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Abstract

The dynamical aspects of solid-solid phase transformations are studied within the
framework of the theory of thermoelasticity. The main purpose is to analyze the role
of temperature in the theory of phase transitions. This investigation consists of two
parts: first, it is shown that by imposing a kinetic relation and a nucleation criterion
it is possible to single out a unique solution to the Riemann problem for an adiabatic
process. This extends to the thermomechanical case results previously found in a
purely mechanical context. Secondly, based on an admissibility criterion for traveling
wave solutions within the context of an augmented theory that includes viscosity,
strain gradient and heat conduction effects, a special kinetic relation is derived using

singular perturbation techniques.



Contents

Acknowledgements

Abstract

1 Introduction

2 Sharp interface theory: adiabatic case

2.1
2.2
2.3
24
2.5
2.6

2.7
2.8
2.9

Basic equations

Thermoelastic material.

Entropy jump condition and driving traction. . .. .. ... ... ..
Hugoniot, Rayleigh and isentropicsets. . . . . .. ... ... .. ...
A specific thermoelastic material.

Specific jump conditions. . . . . .. ... ... L

2.6.1 Shock waves and contact discontinuities.

2.6.2 Phase boundaries

Nondimensional parameters

Specific Hugoniot and Rayleigh sets.

Small Griineisen coefficient case

3 A Riemann problem

3.1
3.2
3.3

Introduction.

Field equations and jump conditions.

Riemann problem.

3.3.1 Solution with no phase boundary. . . . . .. ... ... ... .

3.3.2 Solutions with two phase boundaries

3.3.3 Phase segregation conditions and entropy inequality.

iii

iv

11
13
19
22
23
25
26
29
33
34

39



3.4

vi

Driving traction, kinetic relation and nucleation criterion

3.4.1 Driving traction for phase boundaries.

3.4.2 Kineticrelations. . . . . . . . .. ..

Augmented theory and structured traveling wave

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Introduction.

Basic equations. . . . . . . . . ... oo

Thermodynamic restrictions

Specific constitutive assumptions. . . . . . .. ... ... ... L.

Traveling wave: Generalities

Driving traction.

Basic equations

Structured wave: Heat conduction only

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Traveling shock wave

The unstable phase

Introduction.

Basic equations

...............................

Traveling phase boundary. . . . . . ... ... . ... .........

The metastable phases

A one-parameter family of solutions.

Special cases.

5.8.1 Phase boundary traveling at the isentropic sound speed.

5.8.2 Semi-structured wave.

5.8.3 Zero thermal expansion.

Structured wave: Viscosity, strain gradient and heat conduction

6.1
6.2

Introduction.

Basic equations

60
60
61
63
68
70
73
74

7
77
77
80
87
91
96
99
104
104
105
106



6.3 Traveling shock wave. . . . . . . ... ... ... ... 113
6.4 Traveling phase boundary. . . . . .. .. .. ... ... ... ..... 115
6.5 Nondimensional parameters. . . . . . .. . .. ... ... .. ... .. 118
6.6 Perturbation analysis. . . . ... .. ... .. ... ... .. ... 121
6.6.1 Outersolution. . . . .. ... ... ... ... ... ... ... 122
6.6.2 Innersolution.. . . . . . .. ... . ... ... .. .. ... 124
6.6.3 Unstablephase. . . . . .. ... ... ... ... ........ 127

6.7 Subsoniccase. . . . . . ... 128
6.7.1 Positive velocity. . . . . . . . .. ... 129
6.7.2 Negative velocity. . . . . . . ... ... .. L. 141

7 Concluding remarks 143

Bibliography 145



viil

List of Figures

21
2.2
23

3.1
3.2
3.3
3.4
3.5
3.6
3.7

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Material phases in the temperature-strain plane

Rayleigh, Hugoniot and isentropic curves (m > 0)

Hugoniot, Rayleigh and isentropic curves in the high strain region. . .

Solution with no phase boundary. . . . . ... .. ... .. ... ...
Two-phase solution. . . . . . . . ... .. ... ... ... .......
Lower and upper limits for A on the vZ, vi-plane

Projection of the admissible region on the v?,v2-plane. . .. ... ..
Admissible values of h on the plane v =0.2. . . . . . ... ... ...
Admissible values of h on the plane v2=02. . . .. ... ... ....

Admissible region for uniform data problem. . . . . ... ... .. ..

Structured traveling phase boundary (temperature and strain). . . . .

Structured traveling phase boundary (stress and entropy). . . .. ..

Outer and inner solutions for metastable phases. . . . . . .. ... ..
Projection of the traveling wave for T+ >T7-. .. . ... ... . ...
Wave profile in inner coordinates forv=0.05. . . ... ... ... ..
Wave profile in outer coordinates forv=10.05. . . ... ... .. ...
Projection of the traveling wave for T+ <T~. . . ... ... .....
Wave profile in inner coordinates forv=0.7. . . . . .. ... .. ...
Wave profile in outer coordinates forv=0.7.. . . . ... .. ... ..
Kinetic curves for T+ =1.5. . . . . . ... ... ... .........

Kinetic curves for w =1

40

56
56
59

137
138
138
139
139
141
142



Chapter 1 Introduction

Materials can exist in different solid phases which are characterized, at a microscopic
level, by their underlying crystalline structure. A change in temperature, stress or
other variables can induce a material to change from one solid phase to another.
Phase changes are usually classified according to the main mechanism driving the
transformation, viz., by diffusion of chemical species or by displacement, although
these are not mutually exclusive (see CHRISTIAN [11]). The present work deals with
the latter type in which the transition from one phase to another is characterized by
a sudden change in the crystalline lattice, achieved without diffusion but rather via
a cooperative movement of atoms.

One approach to analyze and predict this behavior is provided by the framework
of solid state physics, which takes into account the microstructure of the material.
Another viewpoint is to disregard the microstructure and consider the material as a
continuum. This phenomenological approach, used in the present work, is the basis
of theories like classical thermoelasticity and constitutes a useful framework to an-
alyze phase transitions at a macroscopic level (see ABEYARATNE & KNOWLES[1]).
It is worth noting that some continuum theories take into account the microstruc-
ture via the Cauchy-Born hypothesis which links the displacement of atoms with
the (macroscopic) deformation of a solid (see, ERICKSEN [16], BALL & JAMES [7],
BHATTACHARYA [8], JAMES & KINDERLEHRER [22]).

Inside a body, the interface between two distinct phases, known as a phase bound-
ary, can be modeled as a surface of zero thickness across which the displacement is
continuous but the deformation gradient suffers a jump. Other models, related to
the Landau-Ginzburg theory, consider the interface as a transition layer of small but
finite thickness where the deformation gradient varies rapidly but continuously (see,
e.g., ERICKSEN [17], PENROSE & FIFE [26], TRUSKINOVSKY [31]). Implicit in the

term “small” is the idea that the model has some kind of length scale. Some related
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theories that incorporate separate balance principles associated with the motion of
material particles and the motion of the phase boundary have also been proposed
(see, FRIED & GURTIN [19], Lusk[24]).

Within the framework of classical thermoelasticity theory, the thermomechanical
properties of a material can be described by a Helmholtz free energy density that
depends smoothly on the deformation gradient and the temperature. In order to
model a material that can exist in different solid phases —and hence analyze phase
transitions— the Helmholtz potential, at some temperatures, exhibits multiple wells,
each one of them associated to a distinct solid phase. The nonconvexity of the po-
tential allows the existence of weak solutions to static and dynamic problems. In
statics, such solutions are composed of regions throughout which the material is in
one of the admissible phases (for a given temperature). These regions are separated
by surfaces that correspond to coherent phase boundaries. In dynamics, it is possible
to have shock waves —across which the deformation gradient is discontinuous but
the material on each side of the surface of discontinuity is in the same phase— and
propagating phase boundaries if on each side the material phases are different.

Phase transformations in solids have been studied in recent papers by ABE-
YARATNE & KNOWLES [1]-[4]. In particular, [4] deals with the adiabatic theory
for a dynamically propagating phase boundary in a one-dimensional thermoelastic
solid where an initial value problem of the Riemann type is analyzed. The phase
boundary is modeled as a sharp interface. It is found that the solution to the Rie-
mann problem, which involves initial data from two distinct phases, is not unique.
In order to recover uniqueness, ABEYARATNE & KNOWLES propose the existence of
an additional piece of constitutive information, a kinetic relation, which restricts the
mobility of the phase boundary and singles out a unique solution for the Riemann
problem. Following Onsager’s formalism in thermodynamics (see, e.g., CALLEN [9],
TRUESDELL [30]), the kinetic relation relates a driving traction (associated with a
jump in entropy) to the speed of propagation of the phase boundary and to a state
parameter, namely the temperature. The kinetic relation is introduced from the onset

and represents an admissibility criterion for solutions to the Riemann problem.
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One purpose of the present analysis is to investigate, within the context of the
adiabatic theory, the Riemann problem involving initial data from the same phase.
The results are qualitatively different from those in [4] in the sense that, in order
to recover uniqueness, a nucleation criterion has to be enforced. This nucleation
criterion signals the onset of a phase change and generalizes, for the thermoelastic
case, the results found in [3] in the context of a purely mechanical theory.

As a second goal, a special kinetic relation is derived from an admissibility crite-
rion related to a traveling wave problem in which an augmented theory is used. In the
augmented (or regularized) theory, the sharp discontinuities are replaced by transi-
tion layers of finite thickness. By introducing dissipation and dispersion mechanisms
associated with higher order derivatives of the strain (viscosity and strain gradient
in this case), it is possible to simulate a region where the strain varies rapidly but
continuously. The regularized theory also includes heat conduction in order to have a
continuously varying temperature across the transition layer. In a sense, the sharp in-
terface theory should be obtained from the regularized theory through a limit process
where the dissipation and dispersion mechanisms and the heat conduction are re-
moved. In this sense, the regularized theory can be viewed as a singular perturbation
of the sharp interface theory.

In Chapter 2, the basic field equations and jump conditions are derived for the
sharp interface theory and the results are specialized using a model for a thermoelastic
material proposed in [2]. In Chapter 3, a Riemann problem for the thermoelastic
material is analyzed and solved. It is shown that, under certain conditions, there
exists a two-parameter family of solutions. Uniqueness is guaranteed by imposing
a kinetic relation and a nucleation criterion. In Chapter 4, an augmented theory is
introduced and some general features of solutions to the traveling wave problem are
derived. In Chapter 5, a reduced problem, where viscosity and strain gradient are
not present, is analyzed and solved. In this case, it is found that only supersonic
traveling waves can be achieved. This reduced problem corresponds to the basic
solution of a singularly-perturbed system which is analyzed in Chapter 6. It is shown

that the admissibility criterion for the existence of a subsonic traveling wave in the
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augmented theory provides an additional restriction on the data that can be casted as
a kinetic relation. Finally, Chapter 7 contains some conclusions and recommendations

for future work.



Chapter 2 Sharp interface theory:

adiabatic case

2.1 Basic equations.

Consider a bar that occupies the interval [—L, L] in a reference configuration. Con-
sider longitudinal motions of the bar during a time interval [to,t;]. Points in the
reference configuration are denoted by (z,t) € [—L, L] x [to,t1]. Assume that the
particle z is mapped to the position y(z,t) at time ¢, (i.e., y(z,t) = z + u(z,t),
where u is the displacement); assume that v € C°([—L, L] x [to,t1]) and piecewise
C*([-L, L] x [to,t1]). Let v = u, and v = u,; be the strain and particle velocity (the
subscript refers to partial differentiation). The restriction —1 < «(z,t) ,Vz,t, guar-
antees that the deformation y(z, t) is one-to-one. Let p be the referential mass density
(assumed to be independent of x), o, the stress, €, the internal energy per unit mass
and 7, the entropy. Assume that o, € and 7 are piecewise C*([—L, L] X [to, t1]). The
balance of linear momentum, balance of energy and the Clausius-Duhem inequality
for an adiabatic thermomechanical process in a one-dimensional bar are

a [

[o]22 = — pvdz | (2.1)
T,

[ov];? = EE/ p (e+ v ) dz , (2.2)

1
d [*2

re) =+ / ondz >0 (2.3)

1

Vt € [to, t1] and V[zy,z,] € [—L, L]. Here, ['(t) is the entropy production rate in the

interval [z1, z;]. The local versions of (2.1), (2.2) and (2.3) at points where o, v, 7, €



and 7 are smooth are

Oz = pUt , (2.4)
1
0= (e+50) (25)
2 /4
m=0. (2.6)
The compatibility equation is
Vg =Vt - (2.7)

Equation (2.5), with the use of (2.4), can be expressed as

oY = pes - (2.8)

Let z = s(t) be a point in [z, z2] across which some (or all) of the fields are discon-
tinuous. Localization at z = s(t) of the compatibility equation (2.7) and the global

balances (2.1)-(2.3) provide the corresponding jump conditions, viz.,

[v] +3s[v] =0, (2.9)
[o] + pé[v] =0, (2.10)

1
lov] + psle + 51)2]] =0, (2.11)
s <o, (2.12)

where, for any function g,
= + -_ - T o= 1. + frend i .
ll=g"—97, ¢ = lm g(z.1), ¢° = lim g(z?)

The superscript refers to one side of the moving discontinuity as follows: the “4”
(“=") side is the front (back) state if § > 0 or the back (front) state if $ < 0. Moving

discontinuities are said to be compressive if the strain in the front state is higher than
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in the back state and expansive otherwise.

The velocity jump can be eliminated from (2.10) by using equation (2.9), i.e.,

[o] = p5°[] - (2.13)

Similarly, equation (2.11), with the use of (2.9) and (2.10), can also be expressed as

(ple] = (a)[¥D)s =0, (2.14)

where, for any function g,
1 -
(9)=5(9"+97) -

Some simple but useful identities are

[9h] = [gl<h) + (@)A1 ,

(g) =%~ 3lg] = 5ol +9~

Discontinuities are classified into two types, viz., classical shock waves and phase
boundaries. The former are related to a discontinuity where the material on each side
is in the same phase, whereas the latter refers to the case where different material
phases exist on each side of the discontinuity. Moreover, in the adiabatic theory, a
shock wave whose Lagrangian velocity § is zero is referred to as a contact discontinuity.

Specific jump conditions in each case are given in Section 2.6.

2.2 Thermoelastic material.

Classical thermodynamics for simple, single-component materials without memory is

based on four different potentials, each one with two “natural” variables as shown



below:

n «— & — o

where the potentials are e (internal energy), ¥ (Helmholtz free energy), G (Gibbs’
potential) and £ (enthalpy) and the natural variables of each potential are indicated
by the arrows on the side. One of these potentials is taken as a fundamental quantity
that defines the material and the others can be obtained from it via a Legendre
transformation. If certain invertibility requirements between variables are met, it
is possible to express these potentials in terms of any combination of two variables.
In order to specify which pair of variables is being used, the following notation is
employed: a function of strain and temperature is denoted as § and a function of
strain and entropy is denoted as g. The value of the function is denoted as g or as
G(v,8) or g(v,m). If v and 6 are used as variables, then the stress and the entropy
are viewed as functions of these variables.

As shown in subsequent sections, for the thermoelastic materials considered here—
which are capable of phase transformations—the stress & is not a monotonic function
of 7y or § and the entropy 7 is not a monotonic function of . Hence, in principle, they
cannot be used as a variables. Nevertheless, these functions are monotonic within a
given phase. Therefore, in this restricted sense, they can be used as variables. In
particular, it is assumed that the entropy is a monotonic function of the temperature,
hence either (7, 8) or (7,7) can be used as variables. Throughout the present analysis,

the preferred variables are v and 6.

Let the Helmholtz potential be given by ¥ = (v, 6). This potential is related to
the internal energy through

Y=¢€—06n. (2.15)
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For a classical thermoelastic material, the stress ¢ and the entropy 7 are given by
o =35(v,0) = piby(7,9) (2:16)
and
n=1(7,0) = —e(7,9) . (2.17)

The isothermal elastic modulus p, the specific heat at constant strain ¢ and the

coefficient of thermal expansion « are defined by

p=R(v,0) = Gy(7,0) = phry(7,6) ,

c

&(v,0) = 07ip(7,6) = —0be(7,6) , (2.18)

_ 50(’7) 0) _ 1/_)79(’)” 6)

a=aly,0) = (7, 0) N J’W(’Ya 0) )

These material parameters are defined in the reference configuration, i.e., at a given
particle = at time ¢, the value of a function § is g(z,t) = g(v(z,t),0(z,t)). Al-
ternatively, one can introduce the modified! Griineisen coefficient (in the reference

configuration) defined, in terms of the above quantities, as

Ay Pe(1,0)  ap
G=Cno = 01bes (7, 6) Cope (2.19)

As a fundamental assumption, only materials with positive specific heat at constant
strain and positive coeflicient of thermal expansion are considered. Hence, it is as-

sumed that G(v,8) > 0. Moreover, assuming that,
&(y,0)>0 V(v,0), (2.20)

then, since # > 0 and by (2.18),, 7 is a strictly increasing function of §. Hence, it is

'The Griineisen coefficient is usually defined as (1 + )G, where G is given by (2.19). It turns
out that (2.19) is a more convenient parameter. See CLIFTON [12].
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possible to define an inverse function

0 =0(y,m) .

The natural variables for the internal energy are v and 7, (i.e., € = é(v,7)). From

equation (2.15), in terms of the Helmholtz potential, € is given by

&(v,m) = 9(7,0(7,m) + 8(v,m)n . (2.21)

Therefore, from (2.16) and (2.21), the stress can also be expressed as a function of

and 7, i.e.,

o =a(v,n) = p&y(7,m) -

Similarly, the temperature is given by

6 =0(v,m) = &(v,m) .
The isentropic elastic modulus p, is defined as
pe = fie(7Y,m) = G+(7,m) = &y (7,7) -

Henceforth, though, from the invertibility of n and 8, the internal energy ¢ is to be

considered as given by a function € of 7y and 6, i.e.,

€ = g(’Y? 9) = g(’Yﬁﬁ(’Y: 0)) :

This gives an interpretation for the specific heat at constant strain, i.e., from the

above expression for € and (2.18),,

c= é(7> 0) = 59(7v 6) .
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In terms of v and 6, the isentropic elastic modulus can be expressed as

'&’Y’Y (77 9)’(/;99(7> 9) - _36 (7’ 0)
e = fe(7,0) = p = . 2.22
( ) ( wee (’Ya 6) ( )
Using the material parameters defined by equation (2.18), it follows that
00—’2/1'2
e = . 2
Ho = ot —2 (2.23)

The isothermal and the isentropic sound speeds are defined, when y, u, > 0, as

o= aly,0) = 220
P (2.24)
Qe = de(’)’a 9) = ”6(7’ 9)
p
Therefore, from (2.23) and (2.24), the sound speeds are related by
2,2
a? = a? (1 + 24 0> , (2.25)
c

hence, if g, e > 0 and since ¢ > 0, then a? > a?.

2.3 Entropy jump condition and driving traction.

Using equations (2.15), (2.16) and (2.17) in equation (2.8) provides an alternative

expression for the energy equation, i.e.,
n=0. (2.26)

It follows that the dissipation inequality (2.6) is trivially satisfied at regular points.

The rate of entropy production for a segment [z;,z;] of the bar which contains a
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propagating discontinuity at z = s(t) can be expressed as

L(t) = To(t) + Ts(t) , (2.27)
where

Ty(t) = /zz pnde (2.28)

Ls(t) = —p[n]s . (2.29)

Here, I'; represents the bulk entropy production and I’y corresponds to the entropy

production due to the moving discontinuity. Equations (2.26) and (2.28) imply that
Ty=0, (2.30)

hence the entropy production for a thermoelastic material under an adiabatic process
occurs solely because of the presence of a moving discontinuity. Based on this entropy

production, define the driving traction as

f=—p[n](o) . (2.31)

For a discussion of the notion of driving traction, see ABEYARATNE & KNOWLES [1]
and TRUSKINOVSKY [31]. From the energy jump condition (2.14), when § # 0, it

follows that
ple] = ()] -
Moreover, since

6] = (m)[6] + [n1(8) ,

then (2.15) and (2.31) provide the following equivalent expression for the driving

traction:

f=pl¥] = (@)1 + p(m)6] - (2.32)
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For a thermoelastic material, (2.16), (2.17) and (2.32) give

f=p{ld] = @1 - @a)l6]} - (2.33)
In terms of the driving traction, the dissipation inequality (2.12) can be expressed as
fs>0. (2.34)

Therefore, the jump conditions are given by (2.9)-(2.12) or, equivalently, by (2.9),
(2.13), (2.14) and (2.34).

2.4 Hugoniot, Rayleigh and isentropic sets.

The jump conditions (2.9), (2.13), (2.14) and (2.34) are conditions that must be satis-
fied by the temperature, strain and velocity ahead and behind a discontinuity. These
conditions are necessary but not sufficient to obtain a solution for phase transforma-
tion problems (see e.g., [31]). Let the superscripts + and — refer, respectively, to the
conditions on the right side and the left side of a discontinuity. Suppose that the con-
ditions on one side of the discontinuity, say (y*, %), are known. For a thermoelastic
material, since € = &(v,6) and o = py), (7, 6), the jump conditions (2.13) and (2.14)
can be viewed as a (generally nonlinear) system of two equations and three unknowns
(i.e.,, v~, 8~ and $ are unknown). Moreover, for a given §, it is important to know
how many states (y~,607) (if any) satisfy (2.13) and (2.14).

