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Preface

It is usually customary for a Ph.D. thesis to contain a summary of all of the research
done by the student while in graduate school. This thesis does not. In fact, all of the
research described within this thesis was done within the last two years, while I have
actually been a graduate student in the applied physics department for over seven
years.

I originally entered Caltech in the fall of 1990 with the idea of doing research in
optoelectronics. I was primarily interested in developing optical computers. While
taking several optoelectronic courses during my first year at Caltech, I realized that
the primary advantage optical computing devices have over their silicon counterparts
is in their ability to perform parallel computations. This caused my interest to turn
to artificial neural networks. In the meantime, I had joined the research group of
Dr. Kerry Vahala, and was starting to do research with quantum dot semiconductor
lasers. Quantum dots can be created by applying a high magnetic field to quantum
well material; however, we were having difficulty obtaining the quantum well material
and a magnet of sufficient strength. Dr. Vahala suggested that I consider another
project. Since I was already interested in neural networks, I decided to change my
area of research, and I joined the robotics research group led by Dr. Joel Burdick.
While his primary focus was not on neural networks, I felt his interest in developing
neural controllers for robotics was compatible with my background in engineering.

My initial focus was in learning algorithms for fully-recurrent artificial neural
networks. Fully-recurrent networks are believed to be superior over their feed-forward
counterparts, since they offer the possibility of learning time-dependent phenomena.
Some gradient descent learning algorithms had been developed [81, 82, 83, 96, 108,
112], but they tended to be very slow in converging to a solution (see [5] for a general
overview). Also, they only seemed to work for training small networks with simple

problems. A typical network might have 10 neurons with 2 outputs, and only after
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10,000 learning iterations could the network accurately reproduce a figure 8. While
I successfully modified the learning algorithms to significantly reduce the number of
learning iterations required (from 10,000 to 500), I was unable to train larger networks
on more complex tasks.!

As I worked on training recurrent networks, it became apparent that the use of
neural networks will always be severely limited as long as they are only simulated on
serial computers. The primary advantage of neural networks lies in their parallelism,
and it will never be feasible to simulate large networks on serial computers in real
time. To learn how to design neural networks in hardware, I enrolled in Dr. Carver
Mead’s analog VLSI design classes. For my class projects, I designed two neural
network circuits, which were sent out to MOSIS and fabricated. With these circuits,
I was able to correctly train a three neuron network to duplicate the logic functions
of AND, OR, and XOR; however, the adjustable weight values needed to be stored
off chip as voltages. With a limited number of pins available for input and output
signals, the storage of adjustable weights on chip became an obstacle for creating
large networks of neurons. I designed a total of seven chips (including the two class
projects). While I made some progress in storing weights on chip, I decided to let Dr.
Mead’s students finish working out the details (Chris Diorio and Paul Hasler were
researching methods for storing voltages byv using electron tunneling through silicon
dioxide), and return to my research on learning algorithms.

To avoid some of the problems that I had previously encountered with learning
algorithms, I decided to take a different approach and follow biology more closely.
The research presented in this thesis is a summary of my efforts to duplicate the
computational power of biological nervous systems. Unlike the neurons in my previous
networks, biological neurons communicate via spikes, not analog signals. For them,
learning is a continual process which is accomplished through the formation of new
synapses and changes in the strengths of existing ones. Although the connections

made by even one neuron are too numerous to map, there is clearly an overall pattern.

1To my knowledge, no one has yet been able to train a fully-recurrent network to accurately draw
a clover figure.
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For many of the different sections within the brain, neurobiologists have been able
to determine their functions, and these have not been found to vary significantly
between individuals. This indicates that the brain is not just a large fully-recurrent
neural network, but is divided into different regions which perform specialized tasks,
and much of the topology between these regions is genetically determined. Based on
these facts about neurobiology, I entered this new phase of research with two initial

assumptions:

1. Biology uses spikes, so network designers should as well. Besides reducing noise,
spikes provide an efficient method for learning and storing spatial-temporal

patterns.

2. When a network is to accomplish a specific computational task, its topology
should be chosen to incorporate as much information about the task as possible.

Fully-recurrent neural networks should not be viewed as a general solution.

I started by developing a spiking neuron model, and testing its properties to
determine how well it was able to duplicate the functions of real neurons. Although
the original model has undergone some minor modifications, it still functions as I
first intended: only the neuron’s internal voltage and its input neurotransmitter are
modeled. Spikes are treated as discrete events with only the times of the spikes
conveying any information.

While I realize that this thesis only represents a small fraction of the total work
I have done at Caltech, I feel that it indirectly builds upon my past efforts. My
previous research has helped point me in many useful directions, and optimized my
Caltech experience by providing me with a broad background in the relatively new

field of artificial neural networks.
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Abstract

This thesis explores methods for computing with spikes. A spiking neuron model
(SNM) is developed, which uses relatively few variables. A neuron’s state is com-
pletely determined by the amount of neurotransmitter at its input synapses and the
time since it last produced a spike. A spike is treated as a discrete event, which
triggers the release of neurotransmitter at the neuron’s output synapses. Neurotrans-
mitter affects the voltage potentials of postsynaptic neurons.

The SNM is able to duplicate many of the properties of biological neurons, in-
cluding: latency, refractory periods, and oscillatory spiking behavior, thus indicating
that it is sufficiently complex for duplicating many of the computations performed by
real neurons. Although the inspiration for the SNM comes from biology, the purpose
of this research is to develop better computational devices.

Several single neuron building blocks are designed to perform useful functions,
such as: a high gain response, a memory oscillator, a bounded threshold response,
and an identity or inverse response. These single neuron building blocks are then used
in larger networks to accomplish more complex tasks including: synchronizing input
stimuli, recognizing spiking patterns, evaluating Boolean logic expressions, memo-
rizing spike patterns, counting input spikes, multiplexing signals, comparing spike
patterns, and recalling an associative memory.

When using the SNM, there are several possible methods for encoding information
within a spike train. With synchronous spike patterns, each spike can encode a single
bit. The strength of an input stimulus may be retained within the output phase of a
spike or logarithmically encoded in the neurotransmitter released at a synapse. And
when two sensory neurons receive the same input signal, the time duration of the
stimulus can be linearly encoded within their phase differences, while the strength of
the input signal is logarithmically encoded in their firing rates.

Learning may also be incorporated into an SNM network. A special feedforward
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network architecture is presented, in which each neuron has either an inhibitory or
excitatory effect on all of the neurons to which it connects. A new learning rule
is developed to train this network to respond to any combinations of input spike

patterns.
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Chapter 1 Introduction to Artificial

Neural Networks

1.1 Why Neural Networks?

Essentially, there are two different reasons for studying neural networks. The first
is for medical reasons: a better understanding of the nervous system will lead to
improvements in the diagnosis and treatment of diseases which afflict neuronal func-
tions. The second reason, which is the motivation behind this research, is to build
more robust, autonomous machines with the ability to learn and adapt to different
environments. However, before embarking on such a journey, it is useful to first
consider what properties are to be extracted from biological organisms.

From a systems standpoint, all parts of an organism are devoted to accomplishing
three primary functions: (1) input sensory information; (2) process sensory informa-
tion in a manner which allows the organism to make decisions about its environment;
and (3) respond and interact with the environment. So how does current technology
compare with the performance of biological organisms?

From a sensory standpoint, technology well exceeds biology in most cases. Vision
systems mounted on satellites are capable of imaging vehicles on the ground, hun-
dreds of miles below their orbit. Telescopes are capable of measuring light over a wide
spectrum, instead of only the very narrow range of human vision. And video cameras
are available that are smaller than a human eye. For hearing, microphones exist that
are capable of monitoring conversations hundreds of feet away. For touch, there are a
variety of devices available, including: capacitive sensors, strain gages, piezoelectric
devices, and thermocouples for measuring displacement, strain, pressure, and tem-
perature. Thus, the technology exists for accurately duplicating the touch sensing

capabilities of humans; however, due to the required signal conditioning circuitry,
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biology tends to have an edge in sensor density. For smell and taste, biology remains
superior. While sensors exist to detect specific chemicals, technology has not yet
produced a general purpose “nose” capable of discerning as many different chemicals
as the human olfactory system. (Many animals have olfactory systems far superior to
humans.) However, there are sensors for detecting many things that biology can not;
e.g., carbon monoxide and radon gas are two common sensors commercially avail-
able. For taste, humans actually have only four types of sensors: sweet, sour, bitter,
and salty. Since this sense is primarily associated with food consumption, there has
not been a serious attempt to duplicate it. Overall, technology is clearly capable of
providing adequate sensor inputs to any autonomous machines, which use vision and
audition as their dominant senses.

Technology also tends to exceed biology in its ability to interact with the environ-
ment. Humans are only capable of producing movement, which occurs through the
control of muscles. Even speech is just the result of coordinated contractions in the
muscles which control of the diaphragm, vocal chords, tongue, and jaw. To produce
movement, technology has developed gears, motors, and actuators, and their perfor-
mance exceeds biology in strength, endurance, and precision. However, biology excels
in muscle density, and is capable of producing a variety of moments within structures
much too small to contain even a single actuator; e.g., the legs on an ant, or wings
on a fruit fly. Although smaller structures are being developed for controlling move-
ment, any machine capable of replicating the wide variety of movements possible in a
biological organism will need to be relatively large and require a great deal of clever
engineering. Thus, it may be easier to build a mechanical elephant than a mechanical
ant! But one advantage technology has over biology is in the variety of ways it is
capable of interacting with the environment. Electrical signals can be directly output
to other machines or converted into sound or light.

Then what is the limiting factor in the design and construction of useful au-
tonomous machines which are capable of operating within an unknown and changing
environment? The answer appears to lie within the elusive property called intelli-

gence, which allows an organism to rapidly process its sensory information and make
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decisions about the environment. A biological organism has the ability to learn from
its past, and the more adept it is, the more intelligent it is considered to be. But how
does intelligence work? Biologists have shed some light on the problem, and deter-
mined that intelligence is a property of the nervous system, which is composed of vast
numbers of interconnected neurons. The intelligence of an organism is largely depen-
dent upon its number of neurons. Thus, artificial neural networks are an attempt to
duplicate the basic machinery of biological intelligence.

Computers are still unable to fully duplicate intelligence. Currently, personal com-
puters are capable of performing 400 million operations per second. In comparison, it
usually takes between 20-40 ms for one brain cell to fire and communicate its signal
to another neuron (25 to 50 operations per second). But biology has a computational
advantage with its parallel structure, which allows vast numbers of neurons to process
information simultaneously. The information flows freely between connected neurons,
with no system clock. Thus, conventional computers are far superior to humans in
serial tasks, such as arithmetic, but the human brain is superior in tasks that require
parallel processing, such as visual pattern recognition. For a computer to recognize
an object in a scene, it must analyze the picture one pixel at a time, while the human
visual system is able to process the entire scene simultaneously.

Unlike computers, neural networks encode information in a distributed fashion.
This allows them to use noisy and incomplete data and still make “good” decisions
quickly. While computers follow the commands in programs, neural networks do not
make precise calculations, and it even is difficult to reduce their processing into an
algorithm. If there is an error in a computer program, the computer will produce
the same incorrect output each time, but a neural network may be able to learn
from its past experiences and produce new results. The process of self modification
gives neural networks their ability to adapt to new environments, and it has been the
primary motivation for research into building more biologically based computational

devices.
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Figure 1.1: Schematic of a Typical Artificial Neuron. On the left are the
multiple inputs into the neuron, which come from other neurons or external stimuli.
Each of the interconnections between the inputs and the neuron has an associated
connection strength, W;;, where ¢ is the index of the neuron receiving the signal and
4 is the index of the neuron sending the signal. The neuron performs a weighted sum
on the inputs and uses a nonlinear function, f (X, Wijl‘j), to compute its output.
The same calculated result is sent to each of the target neurons on the right.

1.2 Types of Artificial Neural Networks

There are many different types of artificial neural networks. This section briefly
reviews some of the more popular ones to illustrate how they differ from the spik-
ing neuron model developed later in this thesis. In general, all neural networks can
be described in terms of: transfer function (discrete or analog), topology (feedfor-
ward or recurrent), implementation method (software or hardware), update method
(synchronous or asynchronous), behavior (deterministic or stochastic), output signal
format (continuous or spiking), and learning methodology (supervised or unsuper-
vised).

The typical artificial neural network is composed of many processing elements
called neurons. Each neuron may receive multiple input signals, from other neurons
or external stimuli, and produces a single output, which may be sent to numerous
other neurons. Each interconnection has an associated connection strength or weight.
The neuron performs a weighted sum on the inputs and uses a nonlinear function to

compute its output. Figure 1.1 depicts an artificial neuron.
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Neuron Transfer Functions
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Figure 1.2: Neuron Transfer Functions. Two commonly used transfer functions
are the binary threshold and the sigmoid. The sgn (z) function is an example of a
binary threshold, and the tanh (z) function is an example of a sigmoid.

A neuron’s transfer function may be either discrete or analog. An example of a
discrete transfer function is the binary threshold, in which a neuron outputs -1 or 1
depending upon whether the input signal is above a threshold level (sometimes 0 is
used instead of -1). Historically, this was the first type of artifical neuron used, and
it was first proposed in 1943 by McCulloch and Pitts (see [71]). They proved that
a synchronous assembly of such neurons with suitably chosen weights can duplicate
any computation that can be performed by an ordinary digital computer [42, p. 3].
But currently, the most commonly used transfer function is a sigmoidal analog func-
tion. A sigmoid is a bounded differential real function that has a positive derivative
everywhere. Its value asymptotically approaches finite upper and lower limits. The
central portion of the sigmoid is assumed to be roughly linear, with the average slope
of the central portion called the gain [39, p. 106]. An example of a sigmoid is the
tanh (z) function. Figure 1.2 depicts these two types of transfer functions.

Often the neurons are arranged in layers, with all of the inputs into a neuron
coming from neurons in the previous layer. When the neurons can be arranged in
this pattern, the network is considered to have a feedforward topology. Feedforward
neural networks, which are also called perceptrons, represent the oldest neural network
architecture, and were first developed by Rosenblatt in 1957 (see [94]). The neurons in

the first layer receive their inputs from external stimuli, and are called input neurons.
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The neurons in the last layer produce the “useful” output signals, and are called
output neurons. All of the neurons that do not directly interact with the external
environment through input or output signals are called hidden neurons. They usually
act as “feature detectors” and respond to particular patterns that may appear in the
input layer [17, p. 8. Sometimes there are also inhibitory connections between the
neurons within a layer. The resulting competition between the neurons limits the
number that can respond to a particular set of input signals. Such a network can
be designed to implement a winner-take-all function, where only the neuron with the
maximum weighted input signal has a positive output signal (see [42, p. 219]).

When the neurons can not be arranged in layers, the network is considered to
have a recurrent topology. If each neuron connects with all of the others, then the
network is fully-recurrent. Unlike feedforward networks, these networks can be used
to process and store temporal information; e.g., they can produce an oscillatory or
chaotic output even when the inputs are constant [82]. The disadvantage of using
recurrent networks is that their interconnections make them very difficult to analyze.
Also, most learning algorithms tend to be much slower in recurrent networks (39,
p. 189]. One special type of recurrent network is the Hopfield network, which is used
for associative memories. The weights are set a priori so that the network converges
to one of the stored patterns.

While there has been progress in developing electronic hardware, such as VLSI
circuits for artifical neural networks (e.g., [72, 73]), most implementations have been
done with standard serial computers simulating the neuron dynamics in software [17,
p. 17]. One of the main problems with making neural network chips is that they
require a lot of interconnections. The space taken up by the connections usually is
the limiting factor in the size of the network [42, p. 9]. Another major problem is
storing the adjustable parameters within the chip. (Storing the parameters off-chip
usually requires more pins than there are available.) All of the neuron parameters
must be represented as currents or voltages, but it is very difficult to accurately store
analog signals on chip. One alternative is to use digital-to-analog (D/A) converters,

but they require a considerable amount of space — especially if each parameter requires
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one. Research into the possibility of using floating gates to store analog voltages on
chip is currently in progress (see [18, 19, 36, 78]). An alternative to building neural
networks on silicon chips is to use optical computers, but current implementations are
limited and expensive [42, p. 9]. In the long term, efficient hardware is crucial to take
full advantage of the capabilities of neural networks, and there is growing activity in
this area; however, it is beyond the scope of this thesis.

When networks are simulated in software, the neuron dynamics can be updated ei-
ther synchronously or asynchronously. Most algorithms use the synchronous method,
with all of the neurons being updated simultaneously at each simulation time step [17,
p. 42]. A few algorithms update the dynamics asynchronously, with the neuron out-
puts being calculated one at a time. (This was first purposed by Hopfield for his
associative memory networks [45].) In this method, a neuron is randomly chosen
and its output is updated based on its input signals. The new output signal is then
available to be used as an input for the next randomly selected neuron.

Networks that use an asynchronous update method often have “stochastic” neu-
rons. In this case, the neuron’s transfer function does not actually represent the
output of a neuron, but rather, the probability of the output assuming a binary value
of 1 or -1. Typically, a stochastic neuron uses a sigmoidal transfer function which is
bounded between 0 and 1, e.g., f(z) = 0.5-(tanh (%) + 1) . The value of the sigmoid,
which is a function of the inputs, represents the probability of a neuron’s output being
1. Many networks with stochastic neurons are used for storing associative memories,
where the neuron dynamics cause the network to converge to a stored memory. These
stable states (attractors) represent the global minima of an energy function. The use
of stochastic units actually helps prevent the system from getting trapped in spurious
local minima [42, p. 33].

Most neuron models continuously output a signal, which depends only upon their

IThe parameter of T controls the gain of the sigmoid, and is referred to as the “temperature”
since it is analogous to controlling the thermal fluctuations due to noise in a stochastic physical
system. The terminology comes from the similarity between the activation probability of stochastic
neurons and the Ising model for spins (magnetic moments) within magnetic materials, where the
actual temperature does influence the probability of an atom changing its spin. (See [42, pp. 25-32]
for more details.)
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inputs; however, these models do not reflect the complex properties of real neurons.
Consequently, a few researchers have turned to models which output spikes or pulses.
Usually, the time between pulses is inversely related to the strength of the signal.
When the neuron’s output is a spike train, the neural transfer function must also
include a dependence upon the neuron’s internal state; i.e., after a neuron produces
a spike, there must be time lag before another spike can be produced (regardless of
the input). Thus, the time of the next output spike must include a dependence upon
the time of the previous spike. Because this complicates the neuron dynamics, most
artifical neural networks continue to be based on neurons with continuous outputs.
However, spiking neuron models are popular with neurobiologists, who have developed
sophisticated dynamical systems for replicating action potentials. But these models
are usually used for the purpose of studying biology and are too complex to be used
within a large artificial neural network as a computational device. Most spiking models
can be classified as being either of the integrate-and-fire or realistic channel-based
type [101]. With the integrate-and-fire models, inputs are integrated until the voltage
reaches a threshold level, whereupon a spike is produced, resetting the neuron. The
channel based models describe the actual ionic currents within a biological neuron,
which lead to the generation and propagation of an action potential. (Section 3.2
presents a novel spiking neuron model and Section 3.6 compares it to other popular
spiking models.)

The usefulness of neural networks depends upon their ability to perform desired
tasks. While there are some problems where the neuron parameters can be chosen a
priori, these problems are the exception rather than the rule. Most problems require
the network to learn the desired computation by making iterative adjustments to the
neuron parameters. (In many neuron models, the interconnection weights are the
only parameters to learn.) There are two methods for training networks: supervised
and unsupervised learning. In supervised learning (sometimes called learning with
a teacher), the parameter adjustments are made by comparing the network’s output
with known correct answers. The most common form of supervised learning is back-

propagation, which uses gradient descent to adjust the parameters in the direction
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that reduces the error in the output signal. In unsupervised learning, the network is
expected to find correlations between inputs, and produce output signals which divide
the input signals into different categories. This method is used when the learning goal

is not defined in terms of specific correct examples [42, p. 10].

1.3 Why Use Spiking Neurons?

Much of the current research in artificial neural networks has focused on the use of
neurons with continuous analog signals. However, it has been well established that
biological neurons display spiking behavior. Furthermore, all of the spikes produced
by real neurons have nearly identical shapes and sizes. In fact, there is relatively
little variation in neuronal spikes even between species [61, p. 4]. This has led most
researchers to conclude that information is not carried within individual spikes, but
within the spike frequency.? Indeed, much of the justification for using continuous
analog signals in artificial neural networks is based on the tacit assumption that
the output signal of a neuron primarily depends upon its mean spiking frequency,
which can be represented as an analog signal (see [46] for example). This raises some
obvious questions about the time window over which the average frequencies are
computed. With small time windows, neurons become more sensitive to noise, but
with larger time windows an organism has difficulty responding to rapidly changing
inputs. To overcome this problem, some neurobiologists have suggested that at least
some information is carried within the relative phases between spike trains (e.g., [7,
27]). Obviously, a coding scheme based on single spikes or interspike intervals yields
a much greater information capacity than one using an average spike rate [21], which
is one of the primary motivating assumptions for this thesis. In support of a spike
encoding scheme, various groups of neurons have been observed displaying oscillatory

patterns (e.g., [30]). It has been suggested that neurons with similar oscillations can

2Adrain [2] was one of the first to observe that the output spike frequency of a nerve cell is
a measure of the stimulus intensity, with stronger stimuli producing higher frequencies and better
maintaining the cell’s firing.
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be used to solve the labeling problem [98]; i.e., how are the observed properties of
an object linked together within the brain so that the object is perceived as a single
entity? Other researchers have even suggested that groups of oscillating neurons may
even form the basis of consciousness [57].

