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ABSTRACT

Over a range of plate thickness, it is well known that the
fracture behavior of flat plates is substantially different from that
predicted by classical fracture analyses, Finiteness of the plate
thickness causes a variety of failure mechanisms to occur, and
qualitétive features of the associated stress and strain fields may
be deduced. It is indicated that both the three-dimensioﬁal nature
of the stress fieid and the plastic deformations will be needed for
an accurate prediction of the thickness effect.

As a contribution to the three-dimensional analysis, an
appropriate elastic boundary value problem is given limited con-
sideration. It is observed that the three in-plane stresses can be
singular, in accord with the two-dimensional results, but the
transverse components appear to be bo'unded at the crack tip.

Equations which include plastic behavior are outlinéd, and
a plane .st'res.s problem is solved using numerical methods. Com-
j_parison with analytical and experimental results is made and found
to be satisfactory. One important result indicates that, compared
to the elastic solution, the intensity of stress at the crack pdint
deci‘eases with load, while that for strain increases., |

The results do not include determination of a fracture
stress, as this further step requires the developmenf of .an elasto-
plastic fracture criterion. GComments on this extension are

included, together with other aspects of future work.
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I. INTRODUCTION: THE PHYSICAL PROBLEM
In structures having high strength/weight ratios, the presence
~of material or mechanical imperfections can reduce the capability of
the strﬁcture to perform as intended. Although large flaws can be de;-
tected and repaired, the possibility of smaller ones which might
trigger fracture must be taken into account., Integrity of the overall
structure therefore rests upon the ability to predict that size and
geometri which car; become critical when subjected to design stresses.

While thé geometry of such flaws is virtually unlimited, it is
pertinent to study a few critical configurations, For example, it is
generally acknowledged that a sharp-ended crack falls into this cate-~
gory. Let us consider therefore a metallic plate under uniaxial
tension containing a crack through its thickness. The plane of the
crack is normal to the axis of load, and the in—planeldimensiohs of
the plate are to be regarded as large with respeict to the length of the
crack. We are interested in finding the level of applied stress at
which the crack will begin to extend. More specifically, we wish to
be able to predict that stress in terms of appropriate material
parameters.

This objective is fundamental to the study of fraéture mechan-
ics, and considerable effort has been directed toward it. A sizable
body of literature has built up, and one may find reports of both theo-
retical and experimental work along these lines. The theoretical
researches have, in the main‘, been based on planar elasticity. The
trend in experimental work has also emphasized the two-dimensional

aspects of the problem, and no small amount of data has been



-2-
reported for several alloys (1),

Experimental work has also shown that the thickness of the
plate caﬁ exert a significant influence on the fracture stress, In
certaiﬁ alloys, for example, the fracture point in thin plates is over
twice that in thicker plates, A few experiments demonstratiﬁg the
thickness effect have been reported, but at present the results are
not regarded as definitive nor is the effect itself fully uﬁdei‘stood.

Typical Experimental Results: Thickness data are usually

céllected by one of two methods. In the first, various gauges of a
given alloy as received from the mill are used to produce a set of
specimens having essentially identical planar dimensions. These
are tested and their fracture stress is plotted agéinst plate thickness.
Data obtained in this manner thus represent the material aé used in
actual structures. The second method involves a single sheet of -
the alloy of at least the greatest thickness to be tested. Specimen .
blanks are cut, and the thickness of each is reduced by some tech-
nique tha;t leaves its metallurgical characteristics substantially unal-
tered, e.g., grinding or chem-milling, This is followed by final
machining to a standard planform, Although no longer representa-
tive of the structural alloy, this set of specimens eliminates, within
the limits of practicality, the influences of variations in composition,
heat treatment, and hot- and/or cold-working.

The data reported by Irwin (2) for several alloys were ob-
tained using the first method. He used centrally cracked sheets and
plates loa.ded in uniaxial tension, and his results are -typiﬂed by a

series of 7075~T6 aluminum specimens ranging in thickness from
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0.016 in, to 1,00 inch., The fracture stress o, is given in terms of

*
a parameter gc, termed the (elastic) strain energy release rate

and defined as
T 2
G, =nolb /E

where be is the effective (half) crack length as corrected for finite
plate width, and E is the tensile modulus of the material., Irwin
plots gc against the reciprocal of the thickness h, as in Figure 1;
we also show it as a &irect function in Figure 2. From these figures
it is seen that a significant variation in 0, occurs over the range of
thicknesses tested. In particular, note that the thickest plates are
su-bs’can_tially weaker than those of intermediate thickness, tﬁinner
material exhibits a strength reduction, and a maximum fracture
stress can be inferred. These same characteristics are exhibited
by>many other alloys as well (see, e.g., Refs. 3-7), and the curve
in Figure 1 is often regarded as a prototype of the thickness effect,
Typical of the second method of experimentatibn are certain
of the data reported by Repko, Joneé, and Brown (3)__and Srawley
and Beachem (4) for two closely allied p-titanium alloys. A summary
of various procedural details is given in Table I, and the fracture.
stress-thickness data are plotted in Figure 3. There is a marked
difference in behé._vior between the two alloys; this would seem to
result from the double-aging treatment used by Srawley and Beachem
rather than the relativelsr minor geometric differences.
% This quantity is deduced by computing the rate (with respect to |

crack growth) at which elastic strain energy is released to promote
growth at the onset of fracture (8), ’
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As in Irwin's data, a thick-plate asymptote is suggested, but
the degradation of strength in thinner specimens is absent, even
down to h = 0,01 in. Indeed there is more indication of a thin-plate
asymptote than of a maximum.* Of more immediacy, perhaps, is
the difference between the two curves in Figure 3._ At low ldad levels
the stress and strain fields local to the crack tips were in the elastic
range and therefore were similar, in spite of the geométric differ-
ences. As load was increased, these regions must have ylelded, so
that the local phenomena prio.r to fracture were controlled by the

‘plastic portion of the stress-strain curve, Although the respective
stress-strain curves for this alloy su.bject to the two heat-treating
cycles are not available, it may be presumed that the double-aging |
produces a slightly tougher material, This increase in abiiity to

: absorb plastic deformation is reflected by the greater fracture stress

of this material at each thickness, as shown in figure 3.

Stress and Strain States: Having examined some data typify-

ing the thicknesg effect, it is instructive next to review briefly sbme
aspects of the stress state local to the ends of the crack, just prior
to fracture; further accounts may be found elsewhere (2, 9). We

shall limit consideration to materials having a monotonic.true stress-
strain curve, thus excluding instabilities such as are found in mild
steel. The faces of both the crack and the plate are presumed to be
stress-free, and close to any oﬁe of these surfaces the remaining

stress state is at most biaxial. At the intersection of any two such

* In other tests on this material using the first method, Repko et al.
found a maximum at h = 0,25 in, '
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surfaces, the stresses are nearly uniaxial. Since the three principa.l‘
stresses in these areas are not all equal, plastic deformations can
be expected providing, of course, the stress level is high enough.
Thus in the vicinity of the crack front and the plate faces,
appreciable in-plane strains ca'n be expected, Since the pla.sﬁc pcr-’
tion of these strains is very nearly incompressible, the transve‘rse
strain {i.e.,, normal to the face of the plate) will be rodghly equal in
magnitude to these, but of opposite sign. Hence a ''dimple'’ is ob-
served at the crack front. In very thin plates, the transverse
| displacements can be of a magnitude comparable to the plate thick-
ness, and a localized neckiﬁg ensues. Under these conditions, the
stress state defies precise analysis — even if there is no crack, In
somewhat thicker plates, however, the transverse displacéments
associated with ''dimpling'' are small enough relative to plate thick-
ness that the strains may reasonably be described as inﬁhitesi.mal.
The transverse stresses, of course, vanish on the plate
faces buf can build up toward the interior. In modera..tely,thin plates,
the magnitude of these stresses will reméin small in comparison to
their in-plane counterparts, which will be fairly uniform tﬁrough
thé thickness.* In very thick plates; however, the tr#nsverse nor-
mal stress can achieve an appreciable magnitude in the neighbbrhood
of the midplane. The three principal stresses will fhen combine to
produce a high level of hydrostatic tension near the midplane, slightly
ahead of the crack front,. | The associated displacements become |

* Fessler and Mansell (10) reached a similar conclusion from meas-
urements on epoxy resin plates using the frozen stress technique.
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more nearly dilatational, in contrast to the situation near the plate

faces where distortion predominates,

- Relation to Frécture: Since .dilatation is essentlally elastic,
its allowable magnitude is much smaller than that of distortion,
Thus in thicker plates an elastic constraint against crack opéning
is generated., If fracture is deﬁnedAas elongation of the original
crack along any portion of its front, it follows that behévidr in the
neighborhood of the midplane is the controlling factor in fracture of
very thick plates. As a matter of fact, it is well known that fracture
in thick plates starts at the' center and propagates toward the plate
faces. |

In very thin plates the deformations are more localized and
more nearly uniform through the thickness, Since considerable
| - working is required in fabricating plates of. this gauge, the material -
cannot withstand extensive deformations, and fracture méy be antici-
pated at applied stresses less than the maximuin. This is evidenced
by the dﬁferences befween Figures 2 and 3 at low valﬁes of h In
very thick plétes the elastic constraint precludes absorption of much
plastic energy, and fracture will also occur at low épplied stresses,
A maximum fracture stress thus océurg at a éhickness for thch the
combination of these two factors is least.* Even if one is avoided
experimentally, the relationship b.etween.fracture sfress and plate
thickness, i.e., the thickness effectl', is intimately associated with
both the elastic and plastic portions of the stress-strain curve. And

in practice this relationship is confounded by the dependence of the

* The interplay' between these two mechanisms was discussed by
Liu (11),
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stress-strain relation on stock gauge and perhaps also by the varia-
~ bility of this relation through the th_ickness.
_ From this brief review of the thickness effect, certain features
are evident:
i) free surfaces normal to the plane of the crack havé a
strong influence on the local stress and strain fields;
i1) complete description of these fields must ultimately
involve both the elastic and plastic behavior of the
material;
iii) the stress-strain behavior may not be the same at all
points of the plate; and |
iv) the fracture process itself can be a function of thickness.
Of thése, the first is true of either an elastic or elastic-plastic
- material, suggesting examination of the extent to which classical
elasticity can account for the thickness effect, While thié- is barely
a fii'st step toward meeting the original objecti-ve, it is decidedly
non~tri§ial and is discus sed in Chapter II.

Further work will ultimately require study of the inelastic
deformations in a three-dimensional body, an area \firtually untouched
in the literature in the sense of solving boundary value probléms. .

It is possible, however, to generate approp;‘iate field equations and
| to examine them in terms of the problem at hand. P;reliminary to

any attempt to solve these equations, a two~dimensional analysis has .
been performed and is reported in Chapters III and IV. The results
are compared to appropriate analytical ana experirﬁental informa-

tion, giving some indication of their accuracy.
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Finally in Chapter V, progress to date is evaluated in terms .

of possible avenues of future effort, While much ground remains to
be covered before the overall objective is reached, it does appear

that the present work may provide an encouraging first step.
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II. ELASTIC CONSIDERATIONS
The objective in this chapter is to discuss the elastic stress‘

field in the vicinity of a crack in a plate of finite thickness. The
boundary value problem is the following: a linear, elastic medium
occupies the domain Ixl< 0, lyl< o0, |z|< h and contains a crack

in the x~z plane. The crack faces, defined by Ixl< b, y = Od:,

|zl <h, and the plate faces |zl = h are free of stress aﬁd cbnstraint.
“Loading is applied on the periphery of the plate Ixl, |yl and'is
givgn by o, = Txy = 0, 0‘y = oo The usual three-dimensional equations
of elasticity govern the behavior of the plate,

The specific field equations to be considered are the Navier

conditions of equilibrium in terms of the displacements u, v_, wi
de/dx + (1-2v) Au = 0
Be/ay + (1-2y) &y = 0 (2.1)
Be./Bz‘+ (1-2v) Aw = 0

where

e = du/dx + Bv/_By + 8w /8z | (2.2).
Poisson's ratio is given by v, the Laplace operator is

A= 9% /0x% + 8% /0y® + B* [0zt . (2.3)

and the stress~displacement relations are, by Hooke's Law,
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o = Ne + 2p Bu/Bx
oy = Ne + 2y 8v /08y
o, = Ne + 2p 8w/0z

(2.4

Tay = p(du/dy + dv/0x)

Tyz = u(dv/0z + dw/oy)
Ty = p{dw/0x + Bu/8z)
Lame's constants A, p are related to v by
= 2vp/(1-2v) (2.5)

The boundary conditions are

IxI< b, y=0% [z] €n

1

xy cy=7yz§0 | (2.6a)

u,v,w bounded
]x‘—poo; o'x=7' = 7 =0
_.Iyl"oo: Ty = T = 0, cy=a (2.6b)
lzl=h; T =T =g =0
XZ

‘ *
providing a more detailed statement of the problem.