The Rayleigh and Hugoniot sets, as defined below, are a convenient way to analyze
the possible states on each side of a discontinuity. They also provide a geometrical
interpretation of the system of equations arising from the jump conditions (2.13) and
(2.14). Similarly, the isentropic set is introduced to analyze the entropy jump in-
equality (2.34). The slopes of the curves associated with these sets play an important

role and their expressions are developed here. See also DUNN & FospICK [14].
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The energy jump condition (2.14), when § # 0, corresponds to
- e _ L, - -
pE(v™,07) = pE(7*,67) = 5 (6(v7,07) + (v, 0%)) (v~ =) =0.
Given a pair (7, 6p), define the Hugoniot function H as

H(7,0;%,60) = &,0) — €0 — ;—p(ﬁ(% 8) + o0)(v — ) , (2.35)

where € = &(0,6p) and o9 = &(y0,6p). To simplify the notation, the Hugoniot
function will sometimes be expressed only as H(+y, 8), bearing in mind that it depends
on a given generating point (7o, 8y). The Hugoniot set H in the v-6 plane, generated
by the point (o, 6o), is defined as

H={(7,0)| H(7,6) =0} .

It is customary to choose the point (v, 8y) as the state ahead of a moving discontinuity
since in most problems these conditions are known a priori. Here, though, the point
(70, 0o) could also correspond to the conditions behind the discontinuity. Locally, at a

point where H(vy, ) = 0 and Hy(~,0) # 0, it is possible to solve for the temperature
in the equation H(v,0) =0, i.e.,

0=06"(y).

Thus, the temperature that satisfies the energy jump condition can be determined

uniquely from the corresponding strain for given conditions (7o, 8y) on one side of the

discontinuity. Therefore,

1

H(v,6% (7)) = &,0" () — €0 — 2

(50,07 (7)) + o) (v — 1) =0 .
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Differentiate this expression with respect to v (i.e., along the Hugoniot curve) to get

. 1. 1
(67—1—6995)—5/—)(07—%—0905)(7—70)—5;(0—%-00)==0,

where all the functions are evaluated at a point (v, 8% (v)). Expressing the internal

energy € and the stress & in terms of the Helmholtz potential 1 provides the following

relations:

&y + &0 =Py — 87epyg — 0T aPge0

Oy + 590—? = P'QZ’W + :01;7995 :

Therefore, the derivative of 8 (along the Hugoniot curve) is

gH — (o — 0'02/)0 - ”J}W(’Y — Yo) _ ZQH&VO
7 VYye (7 — Yo) + 205 4)ge ’

or, in terms of the material parameters (2.18),

—(& — 090)/p + @*(v = %) — 2aa*9”

oY =
aa®(y —v) + 2¢

8

If H(v,0) =0 and H,(v,0) # 0, it is possible to express the Hugoniot set, locally, as
v=77(6),

in which case the slope is

V= aa’(y =) + 2¢
T (6 —a0)/p+at(y — ) — 20a26H

Remark: Let H; be the Hugoniot set generated by (v1,6;) and consider a state

(72,02) € Hi. Observe that the Hugoniot set H, generated by (7., 6;) is different
from H; but, necessarily, (v1,6;) € Hy. O
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The momentum jump condition (2.13) corresponds to
(@(y7,07) —a(r*,6%) — ps* (v~ —7*) =0.
Define the Rayleigh function R, for a given pair 7,0 and a speed $, as

R(7, 85,60, 8) = = (5(, 0) — o0) — §* (Y =) - (2.36)

DI

The Rayleigh function will be sometimes denoted only as R(+y, #) whenever the gener-
ating state and speed are given by the context. The Rayleigh set R in the -6 plane,
generated by the point (7o, 6;) and the speed s, is defined as

R ={(7,0) | R(y,0) =0} .

Therefore, R corresponds to the set of all points that satisfy the jump condition (2.13)
for given conditions on one side of the discontinuity. If R(,6) = 0 and Rg(~,8) # 0
(ie., if 1,9 # 0), it is possible to express the Rayleigh set, locally, as

6 =06%(v) .

It follows from this representation that

1

R(v,0%(v)) .

[3(7,0%(7)) — 00] —8* (v — 1) =0
Differentiation of the above relation with respect to v provides

— — aR .9
Gy + Gotl, = ps° ,

where all the functions are evaluated at (v,0%(y)). Expressing & in terms of the

Helmholtz potential gives

aRz_M

K ¢79 ’
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or, in terms of the material parameters (2.18),

If R(v,0) = 0 and R, # 0 (ie., if ¢, — §* # 0), then one can express the Rayleigh

set, locally, as
v =7%9),

in which case

_ '&'79

R
Yo =~ o
Py — 82

(2.37)

Remark: Let R; be the Rayleigh set generated by (1, 61) and a speed $ and let R,
be the Rayleigh set generated by (72, 6;) and the same speed $. Hence, by definition,

(7,0) € R1 = o(7,0) — ps*y = a(m1,61) — ps’n

(7,8) € Ry = 0(7,8) — ps*y = 9 (72,02) — p§*va -

Suppose that (72, 6;) € R1, thus

0'('72, 92) - P~§272 = U(’Yh 01) - p‘éZle )

and it follows that
Rl == Rz .

g

To analyze the entropy jump inequality (2.12), define the isentropic function [ in

the ~,0-plane, for a given point (7o, 6o), as

I(7,0;%,00) = 71(8,7) — (70, b0) - (2.38)

Whenever it is clear by the context, the isentropic function will be denoted as I(7, 6).
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The isentrope (or, following the previous formalism, the isentropic set) Z, for a given

point (o, 6p), is defined as

I={(v,0)|I(~,0) =0},

i.e., Z is simply the set of all points that have the same entropy as a given point (v, 6)-

If I(v,68) =0 and Iy = —tbgg # O then, locally, the isentrope can be expressed as

6="0"(v).

Since I(7,6%(v)) = 0, then
iy + 700 =0 .

Expressing the entropy in terms of the Helmholtz potential gives

T
o = - 22
K (2

[

or, in terms of the parameters of Section 2.2,

Similarly, if I(y,6) = 0 and I, = —,4 % 0 then, locally,

v=7'),
and the slope is given by
p_ < _ ¥
BT T TG

In view of the above definitions, the admissible states (y*,6%) and (y~,67) are those
that belong to the Rayleigh and Hugoniot sets generated at either (y*,8%) or (v,607)
and also satisfy the entropy jump condition (2.34).



Low strain phase Unstable phase High strain phase

Figure 2.1: Material phases in the temperature-strain plane.
2.5 A specific thermoelastic material.

In order to obtain results in specific problems, consider a thermoelastic material
introduced by ABEYARATNE & KNOWLES [2]. A phase diagram of this material in
the v,0-plane is shown in Figure 2.1. For temperatures below a critical temperature
Oc, the material can exist in either a low strain phase P; or a high strain phase P;.
These phases are metastable and are separated by an unstable phase P,. Above the
critical temperature the material can only exist in a stable phase P. Throughout
this analysis, only transformations from or to the low and high strain phases are
considered. A thorough description of the thermomechanical characteristics of this

material can be found in [2]. The boundaries between the different phases are given

by

YMm(0) = vc + M0 - 6c) ,

Tm(0) = vo +m(0 —6c) ,

(2.39)
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where 7o > 0, 8¢ > 0, M and m are constants. The expression for the Helmholtz

potential is given in each phase by

(1, 0 .
Py el a0 I —
%) " 2L y(6 - 6r) — cBlog ( 9T> in P,

" { 2 7T(’Y"')’M)2}
2 YT
Y Y Y™

¥(7,0) = | ~———’y(9 fr) — cflog (;;) in Py, (2.40)

3, (7 =) = ==y = )6 ~ br)

—cflog ( 6 /\T(H 0r) in Ps,
\ Or

where 67 is the transformation temperature, ~r is the transformation strain, Ay is the
latent heat at 8 = 0r and v, = Ym(0), Yar = Ym(8). The remaining parameters where
defined in Section 2.2 and are assumed constant. According to the model developed

in [2], the material parameters must satisfy the following restrictions:

yr > (M —m)fc > 0,

RERSS %(M +m)(0c —0r) , } (2.41)

70=2

o .
pyrbr )

The first restriction guarantees that there is no overlap between the two metastable
phases in the ~,0-plane (hence, the stress is uniquely determined for a given temper-
ature and strain). Restrictions (2.41),3 are related to the fact that the metastable

phases and the unstable phase coincide at the critical point (¢, 6¢). From (2.16) and
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(2.40), the stress response function is given by

;

py — ap( — or)

|

| #(y — 1) — ap(d - br)

(7, 60) = |
Ym — M

_yr(y = ’YM)] o

in Pl,
(0 —06r) in Py,

(2.42)

in Pg,

where, as before, v, = Yn(0), Ym = ym(6). Observe that, for a fixed temperature,

the stress-strain relation is linear in each phase. Hence, this material will be referred

to as the trilinear material. The entropy response function, from (2.17) and (2.40),

is given by

ap 0
—;—7+clog or +c
7y, 0) = ¢
7(,9) +u T (v = ¢)?
2pM——m (9~90)2

o 0
Py — 1 —
) (v =7r) +clog (9T>

\

in Pl,
(2.43)
—szi in P2,
+c— ﬁ: in P3,
Or

where the explicit forms of v,, and 7y given by (2.39) were used. Moreover, from

(2.15), (2.40) and (2.43), the corresponding internal energy as a function of v and 6
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is given by
)
6
—2&-72 + 2 Ly +cb in Py,
P
Hf o, w(@0—0c)(y—v0)*  M?
2 {’Y + (M =m)(6 = 00)? M_m’YTQC
&(,6) = <
ol . 2.44
-—-2M~m’YT('7_'YC)}+ 'uT’H'Co in P, (2.44)
H 2, opdr :
o (V=) ——(v =)+ = Ar in P;.

\ 2p
Observe that the specific heat at constant strain, using (2.18),, is given by

’

c in Pla
- pyr [(v = v0)* 0 :
8) = —
e(v,0) =4 c p [M—mil{(O—Oc):“ in Py,
c in Pj.

\

Since (6 — 0¢)® < 0, then, in any phase, &(v,6) > 0. This fact guarantees the

invertibility between entropy and temperature as mentioned in Section 2.2.

2.6 Specific jump conditions.

For the special material introduced in Section 2.5, the jump conditions take the

following form:
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2.6.1 Shock waves and contact discontinuities.

At a point of discontinuity where both sides are in the same phase, the jump conditions

(2.9), (2.13), (2.14) and (2.34) become

] +élv] =0,
(@ = 8)[y] — aa®[f] =0,
(aad®(0)[] + cél) s=0,

6+
(aazﬂ'yﬂ + clog 0—_) §<0.

—~

(2.45)

/

There are two possible cases to consider, viz.,

Shock waves: if § # 0 then, from the jump conditions (2.45), 3, the speed of prop-

agation of the discontinuity is given by

& = a? (1 + azcaz (0)) , (2.46)

and the rest of the jump conditions are

[v] +é[] =0,
aa®(0)[yv] + c[6] =0,

{%—log%ﬁ-}ézo,)

"~

(2.47)

where (2.47)3 was obtained from (2.45)4, (2.47), and the fact that ¢ > 0. The entropy

jump inequality is equivalent to
9= >6", fors>0 or 6 <6T, fors<o0, (2.48)

hence the temperature behind the shock wave increases. Observe that the entropy
jump inequality (2.48) differs from (2.45), in the sense that (2.48) holds only if the
strain and the temperature are related through (2.47);. From (2.25), the speed of
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propagation can be written as
§* = (a?), (2.49)

i.e., the square of the velocity of propagation is an “average” of the square of the
isentropic sound speed. Furthermore, from (2.47),, it follows that [y][0] < 0, i.e., the
jumps in strain and temperature have opposite signs. In view of the entropy jump
inequality (2.48) and the shock wave speed (2.49) and assuming o # 0, it follows that

ify" <y = §<0, 6" >0 and a® < (a])% < §? < (a])?

Y

ify">y" = 5>0, 60" <60 anda® < (af)? < §? < (a7)?.

This result is the special version for the trilinear material of the subsonic-supersonic
condition for shock waves which holds for more general thermoelastic materials. This
condition asserts that s is bounded below by the isentropic sound speed of its front
state and bounded above by the isentropic sound speed of its back state. Moreover,
in either case, the strain in the front state is higher than in the back state, hence, as

expected, only compressive shock waves are admissible.

Remark: Along with the subsonic-supersonic condition, other bounds for struc-
tured, steady shock waves (as defined in Chapter 4) were established by DUNN &
Fospick [14] for general thermoelastic materials. In particular, the shock wave
speed is bounded below by the isothermal sound speed and by the isentropic sound
speed of the back state. For the specific thermoelastic material considered here and
in the context of a non-structured adiabatic shock wave, this result agrees with the
relations shown above. Another consequence of (2.46) is to rule out the occurrence

of the so-called ultra slow shock waves as defined by DUNN & Fosbpick. O
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Contact discontinuities: if § = 0, then (2.45) becomes

[v] =0,

1] —ald] = 0.

2.6.2 Phase boundaries.

The jump conditions when the low strain phase is on the right of the phase

(2.50)

boundary

(and the high strain phase on its left) are, from (2.9), (2.13), (2.14), (2.34), (2.40),

(2.42) and (2.43), given by

[\l +sh] =0,
(a® = $)[y] + &*yr — aad®[] =0,

{aa2(9) [v] + c[6] + a*yr (<7> - :/I) + aa®0py + /\T} §=0,

(2.51)

2
o+ A
aa® ([y] +7r) + clog .= + 22 45 <0 .
- " or )

Similarly, the jump conditions when the high strain phase is on the right of the phase

boundary (and the low strain phase on its left) are given by

[l +s[v] =0, )
(a® — *)[v] — a*yr — aa®[f] =0,
{aa O +l0] - a*yr ((v) = L) - aa®tryr — Ar} 5 =0,

(2.52)

2
g+ A
ad® ([Y] = yr) +clog — - 2Z 4§ < 0.
- 9'1" Y,

For the special case of a stationary phase boundary (i.e., § = 0), the entropy inequal-

ity and the energy jump conditions are trivially satisfied and the remaining jump
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conditions are

[v] =0, [v] —aff] +~r =0 right side: low strain,

[v] =0, [v] —a[f] —+yr =0 right side: high strain.

2.7 Nondimensional parameters.

It is convenient to introduce a set of nondimensional parameters for the trilinear

material. Define the following parameters:

G 3\
L S G N
a™yr YT ayr
A
Ir =", G=Gnr, > (2.53)
a’vz.
5 2 M 2
v=f, M=21T , m=a7Tm.
a cC c J

The variable ¢ might be viewed as a “normalized” strain. The parameter G will also
be called the (modified) Griineisen coefficient. Nondimensional stress and entropy

are defined as

o

= 2 y
pa=yr (2.54)
s = —

c

Other nondimensional parameters will be introduced as required. Observe that it
is also possible to define nondimensional parameters using the coefficient of thermal
expansion « instead of the specific heat at constant strain c. Nevertheless, to analyze
the limit case @ — 0, it is more convenient to use the above nondimensional form.

For future reference, the nondimensional form of some relations is recorded here. The



27

stress and the entropy are given by

)
§—-G(T -Tr) low strain phase,
5 —
7(0,T) = \ {(5 =5 6(;" ] — G(T —Tr) unstable phase, (2.55)
m — UM
u(é -1)—=G(T - Tr) high strain phase,
and
( T
Go + (1 + log —-——) low strain phase,
Tr
G+ (1+log %—
5(6,T) = < 7 2
- ! (0 = do) — M?| unstable phase
2(m = M) | (T — T¢)? ’ (2.56)
T lp . .
GO—-1)+(1+log— | — = high strain phase.
\ Tr Tr
The restrictions on the material parameters given by (2.41) become
3\
1>(M'—m)Tc>0,
1 1
bo=5+5M+m)(Tc~Tr), (2.57)
M+m Ir
> T T +G. )

The nondimensional isentropic sound speeds on each side of the moving discontinuity

(i.e., their relative magnitude with respect to the isothermal sound speed) are

(aX)? =1+ G*T*.
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The nondimensional forms of the jump conditions (2.51)2 3 4, where it is assumed that

(6%, T*) is in the low strain phase, are given by

(1=v))[§]+1-G[T] =0, ]
{G<T>[[5B + l[T]l + <<5> - %) + GIT + lT} v=20,

Tt lp
pR— —_— <
{G(I[5]]+1)+log — + T}v_o,

. —

/7

and the jump conditions (2.52)3 34, where it is assumed that (6%, 7™") is in the high

strain phase, are given by
(1=v)[]-1-G[T] =0, ]
{smm1+i1- (- 3) -6t -infv =0,

+
{G([[é]]——l)—i—log%_———%}vgo.
T J

~

Using (2.58)1 in (2.58); to eliminate [§] gives

rn(V[T]? = ro(v, TH[T] + r3(v, 67, TT) =0,

where
Gv
") =groy
(ad)* —v2
r(v, T7) = —v {—1——_—\/2— :
+ M +, L oy s+ _ 1
ra(v,07,T7) = — GT +—2-—(1——v) d -—§+GTT+lT

)]

(2.58)

(2.59)

(2.60)

The dependence of ro on T is implicit in the isentropic sound speed. Equivalently,

equation (2.59) can be expressed as

nWITP + ro(v, TH[T] +ry(v,67,T7) =0,

(2.61)
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where

1
(v, 6-,T7) = —— o GI™ =5 —(1—v?) (6‘—%+GTT+ZT)] .

12

2.8 Specific Hugoniot and Rayleigh sets.

The explicit form of the Hugoniot and Rayleigh sets for the specific thermoelastic
material of Section 2.5 can be obtained for a shock wave or a phase boundary. Since
the Hugoniot set depends on the generating point, it is useful to develop expressions
for sets based at either the low strain or the high strain phase. Let R4 be the Hugo-
niot sets generated at (y*,6%) respectively. Without loss of generality, assume that
(vT,6%) is on the high strain phase and (7™, 07) in the low strain phase. Moreover, let
R+ be the Rayleigh sets generated by (y*,6%) and the speed $ and by (y=,67) and
the same speed 5. To analyze phase boundaries it is convenient to think of (y*, 8%)
as the states on each side of a moving discontinuity, although no a prior assumption
is made regarding which one corresponds to the front or back state since ultimately
this information is provided by the sign of $. In view of the above remark, assume

henceforth that (y~,67) € R4, hence
R=R,=R_.

For given conditions on each side of the discontinuity, there is a unique velocity
magnitude |$| (as given by the momentum jump condition) that connects the states
(7%, 6%)—the velocity itself being s or —3.

From (2.42), (2.44) and (2.35) (or, alternatively, from (2.51)3), solving the equa-
tion H(y,0) = 0 for e.g., 8, provides an expression for the Hugoniot set in the -6

plane generated at (7~,07). In terms of the nondimensional parameters introduced
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in Section 2.7, one has

([2—G(6—67)] T~
2+ GG —0-)

for 6 < om(T) ,

9T~ — (G~ — 1)(5 — 67) + h(6™)
2+ G(6—o-)

(2.62)

for 6 > 6,(T) ,

\

where

h(67) = 26~ — 1+ 2(Ir + GTy) .

The restriction § < dm(7") guarantees that the material is in the low strain phase
and § > 6,(T) restricts the corresponding formula to the high strain phase. For the
unstable phase, it is possible to solve numerically the equation H (v, ) = 0 in order

to get the Hugoniot set, i.e.,

1 (6 — 60)[Te(6~ = 6¢) — T(6 + 6~ — 26¢)]
2(m — M) (T - Tg)?

+ M(6 + 6 — 260) +M2TC] + %G(T+T-)(5—5-) +(T—-T)=0.

Similarly, the Hugoniot set generated at (6%, T™) can be expressed as

(2T+ — (GT* +1)(6 — 6%) — h(6*)
2+ G(5 — %)

for 6 < om(T)
TH(5) = <

[2—G(5 —6+)| T+
| 2+G(@G —d")

(2.63)

for 0 > 6 (T)

where

h(6%) =26 — 1+ 2(lr + GT7)
and, as before, the Hugoniot in the unstable phase is given implicitly by

1 (8 = 6c)[Tc(6* — 6¢) — T (6 + 6+ — 260)]
2(m — M) (T - Tc)?

(6 -+ 6 = 280) + M T | 4+ 26T+ TH)(F — 6%) + (T~ T*) =0.
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From (2.42) and (2.36), the Rayleigh set in the -6 plane can be obtained by solving

the equation R(vy,#) = 0. In terms of nondimensional parameters, this set is given by

r

(1-Vv)(=86)+T" for § < om(T) ,
TE(5) = { (2.64)

|~

é(l )=+ T — é for § > 6(T) .

For the unstable phase, it is easier to express the Rayleigh set as a function of the

temperature, i.e.,

6~ —dc —M(T = Tg) + G(m — M)(T = To)(T - T7)
(1=v3)(m -—M)(T —T¢) -1

§™T) =

+0

Recall that R4 = R_, so only one expression for the Rayleigh set is given.

If one works with strain and entropy as fundamental variables, the entropy jump
condition (2.12) simply states that the entropy of the state behind of the moving
discontinuity (shock wave or phase boundary) has to be greater or equal to the entropy
of the front state, regardless of the strain. Nevertheless, if the variables used are strain
and temperature, this condition becomes more difficult to visualize and, therefore, it
is useful to develop an expression for the isentropic curves.

