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ABSTRACT

The basis for interpreting I-V data taken on metal-insulator-metal
structures with insulator thicknesseé of leés than 100 &8 is examined
carefully. A set of experimental tests for.determining the applicabil-
ity of the equafion iinking the I-V data to the E-k curve is presented.
Tﬁese tests are found to be a stringent requirement on the experimental
data and to support strongly the interpretation of the experimental I-V
in terms of the E-k curve for the insulator. A numerical technique for
obtaining the E-k curve from I~V data is presented, and appliéd to data
taken on Al-AIN-(Mg,Au) structures where it allows the evaluation of the

E-k curve for AIN throughout the forbidden gap.
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I. INTRODUCTION

The study of the character of electronic wavefunctions for energies
in the foibidden gap of insulators = and semiconductors” by examining
tunneling currents in meﬁal-insulator-métal (MIM) and metal-semiconductor
(MS) structures is cﬁrrently of much interest. The dominant character-
istic of these wavefunctions is the rate at which they are exponentially
attenuated with distance. This rate is described by an attenuation con-
stant k; the variation of k with electron energy is described by the E-k
curve. The E-k curve is a fundamental property of the single electron
states in an insulator or semiconductor; consequently, it is useful in
characterizing the nature of the material.

When a crystalline insulator or semiconductor is used in these stud-
ies, the measured E-k curve is a portion of the energy band structure for
complex k.g-l * Thus, an accurate measurement of the E-k curve presents
the opportunity for a detailed comparison of the theorétical band struc-
ture with experimental data.

Some of the insulators used in these tunneling studies are disor-
dered (possessing no well-defined crystalline lattice). 1In these cases
the E-k curve does notbcorrespond to a complex band structure since in a
13,14

strict sense none exists. However, recent calculations by Fletcher

using the Greenian formalism introduced by Phariseau and Zimanl5

*This is strictly true only if the presence of the metal electrodes does
perturb significantly the periodic potential of the lattice. Only spa-
tially varying potentials need be considered since a uniform potential
only changes the zero of the energy. The size of these perturbing spa-
tially varying potentials cannot be reliably estimated since the nature
of the metal-semiconductor or metal-insulator interface is not complete~
ly understood. However, it is surmised from a number of other experi-
ments that the effect of these perturbing potentials is small.
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indicate that a band structurelike classification of the single particle
energy spectrum in disordered materials is appropriate. In this descrip-
tion the electron states in the forbidden gap would be described in much
the same way as the elecfron states -in the forbidden gap of crystalline
material. Thus, the expression for the tunneling currents are much the
same and the E-k curve calculated from the experimental I-V data is a
relevant quantity in a discussion of the electronic properties of the
amor phous materials.

From the discussion above it is clear why much interesthas been andis
developing in obtaining E-k curves from experimental I-V data. However,
several problems have prevented this program from being carried to com-
pletion on any significaﬁt number of materials. These problems are
closely intertwined. The theorists on one hand arerfqyced by the com-
plexity of the problem to use simplified models to derive expressions
for the tunneling current which rely heavily upon the experimental re-
sults both to define their regions of validity and to provide many of
the parameters in the model. On the other hand, the experimentalist is
faced with not only determining whether or not the I-V data he is taking
is tunneling at all, but must also find if he is in the range of valid-
ity of the simplified model. This stép must precede any attempt to in-
terpret his data. However, in the past few years, this somewhat bleak
Situation has been changing for the better. Due to some excellent ex-
perimental studies of tunneling both in insulators and semiconductors, a
somewhat phenomenological - but self-consistent - ﬁodel of tunneling
currents in insulators and semiconductors has been emerging. In fact,~

the experimental data and the somewhat phenomenological model it has
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fostered makes it desirable to méke real attempts at obtaining accurate
E-k curves from tunneling I-V data.

In this thesis, we present a brief derivation of the above-mentioned
model for the tunneling éurrent. A detailed technique which allows the
unscrambling of the E-k curve from the I-V data is presented. In addi-
tion we present a series of criteria which must be satisfied by any ex-
perimental data before it is of sufficient quality to justify attempts
at obtaining the E-k. Finally, this technique is applied to the data
taken by LewickiS’4 on Al-AlIN-(Mg,Au) MIM structures, where it allows us

to obtain the E-k curve for AIN throughout the forbidden gap.
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II. DISCUSSION OF TUNNELING CURRENTS IN MIM STRUCTURES

Consider the MIM structures as illustrated in Fig. 1. For insula-
tor thickness, t , less than 100 R and for temperatures such that ther-
mionic emission over the barrier and thermal~tunneling emission through
the top of the barrier can be neglected, the dominapt mechanism of cur-
rent transport through the insulator region is tunneling. This tunneling
current can be divided into two parts: an elastic term in which the
electron tunnels without any change in energy, and an inelastic term in
which the electron interacts with an elementary excitation (i.e., pho-
- non, magnon, etc.) during the tunneling process. The inelastic contri-
bution to the tunneling current involves the product of the tunneling
probability and the coupling strength of the elementary excitation of
the tunneling electron. Therefore, the relative strength of the inelas-
tic contribution as compared to the elastic contribution is gauged by
the coupling strength of the elementary excitation to the tunneling elec-
tron. In most cases this coupling strength is small; consequently, the
inelastic term may be neglected in a discussion of the tunneling current
and the evaluation of the E-k curve. The elastic tunneling current from
metal 1 to metal 2 (see Fig. 1) in the independent particle approxima-

tion is given by the expression

Ilﬁz(V) = e3, Rate fl(Ea)(l—fz(Eb)) (I1-1)
a,b a-b

where the Rate is the rate of transition from state‘a in metal 1 to
a~b ,
state b in metal 2. fl(Ea) is the Ferfmi factor for metal 1 and fz(Eb)

is the Fermi factor for metal 2. The sums in Eq. II-1 are taken over

-
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Figure 1. Schematic diagram of a metal insulator metal structure
and the wavefunction of a tunneling electron.
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all the states a in metal 1 whicﬁ are capable of carrying charge toward
the barrier and all the states b in metal 2 which are capable of carry-
ing charge away from the barrier and have the same energy as the state a.
A similar expression holds for the tunneling current from metal 2 to

metal l. Consequently, the total current is given by the expression

IT(V) = e, Rate fl(Ea)(l-fz(Eb)) - Rate fZ(Eb)(l—fl(Ea)) (1I1-2)
a, b a-b b-a
Time reversal invariance implies the existence of states such that
Rate, = Rate; therefore, we have

a-b b-a

IT(V) = e}, Rate (fl(Ea)-fz(Eb)) (11-3)
a,b a-b
This is the fundamental equation to be used in discussing single
particle tunneling in MIM structures. In order to proceed, definite
models must be assumed for the nature of the metal and the insulator,
and the dependence of the rates on the states in the metals and insula-

tor. Henceforth, a standard modell6’17

will be used in deriving the
gquation used.

In the standard model the metal and insulator are assumed to be
crystalline in nature. The band structure of the metals is assumed to
be a single free electron-like band. The interfaces between the metal
and the insulator are assumed to be sharp; specular reflection is as-
sumed at both interfaces. Thus, we can replace the sums in Eq. II-3 by

integrals over the k-space correspon&ing to the single bands in the

metals. Thus,



I (W) = 2evv, Rate (F.(E )-£. (E.)) (11-4)
T @ ) (21)3 ab L& 200

where V1 and V2 are the volume of metal 1 and metal Z, respectively. In

obtaining Eq. II-4 we have used the two-fold spin degeneracy of each

state but assumed that the spin is not flipped during ﬁhe transition.
Consider the rate from a to b. This rate is given by

Rate = FaT(a’b)“E JE (I1-5)

a—b b

where Fa is the flux of electrons incident on the barrier in state a
given that state a is occupied, and where T(a,b) is the probability of
transition from state & to state b given that the electron is incident

upon the barrier. is the Kronecker delta resulting from conser-

&
N B
Ea’ b

vation of energy. The flux of electrons in state a, Fa , is given by
A
= e I11-6
F v ( )

where A is the area of the interface and Ve is the component of the
group velocity of an electron in state a perpendicular to the plane of
the interface. (The coordinate system used throughout this discussion
is shown in Fig. 1.) 1In principle, T(a,b) can be obtainéd by matching
solutions of the Schrodinger equation in the insulator to state a in
metal 1 and state b in metal 2. However, in practice this is much too
difficult a thing to do. Nevertheless, it is possiblé to obtain an ép—

proximate form for the wavefunction which is veryruseful in determining
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the nature of the transition rate. |

Let us consider the form of the wavefunctions in the crystalline
insulator. If we consider only the potential due to the periodic lat-
tice of the insulator, then the usual application of Bloch's theoremlo
implies that the wavefunctions of’interest in the insulator region are

of the form
b ) = U (e "1 e ®om o~ (11-7)
o

where kx is in general complex since the energies of the tunneling elec-

trons lie in the forbidden gap of the insulator. x denotes (y,z) and
~\

k denotes (ky,kz). U n(x) is a function which has the periodicity of

~1l

the lattice. The index n in Eq. II-7 labels the various solutions with

k}

~

energy E. When an external potential, o(x), which is only a function of

X , is applied in the insulator region, the wavefunction can be approxi-

mated by the semiclassical approximation.% In this approximation the
state of the electron locally is taken to be that which is appropriate
to an electron with energy E. This approximation is valid as long as
the potential varies sufficiently slowly so as not to change the charac-
ter of the wavefunction. This approximation is very closely related to
the WKB approximation but differs in that Bloch states are used as a

basis for the approximation instead of plane waves. Thus the wavefunc-

tions are of the form

*Recent calculations by Felx:htwangI8 indicate that when a more rigorous
approach to the problem is taken the results are essentially of the same
form. ' '
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X
- 1] ]
0

where we have assumed that Uk n(x) does not vary widely with k.
S0 s ~

~

The computation of T(a,b) can be divided into four parts:

D The wavefunction for state a in metal 1 is matched oﬁto
a state in the insulator with the same energy as state a
at the interface between metal 1 and the insulator.

2) The wavefunction in the insulator is required to vary
according to Schrgdinger's equation until the second
interface between the metal 2 and the insulator is
reached.

3 The wavefunction at the insulator metal interface is

matched onto state b in metal 2.

4)  Finally, T(a,b) is computed from

!dydz | § (==t) ]2
T(a,b) = (11-9)

j,dydziya(x=o)l2

Proceeding with this recipe we take the states at the interface

between metal 1 and the insulator to be

(II-10)
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1 ik *x
= B N” ~”
by ?Tn(kxi,n(xn Uy, n e
' x (I1-11)
T 1
expl i J kxi,n(En’E-$(X ))dx
0

where Wa is the wavefunction of the electron in metal 1 and ¢T is the
wavefunction of the electron transmitted into the insulator. In Eq.
I1-11 we take the positive imaginary part of kxi,n' Thus, we are ne-
glecting multiple reflections. This approximation is excellent due to
the large attentuation of the amplitude of the wave reflected at the
second interface.

Assuming that the lattice is cleaved parallel to a plane of the
crystal with rational indices, a set of lattice vectors can be chosen
such that two of the vectors of the reciprocal lattice are contained in
the cleavage plane. Let {gp} be the lattice vectors spanning the two
dimensional lattice defined by the reciprocal‘lattice vectors in the
plane parallel to the cleavage plane. The pe?iodicity of Uk)n(f)'in Y,

~

and z implies that

ig °"x
U (x=0,x ) =3TA e ~1~l (II-12)
k,n ~li n,q
~ q
aUk,n(x=o,x ) ig -x
s mmp et @1-13)
>
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where An and Bn . are in princi?le coefficients which can be calcu-
3 2

lated. The sums in Egs. II-12 and II-13 run over all the two dimensional

reciprocal lattice vectors. Applying the boundary conditions

§&=0T) = §(x=0")

(I1-14)
W07y = Lo

we obtain two results. First, the planar nature of the interface implies

that

=k ., +g (11-15)

K :
~ja  ~t o 2p

whexe g pis the reciprocal lattice vector of the two dimensional lattice
which brings kHa into the first Brillouin zone of the lattice. Second,

we obtain an expression for Tn , the amplitude for the electron in state

a to enter the state denoted by n,

1 3

?n = Zlkxa(G )p,n(kkiﬂ£o)) (I1-16)
where
Gn,p = 1(kxa+Kgi,n(o))An’P+Bn,p

is.the matrix which results from the matching. In Eq. II-16 the index

p is that which denotes the reciprocal lattice vector used in II-15.
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o=k
The variation of the factor (k . (x)) =
xi,n

with x in Eq. II-11 has been
neglected. (Its variation with x must be small to make the semiclassi-
cal approximation appropriate.) This completes step 1 of the procedure
outlined above.