Limit Cases: Since the geometry of this problem is essen-

tially planar, it is no surprise that the two limit cases, plane stress

* A more systematic approach might be to consider the plate with an
elliptical perforation, following the pattern set by Inglis (12). The
solution would then be examined as the ellipse shrank to a line, For
the present objectives, however, the statement given above is more
useful. Any difficulties in stating the limit case at the outset tend to
be forestalled by the boundedness condition in eqn 2.6a, Further
discussion may be found in Refs. 9 and 13,
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and plane strain, have received much attention in fracture mechanics.
In both of these cases there is no functional dependence on z, and

Tm = TYZ = 0, In plane stress o, = 0 and no condition is placed on w;

in plane strain w is taken to be a constant and no restrictions are set

for o,+ In both of these cases, the primary result is that the in-plane '

gtresses ¢ o T
x' Ty’ Txy

being inversely proportional to the square root of distance from the

are singular at the crack tips, their magnitudes

crack tip. In particular it is found near the crack tip (x = b) that
o, = o Yb/2r (3 cos 6/2 + cos 58/2)/4 + O(r°)

o = o ¥b/2r (5 cos 6/2 - cos 58/2)/4+0O(r®) } r<<b (2.7)

Tyy = O VB/2T (sin 0/2 - sin 50/2)/4 + o(r®)
~ where

rele x - b+t iy : (2.8)

I

In accordance with the usual relations for these two cases, we have

also that

plane strain: o, = v(crx + cy) = vEVZb?r cos 9/2- + O(ro)
(2.9)
plane stress: 9w/8z = ~ v(ox+oy)/E = -y0/EV2b/r cos/2+0(zx°)

and it is seen that both of these quantities are singular at the crack
tip.
These planar results imply some pertinent questions about .

the problem posed in eqns 2,1-2.6., For example, one might inquire
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whether either of these limit cases might be used to generate the
desired solution. Reference to egns 2,9 indicates that this is not
feasible. Considering the plane strain solution first, it is seen that
the freé plate face conditions in the last of eqns 2, 6b will require |
eventual cancellation of the sy-lngularity in o + ay which indpliés the
destruction of the plane strain soiution itself. The plane stress
solution is hardly better as there is an implied singularify in w at
the crack tip, in violation of eqn 2.6. Indeed the reasoln that the
planar solutions would provide a poor ‘basis for a perturbation solu- |
tion, as it were, is the jump from one to two transverse boundary
conditions in going from two- to three-dimensional elasticity. While
it may be instructive to bear in mind certain characteristics of the
planar solutions, it is important not to involve these resu'.lts.pre-
maturely with a three-dimensional analysis,

- Liocal Stress Behavior: Nonetheless, eqns 2.7 and .2.9 do

raise the question of the singular behavior of all the stress compon-
ents. We can confidently presume such characteristics of the in-plane
stresses, but the nature of the transverse components must be

approached more carefully., From the relation -
B'rxz/ax + a_TYZ/aY + BGZ/Bz = 0 (2.10)

and the free plate face conditions, it is apparent that.both o, and
aoz/az will vanish on the surfaces |zl =h. Close to these faces-
the transverse shears may vary rapidly, while slightly further into
the plate o, will approach its maximum value and the yalues of Tz

and 'ryz will be suppressed., Thus there is some suggestion of a
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bOundary layer near fhe plate faces. The qp.estion, therefore, is
whether the transverse stresses are bounded along the c;rack front,
If this is the case; it follows that elasti;: fracture is largely cgntfolled
.by the in~plane stresses. |

Before examining that point in detail, it is instructive fo éite
. some results of an associated problem treated by Alblas (14). The
‘perforation was circular, but otherwise the.problem is the same.
The work was based on a general theory established by Green (15),
which yields solutions to Navier's equations such that the plate faces
are unstressed.

In connection with the crack problem, interest is céntgred on
the behavior near the perforation through tl‘xe thickness of

i) stress concentration, i.e., the '"hoop stress,''

ii) transverse normal stress, and

iii) transvérse shears.

Variation of the stress concentration factor through the thickness is
shown fof several values of the plate thickneés/hole dié,meter ratio in
Figure 4. For thin plates the planar value of three appears to Be quite |
.réasonable. Thicker plates evince a slight variation from ,cénter to
outéide. As shown in Figure 5, however, the averége value through
the thickness is much less sensitive to variations in thickness, the
deviation being about one per cent. B)_r analogy, the corresponding
stress component near a crack front may be expected to behave as
shown in Figure 4 for thick plateé, falling off to a more uniform be-
havior away frém the crack, From Figure 5, it is suspected that

the average elastic stresses will not change appreciably from thin
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to thick plates.

Substantially the s:;me conclusion was reached by Fessler and
Mansell_ (10) in a report of a photoelastic study of stresses near cracks
in thick plates. Using the frozen stress method, they measured the
in-plane maximum shear stress at a nurﬁber of positions throﬁgh the
thickness in two edge-cracked thick plates (0.854 in.‘ , 1.169 in.),
Measurements made within 0,007 in. of the crack front w.ere‘ stated
to be within the linear elastic range of the)epoxy resin tested. The
data were compared to the planar analytic forms given by Williams
(16) and Westergaard (17) for a related geometry, and the two corre-
lated quite well. There was no appreciable deviation of this correla~-
tion through the thickness, leading the authors to conclude that there |
is "'...no significant variation through the thickness,'

For practical reasons, .Fessler and Mansell did not make
transverse slices through their specimeﬁs to find the naturé of the
corresponding stresses. However, Alblas has given some informa-
tion on the variation of the transverse normal stress, and this is
reproduced in Figure 6 for v = 0, 25, Predicté.bly this stress achieves
greater magnitudes in thicker plates, The stress gradients cio not
chaﬁge much with thickness as may be determined by mapping the
curves of Figure 6 on to one another, It might be expected that the
" magnitude at the midplane would assume thé plane strain value, at
least for moderate thicknesses. Were this true, however, the average
value would approach a plane strain asymptote fairly quickly. As
rhay be observed in Figure 7, this limit is not achieved for any of

the cases reported, The inference for the cracked plate is that o,
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does not achieve its plane strain value along the crack front, rather
it will remain finite for finite plate thickness. This inference is
reinforced by recalling that the state of plane strain requires the
plate faces to be constrained against transverse motion. It is this
constraint which induces the singularity noted in the first of ecins 2. 9.
In the finite thickness plate, however, the only constraint available
is the material in the space 0 < z < h, and it does not seém iikely _
that this will be equivalent to the rigid constraint of plane strain
for any finite value. of h |

Further Computations: Alblas' presentation is not conducive

to inferences concerning the transyerse shears, but we may employ
Green's method to explore the matter for the crack problem. This
has been done for a slightly different problem than that se£ 1n eqns
2.1-2,6, and the details appear in Appendix A. The procedure con-
sists of finding Green's representation of the displacemgnté- and
stresses in terms of circular cylindrical coordinates centered atv
the middie of the crack front, Since the plate faces aré stregs-free,
there remain tb be found a suitable set of functions of the polar co-
ordinates {(r,0)., These are assumed to be product functions ';vhich
are examined for their Qingular behavior as r - 0. The condition
of bounded displacements is invoked, and the resulting expressions
- for stress are then examined, The res\ults-may be di'vided into two
cases:

i) h=0o0r v = 0: In either of these special situations;

no transverse stresses are induced and the solution

is as shown in eqns 2,7,
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ii) h# 0 and v # 0: In this more general case, it is

found that the displacements are described by

u,v = O(rp-l)

r—=0; p # integer 2,11)
w = O(rP)

and in the event p = n = integer no singularity occurs.
The boundedness condition requires that non-integer

P~ 1; as a result it is found that
-2
o, 0, 1. =0(P
x’ Y’ xy ( )

— p—]’ — ) 4
Tz’ Tyz = O(r" 7))r—=+0; p # integer; p> 1 (2.12)

o, = o(r?)

The first case requires no comment as it is a well-known property of
planar analysis. In the second case, the indication is thé.t v?hile the
in-plane stresses can be singular, the transverse stre.éses are regular
along the crack front. Tﬁus the relative magnitudes of fhe .in—plane
and transverse stresses, on an elastic basis, aﬁpear fo be far differ~
ent from those discussed in the previous cha.ptér, and such phenomena
as a large hydrostatic tension at the midplane are px_'ecluded.

Elastic Fracture Criteria: One further aspect of three-~

dimensional behavior vis-a~vis planar results is worth noting at this
point., We refer to the relation, if any, between elastic fracture
criteria and the observed thickness effect, Disregarding many of

the specialized and approximate conditions devéloped on more or
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less ad hoc bases, we are left with Griffith's theory of fracture, This
has the advantage of being equally applicable to plane stress and plane |
strain conditions. Griffith's classic paper (18), which has provided
the fouﬂdation for much. of the modern work in fracture mechanics,
establishes the requirement that the potential energy of the cfacked
plate be cons erved during an infinitesimai growth of the crack. In a
recent re-examination of the details of Griﬁ.‘ith's theory (19); it was
‘determined that the uniaxial fracture stress in an infinite elastic plate

containing a crack of length 2b is given by

o = YI6py /b (2.13)

where vy is the specific surface energy of the material. This value is
precisely the same for conditions of plane'stress and plane strain.

~ While it is likely that a fully three~dimensional form of this criterion
wouid exhibit some dependence on thickness, the limit cases of zero
and infinite thickness will give equal values. This is in sharp con-
trast to fhe behavior suggested in Figure 3, and it is cbnciqded that
the thickness effect in perfectly elastic media bears li_ttie relationship

to that in metals capable of plastic flow,
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III. INELASTIC BEHAVIOR
As.the next step in our examination of the thickness effect,
we shall outline the derivation for equations describing combined
elastic-inelastic behavior., The development used hgre differs from
that usually found in texts (see, e.g., Refs. 20 and 21) by the >absen'ce
of geometric interpretation. Actually this view is more nearly re-. |
lated to that adopted by Craggs (22). |
The medium is taken to be an initially,isoti'opic, homogeneous
continuum, and deformations are assumed to produce inﬁnite‘simal
strains. Inertial and thermal effects are excluded, as are body
forces. At some set of equiiibrated surface tractions, there will '
be a stress field O’ij and strain field "ij throughout the body.% Let
the loading be increased by a small amount; in the absence of insta-
. bilities such as buckling or rupture, there will be corresponding
increases in Gij and eij" These may be viewed asyhaving oécurred
with time, so that we are lobking for a constitutive relation between
the ratesA 6ij and éij’ és influenced by the current values of Gij and
Elj at each poiﬁt.' In this context, E’ij = dsij/dt etc., and the loading
rate is sufﬁéiently low to avoid dynamic phenoména in the ofdinary
sense.

Constitutive Equations: /Each of the strain components is

divided into elastic and inelastic parts, i.e., recoverable and irre~

coverable portions, viz.

* It 1s assumed that the reader is familiar with Cartesian tensor
notation. Latin indices have the range 1,2,3 and commas denote
partial derivatives. Generalization of this development to other
coordinates should be straightforward
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. éi(;) + egj?) (3.1)

Me

as indicated by the superscripts. The elastic part must obey the gen-

eralized Hooke's Law given by
.{e) _ . . ,
£ = [(1+ v)cij “ VO 6ij1/E (3.2)

In this manner the limit case of no inelastic behavior is Built' into the
final constitutive relations, ,
The plastic part is'assumed to follow the Prandtl-Reuss flow ’

rule: The plastic strain rate is proportional to the deviator of stress.

8... Thus

ij
. (p) _ ¢ '
&5 = A 54 (3.3)

"where A is a compliance rate and

535 = % " Okk 6ij /3 (3.4)

if )\ Were.taken to be a constant, then éqns 3.1, 3.2, aﬁd 3.3 would
be analogous to the equations for a generalized two-elgment Maxwell.
model in linear viscoelasticity, as noted in Ref. 21. More generally
\ is a function of the stress state, the only restriction breing that it
is a scalar function so that the dependence on stresses must be ex=~
- pressed in terms of their invariants.

The primaryv information contained in A is the stress-strain
behavior of the material, which therefore must be expressed in a
form compatible with eqn 3.3, This condition is convé-niently met

by performing some tensor operation on eqn 3.3 to reduce its rank
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from two to zero. For example we may multiply this equation by

itself giving

YARKR
1] 11
Vo1 %1

The form of eqn 3.5 suggests that the plastic behavior of the material

- (3. 5)

should be represented in terms of the octahedral stress and étrain

defined by
'roswsijsijﬂ o (3.6)
s(()p)E ng)eg)/3 . (3. 7)

These quantities are to be functionally related, Thus we assume

- experimental results can be put into the form
(p) _ S
€y = ﬁ("ro) | (3.8)

In order to utilize this, some manipulation is required; First, eqn

3.7 is differentiated to give
d sgp)/d sg)) = eg))/hgp) | - (3.9)

Dividing and multiplying the left-hand side by dt and inverting, we

obtain
e /el =5 [Pl o) a0
Multiplying eqn 3,10 by itself yields

e e /2P el - s e
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so that

(¢}

. Vég’) ég)/:& (3.12)

Assembiing eqns 3.3, 3.5, 3.6, and 3. 12, the Prandtl-Reuss flow

rate becomes

e (p)
(P o o (3.13)
ij T ij .
o
From eqn 3.8, however, it is seen that
aclPl/ar = 1/2M(r) =8 (r) (3.14)
o o] T'o o . : °

| where ZMT is the tangent modulus of the plastic octahedral stress~
strain curve, in analogy to the elastic value 2p. Egn 3.14 may be

put into the form

e o sam r)  (3.15)

where from eqn 3.6
T, = sij,_éij/:-; Ty . - (3.16)

With egns 3.15 and 3.16, the flow rate may be written in its final

form

(p) . 247t il
ij 2
675 My(r)

»
E

(3.17)

The constitutive relation between the stress and strain rates thus

becomes

éijzﬁijuau'  {3.18a)
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where

Dy = SE 5y by t By 8y) “ g 8
(3.18b)
. (o, J'cpp613/3 O ~% 61:1 /3) '
2Mp (9 n Oy mn/3) n~° samn/3)

Several features of eqns 3.18 are to be noted. The plastic portion is
written in terms of octahedral quantities, a result of the operation
used to find eqn 3.5. The same final expression would have obtained
_ had the material been assumed to obey the Mises-Hencky jrield criter-
ion. To that extent this tensor operation and the Mises-Hencky
criterion are equivalent. Presumably other yield criteria may be
reproduced by insertion of appropriate tensor operations.

~The indices of ﬁijkl have the proper symmetry, and the coef-
ficients may easily be generalized to .orthogonal curvilinear coordi-

nates, In the case of purely elzistic deformations (i.e., 1/2M,,~0),

T
the usual generalization of Hooke's Law is recovered, as required.
As the material deforms plastically, the stresses induce locally both
in}xomogeneity and anisotropy. The first is a consequence of the

non-constancy of 40 1k over the body; the second may be seen, for

example, from

O 0 %0 (3.19)

1111 2222 3333

or the coupling between normal strain rates and shear stresses. The
‘ degree and extent of these induced properties depend upon the loading

history as well as the stress-strain curve. For example, if a bar
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were extended by some tension ¢ and then twisted by a shear T, the
value of ‘Oijkl would be different than if the loadiﬁg segquence were
reversed.
Finally it may be obsefved that because .0151(1 involves no

stress derivatives and there are six relations implied by eqns> 3.18,
this relation does not limit the choice of possible strain increments,
that is, it is independent of equilibrium and compatibilitf reQuire.-

ments, discussed below.