For a phase boundary, the entropy jump inequality is expressed either by (2.51)4
if the high strain phase is to the left of the phase boundary or by (2.52), if it is to
the right. Henceforth, without loss of generality, consider the latter case (in nondi-
mensional form). For a given state (67,7~) in the low strain phase, from (2.56), the

isentropic curve 5(4,T) = s~ can be expressed as

(T_ exp [-G(6 — 67)] for § < ém(T) ,
TI(6) = < (2.65)

T=exp |-G (6 —1=07) + =—| for 6 > 6n(T) .
\



32

For the unstable phase, the isentropic curve is given implicitly by

_ T 1 (6 — 6¢)?
G(6—-9 log — — —-M?| =0.
( )l T~ s {(T T 0
Similarly, for a given state (0%, T*) in the high strain phase, the curve §(6,T) = s*

can be expressed as

;

T+ exp [—G ((5 ~ (6% — 1)) — %] for 6 < ém(T)

T'(8) =

kTJr exp [—G(8 — 61)] for § > 6,(T) ,

and for the unstable phase, the isentropic curve is given implicitly by

2

G(é—é*)—t—log% - Q(ml_M) [((;:‘;CC))Q - M“’} + [G+%] =0.
From the entropy jump inequality (2.12), expressed here as [s]v < 0, there are two
situations to consider depending on the sign of v. For a given state (6%, T7") in the
high strain phase, the isentropic curve 5(4, T) = st in the §,T-plane divides the low
strain region into a region of lower entropy than s* and a region of higher entropy.
The former corresponds to admissible front states (67,7 7) if v < 0 and the latter to
admissible back states (67,77) if v > 0.

Figure 2.2 shows a typical case of a Hugoniot and Rayleigh curves for a pair of
states (6%, T%). The isentropic lines 5(5,T) = s~ and 5(5,T) = s* are also shown,
with s* < s™. Figure 2.3 shows the detailed behavior of the different curves close to
the point (6=,77).

- Notice that the state (6%,7) lies in the region of admissible front states for
a given (67,7T7) with v > 0. Conversely, the state (6=,77) lies in the region of
admissible back states for a given (6%, T*) with v > 0. Hence, in this case, (6=,77)
corresponds to the back state and (6%, 7™") to the front state with v > 0. Observe

also that the Hugoniot and Rayleigh curves do not intersect in the unstable region.



Figure 2.2: Rayleigh, Hugoniot and isentropic curves (m > 0).

2.9 Small Grineisen coefficient case.

In this section, it is assumed that the Griineisen coefficient is small in the sense that
the coefficient of thermal expansion is small but the specific heat c is finite (hence the
nondimensional parameters of Section 2.7 are well defined). Suppose, for definiteness,
that the material on the right side of a phase boundary is in the high strain phase.

Thus, from the momentum jump condition (2.58);, the jump in strain is given by

1
1 —v2

[6] = +0(G) .

Hence, if [6] > 0 and up to O(G), the phase boundary velocity is subsonic with respect
to the isothermal sound speed (i.e., v> < 1). If [§] < O then the phase boundary is

supersonic. The energy jump condition (2.58), gives, for small G,

[7]=(6) — 5 +1r +0(G)



Figure 2.3: Hugoniot, Rayleigh and isentropic curves in the high strain region.

Observe that [T] could be either negative or positive. From the entropy inequality
(2.58)3, if Iy # 0 then, up to O(G),

+

log%:—i-lTv—}-O(G)ZO.

If T+ = T, the entropy inequality is satisfied as long as the latent heat and the speed
of propagation v have the same sign. Moreover, if I = 0, from (2.58)3, it follows that

+

vlog%—_——%—O(G) <0,

hence the temperature behind the phase boundary has to be greater than the tem-

perature in the front state.

2.10 The strain-entropy representation.

Previous work in shock waves and phase transformation problems has been carried out

using different basic thermodynamic variables. To be able to compare qualitatively
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the predictions of different models, it is convenient to specify the trilinear material in

other representations. For the strain-entropy representation, the phase diagram can

be expressed as follows: for a given strain 4,

low strain phase: s < sy(d) and s < s¢(6) ,
unstable phase: sm(d) <s < sm(d) and s < s¢(d) ,

high strain phase: s> sp(d) and s < s¢(9)

where the phase boundaries are given by

1 [6—
sM(6)=G5+[1+logT—T< M(Sc—i—Tc)} )

sm(8) =G(6 —1) + [l—i—log%— (5 ‘;150 +Tc>] b
T

sc(8) =5(6,T¢) .

Define a nondimensional internal energy e, as

€
e

3

= ?‘-1—5—’;—%—:
then

( 52

5 + GT7d + Trexpls — G§ — 1] low strain phase,
&(d,s) = 4 (6 — 1)

2
!
+Trexp|s—G(6—1) + —,1—3—"— — 1| high strain phase.
\ T

+GTr (6 —1) — Iy

Since in the strain-entropy representation the temperature and the strain are related

to the internal energy through

a(v,m) = p&(v,m),  0(v,n) = &(v,m),
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then, in nondimensional form, these are given by

’

6+ GIT{l —exp[s— G- 1]} low strain phase,
7(4,s) = |
(6-1)
+GTr {1 — exp [s -G(0-1)+ ITT— - 1} } high strain phase,
\ T
and
_ Trexp[s — G — 1] low strain phase,
T(d,s) =

Tr exp [s -G(6-1)+ g— - 1] high strain phase.
T

For a given state (do, o) it is possible to obtain formulas, not displayed here, for the

Rayleigh and Hugoniot sets.
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Chapter 3 A Riemann problem

3.1 Introduction.

Within the framework of the thermoelastic theory of Chapter 2, an initial value
problem of the Riemann type for a one-dimensional bar is formulated. In Section 3.3,
it is found that there exist two different kinds of solutions. One kind involves no
phase transition, whereas the other kind involves a two-parameter family of solutions
containing two propagating phase boundaries (the phase boundary velocities acting
as parameters). In the latter case, a kinetic relation is used to obtain the phase
boundary velocities and hence the structure of the solution is fully determined. It is
also found that for some range of the initial data, it is possible to have either kind of
solution (i.e., with or without phase boundaries). Therefore, a nucleation criterion is
enforced to single out the unique solution to the problem from the two different kinds.
Finally, in Section 3.5, the connection between the Riemann problem with uniform
data and the nucleation criterion is investigated. In this chapter, for simplicity, the
coefficient of thermal expansion is taken as zero. Consequently, the mechanical and
thermal effects are decoupled in the differential equations. Nevertheless, a connection

between the strain and the temperature remains in place via the jump conditions.

3.2 Field equations and jump conditions.

For the thermoelastic material introduced in Section 2.5, at points where the fields

are smooth, (2.4), (2.7), (2.8) and (2.53) provide, with a = 0,

Vi — v, =0, (3.1)
v —aty, =0, (3.2)
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The jump conditions (2.45), when o = 0 and in nondimensional form, are equivalent

to either
( v = =+1, ¢ 0
V = Y
VBl + Bl = o, o
. [6] # o, or B = o (3.4)
[5] # o0, e
. KT]‘ = 0, ) HT]] # .

The first case corresponds to a shock wave whereas the second is a contact disconti-

nuity. Contact discontinuities are stationary in the the reference configuration (i.e., in

the Lagrangian sense). If the high strain phase is on the right of the phase boundary,

then the jump conditions (2.51), when @ = 0 and in nondimensional form, are given

by

v[o] + o] =0, ]
[6] - 1+v[g] =0,

{im- (@-3) ~irfv=0.

v

—~
w
ot

N

T r
—— <0.
{logT_ TT}V_O )

If the high strain phase is on the left of the phase boundary,
(2.52) are given by

v[o] + 5] =0, )

[6] +1+v[g] =0,

{ﬂT]}+(<v>—§)+zT}v=o,

then the jump conditions

(3.6)

-~
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3.3 Riemann problem.

Consider the Riemann problem corresponding to an infinitely long bar composed of
the thermoelastic material described in Section 2.5. This problem can be formulated
as follows: Find functions 6(z,t), v(z,t) and T(z,t) such that equations (3.1)-(3.3)
are satisfied at points where the functions are sufficiently smooth and the correspond-
ing jump conditions (3.4)-(3.6) are satisfied at points where the functions are discon-
tinuous, subject to the following initial conditions:

6,0, T, for —co<x <0,
5(z,0) , 5(z,0), T(z,0) =4 = ©-°F

0r ,Ur,Tp for 0<z <o00.
R+UR, 1R (3.7)

It is assumed that, initially, the bar is in the low strain phase, in which case

6r € (—1,6m(TL)] ,
6r € (=1,6m(TR)] .

The structure of the solution, as shown by ABEYARATNE & KNOWLES [4], must
necessarily involve either no phase boundaries (in which case all particles of the bar
remain in the original phase at all times) or two phase boundaries moving in opposite
directions (in which case the particles jump to the high strain phase). In the latter

case, there is a two-parameter family of solutions.

3.3.1 Solution with no phase boundary.

The solution with no phase boundary involves two shock waves (traveling along

z/at = +1) and a contact discontinuity at z = 0. The bar remains in the low
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Figure 3.1: Solution with no phase boundary.

strain phase at all times. One seeks a solution of the form

p
5L , UL, ,TL for

do , 0o ,T; f
5(z,t) , B(a,t), T(at) =4 0 b
5(),170,TR for

L 5R,17R,TR for

—00 < < —at
—at <z <0,
0<z<at,

(3.8)
al <z <o,

where dg, U are the only unknowns. Notice that the continuity of T across the shock

waves and the continuity of § and 7 across the contact discontinuity were enforced.

The solution is shown in Figure 3.1. Let

__6R+5L Up — Uy,

h
2 2

and
. dp—90,  Ur+TL
2 2

then, from the jump condition (3.4) it follows that

(3.9)

(3.10)
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It was assumed that the bar was initially in the low strain phase, then, for the whole
bar to remain in the low strain phase at all times and from (3.8), it is required
that —1 < 8y < min [0m(TL), dm(Tr)]. Hence, from (3.10), there is a solution of the
form (3.8) to the Riemann problem if and only if the initial datum h is such that

-1 < h < min [5M(TL), 5M(TR)} . (3.11)

3.3.2 Solutions with two phase boundaries.

The solution with two phase boundaries involves two shock waves (traveling along
r/at = £1), a contact discontinuity at z = 0 and two phase boundaries at z/at =

v < 0 and z/at = v, > 0. One seeks a solution of the form

,

o, , T, for —oco<z< —at,
d ,00,T, for —at <z <avt,

0,0, T" fo t<z <0,
5(z,t) , B(z,t), T(z,t) ={ Poavbss

01,01, T" for 0<z<av.t,
b (3.12)

82 ,U9 , T for avit <z <at,

O0r ,Ur ,Tp for at<z <00,

\

where &y, 61, 82, To, U1, Uz, T’ and T” are unknown. Notice that the continuity of
T across the shock waves and the continuity of § and 7 across the contact discon-
tinuity were enforced. Here, as in the previous section, the bar is initially in the

low strain phase. The form of the solution is shown in Figure 3.2. From the jump



x/at=v X

High-strain phase

Low-strain phase

TL,SL,T/L TR’SR’—;’R
X
Figure 3.2: Two-phase solution.
conditions (3.4), (3.5)12 and (3.6)1 2, one has
—(0o —0L)+ (Vo —9L) =0,
V((Sl - (5()) + (’l_)l - ’l_)o) =0 y
v*(52 — 51) + (1-)2 — ’171) =0 y
(6r —32) + (D — D2) =0,
(61~(50—1)+(171—170)V=0,
(52~51+1)+(@2~@1)V*:0 .
Solving this system provides
1 1 )
do=h+ = -
0= (1+v* 1+v> ’
1 1 1
0 =h+= .
' ~‘b2<1—v 1+v*> ' ( (3.13)
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"\

(3.14)

Moreover, using the jump conditions (3.5); and (3.6)3 together with (3.12) yields

Furthermore, using (3.13) in the above equations provides

where

Notice that

1

T = (51+(50-1)+lT+TL,

T2

1
T,I=§(52+51—-1)+ZT+TR.

T =T, +7r(v,vs) ,

T” = TR + ’I’*(V, V*) ’

Tu{—Va, =V) = r(v,v,) .

(3.15)
(3.16)

(3.17)

(3.18)

It is important to remark that a solution of the form (3.12) is not unique. In fact,

equations (3.13)-(3.18) represent a two-parameter family of solutions where the phase

boundary velocities v and v. can be used as such parameters. The uniqueness issue is

addressed in Section 3.4 with the postulation of a kinetic relation which singles out

an appropriate pair (v,v,) to fully determine the solution with two phase boundaries.
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3.3.3 Phase segregation conditions and entropy inequality.

From (3.11) it is clear that for suitable initial data there exists a solution to the

Riemann problem with no phase boundary. The solution which involves two phase

boundaries requires further analysis. One has to ensure that the solution satisfies the

entropy inequalities (3.5)4 and (3.6)4 and that (b, T;) € P1, (61, T") € P, (6,,T") €

P3 and ((52,TR) € Pl, i.e.,

01 2 6m(T")

01 2 6m(T") ,
(=1,om(T1)] , >
(=1,6m(TR)] ,

T €(0,T¢) ,
< (

(506

0y €

T/I

0,T) .

/

(3.19)

Conditions (3.19) are referred to as the phase segregation conditions. From (3.13),

(3.15), (3.16), (3.17), and (2.39), it follows that the restrictions (3.19) and the entropy

inequalities (3.5)4 and (3.6)4 are equivalent to

Ho(Tp,v,v.)
Hi(Tg,v,v.)
Hj(v,v.)
Hy(v,v.)
He(Ty,v,vy)
Hg(Tg,v,v.)

A IA
==
|
2 2
P alS

IN AN A

IA

IA

FANVAY

H3(Ty,v, v,
Hs(Tg,v, v,
H7(TL, V, V,

Hy(Tg,v,v.

, (3.20)

— e e S
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where the functions H; are defined for -1 <v < 0,0 <v, <1 by

1 1 1
Hy(Tp,v,v,) =6 T, —-T¢c) — =(1 -
(T, v,v2) = b+ m(Ty, — Tc) 2( m){l—v+1+v*}
m 1
_._2_{1+1—:_—\-/§}+ml'1‘,

1 1
HI(TR,V,V*) =(Sc+m(TR—-Tc)——2-(l—-m){ + ! }

1—v 14w,
m 1
——<1
2{ +1mv2}+mlT,

*

1 1
HQ(V,V*)Z%{ }——1,

1+v 1+v,
H3(Tr,v,vi) = bc + 1+ M(Ty, — Te) + Hay(v,va)

H4(V,V*):%{ 1 1 }_1,

1—v, 1-v

Hs(Tr,v,v.) = 0¢c + 1+ M(Tr — Tc) + Hy(v,vs) ,

r 1 Ve v
— T — — — ——
Hs(TL,v,v*) = {TL (e T 1) lT} + 5 {1 w1 -—v2} ,

1 Vi v
H7(TLaV)V*) _{(TC—TL)_ZT}+§{1+V* - 1__\/2} ’
I 1 Vi v
Hg(Tg,v,vs) = {TR (eTT _1> —ZT}+§{1—VE B 1~V} ’
1 Vs v
l%ahv”ﬂz{ab“ﬂa“h}+§{1—v?"1—v}'

Notice the following symmetries:

Equations (3.20); 23,4 are equivalent to (3.19); 2,3 4 respectively; the upper bounds in
(3.20)s are equivalent to the upper admissible value of the temperature in (3.19)s ¢,

whereas the lower bounds in (3.20)5 6 are equivalent to the entropy inequalities (3.5)4
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and (3.6)4 respectively. Notice that if the entropy inequalities are satisfied, then
T' — Ty = r > 0 at the phase boundary z/at = v and T” — Ty = r, > 0 at the
phase boundary z/at = v,. Thus, necessarily, the conditions 77 > 0 and T" > 0 are
satisfied.

The inequalities (3.20) determine, for fixed T7, Tg, a region in the (v, v,, h)-space
where it is possible to have a two-parameter family of solutions of the form (3.12). For
simplicity, consider the case when I = 0 which corresponds to twinning. Furthermore,

since it was assumed that a = 0, (2.57) gives
1
M=—-—m>0, 5c=§, 50>MTO. (321)

Under these assumptions, the functions H; to Hy take the following form:

1 1
HO(TL7V7V*) M(TC - TL - —(1 + M) { Y + — 1}

) 1+v,
"zl

)

J

Hy(Tryv,v) = M(T - R—-<1+M){ S ..1}

1—v 14w,
{l—v2

x) = _1,
Ha(v, v.) 2{1+v 1+v*}

w

H3(Tp,v,v,) = 3 M(Tc — Tp) + Ha(v,v.) ,
O TS
Hy(Tr,v,v.) = g ~M(Ts — Ti) + Ha(v,vs) |

Hg(v,vi) = Ha(v,v,) + g — % {1 —1v2} ,

H:(Tp,v,v.) = {Te — T1} + He(v,v.) ,

3 1 1
Ha(v,v.) = Hy(v,v,) + 2 — = ,
s(V,Vy) H4(vv)+2 2{1_\/3}

Hg(TR, V,V*) = {TC — TR} + HS(V,V*) .
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Let

Notice that
(MTz — 1/2) — MTy,
M(Tc — T})

But, from (3.21)3, (MTg—1/2) —MT}, < 0, hence Hg > Hy for all v. A similar analysis

H6>I:IO if V2>

reveals that Hg > H; for all v,. Moreover, one has

H, > Hy if v2 < v,
H¢ > Hg if v¥ < V2,
H, > Hg if v > 2,
H, > Hg if v} > ¢,

where

Q
<

fl
Wi b

The lower bound for h is given by

Hg for 0 < v* < ¢
for v¢ > v Hpy, = ’
H, forcd<v?<1,

(3.22)
Hg for0<vi<c?,
for vi > v? Hpy, = ® !
Hy fordd <vi<l.
Henceforth, for definiteness, it is assumed that
Tr > Ty . (323)

For the upper bound, one has to consider two cases for the given initial temperatures

T;, and Tg. Only the first case is considered here: assume the given temperatures 77,
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and Tg satisfy

2M+1)(Te—Ty) < 1. (3.24)

Under this assumption, it follows that H; < Hs and Hy < Hj for all v and v2.

Moreover,

1
Hy for v2<1-— ;
Hoo = 4Tp~Ty) i*‘ 1/(1—v?) (3.25)

H; for vi>1-

4(Tp—TL) +1/(1 —v?)

The lower and upper limits for A in the v?, vi-plane corresponding to the phase segre-
gation conditions are shown in Figure 3.3. Notice that Hy > Hg for any v? v2, hence
the admissible region is always non-empty. The values of vZ, v2 for which Hpp.y > Hmin
correspond to the shaded region in Figure 3.4. Thus, the shaded region corresponds
to the projection on the v?,v2-plane of the admissible region in the v v, h-space.

Typical cross sections of this region in the v2, h and v, h-planes are shown at the end

of next section in Figures 3.5 and 3.6.

3.4 Driving traction, kinetic relation and nucle-

ation criterion.

As pointed out in Section 3.3.2, the solution involving two phase boundaries is not
unique. The postulation of a kinetic relation at each phase boundary settles the
uniqueness issue. In order to introduce the kinetic relation, the explicit form of the

driving traction acting on each phase boundary is given below.
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Hmin H4

Hmax=H7 Hmin H4
Hmax=H9

min H8

Hmax"H7

1+3
¢ \ Hmin=H2
Hmax=H9

H_. =Hg

min
Hmax=H9 / Hmin:Hﬁ

V Hx=Hy )

0 1 1
1+8¢

Figure 3.3: Lower and upper limits for A on the v, v2-plane.

H4 =H7 H4 =H9

Hy =H,

H, =H,
1438, LA

Hg=H,

0 1 1
1+38¢

Figure 3.4: Projection of the admissible region on the v?, v2-plane.
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3.4.1 Driving traction for phase boundaries.

For the thermoelastic material undergoing an adiabatic process, equation (2.33) at

the phase boundary which has the high strain phase on its right becomes, with a = 0,

f=—pc(6) {log %i - iT—} : (3.26)

COT

If the high strain phase is on the left of the phase boundary, then (2.33) becomes

f = pc(8) {log b _ iT—} : (3.27)

6+ 69T

Consider a dimensionless driving traction defined as

- I
=27 (3.28)

From (2.53), (3.26), (3.27), (3.15) and (3.16), the driving traction at the phase bound-

ary z/at = v is

f=—F[Tg,r(v,v.)] , (3.29)
and the driving traction at the phase boundary z/at = v, is

f, = F[Tg,7s(v,v4)] , (3.30)
where

F(T,r) = <T+ —;—) {log (1 + —;—) - —%—} , (3.31)

and r,r, are given by (3.17)-(3.18). In the purely mechanical case, ABEYARATNE &
KNOWLES [2] showed that, under certain assumptions, the corresponding Riemann
problem was symmetric in the sense that v = —v, and f = —f, so that the problem

reduces to a one-parameter family of solutions. The adiabatic Riemann problem does
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not exhibit such symmetry. One has to consider, separately, a kinetic relation for each

propagating phase boundary. Nevertheless, one can easily check that the solution is

symmetric when Ty, = Tkg.

