
Mechanosensitive Channels of Bacteria:  

Structure and Function. 
Electrophysiology As a High Resolution Technique of Ion Channel Study. 

 

 
Thesis by 

 
George Shapovalov 

 
 
 
 
 

In Partial Fulfillment of the Requirements 
 

for the Degree of 
 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

California Institute of Technology 
 

Pasadena, California 
 

2004 
 

(Defended December 1, 2004) 
 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2004 
 

George Shapovalov 
 

All Rights Reserved 



 iii

Acknowledgements 
 
I would like first of all to thank my advisor, Henry Lester, for his support and guidance 

through this work. I can truly say that without his enthusiasm this thesis would not have been 

possible. I would also like to thank Dennis Dougherty and Doug Rees for the help with chemical 

aspects of this work and for possibility to use resources of their laboratories. Additionally, I would 

like to thank other members of my thesis committee, Rob Phillips and Hideo Mabuchi, for their 

invaluable advice and comments through the years. 

I would like to thank everybody in the Lester and Dougherty groups. In particular I would like 

to thank Daniel Clayton for synthesizing Ec- and Tb-MscL proteins and invaluable discussions, 

Randal Bass and Josh Maurer for providing me with mutants and cells and Don Elmore and Lori 

Lee for numerous discussions and sharing unpublished data. I would also like to thank Yan Poon 

and other people in Doug Rees group for discussing various aspects of MscL and MscS mutants and 

for providing me with protein samples.  

Likewise, I would like to thank Sergei Sukharev and Paul Blount for introducing me to 

spheroplast and artificial liposome preparation and patching and for further advice and Ido 

Braslavsky, Steve Quake and Gerd Kochendoerfer for helpful discussions. I would also like to thank 

Alan Finkel, Richard Lobdill and Eric Fung from Axon Instruments for their advice and help in 

optimizing patch clamping elecronics for low noise and high temporal resolution; Fred Sigworth for 

guidance and advice and Josef Dudel for instruction on optimizing headstages and quartz pipettes 

for high resolution patch clamping; Mike Walsh, Herb Adams and Richardo Paniagua for the help 

with electronical and mechanical aspects of the projects. 

This work was in part supported by Burroughs Welcome Fund Fellowship and a grant from the 

NIH (GM-062532). 



 iv

Abstract 

Mechanosensitive (MS) ion channels commonly play a role of transducers converting mechanical 

stimuli into electrical or chemical signaling, thus allowing the cell to regulate its behavior in 

response to changing environment conditions. MS channels participate in sensation of sound and 

orientation in inner ear (hair cells), in touch sensation and in osmoregulation of bacteria. Structure of 

bacterial MS channels of large (MscL) and small (MscS) conductance has been recently solved at 

atomic resolution, stimulating various structural and functional studies. In this work author presents 

series of experiments enhancing an understanding of mechanosensation in bacteria. In Chapter 2 

author performs cysteine cross-linking experiments suggesting asymmetric gating pattern of Tb-

MscL ion channel. Chapters 3 and 4 establish a possibility of successful synthesis of fully functional 

Tb- and Ec-MscL proteins displaying a phenotype identical to recombinant channels. Studies in 

Chapter 5 and Appendix 1 extend the resolution of single-channel patch clamping technique, and 

describe a fine structure of MS channel gating by collecting and characterizing intersubstate 

transitions. 
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