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Abstract

Relative cquilibria are periodic trajectories that, in a dynamical system with con-
tinuous symmetry. correspond to fixed points in the projected dynamics to the
quotient space. In Hamiltonian systems with symmetry. it is of interest to under-
stand the structure of relative equilibria near syminetric states. In this context.,
we give a method that in some cases of simple mechanical systems with compact
symmetry group gives information about the relative equilibria bifurcating from a
set of relative equilibria with isotropy subgroup isomorphic to S'. This method is

based on the blowing-up of the amended potential.
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Chapter 1

Introduction

1.1 Generalities on Hamiltonian G-systems

In this section we briefly review some facts from Hamiltonian and Lagrangiau
mechanics with an emphasis on mechanical systems with symmetry. One of the
key objectives of this review is to establish notation and to recall some standard
results. We will start with a review of general Hamiltonian systems, quickly moving
on to Hamiltonian systeins on cotangent bundles and their alternative Lagrangian
formulation on tangent bundles. Then we will specialize these notions to the case
of simple mechanical systems. Some basics from the theory of Lie groupé will also
be introduced along the way.

Our presentation here follows closely the exposition found in [1. part 1T] and

[24]. We refer the reader to these works for details.

1.1.1 Hamiltonian and Lagrangian systems

Let Al be a finite dimensional manifold and w a two-form on M. We say that
(M, w) is a symplectic manifold if w is a nondegenerate closed form. That is to
say, 1) dw =0 and @) if m € M. v € 1,,A and w(v,w) =0 for all w € 13, M then

v = 0. A smooth function H : M — K (the Hamiltonian) determines a smooth



vector field Xy on M defined at cach m € M through the condition

w( Xy, v)=dH v (vely,M). (1.1)
FExistence and uniqueness of Xy follows from the fact that w is nondegenerate.
The triple (M,w, H) is called a Hamiltonian system. The flow of a Hamil-

tonian system is given by Hamilton’s equations, namecly,
i=Xp(z).

Irom (1.1) it follows that dH - Xj; = 0 so that the Hamiltonian is invariant with
respect to the flow that it induces. It can also be checked that a Hamiltonian flow

H) . . . . . .
(I)E " 18 a canonical transformation, that is to say. it preserves the symplectic

form: w = (@

New for all (.

If @ is a smooth manifold, then 7@, the cotangent bundle over (2, is endowed
with a canonical symplectic form given by w = > dg' A dp;, where the {¢',p;}
are the local canonical coordinates in T*(Q induced by some local coordinates {¢'}
on . From this definition it is clear that w is both locally constant (and thus
dw = 0) and non-degenerate. One checks that w i3 independent of the choice of
coordinates on (). so it is intrinsic.

The dynamical features of a mechanical system can also be described in terms
of Lagrangian mechanics. We now turn to a brief review of this topic and how it
relates with the Hamiltonian formulation.

A Lagrangian system consists of a manifold @ and a smooth function (the
Lagrangian) L : 1) — K. As before. here we will only be concerned with the
case when ( is finite dimensional. The trajectories of a Lagrangian syvstem are the
solutions to the Euler-Lagrange equations which in local coordinates take the

form

d ol oL

dtogt  dgt




These equations arisc from the application of Hamilton’s principle of critical action.
(Ct. [24, chap. 7].)
The fiber derivative FL is the map [rom 7°Q to T*@ defined by
i

o !
(FL(v)) wy) = = L{vy+tw,). (1.2)
dt}, .

where vy wy € TpQ. In coordinates, FL(q',¢%) = (¢*,0L/8G"). or in other words,
pi = 0L/0g.

IHFRL:TQ — T*(Q is a diffeomorphisni. then we define a Hamiltonian on T*(¢)
as follows. Let I := E o (FL)™!, where E(v) := FL(v) - v — L(v) is the energy
of the Lagrangian L. This procedure of obtaining the Hamiltonian from a given
Lagrangiau is called Legendre transform. Of course, the Lagrangian can also
be obtained from the Hamiltonian via L(v) = ZL(v) - v — H (FL{v)).

The trajectories in ¢ obtained by base-point projection of the trajectories of
the flow of the Hamiltonian vector field Xy on T*(Q correspond to the solution
trajectories of the Luler-Lagrange equations introduced above. This establishes the
relation between the Hamiltonian and the Lagrangian description of the dynamnics

in a mechanical system.

1.1.2 Lie groups

In preparation to the review of Hamiltonian systems with symmetry offered below,
we now briefly review some basic concepts on Lie group theory. Here we follow
[24. chap. 9; and [12]. where the reader can look for details.

A Lie group is a group that is also a smooth manifold such that group mul-
tiplication is a smooth operation. We will only consider finite dimensional Lic
groups. Group multiplication is variously denoted as g1g2 = L, (92) = Ry, (g1)-

A left action of a group G ou a set M is a map G x Al — M, usually
denoted (g.m) — ¢ -m, such that for all g;,go € G aud m € M. a)c-m =m
and b) gy - (g2 - m) = (g192) - m. Here e is the identity in ;. Analogously, a right

action is a map G x M — M. usually denoted (g.m) — m - g, such that a’)



m-e=mand b) (m-g1) g2 =m-(g192). A left or right action of a Lie group
on a smooth manifold is assumed to be a smooth operation.

The Lie algebra g of a Lic group G is the tangent space at the identity. g can
be identified with the set of left. or right. -invariant vector ficlds on ¢ via & — X -
with Xe(g) == 1. Ly - & or Xe(g) :="1. R, - &, respectively. 'T'he Lie bracket on g is
defined as [£, 7] := [X¢, X,)](e), where the latter bracket is the usual commutator
of vector ficlds. The Lie hracket thus defined depends on whether one chooses X
to be left or right invariant but the answer differs only by a sign. We will adopt
the Lic algebra induced by the left-invariant vector field.

Given € € g. let v¢ : R — G be the unique integral curve of 4(t) = X¢(7(¢))
starting at y¢(0) = ¢, where X¢ is the left-invariant vector field on G. The ex-
ponential map exp : g — G is defined as exp(§) := ~¢(1). One checks that
exp(s€) = ~ve(s) and that exp((s + 1)&) = exp(s€) exp(l§). where 5,0 € R, Trom
the definition it follows that

L1 plie) =€ .

dt,_,

One checks that the definition of exp does not depend on whether X is chosen to
be the left or right invariant vector field.
If G is a Lic group acting on a smooth manifold A7 then the infinitesimal

generator at © € M is detined as
: d ! , ‘
Ea(x) = T’ (exp(t€) - x) .

In this way, every £ € g induces a vector lield €3 on M.
The adjoint action is the (linear) left action of (¢ on its Lie algebra g denoted
as g - & = Adgy(¢) and defined by

d _
Ady(€) = = gexp(i)g
)

where ¢ € G and £ € g. If (G is abelian, for example. then the adjoint action is



trivial.
The coadjoint action Adj of G on g* is the (linear) right action denoted p1-g

and defined by

{1-g.6) = (AL (1), &) = (u, Ady(£))

where 1 € g*, £ € g and (, ) denotes the pairing between g and g*. There is also
a (linear) left action of G on g* defined by ¢ - := Ad;_ ().

Let @ : Gx Al — Al be an action of the Lie group G on the manifold M. Then
® induces actions on T'QQ and 17 as follows. Let ¢ € (7, x € M and v, € T, M

be given. Let ®,(x) := ®(g,r). The tangent lift of ® is defined by

g Vr 1= Trq)g c g

¥

Let pyy € Ty, M be given. The cotangent lift of ® is delined by

/s 2 N oe— e oy A\
Pyx " G Vx) = (Pgus 1 .zfq)g c V) -

In other words, pg,-g = (1y®g)* - pye (where **" denotes ‘adjoint operator’), Notice
that, while 1@, : I M — Ty M, we have that (1, ®,)" : T3 M — 1;1\1 .

Let G be a group acting on a set A and let # € M. The orbit of x is the
set. {y € M |y = g-ux, for some g € G} C M. The isotropy group at « is the

subgroup of G given by
G, ={¢9geGlg-v=ux}Cq.

(G, is sometimes called the stabilizer or symmetry subgroup at 2.) We say that
a point x € M is a symmetric point if the orbit of & is not trivial. Thus, x is a
svinmetric poinl iff G, # {¢} {where ¢ denotes the identity element in G).

Now, let G be a Lie group acting on a smooth manifold M. Then G, is a

closed subgroup and hence a Lie subgroup of G. The Lie algebra of GG, is denoted
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g and called the isotropy (or stabilizer or symmetry) algebra at x. One checks

that
8. = {£€g|iu(e) =0},
If. H is a subgroup of G, we define the set of fixed points for H in M as
M ={yeM|h-y=y. forallhe H} .

If H is compact then each connected component of M is a closed submanifold of
M.

Let @ @ G x M — M be an action of a Lic group GG on a smooth manifold
M. This action is said to be a free action if for every © € M. G, = {c}. It.
is said to be a proper action il the map ® : G x M — M x M : (g.m) —
(m,®(g,m)) is a proper map, i.c., the preimages of compact sets (under fi)) are
compact. Equivalently, ® is a proper action if for every pair of sequences {g;} < G,
{m;} C M, such that both {m;} and {®(g;,m;)} converge, we have that {g;} has
a convergenl subsequence.

Tt is easy to see that if the action of ¢ on A is proper and x € Al then G
is compact. Algo, it can be shown that il ¢ acts on M freely and properly then

M /G (the space of G-orbits) has the structure of a smooth manifold.

1.1.3 Hamiltonian systems with symmetry

Going back to Hamiltonian systems defined on a general symplectic manifold, we
now consider the case of Hamiltonian systems with symmelry. In general this
Ilnea,ns that the [Hamillonian is invariant with respect 1o the action of some group.
Here we will only be concerned with symmetries encoded by the action of a Lic
group. In what follows. G will denote a Lie group and g its Lie algebra.

Let (M.w) be a symplectic manifold and let G be a Lie group acting on Al.

We say that the symplectic form w is G-invariant (with respect to the tangent

'We assume that A7 and (& are second countable.



lift of the G-action) if for any m € M,
wlg-v,g-w)=wlv,w),

for all v,w € T,,A.
Let Ly denote the Lie derivative along a vector field X. That is to say, if « is
a differential forin then
d

Lxo= — UM
dt], o

where @} denotes the pull-back of the flow map of X at time ¢. Since the symplectic
form w is G-invariant we have that L¢,,w = 0. From the fact that w is closed
and the identity L¢,,w = dig,,w + i¢,, dw {Cartan’s magic formule) we get that
digy,w = 0. Poincar’s lemma then says that locally i¢,,w = d.J¢ for some smooth
real valued function J¢. In other words, the vector field £, is locally Hamiltonian.
If we can extend J¢ globally, for every & € g, in a way that is linear in &, then we

can define a momentum map as follows,

1.1. Definition (Momentum Map). Let M be a symplectic manifold, G a Lie

group acting symplectically on M and let {£'} be a basis of g, the Lie algebra of G.
- - - . v . ct

Assuming that for every i there exists a smooth real valued function Js globally

defined on M satistfying '1?57_1w = dJ% we define J : M —— g* by
(T(m), &) = a;J(m) .
i

where ¢ =3, ;&' We call J a momentum map for the action of G on M and

say that this action is globally Hamiltonian.
1.2. Remark. If the symplectic manifold A is connected then any two momentun
maps differ only by a constant.

1.3. Remark. This definition of momentum map generalizes the notion of angular

nmomerntun.



1.4. Definition. Let J be a momentum map for the action of G on M. We
say that .J is equivariant (or morc precisely, Ad*-equivariant) if J{g - m) =

g-J(m):=Ad _, J(m) for allm € M and all g € G.

1.5. Remark. A sufficient condition for Ad*-equivariance of a momentum map
associated with a symplectic G-action on a symplectic manifold with symplectic
form w is that there exists a globally defined G-invariant one formt 6 such that
w =d0.

An important properly of monmientum maps is given by the following proposi-

tion.

1.6. Proposition (Nocther’s Theorem). Let (M,w, H) be a Hamiltonian sys-
tem. Suppose that the Lic group G acts on M. that the action is globally Hamilto-
nian with momentum map J and that H is G-invariant. Then J is invariant with

respect to the flow induced by II.

Proof. (following [24. §11.4]) Since H is G-invariant, dH - &3 = 0 for all £ € g.
Therefore, ) = dH - &3 = w(éar, Xpp) = dJS - Xy, where the last equality follows
from the definition of the momentum map. Therefore, the flow of Xy preserves
J. , O

A Hamiltonian system satisfying the hypothesis of the previous prbl‘)osition
plus cquivariance of the momentun map provides a suitable general setting upon

which the main notions in this thesis can be built. We say that:

1.7. Definition. A Hamiltonian G-system (A, w, /1. J, G) is a lamiltonian
system (M.w. H) together with a Lic group G acting in a globally Hamiltonian
fashion on the symplectic manifold A with a momentum map J.

In the literature, a Hamiltonian (G-system is sometimes called Hamiltonian

system with symmetry or symplectic G-space.

1.1.4 Simple mechanical systems with symmetry

We now specialize the notions introduced above to the case when A is the cotan-

gent bundle of a Riemannian manifold.