3.4.2 Kinetic relations.

From (2.27), (2.29), (2.30) and (2.31), the dimensionless rate of entropy production
for a segment of the bar containing a phase boundary during some time interval can

be expressed by

r—t (3.32)

o1
T —_—
pac.  (T)

If, following [1] and [3], the quantity f/(T") is identified as an affinity and v as the
corresponding fluz, then the kinetic relation relates the affinity to the flux and, in
this case, to the temperature on one side of the phase boundary. The temperature is
not considered as an affinity (it describes the state of the material). Therefore, the

relation between the affinity and the flux is of the form

<—f>' = (pij(T’ V) ’

where the subscripts refer to the low and high strain phases P, and P3;. Thus,

f
m = (,013(TL, V) y (333)

f,
L ). 3.34

Clearly, it is required that

P1a(, V) = —pai (-, ~v) . (3.35)
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The kinetic relation has to satisfy some restrictions that arise upon enforcement of

the entropy inequality. Since I is non-negative, then ©;; must be such that
‘Pij(Ty V)V Z 0.
This implies that if ¢;; is differentiable with respect to v, then
0pi;

Furthermore, assume that ¢;; is strictly monotonically increasing with v.
Returning to the special case where ir = 0, from (3.33), (3.34), (3.35), (3.29),
(3.30) and (3.31), one has

T T
log (1 + "f“) = (TL,~v), log <1 + F) = 031(Try Vx) ;
L R

therefore,

r="T} (etpsl(TL,——v) _ 1) , Te=1Tg (ecpm(TR,v.) . 1) '

Using (3.17) and (3.18) with ir = 0 provides

1 v v
h+ = _ * — w31(TL,—v) _ )
+2<1_v2 1+v,.> Ty (e 1), (3.37)
1 \ v
he = | — * — @31(TR\Vx) _ ) i
+2( 1_v3+1_v) Tr (e 1) (3.38)

Consider the restriction of the function ¢3;(7, ) to non-negative values of its argu-

ment. Define
@31(T,v?) = p3,(T, V) forv>0. (3.39)

Recall that the phase velocities are —v > 0 and v, > 0, hence, subtracting (3.38)
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from (3.37) and using (3.39) gives

V2 2

* @31(Trv2) 1) _ Vv
1— Vz +2Tx (6 1

—; 27, (ePor e — 1) .

(3.40)

From the properties of the kinetic relation ¢3;, the function (3, increases monoton-
ically with v2. As a function of v2, (resp. v?), the left-hand side (right-hand side) of
(3.40) is strictly monotonically increasing from 0 at v? = 0 (v2 = 0) to +oo at vZ =1
(v2 = 1). Thus, there is a unique v? € [0,1) for a given v* € [0,1). Therefore, it is

possible to define a functional relation between v? and v?, say
vi= o Ty, TR) . (3.41)

Notice that, since v < 0, then

V= 4/ ‘I)(V%, TL, TR) .

Henceforth, let

(I’(Vf, TL: TR) ’
o1, = ¢n(Tr,v?) = @a1(Tr, ®(v3, Ty, Tr))

vr = @31(Tr, V) -
Adding (3.37) and (3.38) and using (3.39), (3.41) and the above notation, one has

h = \I/(vf, TL, TR)

TL wL TR 1 2V,‘,—V2 2V—-V2
— =L 1)+ 2B (eer _ et *
g (=Dt 5 1)+2{1—v3+1—~V2

(3.42)

The function ¥ is strictly monotonically increasing in v2 from 0 at vZ = 0 to +o0 at
v2 = 1. Therefore, for a given h in the admissible range, (3.42) singles out a unique

vZ which, by (3.41), provides a unique v2. This fully determines a unique solution of
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the form (3.12).

The fact that a solution exists can be seen by the following analysis. The lower

bounds Hg and Hg of the admissible region can be expressed as

E{S(Vza TLa TR) = Hﬁ((I)(V37 TL7 TR)’ Vz)

_lf1+Vv-v: 1
2| 1-Vv? 1+v, )’
Hy(v2, Ty, Tr) = Hs(®(v2, Ty, Tr),v?)
_ 1 l4v. =V} 1
2 1—v2 1+V /"
Notice that ¥(v,, Ty, Tr) > max,2 [flﬁ(vf,TL,TR), fig(vf,TL,TR)]. Moreover, the up-
per bound Hy is such that Hy = (T —Tg) for v, = v = 0. Hence, by continuity, there

exists a range of values of h in the admissible region for which max[Hs, Hg] < h =
VU < Hy, thus the ezistence of a solution of the form (3.12) is guaranteed. A complete

analysis of solvability requires further knowledge of a specific kinetic relation.

3.4.3 Nucleation criterion.

As shown in Sections 3.3.1 and 3.3.2, there are two different kinds of solutions for
the adiabatic Riemann problem. One can interpret the no-phase boundary solution
as the limit of the two-phase boundary solution when v — 0~ and v, — 0*. Now,
if the initial datum satisfies (3.11), it is possible to have a solution with no phase

boundaries of the form (3.8). Assuming that Tg > Ty, and using (3.21);, then (3.10)

becomes
1
~1<h§§—M(TC—TL). (343)

On the other hand, the lower bound for A corresponding to the solution with two phase

boundaries at v> = vZ = 0 is Hyn(0,0) = 0 and the upper bound is Hpax(0,0) =
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(Tc — Tr). Moreover, the curve defined by (3.42) passes through the origin, hence, if

1
-2- —_ M(TC — TL) < (Tc - TR)

then there exists an overlapping range for the initial datum h for which it is possible

to have either kind of solution:

-1<h<0 No phase change solution.
if then

1
O<h<S=—-MT-T B ions.
<3 (Te —Ty) oth types of solutions (3.44)

To select the appropriate solution, a nucleation criterion is required. Following [2],
assume there is a critical value f.;(T) of the driving traction at which a transformation
from low to high strain phase occurs. In this case, the critical value depends on the
temperature of the corresponding low strain phase temperature. From (3.17), (3.18),

(3.29), (3.30) and (3.31), nucleation occurs when

If| = F(Tg,r(h,v,v.)) = fee(TL) (3.45)
for the leftward moving phase boundary and

fo = F(Tr,rs(h,v,vs)) = f:(TR) (3.46)

for the rightward moving phase boundary. Although A is considered as fixed (initial
conditions), the explicit dependence of r and r, on h is shown for clarity. Equations
(3.45) and (3.46) define two surfaces on the v% v2, h-space. The intersection of the
region where f > f,(T;) and |f.| > f..(Tr) corresponds to the region where nucleation
occurs. Typical cross sections of this region are shown by the shaded area in Figures

3.5 and 3.6.
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\f*=fcr(TR)
1f1=f,(T;)

Figure 3.5: Admissible values of h on the plane v? = 0.2.

Figure 3.6: Admissible values of h on the plane vZ = 0.2.
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3.5 Nucleation: nontrivial solution for uniform data.

The importance of the Riemann problem with uniform initial data is related to its
connection with the nucleation criterion. Since the bar is initially in the same phase
and there are no discontinuities, the existence of a nontrivial solution (where two
phase boundaries nucleate from an arbitrary point) could, in principle, provide a
restriction on the critical value of the driving traction f... Suppose that the initial
data of the Riemann problem of Section 3.3.2 is such that é; = dg = 4, and T}, =
Tr = T.. Since the system of equations (3.1)-(3.3) and the jump conditions (3.4)-
(3.6) are homogeneous, then the problem admits a trivial solution §(z,t) = 6, and
T(z,t) = T, Vz,t. Nevertheless, there is also a nontrivial solution. Since T}, = Tx

and in view of the properties of the kinetic relation ¢;;, equation (3.40) implies that

From (3.13)-(3.18), there exists a one-parameter family of nontrivial solutions for the

Riemann problem with uniform initial data of the following form (parametrized by

Vy):
)
0, —o0<zT<-—at,
do —at <z < —av,t,
6(z,t) = 4 01 —avit < T < av,t (3.47)
do avit <z <at,
\6,, at <z < oo,
and

T, —o00 <z < —av,t,

T(z,t) =T ~avt<z<avt, (3.48)

T. avit<z<oo,
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Vi
b= ()

1
51—6*+ <1+V*) 3

1 /2v, — V2
T =6, — = * d \ .
2<1~@>+T

where

Notice that, in view of the analysis of Section 3.4.2, a solution of the form (3.47),
(3.48) exists. Using the notation of Section 3.4.2, it follows that V = v, and ¢ =
or = ¢. = @(T.,v?). Equation (3.42), together with (3.9), becomes

g2
hzé*zT*(CLP'—l)_-{»{QV* V*} .

The nucleation criterion was introduced in terms of the driving traction which, in

this case, can be written as

F(T, 7 (3 v,)) = (T* n 7—”@—2—“—2) {log (1 + T—(%ﬁ—))} ,

where

1
(84, Va) = 0, — 5 [

2v, — v?2
1—v2

In order to have an admissible solution, the phase segregation conditions and entropy

inequality requirements have to be enforced. From Section 3.3.3, the lower bound for

the value of h is given by

Recall that the functions Hs and Hg are related to the entropy inequality (3.5), and

(3.6)4, whereas the functions H, and H, represent the restriction 7' = T" < Tc. The
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Figure 3.7: Admissible region for uniform data problem.

upper bound for the admissible region is given by

o=ty = 1= (22

The admissible region is shown in Figure 3.7. From this, one can see that there
is a minimum value for 4, below which no nucleation occurs (in this case, §, = 0
at v2 = 0). Observe that this lower bound is given by the entropy inequality (it
corresponds to f = 0). This analysis confirms the fact that nucleation occurs at a
critical value such that f..v, > 0 (as required by the entropy inequality) but fails to

restrict the nucleation criterion in any other way.
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Chapter 4 Augmented theory and

structured traveling wave

4.1 Introduction.

Although the classical thermoelastic theory of phase transitions has room (and, in
fact, requires) a kinetic relation, such a piece of constitutive information is introduced
in the theory, in a sense, as a supplement. Some other theories have built-in features
from which the equivalent of a kinetic relation can be derived. In fact, FRIED &
GURTIN [18] argue that a kinetic relation is not part of the constitutive theory but
follows as a consequence of new balance principles. Here, nevertheless, a viewpoint
consistent with ABEYARATNE & KNOWLES [1] is taken. An augmented theory that
includes viscosity, strain gradient and heat conduction is introduced. From an ad-
missibility criterion for a special class of solutions, namely traveling waves, a special
kinetic relation in the thermomechanical case is derived. This procedure follows well
established techniques used in fluid and solid mechanics in a purely mechanical con-
text (see ABEYARATNE & KNOWLES [6], HATTORI [21], ROSAKIS [27], SLEMROD [29],
TRUSKINOVSKY [31]).

In the augmented theory, the phase boundary acquires a structure, as opposed to
the classical theory where the phase boundary corresponds to a sharp interface. By
“structure” it is meant that there is a region where the field quantities vary rapidly
but continuously from one solid phase to another.

By using the classical form of the balance principles and enforcing the second law
of thermodynamics for all admissible processes, GURTIN [20], generalizing a result
established by COLEMAN & NOLL [13], proved that the Helmholtz potential cannot
depend on higher order derivatives of the strain. In order to obtain a thermodynam-

ically consistent theory that includes strain gradient and viscosity effects, DUNN &
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SERRIN [15] proposed a modification of the energy balance to take into account long
range interactions by introducing the concept of interstitial working. An alternative
approach is used by TRUSKINOVSKY [31].
In this chapter, DUNN & SERRIN’s model is specialized for the one-dimensional

case and some general features of a structured traveling wave are analyzed.

4.2 Basic equations.

In the regularized theory, one introduces from the onset a new fundamental quantity:
the interstitial working p. Hence, neglecting body forces and radiation terms, the
fundamental quantities are: the deformation y, the absolute temperature 8, the spe-
cific internal energy e, the entropy 7, the stress o, the heat flux ¢ and the interstitial
working p. All quantities are defined at a particle z at time ¢t. Let u(z,t) = y(z,t) —=x
be the displacement. The strain v and the velocity v are given as usual by v = u, and
v = uy. As in the classical theory of Chapter 2, the momentum equation is given by
(2.1), but by introducing the interstitial working p and considering heat conduction,

the energy equation is

d [* 1
T2 T2
[0v+p+q]zl~dt/ p<e+2v >da:. (4.1)

Tl

The Clausius-Duhem inequality has the same form as in the classical theory with heat

conduction, i.e.,

T2

d [o
o(t) = — / pndz — [%] >0. (4.2)
1 Ty

At points where the field quantities have enough differentiability, the local form of the

balance of linear momentum, the energy equation and the Clausius-Duhem inequality
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(dissipation inequality) are

Oy = PU; , (4.3)
1
(cv+q+p).=p (6 + 51)2) : (4.4)
t
q
(5) < e s (4.5)
T
and the compatibility equation is

Vg =Vt - (46)

Although in the regularized theory it is common to assume enough differentiability,
for the specific thermoelastic material introduced in Section 2.5 it is necessary to
consider that at some points some of the field quantities are discontinuous. Hence,
to complement the local form of the balance principles, one has to consider the cor-

responding jump conditions across a point of discontinuity z = s(t), i.e.,

[v] + 3[4l =0, )
[o] - ps*Iv] =0, >
lg +pl +3{ple] — (o)["]} =0,

[[%alél[nlléO./

(4.7)

Moreover, assuming that v and 6 are continuous, the jump conditions (4.7) become

[['U]! =0, w
o] =0 (4.8)
lg+p]l+pél] =0,

lal + p36ln] <0 . |
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Using equation (4.3) in equation (4.4) provides

oUz + @z + D = pe; . (4.9)

Furthermore, expanding the dissipation inequality (4.5) and using the expression of

¢ provided by the energy equation (4.9) yields

6.
p(et—ﬁm)—avx—pm—q—g-go.

In terms of the free energy potential 1, the dissipation inequality now becomes

0.
p (b +6um) = ov, —p, — S <0 (4.10)

In order to introduce higher gradient effects into the theory, the following constitutive

assumptions are made:

\

¢ = 1]}(77 937.’1:1 Yz 9:2’ ’Yt) )

b= ﬁ('y’ 01 Yz VYzz, 92:’ ’Yt) )

o~

n= 77('77 8, Yz, Vzz, gz,Vt) ; (4'11)

o = 6(7,0,7za7zz,6z77t) )

q= q<7>977m>7mma9xa7t) )

Notice that all functionals depend on the same set of variables since there is no a
priori reason to discard any of them. (This is known as the principle of equipres-
ence.) Nevertheless, some restrictions arise in connection with the second law of

thermodynamics.

4.3 Thermodynamic restrictions.

The constitutive assumption (4.11) is compatible with thermodynamics if every ad-

missible thermodynamic process satisfies the dissipation inequality (4.10). This re-
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quirement restricts the functional form of (4.11). Equations (4.10), (4.11); ; and (4.6)

provide

P [J‘/')’t + ("&0 + ﬁ)gt =+ 'J’%’th + 1;71:::’-Y$$t + 'QBGzezt + 1&7:'7&] — 0y

~

R . R R R R 6
- (p’771 + pGHz + Py Vax +p7zx7zzx + p&;ewz -+ pvf)'zt) - Q_Q_z_ S 0.

This inequality has to be satisfied for all deformations and all temperatures at any
point (z,t).

It is possible to find a deformation and a temperature field for which, at a given
point (z,t), the quantities 6;,Yut, Vozt, Ozt Vet, Yzzz and 6, are independent of the
values of v, 0, ¥z, Vzz, 0z and <y, at the same point. Therefore, in order to satisfy the

dissipation inequality, the following terms must vanish:

p,(;% _ﬁ"lt =0, (413)

and
&'wa = O 3 1/;01; = 0 ] /‘15')% = 0 ’ (4'14)
ﬁ'Yzz :O I ﬁgz :O N (4'15)

The formal role of the interstitial working and the connection between the viscosity
and the strain gradient can be observed from equation (4.13). Without the interstitial
working term or without a dependence of the interstitial working on -;, then the
Helmholtz potential would not be a function of ~,.
The dissipation inequality reduces to
96s

p'l]}'y")’t -0 — (]3'7'7$ + Do, +ﬁ'yz'7aca:) - —é— <0. (4'16)
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Equation (4.14) implies that the free energy cannot depend on these variables, hence

% =1(v,0,7s) . (4.17)

Similarly, equation (4.15) implies

Notice that equation (4.12) corresponds to the same relation between entropy and
free energy as in the classical theory. Since v,@ does not depend on +;, then (4.13) can

be integrated, i.e.,

BOY, 0, Y2 Ye) = 0% (1, 05 ¥2) % + P°(7, 0, %2) (4.19)

where p° is the equilibrium part of the interstitial work. Using this expression for the

interstitial working in the dissipation inequality (4.16) gives

A

{p [vﬁy - (%)] - ?f} Ve — (pg + %) 0z — (P57 + 13, %ex) <O .
(4.20)

The third term in this inequality is independent of 8, and ~;; therefore, it should
satisfy

P57, 0, %)% + 25, (7, 0,72 )v2e > 0,

for all v, 8,7z, Vzz- Since v, can be specified independently of v, , v, then, necessar-
ily,
P, =0,

but then p° is independent of ~, and the same inequality implies

p2=0.



66

Therefore, p° can only be a function of # and the dissipation inequality (4.20) becomes

(o[- (8) ] o} n— (+2) ou 0. @21

The equilibrium values of ¢ and ¢ can be obtained by replacing 6, and ~; by hf,
and A7y, respectively and taking the limit A — 0 in the dissipation inequality (4.21),

ie.,
o= ()] o} (e B)ozo.
where
Oeq = 6(7,0,7,0,0) , (4.23)
Teq = 4(7,0,72,0,0) . (4.24)

Since the first term in (4.22) is linear in -, and the second is linear in 6, then the

equilibrium stress is given by
Oeq = P [zﬁy - (%)] , (4.25)
and the equilibrium heat is
Geq = —P30 . (4.26)

For elastic materials where 1 and g are independent of -y, the first term of the
dissipation inequality (4.21) is linear in <, hence the elastic part of the stress is

completely determined by the free energy as

oa=p|dr - (¥.) ] - (4.27)

Notice that the elastic stress is equal to the equilibrium stress (when 6, = 0).
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Define the viscous stress as

Oy = 0 — O¢l ,

and the “non-equilibrium” heat flux as

Qne:d—Qeq-

In the general case, the elastic stress can be obtained from the Helmholtz free energy,

but for the viscous stress an additional constitutive assumption is required.
Returning to the general case, using the expression (4.27) for the elastic stress and

the definitions of the viscous stress and the non-equilibrium heat flux, the dissipation

inequality (4.21) can be expressed as

negz
Ov7Yt + g >0.
0
Moreover, the balance of linear momentum (4.3) now takes the form
ooy - <¢7)$L +(0v)s — pur =0 . (4.28)
The energy equation (4.9), with the use of (2.15) and (4.12) becomes
% + Ps + ds = pifr — pifebe + pOi

Furthermore, from the expression (4.19) for the interstitial work, the above equation

yields

oV +p (1;%)3; Vs + p29z + 4z = P%/;77t + pbf; .

From the decomposition of the stress into its elastic and viscous parts and the heat

flux into its equilibrium and non-equilibrium parts, the energy equation now becomes

Ty — (pg)z 0 + (que), = P07, . (4.29)

This is the classical energy equation with two additional terms: the work done by
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the viscous stress (0vY;) and the interstitial working term (pj), 6. Moreover, only the

non-equilibrium part of the heat flux is present.

4.4 Specific constitutive assumptions.

Introduce the following constitutive assumptions: Assume that the Helmholtz poten-

tial is of the form

$0,0,7%) = B(3,6) + 222 (4.30)

where A is the strain gradient coefficient. This coefficient is formally analogous to the
concept of capillarity in fluid mechanics. Moreover, assume that the viscous stress is

given by
Oy = pVy , (4.31)

where v is the viscosity, and, finally, assume that the equilibrium heat flux is zero

and the non-equilibrium heat flux is only a linear function of 6, (i.e., Fourier’s law')

Q(ez) = qne(ez) = kez ) (432)
where k is the thermal conductivity. Alternatively, it is convenient to define the

thermal diffusivity  (in the reference configuration) as

k
pe(y,0)

K =R(7,0) = (4.33)

For simplicity, the strain gradient coefficient, viscosity and thermal conductivity are
assumed constant for all phases. Notice that the viscous stress is assumed as a func-
tion of v, only and the non-equilibrium heat flux as a function of 8, only. These

assumptions are consistent with the thermodynamical restrictions. The internal en-

'Recall that in the linear theory (linearized about a reference temperature), the heat flux can
only depend linearly on the temperature gradient (see, e.g., CARLSON [10]).
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ergy of the regularized theory is

€= é('% g, '72) = 77;(7, 0, ’Ya:) - 92&0(77 0, '7z) )
which, by (4.30), can be expressed as
. _ 1,
€= 6(7> g, 'Yz) = 5(’7) 6) + 5’\71 ) (434)

where

&(7,0) = 9(v,0) — 0p(7,6) . (4.35)

Moreover, since the equilibrium heat flux is zero, then, from (4.26), it follows that
the equilibrium part of the interstitial work, p° can at most be a constant. Since
the energy equation and the dissipation inequality only involve derivatives of p°, then
without loss of generality for a material that follows Fourier’s law, one can take p° = 0.

With assumptions (4.30), (4.31) and (4.32) enforced, the stress becomes

&(7$ 6> Yzz, ’Yt) =p [/‘/.)7(77 9) - )\’)’zz -+ V'Yt] y (436)

the balance of linear momentum (4.28) takes the form

(w'Y)gr = AMzzz + VYt — U =0, (4.37)
and the energy equation (4.29) reduces to
. K -
vy + ;0333: +46 (we)t =0. (4.38)

Recall that the strain and particle velocity are related through (4.6). The dissipation

inequality (4.21) can be expressed as

k
Y+ 50220, (4.39)
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which is satisfied if

By setting v = A = 0 in equations (4.37) and (4.38), one recovers the corresponding
equations for a classical thermoelastic material with heat conduction.
With the constitutive assumptions (4.30)-(4.32) enforced, the jump conditions

(4.8) can be written as

[v] =0,
[ (7, 0] — Mvae] + v[w] =0,

k o 1
;[[91]] + Mrere] + sle(v, 0) + 5/\’)’5] =0,

f;—m — B[Ps(1,0)] <0 .

Now, assume that 1/1,, 1y and € are continuous functions of v and 6, then it follows

that

\

AYze] = v[v] =0,

k 1.
1021 + Al + 5591 =0,

"

(4.40)

J

k
~[8.]<o0.
pie

In the case where v = A = 0, the jump conditions (4.40) are equivalent to [6,] = 0.

4.5 'Traveling wave: Generalities.