Research in artificial neural networks has often been approached from the view
point of artificial intelligence with the primary goal of building better computing de-
vices. Conversely, computational neuroscientists investigate biological neurons and
use simulations to understand how different neural systems function (e.g., [9, 59]).
Obviously, the findings from both approaches are mutually beneficial. The research
presented in this thesis attempts to further narrow this gap, by using some of the
known information about neurobiology to construct better computational devices
composed of spiking neuron-like models. While much of this research was motivated
by biology, the ultimate goal was not to contribute to a better understand of neuro-
biology. Thus, assumptions are occasionally made that have not been experimentally
justified in biological systems. But it is hoped that some of the computational ideas
presented here may offer reasonable paradigms for biological systems, which stimulate

further investigation by neurobiologists.

1.4 Overview of Thesis

Since the bulk of this thesis uses biologically motivated neurons with spiking dynam-
ics, Chapter 2 contains a brief description of real neurons, before Chapter 3 develops
the Spiking Neuron Model (SNM). Some modifications to the model are discussed to
further mimic the biological functions of presynaptic inhibition and synaptic clusters.
In Chapter 4, several properties of the SNM are described and compared with
biology, including: latency, refractory periods, endogenous spiking behaviors, and
adaptation of firing rate. Chapter 5 then discusses some methods for simulating the
SNM, which build upon the neurotransmitter properties presented in Chapter 4.
Chapter 6 is the first chapter showing how the SNM can be used as a compu-

tational tool. This chapter presents some single neuron building blocks, which are
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useful in constructing large networks. The neuron parameters are chosen to perform
specific functions, such as: a high gain response, a memory oscillator, a bounded
threshold response (spikes are only output when the input is between a lower and
upper limit), and an identity or inverse response. Each neuron is designed to perform
a specific function, and there is no learning involved.

Chapter 7 describes how the SNM can be used in networks to accomplish more
complex tasks. It begins by describing a stimulus detector, which senses when there is
a large stimulus signal arriving from several sources and synchronizes their spikes. It
is used as a preprocessor for other networks which require synchronous inputs. Next,
several pattern recognizing networks are developed for both spatial and temporal spike
trains. The chapter then shows how a single neuron with synchronized inputs can be
used to evaluate any Boolean logic expression. A variety of networks are developed
for tasks including: memorizing spiking patterns, counting spikes, multiplexing input
signals, comparing spike patterns, and recalling an associative memory.

Chapter 8 discusses some of the different ways that the SNM can encode infor-
mation in spike trains. For the networks presented in Chapter 7, the meaning of
each spike depends upon the task being performed. However, the SNM can also be
designed to encode information in either its output spike phase or frequency.

Chapter 9 shows how learning may be incorporated into the SNM. A special feed-
forward network architecture is presented, in which each neuron is either inhibitory or
excitatory. A new learning rule is developed, which can be used to train this network
to solve the pattern recognition and logic tasks discussed in Chapter 7.

The thesis then concludes with Chapter 10, which summarizes the research pre-
sented, highlights its significant contributions, discusses some of its computational
and biological implications, and outlines some of the possible advantages that may

be achieved by implementing the SNM in VLSI hardware.
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Chapter 2 Biological Neurons

2.1 Introduction

The existence of a nervous system is a primary distinguishing feature of animals. Its
fundamental task is to gather information about the environment, process and store
this information, and generate behavior. It can be studied at a number of levels
of organization. Biochemists explore the characteristics of molecules within a single
neuron. Physiologists study the properties of groups of neurons that are functionally
related. Behaviorists investigate patterns in learning and behavior. And finally,
connectionists attempt to extract the “intelligent” abilities of a nervous system.
Research into neural computation can be roughly divided into two areas: one is
interested in how neural models can illuminate the properties of biological systems,
and the other is interested in the functionality that neural computing can provide.
This research is based on the latter approach; however, the spiking neuron model
extracts many of the salient features of biological neurons. To facilitate the com-
parisons between biology and the spiking neuron model, it is useful to first describe
some of the important properties of a nervous system, and its basic structural unit,
the neuron. The Spiking Neuron Model (SNM) presented in Chapter 3 is a simpli-
fied mathematical model for the neuronal functions discussed here, and many of the
model parameters have a plausible physiological interpretation. Since only the most
basic neuron properties are discussed in this chapter, readers wishing to learn more

about biological neurons may want to consult [53], [61], or [65].

2.2 The Nervous System

Although the entire nervous system is interrelated, it can be divided between the

peripheral and the central nervous systems. The peripheral nervous system is com-
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posed of the nerves that carry information to and from the central nervous system,
and it can be further divided into the somatic system, which carries messages inward
from the sense organs and outward to the skeletal muscles, and the autonomic sys-
tem, which carries information to and from organs, glands, and other muscles such
as those of the heart and digestive system. The central nervous system includes the
brain and spinal cord, which can also be subdivided into smaller regions according
to their appearance and organization. The largest part of the brain is the cerebrum,
which contains 70% of the neurons in the central nervous system. The cerebral cortex
is the outer layer of the cerebrum, and is responsible for the higher functions of the
nervous system, including intellectual processes [20, p. 34, 44].

The brain is the primary organ responsible for interpreting sensory input, coordi-
nating bodily activities, and generating thought. Although the human brain contains
approximately a hundred billion (10') neurons, its processing is broken down into
groups of neurons that act as functional units. The neurons are densely packed in
a highly interwoven mass of tissue, with each neuron having as many as 200,000 in-
terconnections to other neurons (1,000 to 10,000 interconnections is typical). The
number of interconnections grows considerably as a human develops from a fetus to
an adult, while the actual number of neurons decreases.

The cells within the brain can be divided into two distinct classes: neurons and
glia. Glia, which comprise over 90% of the cells in the brain, are not believed to be
directly involved in signaling information. They fill the spaces between neurons and
provide the necessary structural and nutritional support. Some types of glia form
a myelin sheath surrounding the axons of some neurons. It acts as an insulating
cover, which aids in signal transmission and allows for faster propagation of action
potentials. Except in the case of myelination, the role of glia in the nervous system
is not well understood. It is thought that during development, certain classes of glial
cells guide the migration of neurons and direct the outgrowth of axons. Glia also
appear to be involved removing the neurotransmitters released by neurons during

synaptic transmission [53, p. 22].
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2.3 Neuron Structure

Neurons come in many different sizes and shapes and are usually tailored for a spe-
cific function within the nervous system, but most neurons are polarized with inputs
arriving at the dendrites and outputs leaving at the axon [50, pp. 1-2].

Typically, a neuron has three major regions: the axon, the soma or cell body, and
the dendrites (see Figure 2.1). The axon, which acts as the output mechanism for
the neuron, conducts signals away from the soma. The outgoing signals, called action
potentials, are usually initiated at the axon hillock, located where the axon connects
to the soma. Although there is only one axon for each cell, it can branch tremen-
dously, sending signals to different locations. While providing structural support to
the cell, the soma contains the nucleus and other structures required to manufacture
the enzymes and molecules needed by the neuron. The dendrites receive incoming
signals from other neurons. They can grow from one or more different locations on a
cell body, and, like axons, can be densely branched. Their sides may have dendritic
spines, which are protruding structures important for receiving incoming signals. The
diameters of the dendritic branches determine how incoming signals are summed and
processed by the neuron. A signal generated at the tip of a dendrite will excite the
axon hillock differently than a signal generated near the soma [17, p. 126].

Surrounding the entire cell is a membrane, whose structure and properties affect
the neuron’s functions. The membrane contains special channels which allow certain
ions to pass through in a controlled way. The neuron integrates the incoming signals
and propagates action potentials down the axon by regulating the flow of ions through
its membrane [17, p. 137].

Neurons transmit information through specialized contact zones, called synapses.
Synapses can be either electrical or chemical. Electrical synapses, which are also called
gap junctions, consist of specialized proteins that form intercellular bridging pores
through which current can flow from one neuron to the other. Chemical synapses
consist of synaptic vesicles in the presynaptic neuron (sending neuron) which release

chemical messengers, called neurotransmitters, into the gap between the neurons.
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Figure 2.1: Structure of a Typical Neuron. Neurons convey information by elec-
trical and chemical signals. Electrical signals propagate from the axon hillock to the
terminal fibers in the form of action potentials. When an action potential arrives, it
triggers the secretion of neurotransmitters from the terminal boutons. Neurotrans-
mitters bind to receptors and produce changes in the potential of the postsynaptic
neuron. If a sufficiently large change in the potential is generated, an action potential
is produced in the next neuron.
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The synaptic vesicles are stored at the tips of the axon, which are called terminal
boutons. The spines along the dendrite of the postsynaptic neuron (receiving neuron)
contain neurotransmitter receptors. The actual patterns of synaptic connections in
the nervous system are extremely complex. Some neurons make synaptic contacts to
nearby neurons, while others have long axons that form synapses on neurons up to a

meter away.

2.4 Neural Transmissions

While individual neurons have extraordinary diversity in their morphology and bio-
chemical properties, the nervous system relies on only a few basic principles for trans-
mitting signals. Neural signals are transmitted electrically in the interior of a neuron
by ionic currents through the membrane, which cause changes in the transmembrane
voltage. These ionic currents are controlled by ionic specific channels, which are ei-
ther open or closed. When a channel opens, the ionic concentration gradient across
the membrane drives the flow of ions through the channel. Normally, the interior of
a neuron is negatively charged with respect to its surrounding medium, with a rest-.
ing potential, V., of approximately -70 millivolts. This potential is a consequence of
the different interior and exterior ionic concentrations. The concentrations are main-
tained by ion pumps whose energy is derived from the hydrolysis of ATP molecules.
There are actually four different ions involved in transmembrane currents: sodium
(Na™), potassium (K*), calcium (Ca®*"), and chloride (C17) [50, pp. 3-4].

When a neuron’s dendrites are stimulated, it triggers a sequence of voltage and
time varying conductance changes in the cell membrane, resulting in a voltage change
at the soma. The dendrites are stimulated by neighboring neurons through neuro-
transmitters, which can be excitatory or inhibitory. When a dendrite receives exci-
tatory neurotransmitters, channels in the membrane open through which positively
charged ions enter, causing the potential difference between the interior and exterior
of the cell to diminish in a process known as depolarization. If the interior of the cell

becomes sufficiently depolarized (typically the potential difference across the mem-
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brane must increase above -40 mV [35, p. 16]), an action potential is generated at the
axon hillock and propagates down the axon.

Action potentials are produced in the axon hillock when special channels in the
membrane open allowing sodium ions (Na*) to rush in. The front part of the axon
becomes slightly positive relative to the external medium. This causes the channels
in the immediate vicinity to open so that the potassium ions can rush out and restore
the original resting potential of -70 mV. But before the potential is restored, the
adjacent portions of the axon membrane are affected, causing the entire process to
repeat itself a little farther down the axon. Thus, the rapid ion exchange moves down
the length of the axon, with the sudden shift from negative to positive and back
to negative resembling a spike in potential. When a nerve impulse is generated in
this manner, it will travel relatively long distances without any distortion or loss of
strength, but the action potential is an all-or-nothing response [20, pp. 39-40].

The conduction velocity of the action potential primarily depends upon the rate at
which the membrane capacitance ahead of the active region is discharged to threshold
by the spread of positively charged ions. Because the ions are able to spread more
quickly within larger fibers, they tend to have higher propagation velocities than
smaller fibers. In theory, the propagation velocity of an action potential varies directly
with the square root of the fiber diameter [61, p. 178].

After a nerve impulse passes through a section of the axon, the membrane gradu-
ally recovers its original properties and regenerates its resting potential over a period
of several milliseconds. During this recovery period the neuron remains incapable of
further excitation, and the neuron is said to be in its “refractory period.” After the
recovery is completed, the neuron returns to its resting state and can produce another
spike. Because the depolarized sections can not immediately become active again, the
pulse of electrical activity can only propagate in one direction: away from the cell
body. All action potentials have the same shape and magnitude. Thus, neurons are
believed to encode the intensity of their signals in the spiking frequency, which can
range from about 1 to 100 spikes per second [77, p. 4]. Of course, the time interval

between spikes must be longer than the neuron’s refractory period.
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In addition to the diversity among neurons in their firing frequencies and propa-
gation velocities, the intrinsic patterns for action potential firing vary greatly. While
some neurons have a steady unchanging resting potential in the absence of external
stimulation, others generate a variety of endogenous spiking patterns. This includes
“pacing” or “beating” neurons, which fire repetitively at a constant frequency. Al-
though external stimulation can change the firing rate or inhibit it altogether, the
mechanisms that drive their repetitive firing are intrinsic to the cell and do not re-
quire any external stimuli. Some neurons that fire spontaneously do not produce
action potentials at fixed regular intervals but instead generate bursts of spikes that
are separated by periods of hyperpolarization in the cell’s potential. Such neurons are
called “bursting” neurons and are used to generate rhythmic behaviors, like breathing,
walking, and chewing [65, p. 47].

While the generation of action potentials is the primary method used by neurons
to transmit information, it is not the only method. Ions flowing into the dendrites and
soma that do not stimulate the neuron sufficiently to generate a spike may nonethe-
less enable the cell to pass information to nearby neurons. The voltage levels between
the resting potential and the potential required to generate a spike are called graded
potentials. Unlike action potentials, graded potentials rapidly lose their electrical
strength with distance. Thus, action potentials are required for long-distance trans-
mission, while graded potentials can be used for local communication. Many of the
neurons that rely heavily on graded potentials in order to exchange information don’t
even have axons [20, pp. 40-41]. These neurons usually communicate via gap junc-

tions, which provide a low-resistance electrical interconnection between neurons.®

Tt is believed that gap junctions may be a primitive form of a synapse since they are much more
common in invertebrates than they are in mammals [17, p. 149]. They are of less interest here because
they have a much lower degree of adjustability [77, p. 5]. Consequently, neither graded potentials
nor gap junctions are considered in the spiking neuron model presented in the next chapter.
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2.5 Synaptic Transmissions

When an action potential travels down the axon, it must come to a halt at the
synapses, since there is not a conducting bridge to the next neuron or muscle fiber.
The signal is transmitted across the synaptic gap (also called the synaptic cleft) by
neurotransmitters, which are liberated in tiny amounts from vesicles contained within
the terminal bouton. The brain uses a variety of neurotransmitters, and several differ-
ent neurotransmitters can coexist within the same synapse. Their release is initiated
by the influx of calcium ions (Ca2+) into the presynaptic axon during the depolar-
ization caused by the flow of sodium ions (Na™). The amount of neurotransmitter
released varies widely between synapses. The molecules diffuse across the synaptic
gap and reach the postsynaptic neuron (or muscle fiber) within approximately 0.5
ms. When the neurotransmitters arrive at special receptors, the conductance of the
postsynaptic membrane is modified for certain ions, which results in a polarization
(inhibitory) or depolarization (excitatory) of the local postsynaptic potential. The
neurotransmitters are then quickly broken down by enzymes. While the rate at which
the neurotransmitter is released from a terminal bouton is increased enormously with
the arrival of an action potential, neurotransmitter is also randomly emitted at a rela-
tively low rate. The random release of neurotransmitter results in small depolarization
potentials in the postsynaptic neuron, and can cause the spontaneous generation of
an action potential [77, pp. 5-6].

Inhibitory synapses often connect onto other presynaptic axons, and inhibit their
ability to release neurotransmitters. This is referred to as presynaptic inhibition.
Also, there is some evidence that all the synaptic endings of an axon are either
excitatory or inhibitory (Dale’s law). Thus, an entire neuron may be referred to

as being excitatory or inhibitory.?2 The two types of synapses have some significant

2The spiking neuron model presented in Chapter 3 allows neurons to form both excitatory and
inhibitory synapses. This departure from real neurons is based on the underlying assumption that
biology needs to distinguish neurons as being excitatory or inhibitory due to the different chemical
and structural constraints of each type. Obviously, any network with neurons which are capable of
both synaptic types should at least have the same computational ability as a network composed of
neurons which are only capable of forming excitatory or inhibitory synapses.
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structural differences, with excitatory synapses changing the conductance of Na™ and
K" and inhibitory’synapses changing the conductance of C1™ [77, p. 5].

In general, biology use a wide variety of synapses. Often, they differ in the cell
parts that participate in the synaptic connection. While the typical synapse is axo-
dendritic, where a contact is made from an axon to a dendrite, other types of con-
nections exists, including: axon-somatic (axon to soma); axo-axonic (axon to axon);
somato-somatic (soma to soma); and dendro-dendritic (dendrite to dendrite). Of-
ten synapses are situated near each other in tightly grouped clusters, called synaptic
glomeruli. A connection between two neurons may even be a mixed junction, which
has both a chemical synapse and a gap junction. Another surprisingly common type
is a reciprocal junction, in which two neurons have synapses onto each other [17,
pp. 150-151].

When a postsynaptic neuron receives an excitatory signal at one of its synapses,
the neuron can, in principle, be inspired to fire; however, this is rarely the case,
especially if the synapse is located at the outer end of a dendrite. Most neurons
receive input from thousands of others. The body of the neuron acts as a “summing”
device. The effects from an incoming signal tend to decay with a characteristic time of
5-10 ms. But if several signals arrive within this time period, their excitatory effects
accumulate, and when the total magnitude of the depolarization exceeds the critical
threshold, the neuron fires. Notice that an input neuron with a high firing rate will
have a larger effect than one with a low firing rate, which is consistent with having
either the average firing rate or the inverse of the time between spikes express the
intensity of a signal [77, pp. 5-6].

In addition to the repetition rate of the arriving spikes, the influence each synapse
has on a neuron depends upon the inherent strength of its depolarizing effect, and its
location with respect to the cell body [77, p. 6]. Thus, while the body of the neuron
sums the incoming signals, each of the synapses can be thought of as multiplying one
of the input signals by a “weight value,” which indicates its relative significance in
triggering an action potential. There is a great deal of evidence that synaptic strengths

are adjusted over time, which is believed to play a dominant role in storing memories
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and learning. While it is not completely clear how the brain makes thé appropriate
synaptic adjustments, it has been theorized that an active synapse, which repeatedly
triggers the activation of its postsynaptic neuron, will grow in strength, while others
will gradually weaken (Hebb’s rule [37]).

While neurons transmit information in the form of spikes, the information content
of a neuron is determined by its function; i.e., the quality or meaning of a signal
depends upon the origins and destination of the nerve’s connections. Activity from
the various sensory inputs stimulate different regions in the brain, which are strictly
determined by the neural connections. Thus, spikes convey information about the

intensity of a stimulus and not its quality [61, p. 6].

2.6 Summary of Biological Neurons

Nearly all neuron have the same underlying principles for transmitting signals. The
Spiking Neuron Model presented in the next chapter is based on a typical neuron,
which produces action potentials when its membrane voltage exceeds a threshold level.
The spikes travel down the axon to synapses, which connect the neuron to other neu-
rons or muscles. When a spike arrives at a synapse, it causes the presynaptic neuron
to release neurotransmitter into the synaptic gap. As the neurotransmitter diffuses
across the gap, it is then absorbed by the postsynaptic neuron. Depending upon the
neurotransmitter used, the effect on the postsynaptic neuron may be either excitatory
or inhibitory. Excitatory signals increase the membrane voltage toward threshold,
while inhibitory signals decrease the membrane voltage. The voltage change due to
each incoming spike depends upon the strength of the connection, which is deter-
mined by the amount of neurotransmitter released by the presynaptic neuron and the
synapse’s location on the postsynaptic neuron. Also, the effect on the postsynaptic
neuron is delayed from the presynaptic neuron’s initial spike generation, primarily
due to the propagation time required by the axon. When a presynaptic neuron is
producing closely spaced spikes, there can be a buildup of neurotransmitter within

the synaptic gap, which causes the voltage change on the postsynaptic neuron to be
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larger than that from a single input spike. Most neurons receive many excitatory and
inhibitory inputs from other neurons and in turn supply many others. Some neurons
produce an endogenous spike pattern even with no input stimulation. Other neurons
have sensory receptors that respond to an external physical stimulus. Stronger stimuli
usually produce higher firing frequencies, but the maximum frequency is limited by
a neuron’s refractory period. The absolute refractory period is the time immediately
after a spike is produced when the neuron is unable to produce another output spike,
and the relative refractory period is the time after the absolute period when the neu-
ron is able to produce another spike, but its effective threshold level is elevated above
normal. The next chapter presents a simple mathematical model to account for all

of these phenomena.
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Chapter 3 Spiking Neuron Model

3.1 Introduction

This chapter presents the Spiking Neuron Model (SNM) which is able to capture
many of the dynamic properties observed in biological neurons. Each neuron receives
input signals from other neurons and/or external stimuli. The neurons that receive
an external input signal are referred to as sensory neurons. The potential voltage of
a neuron represents its internal state. When a neuron produces a spike, it triggers
the release of neurotransmitter at its output synapses. Spikes carry no information
in themselves; i.e., the spikes’ widths and heights are inconsequential. It is the neu-
rotransmitter within the synapses that carries information between neurons.