Let GG be a Lie group acting on a smooth manifold ). Then the induced action
of G on T*(Q) given by the cotangent lift preserves the canonical symplectic form
Ydq' A dp;. Moreover, this action has an associated equivariant momentum map

J:T*Q) — g* given by

{(J(pg); ) = (Pg €0 (a)) (1.3)

where p; € T7Q and £ € g.

Givén a smooth manifold @), on which the Lie group G acts, and a Lagrangian
L : T — R which is G-invariant with respect to the tangent lift of the action of
G on @), we define Jp := J o FL, where J is the momentum map associated with
the tangent lift of the action of G on @ and FL is the fiber derivative introduced
above (see equation (1.2)). If J is equivariant then so is Jf,.

If @ is a Riemannian manifold then its metric (g;;) induces a metric on 7@
defined by <<pz-dqi, pidg’ >> = g4 piDj, where g gik = 5};. Thus we have the follow-

ing:

1.8. Definition. Let G be a Lie group acting on a Riemannian manifold (@, (, ))),
let the metric be G-invariant and let V be a smooth G-invariant real valued func-
tion defined on (). A simple mechanical G-system (Q, {(, )), V. G) is the Hamil-
tonian G-system (T*Q, w, H, J,G) where H(p,) := %||pq||> + V(q), w is the canon-
ical symplectic form and J is the momentum map introduced above in éxpressio‘n

(1.3). The function V is called the potential.

A simple mechanical G-system has an associated Lagrangian which is by defini-
tion the map L : T'Q — R given by L(vg) = %quHQ—V(q) (kinetic minus potential
énergy). It follows that, for simple mechanical G-systems, (FL(v,), wq) = (vq, wq),
or in coordinates, FL(v' 9/8¢") = g;j17dg". (Here FL is the fiber derivative defined
in (1.2).) One shows that the Legendre transform applied to this Lagrangian gives
the Hamiltonian introduced in definition 1.8 (kinetic plus potential eliergy).

We now turn to a review of the mechanical connection and related notions.

Here we follow closely the discussion found in [23, chap. 3].
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For each ¢ € @ that is not symmetric, the metric on ) induces an inner product

on g as follows.

1.9. Definition. Let (Q be a Riemannian manifold on which the Lie group G acts.

The locked inertia tensor is the map I : Q — L(g, g*) given by

(I(g),m) = {&ela): (D)

where.q € @ and &,7 € g.

For every g € @, & — (I{q)¢, &) is a positive quadratic form. If ¢ is such that
gq = {0} (in which case one says that the action at ¢ is locally free) then (I(g)-, ")

is an inner product and the aforementioned quadratic form is positive definite.

1.10. Remark. In the case when G is the rotation group then the locked inertia
tensor of definition 1.9 corresponds to the tensor of moments of inertia of the
rigid body obtained by instantaneously locking the joints of the given mechanical

systemn.

Let A:T(Q — g be defined by
A(vg) = H_I(Q)JL('Uq) )

where v, € T,Q and we recall that Jg, := J o FL is the momentum map on 7'Q.
A is called the mechanical connection and it generalizes the usual notion of
angular velocity. It is possible to show that the mechanical connection is indeed a
connection on the principal bundle Q@ — @ /G, that is to say, A is G-equivariant

and A(éo(q)) = €

The associated one-form A, to the mechanical connection is the one-form

on @ defined by

(Ap,vg) = (s Alvg)) -

It is easy to show that for every ¢ € Q, J(A,(q)) = p.
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From G-invariance of the metric and the formula (cf. [24, lemma 9.3.7])

(Adg&)ela) =9-ald™" - a), (1.4)

it is easy to show that for all g € @,
I{g - ¢) = Adj-1 ol{g) 0 Ady-1 . - (1.5)

Tt follows that:

1.11. Proposition. For all g € Q,

d (1), m) (q) - Cala) = {Ug)[¢, ¢l m) + (Wg)E, [n.<]) -

For future use, we also give an infinitesimal version of equation 1.5. Multiply-
ing both sides of 1.5 on the right by Ad, we get that Ad;_l I(q) = (g - q) Ad,.

Differentiating with respect to g we obtain
—adg l(q) = [DI(q) - €o(q)] +1(g) o adg . (1.6)

1.2 Relative equilibria

Generally speaking, the flow of a vector field that is equivariant with respect to the
action of a group induces a flow in the quotient space. In this context, a relative
equilibrium is simply an equilibrium in the quotient space. In Hamiltonian systems

with symmetry this concept leads to the following:

1.12. Definition. Let (M,w, H, J,G) be a Hamiltonian G-system. We say that

me € M is a relative equilibrium if Xz (m.) € Tin (G - m.).

The following proposition gives a useful characterization for relative equilibria

in Hamiltonian G-systems. Here we follow [23, chap. 4].
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1.13. Proposition (Characterization of Relative Equilibria). Letm. € M,
let me(t) be the dynamic orbit of Xy with me(0) = me and let p = J(me). Then

the following are equivalent:
1. m. s a relative equilibrium.
2. There is a £ € g such that me(t) = exp(t€) - me.

3. There is a £ € g such that me is a critical point of the augmented Hamil-

tonian
He(m) :== H(m) — (J(m) — p, &) .

We say that £ € g is the group velocity of a relative equilibrium m, if |
me(t) = exp(t€) - me. (If g, # {0} then the group velocity is not uniquely
defined.)

For simple mechanical G-systems, the criterion based on critical points of H
(itém 3. in the previous proposition) can be simplified in such a way that the search
of relative equilibria reduces to the search of critical points of a real valued function
defined on Q. ‘Depending on whether one keeps track on the group velocity or the
momentum of a relative equilibrium, this simplification yields either the augmented
or the amended poteﬁtial criterion, which we introduce in what. follows.

Let (Q.{, ),V,G) be a simple mechanical G-system. Given ¢ € g, the aug-
mented potential V; : () — R is defined as '

1
Velg) = V(o) - 5 ()5 €) -
Given p € g*, the amended potential V), : ) — R is defined as
1 -1
Vila) = V(g) + 5 (17 (@n) -

Note that the amended potential is defined at g € Q only when ¢ is not a symmetric

point (g, = {0}).
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1.14. Remark. One checks that the above definition of the amended potential is
equivalent to V,(q) = H o ay(q), where H is the usual Hamiltonian of the form
kinetic plus potential energy and «,, is the associated one-form to the mechanical

connection introduced above.

1.15. Proposition (Augmented potential criterion).
A point ze = (ge,pe) € T7Q is a relative equilibrium if and only if there exists a

& € g such that

i) pe = FL(£q(ge)) and
it) ge is a critical point of V.

1.16. Proposition (Amended potential criterion).
A point ze = (qe,pe) € T*Q is a relative equilibrium if and only if there exists a
1€ g* such that

i) pe = au(‘]e) and

ii) qe is a critical point of V).

1.3 Some results from representation theory

Here we review some basic facts from the representation theory of compact Lie
groups. In this section we follow [5] and {12, chap. 3]. '
Let G be a group acting on a set M. If z € M then we define the iéotropy

subgroup (or stabilizer) of x as
Gy ={9€eG|g-x=x}.

If V is a vector space on which G acts linearly, we say that a point v € V is
regular (for the G-action) if there is not any G-orbit in V whose dimension is
strictly greater than the dimension of the G-orbit through v. The set of regular

points (denoted Vieg) is open and dense in V. In particular, greg and Breg: the set
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of regular points in g and g* with respect to the adjoint and coadjoint action, is
open and dense in g and g*, respectively.

Let G be a compact, connected Lie group and let g be its Lie algebra. A
subspace t C g is said to be a subalgebra if [¢, 7] € tfor all {, 7 € t; it is said to be"
an abelian subalgebra if [, 5] = 0 for all {,n € t; and it is said to be a maximal
abelian subalgebra if it is an abelian subalgebra not properly contained in some
other abelian subalgebra.

A subgroup of a Lie group is said to be a torus if it is isomorphic to S x ... xS,
Every abelian subgroup of a compact, connected Lie group is isomorphic to a torus.
A subgroup of a Lie group is said to be a maximal torus if it is a torus" not
properly contained in some other torus.

Every & € g belongs to at least one maximal abelian subalgebra and every‘ ‘
§ € g N greg belongs to exactly one such maximal abelian subalgebra. Every
maximal abelian subalgebra is the Lie algebra of some maximal torus in G.

Let t be the maximal abelian subalgebra corresponding to a maximal torus 7.
Then, for any £ € tM greg, we have that G¢ = T'. Then the subspace [g,t] =
{[¢,m] | € € g;m € t} is the orthogonal complement to t in g with respect to any
G-invariant inner product on g. Such an inner product (a Killing form) exists by
compactness of G. Therefore we have that g =t [g, ].

With the same setup as in the previous paragraph, let t := [g, {|° (the annihi-
lator of [g,t]). Then for every p € tN gj,, we have that G, = T. Sin‘ce £ Breg
is dense in t it follows (from the continuity of the coadjoint action) that for every

pet, T CcG,.

1.4 Slices

We now introduce a standard construction that simplifies the study of a neighbor-

hood of a symmetric point in a manifold upon which a Lie group acts properly.

1.17. Definition. Let (G be a Lie group acting on a smooth manifold M. A slice

at 29 € M (for this action) is a smooth submanifold S of M containing z¢ such



that:
| ) TpeM =g 20 Ty,S and TpyM =g -z + 1,5 for all z € S;
i) S'is Gmo—invariant;
iii) ifz €S, geGand g-x €5 then g € Gg,.

1.18. Proposition (Slice Theorem). Let G be a Lie group acting properly on

a smooth manifold M and let xg € M. Then there exists a slice al xg.

Proof: See section 2.3 of [12]. O
Let X, Y be smooth manifolds and let H be a Lie group acting on the left on
both X and Y. Let us denote the action on X by x — x - h~!, and the action on
Y by y+r h-y, where h € H, x € X, y € Y. Assume that the action on X is

proper and free, so that the diagonal action of H on X x Y,

(B, (z,y) = (x-h™ b)),

is also proper and free. Under these conditions, define the twisted prbduct

XxgY as
XxpgVY =(XxY)/H,

so that X x Y — X xpy Y is a principal fiber bundle? with structure group H.
Then the projection X x Y — X onto the first factor, and the requirement that

the diagram

XxY —— XxgVY

l l

X — X/H

2A smooth fibration © : M — B is said to be a smooth principal fiber bundle with
structure group G if G acts freely on M, B is equal to the orbit space M/G with 7w : M — B
its corresponding natural projection, and every local trivialization is G-equivariant, in the sense
that if 7 : z — (w(z),¢(x)) : 7 1 (U) — U x G is a local trivialization then ¢(g - z) = gp(x)
(9€G).
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commutes, induces a mapping X xgY — X /H that can be shown to be a smooth
fiber bundle over X /H with fiber equal to Y. We call this the associated fiber
bundle. (Cf. the “associated bundle construction” of {7]. See also section 2.4 of
12].)

A special case of this construction occurs when X = G is a Lie group and f is
a Lie subgroup of G acting on Y. Then G actson Gx Y via ¢g-[g1,v1] := [9 91, 11)s
where g,g1 € G and y; € Y. .

1.19. Proposition (Tube theorem). Let G be a Lie group acting properly on
a smooth manifold M and let o € M. Then there exists a G-invariant open
neighborhood U of xo in M and a Gg,-invariant open neighborhood B of 0 in

TpoM/(g - x0), such that U is G-equivariantly diffeomorphic to G xg,, B.

Proof: See section 2.4 of [12]. )

1.20. Remark. Gy, acts linearly on T,, M /(g - o) via the tangent action h - [v] =
[14®p-v]. Here ®p(x) := h-z, v € Ty, M and [ | denotes equivalence class modulo
g-20. -

1.21. Remark. If M is a Riemannian manifold then B can be chosen to be a Gy, -

invariant neighborhood of zero in (g - xg)=*, the orthogonal complement to g -z in

Ty M. In this case U = G - exp,, (B).

1.22. Remark. It is éasy to check that, if H is a Lie subgroup of GG acting on a

manifold B, then the map
9.0 — [b] : (G xu B)/G — B/H

is a homeomorphism. It then follows from proposition 1.19 that, giveh xg € M,
there exists U a G-invariant neighborhood of zy in M and B a Gg,-invariant

neighborhood of 0 in 1,,,M/(g - zo) such that

U/G ~ (G xa,, B)/G ~ B/Gy, ,

“

where “~” denotes homeomorphism. In other words, the space of G-orbits in
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U C M is homeomorphic to the space of Gy, - orbits in B C T,,M/(g - xo).

1.5 Some basic facts

The following is an immediate consequence of the implicit function theorem.

1.23. Proposition. Let X,Y be open sets in Banach spaces, containing the re-
spective origins, and I C R an open interval containing zero. Let f: X XY X I ——
X be a smooth function. Suppose that Vy € Y, V7 € I the equation f(x,y,t) =0
has a unique solution for x and that the map x(y,t) thus determined is smooth on
Y x (I'\ {0}). Further, suppose that Dy f(x,y,0) is not singular for all (z,y) €

X xY. Then z extends to a smooth function on Y x I.

Proposition 1.23 follows readily from the standard implicit function theorem
and cdmpactness.

We now move on to review a standard tool in singularity theory. Recall that
Hadamard’s lemma says that if f is a smooth real valued function defined on
some neighborhood U of 0 in R and f(0) = 0 then f(z) = x g(x) for some smooth
function g(x) defined on U. (See, for example, [6] for a discussion of Hadamard’s
lemma and generalizations in the context of singularity theory.) We will use the
generalization of Hadamard’s lemma given in proposition 1.24 below.