The second step in the procedure is automatically satisfied since
Eq. II-11 is an approximate solution to Schrodinger's equation. Appli-

cation of similar techniques to steps 3 and 4 yields after some alge-

braic manipulation

d3ka
v B T(a,b) =
2 (2:rt)3 Ea’Eb
* % _39;
2 [kxi,n(t)kxi,n(o>kxi,n'(t)kxi,n'(o>]~
l6kxaE 2 r 7
o n,n'l‘ i(k_, (t)+k_ )Cn,r-D
xi,n Xy n,r J

(11-17)

t
exp j%r (kxi’n(E-@(X’))-kxi’n(E-@(x'))dx'
o <

[_l(kxi,n'(t)+kxb)cn',r‘Dn',r ]

where the sum r runs over those indices defining reciprocal lattice vec-

tors such that g_ = k , -k -

E =E . .
Sr ~ib ~Ha§p ’ By b aﬁd for the given values of

k and E k is real. 1In Eq. II-17 Cn

<b b’ “xb and Dn . are coefficients

2 2

(analogous to those appearing in II-12 and II-13) appearing in the expan-
Uy

£,n
ions of U X ,t d e t£).
sions o k,n(—n’ ) an . C§H’ )

Exact evaluation of Eq. II-17 is impossible, and would not be desir-

able if possible (see below). However, we expect the imaginary part of
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k to vary widely with n. Thus, the terms in Eq. II17 will be domi-~

xi,n
*
nated by the term for which the imaginary part of kxi 0 is minimum.
2

Due to the exponential dependence of the terms in Eq. II-l17 on the ima-

ginary part of kxi 0 the sum in Eq. II-17 can be approximated to high
L

accuracy by taking only the largest term in the sum. If we let £ denote
the value of n for which the imaginary part of kxi o is minimum, then

J

Eq. II-17 reduces to

.dBkb

2) gy Eamy 0
L
161%2{3 [lkxiw(t)iz!kxi,z(o)iz] ) l(G_l)p,ﬂlz (11-18)
1 t
r ‘[i(kxi)z(t)H{XE)Cz}r_Dz’r]12 exp | -2 § Imkxi}z(x')dxl

To simplify the notation the subscript 4 and the Im indicating the ima-

ginary part will not be indicated in the following calculations. Hence-
. . . ¢ -

forth, kxi will denote the imaginary part of kxi,z

In experiments performed so far on samples with metallic electrodes,

there is no indication that the pre-exponential factor in Eq. II-18 is

7"It is improbable, but conceivable, that the term which dominates in
Eq. I1I-17 is a function of energy. DNone of the presently available ex-
perimental data gives any indication of the presence of such an energy
dependence.

“Variations in the pre-exponential factor have been observed in experi-
ments on samples with semimetal electrodes at low temperatures (2°K) .
These variations result from the many band edges near the Fermi level of
the semimetal.
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rapidly varying (affecting the shape of the I-V curve drastically) or
significantly different from one (affecting the magnitude of the cur-

rent). Consequently, we will take

¥ t

d3kb -ff;kXi(x )dx
o]

V2 e e

& T(a,b) = (I1-19)
(2ﬂ)3 Ea’Eb
Substituting these results in Eq. II-14, we have
r
ZeA '
I.(V) = dE exp| -2 k. (k ,E-~p(x'))dx
T XL~
(Zﬂ) 0
(11-20)
(£, E )£, €))
where we have restated all the functional dependence of kxi . Eq. II-20
can be simplified slightly by defining
E(x) = E-op(x) (11-21)
Then Eq. II-20 becomes
- i £(t) 7
oo s i -,
IT(V) h dE, 3 exp 2 dg == d§ x (k ,5)
@ (o)
(11-22)

(fl<Ea)-f2 E,) )

This is the equation which will be used to determine the E-k curve from
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the current-voltage data for a given structure.

Many assumptions have been made in obtaining Eq. II-22. Conse-
quently, it is important to see how these assumptions might affect the
E-k curve determined in this manner. These assumptions cam be divided
iqto two groups. In this first group are those assumptions which change
the nature of the pre-exponential factor in Egq. II-22. The nature of
the states in the metals and the approximation of the factors in Eq.
I1-18 are included in this group. These assumptions will influence the
determination of the E-k curve only when the true pre—exPonenﬁial fac-
tors differ greatly in dependence on voltage and energy from the aSSumed
dependence. Constant factors lead only to an offset in the E-k curve
which can easily be removéd by requiring the E~k curve to approach zero
as E approaches the allowed bands of the insulator. Small differences
in the energy dependence or bias dependence of the pre-exponential fac-
tors from the dependence above will lead to corrections in kxi on the

order of

Ak, - -21-5 log 5 (V,E) C(11-23)
where O8(V,E) is the ratio of the assuﬁed dependence to the correct de-
peﬁdence. For representative values of t(= 30 X) and kxi(= .33 8 -l),
8(V,E) = 3 produces only a 6% change in kxi'

The second group of assumptions consists of those which affect the
exponential factor itself. This group consists of: the use of the semi-
classical approximation for the wavefunctions in the insulator, and the

assumption of specular reflection at the interface. Both of these
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assumptions must be conSidered‘carefully since as indicated above the
exponential factor governs the behavior of the tunneling current. The
semiclassical approximation is valid'if the change in the magnitude of
the "wavelength" (in this case it may be coﬁplex) per unit length is

small compared to one, that

d 1
& (mei(X) | < | (I1-24)

or

d 1 ) do
P — (11_25)
by ke OT ol < |

This condition is easily satisfied for most tunneling experiments. For

example, for representative values of kxi(= .38 -l) and
dkxi
dE

(= .2 ev '-R7Yy, the inequality in Eq. II-25 is satisfied if
%% < .45 eV -Rﬁl . For a sample which is 30 2 thick this implies a
~total bias (built-in plus applied) of less than 14 volts. This condition
is satisfied for the biases applied in most tunneling experiments. When
‘kxil is small, inequality II-25 may not be satisfied rigorously. How-
ever the modification to the assumed form of the wavefunction due to the
breakdown of the WKB approximation is predominantly in the pre-exponen-
tial factor.

The assumption of specular reflection at the interface links toge-
ther the parallel component of the propagation vector across both of the
interfaces. On the other hand, diffuse reflection would cause a mixing

of the various parallel components of the propagation vector in going
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across the interfaces and would result in a change in the pre-exponential
factor by the addition of a function weighting the various E . As noted
above there is no evidence thaf any pre-exponential factor affects the
current in a significant manner. Consequently, the question of diffuse
or specular refiection at the barrier interface is really not settled by
the measured I-V, and it does not form a serious obstacle in the determi-
nation of the E-k curve.

Thus, we see that in spite of all the assumptions necessary to de-
rive Eq. II-22 it is very useful and accurate for obtaining E-k curves
for insulators. However, the most convincing justification of Eq. IT-22
is the fact that most of the dependences in Eq. II1-22 have been verified

experimentally.



-18-
I1T.DISCUSSION OF TECHNIQUE FOR SOLVING THE INTEGRAL EQUATION
To obtain the E-k curve, we must solve Eq. II-22, given I as a
function of V. Before attempting a solution to Eq. II-22, it is neces-
sary to know both the thiékness of the insulator region and the shape of
the external potential distribution as a function of applied voltage.
These quantities must be determined from independent experiments. Thus,

all of the parameters and functions in Eq. II-22 are known except for

i (K08

One of the more successful techniques for solving integral equa-
tions of the form of Eq. II-22 is a method which is analogous to Newton's
method for obtaining the roots of a nonlinear equation.

.This method consists of using the integral equation to correct an
initial guess iteratively until the solution is obtained to the desired

accuracy. In order to see how the correction is predicted from the inte-

gral equation, consider the functionalé{?&efined by

Lot 0D Ty D = Ty I -1,) (111-1)

where Iexp(v) is the experimental value of the current and IT(V) is

given by Eq. I1I-22. rom Eq. III-1, it follows that the solution is at-

tained whengf?z 0 . Let

(o] - J 8_] k = ' -2

pi (e 0D = K, (D8I, (K ,E) (1T1-2)
J . . N .th

where 6kxi(k“,§) is the correction necessary to make the j corrected

S - o
E-k curve, kii(&“,g), equal to the solution, kxi(gu,g).
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Now consider

o]
"{{ kXi(%n’@’Iexp(v)} )
3 ] -
Oﬁkxi(inyg) + -OkXi (E”’g)’lexp(v)}— 0

"Expanding Eq. III-2 in a Taylor's series, we find

O{{kiiai“’%)’lex;a(v)} fd k d§~60<k g)SkJ (K ,E) + oo =0  (III-4)

is the variational derivative of the functional,d<fi

(111-3)

where

B (<58

with respect to the function kxi(k”,g) evaluated at
= 13 -
e (5, 08) = K5 (6 D) (I11-5)

Neglecting the higher order terms in Eq. III-4, we have a linear inte-

gral equation for the correction to kii(kn’g) 5

2 ) : |
fd k diék o Bl (K 58) = Z{ kxi“i,,’5>’1exP<V)} (I11-6)

I ) xi

or formally

| | -1
j o [ 2K i
d kxi@iu’ £ de Skxi (EH »E) %{ kXi (En’g) ’Iexp(v)} (I11-7)
6,( -1

where is the inverse of the integral operator in equé-

(k :%)

tion III~- 6 and satisfies the relation
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- 1 .1 — 1 1
ek, (x, (k ,E) = B(E-E)B(k -k ) .
2 G | B (0D = B(E-EB ok D)

th
Equation I11-6 together with the procedure for obtaining the j+1 cor -

rected value from the jth, defined by the equation

i+l

k™,
xi

1 - ]
k = k7 (k + Bk I11-8
(N“:g) Xi("’il’g) Xi(l.injg) P) _ ( )
forms the basis of an iterative procedure which allows determination of

kxi(kn,i) to any accuracy desired.
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1V . NUMERICAL SOLUT ION

Before discussing in detail the numerical solution of Eq. II-22
using the technique outlined in section III, it is necessary to discuss
in more detail some of the aspects of Eq. II-22. First, we will consider
the form of the potential, o(x), in the insulator. Several factors,
image force, space charge, and field penetration into the metal, can
cause deviations in the form of the potential from>the simple trapezoidal
barrier. All of these effects have been shown to be small and can be
neglected. The discussion given by Thornber, et 31.21 indicates that
the static dielectric constant is appropriate in the discussion of
image force effects upon the barrier shapé in this type of tunneling pro-
cess. The relatively large value of the static dielectric constant of
insulators makes the correction to the barrier shape due to image forces
negligible. The possibility of space charge changing the shape of the
barrier can only be ruled out by careful experimental study of the insu-
lator region. However, the relatively large density of charged centers
(NNlOlgl/cm3) required to change the potential by a significant amount
({p~.1eV) for the thicknesses encountered in tunneling samples (t£~30 ﬁ)
makes it improbable that enough 8pacé charge would exist ih the insula-
tor to produce significant changes in the barrier. Thus, we will ne-
glect the influence of space charge upon the shape of the Barrier. Field
penetration into the metal modifies the barrier shape only overrdistances
of a few XngstrOms near the metal electrode, and its effect is smallz.z’23
Thus, it will be neglected. Consequently, we will take the barrier to
21

be trapezoidal in shape as indicated in Fig. 2.