A steady, structured traveling wave corresponds to the case when all fields satisfy

(4.3)-(4.6) and depend only on the variable

E=x—3t, (4.41)
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where $, the wave speed, is a constant. A moving discontinuity (either a shock wave or
a phase boundary) can be viewed, within the context of the adiabatic, sharp interface
theory, as the limit of a structured wave within the framework of the regularized
theory. The limit is achieved when the viscosity, strain gradient coefficient and heat
conductivity tend to zero in an appropriate sense. Hence, in an infinitely long bar,
the conditions at +oo for a structured wave should correspond to the front and back
states of a moving discontinuity.

The precise statement of the traveling wave problem will be given in Chapters 5
and 6. In this chapter, some general characteristics of the traveling wave are recorded
for future use. Notice that although in the classical theory of Chapter 2 the function
1) corresponds to the Helmholtz free energy, in the regularized theory, the free energy
is given by 1/3

Assume there exists a structured, steady traveling wave for £ € R. From (4.3),

(4.4) and (4.6) it follows that

o +psv' =0, (4.42)
vV+5y =0, (4.43)
1 !
(ov) +¢ +p' + ps <e + §v2) =0, (4.44)

where (-)" denotes differentiation with respect to €. Assuming the existence of a

solution, integrate to get

o+ psv=H;, (4.45)
v+ éy=H,, (4.46)

1
ov+q-+p+ ps <e+§v2) = Hj , (4.47)
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where the H’s are integration constants. Let the conditions at £ — +o00 be given by

Y(=00) =77, 7(+o0) =7", (4.48)
v(—o0) =v7, wv(+o0) =0T, (4.49)
B(~c0) =0, §(+00) = 6" (4.50)

and all derivatives of these quantities vanish when ¢ — +o0o. Hence, the integration

constants must satisfy

Hy=0"+psvt =07 + psv™, (4.51)
Hy=v" 4+ =07 +4y (4.52)

1 1
H; =o%vt + ps <e+ + §(v+)2> =0 v +pé (e‘ + a(v”)2> ,

where

o* = 6(v%,6%,0,0)

6:& = 1;(7:{:79i7 0) - 9id9(7i79i70) .

With the foregoing constitutive assumptions (4.30), (4.31) and (4.32), the stress o*
(given by equation (4.36)) is

o* = py (v*,6%) (4.54)
and the internal energy e* becomes
€ = P(y*, %) — 0Fp(v*, 6%) (4.55)

Therefore, from equations (4.51)-(4.53), the values given in (4.48)-(4.50) must satisfy
the adiabatic jump conditions (2.9)-(2.11).
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For a traveling wave, the jump conditions (4.40) reduce to

,\[[y"ﬂ+su[[7’]]=o,\
keom 1.0,
ST =580 =0, 3 (4.56)
k
“e1<o.
‘<o

In the case where v = A = 0, these are equivalent to
[6]=0. (4.57)

These jump conditions apply within the structured wave and should not be confused
with restrictions on the values (v*,0%) at £ — +o0o. Whenever it is clear by the

context, the symbol [-] is also used in this section as the difference between the

values at £ — +o0.

4.6 Driving traction.

If a traveling wave solution exists then, from equation (4.29), it necessarily satisfies

12 "

. 7 .2
- - T o7
psn = ps°v 7 + 5

Integrate from £ — —o0 to & = 0o to get

o0 ’2 /"
. ) 0
—ps[n] = / {PSZV% + k-e‘} ¢,

where [n] = n* —n= = —¢p(v,0%) +19s(y~,67) . Integrating by parts the second

term in the integral and using the conditions at 0o provides

fes) 12 7\ 2
—ps[n] = /_00 {péZy:Y—e— +k (%—) }d§ >0.
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This inequality remains true even in the case when there is only heat conduction (ie.,
when v = 0). To make the connection with the classical adiabatic theory, consider
the driving traction f given by (2.31), i.e.,

f&_

= = —ps[n| .
@ [7]
Thus, the values in (4.48)-(4.50) must also satisfy
f$=0,

which corresponds to the entropy jump inequality (2.34). The previous analysis shows
that the field values at £ — Foo for the traveling wave problem must satisfy all the
corresponding jump conditions of the classical adiabatic problem. Moreover, the
condition for the existence of a traveling wave solution for the regularized theory
should provide an additional relation for the phase boundary velocity $ in terms of

the driving traction f.

4.7 Basic equations.

Evaluate the constants H; in equations (4.45), (4.46) and (4.47) using the conditions
at an arbitrary point £ = & (one could choose either £ — o0 but, in view of the
regularity of the trilinear material introduced in Section 2.5, it will be more convenient

to develop the equations for any point &). These equations can be written as follows:

d—00+ps(v—1y) =0, (4.58)
(v=1)+35(y—v)=0, (4.59)
, 1
(ov — o) + ¢ — g0 + p — po + ps <6~60+§(v2—v02)> =0,

(4.60)

where gy = (70,600,735, —$7)), etc., and 4, = v(&o), etc. The velocity v can be

eliminated from equations (4.58) and (4.60) by use of equation (4.59). The momentum
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equation (4.58) becomes

o — ps*y = 0o — p&*yo , (4.61)

and the energy equation (4.60) can be expressed as

g—qo+p—po=—3 [p(6-60)—- (GZU°>(7~%)] : (4.62)

Alternatively, using the expression for ¢ given by (4.61), the previous equation can
be written as

é2

. e
q—qo+p—po+ps [(e—eo)~—2—(7—70)2——/)9(7—70)] =0.

(4.63)

Equation (4.63) is therefore a combination of the compatibility, momentum and en-
ergy equations. Notice that equations (4.61) and (4.62) (or (4.63)) are general in the
sense that they do not depend upon any constitutive assumption. Moreover, it is
clear that by choosing the conditions behind (resp. ahead) a right-traveling wave in
equations (4.51), (4.52) and (4.53), i.e., the “—” side (resp. the “+” side), equations
(4.61) and (4.63) are also valid with the subscript 0 replaced by “—” (resp. by “+”)
and with ¢~ = p~ =0 (resp. ¢* =p* =0).

Notice also that equation (4.61) is similar to the equation that defines the Rayleigh
set in the classical adiabatic theory (see Section 2.4), except that in this case the stress
o might depend on 4’ and %", hence it is no longer an algebraic relation but rather
a differential equation. Similarly, the quantity in brackets on the right-hand side of
equation (4.62) is related to the Hugoniot set but it is not an algebraic expression if
the stress o and the internal energy e depend on +' and +".

With the foregoing constitutive assumptions (4.30), (4.31) and (4.32), the heat
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flux ¢q and the interstitial work p are, for the traveling wave problem,

qg=kb,
(4.64)
p=—ps\y" .
The stress given by equation (4.36) is
oc=p W.,(fy, 6) — A" — 1/57'] (4.65)
and, from equation (4.34), the internal energy is
- 1 12

where € is given by (4.35).
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Chapter 5 Structured wave: Heat

conduction only

5.1 Introduction.

There are several possibilities for connecting the regularized theory to the sharp in-
terface one. The three structuring mechanisms are related to viscous, strain gradient
and heat conduction effects. The approach taken here is as follows: first, the heat
conductivity is assumed to be positive but the viscosity v and strain gradient coeffi-
cient A are taken as zero. This reduced problem, analyzed in this chapter, corresponds
to the basic solution of the singularly perturbed system. Secondly, the case when the
viscosity and strain gradient coefficient are assumed small (in a sense to be specified)
is analyzed in the next chapter, where it is shown that a kinetic relation can be inher-
ited when A, v,k — 0 and that the augmented theory reduces to the sharp interface
theory.

The problem for a shock wave is analyzed in Section 5.3 and for a phase boundary
in Sections 5.4-5.8. It is found that only propagating phase boundaries that satisfy
a restricted version of the subsonic-supersonic condition are possible. Some special

cases are analyzed in the last section.

5.2 Basic equations.

There are two possible situations regarding the conditions at £ — +o00, viz., either
(v%,6%) are in the same phase (shock wave) or in different phases (phase boundary).
Consider first the case when the viscosity and strain gradient coefficient are re-

moved (i.e., take A = v = 0). Using equations (4.64), (4.65) and (4.66) in the



78
governing equations (4.61) and (4.62) gives

[y (7,0) — ¥4(70,60)] — $*(y = %) =0,
' ps | _ L 7
S il ) — _ - _
¥ = 5=~ {2000 = 2000, 00) = 5 [00) + B 0)] (=) | o
Equation (5.1); is a purely algebraic relation that corresponds to the Rayleigh set (i.e.,

all points in the traveling wave are necessarily in the Rayleigh set). This equation

can be expressed as

R('Y: 0) =0,

where the Rayleigh function R is defined by (2.36) and generated by (vo,8) and s.
For a point of the Rayleigh set where R, # 0, equations (5.1) can be written as

Y= ’YR(O) ) (5 2)
0~ = ~LH("(0),6) |

where H is the Hugoniot function defined by (2.35) and v® corresponds to the
Rayleigh set as introduced in Section 2.4. To analyze the autonomous differential
equation (5.2)2, consider the following derivative of the Hugoniot function along the

Rayleigh set (parametrized by 6):

9 (°(6),6) = H,(y"(6), O8(0) + Ha("(6),6) .

Using the expression (2.35) and dropping momentarily the arguments, this derivative

becomes
dH 1. . 14
20 {67 3 [y + 93 + o (v = )] } Ve + € — 5%9(7 — %) -

Since &, = ¥, — 01579 and & = —0yy, then, rearranging terms,

dH

_ _ 1.- - _
—7 = ~00%" + ve0) + 5 [thy =¥} — by (v —10)] %' — -;-W(v ~ %) -
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In view of the expression for v¢* given by (2.37) and using equation (5.1)y, it follows

that

dH (o) ™" (Prvtboo — P39) — S'T , (5.3)

= 9y
For clarity, it is useful to express (5.3) using the parameters defined by (2.18);,

(2.22) and (2.24) as follows:
dH (a2 —§*
@~ \a2=s2)

where ¢, a? and a? are evaluated at (y®(6),8). Notice that the isothermal and isen-

tropic sound speed are complex in the unstable region.

As shown above, in the case where the only structuring mechanism is heat conduc-
tion, all points of a traveling wave belong to the Rayleigh set. The relevant portion
of R depends on the given traveling wave problem since the end points (y~,6~) and
(v*, 8%) correspond to the conditions at £ — +oo0.

For a phase boundary propagation problem, R is parametrized by ¢ = = — st
as {(0(£),v(€))}. In that case, the parameter & varies (for fixed z or fixed t) from
—00 to +oo or vice-versa depending on the sign of $. This has important physical
consequences.

Notice also that the continuity of y(£),8(§) and 6'(€),'(£) with respect to € is not
necessarily equivalent to the continuity of y# and v& with respect to the parameter
6 or the continuity of 6% and 8% with respect to .

The Helmholtz free energy (7, 6, v.) Was specified in Section 4.4 up to the func-
tion 1(v,6). Now, to fully characterize the material, consider the function % intro-
duced in Section 2.5. In view of (2.40), the stress is given by equation (4.65) with

A=v=20,1ie,

o =py—oaud+ Hy, (5.4)
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where

apbr low strain phase,
H,= (5.5)
oufr — pyr  high strain phase.

Similarly, by (4.66) and (2.40), the internal energy ¢ is given (with A = 0) by

- ) H,
= 0) = — 0+ — .
€ =&(v,9) 2pfy +cf+ pfy-%—H;,, (5.6)
where
0 low strain phase,
=3 yne  apyror _ (5:7)

o Ar  high strain phase.

5.3 Traveling shock wave.

Suppose that all points in an infinite bar (parametrized by £ = z — $t) are in the
same phase (either low or high strain phase). This assumption, referred to as the

phase segregation condition, can be stated as

VEER 0<6() <o and —1< () < u(6(6)) (5.8)

for the low strain phase or

VEER 0<6(8)<bc and ~(§) > vm(0(€)) (5.9)

for the high strain phase. The traveling shock wave problem is stated as follows:

Shock wave problem: given one end state, say (y*,0%), find continuous functions

(&) and 0(), € € R, that satisfy equations (5.1) and the corresponding phase segre-
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gation condition (i.e., (5.8) or (5.9)).

Alternatively, the state (y~,67) could be prescribed, although, physically, the previ-
ous alternative is preferred. The state (y~,67) at £ = —oo and the shock wave speed

5 are unknown. From (5.4) and (5.6) and for a given state (y*,6%),
Uy (7,0) — Yy (v, 0%) = a*(y — vF) — aa?(6 — 6%)

and

2
H
{(1,0) =" = FP =7 (0= 07) + 1y =)

Since
1.- aa?

2
5 [¢7(% 0) +TZV<7+,9+)] = %‘(7+7+) 5 (0+6%)+ % ,

then (5.1) becomes, assuming R, = a? — §% # 0,

( aa?
’Y pusend

S 0-6%) 4

¢ = —Eké {0(9 —-6%) + _‘2‘21_(9 +67)(y ——"y+)} :

\

? is analyzed at the end of this section. The first equation corresponds

The case $* = a
to the Rayleigh set given as v = y®(). Substitution of v by v#(8) in the second

equation gives

( aa?
’y e

a2 _52(0~9+) +’Y+ ’
4 (5.10)

0 =r11(8)(0 — 6) +7a(5,6M)(0 - 67,

\



where

N _ P8 a?at
"= (spe)
: 2 40+
ra(3,0%) = =2 (‘”’a”- ) '

These functions can be written as

X oc. (G
n(s) = —+$ (“2-> %
+312 -2 (5-11)
ra(8,0) = =23 (——————-—(ae) —2 ) .

a® — &2
Notice that these functions are essentially the same as r; and ry defined by (2.60).

Stability of equilibrium points: Equation (5.10), has two equilibrium points, i.e.,

_T2('§, 6+)

6, =6" 0, =
1 ) 2 Tl(é)

+ 6t .

Observe that for 8, to be positive, then, in view of (5.11),

_2c(a® ~ 8%

92 = -0t >0
a2at ’
which implies that
§#>8, >ad,
where
2+ alatf*
Smin = (ae ) - %

Linearizing (5.10)2 about 6 2 gives

0’=T2(.§,9+)(9~'0+) at9=91 y
0 = —ry(5,07)(6—0%) atf=0,.

Therefore, if r2(3,6%) > 0, then 6, is a source and 6, is a sink. If r($,0%) < 0, the

situation is reversed.



83

Explicit solution: Equation (5.10), is a Riccati equation that can be solved, as-

suming r;($) # 0, using the transformation

1d

0(¢) = —Eazlogw@)

and solving the corresponding linear equation for the function w. The case r, (,67) =
0 corresponds to §* = (af)?. From (5.10),, the corresponding solution is such that
0(—o0) = 6(+00) = 6* and has a singularity at £ = —1/[(6* — 6;)r,(5)], where
6o = 6(0). Therefore, this is not an admissible structured wave. Hence, assuming

r9($,67) # 0, the temperature is given by

-1
o(¢) = {Koe""’5 - T—l} ot

T2

where K, is an integration constant and r; = r1($), r2 = ry($,6%). The constant K
corresponds only to a translation of £ (i.e., change of origin), which is irrelevant for
a steady wave. The case Ko — oo corresponds to the trivial solution §(¢) = 6. For

the nontrivial solution, there are two cases to consider, viz.,

Case 1: Suppose r; > 0. Therefore,

lim 4(¢) =67 .

£—>—00

Hence (4.50); cannot be satisfied except for the trivial case §— = §+.

Case 2: Suppose r; < 0. Therefore,

lim 6(¢) = 6",

§—+00
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which corresponds to (4.50)2. On the other hand,

2 22
lim 6(¢) = —2 4 g+ = 2@ =)

— 67 .
£>—00 71 ala?

To satisfy (4.50); then, necessarily, |$| must be the same as the shock wave speed of

the adiabatic theory as given by (2.46). Moreover, from (2.46) and (5.11),,

r_pc.é 0t — 6~
Tk \ot+6-)

Hence, since the sign of r; depends on the signs of § and #* — 6~, it follows that

T2 < 0 is equivalent to the entropy jump condition of the adiabatic theory as given

by (2.48) (except for the trivial case).

Singularities: Observe that the temperature, as a function of &, has a singularity
if Ko and 7;/r; have the same sign. Let 6y be the (unknown) temperature at £ = 0.

Therefore, in terms of 6y, the constant Ky can be expressed as

1 T

K0=90_0++E.

Moreover, for a solution with no singularities, it is required that

T2 T3
—Ky=———+1<0.
1 0 7‘1(90 -_ 9+) + <

From (5.11), the above inequality becomes

2 +32 __ a2
( C>(ae) Y +1<o0.

alat 9() A

Now, suppose first that s > 0. By the regularity of the Rayleigh set and in view of
the entropy inequality (2.48), it follows that

Vgl <oo 6T < 0(¢) <6 .
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Hence, 6, — 8 > 0 and, therefore,

aat

2c

(af)* = &+ ——(8o - 67) <0,

or

2.2

a? <1+a c (00+9+)) — <.
2c

In view of (2.46) and since 8y < ~, the above inequality is satisfied and the solution

does not have a singularity. The case $ < 0 is similar.

Expressing 71 in terms of 8 and 6~, the temperature can be written as

o€ = 0 {01k oxp [-ZLLe] -1},

where & is the thermal diffusivity as defined in (4.33), $ is related to 6% through (2.50)
and the symbols [-], (-) are used here as notation for the difference and the average of
the values at £ — +o0o. Therefore, the values (y*, §%) satisfy all the jump conditions

of the adiabatic theory as given in (2.46), (2.47). The corresponding strain is, from

(5.10), o L
v(§) = G<9>{[[9]]K0exp[ n(@)] 1} ot

A one-parameter family of solutions: Apart from the constant Kj, the solution
to the traveling shock wave problem remains undetermined up to one unknown in
the following sense: if (y*,6%) are given, then one can choose a shock wave speed
such that $* > (a})? for $ > 0 or $* < (aF)? for 5 < 0. Using the momentum
and energy jump conditions (2.46) and (2.47),, it is possible to obtain the (back)
state (y~,67) (as long as it is in the same phase). Therefore, the temperature and
strain, as functions of £, remain undetermined up to $. This shows that there exists a
one-parameter family of steady, structured, compressive shock waves that satisfy the

shock wave problem for a trilinear material.
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In the limit, as the heat conduction is removed, the structured wave tends to the

solution for the traveling wave problem within the framework of the classical adiabatic

theory, i.e.,
v~ foré<0,
7€) = 4
vyt for€>0,
and )
0~ foré<0,
6(¢) = 4
6t for£>0.

Also, the jump conditions (2.47) are satisfied and $* is given by (2.46).
It is useful to write this solution in dimensionless form using the parameters

defined in Section 2.7. Introduce a nondimensional coordinate z,

Z::_g:
K

hence, the temperature can be written as

T(z) = —[T] {exp [—2\/5—%‘ } + 1}_1 + T+,

where the solution was normalized by taking 6(0) = (f) which implies K, = —[f]*.

Similarly, the strain can be written as

5(z) = é% {exp [—2\/%4 4 1}_1 46

Special case of zero thermal expansion: It was assumed that R, = a? — 52 # 0.
Suppose now that $* = a®. From (5.1); and (5.4), this implies that, for a shock wave,
aa®(0(€) — 6%) = 0. Except for the isothermal case 6(¢) = #*, this equation is not
satisfied unless & = O (the case a® = 0 is physically irrelevant). Henceforth, as a
special case, assume that the thermal expansion coefficient « is zero. The speed of
propagation of the shock wave $* = a? is consistent with (2.46) with o = 0. This is a

degenerate case in the sense that the momentum equation (5.1); is satisfied by any
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pair (7,6), i.e., the Rayleigh set is the whole v-6 plane. Equation (5.1), reduces to

o = -z(e—m, (5.12)

hence .
6(¢) = 6y exp [—%5] + 6% .

If $ > 0 then the condition (4.50); cannot be satisfied and if § < 0 then the condition
(4.50), cannot be satisfied. Hence, it is not possible to have a structured shock wave

when o = 0.

5.4 Traveling phase boundary.

Suppose that the conditions at £ — 400 correspond to the high strain phase and the
conditions at § — —oo correspond to the low strain phase. Presumably, if the strain
varies continuously, there is an interval, say (0,b), where the points are in the unstable
phase. In this case, since the special material under consideration is such that 1.,
is piecewise continuous (continuous in each phase), the phase boundary propagation
problem is naturally divided into three sub-problems. From the above considerations

and in view of the continuity requirements of the traveling wave, the solution must

satisfy the following conditions:

6(07) =6(0%) = 6, ,
7(07) =¥(0") = vm(bo)
0(b7) =0(b") = 6, ,
Y(®7) = (") = vm(6s)

where the functions 7., and ) are given by (2.39). Observe that the strains o and 7,
and the temperatures 6, and 6, are unknown. The phase segregation conditions must

be satisfied, i.e., the solution must be such that the material is in its low strain phase
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in (~00,0), unstable phase in (0,b) and high strain phase in (b, +00). Moreover, the
temperature has to be below the critical value §-. These conditions can be expressed

as

=1 < (&) < vm(0(§)) for —c0<£<0,
Ym(0(€)) 7€) < Mm(8(8)) for0<&<b,
() = 1m(8(§)) forb <& < 400,

8(&) <6c for —00 <& < +o00 .