When a presynaptic neuron fires, the released neurotransmitter affects the voltage
potential of the postsynaptic neurons. Associated with each synapse are a time delay,
two weight values, and a time constant. The time delay sets the time from the initial
spike production in the presynaptic neuron until its effects are felt by the postsynaptic
neuron. The weight values set the strength of the presynaptic neuron’s influence on
the postsynaptic neuron’s potential voltage. (One weight value corresponds to the
amount of neurotransmitter released by the presynaptic neuron, and the other weight
value corresponds to the number of neurotransmitter receptors on the postsynaptic
neuron.) The time constant determines the length of time the presynaptic spike is
able to influence the postsynaptic neuron’s potential voltage.

In addition to its input synapses, the behavior of the SNM also depends upon its
resting potential, threshold level, and refractory time constant. The resting potential
determines the neuron’s potential when there are no input signals, while its threshold
value sets the level that its potential needs to exceed before a spike can be produced.
The refractory time constant determines the time between output spikes. (The SNM

has both an absolute and relative refractory period — see Section 4.3.3.)
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The SNM does not model the dendrites and axon of a real neuron. Instead, all
of their affects are lumped together and included within the synaptic parameters,
which account for the propagation time delay and time constants. The SNM is
completely deterministic: the release of neurotransmitter at each synapse only occurs
when triggered by a spike; the amount of the neurotransmitter released with each
spike is set by the synaptic parameters; and a neuron fires when its potential reaches
threshold. While real neurons seem to be somewhat non-deterministic in nature, it
is unclear as to the extent of their probabilistic behavior, and whether it offers a
computational advantage or is just a consequence of the neurobiological constraints.
But the use of probabilistic neurons is difficult to implement in hardware, and it
tends to complicate the analysis and makes computations intractable. Notice also
that deterministic systems can produce chaotic behavior. Thus, the deterministic

nature of the SNM is not believed to significantly weaken its computational abilities.

3.2 Dynamic Equations for the SNM

For the variables used, the subscripts refer to neuron labels, while the superscripts
refer to spike numbers. The amount of neurotransmitter available in the j' synapse
of n; (neuron #i) is denoted by T;;-U;;(t), while the potential voltage of n; is given
by V;i(t). When this potential voltage rises above the neuron’s threshold voltage, ©;,

the neuron produces a spike. The SNM equations are given by:

o [t—tf o T
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if: Vi(t) > ©; = n; firess tX=t¢ (3.4)

K2

There are four parameters for each synapse, R;;, T}, dij, and 75, two parameters
for each external input, R;, and Tj;, and three parameters associated with each

neuron, 7;, R;o, and ©;. The choice of these parameters determines the behavior of

the neuron. The variables in this model are defined as:

n; Refers to neuron #i.

Vi(t) Potential voltage of n;. This is an internal state variable.

0; Threshold voltage for n;. When V;(t) reaches ©;, n; produces
an output spike. (6; > 0)

Ui (t) The neurotransmitter in the j® synaptic gap of n; at time ¢.
The total amount is scaled by T;;. (U;;(t) > 0)
tk Time of the most recent output spike from n;.
tk, Time of the k*™ output spike from 7.
N; Number of incoming synapses on n;.
{N;} ; Refers to the neuron connected to the j*® synapse of n;. The
complete set of neurons connected to n; is denoted by {N;}.
Notice that a neuron may connect to another neuron through
several synapses.
dij Time delay associated with the j** synapse of n;. A spike
produced by n,, can not cause the release of neurotransmitter
until an elapsed time of d;; has occurred. (d;; > 0)
Tij Synaptic time constant for the j** synapse of n;. It sets
the neurotransmitter diffusion rate across the synaptic gap.
(i > 0)

i Refractory time constant for n;. It sets the rate at which the
ion channels are able to become responsive to the input
neurotransmitter after n; has fired. (r; > 0)

Rig “Neuron Resting Potential.” R,y represents the value that

Vi(t) converges to when there are no input or output spikes.
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T;; = “Synaptic Transmitter Weight.” T;; scales the amount of
neurotransmitter released into the j*® synapse, each time n,,

fires. When using inhibitory synapses, its value is negative.

R;; = “Synaptic Receiver Weight.” At the 7 synapse of n;, R;;
represents the total number of receptors on n;. (R;; > 0)
P, = Number of external inputs going into n;.
Iz(t) = The z'" external input signal into n;, at time ¢. It represents

the measurement of an environmental parameter. (I;;(t) > 0)
T.. = “Input Scaling Weight.” T}, scales the strength of the external
input, I;z(t). If the input inhibits n,, its value is negative.
R, = “Input Sensitivity Weight.” R;, represents the sensitivity of

n; to a particular external input signal. (Riz > 0)

3.3 Interpretation of SNM Terms

Every time n,, fires, a spike propagates down its axon. The time required for this
spike to reach the j' synapse of n; is determined by d;;. When the spike arrives,
neurotransmitter is released and diffuses across the synaptic gap until it reaches the

postsynaptic neurotransmitter receptors on n; with the functional form® of:

t—th —dy —(Hkﬂl>
<——u> e i for: ¢ Z tf:n -+ dij (35)
T'i,j

1This function is sometimes written as (1)e™** and is referred to as the “a-function.” Some

neuron models use this function to account for the induced ionic current through the postsynaptic
membrane after a presynaptic neuron fires and releases neurotransmitter. (See [50, p. 100] as an
example.) In this model it has a slightly different interpretation: it represents the amount of
neurotransmitter available to the postsynaptic neuron. But the probability that a postsynaptic

receptor will respond and open an ion channel is given by tanh (-%]'L_-Uij (t)) Thus, when the

presynaptic neuron fires repeatedly, there is a buildup of neurotransmitter, but the response of the
postsynaptic neuron is bounded by the tanh(—) function.
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This function peaks when ¢ = tfn + di;j + 75, so most of the neurotransmitter is not
received by n; until time (d;; + 74;) after np, has fired. Furthermore, the neurotrans-
mitter is assumed to dissipate with time, so that the total amount of neurotransmitter

available from each spike is given by:

t—tk _d.

| Ttm 7%y
[ () (2, 50

Since the neurotransmitter does not dissipate immediately, a rapid firing of n,,
causes a buildup in the neurotransmitter at its output synapses. (The amount of neu-
rotransmitter released by n,, is assumed to be independent of the current amount of
neurotransmitter in the synaptic gap.) This buildup is accounted for by summing over
all of the previous output spikes from n,,; i.e., the total amount of neurotransmitter

in the j*® synapse of n; is given by:

t—th _d,.
o () (55)
Ty <___Ln__’l> e I (3.7)

th,<t—di; Tij

Here, T;; is a scaling factor to account for variations in synaptic strength.? Notice
that t& < t— d;; represents all of the previous spikes that occurred at or before t —d;;.
Spikes produced after this time would not yet have reached the synapse.

Although a rapidly firing neuron creates a buildup of neurotransmitter, the re-
sponse of the postsynaptic neuron to the neurotransmitter must be bounded. This is

accomplished in the SNM by using the tanh(—) of the neurotransmitter; i.e.:

tanh <%-Uij(t)) (3.9)

ij

2If the synaptic transmitter weight varies with time, T;; = Tij(t), then the amount of neurotrans-
mitter released due to a spike depends upon its value at the time the spike arrives at the synapse;
i.e., the amount of neurotransmitter is actually given by:

. t—th g, _(5:‘5}_—"1)
Z Tij(tm + dij)- (—‘"—m J) e N (3.8)

py
th <t—d;; 1
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This term represents the probability of a postsynaptic receptor on neuron n; receiv-
ing any of the neurotransmitter in the synaptic gap. Obviously, as the total amount
of neurotransmitter increases, the probability that any of it arrives at a receptor
increases, but not above one. Notice that the total amount of neurotransmitter is
divided by R;;, the number of post-synaptic receptors. This accounts for fact that if
the number of receptors is increased while the amount of neurotransmitter remains
constant, then the probability of any one receptor receiving neurotransmitter is de-
creased. But, the postsynaptic response to the neurotransmitter depends upon both
the number of receptors at the synapse and the probability of receiving neurotrans-

mitter. Thus, the effect each synapse has on the neuron’s potential is given by:

Ryj-tanh (&-Uij(t)) (3.10)
R;;
Since R;; represents the total number of receptors on n;, scaled by the effect each
receptor has on the neuron’s potential, it will take into account any attenuation due
to the synapse’s location in the dendritic branches.> The total change in a neuron’s
potential, V;(t), is given by the sum of the responses at each of its incoming synapses,
with the total number of input synapses given by N;. Since there may be more than
one synapse between neurons [53, p. 1016], N; does not necessarily represent the
number of input neurons, and the subscript ¢ is used to indicate that the number of
inputs varies with each neuron. Notice that m = {N;} ; refers to the neuron connected
to the ;' synapse of n;.

If the amount of neurotransmitter at all of its input synapses is sufficient to cause
the potential voltage of n; to reach ©;, then the neuron produces an output spike.
This spike does not affect the neurotransmitter concentration at its input synapses,
but instead triggers the release of neurotransmitter at its output synapses.

Sensory neurons also have external input signals which encode the measurement of

3 Actually, it is only the neuron’s potential at the axon hillock that matters for producing a spike.
Thus, in addition to attenuation, there may also be a delay from the time a change in potential is
created at the synapse until it propagates to the axon hillock; however, it is not necessary to include
a separate delay term in the SNM for this, since it can be included within the d;; delay.
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environmental parameters. While most of the neurons in the human brain are used
to process sensory information, the actual number of neurons that directly receive
sensory signals are relatively few. To account for these special neurons, the SNM

includes the term of:

i Ri-tanh (Tip- Iia(t)) (3.11)

z=1
Unlike the spikes arriving at a synapse, the external input, I;;(t), is an analog signal,
which is directly input into a neuron; consequently, the tanh (—) function does not
represent the probability of a receptor receiving neurotransmitter, but simply limits
the effective response of a neuron to the stimulus. The input weight of T}, scales
the external input, I;,(¢), received by n;, and the sensitivity weight of R;; represents
the sensitivity of n; to a particular signal. To understand these parameters, consider
an eye focusing on a screen of uniform color and illumination. While the external
input signal into all sensory neurons of the retina is the same, there are differences in
intensity between the neurons due to their size and position within the retina. The
T, term accounts for these variations. In addition, the neurons also differ in their
sensitivity to particular colors, which is controlled by the R;;, parameter.
Finally, the production of an output spike is assumed to affect the receptivity
of the neuron’s ion channels to neurotransmitters or external input signals. (In a
biological neuron, the generation of an action potential is followed by a period of
residual inactivation in the Na™ channels and the opening of K* channels. This
causes a refractory period, during which the neuron is unable to produce another
spike. See [53, p. 110].) The percentage of ion channels able to respond to the input

signals and actually work to change the potential voltage of the neuron is given by:

— K
tanh? (t b ) for: ¢ >tX (3.12)

Thus, the percentage of ion channels available depends upon the elapsed time since
the neuron fired, and none of the ion channels are able to respond immediately after
the neuron fires. This forces a refractory period on the neuron — a time immediately

after firing when it is unable to produce another spike (see Section 4.3.3). Notice that
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since the square of the tangent function is used, the time derivative of the refractory
coefficient is zero immediately after the neuron fires.
In this model for neuron dynamics, there is no information concerning the neuron
spikes; e.g., the spike’s width or height. Instead, only the onset times of the spikes
are used to influence the resetting of the neuron’s potential voltage and the release

of neurotransmitter into the output synapses.

3.4 Synaptic Variability

3.4.1 Introduction

One shortcoming of the SNM presented in Equations (3.1)-(3.4) is that it is only ca-
pable of modeling “typical” axo-dendritic synapses; however, other types of synapses
exist. Two of the more important variations for neural computation are synapses
with presynaptic inhibition and synaptic clusters. With some minor modifications,
the SNM can account for these special synapses, which are depicted in Figure 3.1.

Most inhibitory synapses connect to the dendrites or soma of another neuron and
change the potential voltage of the entire neuron. But with presynaptic inhibition,
the synapse instead connects to the presynaptic plate of another axon and inhibits
its ability to release neurotransmitter. Thus, presynaptic inhibition allows the inputs
into a neuron to be selectively suppressed.

In a synaptic cluster, several synapses are closely spaced together. The synaptic
cluster shown in Figure 3.1 is a convergent glomeruli, where several axons connect
to a dendrite. In this case, the response of the postsynaptic neuron depends upon
the total amount of neurotransmitter released from all of the incoming axons. Thus,
the neuron’s potential changes as if there were only one synapse receiving input from

several sources.
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Normal Synapse Presynaptic Inhibition

Usjigy®)

o= (N},

Synaptic Cluster with
Presynaptic Inhibition

~ Dendrite  #;
Figure 3.1: Synapses. The top left diagram shows a normal synapse where n,, is con-
nected to the j*® synapse of n; without presynaptic inhibition. The neurotransmitter,
Ui;(t), is modeled with Equation (3.2). The top right diagram shows a synapse con-
necting n,, to n; with presynaptic inhibition from n,. The neurotransmitter released
from nyp, Upmg(t), is modeled as a normal synapse, but it does not effect the potential
voltage of n,,. Only the neurotransmitter released from n,, to n;, Usjiq)(t), is dimin-
ished, and modeled with Equation (3.13). The bottom left diagram shows a synaptic
cluster, where the total amount of neurotransmitter received by the dendritic spine
comes from three axons. The neurotransmitter released by each presynaptic neuron,
Nem, Mn, & Mo, is modeled as a normal synapse, but the response of the postsynaptic
neuron, n;, is modeled with Equation (3.14). The bottom right diagram shows a
synaptic cluster with presynaptic inhibition on one of the input connections. The
response of the postsynaptic neuron is still modeled with Equation (3.14), but the
release of neurotransmitter from n,, is modeled with Equation (3.13).
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3.4.2 Presynaptic Inhibition

In the SNM, the equations for the neuron dynamics can be easily modified to account
for presynaptic inhibition. In this case, the equation that governs neurotransmitter

concentration becomes:

t—th 4., T,
t—tk — di; —[(%’W)—Rm tanh{ £2% Upmg(t5,+di;) }
Uij(g)(t) = Z( - J>e J o (8 i) (3.13)
7]

th <t—di; Tij

Here, the ¢ subscript is put in parentheses to show that the neurotransmitter in
the j* synapse of n; depends upon U,,,(t), which is the neurotransmitter in the ¢
synapse of n,,. (Remember that m represents the neuron that connects to the 5
synapse of n;, m = {N,} ;» While the neuron into the ¢ synapse of n,,, p, is given by
P = {Nm},.) The value of Uny(?) is calculated as in the case of a normal synapse,
using Equation (3.2); however, since it only affects the ;7' synapse of n;, it does
appear in the formula for the potential voltage of V,,. Thus, when Up,,(t) is zero,
Usj(q)(t) acts as a normal synapse, but as Up,e(t) increases, it inhibits the release of
neurotransmitter, causing subsequent spike outputs from n,, to have less influence
on n;. (Since Un,(t) is assumed to be an inhibitory synapse, T, < 0.*) Notice
that the attenuating effect only depends upon the value of Up,(t) at the time of
neurotransmitter release, t = tf + d;j, and does not vary with time itself.

While the above formula includes the effects from a single presynaptic connection,
there may be several which influence the neurotransmitter output at a synapse, and
each of these connections may form separate synapses or be grouped within synaptic
clusters, which are discussed in the next section. In general, any type of connection
that a neuron can make onto another neuron to alter its potential voltage, it may also

make onto an axon as a presynaptic connection to alter the release of neurotransmitter

4In biology, most presynaptic connections are believed to be inhibitory; however, there are also
excitatory connections which enhance the release of neurotransmitter at the synapse (see [53, pp. 207-
209] for details). Equation (3.13) can also be used to account for such excitatory connections with
Tmq > 0. But since the dependence of the presynaptic synapse upon U;;(4)(t) is exponential, small
values for R4 should be used. The remainder of this thesis will use the term presynaptic connection
to refer to any synapse, excitatory or inhibitory, of this type.
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at a specific synapse.

3.4.3 Synaptic Clusters

In the SNM, the equations for the neuron dynamics can be altered to account for
convergent synaptic clusters® by adding the total amount of neurotransmitter released

by each input axon before calculating its effect on the receiving neuron; i.e.:

t—tK ol 1 ¥y
V;(t) = tanh2 ( . C > Rio + ZRij-tanh R.. Z Tf,;jl'Uijl(t)

Ti j=1 i 1=1
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where:  Ujn(t) = >, (—"‘—”—) e t (3.15)
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Here, the total number of inputs into the j** synapse of n; given by M,;, and {M,;}
represents the set of all neurons connected to n; at its j*® synapse. Notice that 7,
represents the I*® input neuron into the j*® synapse on n;, (m = {M;;},).°

The bottom right diagram in Figure 3.1 shows a convergent synaptic cluster with
presynaptic inhibition. In this case, Equation (3.14) still applies, but the neurotrans-
mitter, U;;(t), is modeled with Equation (3.13) for those input connections which
have presynaptic inhibition or excitation. Notice that the presynaptic connection

may in fact be from one of the other neurons which connects to n;. Thus, while

5Some synaptic clusters are divergent, where one axon connects to several dendrites. However,
since the neurotransmitter received by each dendrite affects its potential independent of the others,
this type of cluster does not require any special modification to the original SNM; i.e., the total
amount of neurotransmitter released by the axon will be distributed among the dendrites, but each
connection can be modeled as separated synapses with the corresponding weight values reflecting
the neurotransmitter distribution.

5For the remainder of this thesis, the term “connection” will be used to refer to a location where
two neurons are joined together, and the term “synapse” will be used to refer to the locations on
the receiving neuron that may have one or more connections. At a synaptic cluster, the neurotrans-
mitters, U;;;, and transmitter weights, T;;, are associated with the connections, while the receiver
weight, R;;, is associated with the synapse. When it is clear that there is only one connection at a
synapse, the term “synapse” will be used to refer to all of the associated variables.



34

sending an output signal, a neuron may also inhibit others from transmitting theirs.

Real neurons use different receptors for the inhibitory and excitatory neurotrans-
mitter. Thus, all of the incoming connections tend to be either inhibitory or excitatory
within a cluster; however, for the SNM there is no such restriction. In fact, a cluster
can have two input connections with different delays from the same neuron, with one
being excitatory and the other being inhibitory. And if the inputs into the clusters
are not from the same neuron, but are synchronized, then the neuron can be used to

evaluate any Boolean logic expression (see Section 7.4).

3.5 Summary of the Spiking Neuron Model

The SNM is designed to capture much of the interesting dynamics demonstrated by
real neurons, while remaining simple enough to simulate and understand. Spikes are
discrete events that have no width or height associated with them. Only the inter-
spike time intervals matter, as the spikes reset the neuron’s potential voltage and
trigger the release of neurotransmitter at the interneuron connections.

A network is composed of neurons, which may receive input from other neurons
or external input signals. The sign of the parameters associated with each connection
determines whether it has an excitatory or inhibitory effect on the neuron. When a
spike arrives at an input connection, neurotransmitter is released into the synaptic
gap with the functional form of te™®. The arrival time is determined by the time the
spike was produced, plus the delay associated with the connection.

The neurotransmitter’s effect on the neuron’s potential is modeled by the hyper-
bolic tangent of the neurotransmitter concentration at each synapse. When a group of
input connections converges at the same location, it is referred to as a synaptic cluster.
All of the cluster’s input connections contribute to the total neurotransmitter concen-
tration at the synapse, and their overall effect on the neuron’s potential is determined
by the tanh (—) of the sum. While most synapses connect directly onto neurons, some
connect onto other inputs, forming presynaptic connections, which alter the strength

of the input connection onto which they are joined. As with synapses connecting onto



35
neurons, there can be presynaptic clusters, which contain several input connections.

External inpu‘t connections are very similar to interneuron connections, but they
are assumed to have no delay associated with them, and their effect on the neuron’s
potential is given directly by the tanh (—) of the input signal; i.e., there is no release of
neurotransmitter involved. Also, while a neuron may receive several external inputs,
this thesis assumes that they do not form input clusters.

A neuron’s parameters may be set so that it is capable of producing spikes in
the absence of any input signals. Essentially all neurons can be divided into two
classifications: (1) neurons with ®; > R;o; and (2) neurons with ©; < Rjp. When ©; >
Ry, a neuron can not fire unless there is an excitatory input signal. (Theoretically,
if ©®;, = Ry, a neuron will fire once and then its refractory coefficient will inhibit it
from ever firing again.) But when ©; < Ry, a neuron can produce an output spike
pattern without any input signals. Of course, input signals can modify or inhibit the
neuron’s endogenous output spike pattern. This is discussed in Section 4.3.4.

