(Diy— Epy)]: Vud¥
!

+ A‘f [€g, €5, €4 terms]: VudV. (3.8)
vy
Inside the drop, similar manipulations give

f [S.i-t.U).nd4 = Xf; [By. Dy + ¢ Dy): VﬁdV+7\=f; [£,, &, &, terms): VadV

Ae / ! (3.9)
with ¥, denoting the volume of the drop. We now have two expressions (3.8) and (3.9),
which both involve area integrals on the surface of the drop. To evaluate them, we
need to consider the boundary conditions (2.10) at the surface of the drop, transformed
to apply at r = 1. These conditions are of the matching type; hence, it is obvious
that (3.8) and (3.9) can be combined by multiplying (3.9) by « and adding it to (3.8).
The result is

"f [(S-x8).u~(t—t).U-st.(U-T)-T.u+t.V].nd4
44
= A{J‘V [(Dw.Dy—Ey.Ey) +6,(Dgy— Ey)l: VudV
(G

+x§f, (B By +8, 6(,,]:%41/} +A2U [eg, €4:€, terms]: VudV
Vs Vy

+(R/A) f _ el terms]:VﬁdV}. - (3.10)
I/

t It may be shown, for disturbance quantities which approach zero at large distances from
the particle, that it is not necessary to consider the contributions at infinity. A detailed proof

is provided in Chan (1979).
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The advantage of combining (3.8) and (3.9) in the form (3.10) is that we can use the
interface boundary conditions to evaluate the surface integral over 4, to O(A*) in
terms of the migration velocity contribution at O(A") and the fluid velocity and stress
fields through O(A™-1). It may be noted, in this regard, that the drop shape is quasi-
steady at O(6™) and can thus be determined via the normal stress condition at O(d™)
from the stress fields at O(d™—1). This latter fact is obviously crucial to the successful
evaluation of the left-hand side of (3.10) in the manner described above. Since the
right-hand side of (3.10) may obviously also be calculated at O(A™) completely in
terms of the velocity and stress fields at O(A"~!), the expression (3.10) can clearly be
used to determine the migration velocity at O(A™) completely in terms of known or
calculable quantities at O(A™-!). This fact may, perhaps, be more clearly illustrated
by considering the O(A) terms in (3.10)

- J' [(SP — k8N u— (£ — k). UN —«E. (UM = TW) ~ T u 4+ ¢. V] e dA
A4

- f (D). DY — ES. ES) +¢,(DE — EQ)): VudV
i f (DYDY +& DY): vady. @3.11)

As we shall show in §5, the surface integral over 4, can be easily simplified using the
interfacial boundary conditions so that only Newtonian velocity fields appear from
T?W.u.e,,along with the migration velocity U"” which comesfrom t. V@ e,. Obviously,
expressions for U"” or the higher order quadratic terms can be obtained in a similar
manner, and these will be presented as needed in later sections of the paper.

4. The Newtonian solutions

We now attempt to solve, to O(1), the equations of motion (2.1) and (2.4), subject
to boundary conditions (2.9) and (2.10a)-(2.10¢). As before, the superscript (1/8) will
denote the pressure term at quiescence, whereas the superscript (0) denotes the
Newtonian contributions. Trivially, we obtain

Bam = 2/x. (4.1)

It is obvious that this term represents the capillary pressure increase across the surface

of a spherical drop in a quiescent fluid.
The Newtonian flow problem outside the drop is defined by

V.S® =0, V.U®=9 (4.2)

with boundary conditions at large distances from the drop
UO  (a + fzy+ yai) e1~fJ§°’ as r - o0, (4.3a)
U® = e, —U(‘” on the walls. (4.3b)

It is, of course, very difficult to obtain an exact analytic solution to the above boundary
value problem. However, for a particle which is small compared to the characteristic
dimension of the flow (i.e. { <€ 1), we may utilize the well-known method of reflexions
(cf. Happel & Brenner 1973), which approximates U™ as a series of terms alternately
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satisfying the boundary conditions at the particle surface and on the walls. Inherently,
it is assumed in this technique that the particle is not ‘close’ to either wall. For our

case, we write
U@ =, U@+, U004 U0+ .., (4.4)

The solution of the above equations follows the method outlined by Ho & Leal (1974)
for a rigid sphere. The first term in (4.4) corresponds to the velocity in an unbounded
domain and is obtained using Lamb’s general solution,

1UO® = (a4 fzs+ yzd) e, — ﬁg‘” 34, ( e,+rax) - B, (;-lael—%x)

z. S5z, x
..(71("3«31 raea)+§D 21 3x+3E, (’_5e1+’_5 e — r‘,’x)

z 223 2z, x
_3I;(r—ae,—r-5-‘x-—-r§ex+ r‘s 3e,)
1 13 522 1 752,28 \
- %G (—el————-:‘x-—r?e,—- 0::‘,“w’e3+ o:;xax)
1 5% 5x3 10z, x 35z, 22
+3H1(;-5e1~—1-33x——1;;5’e,~ r,‘ de,+ r; 3x).

(4.5)

By considering (4.5), the first reflected solution ,U® may now be expressed in terms
of complicated integrals over the entire volume (i.e. Faxén’s method; cf. Happel &
Brenner 1973). Here, we consider only the simplified form which is relevant in the

vicinity of the drop
U@ = (I, +311,) e, - }(3 ]y + ;) (x5 €, + 2y €5) — 3E(3 ]y — 1) (x5, — 21 €5).  (4.6)

For brevity, we refer the reader to Ho & Leal (1974) for the detailed expressions for
I, ... I; they do not appear in any final results of this paper. Finally, proceeding from
(4.6), we obtain ;U@ in the form ,

1 3z T
JUO =14, ( °1+,.ax) Bﬁ’(,Tael r51 ) 0’3( r;ea)

5
+3D, x‘zsx+3E( e1+-’3 - i’,x’x). (4.7)

For the fluid inside the drop, we let
vo = o4, 00, (4.8)
where , +3I~)‘°> is the term needed to match ,U®+ ;U@ at the drop surface. Again,
using Lamb’s general solution, we obtain
U@ = — 354, (2%, —2,X)— B, e, - C(z;€, - 2, &)

+ $5D,(52,7%, + 5z, r%es — 4z, 2, X) — 3E (z; €, + 7, €3)

—3F (r?e, -z, X — 22} e, + 27, T, €5) + 15 (re, + 2, 72X — 5x3r%e,

— 10z, 2, 7%, + 57,23 X) + 38, (r?e, + 27, X — 5rie, — 102, 7, €,). (4.9)

The solution ,,,; U@ is similar to (4.9) but with 4, ... £, replaced by 4, ... £, while
the corresponding F,... H, terms may be omitted at this level of approximation.



20.

The motion of a deformable drop in a second-order fluid 143

All the constants 4, ... H,, 4,... E;, 4,... H; and 4,... B, and the unknown shape
function f@ are determined via application of the boundary conditions (2.10a)-
(2.10¢) at r = 1. Using (2.15) and (2.16), these conditions are

vo = Uo, (4.10a)
Uo.e, = U0 e, =0, (4.10b)
SO e = xkS®. e, —[2f®+ VI @]e,. (4.10¢)

After some algebra, the coefficients in (4.5), (4.7) and (4.9) are obtained from (4.10a),
(4.10b), and the tangential component of (4.10¢)

2+ 3k yK 5y \
4= le-OMsrrgtane A=l (79 1]1+K oo’
I3 ‘}'(—2+3K) 0%
[a (00)1]4(1 +K) 20(1+K) ’ B (0 )1]2(1+K) 2(1 +K)
01=0» —_iﬂ
_ P2+ 5K) _ 8
D““3(1+x)’ Dl‘2(1+x)’
___ B ___ B (4.11)
E‘“‘e(u-x)’ £, = 4(1+«)’
_y(1—x) B9
1794 +«) 17 9(4+4k)
= Y2+7%) G, = -2
1T 12(14+4) 1 +x
=Yk Y
B = 24(1 +«)’ 2, = 18(1+x)° )
and Ay = (L +}1) (2 +3x)/2(1 +x), Ay =—-(L+31)5/(1+x), )
By = (I +}1,) k/4(1 +x), By = (I +}1,)1/2(1+x),
C;=0, = ¥(3L- L), (4.12)
= {31+ 1) (2+5x)/3(1+ k), Dy = — 53 L+ 1) 7/2('1 +x),
Ey = {31+ L)« /6(1 +x), By = (3L + L) 1/4(1 +x).

It is easy to see that the velocity fields (4.4) and (4.8), together with the coefficients
(4.11) and (4.12), reduce to the values given by Ho & Leal (1874) for the case of a
very viscous drop (i.e. ¥ - o). In this limit the motion of the drop reduces to a rigid
body rotation, as expected.

The force acting on the drop, to our present level of approximation, may be
obtained by summing the Stokeslet contributions from (4.5) and (4.7), which gives

F = dn(4,+ 45)e,. (4.13)

Obviously, for a neutrally buoyant particle, the force F must be zero, and it thus

follows from (4.13) that

(O®), = a+xy/(2+3x)+ L+ 3], (4.14)
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Ficure 2. The shape of a deformed drop in: (a) a simple shear flow. --—, y = 6416+ 19x)/
B(1+k) = 0:25; -+, ¥ = 0-50; (b} a two-dimensional quadratic shearing flow (—dy(10+ L1x)/
40(1 +«) = 0-05). , X = 0 (i.e. centre-line for Poiscuille low); ~-—, ¥ = 0-25;----, ¥ = 0-50;

———, no deformation (i.e. r = 1),

in this case. For a plane Poiseuille flow, the dominant contribution to the particle
velocity relative to the local undisturbed flow (i.e. (J©), —a) comes from the shear
gradient y, which is negative for all values of s. Thus, the drop will always lag behind
the surrounding fluid. For a simple shear flow, ¥ is identically zero; in this case, the
slip velocity can only arise from wall reflexions. By Ho & Leal (1974), I, + 1, itself
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depends on £ and changes sign at 8 = 0-5. As a result, in a simple shear flow, the drop
leads the fluid for s > 0-5 but lags behind it for s < 0-5.

The shape of the drop can now be obtained, using the normal stress term of (4.10¢).
To this end, we assume that the volume of the drop remains constant, and that its
centroid coincides with origin O of our co-ordinate system. Then, expressing /@ in the

fe
o JO = 1f P+ 00fO+..., (4.15)
i o - B16+196)z,2;_ y(10+11x) (f_l_5x,x§
we obtain 1 8(1 + K) r2 40(1 + K) r r3 ’ (4160)
16+ 19cz,2,
24af @ = —§(§Iz+ls)m—:;53- (4.16b)

It can be seen easily that (4.16a) agrees exactly with the result of Taylor (1932, 1934)
for a simple, unbounded shear flow (y = 0), and also with Haber & Hetrsoni (1971)
for the case of an unbounded quadratic shearing flow. On the other hand, (4.165)
represents an additional deformation of the drop due to hydrodynamic interaction with
the walls. Its form is identical to that for a drop in an unbounded linear shear flow, and
its magnitude relative to the first term of (4.16a) is — ({/8) x (31, + I;). This function
is of O(£®) and can be calculated numerically following Ho & Leal (1974). As expected,
it is symmetric about 8 = 0-5, and is positive for all values of s. Thus, the drop de-
formation is always increased by the presence of the walls. Using { = 0-1 and x = 0,
we calculate —(§/f)x (3L,+ L) to be 0-0057 at s = 0-5 (i.e. centre-line), 0-015 at
§ = 0-3, and 0-048 at 8 = 0-2 (i.e. two drop radii from wall). Hence, its contribution
is significant only when the drop is very near to a wall. In figure 2(a) and (b), we plot
the drop shape in the cases of a simple shear flow and a two-dimensional quadratic
shearing flow.

To apply the Newtonian solution to migration calculations in the next two sections,
we need also to obtain the complementary velocity fields u and ii defined in §3. As

above, they are expanded as
u=1u+2u+3u+--. (4.17)

and 0= ,0+,,+... (4.18)

The unbounded domain solutions are

1 x 1 3x
= —e;—1a, (;ea-*--r—;’x)—bl (;—ae,,—-—r—s—’x), (4.19a)
B =~ 13, (2r2e; —7,%) — b, &, (4.19b)
2+3k . 5 K > 1
where ay —_m, al—m, bl——m, 1——m. (4.20)

These are, of course, identical to the well-known solution of Hadamard (1911) and
Rybezynski (1911) for the motion of a spherical drop in an unbounded quiescent fluid.
To obtain the reflected solutions, we again follow the procedures outlined by Ho &
Leal (1974). ,u is expressed in terms of complicated integrals, but simplifies near the

drop to the form
U = [— (S +Jy) + 30 z5] 63— 4L, x. (4.21)
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The term J, will appear repeatedly in our results. Hence, we note its detailed form
here
oy E 243k £ o sl 1 od2—8
J2—32 1+Kf0 (l_e_e)g_gze_f{s [e +e ] |
— (1 —8)2 [e0-%% 4 g—1+eK] 4+ 2(1 — 2s)eE}dE.  (4.22)

In general, this integral has to be evaluated numerically for any given value of s.
However, an excellent approximation (with less than 2%, error for all 5) can be ob-
tained by simply substituting the integrand with

£ s2e~% — (1 —5)2e~1—% + 2(1 — 25) e~¢],
and then integrating the expression analytically to obtain

3r2+3c[1 1
~— e e - . 4.2
% 16 1+« [83 (1—.'3)”4-2(1 28)] (4.23)

For convenience, we shall base all subsequent calculations upon this approximate
form for J,. Following our earlier procedures, ;u and , 40 are now obtained from the
form of ,u at the drop surface. Using Lamb’s general solution, we obtain

1 z 1 3z 1 3x2
u = —‘}as(;ea‘*";:x) "bs(;ies-‘r‘;sx) —1d,s (;x__;s_ax)

i 2 5z3

arsll = — fods(2r2 ey — s X) — by €5 — 3y (r2X — Brie, + 22§ X) — 28,(X — Jxzey).  (4.24b)

The above equations must satisfy boundary conditions (3.4a)-(3.4c) on r = 1. The
coefficients are therefore

ay = —(J; +J,) (2+3x)/2(1 + &), @3 = (S +J3) 5/(1 + &),

by = — (S +Jy) k/4(1'+ ), by = — (Jy+J4) /2(1 +x), (4.25)
dy = — §Jy(2 + 5)/2(1 + x), dy = &J,21/4(1 +x), '
eg = — i /4(1 +x), & = —J,3/8(1 +«x).

This completes the solution for u.

5. The O(A) problem
We now consider the O(A) problem of a non-Newtonian spherical drop suspended
in a two-dimensional shearing flow of a second-order fluid. For the suspending phase,

the equations of motion are
V.SW =90, V.UN =0, (5.1)

where S = — p®} 4+ DA} +[DQ). DY +¢, DYJ. (5.2)

The equations for the drop fluid are, of course, completely analogous to the above.
At large distances from the drop, the boundary conditions are
U > —ﬁg") as r — o0, }

A 5.3
UM = —UPN  on the walls, ©3)
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whereason r = 1 UD = O, (5.4a)
U e, = UW.e, = 0, (5.4b)

SV e, = kSN, e, —[2fA9 4 VIfAde (5.4c¢)

It is apparent that a detailed calculation of the complete velocity fields will be ex-
tremely difficult. However, to obtain the migration velocity to O(A), we only need
to consider (3.11) as we have noted above. From (3.4a)-(3.4¢) and (5.4a)—(5.4¢), it is
obvious that the first three terms of the surface integral are all identically zero. The
remaining terms simplify to

f T®.u.e,dd =—[87/15(1+ )[By(1 +,+J) - 308L] (1 +4e)),  (5.5)
A4

f t. VO e,dd = [27(2+3K)/(1+K)] (1 +J; + ;) (OD),. (5.6)
Aq
Rearranging, we thus obtain
4 1+
(0% = - g By~ 18RI 1 +se) -t ([ (0. D - EQ-ES)

+6,(DQ - EQ)]: VudV+x% f , [B3.58+&Dg): Vudv} . (5.7)
Here J,/(1 + J, + J;) is approximated as simply JJ,, since J; + J, i$ itself of O({).

We note that an exact, direct calculation of the first integral in (5.7) over the entire
volume V¥, outside the drop is extremely complicated due to the presence of the
bounding walls. Instead, we obtain an approximation to this term by dividing V, into
a ‘near-field ' region V] and a ‘far-field ' region V,, in a manner asymptotically consistent
with the expansion in § which is inherent in the reflexions procedure. V] thus corres-
ponds to an unbounded domain with the drop immersed in it (i.e. 1 < r < o0), whereas
| A includes the walls while seeing the drop as merely a point (i.e. 0 < {r < oo,

€ {xy € 1-38). For any particular flow at infinity, the order of magnitude of the
mtegrands may then be obtained using the estimates for (ju, ,u, ;u) and (U@, , U9,
sU® in ¥} and V¥, that were provided by Ho & Leal (1974). Only the asymptotically
dominant contribution needs to be evaluated. We now consider two specific cases of

interest.
5.1. The quadratic unidirectional shear flow

Here, we consider the migration of a spherical drop in a two-dimensional quadratic
unidirectional shear flow (e.g. plane Poiseuille flow). The calculation follows the general
procedures that were outlined by Ho & Leal (1976) for a rigid sphere. For the suspend-
ing phase, it can be shown that the dominant contribution to the integral over V, in
(5.7) comes from the fy term in ¥, and is therefore of O(£?). For the drop fluid, on the
other hand, the volume integral over V, can be evaluated directly, without approxi-
mation. Hence, using ,U®, ,U®, .u and ,{, we obtain

Wy By 9,2 3 4
oMy, 315(2+3K)2(4+K)(1+K)2{[(2560+10932K+ 23252« + 246064 + 10995«

+ 1575x5) +€,(5920 + 27588k + 6334 1«2 + 70626x3 + 32940x4 + 47254%)]
+7[(2186 + 2807« + 237«%) + &,(6530 + 10598« + 356 7«2 + 315«3)]}

= — By[M(e,, «) + 93 (€, x)]. (5.8)
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Figure 3. Migration velocity in a two-dimensional quadratic shearing flow due to: (a) a non-
Newtonian suspending fluid, ¢, = —0-55; (b) & non-Newtonian drop, §, = —0'55.