> (5.13)

Additionaly, at £ = 0 and £ = b, the corresponding jump condition (4.57) (continuity
of §') has to be satisfied. Formally, the conditions at £ — +oo are given by (4.48)
and (4.50), although only one of them is known a priori. The problem can now be

stated as follows:

Structured phase boundary traveling wave problem: Given one end state, say
(v*,0%) (or, alternatively, (y~,67)) find continuous functions v(€) and 6(€), £ € R,
that satisfy the phase segregation conditions (5.13), the jump condition (4.57) at £ =0
and £ = b and the following three problems:

Problem 1: Low strain phase. Suppose that for £ € (—00,0) the material is in
its low strain phase. Using the conditions at —oo in (5.1) and the corresponding
expressions of ¥(7,0), &~,6), € and o~ given by equations (2.42) and (2.44), the

governing equations are

aa®

—(0—-07")+~",
a? — §? (5.14)

9 =ri(8)(0—07)2 +1y(5,07)(0—67)

’Y:

where the functions r; and r; are defined by (5.11) and the functions y(¢) and 8(¢)
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satisfy

Y(—00) =77, 8(—00) =107, (5.15)
y(07) =y =vc+ M(6p — 0c), where (07) =6, . (5.16)

The values of v~, 87, 79, 0y and $ are unknown.

Problem 2: Unstable phase. Suppose that for £ € (0, b) the material is in its unstable

phase. In view of (5.2), the governing equations are

v =7%0), )
/ / ‘é u u '
0 — 6y = —E=H"(y"(6),0) ,

where v and H" correspond to the Rayleigh set and the Hugoniot function for the
unstable phase generated at (yo,0p)! and the functions y(£) and 6(€) satisfy

(0%) =vc + M(6o — 0c), where §(07) = 6, (5.18)

v(b7) =vo + m(6p — 0c), where 6(b7) = 6. (5.19)

The temperature 6, is unknown.

Problem 3: High strain phase. Suppose that for £ € (b, +00) the material is in its

high strain phase. The governing equations are

aa?

5 .2(3_9+)+7+7
a? — 3§ (5.20)
0 =r1(3)(6 — 0%)* +72(5,67)(0 - 0%) ,

’Y:

!Equivalently, one can use the point (vs,6,). The explicit expressions are not relevant here,
although they will be given below for computational purposes.



90
and the functions v(€) and 6(&) satisfy

v(b*) = vo + m(6y — 6c), where 0(b) = 6, (5.21)

Y(+00) = v+, 8(+o00) = 67, (5.22)

The values of ¥t and 6% are given.

Preliminary remarks: The original problem has been divided into three a priori
independent sub-problems. The connection between them is through the continuity
of the temperature, the temperature gradient and the strain at £ = 0 and £ = b.
Additionally, since the original equations (4.45)-(4.47) were obtained by integration
of (4.42)-(4.44), the values at £ — +0o are related (formally) via the jump conditions
(2.52). It is expected that the solution of the phase boundary propagation problem
will deliver values (y*, 6%) that satisfy (2.52) in view of the following: the (integrated)

momentum equation, applied successively between £ = —00,0,b and +o0, gives

0" —oy =ps*(yT =) ,
of —oy =p*(v§ =),

oy —ot =ps*(y =),

where the symbols have obvious meaning. Enforcing the continuity of temperature

and strain at £ = 0 and £ = b guarantees that, since & is continuous in v and 6,

ot —o” =pi*(v" ~v7),

which is (2.52),. Similarly, from the energy equation, it is not hard to see that
enforcing continuity of 6, § and v at £ = 0 and £ = b results in the energy jump
condition

1
=g et =),
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which corresponds to (2.52)s.

Moreover, the jump condition (4.57) requires that 6’ be continuous at ¢ = 0 and

&€ = b, hence, since at those points
[0 = 16571 = (N1 + (") 6yl =0

and, generally, [6%] # 0, then it is expected that v will be discontinuous at £ = 0
and £ = b. The above remarks will be verified in the following analysis. O

The solution to the phase boundary propagation problem can be obtained ex-
plicitly for the metastable phases (problems 1 and 3) and implicitly for the unstable
phase (problem 2).

5.5 The metastable phases.

Equations (5.14); and (5.20); are Riccati equations. This provides, assuming r(3) #

0, 72($,07) # 0 and 75(5,0%) #0,

( . -1
{Kl exp[—ra($,07)¢] — ;5(1;——%):-)—} +6- foré<0,

7’1(8.)
7’2(5’, 9+)

(5.23)

-1
{Kg exp(—r2($,6)€] — } +0%t foré>b,

\

where K; and K3 are unknown constants. The cases when either r; = 0 or r, = 0 are
analyzed in Section 5.8. The cases K; — 0o and K3 — oo correspond to the trivial
solutions 6(§) = 0~ for £ < 0 and (&) = 6% for € > b respectively. The constants K
and K3 can, alternatively, be expressed in terms of the (unknown) temperatures 6

and 6, and other parameters as

o 1 ;
Ky = Ka(5,00,07) = g—pge + Tz’é(‘;)_) , (5.24)

K3 = K3(3, 0y, 6%,b) = 2367 L _nB) } (5.25)

O — 0 12(s,0%)
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It is convenient to use (5.14) and (5.20) together with (5.16) and (5.21) to express 6,

and 6, in terms of the conditions at +oo. It follows that

2 -1

8y = (azaf' = — M) [’)’C -+ M(e— - 90)] +6" (5.26)
aa? 1

9,, = <a2 Y — m) [”}’C - ’Y+ -+ m(0+ — 00)} + 0+ . (527)

Moreover, in view of (5.14); and (5.20);, the conditions for the strain at £ — oo,
ie., (5.15); and (5.22);, are satisfied as long as the conditions for the temperature,
(5.15)3 and (5.22),, hold. At this point, from (5.23)-(5.27), the temperature and the
strain in the metastable phases, as functions of £, are known in terms of ($,6~,v7)
for £ < 0 and in terms of ($,0%,v%,b) for £ > b.

For the low strain phase, if r5(s,67) < 0 (or K = 0), then, from (5.23),

. _ ‘_7‘2(8.,9_)
RS NG

+07 .

hence the condition (5.15); cannot be satisfied. Therefore, consider r,(s,6~) > 0,

which gives

lim (&) =67,

T~ —00

as required by (5.15),. Similarly, for the high strain phase, if r5(s, %) > 0 (or K3 = 0),
then,

lim 6(¢) = — 2597

— + 07,
go+oo r1(8)

and the condition (5.22), cannot be satisfied. If r5(s$,6%) < 0, then

lim 6(¢) =6+,

T-r+00

as required by (5.22),. Hence, a necessary condition for the existence of a nontrivial
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propagating phase boundary is

TZ(S?O_) >0 )

T2($,9+) <0.

The propagating phase boundary is nontrivial in the sense that both |K;| < co and
|K3| < co. The case where one of these two constants tends to oo will be analyzed
in Section 5.8. An additional restriction is that the constants K; and K5 have to be
different from zero. There are two cases to consider, viz.,

Case 1: Suppose s > 0; from the expression for r; given by (5.11),, it follows that

the above condition is equivalent to

(0) = &
a2l — g2
(@)= &

a2 — §2

<0,

>0.

In the metastable phases, these inequalities can be satisfied simultaneously only if
52 > a? and

(aF)? < §* < (a])?.

Additionally, for this restriction to hold, it is required that

0t <0~ .

Case 2: Suppose $ < 0; the necessary condition for the existence of a traveling phase

boundary is equivalent to

(ag)" = &
a2 — &2

(ag)" - &

a2 — g2

>0,

<0.

In the metastable phases, these inequalities can be satisfied simultaneously only if



94
$? > a® and

(a7)? < 8 < (af)?.

For this restriction to hold, it is required that
6t >0 .

Now, the values at £ — +oo for a steady traveling wave have to satisfy the same
jump conditions that apply to a moving discontinuity in the adiabatic theory where
the conditions ahead of and behind of the discontinuity correspond to the values at
+oo. If the conditions at 400 correspond to the high strain phase and the conditions
at —oo to the low strain phase then, in particular, equation (2.52), has to hold. This

equation can be written as
(8* —a)(y" —77) + ad®(6" —67) = —a’yr .

Assume henceforth that y* > 4~. This is a working assumption that has to be
verified a posteriori. Therefore, the left-hand side of the above equation is positive
for case 2 (in which § < 0 and 6* > §~). Since the right-hand side is negative (recall
that yr > 0), then case 2 cannot correspond to a traveling phase boundary and hence
§ cannot be negative. However, case 1 (§ > 0) is not ruled out since 8+ < 6~ and
therefore the left-hand side could be negative. Consequently, only compressive waves
are allowed if v* > 4~. The specific thermoelastic material used here is intended to
model materials in tension. It is possible to introduce a similar thermoleastic material
to model compressive waves more appropriately. See ABEYARATNE & KNOWLES [5).
Furthermore, after proving that there is a feasible solution in the metastable phases,
it is important at this point to analyze the additional restrictions that arise from the
fact that the solution (5.23) cannot have singularities.

Movable singularities: Suppose that the solution (5.23) for the metastable phases
has a singularity at £ = £, < 0 for the low strain phase and/or at £ = £,, > b for the

high strain phase. This occurs if the denominator vanishes, i.e., if one (or both) of
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the following values exists:

_ 1 o 7'2(5, 9') + 7'1(5)(90 — (9—)
g* - 1”2(5,9_) : & |: 7'1(5')((90 — 9_) i 5* <0 ’
TSRS S ra($,0%) +i(8)(6y — )] 3
5** b T2($,6+) 1 |: 7‘1(5‘)(91, . 0+) 5** b>0.

Now, for case 1, the slope of the Rayleigh curve in the ,6-plane is negative for each
metastable phase, hence 6y — §~ < 0 and 8, — #* > 0. Moreover, in case 1 one
has r1($) < 0, r2(5,07) > 0 and 72(5,6%) < 0. From the above expressions for &,
and &,., it follows that if any of the quantities in brackets (i.e., the arguments of
the logarithmic function) is positive, then there is at least one singularity. Hence, to

avoid the presence of a singularity (by “moving” it), it is necessary that

7‘2(5,9_) +7‘1(8)(90 — 9_) >0 y (528)

ro(3,07) +11(8) (8, — 6F) <O .

Define a “mean” isentropic sound speed (along the Rayleigh curve) for each metastable

phase as

6o+ 6~ O, + 60t
az’ls=a2<1+Ga0~; ), agyhsza2<l+Gab_; )

Therefore, from the expressions for r, and r; given by (5.11), the restrictions (5.28)

can also be expressed as a?,, < §* < al). Since, in this case, §, < 6~ and 6, > 6%,

then this restriction is stronger than the subsonic-supersonic condition, i.e.,

(af)* <@l <8 <aly < (a7)?. (5.29)

e,ls
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5.6 The unstable phase.

The Rayleigh set for the unstable phase generated at (7o, 8) can be obtained from
(2.40) and (5.1);, although the explicit form of ¥®4(6) is not required here. Hence-
forth, the analysis will be carried out only for case 1 of the previous section. Recall

that the following assumptions and restrictions are enforced:

Yr>yT, 6T <6, $>0,

a® < (af)? <& < (a7)?.

Henceforth, assume the existence of an admissible Rayleigh set v%%(6). It is important
to remark that since v®9(6) is generated at (v, 6), then the Rayleigh set is given in
terms of (3, 6p,v0). In view of (5.16) and (5.26), it is possible to express the Rayleigh
set in terms of ($,67,7~). Moreover, since #(0) = 6, and v(0) = -, then, continuity
of vR(6) at 6 = 6, and 6 = 6, is equivalent to continuity of y(£) and 9(¢) at £ = 0
and ¢ = b. By construction, y?(6) is continuous at § = ;. It is a matter of algebra
to prove that yf(8) is continuous at 6, as long as the values at & — +o0 satisfy the
restriction (2.52),, which corresponds to the momentum jump condition of the sharp
interface theory (see remark at the end of Section 5.4).

The next step is to prove the existence of a solution for equation (5.17);. The
derivative of the right-hand side of (5.17), with respect to 6 is given by (5.3). It can
be shown that 1, < 0 for the unstable phase. Now, since

¢, _au( =50

Voo = G T GO —m) (@ = 0o

then 199 < 0 in the unstable region (see end of Section 2.5). It was shown in Section

2.2 that o o
_ _ Wy Pge — Y
&y (7, 7i(7,0)) = =128 - LAy

therefore, the sign of dH"/df depends on the sign of €,,. From stability arguments,
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the thermoelastic material is unstable if €,y < 0, hence,

dH"
>0
g —
throughout the unstable phase and it follows that H"(y®4(6),6) is a nondecreasing
function of . As mentioned before, the Rayleigh set can be viewed as given by
(8,07,~v7) hence the Hugoniot function also depends on the same parameters. Notice

that, by construction,

H*(v®2(6),60) =0 .

It is important to remark that this Hugoniot function is generated at (7o, ) which
does not belong to the Hugoniot set of the problem. The Hugoniot sets H.. are given
by the Hugoniot functions based at (y*,6%) and (y~,67) respectively and they do

not coincide in general with the set of points where H" vanishes. Now, from (5.17).,

8o . Lo 1 .
- / [—%H“(VR*“(H),O) + eg} di=¢ for0<¢<b, (530
0

where ) can be obtained from the expression of the temperature in the high strain

phase (£ < 0) and by enforcing the jump condition (4.57) at £ =0, i.e.,

_df

|
-

0! @
0 e—o- df

g=0+

From (5.23) and (5.24), this derivative can be viewed as given in terms of (5,0~,v7),

0o = [r1(8)(6o — 07) +72(5,67)] (60— 67) . (5.31)

Enforcing condition (5.28), guarantees that 6; < 0. Since the Hugoniot function H" is
positive throughout the unstable phase—it vanishes only at (y%%(6), §y)—and since
in this case 5§ > 0, the integrand in (5.30) is a nondecreasing function of 8, hence this

relation defines implicitly 6(¢) in the unstable region. More precisely, 6(§) decreases
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from 6 at £ = 0 to 6, at £ = b and the integrand increases from 1/6}, at 6 = 6, to 1/6,
at 6 = 6. Moreover, as shown below, the restriction (5.28), guarantees that 6] < 0.
From the foregoing analysis, 6(£) depends on (5,6~,v~). The continuity of 8(¢) at
¢ = 0 is thus guaranteed by construction. From (5.30), the width of the unstable

region can be expressed as

9o . L. ~1 .
b= [ |-Eera,0 ] . (5.32)
O

Therefore and in view of (5.27), equation (5.32) can be thought of as a relation of the
type
b=b(s,7",67,7",0%) .

At this point, the only remaining condition to be fulfilled is the jump condition (4.57)
at £ = b, i.e.,

do
3

do

& (5.33)

=
Now, from (5.23) and (5.25), the right-hand side of (5.33) is given by

do
g

= {7‘1(8)(0[, - 9+) + 7'2($, 6+)] (6b - 9+) .

§=bt
From (5.17) and (5.31), the left hand-side of (5.33) can be expressed as

do

= 25 113, 03) + [ (8) (B0 — 07) + (5, 67)] (B — 67) .

e K

Now, by definition, the Hugoniot function generated at (v,6;) and evaluated at

(Vb, Bp) is, from (2.35),

(Y0, 06) — €(10, 60) — -é?/;(am, B3) + (10, 60)) (s — 70) -

Since continuity of v and # has been enforced at ¢ = 0 and £ = b and since ¢ and

o are continuous functions of strain and temperature, then it is possible to use the
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expressions of these functions in the low and high strain phases respectively. From
this point, it is just a matter of algebra to check that, as mentioned in Section 5.4,

the continuity of 6'(§) at £ = b is equivalent to the energy jump condition (2.59).

5.7 A one-parameter family of solutions.

It is shown in this section that admissible solutions to the phase boundary propaga-
tion problem are known up to the phase boundary velocity $. This velocity can be
viewed as a parameter that defines a family of solutions. Hence, the presence of heat
conduction only regularizes the moving discontinuity, but fails to deliver an additional
restriction on the values (y*,6%) and the phase boundary velocity s. In view of the
above, it is useful to recapitulate the steps to construct a solution, presented here in
nondimensional form.

Dimensionless solution: Define a dimensionless coordinate z by

_rea
k

This is the same dimensionless coordinate as in the shock wave problem. Now, for

given conditions (6%, 7") in the high strain phase, choose a supersonic phase bound-

ary velocity v in a given interval vZ, < v? <v2__ shown below. Obtain the temper-

ature T~ by solving (2.59). Obtain the corresponding strain 6~ from (2.58);. The

temperature Tj at z = 0 is related to the values at —co by

G - _ _ ,
T0=<1_V2—M> {50‘—5 +M(T ‘—TC)]+T 3

and the corresponding strain is

8o = bc + M(Ty — Tt) .
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The temperature at z = b is given by

-1
Tb:( G 2—m> [6c — 6% +m(T* —To)] + T+ .

1—v

Define the function

_ rg(V, T) 1
Kiv,T,,T) = ) (T* -—T) +1,

where the functions r; and r; are given by (2.60). The explicit form of the temperature

in the metastable phases is

r2(r\:(T >{Klexp[ ro(v,T7) ]-1} + T z<0,
T(z) = 4
krz(rv(fl; {Ksexp [—ra(v, T*)(z— b)] — 1}-1 +T" z>b,

where K, = K(v,Tp,T7), K3 = K(v,T,,TF). The width b of the unstable region is

given below. The temperature gradient at z = 0 is given by

7= L

| _, = [rl(V)(TO —T7) +rafv, T")] (To —T7) .

The temperature inside the unstable region can be obtained by solving the following

equation:

' {—vH @R(T), T) + T3} ' dT =2, (5.34)

where the Rayleigh set is given by

50 - (SC — M(T - TC) + G(m - M)(T — Tc)(T - T())

Ry _
07T = =) (m M) (T =Tp) =1

+6O>
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-3 -2 2 3 Z‘Té
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Figure 5.1: Structured traveling phase boundary (temperature and strain).

and the Hugoniot function is expressed as

Hu(é, T) — 5 1 {(5-50) [TC((SO "5C) "T(5+50_'25C')]

(m — M) (T — Tg)?
+M(6 + 6o — 260) + M2T,, }+-C2—;(T+ To)(6—60) +T —Tp .

The width b is obtained by setting z = b in equation (5.34) with T = T}, in the
upper limit of the integral. A typical solution is shown in Figures 5.1 (temperature
and strain) and 5.2 (stress and entropy). The corresponding Rayleigh curve in the
d,T-plane is the same as shown in Figure 2.2. The bar is in the (front) state (6%, T)
for t = —oo and ends up in the (back) state (6=,77) as t — +o0.

Family of solutions (restrictions on v?): from the restriction (5.29) (in nondi-

mensional form) it follows that the phase boundary speed has to satisfy

GZ(Tb -+ T+) < 2(V2 -1)< G2(To +T7).



0 b
Figure 5.2: Structured traveling phase boundary (stress and entropy).

Using equations (5.26) and (5.27) to eliminate the temperatures T}, and 7T}, in the
above relation gives

—y2
& (i)l =+ M =T 20— 42670,

1— 2
¢ (G = m(lv— v2)) 6o =% +m(T* = T5)] +2(1 ~v*) +2G°T* < 0.

Furthermore, assume that m > 0 and, since in this case 1 — v? < 0, then the above

inequalities can be expressed as (recall that M > 0)

w? + hl((S‘,T_, M)W + hz(T-, M) <0,
w2+ i (6%, T, m)w + hy(T+, m) > 0,

where
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and
h(6,Ton) = -2 [2 4 60— 6 n(T + )
19, 4, - n G C C P
3
h2(T7n):——(irT7:

Let h{ = hy(6%,T*, m), h = hy (67,7, M) and similarly for h,. If m > 0, then
hF¥ < 0 and it follows that the roots of the equations w? + h¥w + hf = 0 are real
and have opposite signs. Denote by wi and wl the corresponding roots of these
equations, where the subscript of w refers to its sign. Hence, the above restrictions

can be expressed as
I-wi<vi<l-—w>  ifwf>wD. (5.35)
If w& < wZ then there are no solutions. Expanding w® in powers of G gives
wE = —GT* + 0(G?) ,

hence, for small G and up to O(G*), wf > wZ. Any value of v? that satisfies (5.35)
determines an admissible solution for the phase boundary propagation problem. Nev-
ertheless, notice that the conditions in the phase boundary propagation problem are
given for one side only (either at z — +o00 or z — —00) and the conditions on the
other side depend on v2. Hence, one bound is well defined but the other is not. It is
possible to obtain the unknown bound numerically as follows: suppose that the state

(0*%,T) is known and fixed. From (2.59) and (2.58); one has
6§~ =6"(V4 6T, TT),
T-=T"(v4,46",T) .

It follows that

wZ =w> (V3 6T, TF) .
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Although it is not proved here, there is numerical evidence that the inequality
vi<l—wI(v36%,TY)

corresponds to

2

A <Vmax’

where v, depends on (6%, T7) only. Let v, = 1 —wZX(d*,T™), hence there is an

interval

2 2 2
Vmin <vi< Vmax

whose limits depend only on (%, 7%) and in which any value v? provides an admissible

solution as shown above.

5.8 Special cases.

5.8.1 Phase boundary traveling at the isentropic sound speed.

In the previous section it was assumed that r,($, 8*) 0. Suppose now that ry(s,67)

I

0, which corresponds to §* = (a;)? (the case 75(3,6%) = 0 which corresponds to
$* = (af)? is similar). Solving equation (5.14), with r,(3,67) = 0, gives the temper-

ature in the high strain phase, i.e.,

_ 6o — 6~
T1(8)(6g — )€ - 1

0(¢) = +6-  fore<o,

where 6y = 6(0). Regardless of the sign of § and the value of 6y, the condition (5.15),
is satisfied. For the low strain phase (i.e., for £ > b), following a similar analysis
as in the previous section, a necessary condition for the existence of a solution is

r2($,6%) < 0. There are two cases to consider, viz.,
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Case 1: Suppose § > 0; then, necessarily,

hence 8% < §~.