Strain Energy Density: Eqgns 3.18 may be used to compute

the strain energy density rate, defined by

¢

W= Gij €y - (3.20)
Perforfning elementary operations, this becomes
L ' - . :
W= [ (l+v) o5 bij-v o4 cjj] /E + 38 (r,)) 7,7, (3.21)
This form is readily integrated to give
o
_1-2v 243 -2 g '
W = —E—E—- (O'ii) + 4H 'To + 3 N (§) §d§ (3. 22)
o K :

Tiw,‘ first two terms on the right of eqn 3.22 represent an elastic or
recoverable portion of the strain energy density, aﬁd may be regarded
as dilatational and distortional, respectively, in the usual sense. N
The lasti term gives the inelastic or irrecoverable strain energy
density. Because there i's no plastic dilatation, as implied by eqn
3.3, the energy is distortional only and accumulates 'accbrding to

the form of ﬁ('ro). Further comments on this function may be foupd

in Appendix B.
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Proportional Loading: Eqgns 3,18 are in a sense differential

«quuations in t, but cannot be integrated in their present form. Under
very special conditions, however, this operation may be performed
to provide a functional relation between the total strain and st;‘ess.

We write eqns 3,18 in the alternate form

o 1+v o)

eij = —E—- ij + 'ro sij (3. 23)
where the strain rate deviator is

éij = eij - &1 Bij/?: | : (3.‘24)
and appropriate summation of eqns 3.18 gives

. _1-2v . '

fxk T TE Ok , , (3.25)

Introducing the condition that each stress component is represented

as a product of a scalar function P and a base state of stress such that

o,., = B o?
ij ij .
(3.26)
o 2 Q
iy~ Py
Wé may rewrite eqn 3.23 as
14v o 3‘03 (p)
= 2V 0 g =P
éij- = 6sij+ - £ (3.27)
Integration proceeds directly, giving
4 {p)
= | 2TY o 0
eij = ( = ﬁ + TQ ) Sij
o - (3.28)

(P
_{ 1tv +.°
= (’ET' T ) B4

o
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The factor in parenthesis in the second of eqns 3.28 may be inter-
preted as follows: The first part, (1+v)/E is the ratio of elastic
octahedral strain to octahedral étress, as shown in Appendix B. The
entire factor thus represents the ratio of total octahedral strain to.
octahedral stress, that is, the inverse of the secant modulus éf the.

octahedral stress-strain curve. Hence eqn 3.28 becomes simply
eij = Sij/ZMS (3.29)

Egns 3,26 indicate that the stress components at each point remain
in a fixed ratio to one another throughout the loading cycle'; this is
frequently termed proportional loading. Referring to eqns 3.28, -the
limit agp)* 0 implies that the base state is the elastic stress field

for which

(3. 30)

_ 1ty
—-—B-E- si\j

Substituting this into eqns 3.28, find
- g P

- o 0
€45 7 (1+ (“"‘1+v7'r° ) B ®4j
(3.31)

= (k/Mg) B egy

In a recent report of several experiments on cracked metal plates
having photoelastic coatings, Dixon observed a relation between his
. * '

data and planar elastic results of the form

% Greek indices have the range 1,2.
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1
2

—(E/E) ﬁ | (3.32)

where E is the secant modulus of a uniaxial stress-strain curve (23).

Agsuming this carries over to the strain deviators, we may make the

‘associlation
1
plu/M ) = (E/E_)? -~ (3.33)

Using the definitions of octahedral stress and strain, it may be shown

that

1 1

T = 1-2v + g - {3.34)

8 8 .

from which we have

B=v1-2v + 2(1+v)p./3Ms (Ms/p.) (3. 35a)
and

R B
Blyet = M) = (B /E) o (3.350)

It would, of coﬁr'se, be témpting to use either of eqns 3. 35 in treating
even two-dimensional crack problems, particularly since planar
elasvtic solutions are so readily available. The primary difficulty

is that proportional loading would have been invoked, aﬁd the're is
reason to believe that thié is not reasonably accurate. Looking, for
example, at the stresses along the line of crack prolongation in an

infinite plate, we find from Inglis' solution (12)
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G;/Ez lxl/\/xz - b% -1
0‘;/—0’-3 Ix|/Nx* - b? IxI>b, y=0 (3.36)
'r}fy/'c?zo

where O is the applied uniaxial tension. Close to the crack, the
stresses will have exceeded the elastic limit so that, from ecin 3.2,
they will actually be less than their elastic values. Since the load
tran.smitted across the x-axis must balance that whi‘ch is applied,
there must be some increase of stress outside the plastic ione. This
redistribution of stress in the elastivc zone is precluded by the impo-
sition of proportional loading, and equilibrium of the plate will be '
upset. As the load 0 increases and the plastic zone becomes larger,
this ‘dis‘parity will become more pronounced. While we have made
no estimate of the magnitude of this difficulty, we do suspect that it
may be significant, particularly in the case of plates having finite
width.

In additioh, the influ.ence of loading history is excluded by
thé ;ssumption of proportional loading. There is, for example, no
stress-induced anisotropy in eqn 3.29 as was observed in eqns 3.18.
Even without knowing the magnitude of this effect on the stresses, it

"is of particular import in computing fracture criteria, as discussed
below. | |

Remaining Field Equé,tions: Two further conditions are neces-

sary to specify completely the field equations, First, équilibrium of

the forces is guaranteed by
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' . = O ) ’ *
013,3 _ (3.37)
Since this is homogeneous in stress, it follows that

5,. .= 0 . .
GiJ.J (3. 38)

Note that if body forces had been included in eqn 3.37, they would not
appear in eqn 3.38 had they remained constant during the loading
cycle. |
The second condition is the familiar requirement that the
strains are compatible, that is, that they may be derived from the
displacements ;. For infinitesimal strains this requirement is
satisfied by the relation F

1 '
F'ij = a(ui,j + uj,i) (3.39)

from which it is seen that
£y5 = 4, .+ 4, ) j (3.40)

Inserting eqn 3,40 into eqns 3.18, we have together with eqn 3.38
nine equations in the six stress rates and the three displacendent
rates., At any instant of time these equations are to be integrated
with respect to the spatial variables, the result being rates of the

- nine dependent variables. Because these equations are in a sense
extensions or generalizations of the differential equations of classical
elastostatics, it is expected that boundary conditions must meet the
same reqﬁirements used in the linear theory. In this connection,

it might be noted that the constitutive relations have not, to the

author's knowledge, been inverted to give {rij as a function of Eij
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and €4 (or {xi and ui). Thus it is doubtful that a general displacement
or mixed boundary value problem can seriously be contemplated. We
do not, of course, rule out the possibility of another flow rule more
suitable'to these two classes of problem.

Once the stress and displacement rates have been found, they
‘must bve integrated with respect to time, subject to suitable initial
conditions. An example would be that all quantities are zero att = 0. ;
While such procedures could be discussed in much greater detail, the
character of the field equations would seem to preclude serious con~-
sideration of all but the simplest boundary value problems, for
example, those allowing proportional loading. For other problems,
one must resort to alternate techniques such as numerical analysis,
and this is discussed in the next chapter.

Comment on Fracture Criteriat In spite of the difficulties

iﬁvolved, let us presume for a moment that we had a solution to the
proble‘m of a cracked plate for a given set of E, v, and‘N(‘To). The
- question then arises, how would this solution be used td deduce a
fracture criterion ? There is, unfortunately, no clear: answer and
in fact, this matter is the subject of considerable study,

In a broad sense, two types of condition are avaiiabl,e. The
first is based on the concept of limiting values of the various field
. quantities. For example, the inference of an elastic constraint near
the middle of the crack front suggests as a criterion that the dilata-
tion may not exceed a certain value. Similarly, one might argue
bounds on’ maximum stress or strain, distortion, energy density, etc.

In any event, criteria of this type pertain to phenomena at a point,
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presumably at or near the crack front. As such, considerable infor-
mation is required both as to the stress and strain fields generated
and the limiting behavior of the material,

| If fracture is initiated at a point, then this approach ultimately
will provide the needed criteria. The difficulty at the present‘stage
of 'devélopment is that the sources of the required information are
not entirely compatible. The knowledge we have of the sfre ss and
“strain fields is usually based on the macro viewpoint, i.e., continuum
mechanics. Limiting material behavior, on the other hand, is often
described in terms of microscopic phenomena, where the continuum
model is least applicable. Philosophic implications éside, the oper-
ational problem becomes that the information required from each
source is not expressed in common terms. Thus considerable work
is needed before this approach can be expected to provide accurate‘
fracture criteria for arbitrary crack geometries,

- The second type of condition deals with stability of the crack
geometry, considered as part of an overall system. In- the limit case
of clas sicél elésticity, this would be the well-known Griffith criterion
(18). The primary requirement stems from the first law of fhermo—
dyn#mics and is thus a necessary condition for fracture. It is that
'the potential energy of the loaded plate, taken as a thermodynamic
',vsystem, remains constant during an infinitesimal exténsion of the'
crack. : The quantity found is the critical, or fracturé stress.,

Note carefully that this does not mean equality of enei’gy of
two plates similarly loadéd but having crack lengths diﬂ'ering by an

infinitesimal amount. We are required to consider a single plate of
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fixed crack length and loaded to a stress level regarded as a candidate
for the fracture point. Next we must assume the new crack shape
generated if fracture did occur. Allowing for the associated stress
relaxation in the neighborhood of the crack front due to its extension,
the potential energy is computed and compared to its valué prior to
the 'assumed crack growth. If these two quantities are equal, an
instability has been achieved and fracture will ensue. |

In distinguishing between the comparison of two plates that
have traversed the same load path, and one plate which has been sub~
jected to a two-part load path, we bring into play the rble of strain
history.* A linear elastic material, of course,. is insensitive. to
history, and this distinction vanishes. On the other hand, if a mater-
ial is iﬁ fact history-sensitive, but this feature is excluded in analysis,
a sgbséquent energetic fracture criteria may be subject to gross 'errof;
possibly much larger than that associated with the stress ahd strain
fields prior to crack extension. Thus the assumption of proportional
loading discussed above is suspect. |

Some ihdication as to the magnitude of this discrepancy may
be observed in the trial computations réported By Gerberich. (25) and
Swédlow and Gerberich (26). In this work, a series of experiments
'were performed to deduce the plastic strains in a series of cracked
metal plates having different crack lengths. These data were used to
estimate the plastic strain energy as a function of crack length and
load. The rate of change of this quantity with respect to crack length

was then computed and compared to the elastic strain energy release

* In a different context, this point was discussed by McClintock (24).
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rate (gc) normally used for the same alloys. Since these two rates
are required to be equal at the onset of fracture, their coﬁaparison
appeared to be justified. It turned out, however, that the estimates
in Ref. 26 were one or two orders of magnitude greater than the
appropriate values for gc. This comparison perforce excluded the
inﬂuehce of loading history as discussed above, resulting in substan-
tial discrepancy.

| Thus an energetic fracture criterion, like one based on limit-
ing values of local quantities, requires both the availability of the
stress and strain fields generated and some presumption of the mode
of crack growth. Knowledge of material behavior, beyond that con-
tained in a stress-strain curve, is also needed. It is anticipa:ted that
considerable effort will be required to bring these two typesb of condi-
tion to a satisfactory stage of development, to say nothing of exploring
their similarities. In that knowledge of the stresses and strains is a
prerequisite for applying any of these conditions, the remainde‘r of
this presentation is directed toward the performance of the appropriate

analyéis .
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IV. A PLANE STRESS CASE OF E;ASTO-PLASTICITY

Because of the importance of plastic flow, it is pertinent to
explore the procedural difficulties that might be encountered in a
three-dimensional elasto-plastic analysis by attacking an es septial‘
preliminary problem. Thus we consider next two—dimensionai planar
behavior, a limit case of the theory outlined in the previous chapter.
In addition to preparing for future work, results of this pi‘obiem may
be compared to available experimental information, thus providing
some degfee of evaluation of the basic theory.

Formulation: The two limit cases of plane strain and plane

stress are defined in a manner consistent with their elastic counter-
parts. Common to each is the requirement that the transversé shears
vanish and that all dependent variables are functions of the pian-ar
»c}oo;dinates only. The transverse normal strain rate vanishes in
plane strain, while the transverse normal stress (and its réte) must
be zer‘o for plane stress.

The appropriate relations for plane strain may Be
deduced from éqns 3.18 with i = 1,2, 3 interpreted as x,y,z, respec~

tively, and more familiar notation, as .

£ =€ =£ =0

XZ vz z

T =T =7 =T =0 (4.1)
XZ X7 vz vz

9/0z =0

* These two states have the usual association with ''thick'! and ''thin'’
plates; in the case of vanishing thickness, however, one must be care-
ful to distinguish between the two types of behavior depicted in Figures
2 and 3, respectively. ,
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As a result

(0. +c -20 ) E
X v 2

[2v + (20_-0_-0_) ]3¢
S 2772 M..(T_) x
o T'o

(o +GX-ZGZ)E
b4 (4.2)

+[2v + (20 -0,-0_)
y 272 Mo (T) Y
o "T'o

(o0 +o_-20 )E (20 -0_-0 )% .
+27xy"xzy z -"rxy-[2+, zZ X V}&Z;o
2
970 MT(TO) 277’0 M’I‘ ('ro)

Because eqn 4.2 is a separate condition for &z, it requires integra-

tion with respect to time concurrently with solution of a pléne strain
boundary value problem. This procedure gives éz which is 'required
fo;vevaluation of T, used in treating the problem itself. It should be

noted that in the event v = 3, this relation reduces to

[

&z = (&X + &Y) : | | (4. zg)

implying a homogeneous, linear relation between O oy, and o,
Although this latter situation is far more convenient from a computa-
tional standpoint, it is not clearly established as appropriate to crack

problems.,

Plastic plane stress is defined by the relations

Xz yz
T =7 =T =7 =g =¢g =0 . (4.3)
Xz Xz yz Yz z z »

89/9z =0

and it follows from eqns 3.18 that
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- v . (cx+0 )%0 -
T E O oy (-8
The in-plane constitutive relations become*

(20 ) )7'

¢ = (o, -va)/E+ = =
o T'o

(20 -Gx)'i'o o
EY = (GV - VGX)/E + W (4.5)
i = (l+v) T /E + == "o
xy v 2T MT

where .