We may note immediately that the migration velocity (5.8) is proportional to v, and
is thus identically zero in a linear shear flow. In this latter case, as we shall see shortly,
the contributions to (U{"), from the inner and outer regions, ¥; and ¥, are comparable
in magnitude and it is necessary to explicitly consider wall reflexions. The parameter
7 which appears in (5.8) represents a ratio of normal stress coefficients for the two

fluids, i.e. 1= RA/A) Kk = Gs/dy

and is thus tndependent of x. For moderate values of «, both fluids thus contribute
to the migration velocity if g is of O(1). If y approaches zero or infinity, one of the
fluids may be considered Newtonian and therefore produces no direct contribution

to (U,), at this order.
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To determine the direction of migration, we must first estimate the material para-
meters ¢, and &; of the two fluids. In general, it is believed that their values should
always lie between —0-5 and — 0-6. The most significant experimental verification
was obtained by Beavers & Joseph (1975) for the motor oil additive STP. Using the
cone and plate device they estimated ¢, to be —2-78 g cm~1. In addition, the para-
meter 3¢, + 2¢, was measured in rod climbing experiments as approximately 0-95 g
cm~1. Thus ¢; ~ —0-60. This value agrees exactly with that estimated by Leal (1975)
for a 39, PAA solution, based upon orbit drift experiments. For the above range of
€, and &,, it is easily seen that M and M are always positive, and hence migration is
predicted to occur toward the region of smallest (absolute) shear rate, in agreement
with the result of Ho & Leal (1976) for the case of a rigid sphere.

In figure 3 we plot the functions M and M which represent the separate contributions
from the two fluids to (5.8), as functions of k. When « approaches infinity, we see
that the ‘very viscous’ drop has no direct effect on (J{V),, whereas the contribution
of the suspending phase reduces to that calculated by Ho & Leal (1976) for the rigid
sphere problem. This is, of course, to be expected since the internal motion of the
drop becomes that of a rotating rigid sphere for large «. For decreasing values of «,
on the other hand, the contribution of the suspending fluid decreases whereas that of
the drop fluid increases, until they reach limiting, non-zero values when x approaches
zero. Obviously, this limit means that the drop has a much lower viscosity than the
suspending fluid, but it also requires comparable values for the parameters ¢, and .
Thus, the limit x - 0 does not correspond to a gas bubble as might at first be supposed,
and there is no paradox in a non-zero value for # at x = 0.

5.2. The linear unidirectional shear flow

Let us now turn to the case of a linear unidirectional shear flow, for which the shear
gradient y is zero. Here again, the calculations for the contributions of the suspending
and drop fluids follow the procedures outlined previously. By dividing the entire
volume V, into ‘near-field’ region ¥; and ‘far-field” region F;, we obtain the leading
terms in { in the expression for the migration velocity. For ¥}, the only contribution
is of O(¢*) and arises from the interaction of the O({?) terms in (,u, ;u) and the O(g)
terms of ,U®. For V,, the leading contributions are also of O({*) and may arise in
principle from any combinations between (,u, ,u) and (,U®, ,U®), expressed in outer
variables. However, most of the terms in ¥, cancel each other after integration, with
the remainder coming only from ,u and lU“”. Unlike the fy contribution to the migra-
tion velocity which was shown in the previous subsection to be a ‘near-field’ effect,
the contribution to the migration velocity in a linear shear flow is a result of hydro-
dynamic interaction between the particle and the walls. It is therefore not surprising
that the integral over ¥, should contain contributions both from ¥} and F,.

Inside the drop, the calculations are straightforward with the dommant terms
coming from ,_;ii and U“” When the contributions from both ¥, and ¥, are substituted
into (5.7), we finally obtam an expression for the migration velocxty (cf Chan 1979)

2
(OP) = - 5 © ffgx‘)jz( T {[(232 + 666¢ + 1068k + 455¢)

+6,(928 + 3168k + 4614k? + 2185x%)] + 127[31 +&,(108 + 105¢)]}.  (5.9)
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FIGURE 4. Migration velocity in a simple shear flow due to: (a) a non- -Newtonian
suspending fluid, €, = ~0-55; (b) & non-Newtonian drop, & = —0-55.

Using (4.23), this becomes

2
(OP), = -—-—g-zﬁ—-——{[(232+ 666K + 1068x2 + 445x3) +¢,(928 + 3168«

2240(1 +&)°
+4614K2 + 218543)] + 129[31 + &,(108 + 105x)]} [315 a= 1 ot 23)}
=;z/_qz[zv(el,,<)+7,1€f(;s'1,,c)][::—2 T 1 +2(1—23)] (5.10)

Once again, the functions N(e,, ) and N(é,,«) are always positive for reasonable
values of ¢, and €,. Therefore the drop is predicted to mxgra'oe from the walls toward
the centre-line. In figures 4 (a) and (b) we plot N(e;, ) and N (é,, «) as functions of «.
The dependence of (U{?"), on « is obviously similar to that predicted for the quadratic

shear flow case.
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5.3. Generalization to three-dimensional quadratic shear flows

Although the analysis above was restricted to a two-dimensional undisturbed shearing
flow, it is sometimes possible to generalize the results for the migration velocity to
three-dimensional undisturbed motions of the same type, without the need to repeat
the fluid dynamical calculations, by using the procedures which we have outlined in
Chan & Leal (1977). The essential requirements for this type of extension is that the
effect must be localized near the particle, so that hydrodynamic interactions between
the particle and walls play no role. To put it another way, the dominant contribution
to the integral over ¥, in (5.7) must come from the inner region ] so that we effectively
have migration in an unbounded domain with the undisturbed velocity profile,
(4.3a), at infinity. Thus, the expressicn (5.8) for migration in a quadratic profile may
be generalized using the analysis of Chan & Leal (1977), but the contribution (5.10)
due to hydrodynamic interaction with the walls in a linear shear flow is specifically
excluded.

Let us first consider the case of a non-Newtonian spherical drop in a three-dimen-
sional Poiseuille flow of a second-order fluid. For this purpose, we consider a circular
tube with radius B,. The distance of the drop from the tube centre at any instant is
denoted as D. The undisturbed flow at infinity is expressed as

V=[a+pr+y(@+ad)]e,~0, (5.11)
where z, is now in the radial direction and
@ = Vyax(1=D?/Bj), = —2Vpsy aD/B}, ¥ =—Vnax a?/Bg. (5.12)

By substituting (5.11) into the migration velocity expression of Chan & Leal (1977),
we thus obtain the result

(O, = e 53;2 0T K)z{[(1520 +5172x + 1059442 + 105603 + 3465x4)

+€,(3200 + 12048k + 27334x2 + 28620x° + 9765x4)]
+ 127[(158 + 174) + (425 + 564« + 105¢?)]}. (5.13)

This expression should be compared with (5.8). For the same values of £ and y, we
easily see that the qualitative behaviour of the two equations is very similar. Indeed,
detailed numerical comparison shows that the difference in magnitude is never more
than 309,. The closest agreement occurs when « — co, in which case the discrepancy
is only 10%,. In §8, we shall compare (5.13) with the experimental data of Karnis &
Mason (1966) and of Gauthier et al. (1971a, b).

A second problem of considerable interest is the generalization of (5.8) to a Couette
flow. It may be supposed that this could be approximated as a linear, unidirectional
flow to which (5.10) is directly relevant. However, a small shear gradient always
exists in the Couette device due to curvature and it is thus prudent, for values of {
which are not vanishingly small, to consider both shear gradients and hydrodynamie
interactions between the particle and walls in any comparison of the present theory
with experimental observations. An attempt to apply (5.8) to examine the shear
gradient effect in Couette flow was made by Ho & Leal (1976) for rigid spherical
particles using a local (and incorrect) two-dimensional approximation to the un-
disturbed velocity field. We shall comment on the validity of this approach later in




29.

152 P.C.-H. Chan and L. Q. Leal

this section. However, let us first apply the rigorous approach of Chan & Leal (1977)
to the generalization of (5.8) for a Couette velocity field.

We follow initially the analysis of Brunn (1976) and consider the full problem of
two concentric cylinders (with radii B,, R,; R, > R,) rotating with angular velocities
Q,, Q,, respectively. The undisturbed velocity of the flow at any material point (R, ¢)
measured from the centre of the Couette device is then given as

V* = (4, R+ 4,/R)e,, (5.14)
where A, =(Q, Ri—Q, R)/(Rj— R} and A, = RIRHQ, — Q,)/(R3-RY). (5.15)

We denote by (z,, ;) the components of a position vector, non-dimensionalized with
the drop radius a, which is defined relative to a co-ordinate system with origin at the
drop centre, and the z; axis coincident with the radial unit vector of the natural
cylindrical co-ordinates for the Couette device. The sphere centre is itself a distance
R, from the axis of the Couette device. Thus,

R? = (R, +ax,)? +a%l. ' (5.16)

Dividing (5.14) by the characteristic velocity Ga, we may re-express it in dimension-
less form as

Ay
(By +ax3)* + o’z

v = |45+ | (R +azs) e, —azeq] (5.17)

where A} = 4,/Ga and 4} = 4,/Ga. Finally, by a Taylor’s series expansion about
0, we may write the undisturbed velocity V (relative to the drop) in the quadratic

f A
orm V=a+B.x+y:xx-U,, (5.18)
where a=V|,= (4] Ry+4:/R,) ey,
, , Aza
B =VV|, = Aja(e,e;—ese, —73;.;- (e1e5+egey), (5.19)

, A,a*
y=3VVV'|, = [——1-%—3-] (—e e e, +ee3e;+e3e,€, + €€, €;).
Q

Substituting (5.19) into the migration velocity expression of Chan & Leal (1977),1 we
obtain

(0:(,“)3 = .

T 63(1+K)2(2+ 3k)
/243
+6,(592 + 2112« + 3254k2 + 1365x3)] + 247(8 + 176,)} [‘41225“ ] . (5.20)
0

{[(256 + 816k + 1238k2 + 525«3)

In the limit of a rigid sphere, this becomes

72,3
(O, = ~§(65+136) (T2 (5.21)
0
which agrees exactly with the result of Brunn (1976).
Ho & Leal (1976) have also obtained an expression for the migration velocity of

t+ Ignoring temporarily the fact that Chan & Leal (1977) assumed no rotation of the particle
co-ordinates, whereas the system used in (5.18) is clearly rotating. We shall see shortly, however,
that for a Couette flow there is no correction to the migration velocity due to rotation.
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a rigid sphere in a Couette flow of a second-order fluid. In that paper, however, the
undisturbed flow was assumed to be locally two-dimensional, and hence represented
by (2.6a) with the parameters given as (in our present notation)

@ = A,Ry+A,/Ry, B=Aa—A,a/R: y=A,a?/R3. (5.22)

By this approximation, the z, component of V has been neglected. The migration
velocity for a rigid sphere is then predicted as

(OP)g = §(1+ 3¢,) (4] — A3 /RE) A;3a%/ R}, (5.23)

This expression, unlike the correct result (5.21), suggests a slight difference in migra-
tion rate depending upon whether the inner or outer cylinder is rotating, and this
was reported in Ho & Leal (1976) as being in qualitative agreement with the obser-
vations of Karnis & Mason (1966). However, the result is incorrectt and the apparent
agreement was simply fortuitous. It may be noted, in spite of this, that the direction
of migration is the same as predicted by (5.21). Furthermore, for a Couette apparatus
with ‘small’ curvature (i.e. R,/R, ~ 1), the constant 4] ~ A4;/R? so that (5.23) differs
from (5.21) simply by a numerical factor 2(1 + 3¢,)/(5 + 13¢,). For ¢, ~ —0-6, whichisa
generally agreed value this factor equals ~ 0-6 and the two results differ in magnitude
by about 409,

Let us now return to the effect of rotation of the co-ordinates associated with a
Couette device [see footnote immediately preceding (5.20)]. The general theory of
Chan & Leal (1977) which is the basis of (5.20) has only been developed for circum-
stances in which the co-ordinates attached to the particle centre and parallel to the
flow boundaries are non-rotating. This is appropriate, for example, for any unidirec-
tional undisturbed flow. Generally speaking, however, these ‘particle coordinates’
may be expected to rotate as well as translate, and the rotation will generate non-zero
contributions to the time derivatives in the Rivlin-Ericksen tensors of the second-
order fluid expansion [cf. (2.3)]. We have shown (cf. Chan 1979) that this will lead to
non-zero contributions dependent upon the rate of rotation, £, in the general expres-
sion for the migration velocity of the particle. Since these terms have no counterpart
in the detailed unidirectional flow calculations of the present paper, it is not possible
to determine their coefficients by comparison, and the results such as (5.20) are there-
fore incomplete if Q, & 0. As we have noted, this situation must be considered in the
present calculation of particle migration in Couette flow, where it is necessary to choose
a co-ordinate system whose z, axis always points in the radial direction with respect to
the Couette device. Fortunately, however, for the velocity field (5.18) and (5.19), it can
be shown (Chan 1979) by general tensorial arguments that there will be no additional
contributions to'the migration'velocity from the rotation of the particle co-ordinates.
We therefore conclude that (5.20) is valid for any Couette flow.

It is clear that the expression (5.10), representing migration in a unidirectional flow
due to hydrodynamic interactions between the particle and walls, should also be
modified for application to a Couette flow device. Unfortunately, no simple method
exists to determine the appropriate modifications short of re-solving the complete
problem with the Couette gcometry and velocity field inserted from the beginning.

t We are indebted to Dr P. Brunn for this remark.
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Thus, if we are to compare theoretical results with available data for this case we
presently have no choice but to use (5.10) and (5.20); the comparison between (5.21)
and (5.23) suggests that this may be qualitatively, or even quantitatively, correct
provided we restrict our attention to a ‘narrow gap’ device which is the case in the
existing experiments of Mason and co-workers. Although the profile curvature term is
O({?) whereas the wall interaction term is O({%), the curvature in the undisturbed
Couette flow is itself small in the ‘narrow gap’ device and so the two contributions
may have numerically comparable values in practice. Since wall interactions cause
migration toward the centre line [cf. (5.10)], whereas the velocity profile curvature
causes migration toward the outer cylinder [cf. (5.20)], the drop in Couette flow is
generally expected to attain an intermediate equilibrium position where the two
contributions cancel each other. By comparing the two expressions for typical experi-
mental conditions, we have found in fact that the wall interaction effect, corresponding
to (5.10), should nearly always be dominant. Thus, the equilibrium position should be
quite near the centre-line. However, this conclusion is in disagreement with existing
experimental observations for rigid spheres in a viscoelastic fluid [cf. figure 8 of
Karnis & Mason (1966)], which indicate migration toward the outer cylinder. This
discrepancy with present theory may result from the application of (5.10) directly to
the Couette flow problem. Another possibility is that the conditions for validity of the
theory,e.g. { € 1, A <€ 1, etc. are simply not satisfied well enough in the experiments to
allow a detailed correspondence between theory and experiment. In this regard, it
should be noted that the 4 %, PAA in water solution used by Karnis & Mason (1966) is
strongly viscoelastic in the deformation-rate range of interest and is therefore not
modelled well as an nth order fluid; for example, it exhibits a strong shear-thinning of
the apparent viscosity. It has been found in other related problems (cf. Leal 1975) that
predicted non-Newtonian contributions to particle motion in an unbounded fluid
domain may, nevertheless, exhibit qualitative or even quantitative agreement with
experiments in a strong viscoelastic fluid, provided ¢, and ¢, are determined from
normal stress data in the shear-rate range of interest rather than at zero shear-rate as
is strictly required for the nth order fluid approximation. In the present case, thisis also
true provided the comparison is made between data and (5.21) alone, rather than (5.21)
and (5.10). Perhaps the influence of the wall effects is relatively less in a strongly visco-
elastic fluid than is suggested by the comparison between (5.21) and (5.10) which we
indicated above. In our opinion, it would be of considerable interest in settling these
questions to perform further experiments using a fluid with ‘proven’ second-order
fluid behaviour in the shear-rate range of interest.

5.4. The O(A) velocity and pressure fields

For the analysis of §7, and for examining the mechanism of migration, we need also
to consider the O(A) velocity, pressure and stress fields defined in (5.1). To this end,
it will be sufficient to consider only the two-dimensional quadratic shear flow problem
in an unbounded fluid, where wall reflexions are neglected. Furthermore, since a
detailed calculation is extremely complicated, we shall only attempt to determine the
forms of (UM, PW, SW), with identical expressions for (UW, PW,5W) + By keeping

t The problem of the motion of a sphere in a linear shear flow of second-order fluid was
considered in the Ph.D. thesis of Peery (1966).
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only the relevant % and gy terms, we find

2+3c (1 z K 1 3z,
W) = (W —_—— |- jui- 273 WS Sl S
U (0§ ),,[e, 4(1_'_K)(r¢=,,«b-,_3x) 4(1+K)<r3e3 = x)]
+ (7Y, + By0)) z 8y + (B2 + fy0,) Tyes + 2} (¥ + fr6;) 2384

+ (B2 + By6,) x + 23(B*Y s + By0;) X; (5.24)
PO = (O )+ (Bt r0) + <™, + ). (5.25)

Obviously, the (U(), terms of the above equations arise from (5.3). ¥,... ¥; and
6, ... 0, are complicated functions of z, and r, which may be obtained by first calcu-
lating the last term of (5.2) using the Newtonian velocity, and then solving (5.1).
In this problem, the ¥’s are even functions of z; whereas the ’s are odd.

We may now substitute (5.24) and (5.25) into (5.2) and obtain an expression for
S@, This is then dotted with the unit normal to give the stress vector acting at any
point on the particle surface. In general, both U and S¥'. n must satisfy matching
conditions (5.4a)-(5.4c) on the drop surface. However, once again it is the form of
the stress vector which is of greatest practical interest, and we easily see that this
must be analogous to (5.24). Therefore,

3(2 -+ 3«) 3« :

(A) = — (A) ot S il PRk, -

S .n (ﬁa )3[ 2(1 +K) xser+2(1+x)(ea 3x3er)]+(ﬂ2w8+5708)x1e1
+ (B + fy6,) 2383+ 2H(B7Y 10+ fy0O10) T2 €4

+(f2Y 1, + ByOn) e, + 23 (B?Y 12 + fy61a) e, (5.26)

Let us now examine the above equation in more detail. For example, the component
of the surface stress vector in the x, direction is obviously odd in z,, regardless of the
exact values of the ¥’s and the §’s. Therefore the x; component of the stress vector
at any material point (z,,2,,7,) is always balanced by its equal but opposite z,
component at ( — 2,, Z,, z;). As a result, there can be no net non-Newtonian force in
the z, direction acting on the drop at this order, and the streamwise translational
velocity of the drop will be unchanged. Similarly, if we consider the z; component
of (5.26), we easily see that the A2 contribution is odd in x;, and hence can have no
net effect on the drop motion. However, the 8y contribution is even in z, and therefore
has the same sign at (z,, z,, z;) and at (z,, ;, —3). As a result, lateral migration will
occur in the z, direction. As noted above, these conclusions are independent of the
detailed form of the ¥’s and the 6’s. Of course, no definite result can be obtained
from (5.26) concerning such questions as the predicted sign or magnitude of the migra-
tion velocity without these functions, and this is the purpose of the reciprocal theorem
calculations.