Case 2: Suppose $ < 0; then, necessarily,

hence 6% > 6-.
As in the previous section, the second case can be discarded by virtue of the mo-

mentum jump condition if ¥+ > 4~. From the first case, it follows that
7'1(5.:‘) >0.

Moreover, since the slope of the Rayleigh set in the «y,6-plane is negative, then 6, < 07,

and it follows that there is a point £, < 0 where
r1(8) (6o —07)e —1=0.

This means that the temperature, as given above, is unbounded at £ = &,, hence this
is not an admissible structured traveling wave. The case r5($,0") = 0 is similar in

the sense that the solution for £ > b has a singularity.

5.8.2 Semi-structured wave.

It is possible to take the solution for one phase as the trivial solution. For definiteness,
assume that the solution for the low strain phase (i.e., £ < 0) is §(¢) = 6~ ,V€ <0
(the case 6(&) = 6% ,V€ > b is similar). For a nontrivial solution in the high strain

phase, it is necessary that ry(s,0%) < 0. In that case, from (5.23), the temperature
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in the stable phases is

0~ for £ <0,

{Kg exp [—ra(3, g+)¢] — ;'-2—7(.—15(—86):5

0(§) = -1
} + 607 for £ > b.

Now, since V€ < 0, #'(§) = 0, then, from (5.17) and the jump condition (4.57), the

temperature is given in the unstable phase by
/] S . . -1 .
/ [~%H“(7R’“(9),9)] dd=¢ for0<€<b.
6o
The Hugoniot function H®" based at (vy,0,) for the unstable phase satisfies
HR’U(’)/Q, 90) =0.

Therefore, the above integral diverges and it is not possible to find a solution in the

unstable phase. Hence, the semi-structured phase boundary is not admissible.

5.8.3 Zero thermal expansion.

In the previous section, it was assumed that r;($) # 0. Consider the case when
r1(8) = 0, which occurs if @ = 0. The phase boundary propagation problem, as given
by (5.14)-(5.22), can be formulated for a = 0 as follows:

Problem 1: Low strain phase. Equation (5.14) becomes

Y=v,
b S5
0 =-2(0-0).

The condition (5.15); is automatically satisfied and the remaining condition for the

strain, (5.16)y, is fulfilled if the corresponding temperature 6, is given by

0 = O — ”YCA*/[’Y




107

The condition (5.15); remains unchanged.

Problem 2: Unstable phase. Similarly, from equation (5.17), one has, in (0, ),

v=7"40),
/ / é‘ u u
o — 8y = L H(4(9),6)

The conditions (5.18) and (5.19) become in this case y(0%) = ~*, y(b™) = 7,
9(0*) = 6, and §(b~) = 6, where the requirement of continuity at £ =0 and £ = b

was enforced (see also problem 3 below).

Problem 3: High strain phase. From equation (5.20), in (b, +00) the problem can
be expressed as
v=7",
S
0 =-2(0-9%).
S0 -%)
The condition (5.22); is automatically satisfied and the requirement (5.21); is satisfied

if the temperature 6, is given by

The condition (5.22), remains unchanged.

The temperature in the metastable phases is given by

’

K, exp {a%g} +0- foré<o,

Ksexp [——-ij[ +6t foré>0,

\

where K and Kj are constants. Notice that, since K > 0, then if § > 0, limg_, o, 6(€) =
6% but the temperature grows unboundedly as ¢ — —oo. Conversely, if § < 0, then

limg_,_oo 8(€) = 6~ but the temperature grows unboundedly as £ — +oo0. Hence, in
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order to have a nontrivial solution, one of the constants K must be taken as zero.

Suppose first that § > 0 and take K; = 0. Therefore, the temperature is given by

0~ for £ <0,
0(§) = g
Kzexp l:——;f] +6" foré >0,

hence

6, =0.

For the unstable phase, the temperature is given implicitly by
0 $ R
¢ = _/ {—E—H“(WR’“(O),G)} dé |
o Lk

but, by construction, H"(vo,6p) = 0. Based on the Hugoniot function, it is not hard
to see that the singularity at § = 6, is stronger than 1/+/6, hence the above integral
diverges and it is not possible to find a temperature profile in the unstable region.
One can interpret this result as having an infinite unstable phase (i.e., b — -+00) since
(v~,67) has to lie in the boundary between the low strain phase and the unstable

phase. The case § < 0 is similar.
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Chapter 6 Structured wave: Viscosity,

strain gradient and heat conduction

6.1 Introduction.

The traveling wave problem is analyzed here within the context of the augmented
theory including viscosity, strain gradient and heat conduction. Section 6.2 deals with
the basic equations and a linear stability analysis. Classical techniques of singular
perturbation theory are then used to identify the region where the viscosity and strain
gradient play an important role (i.e., the “inner” solution) and the region where
heat conduction is the relevant structuring mechanism (i.e., the “outer” solution). A
uniformly valid approximation is then obtained from the asymptotic matching of the
inner and outer solutions and a kinetic relation is derived for a subsonically traveling
phase boundary.

It is important to remark that the presence of heat conduction induces some
structure to the phase boundary but, more significantly, it permits specification of
different temperatures at 400 and —oo. This in turn allows an appropriate connection

with the adiabatic limit case.

6.2 Basic equations.

Using equations (4.64), (4.65) and (4.66) in the governing equations (4.61) and (4.63)

gives

A" =70) +vs(Y = 1) — [0y (1, 8) — ¥y (70, 60)] + 8*(y — v0) =0,
(6.1)
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k e _ 1
£ o)+ {ene) - eton.00) - 31 (v - )

~5 (=0 = [0, 00) = X =] (=) | =0 (62)

The following stability analysis, with some modifications, follows from [25]. Introduce
a new function w = +'. Equations (6.1) and (6.2) can be expressed as a system of

first order ordinary differential equations:

( !/
Y =w

w' —wy = --1/\- {vs(w — wo) — [¥4(7,0) — ¥y(70,60)] + $*(¥ — o) }

04 ) 2 (6.3)
o = 0y = =52 Lat.) ~ 2000, 00) = 307 = ud) - £ (= )

\

— [ty (0, 00) = Awp — vswo] (v = ) }

Let (7., ws, 6,) be an equilibrium point of this dynamical system. Therefore, from

(6.3) and assuming § # 0, these points satisfy

.
w, =0

_ +
{ Uy (s, 00) — gp_ =8 (% — ") (6.4)

ot

(700 = " = 5 (310000 + ) (1 =7

\

Hence, the equilibrium points of the regularized traveling wave problem satisfy the
jump conditions of the classical adiabatic theory for a given state (y*,0%); see rela-
tions (2.13) and (2.14). The states at £ — +o0 given by (4.48)-(4.50) are equilibrium

points.

To analyze the nature of the equilibria, consider the linearized system around an
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equilibrium point:

W' = AW |
where W = (y,w, ) and
0 1 0
1 . * Vs *9
A= ~—:\- [32 - ¢’y‘y] —-7 ;\Y ) (65)
PS, ps, .
I ?9*1/}70 0 ?9*1/)99_

where % = Py (7e, 04), Yo = Yao(Vs, 04), Yo = Pea (7, 0.). Notice that to obtain
the term Az, the relation €, = 1, — 01,9 and (6.4); were used. The term A3z was
obtained using & = —0ig9. Let 8 = G, i = 1,2, 3, be the eigenvalues of A. The
characteristic polynomial of A is 3° — I,3? + I, — I; = 0, where I;, i = 1,2, 3, are

the principal invariants of A. A direct calculation gives

trA = —4 (§ + p;*) , (6.6)
Ay ) =3 [l (o (22) 41)] 6.7)
det A = ; (p;*) [“;* - 32} , (6.8)

where, using the material parameters introduced in Section 2.2,

Ce = -H*wge )

/“L* = p"p’:fy ’
* 2
o — ( * Whe — Ul
ekx T e T .
Wi

Let a. and a. be the values of the isothermal and isentropic sound speeds and k,,

the value of the thermal diffusivity at an equilibrium point (v,,6,). The principal



112

invariants can then be written as

v 1
11=—S<:\'+E:>, (69)
1
I =-< [ai - & (;V“ + 1)} , (6.10)
S .
I = vy [a2, — & (6.11)
Define
B L, 2 ,
n=I+ 3 5,?[1 )
2 — 3 9 )
L3 =03+ 443 (6.12)

then, when ¢3 < 0, all three eigenvalues are real and different; when ¢35 = 0, all
eigenvalues are real and two of them are equal and when t3 > 0 one solution is real

and the two other are complex. The eigenvalues ; satisfy

Br+ B+ B =1,
G323 = I3,

hence if the three eigenvalues are real, and since I; < 0 when s > 0, then the three
eigenvalues cannot be all positive. Therefore, if I3 > 0, the equilibrium saddle point
has a two-dimensional stable manifold and a one-dimensional unstable manifold. If
$§ < 0, then the equilibrium point has a two-dimensional unstable manifold and a
one-dimensional stable manifold. If I3 < 0 then the situation is reversed.

Consider the thermoelastic material characterized by the Helmholtz potential

(2.40). In this case, the stress given by equation (4.65) becomes

o = py — opld — pXy" — pvsy' + Hy (6.13)
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where

aubr low strain phase,

I

4
apfr — pyr  high strain phase.

Similarly, by (4.34), (4.35) and (2.40), the internal energy e is given by

1
€=&1,0)+ 50"

T H, 1, 2
= 0+ —~+ Hs + =\ 14
2p'y+c+p’)’+ 5+2’Y ) (6.14)
where
0 low strain phase,
H5 = 29
,u2 1T _ ok ;T L _A\r high strain phase.

6.3 Traveling shock wave.

Suppose that for a given &, all the points in [£,+00) are in the low strain phase so

that, from (6.13) and (6.14),

and

Since
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the system (6.3) becomes

v =w

W=~k fviw— (@ = )y = 77) + ac(0 - 67}
) (6.15)

s [ 1
¢ =5 5@ =) =7+ acet ()

2
+c(9—9+)—532‘—’-} .

Special case: zero thermal expansion: Henceforth, as a special case, assume that
the thermal expansion coefficient « is zero. In this case the problem is very simple
since the system is uncoupled. The corresponding equation for the strain is, from

(6.15), 2 with a = 0, given by
M +vsy =0, (6.16)

hence

Y(§) = crexp {—%é] +c,

where c;,c; are constants. Now, the conditions at £ — + are y(+o0o0) = 4% and
y(—o0) =~ which cannot be satisfied simultaneously.

Even though the idea in the regularized theory is to obtain a solution where
v € C*(R) and 8 € C?(R), it is possible to relax the regularity requirements. Divide
the real axis into two intervals, namely (—o0,0) and (0, +00), and consider functions
v € C°(R) U C3*(R — {0}) and 6 € C°(R) U C*(R — {0}) (i.e., continuous functions
whose derivatives might be discontinuous at £ = 0). For definiteness, assume that

5 > 0 (the case 5 < 0 is similar). Enforcing the conditions at £ — #00 and requiring



115
that v be continous at £ = 0 provides the following solution for (6.16):

Y for g € (_0070) y

v(&) = (6.17)

(v = ") exp [_ﬁ;ﬂ +a" for £ €0, +00) .

Now, since there is a jump in 4" and 7" at £ = 0, the appropriate jump conditions
have to be satisfied. In the regularized theory, the momentum jump condition is
[6]1 — ps*[7] = 0. If v is continuous at £ = 0, then, from (6.13) and since [5] = 0, one
has

AT+ vyl =0

which, from (6.17), implies that

and hence there is no nontrivial solution to the problem.

6.4 Traveling phase boundary.

In this case, since the fields under consideration are piecewise differentiable, the trav-
eling phase boundary problem has to be divided into three sub-problems. Suppose
that the conditions at £ — +o0o correspond to the low strain phase and the conditions
at £ = —oo correspond to the high strain phase. Presumably there is an interval,
say (0,b), where the points are in the unstable phase. From the above considerations
and in view of the smoothness requirements of the traveling wave, the solution must

satisfy conditions (4.48), (4.50) and the following:

6(07) =6(0%) = 6o ,
7(07) =5(0%) = vm(8o) ,
0(67) =0(0") =06, ,
v(07) = (b%) = v () ,
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where the functions v, and v are given by (2.39) and the temperatures 6, and 6,
are unknown. The jump conditions (4.56) also have to be satisfied at £ = 0 and £ = b.
Additionally, for the class of traveling waves considered here, the phase segregation
conditions must be enforced, i.e., the solution must be such that the material is in its
high strain phase in (—o0, 0), unstable phase in (0, b) and low strain phase in (b, +00).
Moreover, the temperature has to be below the critical value §-. These conditions

are formally the same as (5.13).

Structured phase boundary traveling wave problem: Given one end state,
say (y~,07) at & = —oo, (or, alternatively, (y*,6%) at € — +o0) find all admissible
states (y*,0%) at &€ — +oo in the high strain phase such that (y~,07) and (y*,8%) can
be connected via a traveling wave. A connection between the end states is achieved if
there ezist functions y(€) and 6(€), £ € R, that satisfy the phase segregation conditions
(5.13), the jump condition (4.56) at £ = 0 and £ = b and the following three problems:

Problem 1: Low strain phase. Suppose that for £ € (—o0,0) the material is in its
low strain phase. Using the conditions at —oo in system (6.3) and the corresponding

expressions of ¥(7,0), &~,0), € and ¢~ given by equations (2.42) and (2.44), the

governing equations are

Y =w

w' = — {vw— (¢ = )y — ") +aa®(0 - 67))
) (6.18)

o ps (1 _ . ) .
6 :"Bk_{i(az“sz)(“/—’y P+ ad?d(y—v7)

+c(f—07) — %uﬂ}
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subject to the following boundary conditions:

Y(=00) =77, 0(~00) =07, (6.19)
Y(07) =v=vc+ M6y —6c), wherefy=06(07). (6.20)

The temperature 6, is not known a priori.

Problem 2: Unstable phase. Suppose that for £ € (0,b) the material is in its unstable

phase. The governing equations are

v =w
’ 1 . 2 .2 - 2 _
w =—X{usw—(a - )y =)+ aa*(0—-67)

217y — Ym(9)) }
Ym(0) — Y2 (0)

¢ +a
(6.21)

0 = —%é {-;— (@ =8 (v=v) +0ad®d (y =) +c(0-07) - g—wz
v [@9 9 29 o —oar(y - m] } ,

3

\
subject to the following initial conditions:
v(0%) =7 =7vc+ M0 — 6c) 6(0%) =6, , (6.22)

Y(0+) = 7(07) . (6.23)

Problem 3: High strain phase. Suppose that for £ € (b, +00) the material is in its
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high strain phase. The governing equations are

v =w

W = =3 (v = (@ = )y = 7") + a0 - 0%)}
< (6.24)

+c(6 — 0%) — ng}

\

subject to the following boundary conditions:

Y(bY) = =vc+m(0s —0c), where 6, =0(b") , (6.25)
Y(+o0) =T, O(+o0) =6". (6.26)

The temperature 6, and the width of the unstable phase b are unknown a priori.
Furthermore, there are three conditions that have to be enforced, i.e., the continuity
of v, 0 and v at £ = b (i.e,, 6(bT) = 6(b7), v(d*) = v(b7) and v/ (b*) = +'(b7)).
The phase segregation conditions (5.13) also have to be satisfied. The continuity of
v at £ = 0 and £ = b guarantees the continuity of w’ = 4" and #', hence the jump

conditions (4.56) are automatically satisfied.

6.5 Nondimensional parameters.

It is convenient to introduce a length parameter based on the viscosity and strain
gradient coefficient and to use it to obtain nondimensional equations. Recall that the

viscosity is given in terms of L?T~!, where L is length and T is time, and the strain
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gradient coefficient in terms of L4T~2. Let

_ pea
Z_k'é’
and
w v k
=, w=—.
VA pev/

Therefore, the system (6.18) can be expressed as

)
§=w

{ W = —woww +w? [(1-Vv?)(§ - 67) - G(T —T7)]

T = —v{% (1=V) (-6 )Y +GT~(0-6)+(T-T") - %wz}

where

]
L i

§ ==
dz’ dz

The boundary condition at z =0 is
6(0) = d¢ + M(T(0) — T¢) . (6.28)
The system (6.24) can be written as

.
d=w

{ W= —wwvw + w? [(1 V(6 -6 - G(T - T+)]

(6.29)

T — ———v{% (1=V2) (6 — 6%)2 + GT*(5 — %) + (T — T*) — —1-W2}

2002
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and the boundary condition at z=b is
6(b) = dc + m(T(b) — T¢) . (6.30)

The dimensionless driving traction is defined as

f=—[(T) = —

 patyl
hence, if the conditions at +oo correspond to the high strain phase, then, from (2.56),
T 1
f=—|G([0] = 1) +log=— — — | (T) . (6.31)
T- TT

For a given state (6~,7~) in the low strain phase, the state in the high strain phase

for which the driving force vanishes corresponds, from equations (2.62) and (2.65), to
THE(8) =TH6), 6> 6u(T) . (6.32)
Notice that V&, T7(8) > 0 and

EEI-POO T8 =-T"+ —Cl;- ’ 62{5100 T'(9)=0,
hence, since the functions T and T are monotonically decreasing in the high strain
phase', if T~ — 1/G < 0 then there is at least one real root for (6.32) if there exists a
state (in the high strain phase) for which T7(8) < T#(4). Likewise, if T~ —1/G > 0,
then (6.32) has at least one real root if there is a state for which T7(8) > TH(4). The
values of ¢ for which T (§) < 0 are not admissible. Furthermore, only the smallest

root of (6.32) is admissible.

'Provided 6 > 6~ — 2/G.
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The invariants of the linearized system can be expressed as

i = —v(l +ww) ,

o= —w® [1-v? (£ 41)]

l3 = veo® (a2 — v2) .

From (6.27),, the temperature can be written in terms of the strain and its derivatives

as
T(z)-T" = 1 (1=v®(8(z) —67) — —1—wv5'(z) — —1-—6"(2)
G w w? ’
(6.33)
hence, equation (6.27); can be expressed as a single equation for the strain, i.e.,
§" — 10" + 136" — 15(6 — 67) + %‘f [(5’)2 — (1 -v?) (6 - 5—)2] —0.
(6.34)

A similar equation can be obtained for the high strain phase.

6.6 Perturbation analysis.

To obtain an approximation of the solution in the metastable phases, consider a
singular perturbation of the equations. Let

£ =

1
w

and consider the case where A < 1 ,v <« 1 but the ratio w remains fized. Hence,
assume that € is a small parameter. For definiteness, the analysis is carried out for
the low strain phase (it is formally the same for the high strain phase). As a general
scheme of notation in this section, an overbar represents a quantity related to the

inner expansion whereas no overbar usually represents a value related to the outer
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expansion. A prime denotes differentiation with respect to the outer coordinate and

a dot denotes differentiation with respect to the inner coordinate.

6.6.1 Outer solution

Assume that the asymptotic expansion for § corresponds to a power series in € for

fixed z # 0, i.e.,
5(z) =8 ~ ¢o(2) +ed1(z) + %¢a(z) +... ase —0.

This corresponds to the “outer” solution. Using this representation for § in equation

(6.34) gives

2 (¢ + ey + ¢y +...) +v(e? +we) (¢f + ed) + 2y +...)
+ [wvPe — (1 =V?)] (¢h +edt + %8, +...) —v (a2 —Vv?) (¢o +epr + 2 +...)

+ 2 [ (ot + Bt ) (L) (do e + Pt )Y] = 0.

2

2

Collecting terms in powers of € and setting each of the coefficients equal to zero gives,

for the first term,

Bo = rago + rod

where r, is defined by (2.60) and
ro(v) = —— . (6.35)
The equation for the second term is
¢y — (r2 + 2ro¢0) 1 — ra(dg + vey) =0,

where

ra(v) = : (6.36)
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There are two functions that satisfy the equation for ¢ (one of them being the trivial

solution).

Nontrivial solution: In this case the first term of the expansion is given by

do(z) = 2 {-'Eco exp|—ry2] — 1}—1 , (6.37)

o (7o
where cg is a constant. The second term can be expressed in terms of ¢y as

$1(z) = ¢y(2) {rTC;; —rg[(re = v)z — 2log gbo(z)]} , (6.38)

2

where ¢, is a constant. In order to enforce the condition that ¢o(z) — 0 as z = —o0,
it is required that r, = ro(v,77) > 0 in the low strain phase, but no further restriction
is placed upon co. For the high strain phase the restriction is that ry = ry(v, T%) < 0.
Observe that Vn € N, ¢(()")(z) — 0 as z — —oo and similarly for ¢;. The same occurs

for z — 4+00.

Trivial solution: In this case, ¢o(z) = 0; the second term is therefore given by

(bl(Z) = clerzz .

Since it is required that ¢;(z) — 0 as z = —oo, then either ro(v,T77) > 0 or ¢; = 0.
For the high strain phase, since ¢;(z) — 0 as z — +o0, then either ry(v, T*) < 0 or

Cl=0.

Formally, the strain gradient is given by

8'(z) ~ dy(z) +edi(z) + ...,
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and the temperature is given, from (6.33), by

1 -

T(2)~-T ~ GV2¢0(Z) +é (1 =v*)i(2) —wvgip(2)] + ... ;

(6.39)

therefore, the boundary condition T'(z) — T~ — 0 as z — —o0 is satisfied.

6.6.2 Inner solution.

For the “inner” solution (close to z = 0), consider a new coordinate defined as

= wz.

X
I
®IN

Assume the following asymptotic expansion for fixed x:
5(x) — 07 ~ Bo(X) + €d1(X) + 2da(x) + ... .