- z
T, = \{Z(cx o o‘Y + O'Y + 37'xy) /3

(4. 6)

N

To

[(Zcx-’cy)cx + (20y~qx) L 6'rxy'1'xy] /97,
The equilibrium equations are

, qu/ax + _aTxy/'Sy =0
- (4.7)

a-}xy/ax + aa}',/ax =0

and compatibility is satisfied by either eqns 4,8a or 4.8b:
éx = 94/0x |
_EY = ov/oy {4.8a)
| sty = 9a/dy + ﬂv/ax

% These refer to plane stress; relations for plane strain are easily
derived, but must be solved in conjunction with eqn 4.2 as noted.
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[y 2. 2 - 2 e = )
aex/ay“- + 9 sy/Bx 20 axy/axay 0 (4. 8b)

and the usual single~valuedness of the displacements.

Nature of the Equations: Eqns 4.5, 4.7, 4.8, and the associ-

ated definitions complete the field specification for the stress-and
strain (or displacement) rates, providing the current values of these
quantities are known, Regarding the rates as dependent %rariables
dﬁring the first step of vsolution, we must solve a set of six (or five')
linear, first-order partial differéntial‘equations with non-constant
coefficients. The second step of solution requires integration of the
same number of linear, first-order ordina;'y_ differential equations.
In both steps the equations are coupled.

In the sense that the equations of elastic plane stresé form
an elliptic system, it may be shown that the equati’ons for the ela,s"co—'
plastic problem are also elliptic providing ZMT/E does not vanish.,
This éondition excludes the cases of rigid-plastic and elastic-perfectly
plastic flow, discussed in Appendix B. In the event thé,t either of
these cases is'to be treated, special relations must be derived, as
the elliptic nature of the equation can be destroyed.

Introduction of a Stress Function: Limiting consideration to

suitable behavior of ZMT/E, introduce a stress function in order to
.compress the problem into a single field equation. The elasto-plastic

analogue of the Airy stress function and its rate are thus defined by

= 8% x/0xdy

~3

= 5% 2, = g 2

o =93 X/0y? ; gY 9% x/0x* ; y
(4.9)
s . 2. » | - .
6= 8% % /oy* i oy = 9%x /ox? .; Ty = ~8% X /[oxdy
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The existence of X and X thus insures equilibrium of the stresses and
their rates. (It is implicit that the necessary derivatives exist.) The

octahedral stress and its rate become

=3
M

1
L= VB AV 0 /3 - (83 /033 ) (02 X/0y% )+ (8% foxdy) &

o ¥
"

{(0% x/0x> —sz/s) 9% X /ox? +(éz X/ 9v* -vzx/s)az)z /9y%  {4,10)
2(9% x/0xdy) (8% X /oxdy)} /37

and the constitutive equations may be deduced from substitution of
eqns 4.9 into eqns 4.5. These are then inserted into the éompatibility
condition, eqn 4.8b, to produce the requisite field equation. This is

shown first in the form

v ).( [ZM G.ﬁ'Yﬁ ,ﬂ.ﬁ] =0 ' v ' v(4*11a)

where
. ‘ A 2 2 -
Sapys =L, a5~V X 840/3) (X, 45~V X 8,5/3] /37; (4.11b)

In the event of no plastic flow, E/ZMT = 0 and eqn 4.1la becomes the
fa.;:ni_liar biharmonic equation of planar elasticity. -Loading is propor~
tional, and X may be replaced by X. As E/ZMT assumes non-zero
values, however, additional terms are introduced into the equatioﬁ;
| providing this ratio possesses sufficient derivatives, there is a
smooth transition from purely elastic to elasto~-plastic flow.

Eqns 4.11 may be written in the alternate form, linear in X s

Bapye .apvs " Pagy X,opy T CapKap™ 0 (1)
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where
Aaﬁy& = 60ﬁ 6y6 + Eso.ﬁyﬁ/ZMT

oy T Rapes ez

Cap T Papys.ys

even though the field equation remains non-linear in X.

Solution Techniques: Having written the field equations for

plane stress both as a set of simultaneous equations and a ‘single
equation, it is in order to review briefly certain solution fechniques.
Due to the nature of the equations in the rates of each variable, th‘e
existence of a general solution in the sense of either the Michell or
Kolosoff-Muschelisvili representatioﬁs is remote. Even for special
forms of the modulus MT’ such as a constant, the fact that i}: isv a
.scala:_c factor in Aaﬁvyﬁ iqdicates this approximation is not p‘artiéﬁlarly
useful. |

Thus if an arbitrary boundary-value problem is to be solved,
recourse must be made to techniques other than analytical. ‘Usually
iﬁ splid mechanics, such techniques fall into one of two groups. The
first is based upon an integration over the body, and the second in-
volves considera’cién of the body in discrete sections . Typical of the
first method are variational procedures, in which some part of the
functional dependénce being sought isassumed. Pursual of thé approp-
riate variational principle leads to field equations of reduced order
or dimensionality, or both. In effect, the original problem is averaged

over its domain so that, for example, a partial differential equation
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is transformed to an ordinary differential equation.

The strength of this technique is its utility in effecting a sub~
stantial simplification of the field équations. From the form of, say,
eqns 4.11, a considerable portion of the functional behav:io::f of X = .
x(x,y,t) would have to be aséumed, if we are to take full advax;.tage
of variational procedures. Unfortunately, we do not now possess
sufficient understanding to make these assumptions on a meahingful
basis, and so this approach will be deferred until further knowledge
is developed, |

In using the second technique, one abandons é continuous
description of the dependent variables; rather the objectivg is to
establish their values at a finite number of points in the domé.in.

This mé,y be effected in one of two ways. In the first the continuum
is replaced by a set of elementary structures, each of which occupies |
a small but finite area. These finite elements are analyzeci sepa-
rately acdording to certain postulates, €.g.y the stresses in each
are constant. Requirements of kinematic and static equilibrium
are then imposed, leading to a set of linear algebraic .equations for
the forces and displacements associated with each element. |

| The second method is directed toward‘a determination of
the dependent variable, as though its analytic value were available.
It is assumed that the dependent variables at each point of interest
may be represented by a Taylor series expansion in the neighboring
region, These expansioné are used to deduce approximate expres-
sions for the derivatives appearing in the field equations. With this

substitution, the ''finite difference'' form of the field equations is
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applied at each point in the domain, ultimately generating a set of
algebraic equations, as above,

The primary difference between these two methods lies with
the model each is designed to treat. Finite element methods effec~
tively replace the original equations by approximate ones whiéh are
solved. exactly. Finite difference methods provide an approximate
solution to the exact field equations. As the discrete seétiohs of the
body become finer, it is expected that both methods Qill yield
results apprbaching the analytic solution. In this sense, it would
appear that there is some correspondence between these two methods,
-but so far as the author is aware the pfecise nature of this relation~-
ship has not been settled, Both methods have been used to solve
significant engineering problems, and there seems to be no clear
;heqretical Bas_is for preference of one method over the other in re-
gard to individual problems. The choice usually stems froi’n more
pragmatic considerations,

| The crack problem constitutes a severe test fof either method,
on a number of counts. Referring for example to the case of elastic
deformations, it is known from analytic solutions {12, 16) that the
strésses are singular at the crack tip. In addition to the gradients
.associated with this variation, there are severe gradients elsewhere
in the plate which cover a larger vicinity than that iﬁmediately local
to the crack 1;ip.’°= Thus the arrangement of finite elements or mesh
points for finite differences can affect the accuracy of solution.

In addition, two further difficulties must be overcome before

* See, e, g., Figures 2~11 in Ref, 9.
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finite differences can lead to satisfactory solution. As noted above,
the stresses are inversely proportional to the square root of distance
from the crack tip. The associated functional behavior of the Airy
stress function is such that it does not possess a Taylor series ex-
"pansion in any interval which includes the crack point, Since ;atandard
finite difference expressions presume this condition to be met, their
use is precluded in the vicinity of the crack tip. Thg exté,nt to which
this single factor can affect accuracy of solution is illustrated by
means of a simple'example in Appendix C.

Beyond this obstacle, there is also the fact that thé displace-
ments, strains, stresses, and stress function have a branch cut
coincident with the crack.‘ Thus, for example, using coordinates
centered on the crack tip, X(r,0) #X(r,0 %£27). In that fiﬁite differ-
ence expressions for mixed partial derivatives include peoints cover-
iﬁg_ é finite region, use of such expressions is prohibited WHerever
the associated region encloses the crack tip.

Numerical Results: It is not intended here to enter into an

extensive discussion of numerical techniques, as there exists a con~
siderable literature in this area, Rather the objécﬁve ig to present
the work to date in analyzing the elastic plastic flow in a cracked
plate, according to the plane stress equatiovns listed above. Two
. major attempts have been made on this problem, one involving'
finite difference techniques applied to eqns 4.12a and 4.12b and the
other using finite elements. The results of the first were mixed:
near the crack the solution suffered from the difficultiés outlined

above, while further away results were quite adequate. Using an
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éLpproach of the type outlined in Appendix C, local improvement of
the solution appears to be tractable, although development of special
methods may be required.

"fhe second effort, performed jointly by Dr. W, H. Yang and
the author, has met with greater success. The problem selected for
analysié was based on the experimental data obtained by Gerberich
(25) on 2024~O> aluminum. The test coupon was 3.0 inches wide and
12,0 inches long, .and contained an internal crack 1.0 inch long,
(Figure 8.) This plate is appro#ima‘ced by a 3,0 X 4.5 inch rectangle
filled by 348 triangular elements having 200 nodes (Figure 8). Thé
stress-strain curve, shown in Figure 9, is represented in terms of
ﬁhe modified Ramberg-Osgood formula, Appendix B. The analysis
required a generalization of the direct stiffness method (27) based
on eqns 4.5 and 4.6; procedural details are reported separately (28).

" The plate was loaded to 13,000 Ib/in® in 26 separate incre-
ments, the first of which (2300 lb/inz) brought the most highly stressed
elément just above the p‘roportional limit, Loading schédule_ is given
in Table II. Step size was reduced to 200 1b/in2' and was allowed to
increase gradually to 500 lb/inz. Following each load increnient,
the stresses, strains, displacements, and energy densities for each
node were printed; a total of 1.1 X 105 pieces of data were computed.

It is anticipated that these will be made available separately (29);

selected results pertinent to fracture mechanics are presented here.

* Whereas normally, and in subsequent problems, this complete print
out would not have been required, the pioneering nature of the analy-
sis for this first problem dictated this prudence.



-43-
There are two convenient modes by which this presentation can be
made. One is the spatial distribution of a given quantity at a fixed
load, and the other is the variation of a given quantity at a fixed point
as load increases. Since the material behaves elastically during the
first load increment, it is useful to compare the numerical data to
certain well-known analytic results, using the first mode. During
successive load increments, however, the author has found it instruc~
tive to examine behavior primarily by means of the second mode, so
as to emphasize and study deviation due to plasticity.

As an indication of the accuracy of this method, Wel may look

e
first at the distribution of o, and O‘Y along the x~axis in comparison .
]

to the Inglis solution for an infinite plate (12). These are given in
Figures 10 and 11, It is seen that the agreement is adequate, except
perhaps just behind the crack point. It should be borne in mind,
however, that the y coordinate of these points is comparable to their
x~coordinate and therefore they cannot be regarded as close to the
x~axis.,

Similar plots could be shown for the strains, but inasmuch as
* Actually, the computer program in its present version does not
give stresses or strains at specific points. Instead these values
refer to an entire element and thus represent an averaged value over
the area covered by that element. Since the elements do not straddle
the x-axis, the values to be reported refer to points slightly above
the axis. We have taken these points to be at the centroid of each
triangle, the justification being agreement with analytic results. As
pointed out by Percy et al. (30), other representations might be more
consistent with the spirit of finite element methods. In our case,
however, the resolution of meshes seems to be sufficient so that use
of point values is adequate for our purposes.
#*% While more precise comparison could perhaps be made with one

of the finite plate solutions recently reported, e.g., Ref. 31, the
Inglis solution is sufficient for evaluation near the crack.
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the elastic strains and stresses are linearly related, the same degree‘
of correlation is to be expected, Of more interest perhaps is the dis-
tribution of strain around the crack point as given by contours of the
difier'en.ce in principal strains. These are shown in Figure l2a and
the correspon&ing curves from the Inglis solution are shown to the
same écale in Figure 12b. Again it may be seen that reasonable
agreement has been achieved,

Stresses:; From this information, it would appear that the
finite element treatment is acceptable. Increasing the load causes
part of the plate to yield, and the ensuing behavior is presented next.
We show in Figures 13 and 14 the variation of O'y nondimensiopaliied
bn the applied stress for the four small elements surrounding the
crack point, and six elements immediately ahead of the crack and
tangent to the x-axis. The purpose of this nondimensional form is
to show the deviation from proportional loading. It is seen that ele~
ments 3 and 4 yield first, thereby reducing their load-carrying
cépacity. The excess load is picked up somewhat by eiement 2,
and primarily ‘by elements 5, 6, and 26. In rapid succession, ele~
ments 2, 5, and 6 yield, and the redistribution of stress aloﬁg the
x~axis is reflected by the behavior of elements 26, 50, 77 and 107,
As loading progresses, this redistribution apparently becomes more
- stable, and a slight influence of work-hardening is to be seen at the
higher load levels.