The temperature dependence'of the tunneling current in MIM
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Figure 2. Schematic diagram of metal-insulator-metal structure
with the various parameters in the expression for the
tunneling current defined. :
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structures plus simple calculatioﬁs of tunneling currents in MIM struc-
tures indicate that in all structures the temperature dependence of the
current can be eliminated by going to sufficiently low temperatures.
The temperature at which this condition is reached depends upon the E-k
curve and the value of the applied voltage. However, for E-k curves
similar to the one for AIN (discussed below) little error is made in
applying the T=0 limit to the data taken at room temperature.. Thus, we
take T=0. This assumption can be relaxed with some difficulty in the
numerical calculation; however, it is more convenient for the experiments
to be performed at temperatures such that the approximation is wvalid.

As pointed out in section II, the tunneling current is dominated
by the behavior of the exponential factor. This factor varies widely
for small changes in kxi' Consequently, it is possible to approximate
the exponential factor about its maximum in EH without imposing upon the
E-k data any arbitrary costraint which is not already imposed by the
limitations in the accuracy of the I-V data itself. 1In order to approxi-
mate the behavior of the integral in the exponent about its minimum as a
function of E , the dependence of kxi(En,g) on EH about this minimum
must be ascertained. Using the results of the analytic form which have

been obtained in the calculation of Kane9 as a guide, we take
kz (k ,B) = g(&) + a (Iv-1)
xit~y’ I

where g(£) is an arbitrary function. &, a dimensionless constant in
Eq. IV-1l, allows us to take into account anisotropy between directions

in the insulator parallel and perpendicular to the plane of the interface.
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Using the above assumptions plus the definition of the various variables
defined in Fig. 2, Eq. II-22 reduces to

v cpz-}—E ~V

Aelx ’ -2t
5 (sz -Qpl-V) dE exp

th(250) ) (e =y V) -
1

L) = k(£)dEg (1V-2)
where k(€) = /g(&) . In deriving Eq. IV-2, we have taken V < o) and
V < Eg-@l where Eg is the energy gap of the insula#or. This condition
requires that the electrons tunnel through the constant thickness por-
tion of the barrier only and not through the triangular part of the trap-
ezoidal barrier. Of course, the current for higher voltages has informa-
tion about the E-k curve in it. However,-for these voltages the varia-
tion in the thickness over which some of the electrons tunnel masks the
information about the E-k curve. Thus, it is desirable to attempt to
sue the I~V data for V > ¢ 5 Or v > Eg-qﬂ in obtaining the E-k curve.
Applying the technique outlined in section III, we have the set of

equations corresponding to Eq. III-6 and III-8.

COR JNAD =f GV, E)Bk (2)dE (1V-4)
al(V)
and
Wy = W@+ sd (IV-4)

to be iterated to obtain a solution for the E-k curve. G(V,E) is de-

fined in Table I where



25-

' ~2
T(8,V,E) = —2— qal{lan) e £ (1v-5)
h@n’ OLA“VfE’ Corem  |®e
and
cpz+E-V’
= L(V,E) = exp ?ngééjvjpf‘ dg'k(E") (Iv-6)
1 Qpl+E
cpzﬂ—E-V
B t de '
F(V,E) = e (1V-7)
(@2'@1"”/ k(E")
cpl-i—E

The values of al(V) and aZ(V) are given in Table II.
A computer program was written to carry out the technique described

above. This program is discussed in some detail in Appendix B.
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V. CRITERIA FOR EXPERIMENTAL DATA
A number of electron transPQrt mechanisms in addition to the tun-
neling mechanism described here mighﬁ be responsible for the dependence
of the current on voltage observed for a Mlﬁ structure with a thin insu-
lating layer. Cbnsequently, it is necessary to make a number of experi-
mental checks to see if the simple tunneling model is applicable before
any attempt is made to interpret the I-V characteristics in terms of the
E-k relation for the insulating layer. While it is not possible to rule
out experimentally all mechanisms for electron transport exceﬁt the me-
chanism discussed here, it is possible to test a given set of experimen-
tal data with certain stringent criteria to check the applicability of
the model. These criteria are:
1. All of the parameters entering into the model except for
the E-k curve itself must be determined by experiments
independent of the actual tunneling experiments.
2. I~V data should be available on tunneling samples with
different thicknesses and different metal electrodes.
The E-k relation determined from the I-V data on these
different samples must agree (within some reasonable
limit of error) in the energy range where the I-V data
give a reliable determination of the E-~-k relation (see
section VI).
3. The i-V characteristic should have been measured upon a

sample with one of the metal electrodes in the supercon-
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oL

ducting state. The supercoﬁducting gap of the metal elec-

trode must be observed in this Giaever tunneling experiment.

Lef us discuss briefly these various criteria. A wide enough va-
riety of experiments can’be performed on MIM structures to make it pos=-
sible to satisfy criterion one. The area of the sample may be deter-
mined by measuring the dimension of fhe metal electrode using a micro-
scope. The thickness of the insulating layer may be determined from the
capacitance of the sample in conjunction with the measured area. Photo-
emission experiménts25 in which electrons are excited in the metal elec-
trodes by monochromatic radiation and then traverse the insulating layer
allows the determination of both the barrier energies, ©; and Q- The
barrier energies may also be determined by studying the I-V characteris-
tics of samples with insulating layers which are thick enough to make
thermal excitation of electrons over the barrier the predominate me-
chanism for current transport through the insulator.26 The degree to
which the results of the photoemission studies and the studies of the
thermal currents agree with those expected when the insulating layer is
described by a trap free layer and the barrier is described by a trape-
zoidal shape barrier gives a measure of how accurately the model used
here describes the insulating region. Large deviation527 from the re-
sults expected should be examined carefully to determine what aspect of
the model is causing‘the deviation and what effect the variation in this
aspect from the assumed model might have upon the tunneling current.

Criterion two provides a very strong check on the model itself. If

*The author is grateful to C. B. Duke for pointing out this test in his
unpublished manuscript. '



-33-

the E-k curve is independent of the thickness of the insulator, then we

have experimentally verified that the equation for the tunneiing current
has the correct dependence on the thickness of the insulator. It is im-
probable that any mechanism-for current transport through the insulator
other than tunneling would have this precise thickness dependence. 1In
addition, the variation of barrief potential <@1 and qﬁ) with the metal

electrode allows us to verify experimentally the energy dependence in

the equation for the tunneling current without ¢han01ng the applied bias.
If the experimental data satisfy this requirement, then the two major
dependences in the model have been experimentally verified.

In addition to these important checks on the applicability of the
model provided by this criterion, it eliminates the possibility of sev-
eral errors which may seriously affect the accuracy of the results. The
accuracy of the E-k curve is directly proportional to the accuracy of
the determination of the thickness of the insulator. Thus, c;ose agree-
ment between the E-k relation obtained for samples with different thick-
nesses implies that the determination of the thickness of the sample by
using its capacitance is accurate.

The variation of the E-k curve from sample to sample puts an upper
bound upon the fluctuations in the thickness of the insulator over the
area of the sample. To illustrate this point and to demonstrate how the
criterion under discussion eliminates the possibility of this type of
error, consider the following model; Let the structure consist of vari-
ous areas Ai with insulator thickness ti . The capacitance of this

structure is given by
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A,
C = ez;;L (v-1)
i i
or
1

C = ¢cA <t>

where A is the total area and
1 1
=) = = T A -2
& T ThY (v-2)

Thus, the capacitance measures the average value of the inverse of the

thickness. Now consider the tunneling current

IT(V) = ;}AiJ(V,ti) ‘ v-3)

i
where J(V,ti) is the current density for an applied voltage V and an in-
sulator thickness ti . It should be noted that J(V,ti) is exponentially
dependent on ti . Thus, its dependence on thickness is vastly different

from the capacitance. If we attempt to force V-3 to be of the form
IT(V) = AJ(V,t) V-4)

there will in general be no simple relationship between the t appropriate

. to Eq. V-4 and that obtained from Eq. V-2 unless all of the areas have
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very nearly the same thickness. Thus, if large fluctuations in the
thickness of the insulator_existed across the sample area, the E-k curve
could not be determined from the I-V aata since the appropriate thick-
ness would be undetermined. On the other hand, if the E-k for samples

of appreciably different thickness is found to be the same when the
thickness as measured by the capacitance of the sample is used in Eq. V-4,
we can be assured that the thickness fluctuations are small.

The dependence of the E-k relation on the metal electrodes of the
sample gives an excellent check on the combined importance of fhe metal
electrode's band structure and the spatially varying part of the electron
potential introduced by the metal in the insulator in determining the
tunneling current. Both of these factors have been neglected in the de-
rivation of Eq. II-2. Thus, only small variations in the E-k curve for
various metal electrodes would indicate that these factors are indeed
negligible.

The third criterion provided  another verification that the mechanism
of current transport through the insulator is tunneling. Successful ap-
plication-of this test rules out a large number of non-tunneling mecha-
nisms. However, this test does not rule out tunneling mechanisms dif-
fering from the mechanism described here. Thus, criterion three does
not replace criterion two, but compliments it.

Thus, using the above criteria, it is possible to determine whether
or not the model used here is applicable to measurgd current-voltage
data. 1If all of the above tests are satisfied, then it is highly improb-

able that the model is inappropriate.



-36-
VI. EXAMPLE
To illustrate the technique described above, and to demonstrate its
usefulness in-obtaining E-k curves from I-V data, we have applied this
technique to the I-V data taken by Lewicki et al. on Al—AlN—(Mg;Au) MIM

structures. ’

There are two reasons for selecting thesedata. First,
the data form a well-documented case of tunneling through an insulator
(most of the criteria of section V were checked); second, it is not valid
to interpret the tunneling current through the Al-AIN-Au structures in
terms of the standard approximate expression528 because of the large
width in energy of the distribution of tunneling electrons. Consequent-
ly, interpretation of these data presents a worthwhile test of the tech-
nique discussed above.

Let us review briefly the relevant properties of AILN. Disordered
AlIN, used in the sbove mentioned structures, is an insulator with a 4.2
eV band gap. In disordered materials, & (see section IV) may be taken
to be one by symmetry. Electron barrier energies of 1.53, 1.68, and 3.0
eV are formed at the inﬁerface between Mg, Al, and Au, (respectively),
and AIN. A detailed description of the experimental structures and the
various tests performed on the experimental data to test the validity of
the tunneling model can be found in references‘ 3 and 4.

The initial guess for the E-k relation used in the numerical, self-
consistent aﬁalysis of the I-V curves for the AIN structures was taken

to be the two band model,

-
ol

k(E) = ze (Eg»E)E (VI-1)
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where m is the mass of the electfon, m* is the effective mass of the ma-
terial, Eg is the band gap and A is Dirac's constant. The values of m*
and Eg were taken to be .45, and 4.2 eV, respectively. These values are
approximately those that Lewicki3’4 found in his determination of the E-k
curve for AIN for energies less than 1.8 eV.

First, consider the tunneling current through the Al1-AIN-Mg struc-
tures. In Fig. 3, the experimental I-V for a 36.6 R thick ALN layer is
presented. Applying the self~consistent technique discussed above to
these I-V data, we obtain the points on the E—k? relation (kz is plotted
instead of k to make it possible to measure the effective mass near the
valencé and conduction band easily) represented by the circles in Fig. 4.
For comparison we have also included the initial guess curve in Fig. 4.
It is noted that the calculated points fall very close to the initial
guess. This is merely an indication of how close Lewicki's values were
and does not represent how close one must be to self-consistency before
the technique works (see discussion of the Al-AIN-Au I-V data given
below). To demonstrate how close to self-consistency the E-k2 relation
obtained in this manner is, we have plotted in Fig. 3 the I-V curve cal-
culated from the points on the E-kz relation given in Fig. 4. The agree-
ment is excellent. |

To indicate the relative importance of the contribution to the tun-
neling current of electrons with various energies below the Fermi level
of metal 1, we define D(E,V), the distribution in energy of the tunnel-
ing electrons as a function of applied bias V. As illustrated in Fig. 5,

D(E,V) is the relative number of electrons per second tunneling through

the insulator at a given energy, E, below the Fermi level of metal 1.
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figure 4. The E vs. kz curve for AIN obtained from the I-V data in
Fig.3. The solid circles are relevant calculated points; the open
circles are-calculated points which should be disregarded (see text).
The solid line is the E-k% curve for the two band model with
m*% = .45, and Eg = 4,2 eV.J
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Dué to the zero temperature approximation, D(E,V) is non zero only for
0 <E <V . These distributions are useful in studying two points.
First, they indicate when the approxiﬁation schemes which assume that
the distribution of tunneiing electrons is éharply peaked about the Fermi
level of metal l-are éppropriate. Second, they tell us what partsﬁof
tﬁe E—kz relation are determined accurately by the I-V data.