The following is standard notation. Given E, I’ Banach spaces, LE(E, F) de-
notes the space of symmetric p-multilinear maps from EP to F. If E, Ey, F are Bé—
nach spaces and f : By x By — F is of class C* then Dgf By x By — Lé(Ez, F)

denotes the j-th partial derivative of f with respect to E; (i =1,2,0<j5 < k).

1.24. Proposition. Let Ey, Es, I be Banach spaces and f : E; X EQ — F' be
of class C*. Let n be an integer smaller than k and suppose that D% f(0,y) = 0 for

all0<i<n,y&€ Ey. Then

flzy) = glz,y) -z,

for some function g : By X Ey — L¥Y(Ey, F) of class Ck—(n+1)
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Proof: From Taylor’s theorem,

fle.y) =
___1—_ Dn+1f(0. y) i /1 (_:[_——t)n [Dn—i—lf(tlf y) . Dn+1f(0 y)] dr\ - xn+1 )
(n+ 1)! ! ’ 0 n! ! ’ 1 ’
Since f is C* it folows that the integral in the right-hand side is C*—(n+1), O

1.6 Persistence and bifurcation of relative equilibria:

brief review of the literature

The search for periodic orbits is a major theme in the theory of dynamical systems.
In the presence of symmetry, it is also natural to look for relative equilibria, that, |
is to say, periodic orbits generated by the symmetry group which can be thought
of equilibrium points in the quotient space. It is also natural to look for relative
periodic orbits, which are periodic orbits in the quotient space. In what follows we
attempt to give a brief summary of some of the literature related with the structure
of the set.of relative equilibria around a given equilibrium or relative equilibrium
in the context of Hamiltonian systems.

In the context of Hamiltonian G-systems, the simplest situation that can occur

is covered by the following proposition (cf. [3, appendix 2]):

1.25. Proposition. Let (P,w, H,G,J) be a Hamiltonian G-system with G acting
properly on P. Let p. € P be a relative equilibrium such that: a) the action of G is
locally free at pe; b) = J(pe) is a regular point with respect to the coadjoint action,
and p, is a non-degenerate critical point of Hy, := H|p,, where P, = JHw)/G,.
Then there is an open neighborhood V. C g* around p such that for everyv € V

there is a unique orbit of relative equilibria with momentum equal to v.

When we have the situation described in the previous proposition, we say that
the relative equilibria persist to nearby momentum level sets.

Patrick ([38]) showed that in this situation (i.e., under the assumptions of
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proposition 1.25) the set of relative equilibria persisting from p. form a smooth
manifold. Even more, if certain assumption on the spectrum of the second variation
of the augmented Hamiltonian at p. holds (which can be interpreted as saying that
the evolution in the group directions does not resonate with the evolution on the
reduced space), then this set is a smooth dim G + rank G dimensional symplectic
submanifold of P.

Montaldi ([30]) extended proposition 1.25 to the case when one drops the re-
quirement that . be a regular element in g*, giving a lower bound on the number
of relative equilibrium orbits in nearby momentum level sets. This lower bound
was given in terms of the cardinality of the Weyl group orbit of vthe corresponding
momentum value.

The study of periodic orbits and relative equilibria around symmetric points
in equivariant dynamical systems is of interest because it is usually in this context
that some interesting bifurcation phenomena occur. In Hamiltonian G-systems,
the structure of the singularities of the momentum map at symmetric points has
been studied in [2]. With respect to relative equilibria persisting from symmetric
points, Montaldi (cf. [30]) already gave an elementary point set topology argument
to show that the conclusion of proposition 1.25 follows if one only assumes that
the relative equilibria is a local extremum of the reduced Hamiltonian.

In a more general setting, Ortega and Ratiu ([34]) extended the persistence
results of Patrick and Montaldi to cover the case of symmetric points when the
action is proper. In this case the persistent surface of relative equilibria lies in a
symplectic strata of J~!(u)/G,, (thought as a Poisson variety) corresponding to a
fixed orbit type®. The use of a stratification point of view, however, does not seem
‘to be the adequate one for the purpose of obtaining branches of relative equilibria
that break the symmetry.

At this point, it is pertinent to give a note on terminology: given a relative

equilibrium m. in some equivariant dynamical system with symmetry group G, one

# An homologous result on the persistence of relative periodic orbits is also given in their paper,

generalizing a result of Montaldi ([29]).
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says that a branch of relative equilibria bifurcates from m, if there is a connected
set R, of relative equilibria containing m. such that the isotropy subgroup of points
in Re \ {me} is conjugate to a proper subgroup of Gy,.. In this case one usually
says that the relative equilibria emanating from m, break the symmetry. This
is in contrast to the situation of the papers described above, where the isotropy
subgroup of the relative equilibria emanating from m, is conjugate to G, (i.e.,
the points in R, is of the same orbit type as m.). In this case one says that the
relative equilibria persist. |

In the context of (non-Hamiltonian) equivariant dynamical systems, Krupa
(cf. [19]) studied the problem of bifurcation of relative equilibﬁa from sylnﬁetric
ones, following a method that consists of the decomposition of the vector field in
equivariant components, one in the direction along the group orbit and another
in the (perpendicular) direction along a slice. The bifurcation analysis was then
carried out by looking at the bifurcations associated to the flow induced on the
slice.

" In the case of Hamiltonian vector fields, the strategy followed by Krupa has
been adapted to take advantage of the symplectic structure, something that is
achieved by the use of Marle-Guillemin-Sternberg (MSG) normal form. This
normal form provides again a local decomposition of the vector field in fhe group
and slice directions, but this time the slice is further decomposed to reflect the
symplectic structure and provide a convenient expression for the momehtum map.
The MSG normal form was introduced in [22], [16] and [17] for compact groups

and generalized in [4] and [9] for proper group actions?.

4The MSG normal form gives a local model for a G-invariant neighborhood around m € Af of

- the form
G Xg,, (M* x V)

where m is a complement to Lie(Gy,) in G, p = J(m), and V,, is the symplectic normal space

at m given by

Vin = TG - m)* ) (TG - m)* N T (G - M) .
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Using the MSG normal form, Chossat and coauthors ([8]) have studied the
structure of relative equilibria nearby symmetric orbits in the context of general
Hamiltonian G-systems, where GG is a Lie group acting properly. Their main idea
is to carry out a systematic application of the implicit function theorem and the
method of Lyapunov-Schmidt reduction® to obtain an equation that is equivalent
to the relative equilibria condition dH¢(p) = O (the relative equilibria condition
given by the augmented Hamiltonian; see proposition 1.13). This equivalent' equa-
tion takes advantage of the decomposition given by the MSG normal form and
also has some nice equivariance properties. The decomposition facilitates finding
bifurcating branches of relative equilibria, from a symmetric rélative equilibfium
me, whose isotropy is a maximal subgroup of G,, N G,. (Here £ is the group
velocity of m..)

Going back to the context of general periodic orbits in general Hamiltonian
systems, we should mention the theorems of Weinstein and Moser given in [40]
and [32]. These give a lower bound on the number of periodic orbits surrounding
a stable equilibrium in nearby energy level sets. In their simplest version, these
results say that if m. € M is a stable equilibrium then there are at least %dim M
periodic orbits in each nearby energy level set. Montaldi and coauthors ([31])
extended the theory to the case of equivariant Hamiltonian systems, obfaining a
result on the existence of periodic orbits with certain prescribed symmetries.

This framework was extended by Ortega and Ratiu in [35] (see also [20] and
[21]) to deal with relative equilibria instead of periodic orbits (and, in fact, recov-
ering the Weinstein-Moser theorems as a particular case). The basic result of their
paper provides a lower bound® on the number of relative equilibria with group ve-

locity £ in an energy level set surrounding a stable equilibrium m., when d?>J5(m,)

The MSG also provides a simple expression for the equivariant momentum map, if the action of

G on M admits one.
5For an exposition of the Lyapunov-Schmidt reduction technique in bifurcation theory, the

reader can consult, e.g., [14].
%The lower bound of the number of relative equilibria in A™'(¢) is expressed in terms of the

Lusternik-Schnirelman category of k™" (€)/Ge.
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is non-degenerate. By considering the roots of det (d2(h — J5)(me)) = 0, their
paper also covers the case of unstable relative equilibria. By applying the MSG
normal form, it covers the case of relative equilibria surrounding genuine relative

equilibria’.

1.7 Summary of thesis

In this thesis we restrict our attention to simple mechanical G-systems, with G a
compact Lie group, and consider the problem of finding the branches of relative
equilibria surrounding a given set of relative equilibria of the form t-ge, where g¢ is a
critical point of the potential, G4, = S!, and t C g is a maximal abelian subalgebra
containing g,,. Furthermore, we assume that G acts freely on a neighborhood -
around, but excluding, G - g.

With these assumptions, each relative equilibrium m, € FL(t- g.) is a sym-
metric point in phase space and thus corresponds to the kind of relative equilibria
considered in, for example, [8] and [35]. Taking advantage of the fact that in
our case the symplectic manifold is a cotangent bundle and that the Hamﬂtoﬁian
is of the form kinetic plus potential energy, we can deal with the problem using
the ameﬁded potential instead of the augmented Hamiltonian as in the mentioned
papers..

In chapter 3 we give a method for predicting the existence of branches of
symmetry breaking relative equilibria bifurcating from the given set of relative
equilibria. That is to say, we obtain branches of relative equilibria with trivial
continuous isotropy emanating from symmetric relative equilibria.

These branches can be thought of as surfaces in 7%Q/G parametrized by slice
coordinates and momentum value. (Such surfaces have a singularity where they
intersect the given set of symmetric relative equilibria.) This yields a method,

based on counting non-degenerate critical points of a certain function, for finding

"These ideas and analytical tools, together with some Morse-theoretic machinery, have been
applied by Ortega in [33] to study relative periodic orbits around an equilibrium or relative

equilibrium me.. In this case it is key to consider the resonant subspaces of dh(m.). See also [41].
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a lower bound on the number of relative equilibria in nearby momentum level sets.

The main geometrical tool for our study is the slice construction described in
61.4. This is analogous with the strategy followed in [8] and other papers that use
the MSG normal form. However, our slice decomposition is done at the level of
the configuration space. This suffices because the underlying symplectic structure
is already capturcd by the usage of the amended potential.

The idea behind our strategy is based on a simultaneous rescaling of the slice
directions in configuration space and certain directions in the dual of the Lic al-
gebra. This allows to regularize, or blow-up. the amended potential around ge.
This results in a decomposition of the amended potential criterion dV),(¢) = 0 into
two equivalent conditions. Looscly speaking, this pair of conditions are obtained
from the restriction of the blown-up version of the amended potential criterion
to subspaces tangent to the group and slice directions (cf. propositions 3.22 and
3.23).

For an aternative approach to the study of the amended potential at symmetric
configurations, see (18].

In this thesis we do not attempt to consider the problem of finding lower bounds
on the number of relative equilibria in energy level sets. Therefore our results can
probably be more easily compared with [8] than with the generalizations of the
Weinstein-Moser theorem given in [35].

As it is the case with the papers mentioned above, the appearance of bifurcating
branches of relative equilibria is related with the presence of a Lyapunov-Schmidt
reduction in the analysis of the problem. In [8]. the Lyapunov-Schmidt reduction
takes place on the symplectic normal space inside the slice through the given
relative equilibrimun. Analogously. the rescaling of configuration coordinates and
the associated Lyapunov-Schmidt reduction described in chapter 3 are done along
the slice through ¢..

In chapter 2 we obtain the branches of relative equilibria emanating from a
symmetric state in the double spherical pendulum. This illustrates the method

of blowing-up the amended potential in a simple context. In chapter 3 we give a
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general framework in which the blowing-up of the amended potential can be used
to study bifurcating branches of relative equilibria. In chapter 4 we apply the
theory developed in chapter 3 to study the relative equilibria in the example of
the symmetric coupled rigid bodies. Our conclusions appear in chapter 5, where

we summarize the results obtained and future directions of research.



Chapter 2

Bifurcation of relative equilibria in the

double spherical pendulum

The purpose of this chapter is to illustrate the basic idea underlying the general.
theory that we will present in the next chapter using the double spherical pendu-
lum (DSP) .as an example. This is a simple example that already exhibits some
interesting branches of relative equilibria bifurcating from symmetric states.

“The literaturc on the DSP is extensive. It is studied in detail in [23] (see also
[261), where the relative equilibria of the system are determined. Here we give an
alternative derivation.

The strategy of this chapter is to blow-up the amended potential around the
straight down configuration. This amounts to a simultancous rescaling of the
configuration coordinates and the momentunm. The blowing-up approach that we

discuss in this chapter extends ideas present in |10].

2.1 Description and preliminaries

The DSP consists of two point masses my. o in three-dimensional space in the
presence of a constant gravitational field pointing in the negative vertical direction.
The mass m is constrained to move on a sphere of radius {; around the origin and
me ig constrained to move on a sphere of radius Iy centered around my. See figure

2.1. Thus. the configuration space can be thought of as @ := §? x 5.
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<

gravity m,

iy

Figure 2.1: The double spherical pendulumn.