While a mathematical description is necessary to simulate the neurons, it is also
useful to develop symbols for the different network components to illustrate a net-
work’s connectivity. Figure 3.2 shows the symbols for the SNM components that
are used in network schematics. Obviously, since each symbol has at least one pa-
rameter associated with it, a network schematic alone, without the parameters, is
insufficient for determining the network behavior; however, it can be a useful tool for
understanding the relationships between neurons.

One symbol shown in Figure 3.2 that does not fit into the SNM is the Neuron
with Random Output. Occasionally it is useful to have neurons producing randomly
generated output spike trains to test the network’s behavior. These neurons do not

receive any input signals, and the time between their output spikes is determined by:
tEHL _4E — N —y.log (1 —¢) (3.16)

Here, tX represents the time of the last output spike, t&*! represents the time of

the next output spike, ) represents the absolute refractory period, v represents the
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Figure 3.2: Symbols for Network Components. This diagram illustrates the com-
ponents that can be used in a network based on the SNM. In general, any interneuron
connection may have a delay associated with it, but external input connections do
not. Synaptic clusters may be composed of either excitatory or inhibitory input con-
nections or both. Synapses and synaptic clusters may connect to either neurons or
interneuron connections, forming presynapses. External inputs are assumed not to
form clusters, and can only connect directly to a neuron. The different symbols for
neurons are used to differentiate between their intrinsic output spike patterns.
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I External Input >

Figure 3.3: Example Schematic for Neural Network. This diagram demon-
strates the various ways the components of Figure 3.2 can be connected within a
network. Some things to notice are: (1) Any interneuron connection can contain de-
lay; (2) Synapses may connect to either neurons or interneuron connections, forming
presynapses; (3) Both neurons and interneuron connections may have several synapses
or synaptic clusters connected onto them; (4) Neurons may have self connections; (5)
Neurons and external inputs may form both excitatory and inhibitory connections;
(6) A neuron may connect to another neuron at more than one synapse; (7) Pairs of
neurons may have reciprocal connections.

“gain,” and ¢ is a uniformly distributed random number between 0 and 1. The
average time between spikes is A + v, with a standard deviation of . With this
function determining the output spikes, the probability that the time between spikes
is less than or equal to z is given by:
0 ifr<A
P(th —tf <z) = s (3.17)
l—e_(—v—) ifz >\
Figure 3.3 shows a sample neural network which contains two random output neu-
rons. The network is not designed to perform a particular task, but simply illustrates

some of the various ways that the SNM’s components can be connected.
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3.6 Comparison with Other Neuron Models

A model is a tool used to help understand something complicated. A good model
reduces the complexity of the system significantly while still preserving its essential
features. The degree of reduction needed in a model clearly depends upon the prob-
lem to be solved. Among neurobiologists there is some controversy as to the level of
detail required in neuron models [101]. Some believe that when a neuron operates
within a large network, its details are superfluous, and its input/output characteris-
tics can be represented by a simple model. Others believe that a neuron’s morphology
and electrical properties play an important role in its computational functions; con-
sequently, models should retain all of the known details. This controversy has led
to an abundance in neuron models. In general, most of the models can be classified
according to the type of signal used (e.g., digital, analog, or spiking), and the degree
to which they model the neuron’s geometry (e.g., axon and dendritic branches).

The simplest models are those that ignore the neuron branches and use digital sig-
nals. The most significant among these models are those of McCulloch and Pitts [71],
Minsky and Papert [75], and Hopfield [45]. The neurons are discrete in nature, both
because they have binary states and because time is quantized. At each discrete time
step, the excitatory and inhibitory inputs into the neurons are summed and all of
the neurons whose total input exceeds a certain voltage threshold, produce an “on”
output. (Some models use an asynchronous updating scheme — see Section 1.2.) The
rationale behind this type of model is the belief that when there are a large number
of connected elements, the network’s emergent collective behavior is insensitive to the
details of the model. (Hopfield [46] showed that many network properties are pre-
served when binary neurons are replaced with continuous neurons.) Obviously, the
primary advantage of these models is their simplicity, which allows large networks of
them to be simulated and analyzed [101].

Probably the most popular neuron models for computation are those which use
continuous (analog) output signals. The primary advantage they have over their

discrete counterparts is in the differentiability of the transfer function, which makes
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them suitable for use with backpropagation learning algorithms. The dynamics for
these neurons are usually represented by differential equations, which are integrated
forward as the network evolves in time (e.g., [34, pp. 72-78], [46], [83], [42, pp. 54-60]).
Many of these models are based on an electrical circuit representation of the neuron’s
membrane consisting of a resistor and capacitor in parallel. The resistor represents
the conductivity of transmembrane channels through which the ionic currents flow,
while the capacitor separates the charges on each side of the membrane.

One of the shortcomings of both the digital and analog neuron models is their
inability to account for refractory periods, which rely on the neurons’ past histories.
Refractory periods are believed to play a major role in shaping the dynamics of neu-
ronal populations [74, p. 14]. The inclusion of a refractory period is not a problem
when using a neuron model with spiking dynamics. These models are usually cre-
ated by neurobiologists for the purpose of understanding biology, and few researchers
have studied spiking neurons for use in computing paradigms. The spiking neuron
models range from phenomenological to realistic channel-based models. (See [59] for
a survey of the more popular models used by neurobiologists.) Phenomenological
models include the integrate-and-fire type, in which the inputs are integrated in time
and when the voltage reaches a threshold level, a spike is produced. Of the realistic
channel-based models, the best known example is the three channel Hodgkin-Huxley
model [43], which describes the initiation and propagation of action potentials in the
squid giant axon.”

The original Hodgkin-Huxley model consists of four coupled differential equations,
one for the membrane voltage, two for the Na™ current, and one for the K™ current.
This model allows phenomena, such as the spiking threshold and refractory period,
to be understood on physical grounds. Unfortunately, the model is too complicated
for a detailed mathematical analysis, and even when being simulated on computer,

simplifying assumptions are usually unavoidable |59, pp. 1-2]. For this reason, several

"The Hodgkin-Huxley model actually uses continuous dynamics, and the spikes or “action poten-
tials” are a consequence of the different time scales associated with the differential equations. Thus,
for some neuron models there is no clear distinction between an analog or spiking output signal.
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attempts have been made to reduce the Hodgkin-Huxley model to two coupled dif-
ferential equations. Of this class of models, the FitzHugh-Nagumo model [23, 79] is
one of the best known. It has proven useful for gaining mathematical insight into the
electrical behavior of a biological neuron’s membrane. However, the parameters used
to define this and similar models often have no direct physical interpretation [101].

One of the directions in neuronal modeling that has gained momentum in recent
years is to include the effects of the dendritic branches. Rall [85, 88, 86] was the
first to explore the physiological significance of dendrites. He ignored the membrane
nonlinearities and treated the dendrites as an electrically passive tree. By using the
boundary conditions imposed by the tree structure, the voltage spread in time and
space could be described by the second order partial differential equation established
by Hodgkin and Rushton [44]. This allowed the voltage response at any point in
an arbitrarily complex passive tree to be characterized as a function of the currents
injected at other points. To overcome the constraint of a passive membrane, Rall [87]
developed a complementary compartmental modeling approach (reviewed in [100]).
Mathematically, the compartmental approach replaces the continuous cable equation
by a matrix of ordinary differential equations. The problem with this approach is that
the numerical methods needed to solve this system of equations (which can include
thousands of compartments for each neuron) at each time step are very computation-
ally demanding [101]. (A popular neuron simulator, based on this compartmental
approach is GENESIS, develop by Bower. See [9] for details.)

By modeling the specific structure and biophysical properties of neurons, re-
searchers have been able to demonstrate some possible computations that can be
performed by single neurons. First, a neuron can be directionally selective and used
to compute direction of motion [101]. Second, a neuron may respond preferentially to
specific input sequences, and can thus be used to recognize certain spatial-temporal
patterns [101]. And third, the strategic location of inhibitory and excitatory inputs
onto the tree can be use to implement logic operations [101]. Fortunately, all of these
functions can be accomplished with the SNM.

While the modeling of the ionic currents and dendritic branches may be necessary
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by neurobiologists to understand the computations being performed by neurons within
biological systems, the SNM assumes that such details are not needed to duplicate
the computations. In this sense, the SNM is relatively simple. It does not attempt to
directly model the neuron’s morphology, but its effects are included within the synap-
tic parameters. However, one limitation of the SNM is that it is unable to account
for the possible interactions that may occur between inputs within the dendrites.

The SNM has properties similar to the integrate-and-fire models, with the spikes
being discontinuities in the underlying analog variables. But one distinguishing char-
acteristics of the SNM is that the neuron dynamics are not based on a set of differential
equations. During simulation, this feature allows the neuron state variables to evolve
forward in time without worrying about the size of the time step or the stability of
the numerical integration technique. Of the neuron models described in literature,
the SNM is similar to the more complicated “Spike Response Model” of [25, 27]. In
this model, the effect from each of the incoming spikes has a functional form of te™,
which is analogous to the input neurotransmitter, U;;(t), in the SNM. But the neu-
ron’s refractory term takes a different form, and is additive rather than multiplicative.
Also, the production of a spike is probabilistic rather than deterministic.

One of the primary advantages of the SNM over other spiking models is that it is
not based on any differential equations. Consequently, the stability of the simulated
dynamics is not affected by the integration step size. A novel simulation method
was presented, called “Simulating in Time Segments,” in which all of the time steps
within a relatively large segment of time are simulated all at once. It uses an iterative
approach; each spike that occurs during the time segment requires a recalculation of
the neurotransmitter at the affected synapses. Of course, the additional neurotrans-
mitter can in turn lead to more spikes, but time segments with few spikes can be
quickly simulated.

Overall, the SNM fulfills its purpose of providing a relatively simple spiking neuron
model which can be used for spike based computations. It is able to produce spike
trains comparable to those of real neurons (see Section 4.3.4). But there is no reason

to suspect that other spiking neuron models with similar properties can not be used in
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similar configurations to accomplish the same computations. Thus, depending upon
the purpose of the simulation, more complex neuron models may be used, and in

some cases even simpler models may suffice.
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Chapter 4 Properties of the SNM

4.1 Introduction

Since the SNM is intended to duplicate some of the computational abilities of bio-
logical neurons, it is useful to analyze and compare its properties with the observed
properties of real neurons. Obviously, the key to using a spiking model is to have
a neuron which produces action potentials when presented with a sufficiently large
excitatory stimulus. In the SNM, the threshold potential, ©;, sets the critical stim-
ulus strength for generating a spike. The neuron only responds passively when the
stimulus results in a potential voltage below ©;. It is the production of a spike that
triggers the release of neurotransmitter at the neuron’s output synapses. Thus, only
stimuli of sufficient strength (importance) result in information being transferred to
other neurons via neurotransmitter.

Section 4.2 discusses some of the neurotransmitter properties, and shows how the
total amount of neurotransmitter does not need to be represented as a sum over all of
the previous spikes, but can instead be represented by an iterative formula. Further-
more, when the spikes are periodic, the iterative formula for the neurotransmitter can
be simplified. Section 4.3 examines the neuron potential, V;(t), and tests the SNM’s
ability to replicate some of the well known properties in biological neurons, namely,
latency, refractory periods, endogenous oscillatory spiking behavior, and adaptation
of firing rate. Section 4.4 analyzes the SNM’s frequency transfer function. And finally,

Section 4.5 summarizes the properties of the SNM.
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4.2 Neurotransmitter Concentration, U;;(t)

4.2.1 Introduction

The release and uptake of neurotransmitter are perhaps the least understood neu-
ronal functions, and the SNM only provides a crude approximation to these complex
biochemical reactions. In fact, the same equation is used to model all of the possible
types of neurotransmitter. (Of course the parameters can be chosen differently be-
tween synapses. This allows for both inhibitory and excitatory neurotransmitters, as
well as variations in time constants.) Also, the SNM does not account for the spon-
taneous release of neurotransmitter without stimulation, nor the random fluctuations
in the amount of neurotransmitter released when evoked by an action potential.!

In the SNM, when neuron n,, fires, neurotransmitter is released into all of n,,’s
output connections. Since there may already be neurotransmitter at the connections
as a result of previous output spikes, the total neurotransmitter concentration at the

synapse connected to n;, U;;(t), is the sum of the effects from all previous spikes; i.e.:

t dy;

PN . = _tk g
U= % (f——im—fl-—)( )=Zf<ﬂ———fiﬂ) (@)
k

Tis Tis
t;"nst——dij &Y L)

where: f(z) = F(z)-u(z) (4.2)
F(z) ze™* (4.3)

Here, u(z) is the unit step function defined by:

0 z<0
u(z) = (4.4)
1 >0

11n the SNM, the amount of neurotransmitter released due to an action potential can vary through
learning, i.e., as the parameters change. However, the release of neurotransmitter is deterministic,
not probabilistic.
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Also, the time derivative of the neurotransmitter concentration is given by:

n - ()5, b- =58 4

Tij ) gk <t —d;;

- () ()

= <-1—> [k (t) — Ug(2)] (4.5)

Tij

Il

where:  1;(t) Zg <t—tﬂ] d”) (4.6)
ox) = Gla)u(e) (47)

G(z) = e° (4.8)

In Equations (4.1) and (4.5), di; and 7;; represent the time delay and time constant
associated with the connection, and tﬁl represents the times of the output spikes from
nm, which is the neuron connected to the 7 synapse of n;.

The function f(z) represents the total effect of the neurotransmitter released with
each spike. Essentially, it is used to account for the propagation of the action potential
down the axon to the synapse, the release of neurotransmitter and its diffusion across
the synaptic gap, the response of the postsynaptic receptors,? the opening of ion
channels within the postsynaptic membrane, and the propagation of the potential
change through the dendritic branches to the axon hillock. Notice that while the
effects from the previous input spikes decay with time, it is their summation that
gives the SNM it unique properties. Unlike many neuron models, the state of a
neuron does not just depend upon the current input signals, but the entire spike
history of the presynaptic neurons.

Appendix A shows plots of F(z) and G(z), and discusses some of their useful
properties. The properties of U(t) and p(t) are discussed in Appendix B. Section

2The tanh () function is used to limit the response of the postsynaptic neuron from each synapse.
It reflects the probability of neurotransmitter reaching a postsynaptic receptor. See Equation (3.9).
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4.2.2 shows how Equation (4.1) can be expressed iteratively, and Section 4.2.3 analyzes
the consequence of a periodic spike train on the neurotransmitter concentration at a

synapse.

4.2.2 TIterative Representation for U;;(t)

The problem with expressing U;;(t) as a sum is that the number of previous input
spikes may be very large, and it is not practical to keep track of all of them to calculate
Ui;(t). Obviously, since the contribution of each individual spike approaches zero
as time increases, the series can be approzimated with a truncated one which only
accounts for the most recent spikes. But if U;(t,) and Uy;(t,) are known, where ¢,
represents any time between the arrival time of the last input spike, tX + d;;, and the
arrival time of the next spike, tX+! + d;;, then U;;(t) may be expressed ezactly as a

function of these two known quantities; i.e., from Equations (B.5) and (B.10):

Ui (5 + di; < t = to+ 6 < 5T 4+ dyy)
R d
- 3 <to +6—th — dij) e—(i&]m_d_z)
th <tX Tij
6 )
= G (—-—) Uij(to) + F <—-—) 1145 (to)
Tij Tij

Usj(to) ..
= mj(to)e(m) -F (;‘5— + /%%) (4.9)

,uij(tﬁ + dij <t=t,+6< tﬁ’H + dij)

_ (to+6—t£"n-—dii > 5
= > e v /=a (—) wij(to) (4.10)
th, <tE Tij
where: ,U«z'j(to) = Uij(to) -+ TijUij(to) (4.11)

In these expressions, U;;(t,) and p;(t,) are constants. However, after another input
spike arrives, new values for U;;(¢,) and p;;(to) need to be found. But, by using the

values for Uy;(t,) and p4;(t,) at the arrival time of an incoming pulse, (t, = t& + d;;),
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the values for U;;(t,) and p;(t,) may be expressed in a recursive relationship; i.e., let

/L{y{' = /“ij(trjg + dij) and Ug = Uij(tfrg + d;;), then:

K gk K -1 K14k
— 2 | m__m PR o s + N 1 0}
ﬂfjf.: Ze(w):e( Tij ) Z e( Tij )+1
th <tk th <tK-1
o K1

e‘(_ﬁfL)ug—l +1 (4.12)
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th <tk Tij Tij

th <tm "

> (————tﬁ—l - tfﬂ) ()

th <th~! Tij

(K K1 K _ K1
_ (e ).K____m L )ug—lwg-l} (4.13)
ij

In matrix form, Equations (4.12)-(4.13) can be expressed as:

K (o 1 0 K1 1
45| e (Bs). e R (4.14)
Usj (_m_”__) L[ U 0

Thus, by iteratively calculating the ujs and U constants after each spike, an exact
expression for U;;(t) can be used without needing to recalculate all of the summation
terms in Equation (4.1); i.e., ufs and U} can be used for p45(t,) and Uy(t,) in Equation
(4.9) to calculate the neurotransmitter between input spikes, U,;(t). Notice that to
calculate the new values for ,ug- and Ug it is only necessary to use the time between
the last two input spikes.

One important consequence of using the representation for U;;(¢) given in Equation
(4.9) occurs when attempting to simulate a neuron: it is not necessary to specify the
entire history of the incoming spikes to set the neurotransmitter’s initial condition.

Instead, the initial condition may be specified in terms of Uj;(t,) and pi;(t,), where
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Figure 4.1: Periodic Spike Patterns. All four of the periodic patterns have a
period of 3, but the number of spikes in each pattern varies. Patterns (A)-(C) have
only 1, 2, and 3 spikes in their respective periods, while (D) has 10 spikes in its period.

t, is now the starting time of the simulation. And when the previous input spikes
are assumed to be periodic in nature, explicit solutions for U;;(t,) and p4;(t,) can be

found using the method presented in the next section.

4.2.3 Effect of Periodic Input Signals on U;;(¢)

Often a neuron converges to a periodic spiking pattern, and it is useful to consider the
effects of such a pattern on the amount of neurotransmitter released by the neuron.
Obviously, as the spiking pattern for n,, becomes periodic, so will the function of
U,;(t). A periodic spiking pattern can be described by the number of spikes in each
period and the length of the period. With P designating a periodic spike train, the

notation is:

PN = A (4.15)
where: N = Number of spikes in each period

A = Time length of each period

Figure 4.1 illustrates this notation by showing some periodic spiking patterns.

Now, if the pattern has been repeating long enough for the neurotransmitter
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function to converge to a periodic function, then U;;(t) = U;(t + A). Iteratively

using Equation (4.14) N times gives:

K+N (& 1 0 K WE(N
| T e
Uis (%) 11 1vs Vg ()

K (K1)
N-1 — —';.'ZJ———
where: j5(N) = ) e (4.17)
=0
tﬁ—t(K_i)
) N-1 (4K _ G(K=)\  —| ———
vk = Y | 2—L—]e (4.18)
=0 Tij

Here, the functions of ﬁg (N) and []’ff (N) each assume one of N constant values;
ie., fify (N) and 05.{ (N) take on different values after each spike, but these values are

_ K K+N _ 17K
= Mij and Us =U;,

periodic and repeat every N spikes. Since pE+N

i the explicit

solution for pf and U is:

pls _ 1 2' 1—e—(%) 0 . fuis (N) (4.19)
5] Le®)) | @)e® 1@ | Lasmn |

Notice that:

) | EG(N)

UK (&) AN (N) A\ UE(N)

( ;ﬂ() = | A% + == (——) + =% (4.20)
wis (A

where the function of v is defined in Equation (C.5). Substituting these expressions
for pf and UJX back into Equations (4.9)-(4.10), let Uy;(t) and py;(t) be written in

terms of the time intervals between the spikes within the periodic pattern; i.e.:

oE ) )
Us(#) = i <N>e(i-’§m). <__<1T)) F (F:—?ﬁ:fl— +9 (3) + U;(((g)) ) (4.21)

Tij Tij iy
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~K K
fii; (N) b=ty — dyj
o= () o (2E)
1- e_(a) Y

where the scaling function of x used in Equation (4.21) is defined in Equation (C.13).
Thus, Equation (4.21) represents a general solution for any periodic spike train. The
solution for p;;(t) is not needed to integrate the neuron dynamics forward in time,
but is useful for specifying a neuron’s initial condition when starting a simulation
from a periodic spiking condition.