Let us consider this second point in more detail. The self-consis-
tent method described here attempts to determine the E-kz relation for
all the epergies which are involved in the tunneling process f?om the
complete I-V curve. However, the distribution of tunneling electrons
maybe such that not all energies contribute a detectable fraction of the
current for any voltage; consequently, that portion of the E-kz curve
which is involved in the tunneling of electrons with these energies can
not be obtained from the experimental data. Studying D(E,V) for various
biases allows us to ascertain what portions of the E-k curve are accu~
rately determined and what portions are merely remanents of the initial
guess.

In Fig. 6 we show D(E,V) as a function of energy for thrée biases,
0.5, 1.0, and 1.6 volts. It should be noted that the current distribu-
tions are very sharply peaked about the Mg Fermi level in all three
cases. Eighty per cent of the current is carried by electrons whose
energies are within 0.4 of an eV of the Mg Fermi level. Thus, approxi-
mate methods for obtaining the E~-k which assume that the distribution of
the tunneling electrons is very sharply peaked about the Fermi level of
the metal are appropriate in this case.

Careful study of the distributions of tunneling electrons shows

~
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that the portion of the E-k relation for energies greater than 1.8 eV
does not contribute significantly to the determination of the I-V char-
acteristic. Consequently, we expect the calculated points for energies
greater than 1.8 eV to be.very inaccurate. In fact in this calculation,
they remain almost precisely at their initial value. To insure that
these values of the E-k curve do not affect the determination of the E—kg
relation for energies less than 1.8 eV, the self-consistent analysis was
carried out using values from the solid curve in Fig. 10 as the initial
guess values of the E-kz relation. The self-consistent analysis yielded
values of the E—k2 relation for energies less than 1.8 eV which were
identical with those previously obtained, and for energies greater than
1.8 eV which were identical with the initial guess. Thus, we can disre-
gard the points on the E-kz curve for energies greater than 1.8 eV.

Now consider the Al-AlN-Au structure. 1In Fig. 7, the I-V curve for
a 30 & Al-AlN-Au structure with the Au+(is shown. In this case the I-V
curve is ohmic for biases less than one volt. Furthermore, the large
barrier height of Au on AIN allowé the possibility of significant con-
tributions to the tunneling current by electrons tunneling with energies
just above the Fermi level of metal 2 (Au). These two points lead us to
expect distributions of tunneling electrons with large energy widths.
Thus, the approximate techniques are not applicable. This is a very
serious limitation since the wide distributions imply that the I-V char-
acteristic contains information about the E-kz relation for energies all
the way to the valence band of AIN. However, the self-consistent tech-
nique discﬁssed here allows the interpetation of these data. 1In Fig. 8 we

2 , :
present the points on the E-k curve obtained from a self-consistent
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F%gure 8. The E vs. k curve for AIN obtained from the I-V data shown

in Fig, 7. The solid circles are calculated points. The solid line
is E-k” curve for the two band model.with m* = .45 and Eg = 4.2,
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‘analysis of the I-V data. For compafison we have again presented the
curve used as the initial guess. The degree of self-consistency between
the experimental I-V points and the I-V curve calculated using the points
on the E—kz curve shown in Fig. 8 is shown in Fig. 7. Again the agree-
ment is excellent.

In Fig. 9 we exhibit D(E,V) for the Al-AlIN-Au structure for three
different biases. The qualitative difference in tﬁe nature of the dis~
tributions of the tunneling electrons is evident on comparing Figs. 6
and 9. In the Au structures much of the tunneling current is carried by
electrons with energies far from the Al Fermi level. In fact, for 2.40
volts applied bias, a significant fractioﬁ of the current is carried by
electrons tunneling with energies slightly above the Fermi level of the
Au. These very wide current distributions lead to the ohmic behavior of
the Au structure for biases less than one volt, and the breakdown of any
approximation scheme based upon expansions about the Fermi level.

In this case the E—kz relation is determined accurately all the way
to the valence band. The points on the E—kz relation for energies
greater than 1.8 eV differ significantly from their initial guess values.
The values are significant in determining the I-V characteristic of the
Al-AlIN-Au structure; consequently, they cannot be disregarded.

In Fig. 10 we present the composite E—kz relation for AIN formed by
combining the accurate points in Figs. 4 and 8. For comparison we have
plotted also the points on the E—k2 curve for AIN obtained by Lewicki et

a1,3’4

from his analysis of the I-V data on Al-AIN-Mg structures. The
agreement between all sets of values in excellent. At the present time

no detailed theories of the electronic spectrum of disordered materials
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Figure 10. The composite E vs. k curve for AIN. The triangles are the
- results of the analysis of the Al-AlN-Mg I-V data. The circles are the
results of the analysis of the Al-ALN-Au I-V data. The squares are the

results of Lewicki-et al.'s analysis of the Al-AIN-Mg I-V data. The
~solid line is a smooth curve through the points.
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exist. Thus, it is impossible to give a detailed discussion of the E-k2
curve shown in Fig. 10. However, the E-kz curve is consistent with a
picture of AIN having a rather broad éonduction band with an effective
mass of .42 and a very nafrow valence band Qith an effective mass of ap-
proximately one.' On éomparing the initial guesses in Figs. 4 and 8 with
tﬁe composite E-kz curve in Fig. 10, we conclude that the composite E~k2
curve cannot be represented by any two band model (see Eq. VI-1) with a
single effective mass and an energy gap of 4.2 eV. This points out even
more clearly the necessity of not assuming any specific form fér the E~-k

curve when attempting a general discussion of the tunneling.
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VII.CONCLUSION

In this thesis we have examined carefully the basis for interpret-
ing the I-V data on thin (thickness < 100 X) insulator MIM structures in
terms of a E-k curve for the insulator. The equation used to link the
I-V data to the E-k relation was derived in a semi~-rigorous manner making
use of a simplified standard model. However, as indicated at the end of
section II, the exact form of the final equation IS unimportant as long as
the exponential dependence of the tunneling current én the integral of
the imaginary part of the propagation vector in the insulator is pre-
served. Because of the rather shaky theoretical position of the equation
relating the I-V curve to the E-k curve, we presented in section V a de-
tailed set of criteria for determining if a given set of I-V data is in-
terpretable in terms of this model. It was found that if the experiméA—
tal data satisfied these criteria, then the important dependences of the
model on the thickness of the insulator and the energy of the tunneling
electron is verified experimentally. However, the satisfying of these
criteria does not completely rule out the possibility that the model is
inappropriate. But it makes it improbable.

In section III and IV we presented a detailed numerical technique
for obtaining the E-k curve for experimental I-V data regardless of the
form of the distribution of the tunneling electrons producing the cur-
rent. Section VI presents the results of the application of this tech-
nique to the data taken by Lewicki et al.?’4 on AIN. The technique is
found to be exceedingly successful. It allowed the determination of the
E-k curve throughout the forbidden gap of the AlN,vwhich cannot be accom-

plished by any of the approximate techniques.
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APPENDIX ‘A. DERIVATION OF THE EQUATION IV-3

By definition (Eq. III-1)

d gk@),lexp(wé = Tap -1 (M)

where IT(V) is given by Eq. IV-2. Let us consider

o

Bk (E)

(A-1)

The most

straightforward way of computing this variatioml derivative is to let

k(E) - k(&) + Bk(E)

(A-2)

then lipearize the resulting expression in 8k(£). Then we note that the

linear term in 8k(E) is of the form

sk §
/g{@; Bk(£)dg

Performing this procedure on Eq. A-1, we obtain

i B iE-v
[g%% Bk (£)dE =/ dE/ E T(E,V,E)BK(E)dE
[e] cpl+

Interchanging the order of the integration gives the results

Eq. IV-3 and Table I and II.

(A-3)

(A-4)

indicated by
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APPENDIX B.b COMPUTER PROGRAM
The main purpose of the computer program described in this appendix
is to make the computations necessarf to solve Egs. IV-3 and IV-4, iter-
atively. All of the compﬁtations except thé solution of the integral
equation involve-straightforward computer programming. Consequently, we
sﬁall only discuss in some detail the solution of the integral Eq. IV-4
and leave to the listing of the program the answering of any questions
of a more detailed nature.
To solve an integral equation of the form
aZ(V)
AI(V) = 1exp(V)-IT(V) G(V,E)8k(E)dEg (B-1)
al(V)
numericaily, we must replace it by a finite set of linear equations.
This is accomplished by approximating the integral on the right hand
side of Eq. B-1 by one of the approximate integral techniques (Simpson's
rule, Gaussian integration, etc.). In our case, Simpson's rule was most
appropriate. Thus, Eq. B-1 can be approximated by

AI(Vj) = G(vj,éi)ék(ii) (B-2)

ke

1

where V_  is the value of the voltage at the N mesh points, gi is
J

the value of € at the N mesh points; and

where AZ is the mesh size in & and Ci is the appropriate constant for
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Simpson's rule. Rewriting B-2 in matrix notation, we have
GOk = AL (B-4)

where BE is the column vector of ?k(gi), AE is the column vector of
AI(Vj) and g is the matrix of G(Vj,ii). Unfortunately, the solution of
Eg. B-3 is an ill-posed problem (a small change inAQI produces a rather
large change in SE); and the direct matrix inversion leads to rapidly
oscillating corrections, 8%- Thus, it was necessary to stabilize Eq. B-3
by applying statistical techniques recently developed by J. N. Frankli§%9
Basically, this technique consists of the.following: Due to the finite
number of places of accuracy in the numerical calculation and the fact
that we are dealing with experimental data which haw some error, the
exact value of AL which should be substituted in Eq. B-4 is unknown.

Thus we assume that

AE@ - AEexact +n ' (B-5)

where AEex is the value which should be substituted in Eq. B-4, and

act
AEC is the computed value. n is a stochastic variable representing the

uncertainties mentioned above. Making this substitution in Eq. B-4, we

have

Gok+n = AL (B-6)

*The treatment given here is simplified and less general than that
given by Franklin in reference 29.



~54 -
where G and:ﬁzc are known, Ok and n are unknown. Of course, Eq. B-6
cannot be solved for Bk given its statistical properties and the statis-

[

tical properties of n. Following Franklin we take
SES = IAL (B-7)

where L is a linear operator, and 6%8 is an estimate of the value of &k.
One way of estimating 3k is to attempt to minimize the effect of n.