The associated behavior of o, is shown in Figures 15 and 16.
Esvsentially the safne patterns are observed, although the arguments

of supporting vertical loading cannot be made. For some elements,
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the relaxation of o is noticeably greater than that for O'y, relative
to the starting values.

The distribution of stress along the x-axis is also worth

noting. From elasticity we have (6)

(M

o_+ o, = ok [(x-b)/Zb]- + Ox/b)°* | (4.13)

where C is a constant. For this geometry C = 1,1, Gener,é.lizing

this expression to the form
e n(o) :
o+ o £ C(o) o [(x-b)/2Db] ' . ‘ _ (4.14)

we can evaluate C(0) and n(o) from the numerical data. Using a
least squares fit from elements 6, 26, 50, and 77, we find for the

first (elastic) load increment

Celastic =1.19

(4. 15)

Relastic -0.51

in :easoha.ble agreement with the Val;ues in eqn 4.13. As 16ading in-
creases, these parameters vary as shown in Figures'l’I and 18. C
remains nearly fixed at first, but soon increases sharply and then
levels off. The s.a,me sort of behavior is observed for n such that
the inverse square root singularity becomes more nearly an inverse
fifth root, so that a considerable amount of load redistribution must
have occurred.

"From these data it would appear that the elements near the

crack tip are in a condition of proportional loading up to the point
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at which yielding begins., This is followed by a transitional phase
leading ultimately to a period of quasi~proportional loading. In
this last phase, no major load redistribution is anticipated in the
vicinity of the cré.ck tip, most of it having occurred during transi-
tion. In a sense, transition may be associated with the ''knee'' of
- the stress~strain curve, and the quasi-proportional loading with
the much flatter portion beyond. |

Although data have been shown only for selected elements
near the crack point, it should be evident that the same processes
occur at any point loaded into the plastic regioﬁ. The extént of
load redistribution — and hence the importance of the transition
phase — will depend upon the stress gradients before yielding. Since
a considerable amount of the loading history is incorpor‘a‘ted into
the transition phase, the detailed shape of the stress-strain curve
will influence subsequent behavior and ultimately, fracture.

Strains: The stré,in components along the x-axis behave in
a manner related to the stresses. Again normalized on load, ¢
and e, are shoWn as functions of load in Figures 19 and 20, for the
same six elements ahead of the crack. There is a rapid monotonic
incx"easein sy, but € suffers a delayed decreasé, eventually be-
coming compressive. The magnitude of ey is about an order greater
than that of € the former achieving about two per cept at o = 13,000
lb/inz. Even though this is reaching the limits of our usual notion
of ''"small'’ strains, it must be noted that the increments of strain
actually computed for each load increment were of order 10"3 or

less.
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In approximate analyses of plastic deformations, it is not
uncommon.to find the assumption that the singular behavior of the
plastic strains is the same as that for the elastic strains (9, 11, 32).
The data obtained from this computation may be used to determine
the validity of this assumption. Employing the same proceduré for

the strains as was used for the stresses, we write the generalized

expression
B R n(B")
T (ex + ey) = C(o) O‘[(x-b)/Zb] ' v (4.16)

evaluating C(0) and n(o) as before. Since the left-hand side of eqn

4. 16 is equal to o, + OY‘ if there is no plastic flow, results Afor‘kthe
first increment of load are identical with egn 4. 15, The subsequent
variation differs from that of the stresses, as shown in Figures 21
and 22, The singularity increases uniformly from inverse square
root to avpproach a limit., After an initial period of little ché.nge_,

the coefficient C increases sharply with no indication of being limited
| in this load range. |

| Interpretation of Strain: It should be emphasized that these

are all total strains, elastic plus plastic, accumulated during load-
ing. They may of course be separated by means of the constitutive

relations; for example,

a}({P) =e - (O'X-voy)/E (4.17)

Some care, however, must be taken in stating what is meant by elastic
and plastic components of a strain component. In the sense of eqn-

4,17, 'that portion of the total strain which is linearly related to the
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stress is termed elastic, the remainder being plastic. Physically,
however, the elastic part is defined as being recoverable and does
not of necessity bear a linear relation to étress. That this difference
is non—frivial may be seen by observing the growth of plastic Qcta-'
hedral strain, at some element, as originally defined, and as com-
pared 'fo that based on, say, the 0.2 percent offset yield., This is
shown for eiement 5 in Figure 23. At higher strains, the magnitude
is not greatly altered. The important difference is in the load at
which yielding actually occurs.

Alternatively this effect may be seen by examining the extent
of yielding at a fixed load. Figures 24 and 25 show contours of con-
stant €,-¢, at loadings of 8, 000 and 13,000 1b/in2. Again thes;e are
‘total strains. These contours correspond to the isochromatics that
would be observed in photoelastic experiments. If it were desired
fo s»eparate the plastic portion of the strains, suitable corr_éction
must be made based on the point at which yielding actually began.
The shape of the contours would probably not be altered significantly,
as the principail directions for the elastic and plastic parts of the
strains coincide. Rather the magnitude for each contour line must
be Separated into elastic and plastic components.

For example, the contour marked 7.0 X 10-% in Figure 25 rep-
resents about one-third elastic strain, based on the ﬁroportional
limit. Using the 0.2 percent offset yield, however, this amount
jumps to over two-thirds, so that the plastic portion of ¢ 17€2 for
that curve is reduced to 2.0 X 1072 in/in. |

With this qualification, we are able to compare the contours
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of Figure 25 with the isochromatics obtained by Gerberich for 2024-0
aluminum (25). His results were obtainéd by loading a cracked speci-
men to 13,700 lb/inz; observations were made on a piece of photo-
elastic material bonded to the face of the specimen after the load was
released. Thus his results represent the non-recoverable pa:ét of
- the strain ﬁeld.* A line drawing of the isochromatics is reproduced
in Figure 26 to the same scale as used in Figure 25. Shépe of the
contours in the two drawings is quite similar to the right and above
the crack point, In the photograph from which Figure 26 was taken,
theré were also some isochromatics si_milar to the patterhs shown
along the flank of the crack in Figure 25. In their present form, the
values of € 17€2 associated with each corresponding pair of curves |
are substantially different. Using the type of modificatioh outlined
, aboye, however, it can be shown that these values become closer
together, The values in Figure 26 seem to be somewhat la.rger than
those in Figure 25, corrésponding to the fact that the former were
obtained fdr a slightly higher load than the latter. | |
Subject to further confirmation of this interpretation, then,
it would appear that the elastic~plastic calculations reproduée the
experimental results with reasonable aécuracy. Obviously a quan-
‘titative comparison will require a more precise interpretation of
the stress—strain curve as well as its reproduction by the Prandtl-
Reuss flow rule. Qualitatively, however, there can be no question

as to the validity of this comparison.

% Certain experimental checks were made; the details are outlined
in Ref. 25,
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Plastic Enclave Sizei Another factor of interest is the growth

of the plastic enclave as loariing increases. For the particular ar-
"rangemen’c of finite elements used, there is no enclave for loads less
than 2300 lb/inz. As load increases, the enclave grows rapid}y until
it occupies a significant portion of the plate. This may be observed
in Figure 27 which gives contours of Ty = Timit for various loadings. *
If the applied stress is less than about 8, 000'1b/in2, the .yielded zone
is contained by material still in the elastic range, making the term
plastic enclave quite appropriate. As the _load ap'proaches: 10,000
1b/in2, the plastic zone r‘eaches the free edge, and at 11,500 1b‘/in2‘
(the proportional limit), the boundary between the elastic and plastic
zones intersects the loaded edge.' At still higher loads, the ehlasti‘c
zone becomes completely contained and could be termed an elastic _
enclave.

- ‘Unfortunately the true size of the yielded zone is sﬁbjecf to
the same interpretive question as the magnitude assgci_a,ted with the
‘contours of € 17€p¢ Liooking af Figure 28 which shows contours for
several values of To/Tlimit at an applied load of 13,000 lb/inz, it can
be seen that selection of the proper value of thié ratio for defining
the extent of' the plastic zone can have a great effect on lits size.

For example, if we again select the 0,2 percent offset point, the
appropriate value of this ratio is 1.47 for the particu’lar stress~-strain

curve used in this computation. Under this condition the plastic zone

extends nearly to the edge of the plate, as suggested by Gerberich's

% Tipit i5 defined as T, at the proportional limit, 11,500 1b/in’ in
uniaxial tension. ' :
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data. It would thus seem more appropriate to presume the enclave in

reality is defined by '1'0/71 = 1.5, and the corresponding growth is

imit
indicated by Figures 29 and 30. Also shown in Figure 30 are the two
points ébtained by Gerberich (25) for 2024-0 aluminum and the appi’ox-
imate expression derived by Williams (32), Need for seleétiné the cor-
_ rect yield point is brought out by E‘igure 30; rate of enclave growth
suggested by the physical andnumerical datais noticeabh.r greater than
“that of the approximate relation. Other comparisons of enclave size

were given in Ref. 26.

Strain Energy: Turning next to the strain energy, we can divide

the density for each element into elastic and plastic portionvs, by means
of a suitable separation of eqn 3.22, These are shown for the four ele-
- ments Surrounding the crack tip and the six elements ahead cﬁ the
crack in Figures 31-34. Since the elastic portionof the strain energy
density is derived from the stresses, the effe‘cts of relaxation and
load redistribution seen in Figures 13-16 appear in Figures 31 and
32. Theée plots are not nondimensionalized on the apélied stress
(squared) as w-ere‘ those for stress, but the deviation from a simple
quadratic dgpendence on load is evident., It is éf course moi'e pro-
noﬁnced closer to the crack where stress concentrations and gradients
‘are highest. Again we can see the first phase of propoftibnal loading,
a transition, and finally a phase of quasi-proportionél loading. The
previous comments on stresses thus apply torthose curves.

The 'plastic portion of the strain energy density has the rapid
g?owth that might be expected from the rise in strain, It follows that

the quantitative behavior of this quantity with respect to load, as -
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compared to that which is observed experimentally is subject to the
same interpretive question posed by Figure 23.

The curves in Figures 33 and 34 are predicated on the assump-
tion that plastic flow begins once the octahedral stress exceeds the
proportional limit T imit® Under this condition the total straiﬁ energy
- in the plate is obtained by suitable integration, and the result is
plotted in Figure 35, The elastic portion is nearly quadfa‘cié since
the transition phase, as seen in Figures 31 and 32, is over a rela-
tively small portion of the entire plate, The plastic portiom is smali
until higher loads are reached; then it increases rapidly. -

Crack Openihg: As a final item we show the crack opening

in Figure 36, In the earlier stages of loading, this varies linearly

with load. Once the line T_/T..
o/ 'limit

= 1 reaches a free boundary (Fig-
ure 27), however, crack opening increases much faster, ‘reaching
values several times that which would be computed from a iinea‘r
relation. |

Thus we have produced an elastic-plastic analysis of a cracked
plate which at ;:he very least gives an extensive qualitative indication
of‘v the role of i)lasticity in the stress, strain, and strain ene;'gy densitj
fielas. Subject to proper interpretation, we also have quantitative
results which bear a reasonable correlation with experimental data.
Whiie we have yet to produce sufficient information fér an energetic
fracture criterion in two dimensions, to say nothing of analysis in
three dimensions, it does appear that the treatment used is proper

and we are encouraged to proceed further. Certain matters mentioned .

in the preceding discussion require further clarification but the main
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objective has, in the author's opinion, certainly been achieved. No
fundamental difficulty is anticipated in resolving the few remaining
questions, and further efforts of the sort reported are already in ad-

vanced stages of planning.
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V. CONCLUDING REMARKS

In:reviéwing the physical situation associated with the extension
of a crack in a metallic plate, it was observed that thé thickness of the
plate can exert a significant influence on the stiess required for frac-
tur.e. Certain inferences have been made as to the phenomena leading
to fracture, and these have provided a basis for generating an hypothe-
sis for the dominant features of the thickness effect. Qualitatively
this hypothesis may be broken into three parts. The first involves the
role of linear elasticity, the second deals with the elasto-plastic defor-
mations in the plate prior to fracture, and the third is concerned with
the interaction between such deformations and the fracture process.

A three-dimensional, linear elastic description of thehstresses
in a cracked elastic plate was not expected to provide an adeqﬁaie
basis for prediction of the thickness effect observed in metals. In an
éffoi‘t to substantiate this part of the hypothesis, an apprép'riate |
boundary value problem was employed as a vehicle for the examina-
tion of the stress components in the vicinity of the crack fronf. To
the extent that an analysis was pursued, it was deduced that the in-
plane stresses are singular, but the transversev components are not.
As a result of this disparity in magnitude, it appears that the trans-
verse stresses induced by the plate thickness will not be sufficient to
affect the fracture process to the extent required. In addition, an
“elastic fracture stress may be determiﬁed for the two limit cases of

| plane stress and plane strain, based on Griffith's theory of fracture,
For uniaxial tension, these two values are preciseljr the same, in .

sharp contrast to the actual behavior.
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The second part of the hypothesis dictates that the stress-
strain relations be extended from the familiar linear law to include
non-linear inelastic behavior, Because of the uncertainty associated
with thié x;najor step, as well as certain operational difficulties, it was
decided to perform at least the first analysis in terms of plané stress.
In addition to being a pilot procedure, this analysisallows a direct com=
parison to readily available analytical and experimental infbrniation.