We note that the above considerations are in fact consistent with the ‘hoop’
thrust arguments which were tentatively proposed by Ho & Leal (1976) as providing
the mechanistic explanation of lateral migration of a rigid particle in an unbounded
viscoelastic fluid. In a unidirectional shearing flow of a second-order fluid (without
suspended particles), the tension along a straight streamline will obviously not result
in a net force on any material point. On the other hand, if a particle is present, the
streamlines are deformed and the tension along a streamline can then be partially
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converted to a sideways ‘hoop’ thrust. However, for a linear shear flow, the stream-
lines are symmetric on all ‘sides’ of a spherical particle [as is obvious from (5.24})],
and hence these ‘hoop’ thrusts can have no net effect. Only in the presence of a shear
gradient will the streamlines be asymmetric in the lateral direction. Then, on the
side with a higher undisturbed shear rate the tension along streamlines will be greater
than along streamlines on the other side, and hence will have a larger net force.
This means that migration will occur in the direction of decreasing shear rate.

Finally, we should remark that the assumption of a spherical drop will not be
valid in general, since the normal stress condition of (5.4c) is not then satisfied.
However, any deformation due to UW and UW can only occur at O(Aé). Once again,
it is not possible to calculate fA9 in detail; instead, we shall simply express it as

fO9 = (B2 13+ fyb1a) + 21(B* Y 1u+ BYOra), (5.27)

where the ¥’s and 8’s have the same properties as before.

6. The O(8) problem

In this section, we consider the motion of a Newtonian deformable drop suspended
in a shearing flow of a Newtonian fluid. This problem has been examined by several
previous investigators. In particular, Chaffey et al. (1965, 1967) have considered a
simple shear flow in which the drop is near a single plane wall; in this case, wall re-
flexions are needed for migration to occur. In contrast, Wohl & Rubinow (1974) and
Wohl (1976) considered migration in a Poiseuille flow, where the effect of the shear
gradient is expected to be significant. On this basis, these authors assumed that it
was sufficient to consider the drop in ‘unbounded’ Poiseuille flow in order to deter-
mine the migration velocity. This assumption is not justified rigorously in their
" analysis, but it is obviously correct since the calculated migration velocities are
asymptotically larger than those obtained by Chaffey et al. (1965, 1967) for small {.
However, the solution of Chaffey et al. (1965, 1967) is still of importance for the par-
ticular case of a simple shear flow, since the migration predicted by Wohl (1976) and
Wohl & Rubinow (1974) will then reduce to zero.

We shall now reconsider the problem of drop migration in a Newtonian fluid due
to flow-induced deformations of the drop shape. As noted in the introduction to this
paper, the original Chaffey et al. (1965, 1967) analysis for a linear flow was limited
to a fluid bounded by a single plane wall. In addition, we have noted that there are
strong reasons to doubt the accuracy of the Wohl (1976) and Wohl & Rubinow (1974)
results. As in the previous section, the calculations to be presented here will utilize
the reciprocal theorem approach, i.e. (3.10).

The equations of motion for the Newtonian suspending fluid are

V.S® =0, V.U®=0 (6.1)
with boundary conditions at large distances from the drop

U —» — ﬁg" asr - o0,
} (6.2)

U® = —fJg'” on the walls.
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The equations for the drop fluid are, of course, analogous to (6.1). The matching con-
ditions on r = 1, are from (2.10a)—(2.100), (2.15) and (2.16),

U@+ fm U©® = O + f(s) U«» (6.3a)
[Uw) +f@O_ U(o)] e,—UO Vf® = [Um +fO— U(m] e — Uo.v f@ =0, (6.3b)

[s(a) +fO~ 5(0)] e,— SO Vf® = [(S“” +fO— 5(0)) e, —-SO.V f(a)]

+[2f@ + V@)V fO _[2£68) 4 V2fGh 2 fO)f D] e .
(6.3c)
Here, as in the case of non-Newtonian migration, we only need to consider (3.10) to
obtain U{. The 0O(8) expression from (3.10) is.

—| [(S®—=x8®).u—(t—«t). UO - E.(US - T®)].e,dA4
A

- 27r(12 :Karc) A+ +J)(0@) = 0.  (6.4)

The integrands may be simplified using the appropriate matching conditions from
(3.4a)-(3.4¢) and (6.3a)-(6.3¢). These give

(S® — xS .u. e, = [ - f(s)_g_r (5@ — xS©@) . e_+ (SO —kS®), Vf@ )

+VfO2fO 4+ sz(a))] .,

. - P (6.5)
—(t—«t).U® e = (t—«t): e,e, [fm (’a'r U<°’) .e,—UO, Vfw],
-~ ~ ~ a —d
- @_ U e = CYdE § (I §(0)
kt. (UO-U®) e, xt.e,.[f 8r(U U )]. }
By rearranging, and neglecting the term J; +J;, we thus obtain
1+x 2 ~ ~
[ . — 02 (50 _ (8O © _ £SO )
(0@, S50 A‘{[ fO (SO —k59). ¢, +(SV-«k59). Vf
+V O 2@ 4 szm)] u+(t—«t): e e, [ f® (gir U(o)) .e,—UOV fm]
+xt.e,. [ f«"afr (U~ fﬂ‘”)]} dA. (6.6)

We have now expressed the migration velocity at O(8) in terms of integrals which
involve only the Newtonian velocity and stress fields. In contrast to (5.7), only surface
integrals on r = 1 are involved, and hence wall effects will arise only indirectly in the
integrands. [In (5.7), the domain of integration itself is bounded by the walls.] Here
we obtain the order of magnitudes of the integrands by using the estimates for
(1u, ,u, ;u) and (,U®,,U®, ,;UO®) provided by Ho & Leal (1974), evaluated on the
drop surface. The estimates for @ and U® are of course identical. We now calculate
the dominant contributions for the two cases of quadratic and linear shear flows.
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FreurE 5. Migration velocity in a two-dimensional quadratic shearing flow due
to drop deformation. ——, present theory (8.8); ~—~, Wohl (1976).

6.1. The quadratic unidirectional shear flow
For a two-dimensional quadratic unidirectional shear flow, we can express (6.6) in
the form

0@ ~ L [0(%) + O(3) + (L)) dA. (6.7)

Here, it can be shown easily that the O({®) term, which corresponds to the £ contri-
bution, is odd in z, and hence integrates to zero. For the O({®) term, the only com-
bination which is even in z, is proportional to fy, and is obtained using ,u, ,i, ,U®,
,0® and , f®. These terms correspond of course to the unbounded domain problem;
thus Wohl’s (1976) assumption that wall effects could be neglected at this order in
{ is justified. However, upon carrying out the detailed integrations for this dominant

contribution, we obtain

Doy, - ,5'7 164 19«
(s )3__(1+x)2(2+3K)[42(2+3K)(4+")

10+ 11
—-1%31(8—K+3K’)]. (6.8)

This result is in disagreement with that of Wohl (1976) which is somewhat more
complicated:

(13— 36k — 73«2 — 24«3)

o - _ By 16+ 19« { _ _ 2
(09, (I+K)2(2+3K)[483840(2+3K)(4+x)( 38672 — 684612« — 678210

21436263 + 6237kch) + 0 11K o 076 _ 27898k + 2969142 6.9

940800 ' - ~ <) (6.9)

We are sceptical of the accuracy of the complicated expression that Wohl (1976)
obtained, particularly in view of the fact that Wohl used the much more complicated
‘direct’ approach of calculating all variables at O(8) in order to determine (U{),.

However, on plotting the two migration velocities as functions of « (see figure 5),
we find that the agreement between the theories is extremely good for 0-01 < « < 100.
Interestingly, both theories predict that the direction of migration depends on the



36.
The motion of a deformable drop in a second-order fluid 159

value of k. For k between } and 10, the drop migrates toward the walls, while the
inverse (toward the centre) is true for all other values of «. Migration toward the
walls has not previously been observed experimentally; however, so far as we are
aware no experiments have yet been reported for < x < 10.

The expression (6.8) is, of course, limited to two-dimensional unidirectional flow.
However, this dominant contribution to (), corresponds to an unbounded domain,
and it is thus possible to extend (6.8) to the important case of a three-dimensional
Poiseuille flow. For this purpose, an expression for the O(6) migration velocity of a
deformable drop in a general quadratic flow of a Newtonian fluid is first needed. The
coefficients in this expression are then determined by careful comparison with the
two-dimensional problem. The required procedures are analogous to those of Chan
& Leal (1977), and will be discussed in detail in the appendix. For the undisturbed
velocity profile, (5.11), of a three-dimensional Poiseuille flow, the final expression is

- By
(09’))3 = —(1 +K)3 (2+3K)

[3 16+ 19« 10+ 11k

= —k— 02 - 2
i 2T 3% (1—x—2«%)+ 120 (8 K+3K)]. (6.10)

Unfortunately, this disagrees quite significantly with the result of Wohl & Rubinow
(1974) for the same problem

@ - _ By 16 + 19¢ 2

(0, TFr T [26880(2+3K)(27688+29354x+3741x 4284x3)
10+ 11k .
—aa00" (14364 - 20191k + 12310« )]. (6.11)

Comparing (6.11) with (6.9), the magnitude of migration for three-dimensional
Poiseuille flow is predicted by Wohl (1976) and Wohl & Rubinow (1974) to be nearly
ten times that for a two-dimensional Poiseuille low when « approaches zero, provided
that £ and y both remain the same. This prediction is at odds with intuition, according
to which the qualitative behaviour of the two cases should be very similar. In fact,
when we examine our own expressions [i.e. (6.8) and (6.10)], we find that they never
differ by more than 50 %,. We are confident that our calculations are correct. In §8, we
shall compare (6.10) with previous experimental results.

6.2. The linear unidirectional shear flow

Let us now consider the case of simple (linear) shear flow, where the shear gradient
y is zero. All O({®) terms of (6.7) will then vanish, and the leading contribution to
the migration velocity is of O({*). We have found by careful consideration of the
Newtonian velocity fields that the only relevant terms are (yu, ;u) and ,U® from the
suspending fluid, and ,, ;0 and ,U® from the drop. By substitution into (6.6), we

obtain
(16 4 19«) (54 + 97k + 54«k2)

(026))3 = ng']z 280(1 + «)% (2 + 3«) (6.12)

which is then simplified using (4.23) to give

_ 3(16 + 19«) (54 + 97k + 54x%) [ 1 1
(05 = &3p° 4480(1 +«)° [3_2"(1 —8)?

+2(1 —2.9)]. (6.13)
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By comparison, the migration velocity given by Chaffey et al. (1965, 1967) is
(0P), = 33828216 + 19) (54 + 102« + 54«2)/4480(1 + k)3 s2. (6.14)

Both theories predict migration toward the centre-line of the apparatus. Obviously,
the difference in dependence on radial position ¢ arises because we have considered
the presence of two walls. When the drop is indeed much closer to either wall (i.e.
8~ 0 or s ~ 1), the last term in (6.13) reduces to 1/s® (or 1/(1—s)?) as expected.
Furthermore, if (6.14) is extended in an ad hoc manner with 1/s? replaced by

1/s2—1/(1—g2),

the dependence on s will be quite similar to that of our full, two-wall analysis. It may
be recalled, however, that (4.23) is itself an approximation of the full equation for J,.
Let us examine the remaining parts of (6.13) and (6.14) more carefully. The factors
54+ 97« + 54« and 54+ 102« + 54«* are, of course, effectively the same, hence the
dependence on the viscosity ratio « is identical. However, the migration velocity
predicted by Chaffey et al. (1965, 1967) is still seen to be exactly 11 times greater than
ours. To explain this discrepancy, we have performed some of the calculations out-
lined in their paper,} and have indeed found that the ‘33’ should actually be ‘3’
instead. With this correction the two expressions essentially agree with each other.
Once again, it is difficult, in practice, to satisfy the assumption of a simple linear
shear flow, since a small curvature always exists in a Couette device. The contribution
of this curvature to particle motion can be calculated by first writing the velocity
field as (5.11), and then using the general method developed in the appendix. Thus,

we obtain 0®) __ 2(4+ 61k + 85k% + 25k%) A3
sz 1(2+3x)(1+4) R -

(6.15)

The above expression predicts that the curvature effect always causes migration
toward the inner cylinder. [Quite surprisingly, if we use only the local two-dimen-
sional approximation of Ho & Leal (1976) to represent the bulk undisturbed velocity,
the predicted direction would be toward the oufer cylinder.] Thus, when both wall
reflexion and shear gradient contributions are included, the drop should be expected
to migrate to an equilibrium position which is between the centre-line and the inner
wall. In spite of the fact that (6.15) is O({?), and therefore asymptotically dominant
for { - 0 over (6.13) which is O({*%), the velocity profile curvature is itself small for a
‘narrow gap’ Couette device so that the two effects may be expected to be of com-
parable magnitude. However, under the conditions of existing Couette flow experi-
ments, comparison of (6.13) and (6.15) suggests that the wall interaction contribution
dominates numerically and hence that the equilibrium position should be quite near
the centre-line. This conclusion agrees very well with the experimental observations
of Karnis & Mason (1967). We shall present a more detailed comparison of experiment
and theory in §8.

To calculate the contribution of the quadratic terms in the next section, we also
. need to obtain expressions for the O(8) velocity and pressure fields. This is accom-
plished by following the same procedures as in the previous O(A) case. As expected,

t The number 33 first appears in the expression of i, in §5 of Chaffey et al. (1965, 1967), and is

therefore independent of the values of 4, and 4 _, from previous sections. Hence we only need to
start from their equation (17} if we wish to check the validity of this coefficient.
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the predicted forms will be exactly the same as (5.24) and (5.25). We shall not repeat
the cumbersome equations here.

7. Higher order corrections

We have now obtained estimates for the separate normal stress and deformation
contributions to the migration velocity of the drop. In the presence of a shear gradient,
their magnitudes are of O(AZ?) and O(0§®) respectively, whereas for a simple shear
flow, they are of O(A&4) and O(6¢%). An obvious question that arises, at this stage, is
whether these two terms are necessarily dominant over the quadratic combinations in
all situations. For example, it is still possible that the next non-Newtonian contribution
might be of O(A%¢?), thereby becoming important in the simple shear case for some
values of A and {. In order to verify or refute these possibilities, it is necessary to
carry our calculations to higher order terms, 0(A?), O(A8) and O(6?%). Of course, these
terms are of some intrinsic interest on their own. For example, the O(A%) term in an
nth order fluid expansion represents the first dependence of the viscosity on the shear
rate [the O(A) term includes normal stresses only]. Similarly, the O(A8) contribution
is of some interest because it represents the first interaction of normal stress and
deformation effects.

For the O(A?) problem, the equations of motion for the suspending phase are

V.S =0 and V.UM =0, (7.1)
where SAY = — pAd] 4 D(M) + [D?l); ?1‘)) + Dﬁ;‘,’ D?B +é D@))]
+[e:(D): DY) DY) + ¢, DY +¢,(DS). DY + DG . DY) (7.2)

The equations for the drop fluid are similar to (7.1) and (7.2). On the surface of the
drop, the boundary conditions are
UM = TN, U e, = T e, = 0, }

S e = k§AN g — [2fAR0) 4 V2D, (7.3)

As before, we obtain an expression for the O(A?) migration velocity from the reciprocal
theorem. Hence, using (3.10), we get

—| [ —k§A) u — (t —kt). UAY
Aq

— k. (UAn — ﬁ(w) ~ TN ul.e,dA - 2,,%:1’5 (OSA.\))S

- [, (D8O + DYDY ~EY. EY— EW. E) +c,(DY - EQN]: YuaV

+K% f [D®.DY + DY . DY) +¢ DP): Vady
f [€, €3, €4 terms]@: VudV+x( ) f [€,, &3, €, terms]@: VEdV. (7.4)

Once again, the integrand of the surface integral over A4, is identically zero. Further-
more, using the Newtonian solutions in conjunction with (5.24) for the O(A) velocity
field, we can easily show that the integrands of the volume integrals over ¥, and ¥,
are all odd in z; and therefore integrate to zero. Hence there will be no migration at

6 FLM 92
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this order. This conclusion is reached without any assumptions about wall effects and
shear gradients, and will therefore be true for all unidirectional shear flows. This
means that, to this order, the shear-dependence of viscosity yields no contribution
to the migration of a spherical drop. Parenthetically, we may note that a similar
result may be proved rigorously for any purely-viscous fluid model; i.e. for any fluid
in which the only non-Newtonian property is a shear-dependent viscosity. This latter
conclusion follows trivially from the ‘mirror-symmetry time-reversal’ theorem of
Bretherton (1962), which takes into account the invariant nature of the Navier-
Stokes equations (cf. Chan 1979).

Finally, the O(Ad) and O(¢?) contributions can be considered in the same manner.
By keeping only relevant terms from the governing equations of §3, we obtain ex-
pressions for these two cases that are analogous to (7.1)-(7.4). Again, the integrands
are odd in z,. Hence there will be no correction to the migration velocity at any of the
orders, O(A?), O(Ad) and O(8%).