Thus, we determine L from the condition
~ 2 .
E le . (ok-LAIC)‘ = minimum (B-8)

In Eq. B-8 e is some vector in the space of Bk and E denotes the expec-
tation value over the probability distribution for the above-mentioned

stochastic variable. After some algebraic manipulations, we find that

6Ty (er é¢+Rnn)'l (8-9)

L= SKkBK"

Res

where
R... =FE {%k&k } (B-10)

and

*Throughout this discussion we assume that the expectation values of Tk
and n are zero. This condition is appropriate to our calculation sine
we have no a priori expectation for the values .of €k and n .

i
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= K {nn} (B-11)

Note that R__ and R, are correlation matrices. In deriving Eq. B-9
nn okdk

o~

we have assumed that dk is completely uncorrelated with the n . Both

RakSk and Rnn must be formed from our knowledge of what is acceptable in
in 8k and n . Since the degree of correlation of two values of Bk is ex-~
pected to decrease with increasing difference between the gi‘s associated
with the points; we take
-l . M
) .. = Ae |l j|n (B-12)
where A is a constant (which will later drop out of the calculation);
and M is a measure of how far the correlation between points extends.
29"
Following Franklin ? we consider n to be due to round off error due

to the finite arithmetic used in the machine calculation. We assume that
B
the size of this error is approximately 10 G8k where d is the number of

places of significance expected in the calculations and that the error is

totally uncorrelated from point to point. Thus, we take
R ) ..=10 5, . (GR G7).. ' (B-13)

With this choice of Rnn the A of Eq. B-~12 drops out completely. The

final solution is unaffected by a range of choices of d(=1,2) and M(=3-6)

The use of EQS. B-9 and B-7 instead of solving Eq. B-4 directly



-56 -
stabilizes the solution and allows it to reach the region of convergence
without pushing the function intg some unacceptable shape.
On the following pages, we have a listing of the Fortran source

deck for this program:
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MAIM PROGRAM FDR EVALUATION OF E-K FROM I-V DATA

PROGRAM MODIFIED TO SEARCH FO@ BES{.VALUE OF M5

MODIFIED TO COMPUTE §TATISTICAL CORRELATIONS

DD=18~CHARACfER SAMPLE IDENTIFICATION

M=NO. OF DATA PTS.. AIT,ATA=MIN.,MAX, LOGII),VI.VA=MIN MAX V FOR

I-v PLOTTING

JO=EDIT CONTROL JO=1 EOIT =  N2=ARRAY OF LOCATIONS OF EDITS

AI=CURRENT ARRAY ,V=VDL1;AGE ARRAY

N=ORDER OF INTERPOLATION,N+NOP= NO. OF PTS. USED IN INTERPOLATING
INPT=NO. OF PTS. USED THROUGHOUT THE CALGULATION

INPTI=NUMBER OF PTS BETWEEN V(1)AND VCO:INPTI= <1 OPTION PASSED
J1=0UTPUT CONTROL Jl=1 E-K,SORT(E}-K,J1=2 SORT(E)-K,J1=3E-K
J2=0UTPUT CONTROL J2=1 QUTPUT EACH ITERATION J2=2 ONLY LAST
ITERATION

E1.EA=MIN.,MAX. ENERGY. SEIySEA=MIN.,MAX. SORTIE),AKI,AKA=MIN
MAX. K FOR PLOTTING

NIT=MAX. NO. OF ITERATIONS,FUDGE = FUDGE FACTOR,AREA:hﬁREAthE—Il
*A%*%2  THICK= THICKNESSIN A, ERRORK= ALLOWED K ERROR .
ERRORI=ALLOWED INVERSION ERROR
PH1=BARRIERL.PH2=BARRIERZ,Z[=MIN ENERGY FORK VARIATION

ZA=MAX. ENERGY FOR K VARIATION | 4
J3=PROGRAM CONTROL J3=1 RES%ART,J3=2 NoNOPeoo 54323 NITeoen

J3=4 PH1,PH2,...

J4=1 ERROR DATA ON EACH ITERATION,J5=1 PUNCH E-K,

J6=1 LIST BISTRIBUTIONS

ALKI ,ALKA=MIN,, MAX. VALUE OF K ALLOWED;:

NCF= NUMBER O POINTS CORRELATED » ND= NUMBER OF PLACES OF
PRECISION

MSI,MSA= MIN., MAX. VALUES OF THE EFFECTIVE MASS

NMS= NUMBER OF DIFFERENT VALUES TO BE TRIED:NMS<=1 MSI =MS

IMPLICIT REAL®8(A-H,0-2)



10

1000

20

1010

25

1015

30

1020

40

50

1030

COMMON /KERNC/G(SO,SQ{,Ftsoigg%i1L3(50)

DIMENSION N2(100),A1{100),V(100),VC(50),AILE(S0) +AIL(100),
121(150),43(50) ,AJC(50),DAK(50) 4AK1{150) +E(50)

 DIMENSION AKERN(50,25),DJ(50)4ATKER(50,25),SE(150),AJP(50),
18JCP(50),D1S150) ;BT (50) sR11(50,251,T1(50525),72(50,25)

REAL ATT.ATA,VI,VA,EIVEA,SEI,SEA,AKI,AKA,DDI(5)

OOUBLE PRECISION MSI MSAMSTMS

" READ DATA AND EDIT

READ(5,1000) (DD(LO),LO=1,5)
FORMAT(5A%)

READ(5,1010) M,ATI,ATA,VI,VA,JO
FORMAT (110,4E10.3,110)

IF (JO «NE. 1} GO 7O 30

- K1=8

READ(5,1015)N2IK1=7)sN2(K1=6) ;N2 (K1~5) \N2(K1=4) N2 (K1-3),N2(K1-2),
INZIKI=1) ,N2 (K1)

FORMAT (81101

[F(N2(KL) .EO. 0} GO TO 30

K1=K1+8

G0 10 25

REAN(5,1020) (AT(L1).L1=1,M)

READ(5.1020) (V{L2),L2=1.M)

FORMAT{8D10.3)

IF (JO .EQ. 1) CALL EDITIV(AI,V,N2,K1.M)

COMPUTE EQUAL INCREMENT IN V

DO 40 L3=1,M

ATL(L3}=DLOGLO(AT(L3))

READ DATA ON INTERPOLATION AND TOTAL NO. OF PTS.
READ(5,1030) N,NOP,INPT,INPT1,VCO

FORMAT (4110,010.3)

IF LINPT1 .LE. 1) VvCO=VI(1)



IF (INPTL .LE. 1) INPT1=1 ~2°7

IF (INPTL JLE. 1) GO TO 54
DO 53 L41=1,INPT1
53 VC(L41)=Vf1)+(VCO-V(1))¥FLOAT(LAI-1)/FLOAT(INPTl—l)
54 DO 55 L42=INPT1,INPT
55 VCIL42)=VCO+{V(M)=VCO)*FLOAT{L42~INPT1) /FLOAT{INPT=INPTI)
D0 60 L4=1,INPT
60  E(L&)=VI{MI*FLOAT(L4~1)/FLOATLINPT-1)
CALL INTERS(V,AIL,VC,AILCsNyM;INPT,NOP)
c OUTPUT OF BASIC INFORMATION
WRITE(6,2000) (DD(L100),L100=1,5)
2000 FORMAT{1H1.lO0HSAMPLE NO.,5X,5A%)
WRITE(6,2010) N, M,NOP, INPT
2010 FORMAT(1HO,16HORDER OF POLFIT=,12,10X,17HNO. OF DATA PTS.=,13,10X,
| 121HINTERPOLATION WITH N+s13,2X,6HPOINTS,5X 5 18HTOTAL NO. OF PTS.=,
113)
WRITE (6,2020)
2020 'FDRMAT(///1HO;3HNO.,17X,7HCURRENT.13X,7HVDLTAGE)
WRITE(6,2030) (LS5,AI{LS)sV(L5),L5=1,M) |

2030 FORMAT (1HO,I3,17X,011.45,9X,011.4)

C BEGIN E~K COMPUTATION
C READ PLOTTING INFORMATION
70 READ(S5,1040) J1+J25C1,EASET,SEALAKT,AKA

1040 FORMAT(2110,6E10.3}
c READ DATA ON SAMPLE AND CDNTRDL‘
80 READ(5,1050) NIT,FUDGE,AREA,THICK,ERRORK ,ERROR]
1050 FORMAT{I110,5010.3)
990 READ{S,1060) PH1,PH2,21+2A,J3,J%4,05,J6
1060 FORMAT(4D10.3,4110)
READIS5,1070) ALKI ALKA,NCF,ND 4EG,MST ,MSA,NMS

1070 FORMAT(2D10.3,2110,3010.3,110)



2050

2060

2070

2076

2077

2075

100

120

WRITE(6,2050) (OD(Llolp,L101;?9§{

FORMAT (1H1,10HSAMPLE NO.s5Xs5A4)

WRITE(6,2060) PH1,PH2,THICK,AREA,FUDGE

FORMAT {1HO,9HBARRIERI=,D10.3,5X,9HBARRIER2=,010435X,10HTHICKNESS
1=4D10,3,5%5SHAREA=,D10.3,5%,6HFUDGE=,D10.3)

WRITE(6,2070) ERRORK S NPT o NITadly J20 93

FORMAT (1M0,THERRORK=,010.3,5%,16HN0. OF PTS. INT=,13,5X,

126HNO. OF ITERATIONS ALLOWED=,1325Xs3HA1=512,5%s3HU25 125X »3HI3 5,
112)

WRITE(6,2076) INPTL1,VCO,Jbyd5,d6

FORMAT (1HO,6HINPT1=,13,5%,4HVCO=,010.3,5X,3HJ4=,12,5%43HJ52,12,5X
1,3HI6=,12)

WRITE(6,2077) ALK ALKANCF,ND,EG,MST,MSA,NHMS

FORMAT (1HO,5HALKI=,D10.3,5Xs5HALKA=,010.355X,4HNCF=,12,5%, 3HND=,
112,//1X, LIHENERGY GAP=,D10.3,5%,16HMS VARIED FROM,D10.3,2X,
12HT0,01063,5X o 4HWITH, 132X 6HVALUES)

WRITE (6,2075) Z1,2A

FORMAT (1HQ,13HK VARIED FORM 53X,D1043,3X,2H70,3X,010.3)
RENORMALIZATION OF CURRENT

C1=6.18550-5+FUDGEXAREA

DO 100 L6=1,INPT
AJILE)=(10.0%=ATLCIL6))/(6.185505%FUDGEXAREA) #1.0010
DZ={2A-21)/FLOAT(INPT-1)

COMPUTATION OF 21 ARRAY

LIMITS ON Z1 ARRAY |

IF(IPH2 ,GT. PHL) LAND. (VC(INPT) .LE.(PH2-PH1))) GO TO 120
Z11=PH2-VC{INPT)

Z1A=PHL+VC(INPT)

GO TO 130

Z11=PH]

Z1A=pPH2



130 IF((Z1T.LE. ZI) JAND. (Z1A 2 241y co 10 140

WRITE(6,2040) Z11,21A
2040 FORMAT (1HO,23HERROR IN LIMITS ON ZETA,5X,4HZ11=4010.3,5X,4HZ1A=,

1010.3)

sTOP
140  K8=1
150 IF {Z11 .GE. (ZI-FLOAT(KB)}*DZ)) GO TO 160

KB=KR+1

G0 TO 150
160  Z1(1)=ZI-FLOAT(KB-1)%DZ

NZ1=1
170 IF ({Z1(NZ1)+DZ) .GE. Z1A) GO TO 180

NZi=NZ1+1

Z1(NZ1)=21(1)+DZ#FLOAT(NZ1-1)

GO 70 170
180 DO 182 L300=1,NZ1
182 SE(L300)=DSORT(21(L300))
c COMPUTATION OF R11

CALL CORRLF{RI1,INPT,NCF)
c COMPUTATION OF EFFECTIVE MASS

IF (NMS.LE. 1) GO TO 185

ERRMF=1,00D+65

DO 184 LM1=1,NMS

MST=MS1+{MSA-MST)*FLOAT(LML1=1) /FLOAT(NMS~1)

CALL TMGUES(NZ1,21,AKL,MST,EG)

CALL CURRI(PH1,PH2,THICK ,NZ1,INPT,AKL+Z1,VCE,AJC)

ERRM=0,0

DO 183 LM2=1,INPT
183  ERRM=ERRM+DABS{(AJC(LM2)-AJ(LM2))/AJ(LM2) )

IF (ERRM .GE. ERRMF) GO TO 184

ERRMF=ERRM
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NMSL=LM]

184  CONTINUE
MS=MS I+ (MSA-MST)#FLOAT (NMSL=1) /FLOAT(NMS—1}
G0 TO 186
185  MS=MSI
186  WRITE(6,8000) MS
8000 FORMAT(1HO,BHBEST MS=,N10.3)
CALL IMGUES(NZL,Z1,4K1,MS,EG)
IF{J2 .NE. 1) GO TO 187
CALL EKPRIN(NZ1,AK1,Z1sSE¢DDs5,0,D8Ks=1,0)
187  NIT1=0
190  CALL CURR(PHL,PH2,THICK,NZ1,INPT,AK1,215VC,E,AJC)
CALL KERN(PHL,PH2, THICK sAKL,Z1,NZ1,KBE,VC s INPT , AKERN)
DO 195 L60=1,INPT
DO 195 L61=1,INPT
195  ATKER(L60,L61)=AKERNIL61,L60)
c COMPUTE DJ
DO 200 L8=1,INPT
200 DJILBI=AJ(LB)-AJCILS)
c COMPUTATION OF CORRECTION MATRIX
CALL DMTY(RL1,ATKER,INPT+T1)
CALL DMTY(AKERN,T1,INPT,T2)
DO 500 150=1,INPT
500  T2(150,150)=(1.0+10.0%%(=2%ND))15T2(150,150)
CALL RNDINV(T2,INPT,DETERH,ERRORI,ITEST)
NITL=NIT1+1
IF (1TEST .E0. 0) GO TO 202
WRITE (6,2080) [TEST,NITL
2080 FORMAT (1H1,25HERROR IN INVERSION ITEST=,13,5X,14HITERATION NO.=,
113)