The Lagrangian for the DSP is of the form kinetic minus potential cnergy and

is given by

| —

Liqr, q2: 4i-d2) = = (ma|ha]l? + ma|llidn — lada||?)

[\

— g (miiay +ma(har + (2q2)) - e .

where (q1,q2) € Q. ¢ is the gravitational constant and {e;}3., is the standard
orthonormal basis for R?.

Let ST act on () through rotations around the vertical axis. It is casy to see
that the Lagrangian is invariant with respect to the tangent lift of this group action
and thus St is the symmetry group of the system. Tts Lie algebra is K.

The infinitesimal generator for the S'-action on @ is given by

Solar.az) = (Eh(—q1y. q12.0). £ la( =2y ¢22.0)) 1, )

where q; = (Gir. Qiy-Giz) (1 = 1,2) and & € R. Since the Lie algebra is one-

dimensional. the locked inertia tensor (sec definition 1.9) is in this case just a



[\\]
|

scalar and it is given by

H(Ql:qZ) = ”(_(hgp s U)-, (_92ys 4o, U)“%\

12

ma|lliai |2 + meollha! + lay

where || |x is the norm associated with the metric induced by the kinetic cn-

ergy. which can be read of from the Lagrangian: ‘1’ denotes projection onto the
. | . 2

horizontal plane; and | || denotes the usual norm in R* = span{e;, es}.

The nowentum mnap is given by

Jr(ai i) = ez - [mili(ar x q1) + ma(ligr + o) x (Lidy + lap)] -

2.2 Rescaling the amended potential

Now we want to study relative equilibria whose configuration is close to the two
pendulac pointing downwards. The strategy lor analyzing the relative equilibria
around the other three symmetric states of the system (one arm pointing down-
wards and the other pointing upwards, etc.) is completely analogous.

We start by introducing polar coordinates {r;,¢;} defined by

'™ ‘
q; = ('m cos ;. r; sin0;. —\/lf — rf) . i=1,2,

l;

with 0 < 7; < {; and 8; € S'. The potential then takes the form

V = —g(miliqq + mao(lias +loqr)) - €3

) ‘ — I 5
—mygy /13 — 1% — mag <\/lf -7+ \/Ij — rj)

(my+ma)g , mag .
; T
2[] 2[2

i

=W+ + h.o.t.

where Vi = —g(mily +my(l1 +12) is the value of the potential at the straight down

configuration. The locked inertia tensor becomes, with p = 6o — 4y,

- 9 2 9 \
s=rnury Fmalr] 15+ 2rirecosp) .
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Therefore, the amended potential (as defined in section 1.2) is given by

12

Vi=V+ ‘ ‘ ,
" 2mir? + mo(r? + 13 + 2r1ra cos )

which of course is not defined at (r1,r2) = (0,0).

We now introduce the followihg rescaling to blow-up the singular straight down
configuration. Assuming that p > 0, let g = 72, r{ = 781, 79 = 759. The variables
s1, 89 for a fixed 7 are assumed to be bounded away from zero as 7 — 0. Then the

amended potential takes the form
VN = Vb + TQW(Ta 51, 82, QO) 3

where

W(r, s1,52,9) = (g(m1+m,2) 2 22

1
2 LT
1
(m1 + ma)s? + mos3 + 2mosy s cos ¢

>+m¥y

Notice that W is smooth, even at 7 = 0.
It is clear that, for 7 # 0 fixed, the point (751,72, ¢) is a critical point of V),

if and only if (s1, s2,¢) is a critical point of

Also, if (51, $2,¢) is a non-degenerate critical point of Wy then, by the implicit
function theorem, there are functions $1(7), s2(7),¢(7) defined on some interval
[0,¢] such that, for each 7 € [0,¢], a(7) = (s1(7), s2(7), (7)) is a critical point
of W,. Therefore, to each non-degenerate critical point of W we can associate a

branch of relative equilibria, parametrized by 7, of the form

A2 [ (1s1(1), 7sa(T), (1)) € T*Q ,
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where A, is the associated one-form to the mechanical connection defined in 1.1.4

and

Y(ry,re, ) =
1 9 2 1 : 2 2
T 1,0, — /13 — 7% N T2 €OSp, T2 sin @, —4 /15 — 13 €Q .
1 2

In other words, to each non-degenerate critical point of Wy we can associate a
symmetry-breaking branch of relative equilibria emanating from the straight-down
configuration.

We can think of Wy as the blown-up amended potential.

2.3 Critical points of the blown-up amended potential |

We proceed now to obtain the critical points of Wy.

A computation shows that

OWo M98 89 8iN

dp (mls% + 2mas1 89 cos @ + ma(s? + 52))?

If we asstime that s1s2 # 0 then equating the right-hand side to zero gives p = 0
or ¢ = 7 which corresponds to qiL and qQl being colinear. By allowing s; and sy

to have opposite signs, we only need to consider the case

p=0. C(2.1)
Furthermore,
oWy  mit (1 +pme g(my + ma)s
951 | =g (my + ma(1 + p)2)2s3 L ’
oWy

g <9p81 B L+ p >
0s9 =0 Iy (m1 + mz(l + ,0)2>28? ’
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where p = s9/s,. Equating the above expressions to zero gives

Im(l+p)—p(m+p)=0 (2.2)

and

S

4N [(1+p)
4 =

m3 g p(m + p(2+ p))? 29)

where m := (m1 + ma)/ma and [ := [2/l;. Equations 2.1, 2.2 and 2.3 give the
critical points of Wy.

Since equation 2.3 is already explicit once we know p, it suffices to consider
only equation 2.2. This is a quadratic equation thus giving two possible branches
of relative equilibria. One verifies that the two roots p. of this equation lie in the.

ranges

—-m<p. < —1 (cowboy)
0<py <ml (stretched-out)

which correspond to the “cowboy” and “stretched-out” types of relative equilibria.
These two types are illustrated in figure 2.2. ‘

Also, one verifies that for physical values of the system parameters, that is
to say, m > 1, [ > 0, the critical points of Wy obtained above are always non-
degenerate. Therefore we have obtained all the branches of relative equilibr;la
emanating from the straight-down configuration for the double spherical pendu-

lum.

2.1. Remark. A direct computation shows that there are no critical points of W)

when s159 = 0 but either s; # 0 or so # 0.
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Stretched-out Cowboy

Figure 2.2: Relative equilibria configurations for the DSP with m = 3, [ = ‘4/ 3,
p = 1.9 (stretched-out) and p = —1.7 (cowboy).

2.4 Stability Considerations

An equilibrium is said to be stable if trajectories that start near the equilibrium
remain close to it for all future time'. We say that a relative equilibrium is S1-
stable if the corresponding class in the (Poisson) reduced space (T*Q)/S? is stable.
From the energy-momentum method of stability analysis (c¢f. [23, chap. 5]) we
know that a relative equilibrium of the DSP is Sl-stable if 6°V), is positive def-
inite. Tt is clear that if (51, 89,0) is a critical point of Wy then the signature of
52Vu272 [4(51, T52,0)] coincides with the signature of §2Wy(51, 82, 0), for small val-
ues of 7. Therefore, the signature of the second variation of the blown-up amended
potential Wy determines the stability type of the corresponding bifurcating branch
of relative equilibria, nearby the straight-down configuration.

The second variation of the blown-up amended potential Wy is computed to
be as follows. Let s, = (s1(p), psi(p),0) with p equal to one of the two roots of

eq. (2.2) and s1(p) given by eq. (2.3), so that s. is one of the two critical points

'See [1, chap. 8] for a discussion on the appropriate notion of stability for Hamiltonian systems.
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of Wy. A computation shows that

a b 0
52WO(86) =1b ¢ 0
0 0 ¢

with

mag (Mo + p(3m* —m(p—6)p+ 4p%))

a, =
ll g
p = M2g p(m(3 +4p) + p(2 + 3p))
ll g ’
_ mag m+ p(6+9p+ 4p?)
A o ’

g [9;° p(1+p)’
l1 g

where o = (1 + p)(m + p(2 + p)).

The signature of §2Wy(s.) is obtained by joining the sign of d with the signature
of the block (Cbl IC’) If ac — b* > 0 then the block under consideration is definite; it
is positive/negative definite according to sign(a + ¢). If ac — b? < 0 then the biock
has signature {+, —}. ‘

Recall that p, and p_ are the two roots of eq. (2.2) (corresponding to the
stretched-out and cowboy branches of relative equilibria, respectively). Numerical
evidence shows that for all physical non-degenerate system para.meteré (ie. 0 <

[ < oo and 1 < 7 < 00) we have the following:

1. a+ ¢ > 0 for both p = pa;
2. ac—b* =0 for p = py;
3. dz0for p=px.

It follows that nearby the straight-down configuration, the signature of 42V}, is
{+,+,+} at relative equilibria in the stretched-out branch and is {+,—,—} at

relative equilibria in the cowboy branch.
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We can then conclude that, nearby the straight-down configuration, the relative
equilibria in the stretched-out branch are S'-stable. (This analysis is inconclusive

with respect to the stability nature of the cowboy branch.)

2.2. Remark. It is possible to obtain information about the stability nature ofib
the cowboy branch (nearby the straight-down configuration) by studying the lin-
éarization of the dynamics in the blown-up variables. To this end one blows-up
the Routhian? of the DSP, in a way similar to how we have blown-up the amended
potential, and then one computes the eigenvalues of the linearization (at the cow-
boy critical point s; = (s1{p-),p-s1(p-),0)) of the Euler-Lagrange equations

corresponding to the blown-up Routhian.

2For each p € g*, the Routhian R* : TQ — R is defined by R*(q,v) = L(g,v) — {A,(q),v)
where L is the Lagrangian and A, is the one-form associated to the mechanical connection
defined in section 1.1.4. Following the procedure of Lagrangian reduction, the reduced dynamics
corresponding to J = u can be expréssed in terms of a (Lagrange-d’Alambert type of) variational

principle associated to R* and the corresponding Euler-Lagrange equations. Cf. [26].
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Chapter 3

Regularization of the amended potential

around a symmetric group orbit

In this chapter we generalize certain features that we encountered in the double
sp}leriéal pendulum. In that example the symmetric points were isolated. We
now consider a more general setting in which this need not be the case, but which
still includes the double spherical pendulum. This theory will be applied to the
exémpie of symmetric coupled rigid bodies (SCRB) in chapter 4.

In this general setting, instead of having an isolated symmetric point, we will
consider the situation in which one has a symmetric group orbit in a deleted
neighborhood of which the action is free. That is, we will assume that G acts freely
in some G-invariant ileighborhood of the G-orbit of a symmetric configuration ge,
excluding the orbit itself. | '

We will continue to restrict ourselves to the case when G is a compact Lie
group and G, = S1.

In this setting, we are interested in the following problem. Suppose that R is
’a‘ subspace in Ty, @, with g. being a symmetric point, and such that every vy, € R,
i) is a relative equilibrium and i) is fixed by G4 (and hence R intersects each
G orbit only once). We want to i) give sufficient conditions that guarantee the
existence of a “surface” of relative equilibria emanating from R, = mrg.c(R.),
where mpg.¢ : TQ — (I'Q)/G is the canonical projection, and i) give a criteria

for enumerating distinet “surfaces” of relative equilibria emanating from R..
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3.1 Setting of the problem

Let (@, (, )}, V; G) be a simple mechanical G-system, with G a compact Lie group
with Lie algebra g. Let g. € @ be a symmetric point with H := G, = § 1 and‘
dV(g.) = 0. Suppose that G acts freely in some G-invariant neighborhood of
the G-orbit of g. excluding the orbit itself and that there is a maximal abelian

subalgebra t C g such that
1. every v € t- ¢, is a relative equilibrium,
2. gq. C H,
3. I(ge) - t C [g, t|°, where I is the locked inertia tensor.

3.1. Remark. Assumption 2 implies that every point in {- g, is a fixed point of Gy,

and thus Gy, = Gy, for all v € t- ge.

3.2. Remark. Assumption 3 is generically redundant. Indeed, let us denote m :=
I(ge) - t and suppose that g4, N greg # 0. We claim that mNgy., C [g, |°. It follows
that if m N gy, is dense in m, then m C g, {]°. '

To prove the claim, observe first that for all 4 € m and all £ € g,, we have that
¢ € gu- To see this, let € t such that u = I(ge)n and notice that, from:equation
(1.6),

— adz = adz ]I(QP)H = H(qe)[£7 77] =0 )

since g4, C t. Thus § € g, as claimed. Now, let £ € g4, N greg. Then g¢ = t. Also,
for every p € mN g, 9 = g, and thus g, = t. It is easy to see that for all p € g*,

€ [g,8,]°. Therefore, m N Breg C [8,1]°, as claimed.

3.2 Splitting the Lie algebra

We now introduce some notation and constructions that will be used throughout

the rest of this chapter. We start by splitting the Lie algebra. For notational
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convenience, let & := g, = kerl(q.) and choose ¥; C g a complementary subspace
of &g in t. Let £2 = [g,t]. Since t is a maximal abelian subalgebra, from the
discussion in section 1.3 it follows that g =t® &, =t B £ D bo.

The corresponding splitting in the dual of the Lie algebra is given by
m; = (Ej @ e)°

where (i, 7, k) is a cyclic permutation of (0, 1,2). It follows that g* = mp @ m; & mo.
3.3. Lemma. Fori=1,2, m; = [(q.)¥;.