8. Discussion

We now wish to compare our calculations from the last three sections with the
available experimental results of Mason and his co-workers (Goldsmith & Mason
1962; Karnis & Mason 1966, 1967; Gauthier et al. 19714, b) for the motion of a de-
formable drop in a non-Newtonian fluid undergoing Couette or three-dimensional
Poiseuille flow. First, we consider the migration of a rigid sphere (i.e. k - c0) due to
normal stresses alone. For a Couette flow, we have noted earlier that the profile
curvature in a typical Couette device is usually small and hence the asymptotically
dominant profile curvature contribution, which is O({®), may actually be numerically
dominated by the O({*) wall interaction effect. On this basis, our theory predicts an
equilibrium position quite near the centre-line, in contrast to the observations of
Karnis & Mason (1966) for sphere migration in a 4 9, solution of PAA in water. It is,
in fact, striking that the experimental observations seem to agree qualitatively with
the predicted migration rate and direction from the profile curvature effect with no
account taken of wall interactions. For example, by integrating (5.21) alone, we
obtain in dimensional variables (defined in §5.3)

RY-BY0) = [ - L5+ 136) | pegan T, 5.)
0
where T' is the elapsed time. This equation can be compared with the data in figure 8
of Karnis & Mason (1966). In particular, we may obtain an estimate of the rheological
constant ¢,/u, for 4% PAA in water, simply by fitting their data with (8.1). Thus,
in figure 6, we plot R$ as a function of 7. From the slopes of the best fit straight lines,
we estimate values for the parameter — ¢;/u0(5+ 13¢,) of 22-8, 47-3, 18-1 and 987 s.
These are quite reasonable for 4 9%, PAA in water [cf. the estimates by Leal (1975) for
39%, PAA in water]. In addition, it should be noted that PAA in water is strongly
viscoelastic, in contrast to the ‘near Newtonian’ second-order fluid behaviour on
which the present theory is based. A reasonable inference is thus that non-Newtonian
contributions to particle motion, due to profile curvature, are reasonably well ‘pre-
dicted’ by the theory for an unbounded second-order fluid; on the other hand, it
appears that the wall interaction effects, which are dominant in a second-order fluid,
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Fraure 6. R} vs. T for a rigid sphere in a Couette flow (R, = 4-644 cm, R, = 5:795 cm) of 49
PAA solution in water, observed by Karnis & Mason (1966). @, case 1: ¢ = 0-065 cm,
Q, = —0092rad s1; O, case 2:a = 0-085 cm, 2, = 0-0563 rad sec~!; [, case 3:a = 0-065 c¢m,
Q, = 00563 rad s~!; A, case 4:a = 0-0l4cm, Q, = —0-092 rad s~1.

are greatly over-estimated when an attempt is made to extend the theory to the case
of a strong viscoelastic liquid. Further experiments are presently being performed in
our laboratory in an attempt to shed some light on these admittedly speculative
ideas for the case of migration in a ‘narrow’ gap Couette device.

For a Poiseuille flow, in contrast to the narrow-gap Couette flow, the profile cur-
vature is not ‘small’ and thus for small particles (i.e. { < 1) the O({?) profile curvature
contribution to the migration velocity is asymptotically and numerically dominant
over the O({*) wall-particle hydrodynamic interaction effects. In the limit of x — oo,

(5.13) reduces to (00, = &By(11 + 31¢,). (8.2)

By dividing this expression with the axial velocity and then integrating, we obtain
an equation for the trajectory of the sphere. In dimensional variables, we have

[22_ (1_291)1,,17 D__(O)z_(l_ﬁa_z)l D(0)
2B\ 3B "B, | 2B 35 "B,

_ [_% (114 31e,)] [V’g;%“z] (L-LO] (.3

6-2
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Figure 7. D*/2B%~ (1 —~ §a*/B}) In (D/B,) vs. L — L{0) for a rigid sphere in a three-dimensional
Poiseuille flow (B, = 0-3 cm, Vi,. = 0487 cm s-1) of 69 PIB solution in Decalin, observed
by Karnis & Mason (1966). @, case 1: a/B, = 0-037; O, case 2: a/B, = 0-027; , beat
linear fit with data.

where L — L(0) is the axial distance travelled by the sphere; all other variables are
again defined in §5.3. In figure 7, we plot D*/2B% — (1 — 3a*/B%) In (D/B,) as calculated
from the data in figure 4 of Karnis & Mason (1966) for sphere migration in a 69,
solution of PIB in Decalin, as a function of L — L(0) for particles with a/B, = 0-037
and 0-027 respectively. The parameter — @;(11 + 31¢,)/x, is estimated to be 0-91 and
0-56 5. These values are certainly reasonable for 6 9, PIB in Decalin, but we have no
direct rheological data for comparison. The difference between the two cases is be-
lieved by us to result from the change in particle size. It will be recalled that the pre-
sent theory is strictly applicable only in the limit a/By,— 0. In particular, direct
contributions to the migration rate due to hydrodynamic interaction between the
particle and tube walls is not included in (8.2) - this effect will become more important
for larger a/B, and thus lead to faster migration or increasing apparent values for
— ($3/po) (11 + 31¢,) as a function of a/B,. In order to estimate the magnitude of this
effect, one would have to extend the present theory to include wall reflexions for a
quadratic velocity profile (recall, that we have so far included wall reflexions only
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for a linear profile, where they provide the only non-zero contribution to the migration
rate). A second factor, also associated with the particle size, which may influence the
apparent magnitude of —(g,/u,) (11+ 31¢,), is the fact that the local strain-rates
(i.e. those associated with the particle-induced disturbance flow) will depend upon a.
Obviously, it is very difficult to estimate the contribution of this effect. However,
it seems to go in the same direction as the change which is observed, since ¢, is a
decreasing function of shear-rate.

Let us now turn to the trajectory for a deformable Newtonian drop in a Newtonian
suspending fluid. In this case, all of the rheological constants can be measured, and
hence our predictions can be compared directly with known experimental observa-
tions. For a Couette flow, the migration rate again includes contributions from the
interaction of the particle with the bounding walls [toward the centre-line, cf. (6.13)],
and also from the shear gradient of a Couette device [toward the inner cylinder, cf.
(6.15)]. Thus, the drop is expected to attain, in general, an equilibrium position be-
tween the centre-line and the inner cylinder, where the two effects cancel each other.
For the experimental conditions of Karnis & Mason (1967), the wall contributions
always dominate numerically, and hence the predicted equilibrium position is quite
near the centre-line, in agreement with their experimental observations. To obtain
the predicted trajectories, we add the two contributions and then integrate to obtain

da— 8 ds .
T:._f g5 8.4
o ) Z(0) (4
where
_at A)\23(16+19) (54 + 97k + 548 [1 1
2le) = 2‘2(‘41‘?—3) 4480(1 + <) [55"(1 A=)
2(4 + 61k + 85«2+ 25«3) A2 a® (8.5)

7(2+ 3c)(1 +«)? Ry

We now evaluate (8.4) numerically and then plot the predicted trajectory of the
drop in figure 8 for the various conditions of Karnis & Mason’s (1967) experiments,
together with the measured trajectory data. For cases 1 and 2, the measured rates
are larger than our calculations, but the inverse is true for case 3. Furthermore, the
predicted equilibrium positions of s = 0-474, 0-484 and 0-487 for cases 1, 2 and 3
[obtained by solving Z(s) = 0] agree well with the experimental observations
(for example, the measured equilibrium position for case 3 is at approximately
8 = 0-47).

For the sake of comparison, we have also calculated the corresponding theoretical
results from Chaffey ef al. (1965, 1967), which include only the interaction of the
_particle with one wall. These may be obtained approximately by dividing 7" by 11
for each value of s. As shown in case 1 (which offers their best fit with data), their
agreement with experiment is obviously much poorer than for our present theory.

It should be remarked that the conditions of the experiments do not lend themselves
well to adefinitive comparison between experiment and theory. Asidefrom{ = a/d < 1,
it is also inherently assumed in our theory that the drop is not close to either wall
(ie. { <8 for 0 <3< 05; {<1~sfor 0-5 <8 < 1). Now, the experimental values
of { were 0-0337, 0-0556 and 0-0772 for cases 1, 2 and 3 respectively. In addition, the
initial values of s (or 1 — s for 0-5 < s) were 0-0526, 0-0877 and 0-149, which are twice
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FicureE 8. A comparison of experimental trajectory of a deformable drop in a simple shear
flow with theory. From Karnis & Mason (1967), ¥ = 2x10~%, x4, = 50 P, d = 1-86% cm,
o= 10dynecm-l. @, case 1: ¢ = 0-063 cm, V: = 0:662cms?t; O, case 2: @ = 0-104 cm,

V% = 0662 cm s71; ], case 3: ¢ = 0-135 cm, V§ = 1-835 cm s7%; , present theory (8.3);
~+=, present theory but with comparison restricted to 5{ < #&; ~——, Chafley e al. (1965, 1967)
theory. .

as large. The value of { is obviously fixed for a particular experiment. The maximum
values of ¢ can, however, be varied to some degree by restricting our comparison
only to those portions of the trajectories where the particle is ‘near’ to the centre-
line, say 5§ < s. Then, we see from figure 8 that the differences between theory and
experiment are considerably reduced, with the best agreement occurring for the
smallest drop used.

For a three-dimensional Poiseuille flow, we follow procedures analogous to those
outlined by Wohl & Rubinow (1974) to obtain

[_?i_(l__l"__f_) ;nﬂ]_[ﬂﬂ)_"_(l_. 2« Ef) IHP_“D]
2B} 2+3«kB B, 282 2+ 3« B3 B,

2
0.

2V ax 2, 1 3 16+19% .
=" Bis (1+x)2(2+3x)[§" Ty (TR
19;;4%1—" (8 —k+ 3x2)] x [L — L(0)]. (8.6)

Here, we compare the above expression with the experimental observations of
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FiGurE 9. A comparison of experimental trajectory of a deformable drop in a three-dimensional

0l L L

Poiseuille flow with present theory (8.5) ( ). From Goldsmith & Mason (1962), x = 2 x 104,
Ho = 80P, B, = 0-4cm, 0 = 29dynecm-l. @, case 1: @ = 0:0175¢em, V3, = 0-142cms1;
O, case 2: a = 0-0300 cm, V3, = 0-142cms!; [J, case 3: a = 0:0390 cm, V2, = 0-142cm
s1; A,case 4:a = 0-0410 cm, V3, = 0-283cms~!; A, case 5: a = 0:0350 cm, V3, = 0-565
cm s~

Goldsmith & Mason (1962). From figure 9, we see that the agreement is good, although
in all cases the observed rate of migration is slightly greater than the prediction. We
believe that this discrepancy is due to wall effects which are neglected here and will
tend to increase the rate. In support of this opinion is the fact that the error is largest
for cases 1 and 2 in which the drop remains close to the boundary for a long time,
but becomes smaller for cases 4 and 5 in which the drop migrates rapidly to the tube
centre. In addition, Wohl & Rubinow (1974) have also compared their migration
velocity with the experimental observations, and claimed that their agreement was
good. However, from their figure 9, we see that the prediction is significantly greater
than the measured rates in cases 3, 4 and 5. Furthermore, they have made an algebraic
error, involving a factor of 2, in their calculations. (When calculating the centre-line
velocity, they used V%, = @/mBi. The correct expression is V¥, = 2Q/nB%) If
this factor is introduced into the calculations, their theory will over-estimate the

migration rate by an even wider margin.
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Figure 10. ~In (D/B,) vs. T for a deformable drop in a three-dimensional Poiseuille flow
(B, = 0-4 cm) of 3 9% PIB solution in Decalin, observed by Gauthier et al. (1971b). @, case 1:
a = 0044 cm, I}, = 0-253 e s™; O, case 2: a = 0-044cm, V3, = 0130 em s~1; [J, case
3:6 = 0-021 em, V3, = 0253 cm s-1; , best linear fit with data.

Finally, we consider the problem of a Newtonian deformable drop in a non-
Newtonian fluid. In a Couette flow, Gauthier et al. (1971a) showed that a drop sus-
pended in a 1-59, solution of PAA in water migrates to an equilibrium position
between the centre-line and the outer cylinder. Here, there will be separate inde-
pendent contributions from deformation and non-Newtonian effects. It is obvious
that deformation alone results in a lateral force toward the centre-line. Normal
stresses, on the other hand, will cause migration toward the outer cylinder, if we
assume as before that the contribution from the shear gradient in a Couette device
dominates over that from the particle interaction with the walls, particularly for a
strong viscoelastic suspending medium which is not well modelled as a second-order
fluid. On this basis, our theory indeed predicts an intermediate equilibrium position
where the deformation and viscoelastic effects cancel each other. However, owing to
the speculative nature of the above ideas, we shall not attempt a detailed comparison
of theory with experimental data here.

For a three-dimensional Poiseuille flow, our theory may be compared in detail
with the data of Gauthier et al. (1971d) for a 39, solution of PIB in Decalin. By
integrating A(O®); + 8(T),, we obtain (for k = 0)

D D(0) _ $s [4 Vihax@®]  16V3E a’n,
_mE_;.ln B, —-{[—;;(194-4061)] 8351 J+ TBic }T. (8.7)
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In figure 10, we plot —In (D/B,) versus T for three different cases. After subtracting
the independent deformation contributions (i.e. 16 VX% a%u,/7B§co) from the slopes,
we obtain numerical values for the parameter — ¢,(19+ 40e,)/#, which are 5-4, 3-2
and 5-4 s respectively. These values are apparently inconsistent with those obtained
previously for a rigid sphere in a 69, solution of PIB in Decalin, since in general
¢/, should decrease for decreasing concentrations of PIB (cf. Brodnyan, Gaskins &
Philippoff 1957). However, it must be noted that our present procedure for calculating
@4/, is incomplete, since the effect of the interaction of a deformed drop with the
bounding walls has not been accounted for [recall that even (8.6) shows a slight
discrepancy with the experiments]. In the present case, since large drops are used,
this contribution is likely to be large and may even be of the same order of magnitude
as the normal stress term which we obtain above. To put it in another way, we hypo-
thesize that the contribution to migration which we have so far attributed to normal
stresses may yet come from wall effects in drop deformation.

This work was supported by a grant from the National Science Foundation.

Appendix

We shall consider briefly the theoretical basis for generalization of the theory for
motion of a deformable drop from a two-dimensional to general quadratic flow of a
Newtonian fluid. The equations of motion are given in (4.2) and (6.1), with boundary
conditions from (4.10a)-(4.10c) and (6.3a)-(6.3¢). Following the same procedures as
Chan & Leal (1977), we express the undisturbed velocity in index notation as

Vi=a;+ €3 Ty €k Qkxj + Vit — %(Giﬂ Omic+36im €15k) 6Imxkxj

+ (= 010y — 0,0, + 48,0 ,3) Tz T4 (O,). (A1)
At O(1), the translational velocity is
(OO, = a,+«r./(2+ 3x). (A 2)

An expression for the deformation of the drop (cf. also Haher & Hetsroni 1971) may
be obtained at this stage by general tensorial arguments. In principle, it should
include all linear terms from the six flow parameters. For our purpose, it is not necessary
to obtain this expression in detail. However, we must note that eventually only e,
and ¥, will remain, since all other terms vanish in (4.10¢).

By considering the force on the drop, the O(8) migration velocity may also be
obtained. Owing to the boundary conditions, it will in generalinclude all terms that are
quadratic in the flow parameters. Since the problem is spherically isotropic, we easily

obtain
ow L+x e oo & 5
U = m‘{cl [an = (UP)mlem; +EP €imnlam — (UP) ] Qn
+ 63(1) €nm l/’mni + 6;1) €imnCmi Bln + eél) limTm+ 60(11) Qm Bmt + 6;” €imn Qn Tm}' (A 3)
By comparison with (6.6), we see that Q; cannot contribute to migration and hence
&, &M and &V are all zero. Combining & and &V, we finally simplify (A 3) to

(03‘”)1‘ = m {630) €am ’#mm’ + cil)eimn €mtUin + Cgl) €im Tm}' (A 4)
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The coefficients are obtained by a detailed comparison with our two-dimensional
quadratic shear flow calculations, which then gives

r 16419« 104+ 11k (8 —x+ 3%\ T
D - -
& 14(1+x)[ Tre O+~ ( T+« )]
m 16419 /24 2k + &
(1 =
& 6(1+K)[ 14« ( 44k ,)] (4 5)
16+ 19« /6 — 4x + 3«2
W=7 .
and & 10(1+x)[ 1+x ( 213K )] )

For a Poisenille flow in a pipe
emu'/'mm‘. = %ﬂ'}"’w

EimnCmiOin = 0
and limTm = BY83.

Thus, (6.10) is finally obtained by substitution of (A 5) and (A 6) into (A 4).

(A 6)
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APPENDIX A

We provide here a rigorous proof for omitting from (3.7) the terms

J (S - T) (u+ e3)'ndA and J t-(U - V) ndA, where Af denotes an
A, - T T A, - - ° 7
f f

appropriate surface bounding the fluid. In general, Af includes a fluid
surface at infinity, A_, in addition to the solid bounding walls. The
contribution from the latter is obviously zero since both u + e; and

U -V vanishes identically on the walls. 0On A, we define "outer™
variables r' = gr and describe the surface for fhe case of two parallel

plane walls using cylindrical coordinates (p',xé,e) as {A: o' =

2 _ 2

|2
p'" + X3 }.

dA = 72 p'dx} do (A1)

The "complementary" velocity and stress evaluated at A_ give [cf. (4.19)]

+egn0(r ) vo(zo'h)

=

£~ 0(z%r 1) (A2)

Next, we consider U - Vand § - I. The only Newtonian terms again come
from the Stokeslet contribution to the disturbance velocity, which even
for the general case of a non-neutrally buoyant sphere can go only as r'l.
Furthermore, additional corrections to the velocity field due to non-

1

Newtonian rheology and drop shape deformation also go as r ~. Thus
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U-Vao(zp'™)

- T~ 0(z% L)

117}

By substituting (Al) - (A3) into the original integrals, we obtain

[ (- Dtur emann ot [ oenys

f )
A

Both integrals may be neglected as p' - «.

fict

(U - V)endA ~ ;p'-l J 0(1)dxéd9
- T A

f o
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APPENDIX B

We now evaluate the first integral in (5.7) for the case of a linear
shear flow. As stated previously, the entire volume vf is to be divided
into "near-field" region V1 and "far-field" region V2. In Vl’ the New-
tonian velocity field Q(O) is given in (4.5) - (4.7), but there will be no

shear gradient (i.e. y) terms in (4.5). Thus,

00 v o) + o + ...
Zq(o) " 0(;3) + ...
3q(°) v O(Z3) + .. | (B1)

For a neutrally buoyant fluid drop, the 0(;3) terms in these expressions,
which come from the Stokeslet and potential doublet contributions to the

velocity field, will add to zero. Hence
q(o) ~ 0(z) + 0(;4) + ... (B2)
Furthermore, for the "complementary" velocity field, we have

v 0(1)

1c

1
U~ 0(z) + 0(z?) + ...
v 0(z) + 0(28) + ... (B3)

[ § =

3

To evaluate the integrand, we now write

0) _ gl0).¢( (0) _ £(0)y
() - B ERD + =10f8] - g~ ot

1w}

(o)
(1)

o

vy~ 0(1) +0(g) + 0(z%) (B4)
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By direct substitution of (B4) into (5.7), it is evident by symmetry
arguments that all O(cz) and O(g3) terms in the dot product will vanish
after integration. Thus, the leading contribution is O(g4). Our calcu-

lation gives

2
mgBTJ
2 ‘
- ——t (176 + 204 + 3122 + 9563)
210(1 + «)
e, (704 + 1320« + 1590 + 785.3)] ' (85)

In V,, we again use "outer"variables defined as r' = gr. In this

case

0~ o1) + 0(®) + o(c?)
29(0) v o(gd) + o(gh + ...