CALL DEFAULIINPT,AJC,ATKER,T2 sDAK ,ERRORC+0,C1,VC}



202

203

204

206

207

218

2090

220

2100
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CALL DMTY(TLl,T2,INPT,AKERN)

00 203 LS0=1,INPT

DAK{L50)=0.0

DO 203 LS1=1,INPT

DAK(L50)=DAK[L50) +AKERN(L50,L51)%DJ{L51)

CHANGE [N VALUE OF K AND COMPUTATION OF ERROR

ERRORC=0.0 |

DO 204 L70=1,INPT

IF (DABS(DAK(LT0)) .GT. ERRORC) ERRORC=DABSIDAK(LTO))
CONTINUE

DO 210 L9=1,INPT

LT=L9-14KB

IF ([AK1(LT)+DAK(L9)) .GT. ALKA) GO TO 2056

IF ((AK1(LTI+DAK(L9)) LY. ALKI) GO TO 207
ARI{LTI=AK1 (LTI +DAKILY)

6O TO 210

AKL(LT}=ALKA

‘G0 TO 210

AKL(LT)=ALKI

CONTINUE

IF ({ERRORC .LE., ERRORK) .OR. (NIT1 .GE. NIT)) GO TO 220
WRITE(6,2090) NIT1

FORMAT (1H1,14HITERATION NO.=,13)

IF(J2 .€Q. 1) CALL EKPRIN(NZLsAKL,Z1,SEsDDy550,DAK, INPT,KB)
IF (J4 .EQ. 1) CALL DEFAUL{INPT,AJC,ATKER,AKERN,DAK,ERRORC »1,C1,VC
1

GO TO 190

FINAL QUTPUT

IF (ERRORC .GT. ERRORK) WRITE(6,2100) MITI.ERRORC

FORMAT (1H1,16HFINAL ITERATION=+13,10X,16HDID NOT CONVERGE.SX
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[F(ERRORC .LE. ERRORK) WRITE(6,2110) NIT1,ERRORC
2110 FORMAT {1H1,16HFINAL xreaarxow:,13,§k,7HERR0Rc=,o11.4)
224  CALL CURA(PHI'PHZyTHICK{NZI,INPT,AKI,ZI,VCwE,AJC)
c OUTPUT I-V DATA
DO 225 L60=1,INPT
AJCP(L60)=6.18550~5%FUDGE*AREASAIC (LEQ)
225  AJP(L60)=6,1855D0-5%FUDGE*AREA*AJ(L60)
WRITEL6,2120)
2120  FORMAT (1HO/1HO,9HFINAL I-V)
WRITE(6,2130)
2130 FORMAT (1HO/1HO,3HNO. 17X, THVOLTAGE 13X 13HINPUT CURRENT,7X,14HOUT
1PUT CURRéNT)
WRITE(6,2140) (L61,VC(L61)sAJPILEL)3AJCP(LOL) L61=151NPT)
2140 FORMAT (LHO,I3,17X,D11.4,9%X,D11.4,9X,D11%)
IF ((J1 GT. 3) .OR. {J1 LT: 1)) GO TO 226
CALL PLTIVLIMyV,AI,VI,VA,AII,AIA,0,0,11,1,DD,20,13H=INITIAL DATA,
113,9.0,0)
CALL PLTIVLUINPT,VC,AJP VI VA, AIT,ATA,0,051251,D0,0,12H=INTER. DAT
14,12,8.5,1)
CALL PUTIVL(INPT,VCsAJCP VI, VA,AII AIA,140+5,1,0D405
120H=FINAL CALC. CURRENT,20,8.0,1)
226 IF (J6 JNE. 1) GO TO 229
c OUTPUT DISTRIBUTIONS
HRITE(6,2150)
2150 FORMAT {lH1,35HCURRENT VERSUS ENERGY DISTRIBUTIONS)
WRITE (6,2160)
2160 FORMAT(LHO/1HO, THVOLTAGE , 13X, 6HENERGY, 14X, 12HDISTRIBUTION)
DO 228 L62=1,INPT
L64=1L3(L62)

DO 227 L63=1,L64
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221 oxs¢L63)=6.lssso—szﬁuocﬁtnﬁeazctLaz.pe3)/F(Lbz,L63)

uRiTEi6}217oy'VCiLézg,Etlx?oiséi)
2170 FORMAT (1Ho)1Ho,Dll.«vqx,011.a,9x.011.4)

IF (IL3(L62) .LE. 1) GO 10 228

WRITE (5,2180) (E(L65),DIS(L65),L6522,L64)
2180 FORMAT (1H0,20X,D11.4,9X,011.4)
228  CONTINUE
229  WRITE (6,2190)
2190 FORMAT (1H1,9HFINAL E-K)

CALL EKPRIN(NZ1,AK1,214SE+DD;5,J5,D0AK,;INPT,KB)

IF ({J1 .EQ.1) .OR. (J1 EQ.3))

1CALL EKPLOT(NZ1,AK1,2Z1,AKI,AKA,E1,EA,1,0,2,15D0,20,0)

IF ((J1 .E0. 1) .OR. (J1 .EQ. 2))

1CALL EKPLOT(NZL,AKL,SE,AK] yAKA,SETSEA,1,0,051,00,20,1)
230 IF ({J3.GT. 3) .OR. (J3 .LE. 0}) STOP

GO TO (10,50,80,90),43

CEND



10

220

30

66~
SURROUTINE KERNI{PHL1PH2 s THICK 4 AKLoZ1oNZLoKRSEZ,VC oINPT, AKERN)
SUBROUTINE TO EVALUATFE AKERN MATRIX
IMPLICIT REAL=8(A-H,0-1)

COMMON /KERNC/G(50,50)+,F(50,50),1L3{50}

DIMENSION AKL(NZ1),Z1(NZ1)E(INPT) VCIINPT),GA(60)

DIMENSION AKERN(50,INPT)

CASE DETERMINATION
DZ=Z1(2)-21(1)

IF (PH1 .GE. PH2) GO TO 170

INITIATE LOOP V

DO 160 L1=1,INPT

NUM=IL3{L1)

EV={PH2~PH1-VC(L1})/THICK

IF (VCIL1) .GT. ((PH2-PH1}/2.0)) GO TO 60

IN CASE 1 |

DO 50 L2=1,INPT

L3=KB+L2-1

IF ((21(L3) .GE. PH1) GAND. {Z1(L3) .LE. PHZ2))} GO TO 10
AKERN{L1,L2) =0.0

GO TO 50

DO 20 L4=1,NUM

GAILAI=(GILYsL4) Z{FILL1,L4)*EV)I* (1. 0/{AKT(L3)*AKI{L3)*F(L]1,L6))~2.

101*D2Z

IF{(Z1(L3) GE. PH1} . AND.I{ ZliL3) oLEs (PHI+VvCI{L1)}}} GO TO 40

TFEEZIIL3) oGE,. (PH1+VCIL1))) LAND. (Z1{L3} oLE. {pPrH2-vC{L1}1}))

- 1G0 10 30

Al=Z1({L3)~-PH2+VC{L1}

A2=vC(L1)
AKERN(LL1+L2)=RINT(GA,E,AL1,A2,NUM,3,0)
GO T0 S0

A1=0.0



40

50

60

70

80

90

IOOA

A2=VC(L1) =67~

AKERNCLL,L2)=RINTIGA+E oAl A2 NUM,3,0)

GO T0 50

A1=0.0

£z=21(L3)—pH1

AKERN(L1,L2)=RINT(GA,E4AL,A2,NUM,3,0)

CONTINUE

GO TO 160

IF (VC(L1) .GT. (PH2-PH1)) GO TO 115

CASE 2

DO 110 L2=1,INPT

L3=KB+L2-1

IF ({Z1(L3) .GE. PH1) .AND. {Z1({L3) .LE. PH2)) GO TO 70
AKERN(L1,L2)=0.0

GO TO 110

D0 80 L&=1,NUM

GA{L&G)=(GILL L&) /(FILL,L4)*EV))#{1.0/(AKL(L3)*AKL(L3)*F(LL,L4))
1-2.0)*DZ

IF ((Z1(L3) .GE. PH1) . AND, (Z1{L3) JLE. (PH2-VC{L1})}) GO TO 100
1F (0Z1(L3) .GE. (PH2-VCIL1))) <AND. [Z1{L3) oLE. (PHL+VCIL1))))
160 TO 90

A1=Z1(L3)-PH2+VCILL)

A2=VCILL) |

AKERN{L1,L2)=RINT(GA,E,AL,A2,NUM,3,0)

GO TO 110

A1=Z1(L3)=PH2+VC(L1)

A2=71(L3)-PH1

AKERN{L1,L2)=RINT(GA,E,A1,A2 ,NUM,3,0)

GO TO 110

A1=0.0

A2=Z1(L3)-PH1
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AKERN{L1 L2)=RINT(GAE,Al,A2,NUM;3,0}

110 CONTINUE
GO TO 160
C CASE 3
115 DO 150 L2=1,INPT
L3=KB+L2-1
IE ((Z1(L3) .GE. (PH2-VC(L1))) JAND. (Z1(L3) .LE. (PH1+VC(L1))))
160 TO 120 ‘
AKERN(L1,L2) =0.0
GO TO 150
120 DO 125 L&=1,NUM
125  GALL&)=(GILL,L&)/(FILLsL4)FEV)I#(1.0/(AKLIL3)SAKL(L3)EF(L1,L4))
1-2.01%02 '
IF ({Z1(L3) .GE. (PH2-VCILL))) .AND. (Z1(L3) .LE. PHL)) GO TO 140
IF ((Z1(L3) .GE. PH1) JAND. (Z1(L3) .LE. PH2)) GO TO 130
A1=Z21(L3)-PHIL
A2=VCIL1)
AKERN(L1,L2)=-RINT(GA,E,AL,A2,NUM,3,0)
GO TO 150
130 A1=Z1(L3)-PH1
A2=Z1(L3)-PH2+VCILL)
AKERN(LL,L2)=-RINT(GA,E,A1,A2,NUM,3,0}
60 TO 150
140  A1=0.0
A2=71(L3)-PH24VCILL)
AKERN(LL,L2)=-RINT(GA,EsAL,A2,NUM,3,0)
150  CONTINUE
160  CONTINUE
G0 TO 220
c CASE &

170 DO 210 L1=1.INPT



180

175

130

200

210

220

NUM=TL3(L1) -69-
"EV=(PHZ-PH1-VC(L1))/THICK

00 210 L2=1,INPT

L3=KB+L2-1 -

TF (ZL(L3) .GE. (PH2-VC(L1)) <AND. (Z1(L3).LE. (PHLHVCIL1))))
160 70 180

AKERN{L1,L2)=0.0

GO TO 210

DO 175 L4=1,NUM
GA(LA)=(GILL,LA)/LF(LL L&) EVII*(1.0/ (AKLIL3)*AK1IL3)*F (L1 L4Y)
1-2.0)%D2

TF({Z1(L3) .GE. (PH2-VC(L1))).AND. (Z1(L3) <LE. PH2)) GO TO 200
IF ((Z1(L3) .GE. PH2) .AND. (Z1(L3) <LE. PH1)) GO TO 190
Al=Z1(L3)-PH1

A2=VC(L1)

AKERN{L1,L2)=~RINT(GA,E+AL;A2,NUM,3,0)

GO TO 210

A1=0.0

A2=VCI(L1)

AKERN{L1,L2)=-RINT(GA,E+AL,A2,NUMs3,0)

GO 7O 210

41=0.0

A2=21(L3)-PH2+VC(L1)

AKERN(L1,L2)==RINT(GA,E,A1,A2,NUM,3,0)

CONT INUE '

NOW TO MAKE SIMPSON RULE CORRECTIDN-

IF (25(INPT/2) .EQ. INPT) GO TO 250

00D CASE

DO 240 L4=1,INPT

AKERN(L&4,1)=AKERN{L%4,11/3.0

LC=INPT-1



230

240

250

260,

270

DO 230 L5=2,1.C,2
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CBAKERN{L4,L5])=4.0%AKERN(L4,L5)/3.0

AKERN(L4,L5+1)=2 . 0%AKERN (L4 ,L5+11/3,0
;kERN{L4,1NpT)=AKERN(L4.beT)/z.o
RETURN

EVEN CASE .