For the special case of only one spike per period, (P! = A), /lfj{(l) and ﬁg(l)
reduce to 1 and 0 respectively. Thus, U;;(t) and p;;(t) become:

Uis(t) = (Z—(}-_A——)") F (3‘—1}’{%—” +o <%)) (4.23)

Ti:,

_ t—tK—d;;
1 o iz

pii(t) = | —7 %
1-— e—(?i;)

Figure 4.2 shows Uj;;(t) for three different values of . Also, applying the properties

(4.24)

of F(z), ¢ (z), and & (z) found in Appendices A & C to these equations give:

max {U;;(t)} =

at: t=tK +dy+ 7 [1 — (é)} (4.25)
ij

(%)
F(E) (W)A ot t=tK+dy;  (426)

Tig

A
(7'”) 1—e ™
1 rtE4di+A

min {U;;(¢)} =

{Uy(t) = X s Uss(t)dt = = (4.27)

(4.28)
max {,U,U(t>} = —‘———1—A_ at: Tt = tﬁ + dij (429)

1-— e_ (a)
. Tij A X
min {p;(t)} = <_> . at: t=t, +di; + A (4.30)
ij
1 m+dij+A Tij

(i (1) = % e pig(t)dt = (4.31)

Equation (4.27) shows that the average amount of neurotransmitter varies directly
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Figure 4.2: U;(t) for Periodic Spike Pattern with P! = A. This plot shows
Ui;(t) for three different spike frequencies (% = 1, 1.5, and 3). As the frequency
is increased, the average value also increases, and the “bumps” become smaller and
more symmetrical. The maximum and minimum values are found using Equations
(4.25)-(4.26) and are shown as dashed lines, while the average values are given by
Equation (4.27) and are shown as dotted lines.

with the input frequency, f™ = %, and the integral of the U;;(t) function between

spikes equals the total contribution from a single spike (see Equation (3.6)).

4.3 Neuron Potential, V;(t)

4.3.1 Introduction

Before trying to use the SNM for computational tasks, it is informative to compare its
behavior with that of a biological neuron. In real neurons the amplitude and width
of an action potential is independent of stimulus intensity; however, many of its other

properties are not. In particular, the latency, which is the time delay from the onset of
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the stimulus to the peak of the action potential, and the refractory period, which is the
time required after a spike before another one can be generated, are both functions of
stimulus strength. They allow neurons to encode the strength of a stimulus in terms
of output spike frequency. (Chapter 8 discusses how information may actually be
encoded in spikes.) Also, some neurons have endogenous spiking behaviors, and are
capable of producing periodic spike trains in the absence of any external stimulation.
Other neurons are able to adapt their output spike rate to become more sensitive to
changes within the input signal rather than the input’s intensity.

All of these phenomena are properties of the neuron potential. Section 4.3.2 and
Section 4.3.3 discuss latency and refractory periods in the SNM. Section 4.3.4 shows
how the SNM parameters may be set to produce endogenous spike train outputs.
And Section 4.3.5 shows how a neuron can adapt its spike rate to a constant input

signal.

4.3.2 Latency

Figure 4.3 shows a typical response when a depolarizing (excitatory) current is in-
jected into a real neuron. Notice that a minimum signal strength is required to
produce an action potential, and when a stimulus exceeds this threshold, the time
delay from the onset of the stimulus to the peak of the action potential, decreases with
stimulus strength. The latency, which is the time delay before an action potential
is generated, can be estimated for a real neuron by assuming that it responds only
passively before reaching threshold and generating an action potential. The neuron’s
membrane can be modeled as a resistor and capacitor in parallel. When a step current

is injected into the neuron, the membrane potential of the neuron, V,,, responds as:

Vi = VT+RIin-<1—e—(?)) (4.32)

where: 7 = RC (4.33)



53

Response of Real Neuron
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Figure 4.3: Response of Real Neuron to Depolarizing Stimuli. The top plot
shows the stimulus current, I, that was injected into the cell via an electrode, while the
bottom plot shows the resulting change in membrane potential. When the membrane
potential reaches its threshold, an action potential is generated.

Here V, is the neuron’s resting potential and I'™™ is the input stimulus. Since the
neuron will not fire unless V,, reaches threshold, ©, it is necessary that:

o-V,

">
R

(4.34)

to generate an action potential. If this condition is satisfied, then the neuron will

reach its threshold potential at time:

(4.35)

R Iin :l

to = rln | —
© Tn[mlwvr—@

Of course, the injected current must last longer than tg for the neuron to reach
© and produce a spike. Notice that while this derivation only provides a rough
approximation to the complex biochemical response of a neuron to stimuli, the neuron
can be thought of as logarithmically encoding the strength of the input signal within

the time delay of its response.
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Now, since the SNM is a qualitative “high level” model and does not attempt to
account for the individual currents attributable to specific ions, it is not possible to
directly simulate the injection of an excitatory or inhibitory current into the neuron.
However, since functioning neurons do not have currents directly injected into them,
but rather receive inputs from other neurons or external stimuli, this is not seen as a
limitation of the model. To demonstrate latency in the SNM, a periodic spike train
stimulus generated from another neuron can be used.> When the stimulus has one
spike per period, (P! = A), the average amount of input neurotransmitter is inversely
proportional to the time between pulses (see Equation (4.27)).

Figure 4.4 shows the results from a sudden onset of input spikes, which are equally
spaced. As with biological neurons, when the SNM is sufficiently stimulated to pro-
duce an output spike, the time delay between the start of the stimulus and the spike
output depends upon the stimulus strength. While this latency phenomenon can be
seen qualitatively in the figure, a more detailed analysis of latency in the SNM is

presented in Appendix E.

4.3.3 Refractory Period

After a real neuron fires, there is a short time period during which it is unable to
produce another spike, regardless of the strength of the input stimulus. It usually
lasts several milliseconds, and is referred to as the absolute refractory period. After a
sufficient length of time has passed, the neuron becomes capable of generating another

spike; however, the stimulus must be larger than normal. The period of time during

3In the SNM, external inputs do not have latency. When the input signal is a spike from an-
other neuron, the voltage changes as tanh (te*). Thus, its effect is not instantaneous, but rather
increases from zero to its maximum level at t = 1 before decaying back to zero. This delayed effect
is attributed to the diffusion of neurotransmitter across the synaptic gap. But when an input comes
from an external stimuli, such as light into the ganglion cells of the retina, there is no diffusion of
neurotransmitter. In real neurons, a sudden change in the external input does not have an instan-
taneous effect due to the required opening of ionic channels. However, the neuron is usually able to
respond more quickly to the directly input external stimuli than it is to spikes from other neurons.
To simplify the calculations, the SNM approximates this quicker response with an instantaneous
one; i.e., the voltage only depends upon tanh (I(t)). To correctly model the response would require
calculating the convolution of the external input signal with the neuron’s impulse response function.
(Notice that U;;(t) can be derived by convoluting a spike train of unit impulse functions with te™t.)
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Figure 4.4: SNM Response to Periodic Input. The top plot shows the neu-
rotransmitter concentration, U™, at the input synapse, and the spike train which
generated it. The spikes were used to simulate the four levels of input current that
were injected into the real neuron in Figure 4.3, (I'* = 0.25,0.5,0.75,1.0). The bot-
tom plot shows the resulting change in the neuron’s potential. When the potential
reaches threshold, an output spike is produced. (This plot represents an actual sim-
ulation with: T = 80, RiO = OO,R” = 1O,TZJ = 1-0;Tij = 10, dij - 00, @z = 0.665.
The duration of each of the four stimuli lasted for 12 units, with the time between
input spikes being: P! = 4,2, %,1 units, respectively. The time between each period
of stimulation was 16 units with the entire figure representing 118 units.)
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Refractory Period in Real Neurons
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Figure 4.5: Refractory Period in Real Neurons. The curve represents the stim-
ulus strength required to generate a second spike as a function of time after the
first spike. During the absolute refractory period, which occurs immediately after
the firing of the first spike, the neuron can not produce another spike regardless of
the strength of the stimulus. As a neuron begins to recover, it enters the relative
refractory period, where it regains its spiking capability, but the effective threshold
required to generate a new spike is elevated above normal. (Based on Fig. 2-5 in [65].)

which a larger stimulus is required is referred to as the relative refractory period.
Figure 4.5 demonstrates these ideas for a real neuron.

Like a real neuron, the SNM has both an absolute and relative refractory period.
This is a consequence of the tanh? (t—_;?i) term? in Equation (3.1), which becomes
zero immediately after a spike is produced and then increases towards one. In fact,

the time between the K™ and (K — 1)*™ output spikes, AKX is given by:

A,LK = t;;K — t{(_l = ’Ti'AtaIlh ( —Z—%%—)-) (436)

N; P
[ T’L i

where:  Z;(t) = Rip + ZRij.tanh (R_.Uij(t)> + Z Riz-tanh (Tip-Iin(t))  (4.37)
ij r=1

Jj=1

K
4The tanh® (-t;_rfl—) term will be referred to as the “refractory coefficient” throughout this thesis.
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Here, Z;(t) represents the total input signal (including the neuron’s resting potential,

Rj). Notice that Equation (4.36) only has a solution if:

©; < Ry + Jg‘; Rj;;-tanh (%-Uij(t{‘ )> + zil Rig-tanh (Tig- Iz (t)) (4.38)
which is consistent with the fact that a neuron can not fire unless its input signal is
above threshold.

The absolute refractory period for the SNM is the minimum possible value of AKX,
which occurs when the denominator of Equation (4.36) reaches its maximum value.
This denominator represents what the neuron’s potential voltage would be, if it had
not previously fired (see Equation (3.1) with tanh? (#) ~ 1ast — oo). Since the

value of tanh (—) is limited to one, the maximum possible potential voltage is:

1 1&
max {Z,(t)} < R+ 5 Z Rij (sgn (Tij) + 1) + -2— Z R (Sgn (Tw) + 1) = R:_ (439)
1 ifz>0
where: sgn(z) = (4.40)
-1 ifz<0

Thus, R] is defined as R; plus the sum of the R;; and R;,; terms which correspond
to excitatory inputs. (Excitatory inputs have positive values for T;; or Tj;.) Now, the

absolute refractory period is given by:

min {AK} = 7, Atanh ( gj (4.41)

Notice that since the actual potential voltage due to the input synapses must always
be less than R}, this limit for AX can only be asymptotically approached. The
+
minimum value for AX is plotted in Figure 4.6 as a function of %’F.
t—tX

In addition to enforcing an absolute refractory period, the tanh? (—T———) term in

Equation (3.1) also creates a relative refractory period. In fact, the effective threshold
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Figure 4.6: Absolute Refractory Period. This curve shows the absolute refractory

period as a function of the maximum possible excitatory input stimulus divided by the
threshold voltage. It represents the minimum possible time between output spikes.
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Figure 4.7: Neuron Refractory Period. This curve shows the effective spiking
threshold as a function of the elapsed time after an initial spike. It represents the
stimulus strength required to generate a second spike.

can be thought of as:
O,

tanh? (f—“jﬁ)
Ti

effective __

(4.42)

with a neuron only producing a spike when Z;(t) is greater than ©¢fectve The curve for
the effective threshold function is plotted in Figure 4.7. It has similar characteristics
to the refractory period of real neurons shown in Figure 4.5.

Thus, the SNM has similar refractory properties to real neurons; however, it is
important to make a distinction between them. The absolute refractory period in
the SNM is a function of the strengths of the input synapses, while in real neurons
it is not. The refractory period in a biological neuron is determined by inserting
an electrode and injecting current. The absolute refractory period is defined as the
minimum time between output spikes for which increases in the input current do
not matter. It is a consequence of the time required for the ionic channels to reset

themselves before the neuron can produce another pulse. Since the refractory period
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is measured via an electrode controlling the neuron’s potential, it is independent of the
neuron’s synapses. Injecting a larger current only damages the cell. Since there is no
analogous way to inject current into the SNM, the absolute refractory period is defined
as the time between spikes when all of the excitatory inputs are at their asymptotic
maximum levels. Thus, it represents the minimum possible period between spikes
for a neuron when it is used within a network. Unlike real neurons, as the weights
for the input stimuli increase, the absolute refractory period decreases. Section 8.4
discusses how the SNM may be modified to include a true absolute refractory period
that does not depend upon the input weights. This modification is necessary for
the logarithmic encoding scheme discussed; however, it increases the complexity of
the neuron dynamics by requiring two distinct operating regions. For nearly all
applications, this additional complication is unnecessary, and the standard SNM is

used.

4.3.4 Spiking Behavior

Real neurons are remarkably diverse in their electrical and biochemical properties.
One example of this diversity is exhibited in the patterns of endogenous action po-
tential firing. Many neurons do not fire spontaneously at all, while others beat or
burst in a regular manner. Fortunately, the SNM is general enough to reproduce all
of these types of spiking behavior, as shown in Figure 4.8.

Neurons that have a steady unchanging resting potential in the absence of external
stimulation are called silent neurons.® Any neuron with its threshold voltage, ©;,
greater than its resting potential, Ry, is a silent neuron. (See Figure 4.8(A).)

Some neurons fire repetitively at a constant frequency and are called pacing neu-
rons. Their spike pattern is described as beating. While external stimulation can

change the firing rate or inhibit it altogether, these neurons do not require external

5Silent neurons are usually capable of producing an action potential when presented with an
excitatory stimulus; however, some are not, and are referred to as being electrically inexcitable. They
carry out their electrical signaling through graded potentials and communicate via gap junctions.
The SNM does not consider neurons of this type.
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Figure 4.8: Endogenous Neuron Activity. (A) shows a silent neuron with ©; = 0.5
and R = 0.25. (B) shows a beating neuron with ©; = 0.5, R;o = 1.0, and 7; = 1.0.
(C) shows a bursting neuron with ©; = 0.5, Ro = 1.0, 7; = 0.25, R;; = 1.0, T;; = —0.5,
dii - 3.0, and Tii = 1.0.
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stimulation to drive their repetitive firing. This type of behavior is exhibited when
the threshold voltage, ©;, is less than the resting potential, Ry (see Figure 4.8(B)).
Once the neuron fires, the refractory period prevents it from immediately reproducing

another spike. The time between spikes is given by:

tK

i

—t%=1 = 7,.Atanh < O > (4.43)
Rqo v

Another type of neuron that fires spontaneously in the absence of external stim-
ulation generates bursts of spikes that are separated by periods of inactivity. These
neurons are called bursting neurons and are often used to generate rhythmic behav-
iors. It is clear from a systems point of view that these neurons have two underlying
oscillations, one sets the frequency of spikes during the bursting period, while the
other sets the frequency of the bursting periods. (For this discussion, any periodic
spike pattern with more than one spike per period is considered bursting. See the
beginning of Section 4.2.3 for a description of periodic spike patterns and their no-
tation.) Thus, to produce such behavior the neuron requires two feedback signals:
one must be fast to control the individual spikes, while the other must be slow to
control the bursting cycles. In real neurons, this is accomplished through the tem-
poral properties of specific ion conductances, with some having time constants in the
milliseconds range, while others operate over minutes [52, pp. 261-268]. Similarly, the
refractory period sets the time between spikes for the SNM, and the slow feedback
signal can easily be realized by utilizing an inhibitory self-connection with delay; i.e.,
let T;; < 0 and dy; > 0.5 (In the SNM, the second subscript refers to the number of
the synapse on the receiving neuron, which does not necessarily correspond to the
number of the neuron connected to that synapse; i.e., m = {N;} i # 7. However, to

simplify the notation, the double subscript of i; will refer to a self-connection; i.e.,

61t is highly unlikely that real neurons use self-connecting synapses with delay, but its effects can
be duplicated by stimulating an inhibitory neuron which then connects back to the original neuron.
Obviously, this can be modeled using two SNMs, but with the added cost of simulating the dynamics
of another neuron. Since the purpose is to construct computing devices and not to model biology,
this less costly approach is used.
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m = {N;}, = i.) Since the refractory period term, tanh? (t——g—{—) sets the neuron’s
potential to zero after a spike is produced, its effect is immediate, but the effect of the
self connection with delay is not instantaneous. At the inhibitory synapse, the contri-
bution of neurotransmitter, Uy;(t), from each spike takes the form of f(¢) = te™ (see
Figure A.1), and the delay, d;;, allows the neuron to fire several times (burst), before
the feedback signal takes effect and inhibits the neuron from firing again. When this
occurs, the neuron stops firing, and there are no more contributions to the feedback
synapse. As feedback neurotransmitter, U;(¢), diminishes, the neuron is once again
able to reach threshold and produce another burst of spikes and repeat the process
(see Figure 4.8(C)).

One important property of neurons with an inhibitory self-connection is that they
are capable of producing both beating and bursting behavior. Aslongas 0 < ©; < Rj,
the SNM will converge to a periodic spiking output behavior, but the number of spikes
in each period, N, and the length of each period, A, depend upon the parameter values
and the initial condition. A neuron with an inhibitory synapse may have several stable
limit cycles, and the one it converges to depends upon the basin of attraction into
which it falls. Figure 4.9 shows two neurons with the same parameters, but one is
beating (P! = 0.915), and the other is bursting (P!° = 9.395). As a consequence, a
neuron can be perturbed by external stimuli from one limit cycle into the basin of
attraction of another limit cycle, thus allowing a neuron to switch between different
output behaviors, with no change in any of its parameters. Such switching behavior
is known to exist within some groups of neurons in biology [62]. As a much simplified
example, consider the neurons controlling the muscles responsible for chewing. With
a beating spike train output, these neurons can keep the muscles slightly contracted
and the mouth closed. When presented with food, a brief command signal might
be used to perturb the neurons’ behavior [62] and cause them to produce a bursting
output, resulting in chewing. The neurons would continue their bursting behavior

until another command signal is input, which moves them back into the beating limit
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cycle’s basin of attraction.” (See [65, Chapter 16] for a brief description of some
known biological neural networks that control behavior.)

The most critical parameter in determining the possible types of output behavior
for a neuron is the delay parameter, d;. In general, when d;; is small compared to
the other time constants, the neuron is not capable of bursting — only beating. As
d;; increases, the number of possible spikes per period also increases. Due to the
transcendental nature of the equations governing the spike period in the SNM, it is
difficult to quantify the dependence upon d;;, but Figures 4.10 and 4.12 demonstrate

how the output spike patterns may change with d;; for one set of neuron parameters.

In Figure 4.10 the neuron is started from a “beating initial condition,” which
means that the neuron is assumed to be already beating before the simulation begins.
To determine the beat frequency, A, Equations (4.23) and (3.1) are used with ¢t —tX =
A and V(t) set equal to ©;, i.e.:

0; = V;(A) = tanh? <é> : [Rio + R;; tanh (%—".Uﬁ(A))] (4.44)

Ti 0

where: Ui(A) = ( ! ) -F (M + (—A—)) (4.45)
n = ’Vd—%] (4.46)

Notice in Equation (4.23) that t — t¥ — d; must be greater than zero, and since t
represents the time of the current spike in Equation (4.45), the difference of t — t¥
must be an integer multiple of A. Hence, n represents the number of spikes (including
the current spike) that have occurred since the most recent spike contributing to the
neurotransmitter was produced; i.e., the effects from the last n spikes have not yet

contributed to the current amount of neurotransmitter, U;(A). (If di; = 0, then n

7 A neural network that produces a rhythmic motor output is often referred to as a central pattern
generator (CPG). CPGs are used to control repetitive behaviors like chewing, swimming, or walking.
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Figure 4.9: Beating and Bursting Behavior. This figure shows two neurons with
the same parameters, (0; = 0.5, Rjp = 1.0, 7; = 0.25, R;; = 1.0, Tj; = —0.5, d3; = 3.0,
and 7; = 1.0), but one is beating and the other is bursting. The beating neuron in
(A) has P' = 0.915, while the bursting neuron in (B) has P'® = 9.395.
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Figure 4.10: Beating Limit Cycle Behavior. This figure shows the results for
a neuron started from a beating initial condition. (A) shows how the time between
spikes changes with the delay, dj;. The other parameters were: ©; = 0.5, Rjp = 1.0,
s = 1.0, Ry = 1.0, Ty = —1.0, and 7; = 1.0. (B) shows the number of spikes in
each period, N, and the length of each period, A. The neuron converged to a beating
behavior for all values of d; between 0 and 15, except when 1.25 < d;; < 1.60, there
were 2 spikes per period, and when 1.65 < d;; < 1.70, there were 3 spikes per period.
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must be set to 1.)

If Ry > O, there exists at least one value for A that solves this set of equations.
Figure 4.11 shows V;(A) and Uy(A) of Equations (4.44)-(4.46) as a function of A
for one set of parameters. After numerically approximating the minimal solution
for A, the neuron was assumed to have produced a spike at ¢ = 0, and the neuron
dynamics of Equations (3.1)-(3.4) were integrated forward in time, with the amount
of neurotransmitter at the inhibitory synapse due to all previous spikes given by
Equation (4.23). The dynamics were integrated until ¢ = 100, and Figure 4.10 shows
the time between spikes for all output spikes that occurred between ¢t = 25 and
t = 100. (A beginning time of 25 was used to allow the neuron to converge to its
limit cycle, if different from the initial beating condition.) For nearly all 0 < d; < 15,
the neuron continued to beat; however, for 1.25 < d;; < 1.70, the neuron converged
to limit cycles with 2 or 3 spikes per period, thus indicating that there was no stable
beating behavior for this range of dy.