The plane stress case was attempted using two methods of
numerical analysis, The first, finite differences, proved to give
adequate results everywhere except in the vicinity of the crack, the
reason being the :’Lnadequacy'of this method for repro'ducingvfu‘nc'tiéns
of the type associé.ted with crack problems. The second method,
stiffness or finite elements, yielded a satisfactory descriptioﬁ of
the stress and strain fields throughout the plate. The purely elastic
éoluﬂon compared well to its analytic counterpart, and the elasto-
plastic information followed that which had been obtained in the
labor‘atory. |

As eXpe'ct'ed, this latter comparison is subject to certain
interpretive questions which have been discus sed at length. ln brief
these stem from not knowing precisely the point on the stresé~s£rain
curve at Which yielding actually begins., If this point is taken fo be
. the proportional limit, the analyéis gives, in 2024-0 éluminum, plastic
strains gr_eatly in excess of those obtained experimentally. If, how~
ever, the yield point is taken to be in the neighborhood of the 0.2
percent offset, comparisén is verybmuch better,

From the viewpoint of analysis the former point of yield
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initiation is preferred because the elastic deformations preceding
yield are linear, by definition. If the 0.2 percent offset point, how-
ever, gives more accurate results, the analysis may require
modification to include non-linear elastic behavior.
The third part of the hypothesis has been given limited treat-

“ment in this presentation, pending clarification of the elasto-plastic
analysis and development of adequate methods. We have del-ineated
two broad types of criteria and discussed their application in the
presence of elasto~plastic flow. These fracture criteria have not
been explored in the literature to the same degree as thosé restricted
to linear elasticity. The indication is that criteria appropriate to
elasto-plastic flow may require considerable development, much as

the stress-strain analysis itself,

Further Work: The hypothesis for the thickness effect has
thus been developed quantitatively only to a limited extent. In that
it represents a long-range program, however, considerable progress
has been made. Moreover, requirements for further advancement
may now be spéciﬁed. The first concerns the planar analysgs.
C;cucial to this and further development is a more precise definition
and interpre'tation of the stress-strain curve. Experimental work
’may dictate some modification of the field equations now being em-
' plojed, but such alteration is not expected to affect the overall
character of the results unfavorably, As a part of this work we
expect'to consider materials with and without a yield point instability.
As Gerberich's paper (25) {among others) so clearly shows, this one

detail of the stress-strain relation may have a profound influence on
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the subsequent plastic enclaves (23).

While the finite difference technique has so far not given
wholly satisfactory results for the crack geometry, it does appear
that special methods can be developed for fhis class of problem.
Motivation for this arises from two sources, one being the fact ﬁhat
this technique allows for estimates of error. On a more practical
level, solutions derived from this method are evaluated at sbeciﬁc
points rather than being representative of finite areas.

With this information in hand, the analysis may then be used
to computé stress and strain fields and their dependence én maﬁerial
properties such as yield point and work-hardening. Even if no geo~
metric changes were included, significant results would énsue from
" this phase of work. Concurrently we expect to develop the plane
strain case, bringing it to the same level as the plane stress work. |
Also the finite element approach now in use may be altered to account
for the effect of finite deformations. This may be accqmplished by
correcting the location of each node by the displacement generated by
each load iﬁcrement. This is not expected to produce a major effect
0;1 the results, except in more ductile materials,

Finally the planar analyses must be extended to fhe computa -
tion of fracture criteria. The technique should be much like that
outlined at the end of Chapter III. It will be most interesting to com~
pare the results of this phase with the maximum stresses and strains
computed and the results of parallel experiments. While we may use
Gerberich's data to a certain extent, the necessity for.’m‘ore detailed

information about the stress-strain curve may dictate performance
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of additional tests, aithough the data required should not be quite so |
extensive.,

Once the planar analyses have been brought to a satisfactory
level for this one geometry and a range of materials, the methods
developed may be extended further. For example, work has been
reported for both singly and doubly edge-notched s'pecirn.ens under
coﬁditions of stretching and in-plane bending, and these geovmetries
may provide useful analytic results. Biaxial loading, which fre-
quently occurs in the field but rarely in the laboratory, should also
be investigated. Dynamic effects, due either to irnpulsiv.e‘ loading
or rapid crack extension, are candidates for analysis.

Ultimately, however, it is intended to examine a fullyvthree-
dimensional geometry. Having gained an extensive comprehension
of planar analyses, one would hope to esca.late efforts for the planar
case to this final situation. If this can be do.ne, the spectrum of
geometries and loadings is considerably broadened. In addition to
the through crack, one might choose to treat part-through cracks,
penny-shaped cracks, material discontinuities such as are found at
\;;relds, and many others suggested by current structural problems.
Moreover, combinations of loading such as tension, bending, shear,
and torsion may be handled simultaneously., Of course the require-
ments, in terms of physical data and analytical tools, will be
increased, but the utility of results, in terms of predicting struc-

tural strength at the design stage, will be greatly enhanced.
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APPENDIX A
The objective in this section is to provide some information
concerning the singular behavior of the elastic stress field in the
vicinity of a ci‘ack through a plate of arbitrary thickness. The faces
of the plate are free of stress and constraint. Two primary dimen-
sions characterize the type of cracks considered above — a length
and a tip radius. In a physical sense, neither dimension is ever
precisely equal to zero so that, in particular, an accurate mathe-
matical repi‘esentation of the crack should include a non-zero tip
radius. This issue is important, since interest is centered on the
disturbances local to the tip. Planar analysis indicates that the
elastic stresses are large and become (mathematically) infinite as
the tip radius vanishes. It would therefore be judicious to employ
a coordinate system that will exhibit this behavior in a natural
manner, Indeed, if the solution is to be written in series form,
the concentration must be shown clearly in a finite number of terms,
rather than implied by non-convergence of the entire series. Selec-
tion of a coordinate system, which is strongly influenced by the
boundary configuration, can therefore affect the utility of final
results. Inclusion of a finite tip radius would indicate use of elliptic
cylindrical coordinates. The limit of zero tip radius would allow
the much simpler circular cylindrical coordinates. This simplicity,
plus the greater accessibility to special functions leads to use of the
latter system. ‘
Ih the case of loading that is uniform through the thickness,

any variation in the stresses is induced solely by the presence of
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the crack. From St. Venant's principle, this variation should be
confined to a region surrounding the crack tip and having planar di-
mensionsv of the order of the plate thickness. Thus it is permissible
to limif furthef considerafion to the behavior within half a crack
length of the crack front, providing b/h = 1, The cracked plate may
be replaced by a disk of radius equal to the half crack length b, with
a radial crack, much like a piece cut from the original plate, Fig-~

ure A-1,

Problem Statement: In this disk, the equations of equilibrium

in circular cylindrical coordinates (r,8,z) must be solved for the

displacement vector (u,v,w):
8e/br + (1-2v) [(A-1/r2)u-(2/x2)8v /06] = 0
(1/z) 8e/86 + (1-2v) [(a-1/r%)v+(2/x 2)0u/86] = 0 (A-1)
de/0z + (1-2v) &aw = 0
where 0 < v < 1/2 is Poisson's ratio, e is the dilatation given by
e= du/dr + (1/r) ov/06 + u/r + dw/8z (A-2)
a_r;d the Liaplace operator is defined as
A= 8%/8x% + (1/r)8/6r + (1/=2) 82/00% + 8% /82% (A-3)

‘The boundary conditions are written in terms of the stresses, which

are related to the displacement gradients through Hooke's Law:
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o = e+ 2u du/0r
og = Net2p [(1/r) 8v/88 + u/r)]

Q
1]

Ae + 2 Ow/dz

T = ul(1/r) 8a/86 - v/r + Bv/ox]
Ty, = Hlov/0z + (1/r) dw/26]
w(dw/0r + 8u/0z)

{A-4)

-3
il

where A, | are Lamé’'s constants and v = \/(A + 2p), E = 2(1 + V)

The boundary conditions for the cracked disk are stated

r = 0; u,v,w bounded

7 = bi o =S(6);TB=T(6);7 =0 v
T T rz (A-5)
Z = h:T =T, =0 =20
rz Oz z

where S(0) and T(8) are functions established on the basis of planar
theory. Eqns A-1to A-5 comprise a statement of the mathematical

problem.,

Green's Method: Following the work of A, E. Green (15), the

differential equations A-1 may be integrated subject to the free plate
face conditions in the last of eqns A-5. It is convenient to introduce
complex variable notation at this point, and we define a new set of

independent variables as

t = reie , (A-6)
T=reid (A-7)
Z =2 (A-8)

Operators based on these definitions are given by
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2619 a/8¢ = 0/8x - (i/x) 8/00

2¢79 5/87 = 8 /0x + (i/x) 8/00

de 2i0 82

/81;2 = 62/5r2 - {1/r) 8/6x - (l/rz) 82/55‘92

-i[(2/r) 8% /0280 - (2/r2) 8/86]

_ A-9

49% /o188 = 8% /6x% + (1/x) 8/0r + (L/x%) 8% /002 WA-9)
=v2=a- 62/822

47?19 52 /572 = 0%/0x% - (U/x) 8/0r - (1/x2) 8% /062

+ i[(2/r)8% /5206 - (2/x°%) 8/86)]

and the bars denote complex conjugates. The in-plane displacements

may be put into complex form

6

utiv=e D . (A-10)

The dilatation e may then be shown to take the form
e = 9D/0¢ + 8D /8¢ + dw/0z (A-11) "
With this reduction, Navier's equations become

20e/9¢ + (1-2v) AD = 0

(A-12)
de/0z + (1-2v) Aw = 0
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He then étates that suitable solutions are given in terms of three

real harmonic functions Xy XZ’ and X3 such that

u+tiv=elfp o pemif 9/87 [21x + X, + 2(1-v)X5* 6x3/6z]
w = a/az[xz- za-v)x34-zax3/8z] (A-13)
‘e = -2(1-2v) 87X, /02"

One of Green's major findings is that this representation provides a
complete soiution td egns A-12 for perforated flat plates. It follows
that the solution formed from X1 Xp» afnd X3 is unique, subject to
proper statement of the boundary condition.

Using the linear elastic stress-strain relations in eqns A-4,

.the stress components may be put into the form

(1/21.&)(0‘r+09) = - 82x2/322~2(1+v)32x3/8z2—z83x3/8z3

(1/2p)(0g ~0_+21 T_g) = 4019 az/agz[21x1~x2~2(1-v)x3-zax3/az]

v (A-14)
(1/2u)0_ = 8%y, /0822 + 28°X, /02>

A 2 ‘ 3
(1/2].;.)('1‘1'Z + i’TGZ) = Ze-le. 82/82 oz (ix1+xz+zax3/8z)

thus giving the relations necéssary to meet the free plate face bound-

ary conditions,

Green considers three sets of solutions to the equations '
Axl = AXZ = AX3 =0 (A-15)

The first set is assumed to be of the form
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242
»Xl =Y10+ %lez /h

<
N
"
-2
N
o
+

2,2
ZV,, 2 /b (A-16)

2 4 2
%"132 z /h

>
w
H
<
w
S
+

The appropriate computations lead to a representation of the function

| Yig* Yiz27t -0 Yap interms of two functions ¢,4 of the complex var-

iable ¢:

1+v

Yo = ZEoyr (9@ - T+ X [T - wwl)
ihz -
Y2 = Toe [¢'(2) - ¢'(T)]

<
™~
O
"

Y30 = Tz 90 + 53 (D]

2
.‘(32 = - —8—(%1*_\;5;[4)‘(2) T ?5' (Z)]

where primes denote ordinary derivatives. The displacements and

stress are found from eqns A-13 and A-14 as
2afut iv) = e 03 4(0) - 07 @- Pz D)
B - v 2

2pW = - Z[¢‘ L)+ ¢ (D] _ {(A-18)

Z}Le—?- — [¢' (L) + 9" ()]

0.+ oy =2[¢'(2) + §(D)]

- o_+2ir_ = 2220 Tgr (1) + ¢ (1)

0 T rf

Trz = TOz = Oy = 0

o

229" (L)]  (A-19)
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A comparison between ieqns A-18, A-19 and Chapters 7, 9 of Ref. 33
allows these formulae to be identified as the generalized plane stress
solution.

sl
The second set of solutions is obtained by setting

Xl = qu cos afqz
(A-20)
XZ = X3 =0

The free plate face: conditions lead to the requirement sin aqh =0 or
@, = qr/h; q=1,2,... (A-21)

The differential equation A-15 becomes

2

(V= - afl) X1q = 0 (A-22)

and the full form of this set of solutions is obtained by applying eqns

A-13 and A-14 to

[ ]
Xl ::z qu cos aqz (A-‘23)
q=1 '

The third set is obtained from the construction

Xl =0

Xy = Xp5C08 ﬁsz (A-24)

X3 = Xgge0s Pz

. The parameter arq is not to be confused with @ in the text.
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The plat/e face boundary conditions are met provided

X2 g sin ﬁsh + X34 (sin ﬁsh + ﬁsh cos ﬁsh) =0

| (A-25)
Xpg COS psh+ X35 Bsh sin ﬁsh =0
which leads to the eigen-equation
B,h+ sin B _h cos Bh=0; s=1,2,... (A-26)

This equaﬁion possesses an infinite number of complex roots which
occur in groups of four, one in each quadrant of the complex plane.
Only two of each group are relevant, namely the conjugate pair having
positive real parts. The only real root ﬁshE 0 is not acceptable for

this problem so that
/Q(ps.h) >0, h>0 (A-27)
Once 'eqn A-26 is met, eqns A-25 further require
2
X3g = "Xpg CSC ﬁsh (A-28)
a.na the total solution set becomes

X, =Z Xog cos Bz + 3{23 cos 'B'sz)

s=1

- (A-29) .
2 = 2~ =
X3 =z (-Xzs csc” B h cos B_z - X, csc P hcos ﬁsz)
s=1
and, from eqn A-15
2 2
(v - 82) %5, = 0
(A-30)

|
o

‘ 2 =2, =
(V ‘ps)XZS—
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Equations A-13 and A-14 are applied to A-29 to find the deformations

and stresses,

Individual Solutions: There are of course many representa-

tions of the solutions of eqns A~22 and A~30. For the present pur-
pose, the device of separation of variables is adequate, For loading

symmetric with respect to the plane of the crack

-2
=) a"?A I (a r)sinp6 A-31
FX1q Z q Ppglp (¥gF) sinp - (A-31)
p

= -2 '
p,Xzs -zﬁs Bps Ip (ﬁsr) cos pé
P
(A-32)

—2 — —
by =Z@s B, I, (B x) cos po
P

The indéx p is taken as real, and appropriate values remain to be
found. The constants qu are real, but Bps may be complex. Ip(ﬁr)'
is the modified Bessel function of the first kind, order p; relevant
properties of this function are obtained from any standard text, e.g.