B ot 4 (86)
and

1uv0(1) + O(C)}+ 0(z3) +

M~ 0() + 0(z?) +

3!“0(c2) + ... . 87)
Hence, we have

( 83 Elg ?3’3 5% 3) (Dé % gég;) ~ 0(22) + 0(zf)

vy~ 0(z?) + 0(z%) | (88)

The leading term in the dot product is therefore of 0(;7). However, dV
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itself is of O(c'3), and hence the integral over Vy is O(;4). Using lg(o),
29(0), 1Y and ou in outer variables and integrating, we now obtain the

contribution of region V2 to themgration velocity. Quite surprisingly,
most of the resulting terms cancel each other with the remainder coming

only from 1Y and lg(o). It can be expressed in a surprisingly simple form

o
—~

- JEE2K g%y, (1 + 4ey)

(B5) and (B9) are now substituted into (5.7) to ine the first term in

(B9)

(5.9). The contribution from the drop fluid is obtained similarly by

integrating g(o) and i over Vf.
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APPENDIX C

We estimate here the effect of the rotation of “"particle coordi-
nates". First, we define a fixed laboratory frame in which the position
vector at any point R is denoted as x'. The velocity measured in this
frame is assumed to be steady in time, and denoted as V'. The location

of the sphere at any instant is given as X Next, we choose particle

o
coordinates fixed at the center of the sphere, translating with sphere
velocity !s‘ We also assume that these coordinates may be rotating with
an arbitrary angular velocity @f. The position yector at point R is de-
noted as x.

V' is now written in terms of the particle coordinates as

V' o Brx b yixx (c1)

ni=<

It should be noted that &, 8 and Y as defined in the above expressions

should be time-dependent, even though V' itself is assumed to be steady.

To obtain their time derivatives, we first write'
vt dv! |
gt g T4 X (c2)
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By straightforward manipulations, we obtain

—_—= 4+ (V' - v)-wv' - Qc xV!

aV!

(C3)

Clearly, 5%7 = 0. Furthermore, V' and V differ only by the translation

and rotation of the particle coordinates.

av!
5= (Ug + 2 x x)-V" - g X!

We now substitute (C1) into (C4) to give

— X+ ==ixx = (B + 21'5)'(95 + Q. xx)

at” = =

- Q¢ x(2 + Box + Y:xx)

By grouping terms into different powers of X, we have

3

which can be rewritten as

3

77 B - (g9

98

5t - AU+ BleR) - (9,)-8
8Y

3t 7 2 (E%0) - (e8)y

Thus

(c4)

(€7)

For ©. = 0, the above equations clearly reduce to (2.12) of Chan and Leal
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(1977) for the time derivatives of o, B and Y defined in a coordinate
system which only translates with the particle velocity. The additional
terms in our expressions are therefore due to the rotation of the coord-
inates.

The force and torque acting on the particle may now be obtained

simply by tensorial arguments involving the flow parameters o - gs’

, 8, T, and boundary value ws = Q¢ (cf. Chan and Leal 1977).

g, & - O,

H-<-

For a rigid sphere, they are, at 0(1)
o) _ (o 0 0
f0) = o - yloT] 4 o)

gl°) = alelfo - 9] + of0) [@S) - s_zf]' (cs)
Thus, for a neutrally buoyant sphere '
O ., , %
o) .
EN lor ¢
1
@go) = 9 (Cg)

E(A) = -C%o) gél) + quadratic terms with no explicit time dependence
Y 38 ot
tl 3 (o) 02, tg 2, 2. 2
+€1{5 at[‘l"UsJ‘”éat B:ygt 8 at} (C10a)
g(k) = déo) @él) + quadratic terms with no explicit time dependence

2
* 81{r§: 5%‘ R R [-éo) - Qf]} (c1on)

To estimate the migration velocity, we use only (Cl0a). In Chan and Leal

(1977), w and 8 are shown to be symmetric and completely irreducible

a8
tenors. C1ear1y, and 5%— should also have the same properties.
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Thus, when dotted respectively with isotropic tensor t@ and isotropic
t

pseudotensor "B , they both vanish. By (C9), we obtain

"

E(X) = -c§°)g§1) + quadratic terms with no explicit time

() 2
dependence + £ C 3T | (c11)

Using (C7), the above expression can be rewritten as

F(A) = —C{o) ggl) + quadratic terms with no explicit time

dependence - €, C(A)(g'gf-z) (C12)

Therefore, in general, there will be an additional contribution to the
particle migration velocity due to the rotation of the coordinates. The
significance of this term clearly depends on the value of g, i.e. if the
coordinates are rotating "very slowly", this term may be neglected. We
are primarily interested in estimating its contribution for a Couette
flow. In this case, however, T is identically zero [cf. (5.19) of Chan
and Leal (1979) and the definition of t], regardless of the curvature of
the Couette device. Thus, the rotation of the particle coordinates in

the Couette flow problem has no effect.
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APPENDIX D

It has been shown by Bretherton (1962) that for a rigid body moving
in a given orbit in a steady unidirectional flow of a Newtonian fluid,
there exists one for a body of opposite mirror-symmetry, obtained by re-
flexion in a plane perpendicular to the streamlines, but transversed in
opposite senses. Here we repeat the same proof to show that a rigid sphere
in a "purely-viscous" (e.g. Power-law) fluid will not migrate.

The equations of motion are written as

VP = V-(uD) (D1)

v-Uu=0
where D = VU + (Vg)T and u = u(D)

D= (3 D:D) (p2)
The boundary conditions at large distance from the sphere is

U~ V(xysxgde; as x|+ (D3)
At any point 0 on the surface of the sphere, the coordinates are denoted

as r(0,t) and the velocity as gs(o,t). Thus

dr
U = aT (—D4 )

Next, we define a sphere which is a mirror image of the original one by
reflexion in the (xz,x3)-p1ane, and then we reverse the time. A point 0'
on the surface of this sphere will thus have coordinates

r(0',t) = 7(0,-t) (D5)
where
] =1y s Ty =1y, Py =ry
Furthermore, the new sphere will be moving in a velocity field

u*(0*,t) = -0(0,-t) | (D7)
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and

P'(0',t) = -P(0,-t)

(D8)

(D9)

U' and P' can be shown to satisfy the equations of motion (D1) and the

condition at infinity (D3). (In particular, we note that the shear rate

D is not affected by reflexion, using (D2)).

Finally, on the sphere surface, the boundary condition becomes

_dr(0',t)  .dr(0,-t)

=S dt dt

Thus, we have

(Ug)y = -(Ug), and  (Ug); =

(U = =)y, (Ug)y = (Ug)y, ()5 = (U

(D10)

(D11)

(D12)

Clearly, in this case, no migration is possible. The only motion on the

particle's surface is rigid body rotation.
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CHAPTER III: A NOTE ON THE MOTION OF A SPHERICAL PARTICLE IN A
GENERAL QUADRATIC FLOW OF A SECOND-ORDER FLUID
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The migration of a rigid sphere in a two-dimensional unidirectional shear flow of a
second-order fluid was considered by Ho & Leal (1976). It was found that the sphere
would migrate in the direction of decreasing absolute shear rate. The present paper
extends the previous results to a general quadratic flow, and also considers the case of

a spherical drop.

1. Introduction

Brenner (1964) studied the Stokes resistance of an arbitrary rigid particle in an
arbitrary field of low. He showed that both the force and the torque relative to any
given point O of the body can depend only linearly on certain vectorial or tensorial
parameters that characterize the undisturbed bulk velocity distribution. In a general
linear flow, these parameters are the translational velocity relative to that of the
particle, the vorticity tensor as seen in a frame of reference which rotates with the
particle, and the rate-of-strain tensor. Calculation of the force and torque from these
quantities, for an arbitrary body, then reduces to the determination of six tensor
coefficients which depend only on the shape of the body. Symmetry conditions for
these tensors were discussed by Hinch (1972).

Application of these general ideas to the motion of an arbitrary rigid particle in a
non-Newtonian fluid was first reported by Brunn (1976, 1977), who used an incom-
pressible second-order fluid in a perturbation expansion about the Newtonian limit.
As a consequence, the non-Newtonian contributions to the force and torque were found
to depend only on quadratic combinations of the flow parameters. However, Brunn
considered only a linear bulk velocity field and concluded that no migration would
occur for neutrally buoyant rigid particles. In contrast, Ho & Leal (1976) recently
reported detailed calculations for the motion of a rigid sphere in a two-dimensional,
quadratic, unidirectional shear flow of a second-order fluid. In this case, it was found
that the sphere would migrate in the direction of decreasing absolute shear rate.

The present paper extends the results of Ho & Leal (1976) to a general quadratic
flow of a second-order fluid. In §2 we outline the formulation of the problem. In §3.1
general expressions are obtained for the translation and rotation of a rigid sphere, and
numerical values for the geometry-dependent coefficients which appear are deter-
mined by comparison with the detailed calculation for the specific flow of Ho & Leal
(1976). Finally, in §3.2 we obtain analogous results for a spherical drop. As will be
obvious later on, index notation is to be preferred over tensor notation for our analysis
and will be used throughout this paper.
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2. Formulation of the problem

We consider a rigid particle suspended in a second-order fluid which is undergoing
some general quadratic motion. To non-dimensionalize, we define a characteristic
(particle) length a, a characteristic velocity Ga and a characteristic pressure y,G,
where @ is an average shear rate for the bulk flow and 4, is the zero-shear viscosity. We
adopt a non-rotating co-ordinate system which has its origin fixed at the centre of
rotation of the particle, and thus translates with the particle velocity (U}); relative to
a fixed laboratory reference frame. The position vector of a point R in this translating
frame is denoted by z,, whereas the position vectors for E and for the centre of rotation
measured with respect to the fixed frame are z; and (z,(t));, respectively. Thus

z; = Zi— (Zo(f))s- (2.1)

The complete dimensionless velocity and pressure distributions, including the dis-
turbance motion induced by the particle, will be denoted by (U, P). The equations of
motion, with inertia effects neglected, are then ‘

a8, jox, = 0, 20U oz, =0, (2.2)

where 8y; = = P8y;+ Dy ¢s+ AD ix Dy + A6, Digy g5 (23)
Dy ; and Dy, are Rivlin-Ericksen tensors given by

Dyy;; = 90U, oz, + U, fox,, (2.4a)

Dy 5 = 9Dy {0 + Ui Dy i, + Divyire U, 5 + Divyies Ure 60 (2.40)

while A and ¢, are material parameters of the fluid. From a macroscopic point of view,
A is often defined as the ratio of a normal-stress function to the viscosity in the limit of
zero shear; physically, it may be interpreted as the ratio of the intrinsic relaxation
time scale of the fluid to the convective time scale of the flow problem (Caswell &
Schwarz 1962). We assume here that the flow is slow (nearly Newtonian) compared
with the intrinsic relaxation time (i.e. A <€ 1) but that non-Newtonian effects are still
more important than inertial effects (i.e. Re <€ A). Similarly, the undisturbed bulk
velocity and pressure fields (V, @) may be assumed to satisfy the equations

oTy[o2, = 0, 0V fox; =0, (2.5a, b)
where Ty =—Q8;+ Eqi+ ALy Bors+ A6y By iy (2.6)

with E,,; defined analogously to Dy, but using V.

We are interested primarily in the O(A) contribution to the translational velocity of
the particle. For a unidirectional flow, this specifies the lateral migration as well as any
O(A) contributions to motion in the direction of the undisturbed bulk flow. Ho & Leal
(1976) showed rigorously, in the case of a sphere in a two-dimensional unidirectional
flow, that the non-Newtonian migration is a ‘near-field’ effect caused by the dis-
turbance velocity field in the vicinity of the sphere, provided of course that the sphere
is small relative to the characteristic dimension of the flow d (i.e. { =af/d < 1). In
particular, the fluid can effectively be considered as unbounded, with no direct effect
of the bounding walls other than their role in determining the undisturbed velocity
profile. Any corrections to the infinite-domain disturbance flow to account for the
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presence of boundaries give only higher-order corrections in { for the migration
velocity. A rigorous proof that the non-Newtonian contributions to particle motion
at O(A) are similarly dominated by ‘near-field’ effects for a general quadratic
flow has not been constructed.t Nevertheless, we believe this result to hold true and
shall therefore assume that the presence of any walls may be neglected. Hence we
require that the complete velocity field U; reduces to the undisturbed form at large

distances from the particle, i.e.
U;~V, as r=(z;z,)t—>c0. (2.7)
On the surface of the particle, U, satisfies
Ui = —€i(0,) 2 (2.8)

The undisturbed velocity relative to the laboratory-fixed reference frame, which we
denote by V7, is assumed to be steady in time and representable, at any instant, by the
general quadratic form )
Vi=a;+ 8%+ YinTi % ' (2.9)
where a;, #i; and 7y are constant tensors. Thus, in the translating frame which we
have adopted,

Vi = s+ By 2+ Vise T %y~ (Up) o (2.10)
where a; = a;+ Bi(%e); + VijulTo) 1 (o) 55 } (2.11)
ﬂt; = ,5:; +2Y:'ik(xo) ko Yik= 72;‘1:-

The coefficient y,;; remains constant in time, but a; and §;; are time dependent, as a
result of the motion of the reference frame. It follows easily from (2.11) that

da,fot = B:i(U,) s 0Byfot = 2yl U) - (2.12a, b)
In deriving (2.11) and (2.124, b), we have made use of the obvious symmetry condition

Yiik = Yiks- (2.13)

It is also apparent from (2.5b) that £;; and y,;, satisfy the additional constraints

Biu=0, Yii= Vi =0. (2.14)

In this paper, tensors which give zero when contracted along any two indices will be
termed completely irreducible. ’

Both g, and v,,; have to be decomposed into their respective irreducible compo-
nents in order to be applied conveniently in a general expression for the force or torque.
This decomposition was illustrated by Coope, Snider & McCourt (1965). Its main
advantage for present purposes is that all the components of §;; and y,;, are made to be
completely irreducible and symmetric, and much simplification is then possible in the
analysis. Besides, each component then has its own physical significance. The decom-
position of g,; is well known:

Bi; = 3Bij+ Bs0) + 3(Bis— Bii)- (2.15)
Consequently BiiTi = e 2 — € Q. 74, (2.16)
where &5 =3B +85) Qi = 3€rmnBrm- (2.17)

t And, indeed, would be extremely difficult in this general problem.
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The decomposition of y,;; is more complicated:

Yiik = [(BVijie+ Yars + Viis + Viis + Vise + Virs)
- 'fLs‘(Yimm ajk + ijm 8(1: + Y kemm aij )] + %[eﬁl( = €imn Vnmk — €kmn Ynml)
+ (= 3€4mn Ynmi = $€mn ¥V nme) €2d + T5L = Viermm 015~ Vimm Csk + 47 imm Os1e)-

(2.18)
Consequently
Vi Ze T = Vi Te Ty — ¥t Omic + 30im €1jtc) Orm Tic 25
where Ve = $Visi+ Vikg + Viis + Vst + Vi + Vis)
= V5 (Yimm O3k + ¥ mm ik + Vieomm O45)s (2.20)

eij = €imn Yams + €imn Ynmer T = Vimm-

Once again, we note that ey, ¥, and 6,; are all completely irreducible and symmetric.
It is also important to observe that both .
(G{ﬂ 8mk -+ id‘m €Uk) 0,,,, &nd ( — 6,‘1 a‘,' -— 8ﬂ J{k + 48{: 8’7‘) Tl

in (2.19) are symmetric in j, k¥ (the former condition is by no means obvious from a
casual inspection) and therefore our decomposition is consistent with (2.13).

Intuitively, it is appealing to interpret 6,; as the vorticity gradient, and to assume
that ¥, and 7, specify the rate-of-strain gradient. To show that this intuitive ‘guess’
is indeed correct, we may re-express ¥, as

Vi = ag+ ;05— €55 Q5 + i 20 Ty — 3 (€43 Omic + 10im €11) Oim T T
+ g (= O Oyy— 00y + 4830 ) iz 2, — (U);  (2.21)

and follow the familiar argument based upon the rate of change of the length of a
material line element (Fredrickson 1964) to get (using the results of last paragraph)

dx dz dx dz
dKE;‘ = e.u dxj—d-;! + 22/1},,,&:,‘ dxj"a;! + é( — 6‘,‘,3“— 6‘,,3,-,‘ + 43“ é}k) e dsz-;!. (2.22)

Finally we observe that
dV, (dz/ds) = d(ds)/bt, (2.23)
where b/bt is a convected time derivative expressed in terms of a fixed co-ordinate
system, and therefore

b(ds)?[bt = e+ 20 2p + 3 — By 8y — 8, 8s + 40 8yy) Ty 2, ) dxy iy, (2.24)
The argument for the vorticity is also well known and follows in a similar manner by

consideration of the rate of rotation of a line element. For the sake of brevity, we shall
omit the details here. As expected, the rotation depends only on €, and 6,,.