Although not shown in the figures, when there was more than one solution for A
in Equations (4.44)-(4.46), the dynamic equations were also integrated forward from
these other beating initial conditions. (For most of the values for d;; there was only
one solution, but the occurrence of multiple solutions for A increases with d;;.) For
some solutions, the neuron converged to the beating behavior shown in Figure 4.10,
and for other solutions the neuron converged to the bursting behavior shown in Figure

4.12, but for many solutions, the neuron converged to yet another bursting behavior.

In Figure 4.12 the neuron was started from a “zero initial condition,” which means
that the neuron was assumed to have produced an output spike at ¢ = 0, but there was
no previous neurotransmitter at the inhibitory feedback synapse, (U;(¢t < 0) = 0).
The dynamics were integrated until ¢ = 150, and after an initial transient period,
the neuron converged to a bursting limit cycle. Figure 4.12 shows the time between
spikes for all output spikes that occurred between t = 75 and t = 150. In general,
the number of spikes and length of each period increased with d;;, with only beating

behavior possible when 0 < d; < 1.15.
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Figure 4.11: Plot of V;(A) and U;(A). The plot shows V;(A) and U;(A) of Equa-
tions (4.44)-(4.46) as a function of A for the parameter values of: R; = 1.0, 7; = 0.25,
R; = 1.0, T;; = —0.5, d;; = 3.0, and 7;; = 1.0. Since V;(A) goes from zero to Ry as A
increases, any © less than R;p must yield at least one solution for A. The dips in the
curve are where the value of n changes (3 <A — n=1;15<A <3 — n=2;
1< A<15 — n=3;etc.) A dashed line is drawn for © = 0.5, which corresponds
to the value used in Figure 4.10. Notice that for some choices of © there can be more
than one solution.
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Figure 4.12: Bursting Limit Cycle Behavior. This figure shows the results for a
neuron started from a zero initial condition. Except for the different initial condition,
the neuron was the same as in Figure 4.10. (A) shows how the time between spikes
changes with the delay, d;. The multiple data points for each value of d;; reflect the
number of spikes per period. (B) shows the number of spikes in each period, N, and
the length of each period, A. Notice that the number of spikes increased at regular
intervals as the delay was increased.
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4.3.5 Adapting Behavior

Another important property that real neurons are known to exhibit is the ability to
adapt their spike rate to a constant input signal [53, p. 337]; i.e., when an external
input signal first starts, it triggers a rapid burst of spikes from the neuron, which then
decays into a slower beating behavior. Adaptation may be caused by a change in the
synaptic strengths [56], but the SNM is capable of modeling such behavior with only
a feedback connection, and no changes in the parameters are required. Of course,
the adaptation is not permanent and the neuron returns to its initial state after a
relatively short time. This is in contradistinction to real neurons, where the synaptic
modifications attributable to long-term potentiation (LTP) or long-term depression
(LTD) can last for days or weeks [106]. (Chapter 9 discusses how the parameters can
be permanently modified through learning.)

Figure 4.13 shows how the SNM is able to duplicate this type of adaptation with an
inhibitory feedback connection, which is similar to the one used for eliciting bursting
behavior in Section 4.3.4. The neuron is silent when the external input signal® first
begins, and there is no inhibitory neurotransmitter at the feedback synapse. If the
external input signal is sufficiently strong, the neuron fires rapidly. But these initial
output spikes cause a buildup in the feedback neurotransmitter, which is assumed to
have a relatively long time constant. Depending upon the strength of the input signal
and the neuron’s parameters, the initial burst of spikes may either cause the neuron
to temporarily stop producing spikes, or gradually reduce its spike rate. Eventually

the output spike rate converges to a value determined by:

)

©; = Vi(A) = tanh? (é) - [Rio + Rig-tanh (Tiy-I™) + Ry tanh ( d
(1.47)

Ti

where U;;(A) is calculated using Equation (4.45) with n = 1 and dy = 0. Notice that

this is the same as Equation (4.44), but with a contribution from an external input

8Notice that an ezternal input signal is used, and not input spikes from another neuron. While a
feedback connection can also be used to adapt the output signal with input spikes, the effects from
the adaptation are not as obvious due to the latency effect discussed in Section 4.3.2. External input
signals are assumed to have no latency. (See footnote on page 54.)
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Figure 4.13: Adapting Neurons. This figure shows the output spikes for a neuron
with an inhibitory feedback signal, which allows it to adapt to changes in input
intensity. The parameters are the same for each of the four output spike trains
(@7, = 05, RiO = OO, T = 025, Ru = 35, Tu = —3.5, Tii — 80, Rw == 40, and
T;» = 1.0), but the strength of the input signal increases from top to bottom (I'* =1,
1.5, 2, and 2.5). Notice that the initial spike bursts and final output frequencies are
very similar for all of the inputs. The input stimulus is discontinued for 40 < ¢ < 50,
and when the stimulus returns at ¢ = 50, the frequency of the initial output burst is
much less than previously produced.



72

Neuron Transfer Function

Input Spikes () e@» QOutput Spikes

fm fout

Figure 4.14: Schematic for the Neuron Transfer Function. A neuron with a
single excitatory input connection, which provides spikes at regular frequency, is used
to analyze the frequency transfer function of the SNM.

signal.

When the input signal stops, the output spikes immediately cease; however, the
residual neurotransmitter in the feedback synapse slowly decays with time. Thus, if
the input stimulus begins again, the initial burst of spikes is attenuated, with the
output frequency depending upon the amount of elapsed time since the previous

stimulus ended.

4.4 Frequency Transfer Function

This section considers the frequency gain of a neuron with a single excitatory input
connection, as shown in Figure 4.14. If the input signal is beating (P!), then what is
the output frequency of the neuron as a function of the input frequency? If R,y > ©;,
the neuron already has an intrinsic frequency, which represents its minimum frequency

with no input spikes; i.e.:

0 if ©, > Ry

fmin — 1

= — = 1 . (4.48)
Amin f @Z < Rz
TiAtanh(, /}% ) ' 0

While U;;(t) continues to increase as the input spike frequency rises, the response

of the neuron is bounded by the tanh (—) function associated with each input synapse.
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Thus, the asymptotic limit on the maximum output frequency of the neuron is given

by:

o= L ! (4.49)

= Amax 7;-Atanh (\/g—%)

For the neuron to reach threshold and produce an output spike, the minimum

amount of neurotransmitter required is:

(%—Jﬁ-) .Atanh (%%) if ©; > Ry

0 if @z < RiO

UPke = (4.50)

The output frequency is zero when the input spike frequency is insufficient for caus-
ing the neurotransmitter level to rise above U spike  Byt, the case may be that the
parameters are such that the maximum neurotransmitter contribution from a single
input spike, e™! is above UP*® and the neuron can produce at least one output spike
for each input spike at low frequencies. Of course if there is a very small refractory
time constant relative to the neurotransmitter time constant, the neuron may be able
to produce two or more output spikes for each input spike.

Due to the variability in behavior with the different neuron parameters, there is no
general equation that provides the output frequency as a function of input frequency.
For many input frequencies, the output converges to a spike pattern with several
spikes per period; e.g., see Figure 4.1. However, it is possible to place bounds on
the average output spike frequency. (When there are several spikes per period, the
average frequency is the number of spikes divided by the length of the period.) Using
the maximum and minimum neurotransmitter from the periodic input signal given

in Equations (4.25)-(4.26), the output frequency is bounded by:

1
fupper = (4.51)
Ti* Atanh (\/Ri0+Rij tarzh(uupper) ) )
1
flower — (452)

. i
7;- Atanh (\/Ri0+R’ij t,(ml,l(ulower) )
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where: u"PP¥ =

ulower

il

These equations represent what the output spike frequency would be if the neuro-
transmitter did not vary with each input spike, but instead remained at a constant
level of either max {U;;(¢)} or min {U;;(t)}. Since the actual amount of neurotrans-
mitter varies between these levels, they represent upper and lower bounds on the
output spike frequency.

When max {U;;(t)} is above USP*®, but min {U;;(¢)} is below U*®, the times of
the output spikes are strongly coupled with the arrival times of the input spikes.
But as min {U;;(¢)} rises above UP¥®, the times of the output spikes are only weakly
coupled with the times of the input spikes. This phenomenon can be understood from
Figure 4.2 on page 51, which shows the neurotransmitter of an input signal for three
different frequencies. If UP*® for the neuron is 0.70, then the neurotransmitter level
is always insufficient for producing output spikes when ;f;—, = 3. For % = 1.5, the
neurotransmitter level is briefly above the required level for a limited time window
between input spikes, and the neuron can produce output spikes during those times.
But when % = 1, the neurotransmitter concentration is always above the required
level, and output spikes can be produce at any time.’

Using the average amount of neurotransmitter at the synapse given in Equation

(4.27), a reasonable estimate for the output frequency can be obtained; i.e.:

fout ~ fave = (455)

7;-Atanh ©; — -
Rio+R;j tanh [(#)frijfmJ

91f min {U;;(t)} is above U spike then the phase differences between the input and output spikes
depend upon the neuron’s initial condition at the arrival times of the input spikes. However, the
variations in U;;(¢) between min {U;;(t)} and max {U;;(¢)} with each input spike act like perturba-
tions on the output’s oscillatory cycle, and for many input frequencies, the output spikes eventually
become phase locked with the input spikes.
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Notice that f3'° is not the mean of fUPPeT and flower,

Now, the gain of the neuron can be defined as the derivative of the output fre-
quency with respect to the input frequency when the output frequency is at the
midpoint of the asymptotic limits given in Equations (4.48)-(4.49). Using Equation
(4.55) to represent the relationship between the input and output frequencies, the

gain, I" is given by:

()| - (3]

dfout T T..
r= = = —i)( ”)- 4.56
af out_ frain frmax (Ti 20; Atanh?® (,/Z) (4.56)
2
(EaeE if ©, > Ry (
where: 2 = 2Atanh(vE)-Atanh(vF) 4.57)
2 .
tanh [Atanh(\/f)+Atanh(\/E)} if ©; < Rio
O;
K = —t 4.58
SH
ko= 4.59
R ( )

When the output frequency is at its midpoint, S , the input frequency is:
2
. R.. 9 _ R
= (—”—>-Atanh ———’9> (4.60)
T Ry

Notice in Equation (4.56) that the gain directly depends upon 7};, while its depen-
dence upon the other parameters is considerably more complicated. A plot of the
frequency transfer function is shown in Figure 4.15 for several different sets of neuron

parameters.

4.5 Summary of Properties

Overall, the SNM is able to duplicate many of the well known properties of real

neurons. One of the key properties that gives the SNM its unique characteristics
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Output Frequency vs. Input Frequency
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Figure 4.15: Frequency Gain. The plot shows the output frequency as a function of
the input frequency for 5 different sets of neuron parameters. In each graph, the top
curve is fPPeT the bottom curve is f°"¢, and the middle curve is ', the estimate
for the actual output frequency given in Equation (4.55). The frequencies are scaled
by the time constants of 7;; and 7;. (Note the different ranges on the y-axes.) An “x”
denotes where f3° is at the midpoint of its asymptotic limits. The gain, I', is defined
as the slope of the transfer function at this point. For all three frequency curves,
fupper - fave and flower the slope is infinite at the input frequencies which initiate

their respective output spikes, provided of course that ©; > Ry.
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is that the state of a neuron does not just depend upon the current input signals,
but depends upon all previous input spikes. Each input spike triggers the release of
neurotransmitter at a synapse. Successive input spikes lead to a build up of neuro-
transmitter at the synapses, causing the neuron’s potential to change by more than
it could from individual spikes. Although the total neurotransmitter at a synapse de-
pends upon the entire spike history of the presynaptic neurons, the neurotransmitter
may be expressed in an iterative formula (Section 4.2.2), so that it is not necessary
to recalculate the sum over all previous spikes every time a new spike arrives. And
when the input spikes occur with a repeating pattern, the iterative representation for
the neurotransmitter can be further simplified (Section 4.2.3).

While neurotransmitter is used by neurons to exchange information, it is the
neuron’s potential that determines the production of spikes. Like real neurons, the
SNM can exhibit latency (Section 4.3.2), refractory periods (Section 4.3.3), endoge-
nous spiking behavior (Section 4.3.4), and adaptation (Section 4.3.5). With latency,
strong input stimuli result in the rapid production of output spikes, while weak stim-
uli require more time and may not even lead to output spikes. After the SNM fires,
there is an absolute refractory period during which it is unable to fire. As the SNM
starts to recover, there is a relative refractory period during which it is only able to
produce output spikes when the input stimulus is stronger than normal. When the
neuron parameters are set accordingly, the SNM can produce a beating or bursting
output spike train in the absence of external stimulation. With an inhibitory feedback
connection, the SNM can adapt its output spike frequency to constant input signals.
This allows it to be more sensitive to changes within the input signal rather than the
input’s strength.

Like other computational devices, the SNM can be analyzed in terms of its transfer
function. Since the neuron receives input spikes and produces output spikes, the
transfer function can be expressed as the relationship between the neuron’s input
and output frequencies (Section 4.4). The SNM has both a maximum and minimum
output frequency. Unless the neuron has an intrinsic spiking behavior, the minimum

output frequency is zero. Excitatory input spikes cause the output spike frequency
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to increase, but the absolute refractory period limits the maximum possible output
spike frequency.

The net effect of having a refractory period along with the strength-latency re-
lationship is that the neuron model can encode information within its output spike
frequency [65, p. 39]. As with real neurons, a stronger input stimulus produces a
faster spike response and higher output frequency. Notice that either the frequency
or the inverse of the time between spikes can be thought of as encoding the strength
of the signal. Both encoding schemes produce similar output spike trains; however, a
frequency encoding scheme usually implies that the spike rate is averaged over some
time period, while an encoding scheme based on the time between spikes uses each
pair of spikes to encode information. Thus, a time between spikes encoding scheme
can lead to a faster throughput of information. Chapter 8 discusses how spikes can

be used to encode information within neural networks.
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Chapter 5 Simulating the SNM

5.1 Introduction

The Spiking Neuron Model of Chapter 3 was designed to provide a simple and efficient
method for capturing the complex spiking dynamics associated with real neurons.
Since there are other more detailed neuron models, which are designed to accurately
simulate nearly all of the known information on biological neurons, the SNM is of
little value unless it can be easily simulated. This chapter addresses this issue by pre-
senting two possible methods for simulating the SNM. Obviously, there are numerous
other approaches that can be used, all of which have various tradeoffs between speed,
accuracy, and memory requirements, but the two methods outlined in this chapter
are sufficient for demonstrating the usefulness of the SNM.

The first method is the Single Time Step Iterative Method. It is an easy method
to implement and understand; however, it has several limitations: it is slow, and it
can not be used with adjustable parameters or presynaptic connections. The second
method is called Simulating in Time Segments. It overcomes the previous method’s
limitations, but at the price of requiring more memory. Both methods utilize a fixed
time step, with the network’s neurons only allowed to produce or receive an output
spike at one of these discrete times. The problems caused by using a fixed time step

are discussed in Section 5.4.

5.2 Single Time Step Iterative Method

The first SNM simulation method uses fixed time steps and calculates the value of
the input neurotransmitter, U;;(¢), and potential voltage, V;(t), at each step. When a
neuron’s potential voltage is at or above threshold, ©;, it produces an output spike,

which in turn causes neurotransmitter to be input into all of its output synapses. Of
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course, the time at which the neurotransmitter is released depends upon the delay,

d;:. associated with each of the interneuron connections.

i)

To implement this method, it is necessary to store the parameters associated
with each neuron, connection, and synapse. From the network’s initial condition, the
amount of neurotransmitter at each connection can be calculated using Equations
(4.9) and (4.14). (The initial condition is specified by giving the initial values of the
refractory coefficients for each neuron and U;; and p;; at each interneuron connection.)
Notice that Equation (4.9) is used at each time step, while Equation (4.14) is only
used when an input spike arrives; i.e., if h is the size of the time step, and neuron n,
produces an output spike at tX, then Equation (4.14) is only used when (N —1)-h <
tﬁ + d;j < N-h, where N is an integer and the current simulation time is given
by t = N-h. From the neurotransmitter at each synapse, the potential voltages of
the neurons can be calculated using Equation (3.1) and compared to the threshold
levels to determine the production of output spikes. Since Equation (4.14) is an
iterative formula for the eract amount of neurotransmitter at a synapse, the values
calculated will be precise except for the rounding errors that can occur in the process
of determining when a spike is produced or arrives at a synapse.

While this method is easy to implement, it has three main drawbacks: (1) it is
slow; (2) it can not be used with presynaptic connections; and (3) it can not be used if
T,; is a variable parameter (i.e., if any of the T;; parameters change due to learning).
The second and third problems are related, since a presynaptic connection changes
the effective value of Tj;, and Equations (4.9) and (4.14) are only valid when T;; is
fixed (see footnote on page 27). The next section discusses an alternative to this

method, which simulates time in segments rather than one step at a time.

5.3 Simulating in Time Segments

The previous method’s performance may be considerably improved by calculating
the neuron variables in time segments. While this method can be used with variable

parameters, it works best if all of the network’s time constants, 7;; and 7;, are fixed.
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(This will be the case for all of the networks considered in this thesis.) The primary
advantage of this method when using fixed time constants is that the computationally
expensive neurotransmitter and refractory functions can be calculated once and stored
in memory. When a spike occurs, these functions can then be added or multiplied as
necessary to update the variables without needing to recompute their values. This
method is particularly well suited for simulations in MALTAB, which allows the use
of “vectorized” variables; however, it also requires considerably more memory.

Associated with each neuron are vectors for the refractory coefficient, external
input contribution to the potential, and the neurotransmitter at each of the input
connections. (There may also be presynaptic connections.) If the simulation time is
short, then the length of the vectors is determined by the total number of time steps
in the simulation. (The case when the simulation time is not short will be discussed

next.) For each of the different synaptic time constants, 7,;, the neurotransmitter

function, (;’;—) e (;:7) , is calculated at each time step, over the entire length of the
simulation and stored in a vector. Also, the refractory coefficient for each neuron,
tanh? (;t:), is calculated and stored in a vector. Notice that both of these calculations
are done before any input/output spikes are actually produced.

Now, the program searches all of the neurons’ potential voltages and finds the
first one to reach threshold. Its refractory coefficient is updated for the remaining
simulation time by replacing it with a time shifted version of the vector already calcu-
lated. Similarly, the neurotransmitter at its output connections is updated by adding
a time shifted version of the neurotransmitter function to the vector representing the

neurotransmitter already in the synapse.! The program then finds the next neuron

to reach threshold and repeats the process.

In actuality, to allow for variable parameters, it is necessary to store the times of the input spikes
associated with each connection and add the neurctransmitter function only when an input spike is
the next event to occur. (Events are either input or output spikes.) This is necessary because when
there is a large time delay, the parameters can change between the time of the output spike and the
time that the corresponding input spikes are actually received. Thus, the program must first decide
whether the next event is an input or output spike. If it is an input spike, the neurotransmitter can
be added at the appropriate connections, but if it is an output spike, the neuron’s refractory term
is reset and the time of this new spike, plus the appropriate delays, is added to the list of incoming
spikes. Of course, if there is no delay associated with a connection, it may be added immediately.
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One important thing to remember when using this method is that the initial
conditions for the neurotransmitter must be specified in terms of the entire simulation
time; i.e., it is not sufficient to only specify the initial values for U,;(¢,) and pi;(to)
at each interneuron connection, but instead, the total amount of neurotransmitter
at each time step of the simulation, due to all previous input spike activity, must
be given. Of course, this may be calculated from Uj;(t,) and p;;(t,) using Equation
(4.9), before the actual simulation begins.

If the total length of the simulation is unknown or is too long to have the vec-
tors represent the entire simulation, then the simulation may be divided into time
segments, provided that the neurotransmitter and refractory coefficients can be ap-
proximated with truncated functions. E.g., suppose that the total simulation time is
100 seconds, and the maximum synaptic time constant is 7;; = 0.5 and the maximum
refractory time constant is 7; = 1.0. Therefore, 6 seconds after a spike, the maximum
neurotransmitter contribution can only be 0.00007373, and the minimum refractory
coefficient is 0.999975. Thus, it is reasonable to only keep track of the neurotrans-
mitter and refractory terms for the first 6 seconds and approximate them by 0 and 1
for later times.

The length of each simulated time segment may be as long as allowed by the
available memory, but the total length of each of the neurons’ vectors must be as
long as the time segment plus the length of the truncated functions; e.g., in the above
example, if time is simulated in segments of 4 seconds, and the truncated functions
are 6 seconds, then the length of each of the neurons’ vectors must be long enough to
hold data for 10 seconds. This is necessary because any input or output spikes that
occur at the end of the 4 second time segment currently being simulated can affect
neurons up to 6 seconds after they occur. After each time segment is simulated, the
neurons’ vectors can be divided into two sections, with the first section corresponding
to the time just simulated and the next section corresponding to the length of the
truncated functions. The first section is then discarded, the second section is shifted
to the front, and the remain times are set to their asymptotic initial values. These

ideas are illustrated in Figures 5.1-5.3, which represent the actual simulation vectors
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for a neuron. The simulation used time steps of 0.001 seconds, so that each vector
contained 10,000 values.