Proof: Since & = kerl(g.), it follows that (I{q.)g, %) = (I(gc)t0,9) = {0},
hence I(g.)g C €. Since dimI(ge)g = dim g — dim &y = dim €§ we have that

[(ge)g =t . (3'1)

In particular, I{ge)¢; C €. From assumption 2 we have that I(g.)t C €5. Since
t = € @ & then I{q.)t = I(ge)t and it follows that T(ge.)t; C €. Therefore
I(ge)ts C EgNES = (8o @ B2)° = m;. Since dim € = dim (¥ & £2)° we conclude that
[(ge )8 = my. .

From equation (3.1) we have in particular that (g )€> C €. Since I(g.)t; C €
and [{ge) is symmetfic we have that I(g.)ts C €]. Therefore I(g.)t2 C €5 NE] =
(o @ £)° = ma. As above, a dimension count shows that the contention is indeed

an equality. ' Y%

Finally, we define the following rescaling in g* to be used below. Let
B:RXJL(g-qe) — g : (7, p1) — Ty + 7 mop 4+ T2 (3.2)

where vy is a generator of mg and 7; : g* — m; is the projection induced by the

splitting g* = €, m;. Notice that J.(g - ¢.) = I(¢ge)g = m1 © my.
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3.3 Smoothness of the “angular velocity”

Let us now introduce some more notation that we will use throughout this chapter.

3.4. Definition. If U is a subset of some normed vector space and r > 0, let

(R° x U), :

(r,u) e Rx U |0 < ||Tu|| <7},
(R xU)y: T,

={
={(r,u) e RxU | |lru]| <7, u#0}.
Hence (R x U), = (R° x U), U ({0} x (U \ {0})).

We will also agree on the following notational convention: When we consider
cartesian products of the form (R° x U), x X (or (R x U), x X), we will write the

corresponding elements as (7, u, z) instead of ((7,u), x).

8.5. Remark. The previous definition makes sense even if U is a subset of a set

that is not a vector space, as long as scalar multiplication is defined on it.

We now consider the following Lie algebra-valued function associated to a si-
multaneous rescaling of both the configuration space and the dual of the Lie alge-
bra.

To start, éonsider the set N := (g - ge)* and let 7o € R such that exp,, is a
diffeomorphism when restricted to the open ball in N of radius rp.

Let

&(r,0, 1) == Uexpg, (Tv)) ™' B(r, 1) |

where (7,v,u) € (R® X N}, X J(g - ¢e). Informally, we think of £(7,v, ) as the
“angular velocity” associated to a point in ) x g* after rescaling. l

In this section we will show that, although the definition of &(7,v, ) only
makes sense when (7,v) € (R° x N),,, it can be extended to a smooth function on
(R x N)p,. We start with the following lemmas.

Recall that G, acts linearly on T, Q. For £ € gq_,v € T, Q, let € - v denote

the infinitesimal generator of ¢ at v.
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3.6. Lemma. Let G be a Lie group acting on a Riemannian manifold ¢} such that

the metric is G-invariant. Then, for £ € g,,, v € T,.Q, T € R,

e (expy ro) | = 6 - vl = 5 (R, & - v)o,& ) 7+ oY)

where {(R(v,w)v,w)) denotes the sectional curvature at g corresponding to the

subspace spanned by (v, w).

Proof: Since the metric is G-invariant then, for g € Gy, exp, (g -v) = g -

exp, (v). Differentiating with respect to g we see that if { € gg.,

€q (expy, (v)) = Ty expg, (€ - v) -

From the theory of Jacobi fields (cfr. [11, p. 114]) one learns that V¢ € Q and
v,w € T4Q,

[ Trwexpy(rw)||? = lwl’r - & (B, wy,w) 7 + o)
3

The claim follows by letting w = £ - . Y%

3.7. Lemma. Let {,n € g and q € Q. Suppose that dV(q) = 0, where Vg is the

augmented potential (see section 1.1.4), and suppose that both n and £, 1] belong
to gq. Then d (I(-)&,n) (q) = 0. '

Proof: Since dVg(q) = 0 it follows from section 1.2 that {g(q) is a relative
equilibrium, that is to say, Xy (z4) = &p(zq), where z; = FL(£g(q)) and P =T7Q.
Now, suppose that both n, [n, £} € g4. Then '

nplzg) = — . FL(exp(tn) - £q(q)) = FL([n,&lq(q)) =0,

where we have used that g-({o(q)) = (Adg&)g(g-¢q). It follows that (f%’r,})p(zq) =
X1 (zg) and hence that 0 = dVei(q) = dVe(q) + d (I(0)&.n) (a) + 3dlng()[I*(9)-

The first term in the latter expression vanishes by assumption and last term van-



39

ishes by lemma 3.6. Therefore d (I(0)&,n) = 0. \Y

3.8. Lemma. Let g. € ), t C g be as defined in the general setup of the problem
(section 3.1). Then d(I(-)¢,n) (¢e) =0 for all{ € t, n € g,..

Proof: Since gq, C tand tis a maximal abelian subalgebra then [{, 7] = 0 € g, .

Therefore the claim follows by the previous lemma. . v

For the remaining of this chapter we will sometimes use the following abuse of

notation. For v € T, @, ||v|| < ro, write

[{v) = [(expy, (v)) -

Let m; : g — my; (i = 0,1,2) be the projection induced by the splitting
introduced in section 3.2. Let mo : g — my & mo = Jr(g - ¢e) be given by

w19 = m + mo. For v € N, ||v|| < 7o, let
ﬁ(v) =712 0 Ul(v)](e,e¢,) and I(v) := 2 0 I(v) lxer (o) -

Notice that I(v) is an isomorphism even when v = 0.

3.9. Proposition. Let 3(7, ) be as in equation (3.2). With ng a generator of

8., let
Yi={weT, Q| |lno-v|* - <(Dﬁ(0) - )0, 1(0) ~H(DI(0) .u)no> =0} .
Let N1 := N\ X. Consider the map & : (R° x Ni)py X Jr(g-qe) — g defined by
&(r,v, ) = Iexpy, (T0)) 7' B(1, 1) -

Then & can be extended to a smooth function on (R X Ny)p, X Jr(g - ge).

3.10. Remark. &(7,v, ) is well defined and smooth for 7 # 0 because the G-action

is (locally) free outside G - ge.
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Proof. Let @ : (R X Ny)py X Jr(g - ge) X €9 x (€1 @ ) — g* be given by

(1, v, 4, €0,&1) = 1(rv) (& + &) — BT, 1) - (3.3)

When 7 # 0, £(7,v, 1) is determined by &(7,v, 1) = & + &1, where (&, &1) is the
unique solution to the equation ®(r,v, i, &y, €1) = 0.
| The equation ® = 0 is obviously equivalent to the pair of equations {71o® =
0, (Id — 712)® = 0}. We now consider the first one.

Clearly, if 7 # 0, the equation 719® = 0 determines a unique solution for &

depending smoothly on the other parameters. Let p; := m;(p), i = 1,2. At 7 =0,

7I-12(1)(07 v, [, §0a fl) = 7712[11(0) ' (50 + 51) - ﬂ(07 :u)} = ﬁ(o)fl — M1,

so that & = ﬁ(O)_lul is the unique solution of 715® = 0 at 7 = 0. Moreover, from

the definition of @,

6 7T12(I)
231

(077}7 M7€07 ﬁ(o)_lﬂ) = WIQH(O)I(E]QPEQ) = ﬁ(o) :

Since 1(0) is an isomorphism then the implicit function theorem in the form of
proposition 1.23 implies that the equation m19® = 0 implicitly defines a smooth
function & : (R x Ni)r, % Jr(g - ge) x kerI(0) — ¢ satisfying & (0,v, 4, &) =
ﬁ(O)“lul. In particular, &1(0, v, i, &) only depends on p; = m(p). |

Now we proceed to extract information from the equation (Id —m2)® = 0. Let

@ :Jp(g-ge) X ker I(0) — mg be given by

99(7—7 v, ,U,,fo) = (Id - Wl?)(D(Ta v, Hﬂ&)aél(Ta v, H:éo))
= (Id = m12) [I[(Tv) (€0 + & (7,0, 1, &0)) — BT, )] -

3.11. Lemma. For every (v, u,&) € (N \{0}) x Jr(g - ge) % kerI(0),

(,O(O,U, M»fo) = DTLID(O?'U’“’&)) =0.
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Proof of Lemma. Firstly,

(0, v, 4, §o) = (Id — m12)[I(0) - (€0 + &1(0, v, 1, &0)) — B(O, )]
= (Id — 712)[I(0) - (€0 + L(0) ) — pua] = O

because ImI(0) = Jr.(g - ¢e) = my & ma, p1 € my and (Id — m2)(m; & my) = 0.
Secondly,

D:p(0, v, p, &) = (Id = m2)[(DI(0) - v) (&0 + 1(0) 1)
IO 56 00,0 = 501

= (Id ~ m2)(DI(0) - v)(& + 1(0) ')

using, as above, that Im I(0) = my@my, 08/0T = po € mg and (Id—m2)(miGmy) =
0. ‘

Let g be a generator of g, . Since mg is the annihilator of a complement to
gq. in g, then, for all v € g*, (Id — 712) - v = 0 if and only if (r,n0) = 0. But now
the equality

{((DI(0) - v) (€0 +1(0) " 1), m0) = O

follows from the fact that & + 1(0)"'u; € t and lemma 3.8. Therefore, we have

that D, ®(0,v, u, &) = 0 as claimed. This finishes the proof of lemma 3.11. 2

We can now apply Hadamard’s lemma in the form of proposition 1.24 to con-
clude that (7, v, p, &) = 7'2(,0, (1,v, 1, &) for some smooth function ¢’ defined on
(R X Ni)py X Jr(g - ge) x ker I(0) and (0, v, i, &) = Drrip(0, v, 1, &0) /2. We now
want to conclude that the equation ¢’ = 0 defines & as a function of (v, 1), but

first we need to prove the following
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3.12. Lemma. Let g be a generator of g. and let o € R. Then

<DTT(10(0? U, [y & 770)7 770> =
a[lIno - o[* = { (DI(0) - v)mo. 1(0) ™ (DI(0) - vy )|
+ 5 {DHO0) w0, 10) ) + ((DIO) - ), (DEO)" - )y

+ ((DL(0) - )0, 1(0) 12 = (v o)

1
2

Proof of Lemma: A direct computation using the definition of ¢(7, v, u, &)

shows that (with the notation &; (7, &) := &1 (7, v, i, ang)),

DTT(IO(O? U, [y C”]O) = (Id - 7TlQ) [ (DQH(O) . (’U, U)) (50 + 51 (07 a))
+2(DI(0) - v) %%(0, o) — 2] . (3.4)

But

a
g(a, 0) = —Dg, (m12®) " - Dr(m12®)|r—0

= —al(0)"1(DI(0) - v)no + (DI(O) ™" - v)ps +1(0) o .

Substituting this in the expansion of (D;-¢(0, v, u, ang, 7g) obtained from equation

(3.4) and using the fact that, from lemma 3.6,

. 02 .
(D0 - (v,0)) mo.m) = 55| ((m0)a(ro), (m)a(ro)) = 2l -],
=0
we get the desired result. This finishes the proof of lemma 3.12. Vv

We know that given (7, v,pu) € (R® x Ny),, x Jr(g-q) (i.e., Tv # 0), the equa-
tion ¢'(7,v, i, &) = 0 yields a unique solution for &y, namely, the £y-component
of I(rv)~13(r, ). Clearly, this solution is a smooth function of the (7, v, u) pa-
rameters when 7 # 0. By the previous lemma and since v € X, there is also
a unique & € gq solving ¢/(0,v, u, &) = 0. Moreover, d¢'/0a (0,v, 1, &) # 0.

It follows from proposition 1.23 that &,(7, v, u) extends to a smooth function on
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(R X N1)py X Jr(g - ge) and therefore the same is true for &(7,v, pu) = & (7, v, 1) +
fi(’l‘, v, w, Eo(T, v, 11)). This completes the proof of proposition 3.9. a

For future reference, we prove
3.13. Proposition. N; is H-invariant.

Proof. 1t suffices to show that ¥ is H-invariant. The only non-obvious fact
is that <(Dﬁ(0) -v)&o, 1(0)~H(DI(0) - U)£0> is invariant with respect to v — h - v,
h € H := G,,. To see this we first show fhat T(v)&o is H-equivariant as a function
of v, so that the same is true for (DI(0)-v)&. Since <~, ﬁ(O)_1-> is an H-invariant
inner product on g* the claim follows.

Now we show that indeed I(v)& is H-equivariant as a function of v. Recall ‘
that T(v) - & = miol(v) - &. Since t = (8 = g4,) @ & is a maximal abelian
subalgebra then H acts trivially on t and in particular on £, and &;. Since & is
the orthogonal complement of { with respect to some G-invariant inner product
on g then in particular £, is H-invariant. It follows that both mg and m, & mo
aré H —.invariant. Therefore the projection 719 : g¥ — my B mo is H-equivariant.
Also, since H acts trivially on € and using G-invariance of the metric it follows

that T(h - v)& = h - [(v)&. Therefore I(h - v)& = h - I(v)&. : O

3.4 Relative equilibria in the associated bundle

Let Jp: TQQ — g" be the momentum map as defined in section 1.1.4.