3. The migration velocity

We now attempt to obtain general expressions for the force and torque on the
particle. To this end, we first note that the solution of (2.2), obtained by a straight-
forward perturbation expansion, shows that the O(1) Newtonian contribution is
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linear in the flow parameters (a; — (U,),), ¢;;, Q;, ¥¢sx 045 and 7; and also the boundary
value (w,);. On the other hand, the O(A) non-Newtonian contribution consists of
quadratic combinations of these seven parameters, from the time-independent terms
in the non-Newtonian part of (2.3), and also additional linear terms arising from their
time derivatives, due to particle translation. By this formulation, any contributions
from the rate of change of orientation (i.e. rotation) of the particle are included auto-
matically. Hence, if we now use the superscript (n) to denote contributions at O(A™), the
expressions for the force and torque are

F,= FP+AFD
= {t4};[&, — AMUD),] + 4%y ex;+BY Q + AL Yy + Bl Oy
+tAY T, + B () + A"}
+ A{28 terms from all possible quadratic combinations among

&y, e Qi Vigio Oss Yoo T, (@)
+ A€, {4 terms from time derivatives of &,, e;;, Q;, (0{")}, (3.1a)

G, = GP +AGY
={"BY,[&;— M(UM); 1+ "Bl s+ A% Q; + "Bl Vs + A1 1100y
+ 'ng Tj + 'Afj [(wﬁ“’), +/\(w£1‘),]} + A{...} + '\51{- ..}. (31 b)

Here, we have used &, to denote the combination a;— (U®),. The t4’s and 74’s are
second- and higher-rank time-dependent material tensors that depend upon the particle
geometry, i.e. its shape and its orientation with respect to our non-rotating co-ordinate
frame. By contrast, the {B’s and "B’s are second- and higher-rank time-dependent
pseudo-tensors. This distinction between tensors and pseudo-tensors is necessary
because vorticity and torque are pseudo-quantities. The time dependence of these
coefficients reflects the changing geometry as the particle rotates, and is therefore not
present when the particles are spheres.t

So far, the shape of the particle has not been specified. Brunn (1977) considered the
case of a transversely isotropic particle, i.e. a body of revolution with fore-aft sym-
metry. All odd-rank tensors and even-rank pseudo-tensors are then identically zero,
while the rest depend on the orientation of the symmetry axis. The expressions for the
force and torque to O(1) and O(A) are then

FO = tA4},8;+ Al Y+ Bl Ops + A% TI’}
GP = "Bl ey +7AY Q + 744 (),
FP = —tA3(UD); +{! Bl &, Q; + Bl &, (w)”);

+!Bl Q. 7;+ B0 7+ AT dr 6y

+7 more terms involving quadratic combinations of e, ¥,

' (3.2)

Biss Tis 4, (W), With coefficients which are even-rank tensors or
odd-rank pseudo-tensors} +¢,{*4% 04, /ot}, (3.3a)

1 Indeed, for analysis of non-spherical geometry it is more convenient to allow the co-ordinate
frame to translate and rotate with the particle. We are mainly concerned in the present com-
munication with spheres (equation (3.4) onwards) and so choose a non-rotating frame for our
analysis.
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GP =AY (W), +{ Bl @, & + "Bl &, 7, + "Bl Q, Q
+13 more terms involving quadratic combinations of &, e,
Vit Oujs Too Qo (@); with coefficients which are even-rank
tensors or odd-rank pseudo-tensors}

2 2 2
+€1 {rB?,'két‘ek,' + rA?j 5; Qj + 'Agj 'a‘t‘ (0)‘0)),'} . (3.3b)

3.1. The rigid sphere

To simplify further the calculations of this section, we consider the particular case of a
neutrally buoyant rigid sphere in the absence of any externally applied torque. The
non-zero material tensors and pseudo-tensors are then spherically isotropic and ex-
pressed in the most general form are
Ay =0a9g0y, By =Dboeip, } (3.4)
Aiﬂd = 0,1 8“' 8]&1 +a3 8”‘ ajl + as 8‘7 ij.

Expressions for the higher-order tensor and pseudo-tensor coefficients follow in a
similar manner but are excessively cumbersome, and will not be given here.
Equations (3.2) can now be further simplified. In particular

‘AluVus =0, *Blpby ="Blyey=0, (3.5)
whereas for the other terms we may write
'Ab & = "éy, tA%j Ty = e 1,
'-‘ﬂj Qj = d¥Q,, 'A%j(wgm)j = d§°’(w§°))i.}
Since the force and torque on the particle arc zero to the present level of approximation,
we finally obtain

(3.6)

(0, ) c‘(ZO) (0) d{‘”
(UP) = oy +c—iﬁ1’1» (W) = (—'Z(z-o';) Q,. (3.7a,b)

To simplify the O(A) expressions, we use (2.12b) for the time derivative of g [&,
being constant with time by (3.7a)], relationships analogous to (3.5) and (3.6), and
also (3.75). This leads to

(U‘l))t = (ciﬂ))—l c?)&m €mi + cgl) €imn &m Qn + C:(lnenm ¢'mm' + cﬁl )eimn €m 01» + C(SI) CimTm
+ C&l) Qm 6mi + c!ll)et‘mn Qn Tm}! (3-8 a)
(l‘)gn)i = - (d&ﬂ))—l d{l)&m ami + dgl)eim Qm + dt(il) wimn onm
+ dsl)aim Tm + dgl)( USO))m 0mi + dl(il) et'mn( Ugo))m Tn}' (3'8 b)
Equations (3.7a, b) and (3.8a, b) are the main results of this section. (U{), and («{?);
are the translational and angular velocities of a sphere in an unbounded Newtonian
fluid. The scalars ¢, ¢{?, & and 4 in (3.6) are
¢ =6n, ¢®=2m d»=—-dP =8n. (3.9)
Hence, as expected, the angular velocity is equal to the local undisturbed vdrticity,

whereas the translational velocity shows the anticipated dependence on the undis-
turbed fluid velocity «, plus an additional term related to the existence of a gradient
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in the rate of strain. These well-known results are of course completely consistent with,
and derivable from, Faxén’s laws (Brenner 1964).

The O(A) non-Newtonian contributions to the translational and angular velocities
of the sphere are given by (3.8b). To make these equations useful, we need of course to
obtain ¢ and d. To this end, we may simply follow the reciprocal theorem outlined
by Ho & Leal (1976). However, since they have already performed the migration
calculations for a two-dimensional unidirectional flow, we need only a careful compari-
son of the general equation (3.8a) with their specific results to determine completely
the coefficients ¢!’. The flow parameters for the two-dimensional case are

ay=0ya, Piy=20u0yb Yix= 0103057 (3.10)

For the purpose of comparing (3.8a) term by term with the migration-velocity expres-
sion of Ho & Leal (1976), it is important to distinguish the separate contributions of
Vs 04 and 7, in the original two-dimensional calculation. After some work, we finally

obtain
M) = 8m(1 +2¢,), M =6me, P =§n(5+13¢),

¢V = gm(1+11¢g,), cfP =2m(2+58¢), =0, P =27, (3.11)

To illustrate further the physical significance of the O(A) translational-migration
expression, we substitute (3.7a), (3.9) and (3.11) into (3.8a) to obtain

(USI))‘ == -1'53'(5 + 1361) enm ¢'mn{ +'§l1'(1 + llel) eimﬂ emloln +§(1 +3€1) eime' (3'12)

Qualitatively, we see for the case of a neutrally buoyant rigid sphere that (U{"), is
generated only from the interaction between the pure straining part of the linear
contribution to ¥; and either a strain-rate gradient or a vorticity gradient. The con-
stant vorticity Q, has no effect. The accepted value for ¢, is (Ho & Leal 1976)

—06<e¢ < —-06 (3.13)

and therefore the coefficients in (3.12) are all negative. In general, it is not possible to
predict the direction of motion without specific knowledge of the flow parameters
€j» Yijir 04y and 7. However, we observe, after some straightforward algebra, that the

absolute shear rate for the bulk flow is given by
€imemi + [4enm ’/’mni + ietmn emi 6!1& + 'g'eim Tm] Tyt ... (3' 14)

By inspection, we see then that in general each separate term in (3.12) tends to induce
O(A) migration in the direction of decreasing absolute shear rate, in agreement with the
conclusions of Ho & Leal (1978).

The above results (3.8a) and (3.12) are particularly important when (U{M); repre-
sents the first non-zero (though O(A)) contribution to the motion of the sphere in the
lateral direction. This happens when, in the Newtonian limit, the sphere translates
only in the direction of the bulk translational velocity (i.e. €;;, a; 7; = 0), as is always
the case when the bulk flow itself is unidirectional. If it does not, then we see from (3.7a)
that the first lateral motion still occurs at O(A) if (U{M), has a component orthogonal to
the a;, 7; plane (i.e. €, 7,(UM); # 0). Meanwhile the components of (U{V); in the
«,, 7; plane represent only small non-Newtonian corrections to the translational
motion of the particle. '
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3.2. The spherical drop

Let us now turn to the interesting case where the particle is a non-Newtonian drop with
zero-shear viscosity fZ,. To non-dimensionalize the equations of motion inside the drop,
we use a characteristic pressure jZ, G with all other characteristic quantities as defined in
§2. The equations become
a8 /6x; = 0, o0 Jox, =0, (3.15)
Where Sﬁ "—:‘ —P("j +D(l)i)' +;\‘D(1)ik D(ij +X€XD(2)". (3.16)
The boundary conditions in this case are more complicated. In particular it will be
futile to define an angular velocity of the drop analogous to (2.8). On the surface of the

neutrally buoyant drop, the boundary conditions are

= U, (matching velocity), (3.17q)
Ung = U‘ n, = 0 (kinematic condition), (3.17b)
1 1 1 :
Syn; =8 n,+< ( )n matching stress). 3.17¢
i 75 WY TS\R,TR,)™ ( g ) ( )

Here « = fiy/pqg, & = ap, Gfo, where o is the interfacial tension, and R, and R, are the

principal radii of curvature.
In contrast to a rigid particle, it is not possible in the case of a drop to obtain general

expressions for the particle motion simply by force and torque considerations alone.
Since no angular velocity can be defined, a torque expression will be useless. We note,
however, that the condition of no torque on the particle is already implied by (3.17¢).

The translational migration velocity can still be obtained. By considering the force
alone, we get, for the case of an undeformed spherical drop (i.e. & = 0),

(09 = ay+ (&0[E")r,, (3.18)
(0); = () - (O] e + 8 €mn [ = (D) ] Do
+ Cs nm '!rmui + C‘ einm eml oln + c§ CimTm+ C& Q) emi + C-, Eimn Q Tm} (3- 1 9)
Again, &% and &2 in (3.18) are well known, and given by

, 243« ” K
cgm=2n(1+x), c.f,‘”—27r(l+x) (3.20)

As for the O(A) expression (3.19), we get, again by comparison with a detailed recipro-
cal-theorem calculation (Chan & Leal 1977),

& = 5(3—1—)3[(’2 + 32K + 40x2 + 15x3) + €,(22 + 61K + 80k + 30x%)]
127

SR

S[1+26], (3.21a)

. 2n 27
&y = v )zel(2+4x+3"z)+71(1+x)z ” (3.21b)

(y_ 7T 2
240 = i (256 +816x + 12386 4 525¢)

+€,(592 + 2112k + 3254k + 1365k%)] +7 é‘x‘(ig'"')s [8+178]), (3.21c)
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2n
1) — 60
& 27(4+x)(1+x)2[(16+ K+1

1x2 4+ 3x3) + €, (64 + 204«

4
2 I L 4
+ 173« +33K3)]+7]9(4+K)(1+K)2[ 5+¢€), (3.214d)

2 127
a) - 27 2 2 — .
& 5(1+K)3[(4+ 11x 4+ 222 4+ 10&3) +€,(8 + 28k + 56«2 + 25«%)] + 7 HTETIE [1+2€],
(3.21¢)
2n 27
(1) _ ) = 20 e k3 g :
66 0: 6'7 (1+K)261K +7’(1+K)2€1’ (321f: g)

where 7 = (A/A) x. These results of course agree with those for a rigid sphere when x
approaches infinity.

If we now substitute (3.18), (3.20) and (3.21) into (3.19), an expression analogous to
(3.12) can be obtained. For the sake of brevity, we shall omit the cumbersome expres-
sion which results. However, we note, in contrast to the previous case of a rigid sphere,
that constant vorticity will also contribute to the migration velocity of a neutrally
buoyant drop. It is also obvious, since both fluids can make ‘independent’ contribu-
tions to the drop motion at O(A) [cf. (3.21)], that migration will still occur even if only
the drop fluid is non-Newtonian.

4. Discussion

In the preceding section, we have derived expressions from which the first non-
Newtonian contributions to the motion of spherical particles or drops can be calcu-
lated exactly for a general quadratic flow of a second-order fluid. An approximate
scheme which might appear to be an attractive alternative for unidirectional shear
flows is simply to assume that the undisturbed flow is locally two-dimensional so that
the results of Ho & Leal (1976) can be adopted directly. In this section we compare the
exact and approximate predictions for the case of a rigid sphere in a pressure-driven
flow through a straight tube of elliptical cross-section.

A cross-sectional view of the configuration which we consider is shown in figure 1.
We assume the unidirectional flow to be in the X; direction, so that the undisturbed
velocity profile is given byt

= P (12 )

Vi Vmax (1 Az B?, 81{: (4.1)
where 4, and B, are the major and minor semi-axes respectively. We let (Z,, Z;) be the
components of the position vector for any material pointin a co-ordinate system non-
dimensionalized with the sphere radius @ and fixed at the sphere centre. The sphere
itself is at a radial distance D from the tube axis. Hence

X, = Dsinf+a%,, X;= Dcosf+aZ,. (4.2)
By straightforward substitution into (4.1), we may express the undisturbed velocity
¥; relative to the sphere as

; = Vinael[1 — $(p?sin? 6 + cos? 6)] — 2sL(p*sin 6, + cos 6%;) — L(@%2} + )by — (Ui
: (4.3)

+ This approximation can be shown to be accurate to O(A¢%) in the retarded-motion, nth-order
fluid expansion, cf. Langlois & Rivlin (1963).
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X;A

Fiaure 1. A cross-sectional view of a sphere in an elliptical tube.

where p = By[4,, 8 = D|/Byand { = a/B,. The parameter  is zero for the limiting case
of two parallel plates and unity for a circular tube, whereas s is O(1). The basic theory
neglects wall effects and hence implicitly assumes { to be small.

To consider the migration velocity of the sphere, it is most convenient to use
co-ordinates (z,, z3) defined by the orthogonal transformation

E, = (p*sin® @+ cos?6)~t(cos Oz, + p?sin O zy), } ad
Ty = (p*sin?@ + cos? @)~} — p?sin Oz, + cos Ox,). (44)
The undisturbed velocity may then be expressed as
V: = [a+ By + (23 + 1 2, T3 + $323)] 03— (U))y, (4.5)
where
& = Vyax[1—8%(p?sin?0 +c08%0)], B = Vyax[ —258(p*sin?0 + cos?6)4],
_v _ £(p®sin? 6 + cos? 6) } (4.6)
V= Vmax p*8in? @+ cos?f
_ 2p*p*—1)sinfGcos _ p*(p*sin®d + cos?h)
and = p%sin?f+cos2f ' T* T p8sin?6 + cos?h (4.7)

Equation (4.5) is in the most advantageous form for our present analysis. The ‘ cross-
stream’ direction, in which uniform shearing occurs, is now denoted by z, and ¢, and
¢, are parameters which reduce to zero for the limiting case of two parallel plates.

The approximate procedure which we outlined at the beginning of this section is to
assume the undisturbed flow to be locally two-dimensional so that the results of Ho &
Leal (1976) can be adopted directly. The most natural implementation of this scheme
in the present case is to take the z,, z, plane as the (local) plane of shear, i.e. to neglect
completely the ¢, and ¢, contributions to the shear gradient. The analysis of Ho &
Leal (1976) then gives

(UD); = Byl5(1 +36,)] 85 (4.8)

’
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This is to be compared with the exact result for the migration velocity, which may be
calculated using (3.12) in conjunction with (4.5)—(4.7). After some algebra, we obtain

)=y ([301-+ 300+ 5 (1+e)] b+ Sy (029684 (4.9)

The above expresson, with parameters £ and v, clearly reduces in the limit as p
approaches zero to that of Ho & Leal (1976) for the case of two parallel plates. Further-
more, comparison of (4.8) and (4.9) shows, in general, that the attempt to adapt
directly the two-dimensional results of Ho & Leal to the elliptical-tube problem [i.e.
use (4.8) as an approximation] leads to a predicted migration velocity which not only
has an error in magnitude, but is also in a slightly incorrect direction [cf. the ¢, term
in (4.9)]. This difference in direction is zero for the particular case of a circular tube, but
is significant when the parameter p is about 0-7. For the circular tube, we see from (4.4)
that zy corresponds exactly to the radial direction and hence the sphere migrates in a
straight line towards the tube centre. The difference in magnitude between (4.8) and
(4.9) is then less than 10 %, assuming ¢, = — 0-55 [cf. (3.13)]. For the elliptical tube,
however, the sphere usually describes a curved trajectory in the z;, z; plane which, at
any instant, depends on its radial distance D and orientalion relative to the tube
centre. (On the major and minor axes, the trajectories will be straight lines.) Intui-
tively, it is reasonable to assume that the sphere will move towards the centre, but we
ghall not attempt to provide a rigorous proof here.

The authors thank Dr H. Brenner for two very interesting seminars and subsequent
discussions, which inspired this paper. This work was supported by NSF Grant

ENG74-17590.
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Abstract

The phenomenon of migration of liquid drops in Couette flow be-
tween concentric cylinders due to non-Newtonian fluid properties and
shape deformation has been studied experimentally. The results agree
very well with the theory of Chan and Leal, which included the effect
of hydrodynamic interaction with the bounding walls, and that of
velocity profile curvature in a Couette device. Significant observa-
tions that were not reported in previous studies include the migratfon
of a deformable Newtonian drop to an equilibrium poﬁition between the
centerline and the inner rotor, and the competition between normal
stresses and shape deformation effects for the case of a Newtonian drop

in a non-Newtonian fluid.



Introduction

Previous investigations conducted in our research group have examined
the dynamics of particle migration in shearing flows. In our recent paper
(1), the roles of non-Newtonian rheology and shape deformation on the
motion of a fluid d;bp were é;am}h;a;mbased upon the assumptions of
second-order fluid behavior, and weak deformation. It was found that
the qualitative effects of these two mechanisms depend on the nature of -
the primary flow. ForPoiseuille flow in a pipe, both contributions were
predicted to produce particle motion towards the centerline. For planar
Poiseuille flow, the qualitative effect of non-Newtonian fluid properties
was predicted to remain the same, whereas that of drop deformation was
found to depend on the value of the viscosity ratio between thé two phases
with the result that the droprmight migrate either towards or away from
the walls. For a Couettekf1ow; the migration mechanism is even more
complicated. In this case, both the non-Newtonian rheology and shape
deformation effetts are found to include two terms: one from hydrodynamic
interaction between the particle and the walls, and a second due to the
presence of velocity profile curvature in the Couette device. For non-
Newtonian rhéology alone, the net effect of these terms is predicted to
be particle motion towards an equilibrium position between the centerline
and the outer cylinder. On the other hand, the two contributions from
drop deformation are predicted to result in an equilibrium position for

the particle between the centerline and the inner rotor.