DO 270 L6=1,1NPT
AKERN(L6,1)=AKERN(L6,1)/2.0
AKERN{L652)=5.0%AKERN(L642) /6.0
LC=INPT-1

DO 260 L7=3,1C,2
AKERN{L6,L7)=4.0%AKERN(L6,1.7)/3.0
AKERN(L6,L7+1)=2 0%AKERN (L6 ,LT+1) /3.0
AKERN (L6, INPT) =AKERN (Lb» INPT) /2.0

RETURN

END
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SUBROUTINE CURR{PHLPH2 s THICK NZIINPT,AKL sZ21,VC:ELAJC)

SUBROUTINE TO CALCULATE THE CURRENT AJC
NZT=DIMENSION OF AK1,Z1.INPT=DIMENSION OF VC,EsAJC
IMPLICIT REAL8(A=H,0-Z)

DIMENSION AKL(NZT)2Z1(NZI)oVC(INPT) E(INPT)  AJC(INPT) AKLI(150)
1,C(60)

COMMON /KERNC/G(50,50) +F (50,501 +1L3(50)

COMPUTE G,FAND AJC

DO 10 L1=1,NZ1

AK1T(L1)=1.0/AK1(L1)

DO 50 L2=1,INPT

EV=(PH2-PHI-VC(L2)) /THICK

L3=0

L3=L3+1

AL=PH1+E(L3)

A2=PH2+E(L3)-VCIL2)
Te-2.0%RINT(AKL,21,A1442,N21,3,0) /EV+23.02585

TF (DABS(T) oLT. 149.5) GO T0 22

IF (T .6T. 0.0) G(L2,L3)=1.0065

IF { T oLT. 0.0) GI(L2,L3)=1.00-65

60 TO 25

GIL2,L3)=DEXP(T)
FIL2,L3)=RINT(AKLT+Z1,A1,A2,N21,3,0)/EV

EEC(E(L3) <6T. VC(L2)) <OR. (L3 .GE. INPT)) GO TO 30
GO TO 20

IL3(12)=L3

DO 40 L&4=1,L3

C(L4)=GIL2,L4)}/F(L2,L4)

A2=VC(L2)

AJC(Lz;=RINT(c,é.o.o,Az,gz,s,oi

RETURN
END
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SUBROUTINE INTERS{X,Y,XCsYC,NF M1,M2,41)

¥

SUBROUTINE TO USE NF ORDER '~ INTERPOLATION TO COMPUTE ARRAY

. DF YC({X) GIVEN ARRAY Y({X). M1=SIZE OF X ARRAY

M2=SIZE OF XC ARRAY . JI+N POINTS ARE ussé IN THE INTERPOLATION
iHPLICIT REAL*R(A-H,0-2)

DIMENSION v X(lod).vt100),xc1100},YC(100),TX(31),TY(31),A(30)
LOGICAL L1

DETERMINE THE ORDER IF IT EXCEEDS NUMBER OF PTS.

IF ((NF +J1) L LE. Ml) GO TO 8

K=M1

IF (NF .GT. M1) GO TO 6

N=NF

GO T0 10

N=M1~J1

GO T0 10

N=NF

SEARCH FOR FIRST POINT

I=1

J=1

IF {XC(I).LT. X{1)) GO 70O 70

IF ({XC(I) ;GE. X{J)) <AND. (XClI) oLE. X(J+1))) GO TO 35
IF ((J+1) .GE. M1) GO TO 90

J=J+1

GO 10 30

L1=.FALSE,

IF ((NF+J1) .LE. M1) K=N+J1

IF (((K/2)t2axi «E0. 0 L1=.fRuE.

IF (L1 JAND. ((J4-K/2) .LT. 0}) GO TO 70

[F L1 AND. ((J+K/21 .GT. ML}} GO TO 90

IF ((.NOT. L1) oAND. ((J+{K+1)/2) .GT. M1)) GO TO 90

IF ({.NOT. L1} oAND. {((J-(K-1}/2) .LT. 0)) GO TO 70



IF (L1). GO TO 50 -73-
DO 40 N2=1.K
Nl=J-(K-1)/2+N2
TX{N2)=X(N1)
40 TY(N2)=Y(NL)}
60 10 110
50 DO 60 N2=1,K
N1=J=K/2+N2

TX{MNZ)=X{NL}

60 TY(N2)=Y(NL)
GO 7o 110 )
c NEAR BOTTOM

70 00 80 N3=1,K
TX{N3)=X(N3)

80 TY(N3)=Y{N3)

GO Y0 110

C NEAR TOP

90 DO 100 N&=1,K
NS =M1-K+N&

JXING)=X(NS)
100 - TYIN&)=Y(N5)

i1ic CALL DPULIT(TXTY KyNsa)

€

CALCULATION 0OF VALUES
Nb6=N-1
120 YC(I)=A(1)+A(NI=(XC(I)%%(N=1))
IF (N .LE. 2) GO TO 140
DO 130 NT=2,N6
130 YC(I}=YCUII+A(NTI#{XC(I)¥¥({NT=1])
140 I=1+1
IF { I .GT. M2) RETURN

IF CUXCUI) oGT. X(J+1}) .OR. (XC{I).LT. X{J))} GO TO 20

G0 Y0 120

END
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DOUBLE PRECISION FUMCTION RINT(FsX¢ALsA2,N,HMFyJ)

€ FUNCTION TO COMPUTE THE INTEGRAL OF F{X) FROM Al TO A2
c N=SIZE OF F AND X ARRAYS
c MF=0RDER OF POLYNOMINAL USED IN FIT MF+J= NO. OF PTS.

IMPLICIT REAL=8(A-H,0-2)
DIMEN§§UNAF(N)pX(N)qAKBO),TF(#O),TX(@D)
IF ((MF+J}.LE. N) GO TO 8
K=N
IF(NE .GT. N) GO TO 6
M=HE
60 10 9
6 M=N-J
60 10 9
8 M=MF
) IF (A1l .NE. A2) GO 10 10
RINT=0.0
RETURN
10 IF(Al .GT. A2) GO TO 20
X1=A1
X2=A2
60 TO 30
20 X1=A2
X2=A1
30 IF((X1 oGT. (2.0%X{1)=X(2))).AND. (X2.LE. (2.0%X(N)}=X(N-1)11}
160 10 40
RINT=0.0
MRITE(6,2000) X1,X2,X(1],X(N)
2000 FORMAT (1HO,23HERROR IN LIMITS IN RINT45X,L11HLIMITS FROM,010.3+2X,
12HT0,D10.3,5X, 12ZHALLONED FROM,D10.3,2X,2HT0,D10.3) |
RETURN

c NOW TO COMPUTE THE INTERVAL



40

43

50

60

70

80

90

100

I1=1

IF (IX{I1).GE. X1) .OR. (Il .GE. N)) GO TO 50

fi=11+1
GO TO 45

[2=1

-75-

IF ((IX({I2) oLE. X2} AND. (X({I2+1} .GT. X2}) .OR.

1)) GO TO 70
12=12+1
GO TO 60
IF ({{12+1) .GE
NOW TO COMPUTE
IF ({MF+J).LE.
RINT=0.0
IF (12 .E0. 11)
IF (12 LT, 11
L2=12-1
DO 160 L1=11,L2
IF (L1 oLT. 1K/
IF (2%(K/2) .EO
IF [IN-L1) .07,
GO 10 90
EVEN
IFLIN-LL) LT,
IN MIDDLE
DO 100 L3=1,K
LC=L1-(K/2)+L3
TF{L3)=F(LC)
TX(L3)=X(LC)
GO TO 145
NEAR BEGINNING

DO 120 L4=1,K

o N} <AND., (X({12+1) .LE. X2})
ARRAYS AND INTEGRATE

N)  K=M+J
GO TO 165

} GO 10D 172

2)) GO 7O 110
« K} GO TO 80

{{K+13/2)) GO 10 130

(K/2)} GO T0O 130

[2=12+1

((12+1)

«GEo N
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TF{Le)=F{L%]}

120 TX{L4)=X(L%)
GO TO 145
c _NEAR END
130 DO 140 L5=1,K
LCC=L5+N-K
TE(LS)=F(LCC)
140  TX{LS)=X{LCC)
145  CALL DPOLIT{TX.TF,KsMsA)
DO 150 L6=1,M
150 RINT=RINT4A(L6)#(X(L1+1)#*L6-X{L1)*%L6) /FLOATILG)
160  CONTINUE
c CORRECTION FOR END PTS.
165 IF (X1 .EO. X(I1)) GO TO 170
18=11
IF (11 .GT. 1) IT=11-1
IF( 11 .E0. 1) IT=I1
Jc=1
.60 TO 180
170 IF (X2 .E0. X(I2)) GO TO 300
17=12
Jc=2
GO TO 180
172 1T=I2
Jc=3
180 IF (IT .LT. (K/2)) GO TO 220
IF (2%(K/2) .E0. K} GO TO 190
IF (IN-1T) oLT. ((K+1)/2)) GO TO 240
G0 10 200
190 IF ((N-1T) LT. (K/2)) GO TO 240

200 DO 210 L7=1,K



210

220

230

240

250

260

270

280

290

292
295

300

=77~

LC=IT-(K/2)+L7

TF(L7)=F(LC)
TX(LT)=X(LC)

GO T0 260

Do 239 LB=1,4K
TFIL8)=F(L8)
TR(L8)=X{L8}

GO TO 260

DO 250 L9=1.K
LCC=L9+N-K

TF{L9)=F{LLC}
TX{L9)=X{LCC)}

CALL DPOLIT{TXTFsKsMs4A)
iF (JC.EQ.‘3) GO 70 292
IF (JC .EQ. 2) GO TO 280
D0 270 L1O=1,M

RINT=RINT+A{L10}*{X{TA}**L10~X1*=L10)/FLOAT(L10)

G0 T0 170

DO 290 Llli=1,M
RINT:RINT+A(L11)*(XZ**LIL—X(IT)**LII)/FLOAT(Ll})
GO 70 300

DO 295 L12=1,M

RINT=RINT+A(L12)*{X2*%L 12-X1%%L12)/FLOATI(L12)])

IF (A1 .GT. A2} RINT=-RINT

RETURN

END
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SUBROUTINE DMTY(AyB,NyC)

MATRIX MULTIPLIER C=4ASB

N=SIZE OF MATRIX

DOUBLE PREC&SION A(SG,N)yé(5O,N)'C(509N)
0o 10 L1=1'N

D0 10 L2=1.N

C(L19L2)=0.0-

00 10 L3=1.N
Clt1,L2)=C(LLl,L2)}+A(LL,L3)*BIL3,L2)
RETURN

END
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SUBROUTINE CORRLF(R,N,NCF) '

DOUBLE PKECISION R{50,N)
DO 10 L1=1.N

DO 10 L2=1,N
R(L1,L2)=EXP(-ABSIFLOAT(LL1-L2))/FLOATINCF))
RETURN

END
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SUBROUTINE TMGUESINZ1,21,AK1 )00 EG)

SUBROUTINE TO COMPUTE ARRAY AK1=SORT(Z1%(EG-Z1)}/(HB*SORTIEG/(2%M#*
3]

MS=M=

IMPLICIT REAL*8(A-H,0-2)

DIMENSION Z1(NZ1),AKL(NZ1)

DOUBLE PRECISION MS

DO 10 L1=1,NZ}

IF((Z1(L1) .LE. 0.0) .OR. (ZL(L1) .GE. EGJ) GO TO 5
AK1(L1}=0.5125*DSORT (MS)#DSORT (Z1(L1)#(EG-Z1(L1})/EG)

60 TO 10 4

AK1(L1)=-0,5125%DSORT (MS)*DSORT(DABS(Z1(L1)*(EG-Z1{L1))/EG))
CONTINUE

RETURN

END
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SUBROUTINE DPOLIT{X,YsH,N,4)

SUBROUTINE TO MAKE POLY FIT TO FUNCTION DEFINED BY Y{X),

M= NO. OF DATA PTS.s N= ORDER OF POLY.