3.14. Proposition. The map from TQ to Q x g* given by (q,v) — (¢, Jr(g, v))

restricted to the set of relative equilibria is one to one.

Proof. First observe that, since Jr(q,&g(q)) = 1(¢)&, then Jr(q,é0(q)) =0 =
¢ € g4- Now, from the augmented potential criterium (proposition 1.15), we have
that if (g,v) is a relative equilibrium then dV¢(q) = 0 and v = &g(q). So if

(9.£10(9)), (¢, €20(q)) are two relative equilibria with the same momentum then

Ji(q: (&1 — &)q(g)) = 0, then & — &2 € gg and then & g(q) = &20(q)- O
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The previous proposition says that we can regard the set of relative equilibria
in T'Q as elements in Q) x g*. Let RE C Q x g* denote the image of the set of
relative equilibria in 7T'Q) under the map of proposition 3.14. From the formula
for the action of G' on infinitesimal generators (cf. equation 1.4) it follows that
RE is G-invariant with respect to the diagonal action ¢ - (¢, u) = (g - q, Ady 14L)-
Therefore RE drops to (Q x g*)/G, the associated bundle to g*.

3.15. Remark. The associated bundle to g* is also relevant in understanding the
bundle structure of (7%Q)/G in the context of Poisson cotangent bundle reduction.

See for example [25, §1I].

Recall that N := (g-ge)* € 1,,Q and H := G,,_. Let N’ C N be an H-invariant
open neighborhood of 0 such that exp,_ |y’ is a diffeomorphism onto its image and
such that H acts freely on N\ {0}. We then have that Q' := G - exp, (N') is a
G-invariant neighborhood of G - ¢. and G acts freely on Q" \ (G - ge).

It is easy to see that N/ x g* is a slice of Q' x g* — (Q' x g*)/@G at (ge. 0).

Therefore (see for example [12, §2.3]) we have that

3.16. Proposition. The map from (N' x g*)/H to (Q' x g*)/G given by

[Uv :u]H = [eque (U)a M]G

1s a homeomorphism. Moreover, il is a diffeomorphism when restricted to

((N"\{0}) x g") /H.

3.17. Definition. We say that a point [q, ulg € (Q' x g*)/G corresponds to a
class of relative equilibria if (¢, u) € RE, that is to say, (¢, ) = (7o x JL)(vg)
for some v, € T'Q that is a relative equilibrium. Similarly, we say tilat a point
[v, ulg € (N x g*)/H corresponds to a class of relative equilibria if, under
the homeomorphism of proposition 3.16, [v, ]z maps to a point in (Q' x g*)/G

that corresponds to a class of relative equilibria.

From the definitions it follows that [v, u|g corresponds to a class of relative

equilibria if and only if dV),(exp, (v)) = 0.
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Since our objective is to ‘ﬁnd relative equilibria that break the symmetry, we
now turn our attention to the case when v # 0.

Suppose that U C (N \ {0})/H admits a smooth local section ¢ : U — N\
{0}. Since H acts freely on N\{0} then the map from Uxg* to (N \ {0}) x ¢*) /H
given by (u, pr) — [¢1(u), p]p is a diffeomorphism onto its image.

Given such smooth local section (U,1), it will be useful to “pullback” the
relative equilibrium condition to U x g* for the purpose of “blowing-up” in the
directions orthogonal to the group action at ge. Since (N \ {0})/H can be covered
by open sets admitting smooth local sections (see for example [12, §1.11]), then
there is no loss of generality in following this procedure. | |

Also, since what we ultimately want is to study relative equilibria whose con-
figuration is close to being symmetric, we will need to consider an open cover for
(N \ {0})/H consisting of open sets with the property that if u € U then 7u € U
for all 7 € R, 7 > 0. These open sets can be constructed as follows. Let N be the
intersection of N with the unit sphere in T (). Choose an open set U’ € N JH
that admits a smooth local section ¢, : U' — N. (In a concrete example, it is
convenient to choose U’ as “big” as possible.) Since multiplication by scalars is -
well defined in N/H, we can define a local smooth section over (N \ {0})/H given
by

U:=R'U' ={rue NH|reRr>0ueclU'}, ' (3.5)

1 2 U — N :[ru] — rof(u) , ©(3.6)

where r € RT, w € U’. Tt is clear that 1 is a smooth local section of N\ {0} —

(N {0})/H.

Let €y, £, 8 and B(7, 1) be as in section 3.2. We have:

3.18. Proposition. Let u € Ji(g-qe) be regular. Let (yn,U) be the local smooth
section over (N\{0})/H given by (3.5) and (3.6). Letu € U and ¢ := exp, o 1.
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Then there exists an € > 0 such that for all 0 < 7 <¢,

Tw(T’u)Q = 88(rp) P(tu) & Y (Tr U) & Tﬂ)l(?'u) €XPy. (£2-ge) -

For the proof of this proposition we will need the following two lemmas which
are special cases of the stability of the transversality of smooth maps. See for

example [15].

3.19. Lemma. Let G be a Lie group acting on a Riemannian manifold Q, g € Q
and let € C g (subspace) such that €Ngy = {0}. Let M C T,Q (subspace) such that
t-qg®& M =T,Q. Then there is an € > 0 such that if |[v]| <e,

Tequ(v)Q =t equ(v) & Ty equ(]\{) .

3.20. Lemma. Let X,Y1,Y> be Banach spaces and Z a topological space. Let
F: X xZ — Yy be a continuous map such that F, := F(-,z) is linear Vz € Z
and let L : X — Yy be linear. Let 29 € Z and assume that ker I, does not change
dimension for z sufficiently close to zg. Let W C Yy be a subspace and supbose |
that Yo = W @ L(ker F,,). Then there is an open neighborhood U C Z around 20
such that if z € U then Yo = W & L(ker F}).

Proof of proposition 8.18: By definition, T, Q) = € - q. ® ¥z - gc & N. Using
lemma 3.19 (with ¢ =€ and M =€ - q. © N) we get that there is an €1 > 0 such

that if 0 < 7 < €1,

Tyrw@ =1 - (1) & Ty (ry) expg, (NDty-qe) . ' (3.7)

Since (¢1,U) is a smooth local section then
Twl(Tu)]V = (L/Jl)*(TTuU) &y - ’1/51 (Tu) .

Since exp,_ is a (local) diffeomorphism and T, exp, (£ - v) = £ - (exp,, (v)) for
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all £ € €, v € T, (), we have that

Ty (ra) €XPyg. (N) = (eque )« (¥1)(LruU) @ Loy (ruy €XPyg. (¥ - (41 (70))
= (T U) @ 8o - Y(Tu) .

Using this expression and the fact that t = &, @ € we get from equation (3.7) that

TzL(Tu)Q =t Tﬁ(TU) S s (TTUU) & T’l/}1(7'u) €XPy, (EQ ’ qe) : (38)

Fix 7 € (0,61). Let L:g — TyyQ : § = & - p(Tu) and F : g x [0,¢1) —

g": (§,7') = adf B(7', ). Then ker Frv = gg(rr ), where Frv := (F-, 7). Sincép is
regular then dimker F}+ does not change for 7 sufficiently small. Since ker by =
t then from equation (3.8) it follows that L(ker Fp) is a complement to W :=
Vu(TralU) ® Ty (ru) €xXpg, (€2 - o) in Ty(ry)@- Thus we can apply lemma 3.20 to

conclude that there is an €2 > 0 such that if 0 < 7’ < €3 then

T’l/}(T’U,)Q =08+ 1) " 7/}(7-“) DOW.

Letting ¢ = min(eq, €2) and 7/ = 7 we get the desired result. O
g g

Since Vg, ,,y i8 G(7 ,y-invariant it follows as a consequence of proposition 3.18

that

3.21. Corollary. Letu € U. Then [tu, B(T, p)|g corresponds to a class of relative

equilibria if and only if both the following equations hold:

d (" Vair ) (Tu) =0, . (3.9)

d ((eque)*Vﬂ(T,u)) (1 (ru))] =0. (3.10)

182-ge -

We are now prepared to enumerate and prove the main propositions of this
section, where we achieve the blowing-up at the amended potential. Theorem 3.22
blows-up equation (3.9) and theorem 3.23 blows-up equation (3.10).

Above (see equations (3.5) and (3.6))) we constructed a smooth local section



48

(U, 1) of the principal bundle (N '\ {0}) — N\ {0} where U is such that if u € U
then 7u € U for all 7 € R, 7 > 0. In what follows, however, we will need (U, ¢1) to
be a smooth local section of Ny — Ni/H, where N; := N \ ¥ was introduced in
proposition 3.9. Since (by proposition 3.13) N) is H-invariant, the same procedure
to construct (U, 1) that we discussed above applies to this case.

Let ro > 0 be such that exp,_ is a diffeomorphism on a ball of radius ¢ in 7, Q.

Let (R° x U),, and (R x U),, be as in definition 3.4. As before, let 1) := eque -1y,

3.22. Theorem. Let W' : (R° x U)y, x Jr(g - qge) — R be given by
W, u, ) = " Vi py(Tu) -
Then W' can be extended to a smooth function on (R x U)., x Jp(g - qe) andv
W' (r,u, 1) = Wolu) + W (7. u, 1)

for some smooth real valued functions Wo, W defined over Jr(g-qe) and (Rx U)y, X
Jr(g - qe), respectively. ,

Proof: Let v = 91(u) € N. Abusing notation, we will write V instead of

V oexp,, and [ instead of [ o exp, . We have that

9 Vit (ru) = V(o) + 3 (8, 1), T (ro) (7, 1)

2 (3.11)
= V(rv) + 3 (B(r, ), &(T0, 1))

where &(7,v, u) is as in proposition 3.9. Since &(7,v, i) is smooth then the same
is true for the left-hand side of (3.11).
| The remaining assertion follows from the following straightforward, albeit lengthy,
computations.

Let ng be a generator of g,.. By the proof of proposition 3.9 we have that
(v, 1) = alr, v, wno+&1 (T, v, a1, v, 1), ) where a and &1 are smooth functions.
& was defined implicitly by equation (3.3). Fix u € Jr(g-¢e), v € N\ X and for

brevity write a(7) = a(r, v, u), &1(1, ) = &1(7, v, o, ). Let the projections 7; and
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the operators I,1 be as in page 39. We will use the notation i = mip. From

equation (3.3),

%(Q O() = _Dél (7712@)‘1 : DT(W12(I))IT:O
= —aB0) DE0) -v)m + (DIO) ) +10) s
%L (0,0) = ~Dg (r128)™" - Dy(m12®) g

= —1(0)""I(0)mo = 0,

since 1(0)ny = 0.

From (3.11) and since & (0, ) = 1(0)~!; and m; annihilates ker I(0), we get

Vﬁ(T,u)(TUNT:O = V(O) + % <M17 ﬂ(o)_l,ul> 5 (3.12) )

which is independent of v.

Now, differentiating (3.11) with respect to T we get

9l 1
= Vatru(70) = dV(0) v+ 5 (2, o + £1(0, )
T 0 2

- 1 Ja 0& 91
#g (g (e Gaow) + GHon)

because (0, 1) = 1 and 9F/07(0, 1) = po. In the right-hand side, the first term
vanishes because we have assumed that dV(0) = 0. The second term vanishes
because ang + £1(0,) € t and my = t°. Using the expressions for 9¢;/da and
0&1/0T1 obtained above, and the fact that m; annihilates 79, we see that the third

term is equal to one half of

(1. 50,00 ) = = (1. 20 (DE0) - o))

+ (a1, (DEO) "0 ) + (o, KO) i)

Now we check that each of the terms in the right-hand side of this expression



50
vanishes: Let ¢ := f[(O)“lyl €t Ct. Then
(11, 10) 1 (DI(0) -v)mo ) = ((DI(0) - v, C) = ((DI(O) - v}, ¢) =

because of lemma 3.7.

(2, (DIO) - 0)pn ) = (a1, ~1(0) " (DI(0) - 0)(0) ') |
= = ((DI(0) - 0)¢,¢) = = {(DI(0) - v)¢, ) =0,

by assumption 1. (See section 3.1.) Finally,
<M17ﬁ(0)_1:u2> = <:U’27C> =0 3

because my annihilates t. We conclude that 9/07|;~0Vp(r u(7v) = 0. Thus, by

Hadamard’s lemma in the form of proposition 1.24,
qf/)*vﬁ("'w#) (T’LL) = Wo(,u) + TQW(Ta U, N)

where Wy(p) is equal to the right-hand side of (3.12) and W is some smooth

function. : d
3.23. Theorem. Let X' : (R° x U)yy x J(g - ge) — € be given by
(X' (1,0, 1),m) = d ((expg,) Vi) (¢1(Tu) - n0(ge) -
Then X' can be extended to a smooth function on (R x U)y, X Ji(g-qe) and
X'(r,u, 1) = 7X(1,u, 1)

for some smooth function X : (R x U)py x Jr(g-ge) — &.