Although our theory for Poiseuille flows agrees very well with exist-
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ing experimental observations (2,3), the predictions for Couette flow
have yet to be verified. In particular, the prediction that profile
curvature will tend to cause a deforming Newtonian drop in a Newtonian
suspending fluid to migrate inwards (i.e. towards the inner rotor) has
not been demonstrated experimentally. In fact, inward migration
in Couette flow has never even been predicted in any previous theory,
regardless of the mechanism of migration that was considered, and has
been observed in experiments only for rigid spheres in a 'pseudoplastic’
fluid. Since our prediction corresponds to drop motion towards the
region of largest shape deformation, whereas all existing experimental
observatidns show migration towards the region of smallest shape deform-
ation, we feel that it is of fundamental interest to experimentally
‘demonstrate the existence of inward higration for a deformable drop in a
Couette flow. - |

In addition, our earlier theory also considered the effect of migra-
tion of a spherical drop due to non-Newtonian rheology of the suspending
fluid or the drop, or both. It was concluded that the drop would migrate
in any of these cases to an equilibrium position between the outer
cylinder and the centerline. The prediétion that non-Newtonian rheology
of the drop fluid alone would lead to particle migration is new. The
predicted migration of a spherical Newtonian drop in a viscoelastic
suspending fluid is also new, though the limiting case of a rigid spher-
ical particle has been considered by several authors (4 - 6). However,
in this Timiting case, the theory is in apparent disagreement with

existing experimental observations (7).
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Finally, for situations which include both non-Newtonian rheolcgy
and drop shape deformation, our theory for a slightly non-Newtonian
suspending fluid appears to be in qualitative agreement with the experiments
by Gauthier, Goldsmith and Mason (8) who studied Newtonian drops in a
viscoelastic suspending fluid. However, their experiments involved only
one system of fluids, and in particular considered only large drop viscos-
ities where the contfibution of deformation to migration is always small
compared to the non-Newtonian contribution. In addition, there have so
far been no experiments on migration which involve non-Newtonian drops,
and in spite of the fact that the contribution from non-Newtonian rheology
is predicted tovbe numerically small-in this case comoared to that due
to shape deformation, this is another area of interest for experimental
study.

In the present paper, we report on experiments that were performed
in our laboratory for the purpose of considering a number of these problem

areas which have not previously been studied experimentally. The objective
of these experiments was both to test the predictions of Chan and Leal un-
der conditions where the theory should be applicable, and to determine the
range of applicability of the theory by extension to the domains of stronger
viscoelasticity and deformation. For each system of fluids, we varied the
drop sizes and gap widths, as well as the shear rates. A general descrip-
tion of the experiments is given in the next section, followed by the re-
sults and discussions.

Experimental :Part. -

1. Description of the Apparatus

The Couette device used in the experiments is illustrated in Fig. 1.

It consisted of a 25 cm section of precision-bore glass cylinder (I.D.
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12.0 cm) fitted onto an aluminum base and sealed with commercial silicone
sealant RTV. A set of four solid aluminum cylinders (radii 1.27 cm,
2.54 cm, 3.81 cm, 4.60 cm respectively) were prepared as inner rotors.
With one of these embedded in the aluminum base by means of a bearing, a
plexiglass 1id was fitted onto the top. By ﬁrecisely matching each in-
. dividual component, we were able to achieve accurate alignment of the
apparatus while at the same time allowing it to be easily dismantled for
maintenaﬁce or change of inner rotors. Only the inner cylinder was de-
signed to rotate; this was accomplished by directly coupling it to a
variable-speed motor and control system, as illustrated, which was
capable of rotation at a constant speed (without fluctuations) at very
low rates of revolution.

To set up the exbériment, a 1 cm layer of mercury was poured onto
the bottom of the tank, which was then filled with the suspending fluid,
leaving only a small air gap between the top of the fluid and the 1id on
the concentric cylinder apparatus. The mercury acted as a nearly inviscid
layer and was used in order to avoid secondary flows and to minimfze any
axial variations in the primary flow. The drops were injected through a
slit in the top of the apparatus using a 4 in. long hypodermic needle
(17 gague) that was fed from a precision micrometer syringe. The drop
sizes in our experiments varied from 5 ul to 50 ul. It was important that
the drop sizes be measured accurately, since the migration velocity varies
approximately linearly with the volume of the drop. The micrometer syringe
which we used was accurate to 0.1 ul. However, an additional source of

error was due to fluid loss when the tip of the syringe was actually pulled
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away from the drop. - By direct observation of the radius of the residual
droplets compared to that of the main drop, we estimated that the resulting
»uncertainfy in the drop volume was always less than five percent.

At the end of each experiment, the fluid drop was allowed to settle
to the bottom of the apparatus (or rise to the top if it was lighter than |
the suspending f}uid), where it would not affect other runs. Although
we had attempted to find fluid systems with closely matched densities, a
small density difference (not 1arge} than 1/200 gm cm'3) almost always
existed, and hence the drop was often found to settle (or rise) out of
the test region within approximately three.hours.* In those few situations
where the densities were 'identical', the drops had to be ‘removed manually
by suction using a large syringe. Thus, in all cases, the suspending
fluid could be reused a number of times before it was replaced.
| It should be noted that our apparatus was designed, for simplicity,
without a constant temperature bath. However, the fluctuations in

temperature are always small in our laboratory. In addition, viscous
dissipation was clearly negligible at the 1ow shear rates used in our
experiments. Thus, the lack of a temperature control device in our
apparatus is not believed to significantly affect the measured results.

Observation of the position of the drop during the experiment was

*It may be noted, however, that these small density differences are not
significant insofar as the migration phenomenon is concerned, and the
fluid drop can still be considered as neutrally buoyant for the purpose
of comparing experimental results for migration with theoretical pre-
dictions. Obviously, this observation is correct only if the sedimen-
tation velocity is small compared to the characteristic velocity, Ga,
of the primary flow, as was always the case in our experiments.
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achieved using a mirror inclined at 45° and positioned directly above the
gap between the concentric cylinders. The plane of the mirror was parallel
to a radial axis of the Couette device. Measurements were made by looking
horizontally into the mirror using a cathetometer as a telescopic device.
The cathetometer was mounted on a platform which could be moved in the
radial direction, and thus we could observe the migration of the drop by
adjusting the position of the cathetometer each time the drop came into
view. The position of its center was then measured using a linear scale
placed directly on the plexiglass top of the apparatus. The margin

of error for this method was approximately 0.02 cm. For comparison, we
note that the drop usually travelled a radial distance of no less than

0.5 cm in the course of a typical run.
2. Materials

Previous éxperiments by Mason and his co-workers (2,3,7-9) on the
migration of deformable drops were performed using various systems of
drop and suspending fluids. In our case, however, the selection of fluids
was considerably more difficult because the drops used in our experiments
were generally larger (as we shall see in the following subsection, this
was necessary to compensate for the wider gaps between the concentric
cylinders when the smaller oflthekinner.rotors was employed), and Hence
the densities of the fluids had to be more closely matched to minimize
the velocity of drop sedimentation. As shown in Table I, éach system con-
sisted of an aqueous phase and an immiscible oil phase. It should be
noted that we used Ucon oil LB-1715 throughout as our Newtonian suspending

fluid because of its desirable physical propefties and easy availability.
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Separan AP-30 (polyacrylamide manufactured by Dow Chemical Co.) dissolved
in water was chosen.as the non-Newtonian suspending. flwid in order to
facilitate comparisons with the previous results by Gauthier, Goldsmith
and Mason (8), who used Cyanamer P-250 (another.brand of PAA).

To compare our experimental observations with theoretical predictions,
it was necessary to estimate the interfacial tension and fluid viscosities
for each system listed in Table L. The interfacial tension was obtained
by determining the shape of the drop for one run at low shear rates, and
calculating the interfacial tension using the formula for drop shape due
to Taylor (10). For this purpose, a camera was used to record the exper-
iment on videotape, after which the lengths of the drop's major and minor
axes were measured. The velocity gradient in the Couette device at the

radial position of the drop center, Ro’ was calculated from the formula

Q. R? RZ
it I ) 32
2 ,2 2

for a device with appreciable curvature (1)T Although this procedure was
somewhat inaccurate, as we shall discuss in more detail below, the fluid
systems used in our experiments all had closely matched densities, and thus
'conventional' methods of measuring interfacial tension cou]d not be

applied directly. In particular, both the pendant drop and spinning drop

tFor the remainder of this paper, we adopt the same notation as used in

(1).
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methods involve expressions for the interfacial tension which are linear
in the density difference between the two fluids, and will therefore not
give accurate results if the density difference is extremely small.. The
du Nouy ring method cannot be used for the simple reason that a 'good’
interface cannot often be formed between two fluids with nearly equal
densities. In these cases, the interfacial tension must be obtained by
the tedious procedure of extrapolating from measurements on fluids with
nonzero density differences, as shown, for example, by the recent work of
Kovitz and Yannimaras (11). In contrast, the calculation of interfacial
tension from a measured drop shape is obviously much simpler. However,
the procedure is, at best, an approximate technique since Taylor's theory
assumed linear shear flow and Newtonian rheology, whereas profile curva-
ture and non-Newtonian fluid properties were both present in our experi-
ments to determine interfacial tension. As a partial justification of
its use here, it may be noted that Taylor's expression suffices as_a

valid first approximation for the drop shape, provided that the particle

size-to-gap width ratio is small, and the viscoelastic effect is weak

(1). Both conditions were satisfied in the experiments which were used

to determine the interfacial tension, and the value of the deformation
parameter & = auOG/o was always less than 0.2. In addition, it was

shown by Gauthier; Goldsmith and Mason (8) that the discrepancy

between theory and experiment for the deformation of a slightly non-New-
tonian drop (1.5% po]yacry1amide in wa?er) in a linear shear flow was only
approximately 10% for values of the deformation parameter & up to 0.2,

in qualitative agreement with our predictions. Finally, the results

obtained here for systems 3 and 5 are consistent with the values obtained
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.independently in our laboratory using the du.Nouy tensiometer for a Similar-
system of 1% Separan AP-30 and Ucon 0i1 LB-135 (o = 5 dyne cm']),.which
has a nonzero density difference (12). Thus, although it is difficult to
quantify the accuracy of interfacial tension values listed in Table I,
we believe that they are always within at least 15% of the exact value.
The viscosity of each fluid was measured using a Cannon-Fenske visco-
meter. This device is clearly adequate for Newtonian materials; on the
other hand, for fluids with shear-dependent viscosities, there may be
some doubt as to the correct interpretation of the‘measurements. We
estimate that.the shear rate that applies for a typical Cannon-Fenske
~viscometer is always 1es§ than 0.1 s'], and hence'most measured values
- may be taken as the viscosities of the fluids in the limit of zero shear.
The theory of Chan and Leal'(l) assumed that the viscoelastic fluids
could be modelled as second-order fluids. In our case, there are no
reported measurements in the literature on the rheological properties of
aqueous Carbopo] to test the applicability of this assumption. However,

for 1% Separan AP-30, it appears (8, 13, 14) that the viscosity actually

1

reaches a constant value at a shear rate of 1 s~ or less, which was

always satisfied in our experiments. In addition, rod climbing experi-
ments performed by Beavers and Joseph (15) for 1.5% Cyanamer P-250 in a
glycerine-water mixture were well correlated by their second-order fluid

1

theory for rotation rates of less than 10s” ... Thus, it appears that 1%

Separan AP-30 should behave as a second-order fluid under the condi-
tions of our experiments. However, as we shall show later, this assump-
tion appears to break down in the vicinity of the walls.

The zero-shear viscosities of Separan AP-30 solutions measured in
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this study (listed on Table I) were lower than those published by Leal,
Skoog and Acrivos (13), and by Blanks, Park, Patel and Hawley (14), but
'agreed' with those of Gauthier, Goldsmith and Mason (8). In addition
all three batches of solutions that were used had different viscosities,
depending on the degree of agitation during mixing. However, it is well
known that the rheological parameters of polymer solutions may change

if the modes of preparation are different. Thué, the observed variations
are not surprising, and the material properties of all three batches of

- Separan ‘AP-30 in our experiments are qualitatively consistent with one another.

3. Conditions of the Experiments

One of the objectives of our present investigation was to observe
the qualitative effect of velocity profile curvature on the migration of
a fluid drop in Couette flow. Thus, for each system listed in Table I,
we performed migration experiments using several different inner cylinders.
When the largest rotor (R1 = 4,60 cm) was used, the fluid's motion in the
Couette apparatus could be approximated as a linear shear flow, i.e. the
effect of profile curvature, though nonzero, was small. With decreasing
rotor size, curvature became increasingly important. In fact, when the
smallest rotor (R] = 1.27 cm) was used, the shear rate varied by a factor
of ten acroés the gap, with the result that a drop which was nearly
spherical when released néar the outer wall would be increasingly

~deformed if its migration was toward the inner Wa11.. Indeed, with

too high rotor speeds, and an inward direction of migration, some drops
even brecke up before reaching their equilibrium position. We did not
measure the value of the deformation parameter & at which breakup occurred

for each different system listed in Table I, but for the case of
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a non-Newtonian drop in a Newtonian suspending fluid, it was estimated
that the critical value of § was approximately 0.6. This agrees

with the observations of Gauthier, Goldsmith and Mason (8) for a moderate

viscosity ratio « - =-——ﬁ, but it is generally agreed that the critical

value will be much higﬁerif x is quite large or quite small. For our
systems, when breakup occurred, the drops-usually deformed into long
threads which extended around the inner rotor, and then separated into
smaller droplets when the apparatus was stopped.

In the theory of Chan and Leal (1), both the deformation parameter §

and the non-NéWfOnian-parameters A and X were assumed te be much less

than unity. For each particu1qr experiment, we could calculate directly

the value of 6. However, we did not measure the normal stress coefficiént

¢53 rather, i (or X) was estimated by comparing the equilibrium positions pre-
dicted with those actually obtained {cf. Section 2 in 'Results and Discus-
sion'). In practice, the inferred mégnitudes of A (or X) were often of

order unity, though the corresponding theory is’only valid for X << 1.. One
main reason for relaxing the conditions of small &, A and X in the experiments
was that they had to be carried out in a finite period of time, before
secondary effects (e.g. drop sedimentation, partia]ﬁsolubility between the

two fluid phases) became important. In addition, it was desired to test the
usefu1ness‘of our theory be&ond the asymptotic regime of § +0, A~ 0,

A+ 0 for which it is strictly valid. The values of &, A and X evaluated at
the centerline of the Couette device for each experiment are‘listed in the

captions to the figures.
In addition to & and A, the size of the drop must also be small

relative to the width of the gap in order for the theory to be applicable.
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Using the micrometer syringe, it was not possible to inject drops that
were smaller than 5 pl in volume. Thus, the drop radius was always larger
than 0.1 cm. When the largest rotor was used, the drop éize to gap width
ratio was approximately 0.1. For a larger gap, the size of the drops, as
well as the angular velocity of the rotor, was also increased so that the
migration velocity would remain finite, though in no case did the drop
radius-to-gap width ratio ever exceed 0.1.

It is clear that flow instabilities (e.g. Taylor vortices) must not
be allowed to occur in the Couette apparatus. For systems 1-3 in Table I
where the suspending fluid was Newtonian (Ucon 0il1), the maximum Taylor
number was approximately 30, well below the established critical value of
3390. When the suspending fluid was Separan AP-30, the effect of visco-
eTastigity on stability must be considered. In these experiments, inertial
effects were negligible compared to non-Newtonian fluid rheology, and the
relevant stability analysis is that of Giesekus (16) for a viscoelastic
fluid. Since the non-Newtonian parameter A was always below its predic-
ted critical value of approximately 3.5, no instability should be expected

and, indeed, no evidence of an instability was observed.

Results and Discussion

1. A Newtonian Drop in a Newtonian Fluid

Previous experiments on the migration of a Newtonian drop suspended

in a Couette flow of a Newtonian fluid were reported by Karnis and Mason



(9) for water drops in silicone oil. For a narrow gap, the drop was ob-
served to migrate to an equilibrium position which was very close to the
centerline of the Couette device. However, no .equilibrium positions were
reported for larger gap widths. Since the theory of Chan and Leal (1)
predicts that profile curvature is an.important factor in determining the
equilibrium position of a drop in Couette flow, We have repeated the Karnis
and Mason experiments using water drops suspended in Ucon qil LB-1715
‘(which had the advantage over the previous systems that the densities were
more closely matched) in order to study carefully the effect of profile
curvature by systematically altering the size of the inner rotor, while
holding the size of the outer cylinder fixed.

In all cases, the drops were observed to migrate towards an equilib-
rium position which was between the centerline and the inner cylinder.
Furthermore, the equilibrium position was near the centerline only for
the case of a 'narrow gap' Couette device. As the profile curvature
increased, the equilibrium position moved closer to the inner cylinder.
These observations are in qualitative agreement with the predictions of
our theory. In Fig. 2, we plot the experimentally measured and theoret-.
jcally predicted'trajectories of the drops for each rotor size. The
solid 1ines were obtained by summing the wall reflexion and profile

curvature contributions, and then integrating to give [cf. (8.4) and (8.5)

of Chan and Leal (1)J,
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_ dog IS ds ,
T =299 O] (1]
Ho SO L{s . '
where
244 | |
2(s) = 1R Jat 1 112 3016 + 196) (54 + 976 + 54c°)
(R3 - R]) & Eg Eg 4480(1 +« )3
2 3, .3
1 I +2(1 - 25)] _2(4 + 61k + 85¢° + 25¢°) a 2]
[;21 (1 -5s) : 7(2 + 3«)(1 + K)2 EE-.

e - C e — e ———— o o >

The material parameters g, H,» K were already ljsted in Table I, whereas

a, R], R2’ Ro’ d were all measurable for any particular Couette flow
geometry. Thus, for each migration experiment, we couldAprédiét the
trajectory of the drop after numerically integratingrfll. Under ideal
conditions (asymptotically small drop deformation and velocity profile
curvature) when our theory is expected to be valid, the accuracy of the
prediction depends mainly on the accuracies to which the interfacial ten-
sion o and the drop volume can be measured. Thus, for each predicted
trajectory, the value of T as a function of position is accurate to
within 20%. In addition, the actual measurement of (dimensionless) drop
position s may have an error of + 0.02.

We have plotted the measured and predicted trajectory for each migra-
tion experiment in Figs. 2a-2d. The corresponding value of the deformation
parameter, 8, is listed in the captions. For cases 2a and 2b where the gap
of the Couette device is small, the agreement between theory and experiment
is extremely good, even though § is as large as 0.684. We conclude, from
this, that our deformation theory for a quadratic shear flow between two par-
allel plane walls is valid at least up to 6 ~ 0.7. On the other hand, when
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smaller inner rotors were used (cases 2c¢ and 2d), the theory begins to
break down, as expected, even for smaller.values of 5. Clearly, in these
cases, the wall reflexions procedure for two parallel plane walls is no
Tonger valid, 1in spite of the fact that the qualitative agreement
between theory and experiment is still quite good. Furthermore, it
should be noted that the predicted inward migration rate for these cases
is always smaller than the experimentally measured values. This dis-
crepancy may be attributed in part to the fact that the contribution to
migration from hydrodynamic interaction with the inner rotor is over-
estimated when the radius of the inner rotor is small, since our calcula-
tion is based on two parallel plane walls. In addition, it seems

likely that the effect of the outer cylinder will actually.be larger than

that predicted for a plane wall located at the same distance.