Ref, 34, as

(2p/Br) I, (Bx)

n

Ip_l(ﬁr) - Ip‘i"l(ﬁr)

i

aL(Bx)/ax = (8/2)[L,_y(Bx) + 1, (Bx)]

4]

B, _1(87) - (p/x) I (px)

BL 4y (B=) + (p/x) 1,(Bx) (A-33)
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I (8) ~ £P/2PT(ptl), £ =0

P

I(§) ~ eg/\/27r , £ -0 (A-33)
P v Cont'd,

I (8 = L(8), n=0,1,2,...

The second set of displacements and stresses becomes

-1
pu -z z qq qu[-Ip_l(aqu Ip+l(ozqr)] cos pfcos ozqz (A-34)

q=l P
Cuv = 22 q pq p 1( q r) + +1(a r)] sinpfcos- arqz (A-35)
q=l p
pw = 0 (A-36)
pe = 0 (A-37)
ZZAPq{ -2 aqr)+1p+2 a r)] cos pOcos aqz (A-38)
g=l p
Cg= -0, ' (A-39)
o'z =0 » : (A—40)4
o =Z Z qu[lp_z(aqr) + Ip+2 (arqr)] sinp6 cos aqz (A-41)
q=ip
w .
T og =Z ZAPq[ (pr_l(aqr)-Ip+l(aqr)] sinph sin @z (A-42)
o0
L ;:ZIZqu[ o- 1((2 r)- pJ‘_l(azqr)] cos p9sin aqz (A-43)
q=i P V
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The third set of displacements and stresses becomes

= Z PR O e 1(;3 ¥, (80N cospoz)(p 2)
s=1l p :
(A-44)

B, (1, (B0 + 1, (B )] cospoZL (B,2))
pr=) Y BB, (-1 (B 7 +1 (B )] sinpoz{p_z)

- |
(A-45)

+ Byl -1, (B ()] stnpoZy) (B 2))

w —Zz{a B, L (8,1) cosp0 2P (B 2B, B, 1 (B, )

s=1 p
(A-46)
cos pf Z(Sz)‘('ﬁ'sz)}
< cosﬁsz
pe = 2..(1-21: Zz{ Bpst(ﬁsr)cos.pBSinzﬁSh
(A-47)

. _ cosESz )
-B__ I (B r)cos pb —
ps p 8 sinzﬁ h
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s=l p

+ Ip+z(ﬁsr)zs(l)(ﬁsz)] cos pf +§ps [Ip_z(—ﬁ_sr)_z—g)(ﬁsz)

+2.IP(B-SI') "z_(z) (ESZ) + Ip+2.(—55r) "Z“(sl)('ﬁ‘sr)] cos p8}

s

) B L1628 2+ 21 8 1z =)
. .

1]
1]
Pt

"Ip'i'z(ﬁsr)z(sl)(ﬁsz)] cos pé +-B-PS[_Ip—Z(*§sr)-zs(l)(B z)

8
+21, (B,0)Z (B 2)-L, ,(B,x1ZY) (B 2)] cos po)

sinf =

s
Zzp Bpst(ﬁ r) cos pO (cos {3 z‘+ }3 Z sinzpsh )

_ s1n}3 z

-B I (B r) cos pb (cosﬁ z+pz—————-—)}
p® : smﬁh

(A-48)

(A-49)

(A-50)
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: P

5=l | | (A-51)
+ B, 11, p B0 + 1, ,(B,2)] sin20 Z0(3 )
Tog = 2 Z z {Bps‘ [-Ip_l(psr) + 1p+1(g38r)] sin pf 2(34)(682)
s=lp | (A-52)
+ B, (-1, B, + 1, (B, )] sin p0 Z0(5,2))
Trz 222 {Bps [Ip-l(ﬁsr) i Ip+l(ﬁsr)] cos po Z(:U(ﬁsz)
s=lp (A-53)

—_ — =(4) =
+ Bps [Ip_l([SSr) + Ip_l_l(ESr)] cos pOZ (ﬁsz)}
The required properties of differentiability have been presumed

throughout the foregoing computations, and the following notation

has been introduced;

w 2(1-v) sinP z
2Z =l -~ —=— + _—
s (ﬁSZ) { smzﬁ h] -oF ﬁ ) ﬁsz sinzpsh
cosfB z
Z(SZ)({S )—(1-—1—?—2——)81nﬁz+{3z——-——2—-§—-
sin ﬁ h sin ﬁ h
(A-54)
(3) 2(1+ sinf z
z)—[l J—-l——]cosﬁz-i-f}z —
. sin ﬁ h sin ﬁ h
(4) 2 cos]3 Z
2Z ({SSz) =cot” B hsinp z+ B = T
: sin
s

Using eqn A-26, it may be shown that
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z'(sl) (B ) = ~{l-v) cot f,hcsc B_h

zf) (Bgh) = - (1-v) csc psh

(3)
ANECRY

|

-{l+v) cot Bgh csc B h
(4) =
Z ' (Bgh) =0

the last being in accord with the free plate face conditions.

The boundedness conditions in the first of eqns A-5 may be
satisfied in the following way. Since the functions X12 Xp» and X3
comprise a complete solution, they must be linearly independent
and, following Green's development, should satisfy the boundedness
conditions separately. Examination of eélns A-18 thus 1ea<is to the

requirements
$'(L), ¥ (L) = 0" ), k20, ltl=x =0, v #o0 (A-56)

Similarly, eqns A-33 to A-36 indicate the order of the pt—}[i term in

the second set of solutions as

u,v = O(rp—l); w = O(rp), r =~ 0, p # integer

(A-57)

u,v = O(rvln-ll); w = O(rjnl), r =0, p = n = integer

The boundedness conditions are not violated, therefore, if p = n = any

integer. For non-integer values of p, however, eqns A-57 lead to

the restriction

. Prin > 1» P # integer o (A-58)
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Note tha1; A-56 and A-58 do not establish actual values of » and Kk,
merely lower bounds for the first and second sets of solution+. In~
spection of eqns A-44, A-45, and A-4b will show that fhey are cone
stituted in the same mmanner as A-34, A-75, aad A-20 so that eqn
A-53 applies to the third set of solutions, ioo. lefore proceeding
it mé.y be noted that the condition A-58 substiantictes the irapliicit
omission of the second (singular) solutions I\Zp({fzqrfv, o8 );}3.31.} to the
differential equations A-22, A-30 in the representatioas A~31,

A-32.

Full Solution: The complete expressions for stress ave

obtained by summing the individual sets of results, Tt is therafore
appropriate to write each in common terms. Green expands the
resuiis both in a power series in z/h and a Fourier series over the
interval (~h,h). Only the latter will be shown here, Standaxd

methods lead to the following relevant expressioas

(00}
zz = h2/3 + 42 C 2 cos O =z
, 9 e}
q=1
0
Z(l) B z)= Z{l) _+2 Z(l) cos Oz
8 s 08 ~qgs q
g=1 '
0
(2) ,Z (2) , _
Zs (ﬁsz) = qu sin ozqz (A-59)
g=1
o
2(3) p z)=2 3) +z Z"S) cos O_7
s 5 05 5
q=1
0
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where
‘Z(()ls) = v/ﬁsh sin ﬁsh

w _ .. 2,,.2 2 (-4
qu = 2cos B h [1-v-ps/(gss-qq)] hz(ﬁ 2’_ . 2)

. s q

(2) _ 262 _ ;2 (-)2
qu = Za‘qh -(1- V)/Sln ﬁ h + ﬁ hcos B8 h/h S C(q)] W

(3) . . ' - {(A-60)
z.) = —v/ﬁsh sin B_h ' .
Z(3> 2 cos ﬁ h(l+v- ﬁ /((3 -a )] —-Z-——Z)fl——?

2 % (Bg-a)
Zgg= 2(-)% a B, cos b/ (Bl k)

The stress components are then put into the form

<]
o =G(0)+Z c(q) cos o z
r r r q
q=1
<0
_ ~(0) z (q)
Ge = ca + 0‘9 cOs ozqz
q=1
w .
- {0) z ()
0, =0, + o, cos a'qz. : .
q=l -
o0 (A-61)
"rre = 'rr(g) + Z 'rzgzl) cos aqu
g=1
o0
- (@) _;
TGZ *z Tez sin qu
w

- (q) ..
’.Trz - Z 'Trz sin afqz
q=1
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‘and the coefficients are found to be

“'ié)+¢"(§} + --(hl} 7y { L conj. §

{A-62)
o0 Bpﬂ .
] — am,,,.,.;_.r - T
#v ) Mgaisp [T 5(8,2)-21 (B 1T (6 )]+ coni } ¢
s=1 D 8 S )
: 4: "}' Z
Giﬁ) = ":7{7- «-{-;-f-f 19(,5'“{2; + COIlJ ] +ZEA [-I o- {;qrﬂl j‘Z{».:z*qr)_‘
q
(o]
N (1) (3) 'y )
+ /, ;Bps[lpwz{%r)z +21 (;3 )zqs+ Ip_l_zgysr)&qsg {A-53)
g=1
+ conj}]l cos p@
1 _2i0 n® 210
={¢" (g 5 & [w Ly " (5)] - o ¢" (L) + conj.}
(A-54)

. B__
”ZZ lgmsr s [+ p(8gm) 4 (B F)-L,, (B )] +eonj.} cospe

q | |
Gl _ 4v L0 (o219 g (L)t conj.] + Z[[A 2lag)-I z(aqr)]
0!

6 e pqllp-

) q

+z {Bps[—lp_z(ﬁsr)zcgikﬂp r)Z(B)I o2 (BgT) ‘1}] (A=65)
& ‘ |

+ conj.} ]| cospo
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o, "= - iZZ [E—;EE%%}— Ip(ésr) + conj.] cos pO (A-66)
S (-)p2cosp h
'aiq) = sz Z [— 25 5 5 B p(p r) + conj.] cos p@ (A=5T)
- 8=l p h (ps—a )
" 2 ..
Tf{':f)) =1{- % 219[ To' (L)+y" ()] + (_1_1_"5_ 3219¢ M(g)-conj. }
L (A-68)
B
+ vz z{?—s—ﬂé-%’:—ﬁ—;i[—lp_z(ﬁsr)f Ip+2(ﬁsr)] + conj.} sin pd

s=1l p

(@), 4v ()% 210, .
T8 = LT 7[6 4 (5)-conj. ] +zKqu[Ip-Z(aqr)ﬂw?«(aqr)]

q P
- (A-69)
| +Z {Bps Zg’g [—Ié_z(ﬁsr) + Ipfz(ﬁsr)] + conj. } ]| sin p8
s=1
Z [apgl-Toafe ™)L, (e r>]+zz {B,, qs[ L-1(Bg™)
(A-70)
+ 1p+1.{}38r)] + conj.} ] sin p@
C Tew =Z 17N pq[ o- 1(0, p+1 (a r] + ZZ{BpsZé?[Ip-l(*esr)
P
(A-T1)

+ Ip+1({38r)] + conj.} ]| cos pé
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Consisteﬂt with the convérgence ‘propertie’s presumed for the differen-
tiation used to obtain taese series, there has been a trivial change in
the order of summation in these coefficients. Also complex conjugate
terms have no’c‘ been Writteﬁ explicitly, but merely indicated by the
term, conj.

Equations A-56, A-58, and A-60 to A-T71 thus comprise a
general expression for the circular cylindrical components of the
stress field in a flat plate such that the plate is loaded symmetri-
cally with reépect to its mid-plane, the plate faces are stress free,

and the displacements are bounded at the origin.

Application to the Crack Problem: Returning now to the
original boundary value problem, it is clear that satisfaction of the

free crack face conditions
0= =71 T.g=C0g=Tp, = 0 v (A-?Z)

is crucial to further development of the solution, The formal pro-
cedure requires rewriting eqns A-64 and A-68 to A-70 so as to
isolate the '"Fourier-Bessel'' coefficients which would be functiong
of 8 only. Invocation of the properties of this type of coefficient at
6 = =g should then lead to homogeneous conditions on p, qu, qu,
—qu’ ¢, and Y. Note that this is precisely the procedure employed
by Williams (16,35) in analyzing crack and wedge problems. For

example, in the symmetric case of the former, he established

two expressions of the form
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A-1 . A-1 .
'rre ~r [c.l sin (A+1)0 + 3T ¢z 8in (\-1) 6]

(A-73)
og ~ r)“"1 [c‘1 cos (\+1)6 + c, cos (N-1)0]

and found the required values of A, Cy and <, for the first twc;
(planar) conditions of eqn A-72, for all r.

Within the framework of. the manipulations made so far, the
necessary rearrangements of eQns A-64, A-65, and A-62 to A-70
would be admissible. Unfortunately such rearrangement leads not
to homogeneous relations between independent constants aé in the
planar case, but instead recursion relations are obtained‘bet,ween
the Fourier coefficients of the sine and cosine series in .. This
implies th‘at the loading represented by S{8) and T(0) is not arbitrary
but that it is severely restricted by the free crack face requirements.
Thus this term-by-term ''eigenvalue'' approach is not adequate for
the application of Green's solutions to the crack problem.

| These solutions may be used, however, to ansﬁer _the press-
ing questions concerning the behavior of the various s.tressvcompo—
nents in the immediate vicinity of the cbra.ck front. in. the very special

case that qu =0, qu = 0, and the finiteness conditions A-56 become
$(8), WO =0(x"), k20, Il =xr~0,v=0 (A-T74)

This is identical to the requirements on the plane stress solution,
which becomes the exact three-dimensional solution. In the same
way, it is evident that the plane stress solution is also the exact

solution for h = 0.