Proof: Tt suffices to show that X'(7,u,u) is a smooth function at 7 = 0 and

that X'(0,u, ) = 0. Abusing notation, we will write V instead of V o exp,, and I
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instead of T o exp,_. Let v =1 (u). Then
(X' (r,u, 1)) = d ((expg,)* Va(rp))

= dV(7v) - 1g(ge) +

= dV(rv) -nQ(ge) -

~~

70) -+ 1Q(ge)
(Br, 1), (DT (1) - ng(ge))B(7, 1))

<(DH(T'U) ) n@(qe))E(Tv v, :U’>7 &(7_7 v, ,LL)> )
(3.13)

N — b —

where &(7,v, u) = I71(1v)B(7, ). Since &(7,v, u) is smooth at 7 = 0 (by proposi-
tion 3.9) then so is (X'(7,u, ), n). Using proposition 1.11 we get that

<X,(07 unu)a 77> = dV(O) ’ 77@(0) -2 <H(0>[€(07 v, /1’)7 77]75(07% M)> .

Since V' is G-invariant then dV(0)-ng(ge) = 0. Since £(0,v, 1) € tthen (€00, v, i), 77]‘ €
to. Since I(0)t C £ then (X'(0,u, p),n) = 0. =

The expression for X (0, u, u) is relatively simple and it is convenient to include

it here. Recall that &(7,u, i) := I7 (¢(7u)) B(T, ).

3.24. Proposition. Withu € U, p € Ji(g-qe), n € b,

(X(0,u, 1), m) = D*V (qe) - (1, 1g(ge))

~ ((D*Ige) - (uw110(4e))) &, &) | |
-2 (<H(qe) [%ﬂ}] 7£> + < (qe)aé, €, 17]>>
where & = £(0,u, j1) and 901 = OE/OT(0, u, ).

Proof: We have that (X(0,u, p),n) = diT reo (X'(7,u, ), m). Differentiating
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(3.13) we get

d

dr <X,(7—7 u, ft), 77> = DQV(QG) : (UQ(Qe)» u)
7=0

- <(D2H(Qe) ’ (UWQ(Qe))) 5(077}7#)75(07 Uaﬂ‘)>

-2 <(DH(Q6) ’ nQ(Qt?))gé(Oa v, M)a E(O’ v, /’L>> :

Applying proposition 1.11 to the last term in the right-hand side, which can be

rewritten as

(10 mota) 2.6 = 4 (1025, €) a0 nofan

gives the desired result. |

3.5 Bifurcating branches of relative equilibria
Recall that Jr(g - qe) = my & mo.

3.25. Definition. For (u,pn) € U x Ji(g - qe) let A,y € L*(T,U x mg, R) be

given by
- _ W - W _
AV ((5u,u) (Ou, 1/)) = 5.2 - (du, du) D (6u, D)
a<X ﬁ(0)41y> a{ X, 1(0)"'v
L P

with the partial derivatives evaluated at (7 = 0, u, p). Here 9/0u2 denotes partial

-differentiation with respect to the ms component of ju.

Let M = TQ and mpr ¢ : M — M/G its canonical projection. Let R, =
mac(t - ge), where M = T@Q) and t is as in the maximal abelian subalgebra of

section 3.1.

3.26. Theorem. For every (u, 1, p9) € U x my x mo such that
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ow
1. —a—u—(ovuvul + u2) =0,

2. X(0,u, p1 +p2) =0,
3. Ay +ps) 8 non-degenerate,

there exists a continuous curve p( 0,1] — M/G consisting of classes of

w1, p2) [

relative equilibria such that

I oy o) NV Re = {P(up ) (0) 1

and Py, us)(0) is the unique class of relative equilibria in M/G correspondz’ﬁg to
[ge, 1] (see definition 3.17).

Furthermore, the tmages of two such curves corresponding to two triples (u, p1, pa),
(W', py, ) have non-empty intersection only if p1 = p and in this case, if (u, u2) 75

(', ph), then
Im Pluyag,ppz) ) Im Plupaph) = {P(u,m,m)(@)} :

Proof: Suppose that conditions 1.-3. hold at (4, i1, ji2) € U x my x mg, @ # 0.
We will use the notation i = fiy + fiz. Since Ay 5y is non-degenerate then by
the implicit function theorem there exists € > 0 and functions u : (—¢, €} — U,

wo : (—€,€) — my such that «(0) = @, p2(0) = G2 and

ow
E (Ta U(T)?/-_Ll + ,U'Q(T)) = O )
0X
N (T, u(7), i1 + pa(7)) = 0.

'Therefore, from theorems 3.22 and 3.23, it follows that if 7 > 0 then the relative
equilibria conditions (3.9) and (3.10) are both satisfied at (u, u) = (Tu(7), i1 + p2(7))
so that [ru(r), 5 (7,1 + p(7))]y corresponds to a class of relative equilibria (see
definition 3.17). Define p(y , 1,)(7) to be such class of relative equilibria.

It is clear that, for all (¢, ) € Q x g*, [q, ul¢ corresponds to a class of relative

equilibria in R, only if ¢ = g. and hence [v, u]y corresponds to such class only
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if v = 0. Therefore p(g s, 7,)(T) € Re only if 7 = 0. It is clear that py 4, 5,)(0)
corresponds to [ge, pt1]¢. By rescaling we can assume that P(a,nj2) 18 defined on
0, 1].

Suppose that mu’ # mip, where p/, 1 € my @ my. Then 3(7, ') is not in the’
H-orbit of 3(7, i1). To see this it suffices to notice that m; is H -invariant and that
m (1, 1) = mp. It follows that [v, B(+, ' # [v, B(r, u)]g for all v/,v € N and
all 7,7 € R. Thus p(g u)(7") # pa(r) for all @/, u € U and all 7/, 7 € R. This
shows that the intersection of the images of p(g ) and p(g ) is non-empty only if
mp = mp. ‘

Observe that 3(7/, ') is in the H-orbit of 8(r, 1) then 7 = 7. This follows
from the fact that mo3(r, u) = 721y (where vy is a generator of mg) and that mg
is H-invariant. It follows that if [t (u'), B(7", 1/)]g = [r41(w), B(7, u)] g then '
7" = 7 and v = u. Therefore, if (@, 1, nh), (@, fi1, fiz) are both data satisfying
conditions 1.-3. and @' # @ then p g, 5)(7') = pa .y (7) only if 7' =7 = 0.
In a similar fashion, one proves that this is also the case if i, # 0. This shows

that if (@', ji5) # (4, i2) then the images of piy 5. 4y and p intersect only
2 ) Pl . 1) ( ) J

U, fi1, 062
at 7= 0. 0
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Chapter 4

Example: The symmetric coupled rigid

bodies

In this chapter we will illustrate the application of the theory developed in chapter.
3 with a concrete mechanical example, namely, two symmetric coupled rigid bodies
moving in three-dimensional space with zero potential. (The precise description is
given below.) In contrast with the double spherical pendulum (the example that
we studied in chapter 2), the set of symmetric states in the symmetric cdupled
rigid bodies, from which branches of relative equilibria bifurcate, is not discrete.

There has been an extensive mathematical study of the symmetric coﬁpled rigid
bodies. In [36] and [37], Patrick studied the relative equilibria in this example using
the augmented poteﬁtial criterion together with an explicit classification of all the
group orbits, thus achieving a complete enumeration of the relative equilibria.
With a different approach, Mittagunta (cf. [27] and [28]) gave a lower bound
on the number of relative equilibria in momentum level sets based on a Morse
theoretic analysis of the topology of the reduced spaces. Roberts and de Sousa
Dias (cf. [39]) used the Marle-Guillemin-Sternberg slice decomposition to study
the bifurcation of relative equilibria nearby symmetric states in a system consisting
also of symmetric rigid bodies but requiring the presence of a potential (to ensure
a certain non-degeneracy condition).

In the analysis of the symmetric coupled rigid bodies presented in this chapter

we do not attempt to obtain new results. Qur objective is only to illustrate how
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Figure 4.1: The symmetric coupled rigid bodies.

our theory can be applied to an example with symmetric states where the group-is
non-abelian and relatively large. Applying the technique of the previous chapter,
we are able to recover the relative equilibria that bifurcate from the class of sym-
metric relative equilibria consisting of the states where the axis of symmetry of
the two bbdies are aligned, each body is rotating around its axis of symmetry with
independent velocity and the total angular momentum of the system is different
from zero. The branches of relative equilibria thus obtained (cf. proposition 4.3)

break the symmetry.

4.1 Description and preliminaries

Consider the mechanical system formed by two symmetric rigid bodies with equal
’moments of inertia coupled by an ideal spherical joint along their axes of symmetry
and such that the distance from the center of mass of either body to the joint is
the same. (See figure 4.1.)

From this description it follows that we can attach to each rigid body a coor-
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dinate system with respect to which its inertia matrix is equal to

7

IZ

for some positive real numbers 1Y, [?. The Lagrangian of the system consists
purely of kinetic energy. After reducing by translations, the configuration space

becomes
Q = S0(3) x SO(3) .

The physical interpretation of this configuration space is as follows. A given
(A1, As) € @ represents the configuration obtained by applying the rotation A; tox
body i, where the initial reference configuration consists of the two bodies aligned
on top of each other, the common center of mass lying at the origin and the
common axis of symmetry being aligned with the ez-axis. A

It is convenient to express elements in 7Q = T(SO(3)?) in terms of the body
coordinates. These are defined by the diffeomorphism N : (SO(3) x R3)? —
T(SO(3)?) given by! ‘

(A )™ = (Ags AikYy)

where A : R? — 50(3) is the standard isomorphism

0 —X; X
X=|x5 0 -X
X, X, 0

"Here (Ai; Q) represents (A;, A2:Q1,Q) € SO(3)? x (R*? and (A; A;) represents
(A1, Az; Ay, Az) € T((SO(3))%).
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The inverse diffeomorphism is given by
(Ai; Ai)Y = (i (4,1 40)Y)

where V denotes the inverse of A.
Onme verifies (cf. [37]) that the Lagrangian of the system after reduction by

translations is given by
. 1 ., - 1 . -
L(Al, AQ; Al, AQ) = §Qt1J91 -+ §Q§JQQ — ﬁAl(eg X Ql) . AQ(Eg X Qg)

where A; = AiQi, ) € R3,

and the system parameters «, § are given by

21%Y €
Oé:——“'j—, ﬁ:——_——v
I+ 1% ¢ I 4+ 17 4 ¢

with € = (mima)|s1?/(m1 +ma), where | S| denotes the distance from the center of
mass of either body to the joint. [ is called the coupling constant. Observe that
0<p <.

A straightforward computation shows that the fiber derivative corresponding

to this Lagrangian is given (in body coordinates) by

(FL(Ay, A9) (1, Qa), (W1, Wa)) = QF JW, + QL Jw,

—ﬂ (Al(eg X Wl) . Ag(eg X QQ) + A1(83 X Ql) . Ag(ey, X WQ)) . (41)
Now, consider the action of G := SO(3) x §' x §! oan given by

(B, 91, 92) . (Alv AQ) = (BA1 exp(—91é3)7 BA2 eXp(—@gé;g)) .



Physically this corresponds to rotating each body around its axis of symmetry by
angles 01,02 and then applying the rotation B to the system as a whole. One
verifies that the Lagrangian is invariant with respect to the tangent lift of this
action. Thus, G is the symmetry group of the system. 7 »

The Lie algebra g of G is isomorphic to R? x R x R with the Lie bracket given
by

(1, 92), (X, 91, 1)) = (x x x/,0,0) .

For every & = (x,y1,42) € R® x R x R 2 g, the infinitesimal generator associated

with the given action of G on @ is computed to be

€0( A1, Ag) = (A1, As; ATx — y1e3, ATx — o e3)" . (4.2)

Identifying 7*Q with SO(3)? x (R?)? via the standard inner product on (R3)?
and identifying g* with R x R x R via the standard inner product on R? xR xR, one
coinpufes that the momentum map J : T*() — g* associated with the cotangent

lift of the action is given by

J(Ay, Ao, 11, TTg) = (A1) + AoIly, —1II; - e, —1IIs - e3) .

4.2 Fiber over a symmetric point

We will now study the branches of relative equilibria emanating from a subspace
of symmetric relative equilibria in the fiber over a symmetric point.  The config-
urations with non-trivial isotropy are the ones in which the axis of symmetry of
the two bodies are aligned, so that the two bodies lie on top of each other or they
point in opposite directions. We will only treat the former case, since the latter is
analogous.

Let ¢. = (Id,Id) € Q. This corresponds to a configuration consisting of the

two bodies on top of each other. Let {e;}?_; be the canonical basis in R®. The
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isotropy subgroup of ¢, is
Gq. = {(exp(tes), t, 1)} = S* . (4.3)

Its Lie algebra is g4, = span{(es, 1,1)}.
Let RE denote the set of relative equilibria in 7Q. Let us obtain RE N Ty, Q,
the set of relative equilibria inside the fiber over g,.

The augmented potential for the SCRB is given by
%(Alv AQ) = <FL(A17 A2) : gQ(Al) AQ)?&Q(AD A2)> 3

where g (A1, A2) is given by 4.2. (See section 1.2 for the definition of the aug-
mented potential.) Therefore V; (A1, Ag) is given by 4.1 with

(21, 90) = (W1, Wa) = (AT x — y1e3, A3 x — yae3) .
A computation shows that, for i = 1,2,

Q7 JQ = (Afx) - J(A]x) — 2ay:(AT x) - €3 + Yo,
and

Al(eg X Ql) . Ag(eg X Qg) = (A1e3 X X) . (Ageg X X) .

Collecting terms we get that

Ve(Ar, Ag) = (AT x) - J(ATx) + (AT x) - J(AT %)
— 20 (y1 AT x + y2 AT x) - ez + a(y] + y3)

— 23 ((Ares) x x) - ((Ages) x x) .