When comparing this simulation method with the Single Time Step Iterative
Method, it is important to realize that they are fundamentally different approaches,
even when the time segment is reduced to a single time step. The Time Segments
Method uses a precalculated truncated approximation to the neurotransmitter contri-
bution from each input spike, and adds this to the current amount of neurotransmit-
ter present at the junction; conversely, the Single Time Step Iterative Method uses
the iterative formulas given in Chapter 4 to calculate the neurotransmitter at each
time step. Both methods produce nearly identical results, with only slight variations
occurring due to the truncation errors associated the Time Segments Method. In gen-
eral, it is considerably faster than the Single Time Step Iterative Method, since the
non-linear neurotransmitter and refractory functions only need to be calculated once
initially and then added at the appropriate times. Also, it is more versatile since
it allows for variable parameters and presynaptic connections. Most of the results

presented in this thesis were produced using the Time Segments simulation method.

5.4 Problems with using Fixed Time Steps

One of the primary advantages of the SNM is that it is not formulated as a differential
equation; consequently, the simulation time steps can be arbitrarily large without
effecting the accuracy of the calculation. However, the input and output spikes are
neither received or produced immediately when a neuron’s potential voltage rises
above threshold, but instead occur at the discrete simulation time steps.

The size of the time step, h, sets the minimum time the potential voltage needs
to be above threshold to guarantee that an output spike will be produced. When

the neuron’s potential voltage is above threshold for less than one time step, the
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Figure 5.1: Simulating Neurotransmitter in Time Segments. This figure shows
how time shifted versions of the truncated neurotransmitter function can be added
at the appropriate times to simulate the neurotransmitter as a function of time.
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Figure 5.2: Simulating Refractory Coefficient in Time Segments. This figure

shows how time shifted versions of the truncated refractory coefficient function can

replace sections of the refractory coefficient vector stored in memory to simulate its
time evolution.
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Shifting Time Chunks
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Figure 5.3: Shifting Time Segments. This figure shows how the vectors represent-
ing the neurotransmitter must be time shifted when the simulation has accounted for
all of the events within the current time segment. After all of the vectors are shifted,
the simulation resumes at the start of the next time segment. While this figure only
shows the shift for a neurotransmitter vector, the time shifts in the neurons’ refrac-
tory coefficient vectors are identical, except that the undetermined spots at the end
of the vectors are set to one instead of zero.
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Figure 5.4: Problems with Simulating the SNM using Fixed Time Steps.
Both (A) and (B) use the same curve for the neuron’s potential voltage, V;(t), and
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the same time step, h, but the curves are sampled at different times. An “x” marks
the time when V;(t) first reaches threshold, and a spike should be produced. In (A),
Vi(t) is below threshold for all sampled points, so no spike is produced. This can
occur when ! < h. In (B), a spike is produced, but it lags behind the time when V;(t)
first reaches threshold.

probability of an output spike being produced is:
1
P(spike) = { " (5.1)
1

where [ represents the amount of time the neuron’s potential, V;(¢), is at or above
threshold, ©;. And when an output spike is produced, it lags behind the actual time

the potential reaches threshold, with the maximum lag given by:

, I I<h
max {Time Lag} = . (5.2)

These ideas are depicted in Figure 5.4.
To eliminate the late spike condition, it is possible to search for the onset times

of the threshold crossings. Such a search can be triggered by finding the neuron’s
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potential below threshold at one time step and above threshold at the next. When
the exact threshold time is found, it can then be used to accurately represent the time
of the output spike. Notice that while this search method can be used in conjunc-
tion with the Single Time Step Iterative Method, it can not be used with the Time
Segments Method. This is because the truncated functions in the Time Segments
Method are precalculated at the same fixed time steps and can not be shifted by
fractions of a time step and added to the overall function.

Tt is even a much more difficult task to eliminate the no spike condition. To do so
it would be necessary to calculate all of the local maximums in the neurons’ potentials
and check to see if their values are above threshold. While it is theoretically possible
to do these calculations, it is a very computationally expensive task for neurons
which have several input connections with different time constants. Consequently, it
is usually best to assume that the simulation introduces a probability component into
the neuron dynamics, which requires that the neuron’s potential be above threshold
for at least one time step to guarantee the production of an output spike. With
reasonably sized time steps, few spikes should be missed. And since biological neurons
are somewhat probabilistic and do not always produce spikes when the potential
voltage briefly exceeds threshold, this should not severely limit the computing abilities
of the simulated SNM.

Notice that using a large time step can increase the error in calculating the time
of an output spike; however, this is different than the integrating error associated
with using large time steps when the neuron dynamics are formulated as differen-
tial equations. In general, when numerically integrating a set of ordinary differential
equations, the error at each time step depends upon the step size raised to a power,
(e.g., for Euler’s method, the error is O(h?)). Thus, the total error can grow as the
equations are integrated forward, regardless of whether or not a spike is produced.
Furthermore, when there are different time scales associated with the equations, the
equations may be stiff and the numerical integration method used may become unsta-
ble. (See [84, Chapter 15] for a discussion of the some of the problems and numerical

techniques used to integrate ordinary differential equations.)
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5.5 Summary of Simulation Methods

While there are numerous methods to simulate the dynamic equations of the SNM,
this chapter presented two alternatives. The Single Time Step Iterative Method
(Section 5.2), uses the iterative formulas developed in Section 4.2.2 to calculate the
exact amounts of neurotransmitter at each synapse. It is relatively easy to implement,
but it can not be used with learning or presynaptic connections.

The Simulating in Time Segments method (Section 5.3) approximates the neu-
rotransmitter with truncated functions. When an input spike arrives, the truncated
neurotransmitter function is added to a vector which keeps track of the total amount
of neurotransmitter at a synapse. While this method requires more memory, it tends
to be faster than the Single Time Step Iterative Method, but the total simulation time
depends upon the number of input and output spikes associated with each neuron.
Also, it is able to be used with learning and presynaptic connections.

With both of these simulation methods, the times of the input and output spikes
are subject to rounding errors due to the fixed time steps. If a neuron’s potential
voltage is not above threshold for at least one simulation time step, the production
of the output spike may be missed. But because the SNM is not formulated in terms
of differential equations, neither simulation method can suffer from the numerical
instabilities associated with integrative techniques. Since it is not necessary to worry

about the stability of each neuron, the SNM is ideal for large network simulations.
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Chapter 6 Special Function Neurons

6.1 Introduction

This chapter presents some neuron configurations for accomplishing specific functions.
These neurons can be used as the building block of larger networks, some of which
are presented in Chapter 7. While these neurons usually perform their intended tasks
well, they are not meant to be precise computational devices. Like real neurons, they
are designed to process information that is noisy or imprecise and they can provide
reasonable outputs.

Section 6.2 discusses a “high gain” neuron, which outputs spikes at a nearly con-
stant frequency when the input signal exceeds the neuron’s threshold level. The
neurons in Section 6.3 have two stable states: silent or oscillating. Input spikes cause
them to switch between the states. Since the current state depends upon the input
spike history, these neurons are referred to as memory oscillators. They are analo-
gous to digital flip-flops. Section 6.4 analyzes neurons with bounded threshold levels.
Normally, a neuron has a minimum threshold level for producing output spikes, but
a neuron with a bounded threshold level also has maximum threshold level. When
the input signal exceeds the maximum level, the neuron is unable to produce output
spikes. And finally, Section 6.5 presents “identity” neurons. Unsynchronized identity
neurons produce an output spike for every input spike, and can be used to sum input
spike trains onto a single output line. Synchronized identity neurons produce output
spikes at regular intervals when spikes are input. Thus, the neuron has an underlying
frequency of events (spikes or non-spikes).

Each section in this chapter begins by discussing the desired function the neuron
is to accomplish, and then develops constraints on the neuron’s parameters for en-
suring that the function is performed. In general, the constraint equations presented

are sufficient, but not necessary for implementing the desired function, and looser
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constraints may be imposed, but usually at a cost of complicating the analysis. Each
section also contains a sample output from a neuron performing the desired function,
and gives the parameter values used. Although it is sometimes difficult to find a
set of parameters that satisfy the constraints, since they are continuous equations,
the solution provided resides within a connected region of the parameter space, and
the parameter values may be modified as desired to alter the neuron’s output while

remaining within the constraint boundaries.

6.2 High Gain Neurons

Previously, Section 4.4, which described the frequency transfer function of the SNM,
showed that most neurons require a minimum input spike frequency before any output
spikes can be produced. As the input frequency increases, the output frequency
reaches a saturation level determined by the neuron’s absolute refractory period. A
high gain neuron is designed to minimize the transition range. Thus, the output spikes
are produced at a nearly constant frequency when the strength of the input stimulus
exceeds a minimal strength, and when the input stimulus stops, the neuron’s spiking
behavior ceases. (The neuron is assumed to have no intrinsic oscillatory behavior; i.e.,
©; > Rj.) The high gain neuron requires only one input synapse, which is excitatory,
although more may be present. It is particularly useful for detecting the presence of
an input stimulus.

The neuron’s parameters are set so that when the input spike frequency is above a
chosen threshold level, the released neurotransmitter causes the synapse to saturate;
i.e., tanh (%U”(t)) ~ 1. The change in the neuron’s potential due to the saturated
synapse is just enough to keep it above threshold, and the neuron’s refractory time
constant, 7;, sets the output frequency. Because the synapse must be saturated in
order to produce an output spike, the output frequency does not significantly increase
when the input stimulus is stronger than the necessary minimum.

Three design parameters determine the behavior for this type of neuron. Figure 6.1

shows the frequency transfer function of a high gain neuron, with the corresponding
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Transfer Function Parameters
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Figure 6.1: Design Parameters for a High Gain Neuron. The plot shows the
output frequency as a function of the input frequency for a neuron with a high gain
transfer function. The left curve is f"P*, (see Equation (4.51)), the right curve is
flower | (see Equation (4.52)), and the middle curve is £2*°, the estimate for the actual
output frequency, (see Equation (4.55)). An “+” denotes where 2 is at the midpoint
of its asymptotic limits. The gain, I, is defined as the slope of the transfer function at
this point, (see Equation (4.56)). The parameter of f™& sets the maximum possible
output frequency of the neuron. The parameter of fi™ is the input frequency where
the neuron can first start producing output spikes. And the parameter of f™* is the
input frequency where the minimum output frequency, f°%¢, equals 95% of fmax.
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parameters labeled. The first parameter is the maximum output frequency of the
neuron, f™®. The second parameter is the input frequency required to initiate output
spikes, fi™; i.e., the value of f™ where the f"PP*" frequency curve rises above zero, (see
Figure 4.15). And the third parameter is the input frequency where the minimum
output frequency, f°%, is at 95% of f™* called . (The gain of the transfer
function, defined in Equation (4.56) could have been used as a design parameter
instead of fi™*; however, it is more informative to specify f™: e.g., how does the
output behavior vary between two neurons with gains of 100 and 2007) Each of
these design parameters is associated with a different constraint equation, which the

neuron’s parameters must satisfy. The constraints are:

1. The maximum output frequency must never exceed f™** regardless of the input
y g

frequency. The corresponding constraint equation is:

©; = tanh? ( )-[Rio + Ry (6.1)

Ty froax

Notice that the input neurotransmitter can never cause the neuron’s potential

to increase by more than R;;.

2. The input frequency must be greater than fi"e before the neuron can produce
any output spikes. If R; + R;;tanh (Eﬁ%_—l) > ©;, then one lone input spike
is sufficient for producing an output spike. In some situations, it is may be
desirable to have such a neuron, which can quickly respond to input spikes.
(When only one input spike is required to produce an output spike, fi® can be
set to zero.) But in other situations, it may be best if the neuron does not start
oscillating unless several initial spikes are input. Thus, the neuron parameters
must also be chosen so that:

-1

T..
@i = RiO + Rij tanh Y. ©

R;; 1
7] K <m)

This equation uses the maximum possible value for U;;(¢) in an infinite spike

(6.2)
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train with P! = <L, (see Equation (4.25)).

flno ’

3. When the input frequency is at f™, the output frequency must be greater
than 95% of f™**. To assure that this condition is satisfied, the neuron pa-
rameters must be chosen so that the output frequency is 0.95- f™* when the
neurotransmitter level is at its minimum value; i.e., the output spike frequency
is set as if the neurotransmitter did not vary with each input spike but instead
remained at the constant level of min {U;;(¢)} given in Equation (4.26)). Thus,

the constraint equation associated with £ is:

1
1 Tii w (‘r, m*)
O; = tanh? (——-——) Rio + R;jtanh | <. i (6.3)

0.957; - fmax Ry _< i )
1—e \Taf

Since the amount of neurotransmitter at the synapse varies with each input
spike, using the minimum amount of neurotransmitter in this equation guaran-
tees that the neuron’s output frequency will be greater than 0.95- f™% when the

input frequency is fir+.

These three equations constrain the choices for the high gain neuron’s parameters.
Solving for Ry in Equation (6.2), substituting into Equations (6.1) and (6.3), solving

for (%}) in these new equations, and setting them equal gives:

—_ tanh EL . et
Rij 1
Tijflno

(W)} _ { 1 - tanh” (i)

tanh? (rz-f}nax) 1 — tanh? (W)} (6.4)

The RHS of this equation is always positive, and as 7; approaches infinity, it goes

2
to (5.—155) . As 7; approaches zero, the RHS goes to infinity. Thus, this equation can
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always be satisfied for any set of parameter values provided that:

i (TT}H_) > e’ (6.5)

o —1 1
1—e (“'ijfm*> & (Tijfm")

This equation simply implies that the minimum neurotransmitter concentration at

the synapse whose input frequency is f™ must be greater than the maximum neu-
rotransmitter concentration at the synapse whose input frequency is fi". As long as
fi™ > fimo there is a range of synaptic time constants, 7;;, for which this is true.!
But for values of fi" close to £, large values of T;; are required.

If several spikes arrive nearly simultaneously, N input spikes are required to pro-

duce an output spike, where N is given by:

N = [(R"j'e) .Atanh <———@" _ Rio)] (6.6)

But if the input spikes are beating with f > fi%e then the number of required spikes

is determined by the neuron’s latency (see Equation (E.14)). And if f® < fine the
neurotransmitter concentration is never sufficient for producing output spikes.

As an example, consider designing a high gain neuron with the output frequency
being between 0.95 and 1.0, for all input spikes with an input frequency greater than
0.5, (f™* = 1.0, fi* = 0.5). Also, assume that the neuron is not to produce any
output spikes unless the average input frequency is greater than 0.25, (f"e = 0.25).
To satisfy the constraint equations, the neuron’s parameters were chosen as: 7; = 0.3,
Ry = 0.4663, R;; = 0.03623, T;; = 0.1209, d;; = 0.0, 7,; = 1.5730, and ©; =
0.5. When these values are substituted in Equation (4.56) the neuron’s gain, T, is
calculated to be ~ 300. The transfer function for this neuron was previously shown
in Figure 6.1, and Figure 6.2 shows some sample output spikes. Also, to designate a

high gain neuron, a “I'"” is place inside the neuron symbol.

INotice that for a fized synaptic time constant, 7i;, the value of I where the f lower frequency
curve rises above zero is not an independent quantity, but is determined by f'™°, (see Figure 6.2).
Also notice that f'™ must be greater than this value.
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Output Spikes from High Gain Neuron
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Figure 6.2: Sample Output for High Gain Neuron. The plot shows the input and
output spikes at 5 different frequencies for the example high gain neuron described
in the text. The numbers on the right side, N, represent the number of spikes. In
(A), the input frequency is 0.25, which is the maximum input frequency for which the
neuron is unable to produce any spikes. (B) shows the output spikes when fi* = 0.333.
This input frequency is sufficient for producing spikes, but below 0.3919, the frequency
required to produce output spikes on the f'°%* curve of Figure 6.1. (C) shows the
output spikes when f = fi% = (.5. (D) shows the output spikes when " = 2.5.
Notice that the output frequency appears to be almost identical to that of (C). (E)
shows an output spike train for random input spikes. Due to the high gain, the neuron
either does not fire, or produces output spikes at a frequency close to 1.
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6.3 Memory Oscillators

6.3.1 Introduction

Previously, Section 4.3.4 described beating and bursting neurons, which have an en-
dogenous oscillatory spiking behavior. This section describes neurons that are capable
of self-sustaining oscillations. They are not endogenous oscillators, but do so when
stimulated by an initial input signal, and continue to oscillate until an inhibitory
signal is received. Thus, these neurons can be thought of as memory neurons, and
are analogous to digital flip-flop circuits, which store binary values.

Two different types of memory oscillators are presented. They vary in the con-
figuration of the input signals used to control their behavior, and represent only a
sampling of the numerous ways that the SNM can be connected to perform “memory-
like functions.” Section 6.3.2 discusses the Dual Control Memory Neuron, which uses
two input signals; one is excitatory and starts oscillations, while the other is in-
hibitory and stops oscillations. Section 6.3.3 discusses the Single Control Memory
Neuron, which uses only one input signal, and every time the neuron receives a spike,

it switches from oscillating to silent, or vice versa.

6.3.2 Dual Control Memory Neuron

Figure 6.3 shows a diagram of a Dual Control Memory Neuron, which uses two input
signals. The first input connects at an excitatory synaptic cluster, while the second
input connects at an inhibitory synapse. The neuron also has a feedback connection,
which may contain delay, going into the excitatory cluster. The neuron parameters
are chosen so that when the neuron is silent, (not producing spikes), and an excitatory
input spike arrives at the “ON” input, the neuron produces an output spike. The
excitatory feedback connection causes the neuron to oscillate after producing an initial
output spike. It remains in a stable oscillatory state until a spike is received at the
“OFF” input, whereupon the oscillation ceases.

To understand how the parameters must be chosen, it is necessary to examine the
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Dual Control Memory Neuron

L —

i1z} .
"ON" Spikes >— L Output Spikes
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Figure 6.3: Dual Control Memory Neuron. This neuron uses two input signals:
one is excitatory and initiates oscillations, while the other is inhibitory and stops
oscillations. An excitatory feedback connection allows the oscillations to be self-
sustaining once an initial output spike is produced. Both excitatory connections go
into the same synaptic cluster, while the inhibitory input has a separate synapse.
The labels by the connections refer to the subscripts used on their corresponding
variables: “i” refers to the neuron number; “i1” refers to the excitatory synaptic
cluster; “11” refers to the excitatory input connection; “/12” refers to the excitatory
feedback connection; and “i2” refers to the inhibitory synapse.

equation for the neuron’s potential voltage, which is given by:

o [t —tK 1
Vi(t) = tanh® | —2 -{R¢O+Ri1-tanh [R

Ti il

(Ti1-Uinn + Ti12'U112)}

T;
+ Rip-tanh ( 2 ~Ui2)} (6.7)
Rio

The variable subscripts correspond to the labels shown in Figure 6.3. For this memory

neuron to work as desired, three constraints must be satisfied:

1. When there is no inhibitory signal, a single excitatory input spike must be suffi-
cient for producing an output spike. Therefore, it is necessary for the maximum
neurotransmitter released due to an excitatory input spike to be large enough

to cause the neuron to reach threshold; i.e.:

T;
0; < Rjp + R;1-tanh ( 1 -e'1> (68)
Ry
Here, ™! is used for the maximum value of F(t), (see Equation (A.4)). Notice
that the refractory coefficient, tanh? (t;?i), is assumed to be one. If it is

significantly less than one, then the neuron must have fired recently, which
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indicates that it is already oscillating.

. A single output spike must be sufficient for initiating the neuron’s oscillatory
behavior. Obviously, if a feedback spike can cause the neuron to produce another
output spike, then the production of an initial output spike leads to a self-
sustaining oscillatory behavior. This constraint is satisfied if the maximum
neurotransmitter released due to a spike at the feedback connection is sufficient

for triggering another output spike; i.e.:

d; . T,

©; < tanh? (M) -{Rm + R -tanh ( o2 -e_1>} (6.9)
T Ry

Notice that the maximum neurotransmitter concentration occurs when ¢ = tX +

dia2+ Ti2, (see Equation (3.5)), and since the neuron must have fired to produce

the feedback spike, this time is substituted into the refractory coefficient.

. A single inhibitory input spike must be sufficient for preventing the production
of output spikes; i.e., it must cause the oscillations to cease. Also, when an
excitatory and inhibitory input signal arrive at nearly the same time, the in-
hibitory signal should “win” and the neuron should not produce output spikes.

The maximum neurotransmitter due to an inhibitory spike is |Tj2e™}, so if:

T.
©; > Rijo + Ri1 + Rie-tanh [};2 -e_lJ (6.10)
i2
then after an inhibitory spike arrives, there must be a period of time during
which the neuron is unable to produce an output spike, regardless of the amount
of neurotransmitter at the excitatory input connections. (Notice that the maxi-
mum contribution to the neuron’s potential from the excitatory synaptic cluster

is bounded by R;;. Also note that for an inhibitory connection Ty < 0.)