2. A Viscoelastic.Drop in a Newtonian Fluid

There have been no previous experiments on the migration of a vis-
coelastic drop suspended in Couette flow of a Newtonian fluid. For the
present investigation, we chose two aqueous polymer solutions as drops
and Ucon o0i1 LB-1715 as the suspending phase (Systems 2 and 3 in Table I).
The migration effecté for these systems were expected to result from a
combination of drop deformation énd non-Newtonian rheology.

Qualitatively, it was found that there were no changes in the be-
havior of the drops from the previous Newtonian case where the only migra-
tion mechanism is shape deformation, i.e. they migrated to an equilib-

rium position which was between the centerline and the inner cylinder.
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However, by comparing the experimentally measured equilibrium positions
with those predicted by the Newtonian deformation theory, it is evident
that the non-Newtonian properties of the drop fluid were playing a non-
trivial role in the migration process. The predicted magnitude of this
contribution for a second-order fluid is given by (5.10) and (5.20)Aof
Chan and Leal (1). If we sum the separate deformation.and non-Newtonian
terms (letting E] =- 0.60; our results are not sensitive to the exact
magnitude of E],‘as long as it is within the generally accepted range of
-0.5 to -0.6 as discussed iﬁ Leal (17)), and integrate, we again obtain

[13, where in this case

2,44
Q2RIR 4 2 )
R Ja* 1. 3 54.2)
I(s) = + (16 + 19«)(54 + 97« + 54«
R -5)%\d (Eg Eg) 4480(1 +x ) [
+ 8(33.8 + 63k) 530 []' - 1 +2(1 - zsﬂ - 2 >
' al [ (- )7 21(2 + 36)(1 + «)
5 o 3
. |3(8 + 61c + 856 + 25&%) - 8.8 2 | A [3]
ay RO

In the above expression, the first term is due to the presence of the
bounding walls, and will always contribute to migration towards the center
of the Couette device. The second term comes from profile curvature, and

has two contributions which tend to oppose each other, with the net effect
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kX

depending on the parameter ( 3 ) which measures the relative

importance of deformation and non-Newtonian effects. Under 'normal' con-

ditions, it can be shown that the deformation term will g]ways dominate
g
jtself was

numerically. Thus, despite the fact that the parameter

auo

quite large in our experiments (cf. values of § and X in Figs. 3 and 4),
the equilibrium position is again predicted to be between the centerline

and the inner cylinder, in agreement with the experimental observations.
In order to predict the detailed trajectory of the drop, we still
e . d50 .
need a quantitative estimate for the parameter - - This may be accomp-
Ho

lished. by measuring ¢3 directly for any particular non Newton1an fluid

gthat is used (e.g. using a Weissenberg rheogon1ometer or by means of rod climb-
ing experiments). However, an alternate method which we have used here is to
observe that the function Z(s) is zero when the drop is at its equilibrium
position, so that ¢, may be estimated indirectly from [3], all other variables
:being measurable experimentally. Although this means that the predicted and
measured equilibrium positions are forced to coincide, the theory is still

. subjected to two reasonably stringent tests by this procedure. First, the
inferred values of 63 can be compared with existing literature estimates ob-
tained via normal stress or other measurements. Second, the measured trajec-
tories can be compared with [1] and [3]. The fact that the final equilibrium
position is forced to coincide does not insure that the rest of the |
trajectory will be correctly predicted unless the theory is, in fact,

correct. For 1% Separan AP-30 solution (batch a), we find that a value

of 53 equal to 54 dyne secz cm'2 provides a good fit to the experimental
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data for the present case of a viscoelastic drop in a Newtonian fluid, as
well as for the next case of a Newtonian drop in a viscoelastic fluid.
This value is consistant with existing estimates of the normal stress
coefficient of Separan, as we shall show in the next section. In
addition, the fact that one value of 63 can be used to match the trajector-
jes of both sets of experiments is an extremely stron confirmation of the
theory and of its applicability under conditions of the present experiments.
The predicted trajectories for a Separan drop in Ucon oil, using 53 = 54
dyne secz cm’z, are compared with experimentally observed ones in Fig. 3.
With the exception of two cases in (3b) and (3c), the fit between data and
predictions is excellent. In the latter two cases, the experimentally
measured inward migration rates were smaller than our thedretical predic-
tions, in contrast to our observations in the Newtonian-Newtonian problems
of the previous subsection. Hence, this discrepancy must clearly be
attributed to non—Newtoniab effects alone. In addition, it should be
noted that the disagreement between theory and experiment is large only
when a wide gap Couette device is used, and when the shear rate (hence the
value of X) is high. Since the wall reflexion procedure in our theory de -
pends critically on the assumption of two parallel plane walls, it may be
hypothesized that the predicted wall contribution to the migration of a '
non-Newtonian drop in a wide gép Couette device is suspect (and, in fact,

always overestimates the wall effect) when A is larger than 1.5. This hypo-

thesis will be discussed in more detail in the final section of this paper.

For 0.1% Carbopol in water, the procedures outlined above yield an es-
. ';30 - . 2
timate for " of 1.4 cm, in which case ¢4 1s approximately 22 dyne sec
cm™2 Yo ‘
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This is certainly a reasonable va]ﬁe-of 63 for a dilute polymer solution,
although there are no previous experiments that we could locate on the
rheological properties of Carbopol in water. The predicted trajectories
with $3 = 22 dyne sec2 cm’2 are plotted together with the observed trajec-
tories in Fig. 4. From the apparent consistency between theory and
experiment, it appears that our second-order theory for drop migration is
applicable even though there are no definitive indications (from rheologi-
cal measurements) that 0.1% Carbopol in water should obey the second-order
fluid model at the shear rates used in the experiments. Once again, the dis-
crepancy between theory and experiment becomes larger when the shear rate and
curvature are increased, which is consistent with our previous observations.

xZ -

3. A Newtonian Drop in a Viscoelastic Fluid

To supplement the previous work by Gauthier, Goldsmith and Mason (8)
on drop migration in Couette flow of a non-Newtonian fluid, we have performed
additional experiménts usihg fluids of different viscosities and a systema-
tic variation in the size of the inner rotor. The predicted trajectories of

the drop are again obtained as before. In this case, for €y = -0.6, we have

s) = + 3(16 + 19«)(54 + 97 + 54
(—T"gz)‘z‘ & (Eg Eg) 4480(1 + k)° .

+

2(324.8 + 1234.8« + 1700.4¢ + 866<°) _2-][_2 (———)Z +2(1 - ngl
S - S

- _1 . [18(4+61!<+ g5¢ + 25:3)
63(2 + 3¥)(1 + K

3
(99.2 + 451.2« +714. 48 + 294 3) _f]-a-g (4]
RO (-
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In contrast to our conclusions in the previous two subsections where the
contribution due to drop deformation is numerically dominant, in the
present systems the effects of deformation and non-Newtonian rheology
are comparable in magnitude, and hence the equilibrium position of the
drop (whether it is closer to the inner or outer wall) will critically

depend on the material properties of the fluids. In fact, for a given
¢3U ¢
a

viscosity ratio «, we may calculate a value of the parameter

a
uO

which the second term in [4] changes sign, with the result that the

equilibrium position of the drop moves from one side of the centerline
$q0

to the other. These critical values for are listed as a function

a
Yo

of k in Tab]e 2.

Our exper1menta1 results were in fact in good agreement with the pre-
dicted trajectories. Indeed, by comparing the measured and predicted trajec--
tories, we estimate that ¢; is approximately 60 dyne sec® cn™? for batchb of

-2

1% Separan AP-30 in water, and 68 dyne sec2 cm © for batch c. These estimates,

"2 £or batch a, which is used here

together with the value of 54 dyne sec2 cm
as well as in the last subsection, appear to be self-consistent since the
intrinsic time scales of all three batches (i.e. ;3) are then approximately
2 sec. Furthermore, they are also consistent with the measurements by Bartram,
Goldsmith and Mason (18) for 2.5% PAA in water [cf. Leal (17)], and with the
calculations by Chan and Lea] (1) for the 4% solution. The experimental data
and pred1cted tra3ector1es for Systems 4 and 5 are shown in F1gs 5 and 6

It should be noted, for some situations in wh1ch a silicone 011 drop
(System 4) migrated outwards at the start of the experiment, that it would

reverse its direction of motion after approximately half an hour. We
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attribute this occurence to a change in the relative magnitudes of the
deformation and non-Newtonian contributions, which is reflected in a

$,0
decrease of the parameter —%—. Clearly, a change in the temperature within

u
o
the Couette device could cause this phenomenon; however, viscous dissipa-

tion is negligible in the present experiments. A much more plausible
explanation, based upon observations of the shape of the drop at-

different time intervals, is that the interfacial tension between Separan
AP-30 and silicone 0il 510 fluid is gradually decreasing during the experi-
ments. Most probably, this change in interfacial tension is due to a

very slight solubility of polyacrylamide molecules in the silicone oil.
Since the relative magnitudes of the deformation'and non-Newtownian rheology
contributions to the migration velocity are closely competitive in the

' present situation, a slight decrease in the value of the interfacial tension
could easily cause a 'reversal' in the direction of migration. Estimates

of the interfacial tension from photographs of the drop shape'at the point
of reversal indicated that the decrease in interfacial tension was as large
as 20% before reversal occurred. It may be noted that a much larger de-
crease (threefold) had been reported by Grace (19) for another presumably
immiscible system. In any case, we have omitted the portions of the

| trajectories where reversal occurred from Fig. 5.

It may appear at first that our results in this subsection are in
qualitative disagreement with those of Gauthier, Goldsmith and Mason (8),
who for a similar system always observed equilibrium positions which were
between thevcenterline and the outer cylinder, with no reversal in the

direction of particle motion. However, we note that the radii of the



drops in the previous experiments were smaller than ours by a factor of
three, plus the viscosity of the suspending fluid (1.5% PAA in water) was
also considerably lower. In their case, then, the contribution due to

drop shape deformation was clearly minimized, as evidenced by a larger value
$.0

of 3_ Thus, Mason's experiments were carried out in a regime where non-

il
Newtonian rheology was dominant, so that the equilibrium position of the drop
was between the centerline and the outer wall, as expected. Qur experiments,
on the other hand, included both non-Newtonian rheology and drop shape deform-
ation effects of comparable magnitude (cf. the values of § and A listed in
the captions to Figs. 5 and 6), and hence the equilibrium positions could be
on either side of the centerline. This observatfon may perhaps be best illus-
trated by considering specifically Figs. 5a and 6c, where the experimental

: u
conditions were identical except for the viscosity ratios -ggand the values

4’35 - ¢30
of the parameter —=~. For silicone 0il 510 fluid (uo = 1.1p), —5= equals
au, au, '

1.92, which is greater than its critical value of 0.98, and hence the equili-
brium position is closer to the outer cylinder, as expected. The inverse was
true for Ucon oil LB-1715. Thus, in spite of the fact that the observed
equilibrium positions for our systems are different from Mason's, the results
are not contradictory as might first appear to be the case. In fact, both
Mason's results and the present results are qualitatively consistent with

the predictions of Chan and Leal (1). The case of dominant drop deformation

was considered in the previous two subsections.

Concluding Comments

We have performed experiments on drop migration in Couette flow which
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have been compared with the theoretical predictions of Chan and Leal (1).
" For the case of a deformable Newtonian drop in a Newtonian fluid, the .
equilibrium position was always between the centerline and the inner wall.
If non-Newtonian rheology was then included, the equilibrium position moved
outwards. The effect of velocity profile curvature was to determine
quantitatively how this would occur, i.e. for larger profile curvature, the
equilibrium position was further away from the centerline. Of coﬁrse, the
rate of migration depends on the numerical values of all the material
parameters of the fluids in any system that ié used.

In spite of the qualitative success of the drop migration theory, one
important difficulty remains to be resolved, namely the fact that the wall
contribution to non-Newtonian migration appears to be always overestimated.
This discrepancy manifests itself most distinctly in the Timiting case of
migration of a rigid sphere in a viscoelastic fluid, where Karnis and
Mason (7) observed migrétion to the outer wall for a sphere in 4% PAA in
water, whereas our theory predicts an equilibrium position between the
outer wall and the centerline. Recent experiments performed in our labor-
atory using polystyrene spheres and 1% Separan AP-30 showed the same
behavior as the earlier results of Karnis and Mason. Another apparent
manifestation of the same difficulty is the apparent discrepancy between
theory and experiment for the migrétion rates of drops when x (or X) is
not vanishingly small, as we noted earlier in this paper. - Indeed, careful
examination of the results of Gauthier, Goldsmith and Mason (8) also shows
the same problem. One plausible explanation of the apparent difficulty

with the theory for estimating wall effects in a viscoelastic fluid is
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that the influence of viscoelasticity is greatly increased near the walls,
so that the second-order fluid expansion may not be expected to be valid
in that neighborhood even though the flow is 'slow' in the domain far from

the walls. Flow visualization experiments by Sigli and Coutanceau (20)

for sphere sedimentation near finite boundaries in a tube tend to

support this hypothesis since the viscoelastic effects were found to be

large even though the nominal Weissenberg numbers were extremely small.
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Table 1T
$30
;“2‘

K u0 cr
0.01 0.80
0.1 1.30
1 2.02
10 1.66
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Figure Captions

Fig. 1: Schematic view of Couette flow device. a: precision bore glass
cylinder; b: aluminum rotor; c: aluminum base; d: brass
supporting rods; e: bearings; f: mercury layer; g: suspending
fluid; h: plexiglass 1id; i: scale; j: coupling; k: variable

speed motor; 1: wood panel.

Fig. 2: A comparison of experimental trajectory with theory (—) for
1

System 1. (a) R, = 4.60 cm. O, a = 0.134 cm, @ = 0.269 5™,
5=0.459. (b) R, = 3.81 cm. W, a=0.134 cm, @ = 0.269 s71,
§=0.238; 4 a=0.139 cm, o = 0.537 5™, 5= 0.684. (c)
Ry = 2.54 cm. O, a = 0.134 cm, @ = 1.05 s”1, 5= 0.358;

A, a=0.193 cm, @ = 0.537 s71, §=0.263. (d) Ry =1.27 cm.
5, a=0.193 cm, @ = 2.11 5™, § = 0.278; o, a = 0.229 cm,

Q = 2.11 s71, 5= 0.330.

Fig. 3: A comparison of experimental trajectory with theory (—) for
System 2 (assuming 53 = 54 dyne 2 emd). (a) R, = 3.81 cm.
0, a=0.134 cm, @ = 0.537 5”1, 6 = 0.182, i = 1.97; W,
a=0.134 cm, 9 = 0.269 s™', 6 = 0.091, X = 0.98; 4, a = 0.193 cm,

Q, = 0.537 s}, 6 =0.262, % = 1.97. (b) Ry = 2.54 cm. O,

1
a=0.134 cm, Ql = 0.537 5-1, §=0.070, A = 0.759; A, a = 0.193 cm,

2, = 1.05 sl §=0.197, 2 = 1.49. (c) Ry = 1.27 cm. 4,

1

1.05 s~ 0.399; o, a = 0.229 cm,

0.127, A = 0.803; O, a

a = 0.193 cm, Ql , 6§ = 0.053, A

n

0.229 cm, 9, = 5.11 s~1,

_ -1
= 21157, 8
§ =0.307, A = 1.9.



Fig. 4:

Fig. 5:

Fig. 6:
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A comparison of experimental trajectory with theory (—) for
System 3 (assuming 53 = 22 dyne 52 cm'z). (a) Ry = 4.6 cm.
v, a = 0.106 cm, 2, = 0.269 s, §=0.164, X = 3.16; m,

a=0.13 cm, @ =0.269 s™', 6 = 0.207, X = 3.16. (b) Ry = 3.81 cm.
Y, a=0.106 cm, @ = 0.269 s, & = 0.085, X = 1.64; 7,

a = 0.106 cm, 9, = 0.537 5™}, & = 0.169, A = 3.27; @,

a=0.161 cm, £ = 0.537 ™, 6 = 0.257, & = 3.27. (c) Ry = 2,54 cm.
O, a=0.134 an, @ = 1.05 5™}, 6 = 0.161, A = 2.46; A,

a=0.193 am, @ = 0.537 s™1, 6 = 0.119, X = 1.26; 4,

a=0.193cm 9 =1.05s7), 6=0.232, % =2.46. (d) R} = 1.27 cm.
8, a=0193cm @ = 21157, 6 = 0.126, 3 = 1.33; o,

a=0.229 cm, @ = 5.11 5™, 6 = 0.361, A = 3.22.

A comparison of experimental trajectory with theory (—) for

System 4. (a) R1 = 2.54 cm. Batch b (¢3 = 60 dyne s2 cm'z).

0.0524 s™1, § = 0.035, A = 0.068; &,

= 0.105 s1, § = 0.071, A = 0.136; A, 2, = 0.262 571,

a=0.229 cm, o, Ql
!
§ =0.177, A = 0.340. (b) R1 = 1.27 cm. Batch ¢ (¢3 = 68 dyne

2 0.240, A = 0.562;

s an?). v, a=0.106 cm, 9, = 2.01 sl s

e, a=0.229 cm, @ = 1.03 s7l, 5 =0.265, 2 = 0.288; ¢,

a = 0.229 cm, 9, = 0.524 sl 5 =0.135, A = 0.147.

A comparison of experimental trajectory with theory (—) for

System 5. (a) R, = 4.60 cm. Batch a (¢3 = 54 dyne 52 cm'z).

v, a = 0.106 cm, 9, = 0.0524 s™1, & =0.002, A = 0.371.
(b) Ry = 3.81 cm. Batch 2,0, a = 0.134 cm, 9 = 0.105 s71,
§ = 0.120, A = 0.386; A, a = 0.193 cm, 9, = 0.0524 s,
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§=0.086, A = 0.192; b, a=0.229 cm, @ = 0.0524 s1, 5= 0.102,
A =0.192. (c) Ry = 2.54 am. Batch b (45 = 60 dynes® em"2).
a=0.229 cn, e, Q. =0.0524 s™1,56=0.048, A = 0.068; o,

1

Q, = 0.262 s™1. 5 = 0.239, A = 0.340.
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