61
For i = 1,2, let A; = exp(tw;), w; € R3. A computation shows that

(A;Ix) . j(AiTx) = xT[\ifi, j]x
t=0

4
dt

=2(1—a)(x-e3)(xxes) w;,

L1 =20 (1 ATx + 42 ATx) - 5] = 20(x x e5) - (i + yaws)
1=0
c—idE 28 ((Ares) x x) - ((Azes) x x)] = 208(x - €3) (x x €3) - (W1 + Wa) .
t=0 .

Collecting terms we obtain

2
% t~0VE(A1’A2) :22{[(1—a—ﬁ)(x-e3)+a%] (x xe3)} w;.

It follows that dV¢(Id,I1d) = 0 if and only if either
(1—a—-pP)(x-e3)+ay;=0 (forbothi=1andi=2),
or
xxe3=0.

From this computation and the augmented potential criterion (cf. 1.15), it

follows that the relative equilibria inside 75, @) are given by

RENTa10)Q = {&o(Id,Id) [ € h U},

there
[y := span{(es,0,0),(0,1,0),(0,0,1)},

Iy ;= span {(el,0,0), (e2,0,0), (T—a*—ﬁeg, -1, —1)} .
_a_

Notice that for every v € 1; - g we have that G, = G, , with G, as in equation

4.3. In contrast, the relative equilibria corresponding to lo-¢. have trivial symmetry,
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ie., Vv € ly-q, gy = {0}. (Notice that we can not adjust « so that g,, C [o because
we would need a/(1 =« — B) = —1, which in turn would imply § = 1, which is

not possible unless the two bodies degenerate to point masses.) Therefore,
REG™ = RE N (TQ)5% N(T,Q) =1y - qe | (4.4)

Which corresponds to the states in which the two bodies are rotating around their
common axis of symmetry, each one with independent arbitrary constant angular
velocity.

For the remaining of our discussion, we will only study the relative equilibria

bifurcating from [y - ge.

4.3 Regularization of the amended potential

Recall that I : Q — L(g, g*) is the locked inertia tensor induced by the metric on
Q. (Cf. definition 1.9.) Consider the basis B = {;}7_, for g given by & = (e3, 1,1),
€= (0,1,0), & = (0,0,1), & = (e1,0,0) and & = (e3,0,0). Then g = to @&t By,

where

£y := kerl(g.) = span{&;} ,
El = Sp&n{fg,fg} s
€y = [g, b0 @ ¥o] = span{&y, &5} .

Notice that {; = Ey@¥; is a maximal abelian Lie subalgebra and that [1-g. = £ - ge.
Denote with B* the dual basis of B. Identify g* with R x R x R via the natural

4

inner product ((x,y1,y2), (X', y1,45)) = x - x" + y1y] + yoyh (where “-” denotes
the standard inner product on R*). Then B* = {v'}>_;, where v! = (e3,0,0),
v? = (—e3,1,0), 3 = (—e3,0,1), v* = (e1,0,0), v° = (e3,0,0).

A calculation shows that the matrix of the locked inertia tensor at ¢, with
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respect to the basis B, B* is given by
0
[[(ge )58+ = o : (4.5)

2(1-5)
2(1-5)

Thus we see that I{q.) - & = a v/ for i :72,3. Hence, 1(ge) - (8o @ €1) = l(ge) - {%i C
span(v!,v?, %) = £3. Therefore all the conditions of section 3.1 hold. This means
that we can follow the recipe of chapter 3 for splitting and rescaling the duél of
the Lie algebra in order to blow-up the amended potential.

As in section 3.2, the splitting g = &y ® € P €2 induces the dual splitting

g* = mg P my ® my, where

mp = (& @ y)° = span(yl) ,

2 3)

my = (8o P )° = span(v-, v

<

my = (o @ £)° = span(v?, %) .

Notice that me = (11)°.
Now consider the map 5 : R x (I{ge) - g) — @* defined in equation 3.2. For our
example it is explicitly given as follows. Let p = py + po with pg = oV + z3?,

pz = x4 + z50°, so that p; € my (i = 1,2). Then

/8(7'7 ,U,) = ﬂ(T, T2,T3,T4, 175) = [ + T2 + 7-21/1

5 ) . .
=720+ zor? g + T(ZE4I/4 + 1751/b) .

Since we want to consider directions transversal to the group action at g., we

define

N :=(g- qe)J‘ = span{(ej, —el)/\, (eq, —e2)/\} .
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Then Gg. acts irreducibly on ‘N . It is clear that
Uo == {p(e1,—e1)" | p > 0}
is a (global) section of the principal bundler(N\ {0}) — (N \ {0})/Gy, - Let
Io(p) = T(exp(p(e1,—e1)")) .

A computation shows that the matrix representation of Iy with respect to the basis

B, B* is given by

[HO(P)]B,B* =
2 I:a(vl+cos p)2
a(l—cosp) a{l—cosp) 0 0
+(1+4) sin? p]
a(l—cos p) «a 0 0 asinp
a(l—cosp) 0 a 0 —asingp
0 0 0 2(1—pBcos(2p)) 0
2[(1—[3)c052p
0 asinp —asinp 0
+a sin2 p]

As a check, the reader can verify that Iy(0) corresponds to the right-hand side of

4.5.
Let &(, p; ;) == Lo(Tp)~'B(7; a;). From proposition 3.9 we know that £(7, p; ;)
is a smooth function even in a neighborhood of 7 = 0, provided that p is away

from zero. A computation shows that £(7, p; ;) = o+ 76 +0(7?) € R xR x R

with

2 — (xo + x3) 0> o 13
- 2554 ¢
50 ( 4(1‘1"5)/02 ’(M’O!’)Id )
X4 Trs —Top+T3p
=10,0,0; , .
& < oo 2-2p )

(4.6)
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4.4 Relative equilibria bifurcating from the subspace

of symmetric states in the fiber over q.

Theorem 3.23 guarantees the existence of a £3-valued smooth function X such that.

AV(r ) (exp(Tp(er, —e1)")) - nolao) = 7 (X (7, p, 1), )

where n € €2 and p 1= (x2, ¥3, T4, x5). For the symmetric coupled rigid bodies, the

formula for (X, n)| _, given in proposition 3.24 reduces to

(X0, p, 1), m) = To(0)[E1, 7). €0) + (Mo (0)1, [0, m])

where & and &) are given in (4.6) and Iy(0) is equal to the right-hand side of 4.5.
Using that &, = span{(e;,0,0),(e2,0,0)} we get, after a computation, that the

condition X (0, p, ) = 0 is equivalent to the pair of equations

(X(0,p, 1), (€1,0,0)) = (x5 — py-) f(p,x2,23) =0

(4.7)
(X0, p, 1), (827 0, O)> = L4 f(p: 29, x3) =0
where f(p, z2,z3) = A/ (4(8% — 1)p?) with
A=21-p5)+(1438)p%y, | (4.8)

and where we have introduced the linear change of variables
Y =2 +23, Y—:=x9—I3.
The rescaled amended potential restricted to Up is given by
Vit (exp (7 pler, 1)) = (5(r. ). 1, (1) B(r. ) -

By theorem 3.22 we know that Vg, , (exp (7 p(e1, —e;)")) is a smooth function,
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even in a neighborhood of 7 = 0, provided that p is away from zero. A computation

shows that its Taylor expansion with respect to 7 is given by

:yi%—y%

Vatra (exp (7 pler, —e1)")) = Z5—=—+ 7"W(r, p, )
with
_ (48 Ei+a3) - (1 - By 1
Win e = 20—~ ) 5 )77
5 Y 1-83)y2 +4(1 y?) p? ‘
_plsriyﬂ (( ﬁ)ygg_(ﬂgﬁ)y )p +O(T2)
Therefore,
%(&mu) =
41-0) + 40+ B)pesy- — (A- Byl +4(1+08)y2)p" o
1F=1) 7 -89

" From the pair of equations in 4.7 we see that X (0, p, ) = 0 if and only if either
A=0or

x5 —py-=0 and x4 =0. (4.10)

If we assume that 4.10 holds then, after substituting in 4.9, we see that the equation

OW/0p(0, p, u) = 0 is equivalent to
4-p'yi =0, (4.11)

and thus p = \/2/|xe + z3].

In summary, we have shown the following

4.1. Proposition. Given 19, x5 such that xo + x3 # 0, let

(,’3, i’4,i’5) = \/2/ 1’172 +1L’3| (1,0,:132 - Ig) N (412)
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and let i = (x9,x3, T4, T5). Then
X(0,5,5) =0 and OW/3p(0, 5, 1) =0 .

Eliminating p?y, from the equations 4.11 and A = 0 (with A given by 4.8) we

get
B(F-1)=0.

Therefore:

4.2. Lemma. If0 < 8 < 1 then the conditions p = \/2/[xs + x3] and A =0 are

mutually exclusive.

Expressing X (7, p, 1) in terms of the basis of & dual to {(e,0,0), (e2,0,0)},

we compute from 4.7 and 4.9 that

a(X,0W/dp)
SR 0, 5, 1) =
a(pv 334,.’175) ( , M)
Apy.- 0 —Ap

0 Ajp 0 -

—A[(1 =By + (1 +8)y2]* 0 4(1+5)py-
The determinant is computed to be

a(X, OW/dp)

_16V2(8 — 1)A?
A(p, x4, T5) B '

Ve + 23]

Therefore, it 0 < 8 < 1 then it follows from lemma 4.2 and the implicit function

(0, p, 1)

theorem that the equations

X(7,p; 72,73, 24,75) =0
ow
dp

(4.13)

(1, pix9, @3, 24,25) = 0

implicitly define the parameters (p, x4, r5) as smooth functions of (7, z2, x3). More
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precisely, for every bounded open region V' C R?\ {(x9, 23) | 22 + 23 = 0}, there
exists an ¢ > 0 and smooth functions (p, x4, xs) defined on (—¢,¢) x V such that
(p, x4, x5) evaluated at (0, z2, x3) is equal to the right-hand side of 4.12 and for all

(1,19,23) € (—&,8) X V,
<T7 P(T, l‘g,%g); 172,%37'{54(7_7 1‘2,]73),1‘5(7’, I27$3))

is a solution of 4.13.

Recall that qui'qg =11 - e is the set of relative equilibria in T, ¢ with sym-
metry group equal to G4, (cf. equation 4.4) and that my := (I1)° C g*. Recall
also that B* = {1'}?_, is the basis for g* chosen in page 62. As a notational
facilitator, let A : Q x g* — T*Q be given by A(q,n) := A,(q), where Au is
the associated one-form of the mechanical connection introduced in section 1.1.4.‘

From the preceding remarks we conclude the following

4.3. Proposition. Suppose that 0 < § < 1. For every p1 = xov? + z30° €
JL.(Rggqe) such that xo + x5 # O there exist an € > 0 and a curve (p(“l),pé“1)> :
[0,¢] — R x mg such that

(P20, 15 (0)) = V2T + @3] (1, (2 = 23))
and such that, for T € [0, ¢, the curve
a(’”)(T) = (exp(Tp(“l>(7')(el, —e)"), T2 4 g + T,ué“”(T)) cQxg"

satisfies that A (a(’“)(T)) is a symmetry breaking branch of relative equilibria em-

anating from A(qe, p11).
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Chapter 5

Conclusions

Results Obtained. We have given a method for predicting the existence of bi-
furcating branches of relative equilibria around a symmetric equilibrium or relative
equilibrium in the context of simple mechanical G-systems, where G is a compact
Lie group. The main results are contained in theorems 3.22, 3.23 and 3.26. The
technical assumptions that are needed appear in section 3.1.

Most of the results on persistence or bifurcation of relative equilibria that we
are aware of appear in the context of Hamiltonian G-systems on a general sym—
plectic manifold!. In our thesis we have studied the problem in the special case of
cotangent bundles, where we get more specific and detailed information. Our main
contribution has been to prove a bifurcation result by blowing-up the amended po-
tential in a neighborhood of a group orbit with non-trivial isotropy. This blowing-
up consists of a simultaneous rescaling of the momentum and directions transversal

to the group orbit in configuration space.

Future Directions. In the future we plan to generalize the results of this thesis
by relaxing some of the technical assumptions that we made in the development

of the general theory (cf. §3.1), namely:
i) allow the dimension of the isotropy subgroup to be bigger than one;

ii) generalize the theory to cover the case when the isotropy type of the points

'We have given a brief account of the literature in section 1.6.
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in the region around, but excluding, the symmetric orbit is not trivial.

We believe that the first of these issues can be handled, at least in the case when
the isotropy subgroup is a torus, by substituting the definition of ¥ in proposition
3.9 with

¥ = {v e N | A(v) is non-degenerate} ,

where A(v) is the quadratic form on g given by

A@)(En) = 5 (DI0) ) - ((DI(0) - v)¢, 1(0) 7 (DI(0) - v} -

The second issue listed above can probably be solved by generalizing our
method in a way that takes into account the lattice of isotropy subgroups. Roughly,
each branch in the lattice would induce a series of slice decompositions similar to
the one described in this thesis. In any case, it is known in the general theory of
bifurcations of systems with symmetry that the lattice of isotropy subgroups plays
an nnportant role?.

Finally, it would be desirable to study the relationship between the blown up

amended potential and the energy-momentum method for stability analysis.

“See, e.g., [13].
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