Therefore, equation (6.34) can be expressed as

(5&+e$i+s"’$§+...) +v(e +w) («Z})+e</3'1+52$2+...>

+ [wv?e — (1 —v?)] (gz_b.o+5q§1 +52q—§2+...> —ev(al—v?) (do +edr +e2ho+...)

Gv

" . B 2 B . ) .
+€3— [(¢0+6¢1+52¢2+...) _(I”VZ)(¢O+€¢1+€2¢2+..,) ] _0,

where a dot denotes differentiation with respect to x. Proceeding as in the previous

section, the equation to determine the first term of the expansion is
$o+vwdy — (L ~=v)gy =0 .
The solution @, is given by the sum of two exponentials plus a constant. The expo-

+
nents are Ox, where

B= 5 (v VT T 41— V). (6.40)
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The exponents can be either real or complex. The different cases are as follows:

£
w=>2 [8<0

+
v>1 vi>4/(4 — w? >0
s (4=t P

+ —_
O<v<l B>0,8<0

+
-1<v<0 >0

+
w=>2 >0

+
v< -l vi>4/(4—w?) B>0
w <2

1<vi<4/(4—uw? EEC,%(§)<O

l<vi<4/(4—uw? EEC,?R(E)>O

In the low strain phase (where x < 0), since the inner and outer solution must match

in some region (as explained below), the exponential(s) with negative (or negative real

part) exponent(s)—which would provide an unbounded term in the limit—should be

discarded. For the high strain phase, the solution with positive (or positive real part)

exponent(s) should be abandoned. If both exponents have the appropriate sign, then,

in general,

— + -
Po(x) = Coe™ + 216 + 25 .

The equation for the next term is

Gv

&1 + V‘U$1 -(1- V2)‘?’1 +Vv [;50 + VW(ZO - (ai - vz)q_ﬁo] + = [ng - (1- Vz)%]

2
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Using the general form for ¢, in the above equation and solving for ¢; gives

_ + +
B1(X) = (3 + arx)eP* + age®* + (¢4 + azx)e® +

—_— + —
ase® 4 asePHAX 4 gex + &5 (6.42)

where
Gov (1 —a?) — 6,G(1 — v?)] EGwv? )
ay = T y O =/,
(B-8)8 46(26 - B)
gy = O [(1- aé) ‘_52_G(1 —v?)] g = ___E_%g__aﬂ’_z_r 8 (6.43)
(B-B)B 46(28 - B)
as = 2CO:1G N g = 52 (l’z + Egl'o) . ]

The constants €3,Z4 and €5 are arbitrary. Observe that ag = 0 corresponds to either

_ ~ r
C2=0 or ¢=-—-—-=.
ro

Notice that, from (6.12) in nondimensional form, the eigenvalues of the system
linearized about the equilibrium point for the metastable phases are real and different
if

_%(1 — V)2 VA 4 4(1 = V?)] 4+ 0(e) < 0,

i.e., if v®w? +4(1 —v?) > 0 for small €. Therefore, for small ¢, the equilibrium points
of the systems (6.27) (low strain phase) and (6.29) (high strain phase) have a two-
dimensional stable manifold and a one-dimensional unstable manifold for 0 < v < 1
and a one-dimensional stable manifold and a two-dimensional unstable manifold for

-1 <v<O.
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6.6.3 Unstable phase.

For the unstable phase, the system of equations (6.21) in nondimensional form and

expressed in inner coordinates becomes

W= —WVW + [(1 —vA)(6 - ) =G(T-T)+ 0 —dc —M(T — Tc)jl

) (M —m)(T - T¢)
) (6.44)
T = ——é— {5 (1=Vv) (-6 +GT (6 -07)+(T—T") —w?
1 2T - To)(6 = 60)® 1o ~
| +2(M —m) [ (T - To)? ~ Mo —2M( 50)] }

Assuming that the strain, strain gradient and the temperature are bounded through-

out the unstable phase, it is possible to conclude from (6.44); that
T(x) - To = O(e)

where Tj is the (unknown) value of the temperature at x = 0. Therefore, assuming

that
6(x) — 07 ~ ¢o(x) + ed1(x) + 2Pa(x) + ... |

equations (6.44), 2 give, for the first term,

Bo(X) + wvdy(x) + k1do(x) + k2 =0 ,

where

) 1
= ““””(M——m)(To—Tc)] ’

0" —d¢g — M(Tg - Tc)
(M - m)(TO - Tc) '

(6.45)

kz = G(TQ - T—) -
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Outer . Inner Inner Outer

Low strain Unstable High strain

Figure 6.1: Outer and inner solutions for metastable phases.
Hence,

] + =k
do(x) = el 4 glefvx — -é , (6.46)

where

Eu = %(——vw + v/viw? — k) . (6.47)

Notice that the exponents can be either real or complex. The following quantities

will be useful in the foregoing analysis:

(6.48)

6.7 Subsonic case.

'To obtain a uniformly valid approximation of the solution in the metastable phases,
the inner and outer solutions must match. For the subsonic case (subsonic with re-
spect to the isothermal sound speed) there are two cases to consider depending on the
sign of the phase boundary velocity. The regions where the different approximations

are valid are shown in Figure 6.1.
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6.7.1 Positive velocity.

Low strain phase: Suppose that 0 < v < 1. From (2.60); it follows that ry(v, T%) <
0, hence the nontrivial outer solution for the low strain phase has to be abandoned in
favor of the trivial solution. Furthermore, since E > 0 and B < 0, the inner solution
for the low strain phase involves, up to O(e?), only exponentials with exponents Ex

+
and 20x. From (6.41) and (6.42), the inner solution is given by
§(x) — 07 = ¢o(x) +ed1(x) + O(e?) (6.49)

where
+

Po(x) = Goe™ + ¢, ,

_ + +

¢1 (X) = (53 + alx) eﬁx + a262ﬁx + agX + Cs .
Before enforcing the boundary condition at x = 0, it is convenient first to analyze
the restrictions imposed by the asymptotic matching of the inner and outer solutions.

The inner expansion, rewritten in outer variables (i.e., z) and expanded for small €

and fixed z is given by

Co+agz+eCs+... .

The two-term outer expansion of the two-term inner expansion rewritten in inner

coordinates is

G + € (agx + Cs) -
For this expansion to match the (trivial) outer expansion, it is required that

Cy = Qg = Cp = 0. (650)
Notice that, as mentioned in the previous section, ¢; = 0 is consistent with ag = 0.

The temperature can be expressed, from (6.33) in inner coordinates, as

1

T(x) -~ T~ = [(1 —V3)(6(x) — 67) — wvd(x) — ;s‘(x)] . (6.51)

|
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The strain and the temperature at x = 0 are related through the boundary condition
(6.28). From (6.49), (6.50) and (6.51), the first term of the temperature’s expansion

at x=0Iis

[(1=¥2)60(0) — wvdo(0) = o(0)] = g1 =)z =0,

D~

and the first term of the strain’s expansion at x = 0 is ¢, hence, from (6.28) and

matching coefficients of the same order gives, for the first term,
Co=—0"+dc+MT™ -T¢) . (6.52)
From (6.51), the second term of the expansion in powers of € at x =0 is

(4= 8100) v 0) = 5,0] =~ |- Blas + 5125 - Ba) |

O~

and the second term of the strain’s expansion is €3 + a»; hence, from (6.28), it follows

that

2= ~ar = g | (b= B+ B(2b - Bhaa) (6.59

Therefore, the strain, strain gradient and the temperature at z = 0 are related to the

conditions at z — —o0 by

\

6(0) — 6~ =Gy +&(Cz + az) + O(e%)

, + + +
8(0) = B + £(E38 + a1 + 2Baz) + O(?) , ¢ (6.54)

T(0) - T~ = sKlA-(eg +a2) +0(?)

where, for given (67,77) and v, & is given by (6.52), & by (6.53), a1 2 by (6.43) and
+
£ by (6.40). Observe that the strain gradient is given here with respect to the inner
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coordinate. In view of the above, the composite expansion for the low strain phase is
+ + +
5(z) — 6~ = (Co + a12) e’ ¢ [Egeﬁz/s + azewz/s} +O(e?) forz<O0.

Therefore, for given (§~,77) and v, the composite expansion for the low strain phase

is completely determined up to O(g?).

+
High strain phase: For the inner solution close to z = b, since 8 > 0, the expo-
+ +
nential terms with exponents Ox and 20x are discarded. Hence, the inner solution
is

5(x) — 6% = do(x) + 1 (x) + O(?) ,

where

o(x) = 51”* ) + 5y
(El(X) = [54 + ag(X - B)] eﬁ(x—E) + a462’3("‘5) + GG(X e B) + Cs ,

and b = b/e. The boundary condition (6.30) at x = b relates the strain and the
temperature. From (6.51), expressed for the high strain phase, it follows that the

lowest order term of the temperature’s expansion at x = b is

(1= v)30(B) — wvdo(B) — B)] = 21 - ) (6.55)

|~

The first term of the strain’s expansion at x = b is ¢ + &, hence, using (6.55), the

lowest order term in (6.30) gives

C1 -+ Gy — (50 — 5+) =m [é(l — VZ)EQ - (TC — T+)j| . (656)

Similarly, the next power of ¢ in (6.30) gives

ml- + - - - -+ -+
Ci+Cs+ag= C {(ﬂ — B)as + B(28 — B)as — (B + B)as + 5/555]
(6.57)
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Therefore, the strain, strain gradient and the temperature at x = b are related to the

conditions at z — 400 by

6(b) — 6t =& + & + (Cs + & + a4) + O(e?)

§(b) = B + (2B + a3 + 2Bag + ag) + O, b (6.58)

_ 1 1
Tb)-T* = E(1 —Vv3)g, + s;(a + & + a4) + O(e?) |

In this case, the outer solution is nontrivial and the first two terms are given by (6.37)

and (6.38). For the high strain phase it is convenient to work with z — b instead of

z. The translation is absorbed by the integration constants ¢, and c¢;. The outer

expansion, rewritten in inner variables and expanded for small ¢ (with x fixed) gives
ro r g

— ry
+€ x —b) 4+ 113 + 2corg log —=— | + . ..
€y — Ig (fzco—"o)2 CO( ) e core gr200“"0

where ry = ry(v, T%). The inner expansion rewritten in outer coordinates, expanded

for small € (with z fixed) and rewritten in inner coordinates gives
& +elag(x—b)+&] +...;

hence, for the inner and outer expansion to match asymptotically, it is necessary that

- ra
€y = ———,
r —r
0 (6.59)
- 2 3
Cy == e | 1T +2 r 10 —— .
5 (rzCo ) 1ra Colg ngCO — fo]

Notice that it is also necessary that

3
Col3

g = ———
¢ (l’zco - fo)2

i

but, in view of the expression for ag given by (6.43), this is the same relation as
(6.59),. The two-term composite expansion is obtained by adding the two-term inner

and outer expansions and subtracting the two-term outer expansion of the two-term
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inner expansion, i.e.,
I - B(z—
5(2) - 5+ = r2coe_r2(z_b) 1o + [Cl + a3(z - b)] 6ﬁ(z b)/e
e [54eé(z—b>/e + a4ezﬁ(z—b)/e]

€ rycoe™2(=b) { c1
(racoe™r2G=b) — rg)* | rico

_M“Q_@@_m—ﬂ% c ]}

racoe="2(2=8) — g

~+-

+ 0(€?) .

The temperature in the high strain phase is, from (6.39), (6.51) and the above ex-

pression for the strain, given by

ﬂa—wzéu~m{ L ]+m@.

racoe"2(=b) — g

Notice that the inner expansion of the temperature is, up to O(g), a constant given

by (1/G)(1 — v?)&,.

Unstable phase: Since Ty = T(07) = T~ + O(e), then, from (6.46) and enforcing

the continuity of the strain, strain gradient and temperature at x = 0, it follows that

Let
Oy =07 — — . (6.60)

Observe that the point (4,,7~) belongs to the Rayleigh set of the classical theory
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with no strain gradient or viscosity as described in Section 2.8, i.e., §, = 6%(T~). Set

m=m(T")=dc +M(T™ -T¢),
b = Sm(T™) = b +m(T~ —Ts) :

using the identities

EO=5M—6_a ((;M:gﬁ +? 3

g B.B.

it follows that
1 - _ N
=5 | 2B 5| Gu—d),
ﬂ+ s (6.61)
1 — —_
& =5 By~ )| (Gu—15.)
5 J

where @ = Q(v,T7) is given by (6.48), é by (6.40), 4, by (6.60) and (6.45) and Eu
by (6.47). The phase segregation condition at x = b specifies that the material is on
the interface between the unstable and the high strain phase. Since the temperature
throughout the unstable phase is essentially constant (up to O(¢) ) then, from (6.46)

and up to the leading term, this condition corresponds to
+ -
chefub 4 glefub = 5, -4, . (6.62)

Now, enforcing continuity of temperature at x = b, gives, from (6.58)s,

G

1—v2

Gy = (T~ -T%).

Using the above expression in (6.56), the constant & becomes

61=50~5++m(T"—TC)—

G .
(T —T7).
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Let

1
8F =
ol —v?

467 (6.63)

This quantity can be thought of as the strain (in the high strain phase) corresponding
to the front state (8,7 ) of an isothermal phase boundary for a given back state
(0=,T7). The state (6],7) can also be viewed as the back state of an adiabatic
shock wave for a given front state (6=,77). It is important to notice that the strain
gradient at (0}, 7T~) does not vanish, hence this state is not an equilibrium point of

the system (6.29). Using (2.58); and (6.63), the constants ¢;  can be expressed as
1 =0m—065, =486

The boundary condition (6.30) was used to determine the asymptotic expansion in the
high strain phase and (6.62) was obtained by enforcing the phase segregation condition
for the asymptotic expansion in the unstable phase. Therefore, the continuity of the
strain at x = b is automatically satisfied from the continuity of the temperature. The
only remaining condition that has not been enforced is the continuity of the strain

gradient at x = b. From the inner expansion for the strain in the high strain phase,

it follows that

§(6) = B2y + O(e) = B(6m — %) + O(e) .

On the other hand, from the asymptotic expansion in the unstable phase, one has

hence, up to the leading term, the closing condition for the construction of a traveling

wave is

+ + . — - —
B, Cielsb + B, cuePs? = B(6, — 67F) . (6.64)
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It is possible to prove that
+

b = b0
bm— 08

|

+
B
In view of the above relation and using (6.48) and (6.61), equations (6.62) and (6.64)

u

can be expressed, after some simplifications, as

~ P-Q 2
et = <P+Q) , (6.65)

and

2
8m — 0, \ 2
( v 5) . (6.66)

Since v? < 1, then P > 0. Thus, if Q > 0, equation (6.65) has no solution since the

e—vwE _

™I

left-hand side is always greater than the right-hand side for any b > 0. Therefore,
a necessary condition to obtain a solution is @ = ¢|Q|. Of all the possible roots of
(6.65), only the smallest satisfies the phase segregation conditions, hence, choosing
the argument of the complex number P + i|Q| to be in the interval (0,7/2), then,
from (6.65),

1

b= il 27 — 4arg(P +14Q|)] . (6.67)

The width of the unstable region is therefore determined as a function of the velocity
and the temperature 7.

Figure 6.2 shows a projection of the trajectory in the J-T plane for a traveling
wave such that T > T~ (in this case v = 0.05). The corresponding profiles are
shown in Figures 6.3 (inner coordinates) and 6.4 (outer coordinates). These graphs
were obtained using the following values: G =0.8, M =14, m=1.2, §c = 3.1, Tr =
1, Te =3, Ir = 0.5, w=1and € = 1/w = 1075. Similarly, Figures 6.5, 6.6 and 6.7

show a traveling wave such that T+ < T~ (in this case v = 0.7).
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T T=TH(6) V=0.05
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Figure 6.2: Projection of the traveling wave for T+ > T~.
T, 6
3 .
2.5f 5t

v=20.05

Figure 6.3: Wave profile in inner coordinates for v = 0.05.
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v=0.05

_20 <15 <10 <5 o0 5 10 15 20 %

Figure 6.4: Wave profile in outer coordinates for v = 0.05.

2.5} Low strain High strain

Figure 6.5: Projection of the traveling wave for 7% < T
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P o o o o i o e it e e e

Figure 6.6: Wave profile in inner coordinates for v = 0.7.

Z

Figure 6.7: Wave profile in outer coordinates for v = 0.7.



140
Kinetic relation: As mentioned in Section 4.5, the values (6%, T*,v) are formally
related via the jump conditions (2.58);,2. If equation (6.67) is used to compute b,
then (6.66) can be viewed as an additional restriction on the values of (6%, T%,v).
Hence, for a given pair of values (e.g., back state (67,T) or front state (§%,T™) or
other combinations), the system (2.58);2, (6.67) provide the necessary restrictions
to determine the other three values (e.g., (6%, 77,v), etc.). Notice that this relation
only holds for 0 < v < 1 and, from the entropy inequality, it is also required that the
driving traction should be positive. The condition (6.66) can also be interpreted in
terms of the driving traction. To this end, the strain 4, can be written, from (6.66),
as
0y = oM + T (im L — .
1 — (5/B) expl—vwb/2)

Therefore, from (6.45), (6.60) and (6.63), the strains 6~ and §} can be expressed as

— 1 6u_‘5M
o= (1-v?) <5M—5m)+5u’

and

1 (8,=0
+ _ U m
S (5M—5m>+5“‘

Hence, formally, since b is a function of v and T~ and 6,, and dy are functions of T,
then d, = 8,(v,T7) and 6~ = 6 (v,T~). Using this expression for §~ in (2.61), the
temperature T can be obtained as a function of v and T~. The strain J* in the high

strain phase can be determined from (2.58);. Finally, from (6.31), it follows that
f=f(v,T7).

It is also possible to use Tt as a reference temperature by solving for T~ and é* for
given T in which case

f=f(v,T").

Several kinetic curves, corresponding to different values of w and a common value of

T* = 1.5 are shown in Figure 6.8. The last point of each curve (for maximum v) cor-
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Figure 6.8: Kinetic curves for Tt = 1.5.

responds to the limit §* = 0, as required by the phase segregation condition (5.13);.
All curves have a common value at v = 0 (the parameter w is always multiplied by
v in the equations). Observe that for values of w small enough, the corresponding
kinetic curve is non monotonic. It is interesting to point out that setting v = 0 in
(6.27), (6.29) and (6.44) results in T'(z) being constant, which is different from the
limit v — 0 in the solution obtained by perturbation analysis. Moreover, the energy
jump condition (2.58), and the entropy inequality (2.58); are trivially satisfied when
v = 0. Figure 6.9 shows a set of kinetic relations for different values of T and a
common value of w = 1. In this case, for a given velocity v, the driving traction
decreases for increasing temperature 7% (the same behavior is observed when T~ is

used as a reference temperature).

6.7.2 Negative velocity.

+ —_—
The negative velocity case is different than the positive one in the sense that 3 and
have the same sign. Even though it is possible to obtain a uniformly valid expansion

for the low strain phase, there seems to be no simple way to construct such an
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0.2 0.4 0.6

Figure 6.9: Kinetic curves for w = 1.

expansion for the high strain phase.

Since ra(v, T") > 0, the nontrivial outer solution for the high strain phase has to
be abandoned in favor of the trivial solution. Furthermore, since :5 > 0, the inner
expansion for the low strain phase cannot match asymptotically the trivial outer
expansion, unless d(b) = §* and T'(b) = T which corresponds to the degenerate case
b — oo. Using asumptotic expansions of the form §(x; ) —d+ ~ 3=, A;(€)@i(x), where
A;(e) is an asymptotic sequence, did not yield the required expansion for different
choices of asymptotic sequences and inner coordinates. Intermediate expansions or
boundary layers at z — +oo did not produce a uniformly valid expansion either?. In
the case when A = v = 0 (see Chapter 5), it was found that v could not be negative,

but no equivalent proof was found in the case A # 0,v # 0.

*For the general theory, see, e.g., KEVORKIAN & COLE [23], WHITHAM [32].



143

Chapter 7 Concluding remarks

A Riemann problem with initial data in the same phase was analyzed and solved
within the framework of the sharp interface theory. It was found that by enforcing a
kinetic relation and a nucleation criterion, it is possible to single out a unique solution.
This analysis shows that some concepts developed in the purely mechanical case carry
over to the thermomechanical case. Furthermore, from the admissibility criterion
for traveling wave solutions, a special kinetic relation for subsonically propagating
phase boundaries was derived in the limit case when viscous, strain gradient and heat
conduction effects are removed.

An interesting point that arises from the Riemann problem is that the temperature
dependence in the kinetic relation and the nucleation criterion is somehow arbitrary in
the sense that either the temperature in front of a phase boundary or the temperature
in the back can be used as a reference temperature. This characteristic can also be
observed in the kinetic relation obtained from the augmented theory proposed in
Chapter 4.

Although it is possible to formally cast the admissibility criterion in terms of a
kinetic relation of the type proposed in [4], there is no simple dependence on the
temperature. This fact was also observed by NGAN & TRUSKINOVSKY [25] in their
numerical simulations and suggests that the functional form of the kinetic relation
in the thermoelastic case should be reconsidered. It is also interesting to point out
that under certain conditions it is possible to derive a nonmonotonic kinetic relation.
Relations of this kind have recently been considered by RosAkis & KNOWLES [28]
in a purely mechanical context.

For the kinetic relation developed in Chapter 6, the case of negative velocity
requires further analysis. The model delivers a kinetic relation for transformations
from the high strain phase to the low strain phase, although one should expect, from

a physical point of view, to obtain a kinetic relation for the inverse transformation.
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If this is not possible, then the model should be modified to correct this flaw.
The special kinetic relation was derived using a limit where the nondimensional
parameter w (as defined in Chapter 6) was maintained fixed and € < 1. It is possible

to analyze other limits although these are out of the scope of this work.
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