DOUBLE PRECISION X(150),Y{150):A4(30)+8(30+30)+C{150}.,C1{150),

1€2(150),C3(150),C4(150),C5(30)T1,D,BE,GA,AL
CoMPUTE THE POLY UP TO DEGREE N

IF (N .GT. M)} GO TO 080

DO 010 L1=1,M

CiLl)=1.0

B({1l.1)=1.0/SORT(FLOAT(M))

IF (N .LE. 1) GO TO 045
T1=DSORTID(X,X,MI=({D(CsX,M)) %22} /FLOAT (M) )
B(2,2)=1.0/T1

BU2,1)1==D(XyCyM)/{FLOATI{M) =T}

IF (N LE. 2) GO TO 045
‘COMPUTE OTHER POLY. N.GT. 2
DO 040 L2=3,N

DO 035 L3=1,M

CLil3)=8(L2-1,1)

€2(L3)=0.0

C3(L3)=8(L2-2,1)

L100=L2-1

DO 020 L4=2,L100
CL(L3)=CL(L3)+B(L2-1,L4)*(X(L3)*%(L4~1)])
C2(L3)=X(L3)1%C1{L3)

Ltio1=L2-2

IF (L101 .LT. 2 ) GO 7O 035

DO 030 LS=2,L101
C3(L3)=C3{L3)+B(L2-2,L5)#{X(L3)#*{L5-1))

CONTINUE

NOW ALL INFORMATION NECESSARY FOR GENERATING FUNCTIONS ARE
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040

045

050
051

060

070

" 080

1000

AVATLABLE -82+
BE=-D{C1l+C2.H) "

GA:QOgcz.cz,n)
AL=1.0/050Rr(oiéz.cz.ﬁ;-aE=BE-GA=ca;
BIL2,1)=AL* (BE*B(L2-1,1)+GA%B(L2-2,1))
BIL2yL2~1)=AL#(R(L2-1,L2-2)+BESRILZ ~1,L2-1))
BIL2,L2)=AL¥BIL2-1,L2-1}

IF (L101 .LT. 2) GO TO 40

DO 038 L6=2,L101
BIL2sL6)=ALE(B(L2-1,L6~1)+BEFR(L2~1,L6)+GASB{L2=2:L6)})
CONTINUE

FITTING OF FUNCTION TO POLY.

DO 060 L7=1,N

DO 051 LB=1,M

C4tLRI=BILT,1)

IF (L7 .EQ. 1} GO TO 051

DO 050 L9=2,.7
CalLA)=CAILBI+BILT LIS (XILB) =% (L9=1))
CONTI&UE

C5(L7)1=D(Y,Cé M)

DO 070 L10=1,N

A(L10)=0.0

DO 070 L11=L10,N
A(L10)=A(L10)+8(L11,L10}*C5(L11)

RETURN

WRITE {6,1000)

FORMAT (1HO,25HN .GT. M FIT NOT EXECUTED)
RETURN

END

DOUBLE PRECISION FUNCTION o(x.v.ni

DOUBLE PRECISION X{1501,Y(150}

D=0.0

00 010 Li=1,M
B=D+X(L1)2Y (L1}
RETURN

END
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 SUBROUTINE EDITIVIAL,V,N,K,M)

SUBRUUTINE TO EDIT IN PUT DATA OFF QF CARDS

AI=INPUT ARRAY OF éURéENTS'V=INPUT VOLTAGE ARRAY sN=INPUT NQO. ARRAY
OF LOCATIONS OF DELETIONS'K=ND. OF ELEMENTS IN NeM= NO. U%
ORIGINAL DATA PTS. MODIFIED BY PROGRAM

[MPLiCIT REAL*8({A-H,0~2)

DIMENSION AI(100),V{(100)N{100)

IF {K oEO. 0O} RETURN

DO 30 L1l=1.X

IF ((N(L1) .LE. 0) .OR. (N{L1) .GT. M)} GO TO 30

L2=N{L1)

M=M-1

DO 10 L3=L2.M

AT(L3)=AT1(L3+1)

VIL3)=V{L3+1)

La=L1+1

D0 20 LS5=L4,X
N{L5}=N{L5)}-1
CONTINUE
RETURN

END
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SUBROUTINE PLTIVLIN,V,AI+VIsVA,AITLAIALLAB,IP,ISYS,ISP,D0,M1,0C,

1M2,YS,M3)

SURROUTINE TO PLOT I-V CURVE ON LOG-LINEAR PAPER

N=NUMBER OF PorNTs;y=§oLTAGE ARRAY.AK;CURRENT ARRAY
AI:L,AIAL=LxMITs ON LOG CURRENT: VI,VA=LIMITS ON VOLTAGE
oo:gaMpLe NAMé ARRAY jM1=LENGTH OF DDsDC=CHARACTER IDENTIFICATION 3
M2=LENGTH OF DC

YS=Y LOCATION OF DC,M3=1 SKIP LAREL

DOURLE PRECISION VINJ,AI(N)}

DIMENSION DD(5),0C(5),VP(100),A1P{100),00(3)

COMMON /JCOMPXY/ITESTXUNGTHsYLNGTH

1TEST=1

XLNGTH=14.0

YLNGTH=10.0

DQ(11=0.0

DO(3)=1.0

DO 10 Li=1,N

VP(L1)=VIL1)

AIP(L1)=DLOGLO(ALI(LL))

IF (Ml.LE. 0) GO TQ 20

cALL svssvm(ll.s,g.s,.25,DD,M1,0.0)

IF (M2 LLE. 0) GO TO 30

CALL SYSSYM(11.55Y5,.25,1S8Y5,-1,0.0)

CALL SYSSYM{11.75,Y5,.25,0C,42,0.0)

IF (M3 .E0. 1) GO TOo 40

CALL LABEL to.o,o.o,vt,VA.14.0,7.16HvoL7AGE IN VOLTS,16,0)
CALL LABEL to.o,o.o,AII;,ArAL,10.045,11HLUG CURRENT,1141)
CALL PLOTXY(N,VP,AIP,VI,VA,  AIIL,ATAL,LAR,1P,1SYS,15P,D0)
RETURN

END
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SUBROUTINE EXPRININ,AK,E,SE,DDyH1,H2,DAK NA KR

SUBROUTINE TO QUTPUT E-K DATA -

N=NQMBER OF PTS.iAK=K-ARRAY;E=ENERGY. ARRAY;SE=SORT(E) ARRAY
DD= SAMPLE LbENTIFICATION

M1=SI1ZE OF DDAARRAY:H2=1 PUNCH E~-K DATA

DAK=VARIATION IN K ARRAYINA= NUMBER OF POINTS:

KB=LOCATION OF FIRST POINTINACO NO DAK'S

DOUBLE PRECISION AK(N},EIN},SE(N),DAK(50),DAKOI100)5AK2(100]
00 20 L1=1,N

AKZELT)=AK(L L) ==

IF {NA .LE. O0) GO 7O 10

IF ((L1 «LT. XB) JOR, (Ll .GT. (KB+NA-1})) GO TO 10
L2=L1+1-KB

DAKD{L1)=DAK(L2)

GO 70 20

DAKO(L1)Z0.0

CONTINUE

DIMENSION DD(MI)

WRITE({6,2000)

- FORMAT (IHO/IHOv3HND.917X76HENERGY914Xa7HSQRT(E)ol3Xv1HK,19X7

14HK#%2,16X,3HDAK)

HRITE (6,2010) (L1,E(LL1)oSEILL),AKILL) AK2(L1),DAKDILL),L1=1,N)
FORMAT {1HO,13,17X,01144,9%,01104,9X,D11.4,9X,011.4,9%X,D11 .4}
IF (M2 NS, 1) RETURN

PUNCH 2020,{DDIL2),L2=1,41)

FORMAT (20A4)

PUNCH 2030,N

FORMAT (110)

PUNCH 2040, (E(L3),L3=1,N)

PUNCH 2040;(AK(L43yL4=19N)

FORMAT (8D10.3)

RETRUN
END
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SURROUTINE DEFAULTINPT 2JC  AXERN,AKERNT (NAK L ERRORC 4¥,CLoVC)
SUARNUTINE TN GIVE ERRNR AUTPUT

#z1 PRINT DAX.ERRORE

INPT=SIZE NF AJC,AKERN,AKERN],G.F,DaK ARIAYS

EHPLICTT REAL®R(A-H,0-2)
cOHHON/kERNC/C(QO.SO).F(so.so).lLlcsn)

DIMENSION AJC(INPT) AKERNISOINPT) AKERNTISO0,INPT) (DAKLINKT)
D[MEQSIUH VCIINPT) ,A40(50)

00 $ LO=1,INPT

AJO(L0)=C1=AJC(L0)

WRITE(6,2000)

FORMAT {1MO/1HO,16HERROR CHECK DATA}

WRITE(6452010)

FORMATIIMO,25HDISTRIRUTIONS AND CURRENT)

00 10 L1=1.INPT

WRITE {6,2020) Ll.L1
FORMAT{LHO2HL2 p 18X o 2HG{ o 1244HL2) 4 12X 2HF L 4 1204H,L2))
fK={L3(L])

WRITEL6:2030) (L2:GIL1,L2),FILLsL2},L2=1,1K)

FORMAT (1H oI13,17X,011.%,9X,01146}

WRITE 16,2040) L1.,AJ0(L1},L1.VCILLY

FORMAT {1MQo4HAJT412,2H)2eD11a% 05X 3HVE[ 912421} 2,011,.4)

TMRITE 16,2050)

FORMAT {IM1,25HMATRICES AKERN AND AKERNT)
DG 20 L3=1,INPT

MRITE 16,2060) L3

FORMAT {1HOIHROW,1355%,5HAKERN)
WRITE(6,2070) (AKERN{LI,L4)+Lé=1sINPT)
FORMAT (1H +10013.3) ‘

00 30 LS=1,1NPT

WRITE{6,2080) LS

FORMAT {1HO,3HROW, 135X, 6HAKERNT)
WRITE(6,2070) [BKERNI(LS.LE),L6=1,INPT)
TF {M (ME. 1) RETURN

WRITE(6,2050)

FORMAT (1HO/LHO,3MHNO.+5X, 3HDAK)
WRITE(6,2100) {LT.DAK(LTILT=1.INPT)
FORMAT (1M »13,5%,011.41

WRITE(6,2110) ERRORC

FORMAT {1MO/1HO,THERRORC2.011.5)

RETURM '

END
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SUBROUTINE EXPLOT(N,AK,EyAKI7AKA,ETEA,LABSIP,ISYS, [SPyDD,ML,H2]
SUBROUTINE TO PLOT E-K OR SORT(E)-K CURVES
N=NUMBER OF PTS.:AK=K-ARRAY;E=ENERGY OR SORT(E) ARRAY
AKI,AKASLIMITS OF K

EI,EA=LIMITS OF ENERGY,O0R SORT(E)

DD=SAMPLE NAME:M1=LENGTH OF DD

H2=1 SORT(E) PLOT '

DOUBLE PRECISION AK(N)E(N)

DIMENSION DD{5),AKP(100),EP(100),D013)

COMMON /COMPXY/ITEST,XLNGTH,YLNGTH

1TEST=1 .

XLNGTH=14.0

YLNGTH=10.0

00{1)=0.0

00(3)=1.0

DO 10 L1=1,N

AKP(L1)=AK(L1)

EPIL1)=E(LL)

CALL SYSSYM(11.5,9.5,.25,00,M1,0.0)

IF (M2 .EQ. 1) CALL LABEL (0.0,0.0,E1,EA,10.0,54
119HSORTIE) IN SORT(EV),19,1)

IF (M2 .NE. 1) CALL ULABEL{O0.050.0,E1,EA;10.0+5,12HENERGY IN EV,12,

i)

CAatL LABEL{O0.0,0,0,AKI AKA;14.0,7,8HK IN 1/458,0)
CALL PLOTXY{N,AKP,EPAKI,AKALEIEA,LAB,IP,ISYSsISP,00)
RETURN

END
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