-83-
'I‘he difference between A-56 and A-74 or its counterpart for

h = 0 is an effective jump in admissibility conditions, and it lies alt
éhe heart of the reason why the planar results are not acceptable

bases for a "perturbation‘solution“ to the general problem.
| Since the transverse stresses do not depend directly on
¢(¢) and P(t), their behavior must be inferred from the second
and third sets of solutions. In eqn A-58, a lower bound for p was
established; from similar arguments it may be seen that stress

singularities will exist if and only if

1< Proin < 2 (A-T5)

since near the crack front

pmin-'-z
/ cr,c,'r're:O(r )
pmin‘
Tog® Teg = O(r ) r—0 (A-T76)
p__.
o, = Ofr mln)

It is thus clear that whether or not the in-plane components of the
stress tensor are singular, the transverse componenis are not.

In summary, it has Been shown that classical elasticity
indicates that Poisson effects and ﬁhite thickness together induce
transverse stresses in the neighborhood of the crack front, If the
deformations are bounded and the plate faces are unstressed, these in~

duced stresses are non-singular, in sharp contrast to the behavior

of the in-plane stresses.
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APPENDIX B
The relationship between stress and strain depends upon the
two constants E and v and the function 'ﬂ('ro), as discussed in the text.

This dependence may be deduced from

g,. s,. T

PO ijo , )

®5 =2 T 27 M (B-1)
where

A : |

eij = sij 3 ekkﬁij , (B-2)
and

2p = E/(1+v) (B-3)

Integrating eqn B-2, define

€ =Vei. e../3 o - (B-4)

o= Véy, &y 3 | | (B-5)

T =+v5,. 5../3 (B-6)
‘there results
: 2
. 2 — __9_ !
(&) = (2}») e

(efaes) + ()
zn/\2v ) T\ o - (BT

Taking the square root of eqn B-7 and integrating, we arrive at the

form
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so'z 70/2}1. -Fef)p)‘ » o (B-8)

So far no restriction has been placed upon this result in terms of
loading or unldading. Let us presure only the existence of a uniaxial
stress-strain test of some material, the data from which are given
in terms of tabular values of 0 and ¢. For definiteness let this be a
plane stress test, The data are first converted to their true'!

values o, and €, by means of the relations

In (1+eg)

Al
n

(B-9)

Q.
]

o(l+e)

derived, for example, in Ref. 21. Since the elastic constants can
be determined separately, we may convert the data next into octa-~

hedral form by using

2 /2VNZ

=f{ey -0y
(B-10)

o

T =v2 crt/3

(p)

The functional relationship €,

=8 ('ro) may then be found by fitting
a curve to the data in the form given by eqn B~10. There is no re-
striction on this function, e.g., it may be a power series. For the

case in which only loading is conbsidered, the well-known Ramberg-

Osgood formula may apply:

1
0o e e
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where 'rg“is a constant and n is the work-hardening exponent. A modi-
fied form of eqn B-11 is also worth noting, viz.
{0 7o = Mimit
e = (B-12)
£ ('ro/'r . ..=1) T

>
o~ limit
where now Tlimit is the proportional limit, ay is a cgnstant, and n is

similarly defined and restricted.

Perfect Plasticity: In the special case that sgp)aﬁ %(TO), re-

ferred to as perfectly plastic flow, eqn B-1 must be altered. The

correct form is

5, elP)
o = 1! O -
eij 7 + T sij (B-13)
where é(()p)'is now regarded as a dependent variable. We must also

introduce an additional equation, namely
T <Kk (B-14)
o

Once yielding occurs at a point, it is seen that the octahedral stress
remains fixed_, and that ¢ (()p) is in fact a separate variable. The field
equations remain complete but may require special handling.

In the case of plane stress, for example, it happens that a
stress problem may be treated separately. Using eqn B-14, the
defiﬁition of LN in terms of the three individual stress components,
and the two equilibrium equations, we have three ecuations in three

unknowns, If a stress boundary value problem were prescribed over
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a singly cgonnected domain, it could be treated without consideration
of the strain or displacement fields. Precisely this method was used
by Allen and Southwell (36), Jacobs (37), and Stimpson and Eaton (38)
in previous work on crack problems.

If it were required to include the strains, then eqns B-13 and
the strain-displacement relations must be solved. There are four
of the former, including one for transverse strain, and three of the
latter for the seven dependent variables involved. These equations
must be solv.ed concurrently with the set for stresses if the incre~-
mental approach is to be retained.

The potential for treating stress problems independently of
the strains thus exists for plane stre:s. With suitable extra condi-
tions, e.g. V= 1/2, it may be extended to plane strain, In three
dimensions, however, this separation cannot be effected, lessening
tﬁe motivation for extending perfectly plastic cases to the general

case,
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 APPENDIX C
In this section we demonstrate the utility of finite differences
in integrating a differential equation whose solution does not possess
~a Taylor serie‘s expa-nsion.within the chosen interval. Consider “he

problem
¢! (x) + ¢/4x? = 0
¢(0) = 0 (C-1)
¢(4)'= 1
The solution is found by standard means to be
§<x> = Vx /2 (C-2)

which clearly does not have the requisite expansion in the interval
0=<x =<4. Using the simplest numerical techniques, we subdiﬁde
this interval into n-1 parts by interspersing a set of n-2 equally
spaced mesh points. Numbering the point x = 0 as 3 and x = 4 as

X s we write for the ith point, i# 1, i# n

! 1 2 1 .
= bt et 6y =0 (C-3)
h &t R h
where
< |
4
BEST T AT (C-4)

is the mesh spacing., Equation C-3 is written at n~2 points, and we

have

qSlr—'O, ¢ =1 _ (C~5)
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giving n equa.fions in n unknowns.
This set has been solved for n-1 = 8 and n~1 = 80, and the
results »ar‘e plotted in Figure C-1. Alsoin Figure C-2 the slope

‘has been plotted using tiie relation

2:
¢i

(@141 = $5.9) | (C-6)

o e

In both figures the analytic result is shown for coinparison. It is
seen that the functio_ri itself has approximately the correct behavior
in terms of initial and final values, and concavity. The slope, how=-
ever, is inadequate near x = 0 in that the analytic values are not
reproduced within a reasonable error,

-In the case of n-1 = 8 intervals, which would not be atypical
for numerical analysis, the disparity between the data and the ana-
lytic solution is most marked. Increasing the number of intervals
by an order of magnitude does not appear to cause a proportionate
décrease in the error, as is usually observed for more well-behaved
functions {39), See Figure C-3, |

. If the problem in eqn C-1 is altered slightly so that the func-
tion being sought possesses the required expansion, the accuracy of

solution is considerably improved. Consider the problem

¢! (x) + ¢/4x? = 0
¢(h) = vh /2 (C-7)
6(4) = 1

The analytic solution, of course, is still given by eqn C-2; we wish

to find the numerical solution corresponding to eqns C-7. Using
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precisely; the same procedure as befﬁre, with n-1 =80 and h = 4/80 =
0.05, the function is produced with a maximum error §f 1,0 percent
and an average error of 0.3 percent. The maximum error in slope
is also 1.0 per.cent, the average being 0.4 percent. The correspond-
ing curves are shown in Figures C-4, C-5, and C-6.

 This improvement in accuracy is a direct result of the change
in interval, as may be seen from a brief derivation of the finite dif-
ference expressions used in eqn C-3. Using Taylor's theorem, the

function ¢ may be evaluated at x.,, = x.th and x, , = x,-h as
_ : itl i i-1 i

6y = 6;-h 61T T2 - 2 b3 61 + bt 67V (8T
o f (C-8)

i .+

G4 = 0B 6L + 2 h2¢1 + 2 h? 91t + 52kt 1Y (&)

where primes denote derivatives and & is some value of x in the inter-

val under consideration. Summing these and solving for d)'i‘ » iind

2 3 1 -
S UREE N B SRR B )

' Normally the second term on the right-hand side of eqn C-9 is suf-
ficiently small that it may be neglected and the resulting finite
difference approximation for the second derivative is

12 _.1_.. - -
If we evaluate this expression at X, = h and Xy = Z2h, corresponding

to the first point used in each of the two analyses above, assuming

¢ =vx /2, we find results as shown in the table below



ordinary o 3/ ) A
derivative - -0. 125/h | 0.048/Mm>/%
finite _‘0‘293/}13/2 ~0.044/h3/z

difference

The error at x, = h is over 130 percent, while the error at x, = 2h

3
is just under 9 percént. Thus the error decreases by an order of
magnitude in going from x, to 23, independently of the value of h.
Since finite difference procedures require that eqn C-10 be without

significant error, the improvement of the solution in going from

the first case to the second is hardly surprising.
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TABLE I

Repko, Jones, and Srawley and
Brown (3) Beachem (4)
&) 0.02% 0.02%
N 0.028 0.19
) Fe - 0.26 0.28
e Al 3.4 3.2
5 A% 13.7 13.5
& Cr 10.9 11.5
g O 0.094 not given
O H 0.0038 0.005
Ti balance balance
Heat Solution annealed (as Solution a.nnealefi (as
Treat- received); aged in received); agecil in
ment argon at 900°F for vacuum at 900°F for
ey 48 hr and 1100°F for
¥ 1/2 hr
~ | o
3% T 162 ksi 161 ksi
a0 ® | T :
)
LR 176 ksi 176 ksi
w4z
Specimen width = 1 in. Specimen width = 1.5 in.
Geom - External vee notches Internal Elox slot, 0.5
etry (60°), 0.15 in. deep; in. long; fatigue crack
tip radius < 0.0007 in, ends
R —y ; ’
% n g 0.010, 0.018, 0.025, 0.020, 0.040, 0.060
'z g'g 0.063, 0,130 in. 0.080, 0.100, 0.130 in.
SEC |
. a
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TABLE II
Increment No, ' ' Load Increment Accumulated Lioad
1 2,300 1b/in? 2,300 1b/in?
2 200 2,500
3 300 2,800
4 300 3,100
5 300 3,400
6 300 3,700
7 300 4,000
8 400 4,400
9 400 4,800
10 400 5,200
11 400 5,600
12 400 6,000
13 500 6,500
14 500 7,000
15 500 7,500
16 500 _ 8,000
17 500 8,500
18 500 9,000
19 500 9,500
20 500 . 10,000
21 500 10,500
22 500 11,000
23 500 - 11,500
24 500 : 12,000
25 500 12,500
26 500 13,000
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Stress concentration factor
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e 2 = thickness/diametes

2,9 1~

2.7 -

J

] 1 | : ] |

0

Figure 4.

0.2 0.4 0.6 0.8 1.0

z/h

Stress concentration through the thickness of a
plate containing a circular hole, for several plate
thickness/hole diameter ratios (14).
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2 = thickness/diameter

Stres s/}oad

0 0.2 0.4 0.6 0.8
' z/h

Maximum transverse stress per unit load through

the thickness of a plate containing a circular hole,

for several plate thickness/hole diameter ratios (14).

Figure 6.
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4.5

-1. 0 :

Y
[
D)
o

1

2,25

3.0 ——

Figure 8a, Geometry and coordinates of plate for numerical
analysis. Sece Figures 8b and &c for finite elemeu;
representation.
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4

Fi e 8b.

6Q

ux

¥+

———— crack
.} -

Finite element representation
of first quadrant of plate. See
Figure 8¢ for details near
crack.




*qg pue Bg soxnSi g uj umoys oje[d I0J }OEID ILIU sJUOUWIA[R JO sTiele@ ‘O3 oandt g

|

, F . yoead
BTN LI 05,/ 9Z[NIS /N3 , _

~103-

-




egisAjeue _H.muﬂoﬁﬁs X0) pasn
o
(O X ut/ug <~ 3

0§ N 4 (112

0z ot
T

SAIND UIRI}S-S8013G ‘6 2anlr g

i } T

Z91/a1 901 X1°8 = z
¥96€°0=1u

4 K
¢-0T X91L°6 = ©3

~104-

198350 047 * 0 ——
L9L/q1 00§ TT = » lp

WEH, e 28 = o

umgm_..non. «ﬁﬁuﬁ\ 1) u + 1N\oh
: d\ﬁ o

1N\O.F .

jruwaly Jeuotjasodoad

0l

St




5 |-
4 I o numerical solution
analytic solution (12)
w =
2 -
O
1k
0 } — 1+ Q
o.m N. ’ , - NQQ
x/b
. O
-1 : ~ - , o o
O e v [ .

Figure 10, Distribution of ¢_/ G along the x-axis,
both for elastic mwmm.sa stress,

numerical results noikumm to Inglis' solution (12),
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0 3 6 9 12
G, 1b/in2 %107

Figure 13, CY/B’VS o, four elements at crack tip.
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. G, 1b/in® % 1073
Figure 14. cy/?f vs 0, six elements ahead of crack

r-a
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Figure 15. Gx/'&'vs o, four elements at crack tip.
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Figure 16, cx/?r"vs o, six elements ahead of crack.
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Figure 17. Variation of stress singularity with load.

@, 1b/in* x 1073
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 Figure 18,

3 6 9
o, 1b/in¥ x 1073
Variation of stress coefficient wi‘h lcac.
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' Figure 19. zx/Evs o, six elements
ahead of crack,
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Figure 20. ¢ Y/Evs T, six elements ahead of crack.
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‘Variation of strain singularity with load.

o, 1b/in® X 10-3
3 6 9

12
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Figure 22.

3 6 9 .
o, 1b/in? x 10-2
Variation of strain coefficient with load.
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Figure 23, Variation of:z (()P) with load, elemsant 5.
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| Figure 27, Contours of 7/7; . = 1at
several loadings. First

" quadrant of plate shown in
full,

C X10™3 = 13
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O = Ref. 25

/

Ref. 32 (average)

numerical data; .

upper line: 7 / llrmt
lower line: TO/TIunxt

, Figure 30.

1.5

]
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A

load.

G, Ib/in¥x 1073

Growth of complete plastic enclave with increasing
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Figure 31. Elastic strain energy density, four elements at
erack tip. '
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Figure 22, Elastic strain energy density, six elermenie zhead |
Co of crack.
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Figuras 33, Plastic strain energy density, four elements ahead
. ~ of crack tip.
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Figure 34, Plastic strain snergy density vs. load, five elements
‘ ahead of crack.
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Crack opening vs load, at center of cirack,
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: Figure A-1. Geometry and coordinates of cracked disk.
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