However, Equation (6.10) is not sufficient to guarantee that the oscillatory
behavior ceases. The case may be such that the effect from the inhibitory

neurotransmitter rapidly decays, while the residual amount of excitatory neu-
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rotransmitter from the previous feedback spikes remains sufficient for produc-
ing another output spike, leading back to oscillation. To assure that this can
not happen, the effect from the inhibitory neurotransmitter must be of a suf-
ficiently long duration for the excitatory neurotransmitter to decay below a
self-sustaining level. Therefore, to determine the maximum time that the neuro-
transmitter concentration at the feedback connection is sufficiently high enough
for producing another output spike, assume that the neuron is in a stable os-
cillatory pattern with P! = A.2 To calculate the exact time, it is necessary to
include the refractory coefficient; however, since this only increases the effective
value for ©;, the refractory coefficient can be ignored, yielding an upper bound
on the time being sought. Using the expression for the neurotransmitter given

in Equation (4.23), the maximum time, t™®*, is found from:

T, prax _ g, A
©; = Rio + Rir-tanh 2 __.F (t 2 1y ( )) (6.11)
Rk (A> Ti12 Ti12
Ti12
Solving for ™ yields:
Imax A
t = T (93 — ( )) + da2 (6.12)
Ti12
; A i — R
where: [a,z] = F7* Kﬁi> ‘K ( )-Atanh (Q——Eﬂ (6.13)
12 Ti12 Ry

(An algorithm for calculating F~!(—) is given in Appendix D. See footnote on
page 328 concerning the notation used in Equation (6.13).) Thus, if the effects
from an inhibitory spike are able to prevent a neuron from firing for at least

{max then the neuron must stop oscillating. This is the case if:

ar((Z))) e

Notice that from the definition of ¢ (—) in Figure C.1, the neurotransmitter

©; > Ri + R;1 + R;o-tanh l:

2If a neuron is oscillating due to a feedback connection, then the time between output spikes can
be found by solving for A in Equations (4.44)-(4.46). (See also Figure 4.11.)
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Sample Output for Dual Control Memory Neuron
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Figure 6.4: Sample Output for Dual Control Memory Neuron. This plot
shows a set of random spikes for the “ON” and “OFF” inputs, and the resulting
output spikes from the neuron. When the neuron is in an oscillatory state, A = 0.423.
The neuron’s parameters are: ©; = 0.5, Ry = 0.0, 7, = 0.2, R;; = 0.53, T;11 = 2.75,
Till = 0.375, Tﬂg = 2.75, dﬂg = 020, Ti12 — 0375, Rig = 0.10, Tig == -—0.10, and
7;2 = 1.0. Also, #™** in Equation (6.13) is 1.18.

released from an inhibitory input spike is sufficiently high for at least #™a.
Because the inhibitory spike may arrive at any time within the oscillatory cycle,
it remains undetermined as to when this inhibitory period starts relative to the
last output spike. But, if no output spikes are allowed to occur during any period

of time greater than or equal to t™#*  then the neuron’s oscillation ceases.

When the neuron’s parameters are chosen to satisfy the constraints of Equations
(6.8), (6.9), and (6.14), the neuron operates as desired: “ON” spikes start oscillations,
while “OFF” spikes stop oscillations. Figure 6.4 shows a sample output for a neuron
with parameters satisfying the constraints. Notice that when the neuron is already
oscillating, another “ON” spike does not significantly affect the output spike train.
The parameters in this example were chosen so that the neurotransmitter released at

the feedback connection forces the excitatory synaptic cluster to be nearly saturated,
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i.e., tanh (—) ~ 1. Thus, additional neurotransmitter from an input spike will not
significantly perturb its oscillatory cycle. (This same memory cell could have been
designed with separate synapses for the excitatory input and feedback connections.
But then each synapse would effect the neuron’s potential independently and addi-
tional excitatory input spikes would cause temporary increases in the neuron’s output
frequency.) Although not demonstrated in Figure 6.4, an excitatory input spike that
arrives a short time after an inhibitory input spike will not initiate an output spike.
After each inhibitory spike, there is a “dead time” of approximately ™ during which
the neuron is insensitive to excitatory inputs. The actual length of time depends upon

the relative phases between the feedback spike, inhibitory spike, and excitatory spike.

6.3.3 Single Control Memory Neuron

Figure 6.5 shows a diagram of a Single Control Memory Neuron, which has only
one input signal. The input signal connects to the neuron at both excitatory and
inhibitory synapses.® Like the previous memory neuron, it uses a feedback connection
to sustain oscillations. The feedback signal forms both an excitatory synapse into the
neuron and an inhibitory presynapse onto the excitatory input signal connection. The
parameters are chosen so that when the neuron is silent and an input spike arrives,
the excitatory synapse overpowers the inhibitory synapse causing the neuron to start
producing output spikes. The excitatory feedback connection causes the neuron to
continue oscillating after producing an initial output spike. It remains in a stable
oscillatory state until another input spike is received. The inhibitory presynapse
from the feedback signal prevents the input spike from exciting the neuron; however,
the inhibitory connection is unhampered, and causes the oscillation to cease. Thus,
this neuron switches between the oscillatory and silent states with each input spike.

To understand how the parameters must be chosen, it is useful to examine the

3Real neurons are not believed to form both excitatory and inhibitory connections (Dale’s law
— see footnote on page 19.) Hence, this method for creating a memory oscillatory is biologically
implausible — at least with a single neuron.
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Single Control Memory Neuron
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Figure 6.5: Single Control Memory Neuron. This neuron has one input sig-
nal, which forms both excitatory and inhibitory connections. An excitatory feedback
connection allows the oscillations to be self-sustaining once an initial output spike
is produced. The excitatory input connection is stronger than the inhibitory input
connection, and when the neuron is not oscillating, an input spike has a net exci-
tatory effect on the neuron, leading to oscillation. When the neuron is oscillating
the excitatory input connection is inhibited by the presynaptic connection from the
neuron’s feedback signal, and the net effect from an input spike is inhibitory, causing
the neuron to stop oscillating. The labels by the connections refer to the subscripts
used on their corresponding variables: “i” refers to the neuron number; “/1(1)” refers
to the excitatory input connection which has a presynapse labeled “m1” attached to
it; “2” refers to the inhibitory input connection; and “i3” refers to the excitatory
feedback connection.

equation for the neuron’s potential voltage, which is given by:

il

o [t —t& Ti
%(t) = tanh . Rio+Ri1tanh R 'Uil(l) (615)

T;

T T;
+Ri2 tanh ( 2 'Ui2) -+ Rig tanh ( 3 -U¢3>}
Rig Rz’3
The variable subscripts correspond to the labels shown in Figure 6.5. For this memory

neuron to work as desired, three constraints need to be satisfied:

1. When the neuron is silent, an input spike must cause the neuron to produce an
output spike. If the input spike arrives at ¢ = 0, then an initial output spike is

produced if there is a value of ¢ such that:

T;
0; < Ry + R;1-tanh [ L v (-—-t-—):' Rio-tanh (

il Ti1

Lr()) o
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If the neuron parameters are chosen so that 7;; = 75, and %% = ]%‘,4 then

this equation simplifies to:

T; t
0, < R+ (Ril — Rig)-tanh ( i1 -F (—)) (6.17)
Ri Til
2. A single output spike must be sufficient for initiating the neuron’s oscillatory
behavior. Obviously, if a feedback spike can cause the neuron to produce another
output spike, then the production of an initial output spike leads to a self-
sustaining oscillatory behavior. This constraint is satisfied if the maximum
neurotransmitter released due to a spike at the feedback connection is sufficient
for triggering another output spike; i.e.:
. T
O, < tanh? (Ei) . [Rio + R;3-tanh (—Z3-e‘1>J (6.18)
Ti Ry
Notice that the maximum neurotransmitter occurs when ¢ = tf" + 73, (see
Equation (3.5)), and since the neuron must have fired to produce the feedback
spike, this time is substituted into the refractory coefficient. (The feedback

connection may also contain delay, as in Dual Control Memory Neuron.)

3. When the neuron is oscillating, an input spike must cause the neuron to stop
oscillating. This constraint is satisfied if the inhibitory input connection is
sufficiently strong to prevent the production of output spikes. If the period
between output spikes is A, then the total contribution to the neuron’s potential

due to an input spike is given by:

R;1-tanh (;i) .F (%) .e—R,ml. tanh[(%li.) i%%?l}

4These restrictions on the neuron’s parameters are not necessary for the memory neuron to
operate as desired, but they simplify the analysis. In general, ;2 should be less than or equal to 71
to ensure that the inhibitory effects do not outlast the excitatory effects and stop oscillation after
only a few initial output spikes have been produced.
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T; t
+Ri2-tanh [( 2 ) -F (——)J (619)
Rio Ti2

This represents the worst case scenario with the inhibitory presynaptic neu-

rotransmitter on the excitatory synapse being at a minimum, (see Equation

(4.26)).

Now, the contribution to the neuron’s potential must inhibit the neuron from
firing. But as with the Dual Control Memory Neuron, it is possible that the
inhibitory effects from the input spike decay more rapidly than the residual
neurotransmitter at the feedback synapse, causing the neuron to start oscillating
again. Thus, the neuron must be inhibited long enough for the excitatory
neurotransmitter to decay below a self-sustaining level. The required time,
tma*  oiven in Equations (6.12)-(6.13) still applies to this memory neuron, with
the appropriate changes in the parameter subscripts. Thus, if the effects from
an input spike are able to prevent a neuron from firing for at least ™, then

the neuron must stop oscillating. This is the case if:

Ti -1 Tz t’max
©; > Ri+ Riz-tanh [—25 | 4 Ryy-tanh [( 2)-F (w( ))J
Ri3-k (—%) Ry Ti2

+ R;i-tanh (%—1—) -F <¢ (Z—m-ai)) .e_Rmr tanh[(%) F(f((jg—)))] (6.20)

21 Til

When this constraint equation is satisfied, an input spike cause the neurotrans-
mitter at the inhibitory synapse to remain sufficiently high for at least t™**, and

the output oscillation must cease.

When the neuron’s parameters are chosen to satisfy Equations (6.16), (6.18), and
(6.20), the neuron operates as desired, switching between a silent and oscillatory
state with each input spike. Figure 6.6 shows a sample output for a neuron with
parameters satisfying the constraints. Notice that the derivations of the constraint
equations were based on the assumption that the neuron was already in a steady-state

condition; i.e., if the neuron is silent, then there is no neurotransmitter at any of the
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Sample Output for Single Control Memory Neuron

T T T T

"ON/OFF" Spikes .

Output Spikes

0 5 10 15 20 25
Time

Figure 6.6: Sample Output for Single Control Memory Neuron. This plot
shows a set of random input spikes, and the resulting output spikes from the neuron.
When the neuron is in an oscillatory state, A = 0.265. The neuron’s parameters are:
@i = 0.5, RiO - 0.0, T — 0.3, Rﬂ = 8.5, Ti]_ = 8.5, Ti1 = 0.4, Riz == 7‘0, Tig = —-7.0,
Tig = 0.4, Rig = 1.0, Ti3 - 2.0, Ti3 = 0.435, le = 6.0, Tml = —6.0, and Tml = 0.25.
Also, ™% is 1.53.

synapses, and similarly, if the neuron is oscillating, then there is only neurotransmitter
at the feedback synapse and presynapse, which is given by the periodic solution for
P! found in Section 4.2.3. But if the neuron has recently received an input spike and
switched its state, a second input spike arriving shortly after the first may not be
able to cause the neuron to switch states again. Essentially, there is a dead time of

approximately #™**, during which the neuron is insensitive to the next input spike.

6.4 Bounded Threshold Levels

In the SNM as well as in real neurons, a spiking output signal is produced when the
input signal exceeds the neuron’s threshold level; however, there are some situations
where it is desirable to have the neuron only respond when the input signal is within
a limited range. Such neurons can be used to route input signals along network paths
with different gains. A bounded threshold neuron fails to produce any spikes for large
or small input signals outside of the specified range, and are said to have a bounded

threshold level. In the SNM, bounded thresholds can be effectively realized by using
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Bounded Threshold Neuron
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Figure 6.7: Neuron with a Bounded Threshold Level. This neuron has one
input signal, which forms two synaptic connections: one is excitatory and the other
is inhibitory. The labels by the connections refer to the subscripts used on their
corresponding variables: “¢” refers to the neuron number; “i1” refers to the excitatory
synapse; and “;2” refers to the inhibitory synapse.

both excitatory and inhibitory synapses from the same source.

To understand how a bounded threshold level can be created, consider a silent
neuron, (R;y < ©;), with a single input signal, which connects to both an excitatory
and inhibitory synapse. Although the signal may be from an external stimulus, with
no loss in generality, assume the input is from another neuron. Furthermore, assume
that both synapses have the same time constants and time delays, (71 = 72 and
d;s = dio); therefore, Uy = U = Uy;(t). Figure 6.7 shows a schematic of a bounded
threshold neuron.

The potential voltage of the bounded threshold neuron is given by:

o [t —tE Ti
V;(t) = tanh —_— . {Rzo + Ril tanh (——Uz](t)>

i Rj

Tio
+ Rig tanh (——-Uij(t))} (6.21)

Ry
The first synapse is excitatory, (T;; > 0), while the second synapse is inhibitory,
(Ti2 < 0). To further facilitate the analysis, the number of parameters can be reduced,

with the firing condition being:

@i 2 t— tzK R
_ tanh? (25 [ + tanh (K -h(£)) — r tanh (A(£)) (6.22)
Ra T R
T;
where: K=r —j—;l (6.23)
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3]

2 (6.24)
i1

| T
R

ﬁ
If

=

h(t

Il

Uy (t) (6.25)

K

Although the refractory term of tanh? <—t;TfL> limits the effective input signal, the

neuron is incapable of firing unless:

©;

e e (6.26)

B(h) = tanh (K -h(¢t)) — r tanh (h(t)) >

If

_ R
Ry

Now, a neuron can have a bounded threshold level if B(h) attains a maximum;
i.e., increasing h(t) actually decreases the value of B(h). For such a maximum to

exist, there must be a value for h(t), such that:

dgg = Ksech? (K-h(t)) — rsech® (h(t)) = 0 (6.27)
%f‘ — —2KZ%sech® (K -h(t))-tanh (K -h(t)) + 2rsech® (h(t))-tanh (h(t)) < 0 (6.28)

When Equation (6.27) is substituted into Equation (6.28), it can only be less than
zero for K > 1. Consequently, K-h(t) > h(t) > 0, and since sech® (~) is a decreasing
function (for positive arguments), there can only be a solution for A(t) in Equation
(6.27) if r < K. Finally, a bounded threshold implies that there is an upper limit on
the values for h(¢) which satisfy Equation (6.26). Thus, as h(t) — oo, B(h) < © or

1 —r < ©. To summarize, the r and K parameters must be chosen such that:
0<1-0<r<K and: 1<K (6.29)

With any values of r, K, and © that satisfy Equation (6.29), there is a limited range
of h(t) values which can produce a spike. Henceforth, to simplify the analysis, assume
r = 1, (Ri1 = Rj2), which allows the constraints to be satisfied for any K > 1, and
0 < © < 1. Figure 6.8 shows B(h) as a function of (t) for several different values of
K > 1, and Figure 6.9 shows the lines for A(t) where B(h) = ©.

Theoretically, when choosing the neuron parameters to respond to a specified input



109
B(h) = tanh(K-k(2)) — r-tanh(k(2))
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/[1 ~ r-tanh(k(2))]
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Figure 6.8: Plot of B(h). The plot shows B(h) vs. h(t) for K = 1,2,...,10. The
value for r is set to 1. Notice that for larger K values, the curve becomes higher and
MOre Narrow.

range, any value for K > 1 may be used; however, larger K values work best if the
ratio of the maximum responsive input neurotransmitter to the minimum responsive

input neurotransmitter, is close to 1; i.e.:

UmB.X
Q= TR 1 (6.30)
When Q is close to one, there is a narrow response range.
The corresponding values for h(t) are given by:
. Ti .

hmln '[’R_'Z'I"'Umln (6-31)

pmax ITZ2| max __ hmin 2

= —@-U =Q- (6.32)

With larger K values, the gradient of the curve in Figure 6.8 is steeper at the bound-
aries, and there is less ambiguity about when the input signal is within the desired

range.
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h(9) vs. K with B=8
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Figure 6.9: Lines of h(t) where B(h) = ©. The plot shows the values for h(t), with
r = 1, where tanh (K -h(t)) — tanh (h(t)) = ©. All points to the right of the curves,
satisfy the inequality in Equation (6.26). Notice that for any given values of K > 1
and 0 < © < 1, there is both an upper and lower limit on the values for h(t) which

can produce a spike. As K increases the upper limit approaches Atanh (1—}9-) and

<Ata111{h(é) ) .

the lower limit decreases like
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As a design example, consider choosing the parameters so that a neuron will only
respond when the level of input neurotransmitter, U;;(t) is between 0.9 an 1.1. For
these values, @ = 1.1/0.9 ~ 1.2222. Since this @ value is relatively close to 1, K was

chosen to be 10. Solving for A™® in the transcendental equation of:

tanh (K -5™") — tanh (k™) = & = tanh (KQ-h™") — tanh (Q-A™")  (6.33)

gives h™® = (.1661 and © = 0.7658. Letting R;; = R; = 1, and using Equation
(6.31) yields T;2 = —0.1846. (T}, is negative since the second synapse is inhibitory.)
With K = 10, Equation (6.23) gives T;; = 1.8456. Now ©; and R;y can be arbitrarily
chosen to satisfy the definition of © in Equation (6.26). Figure 6.10 shows how a
neuron with these parameters responds to different input levels. (For the beating
input stimulus shown, the maximum and minimum neurotransmitter levels converge
to the values given in Equations (4.25)-(4.26).)

Although the bounded threshold neuron is designed to respond to inputs within
a specific range, one of its possible uses is in signaling the start and end of an input
stimulus. Its response range can be made sufficiently small so that nearly all input
signals are either above or below the threshold region; however, for those signals
above threshold, the neurotransmitter level must pass through the responsive region
when the stimulus begins and ends. During these times, the neuron outputs a spike
indicating the start or end of a stimulus (see Figure 6.10 (C)).

Finally, notice that if a time delay is used on one of the input synapses, then the
bounded threshold neuron shown in Figure 6.7 can be used to detect changes in the
input signal. This is because a change in the input signal will alter the neuron’s po-
tential through the synapse without delay before the other synapse can counteract its
effect. When used in this configuration, the neuron is said to have a gradient thresh-
old. If the time delay is associated with the inhibitory synapse, then the neuron is
sensitive to sudden increases in the input stimulus. And if the time delay is associated
with the excitatory synapse, then the neuron is sensitive to sudden decreases in the

input stimulus.
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Figure 6.10: Neuron Response with Bounded Threshold. The plot shows the
neuron’s response to the onset of a periodic spike input. In (A), U;;(t) never becomes
large enough to produce an output spike. In (B), U;;(t) converges within the bounded
threshold region. The neuron produces output spikes at a frequency determined by
the refractory period. In (C), U;;(t) increases above the bounded threshold region,
but as it passes through, an output spike is generated. (r; = 1.0, Rjp = 0.0, R;; = 1.0,
Rip = 1.0, Ty = 1.8456, Tj = —0.1846, d,; = 10.0, 7;; = 2.0, and ©; = 0.7658.)
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6.5 Identity Neurons

6.5.1 Introduction

For some computing problems, it is useful to have a neuron with an identity response,
in which the output spikes are correlated with the input spikes. Section 6.5.2 describes
an unsynchronized identity neuron, which outputs a spike for each incoming spike.
This neuron is useful for summing uncorrelated input signals. The time lag between
the input and output spikes depends upon the recent spike history; i.e., spikes oc-
curring within a spike train produce output spikes with less delay than do isolated
spikes. (An isolated spike is defined as an input spike with no other recent input
spikes preceding it, which are still influencing the neuron’s current state.) Essentially
this neuron acts as a non-linear delay element, with strong stimuli passing through
quickly, while weak stimuli are delayed. (A strong stimulus is represented by a closely
spaced spike train, while a weak stimulus is represented by a single isolated spike.)
Section 6.5.3 describes a synchronized identity neuron. For this neuron, the out-
put spikes occur at regular intervals. It can be thought of as a beating neuron (see
Section 4.3.4), which has no output beats unless an input spike occurs. The neuron
almost outputs spikes at a regular frequency, but its potential remains slightly below
threshold; however, when a spike is input, it sufficiently increases the neuron’s po-
tential to produce an actual spike at the time of the next “pseudospike.” This type
of neuron is necessary for computations that require synchronized input signals, such
as the pattern recognition or logic function evaluation tasks described in Chapter 7.
Section 6.5.4 describes a synchronized inverse neuron. This neuron operates the
same as the synchronized identity neuron, except that the signal is inverted; i.e., the
neuron only outputs spikes when no spikes are being input. If an input signal is
connected to both a synchronized identity neuron and a synchronized inverse neuron,
then they produce output spikes opposite times; i.e., during the pseudospike events in
which the synchronized identity neuron produces an output spike, the synchronized

inverse neuron does not, and vice versa.
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Unsynchronized Identity Neuron
ETETDSSS (B

Figure 6.11: Unsynchronized Identity Neuron. The neuron shown here has only
one input signal, although more may be used. For each input spike, the neuron
produces an output spike. To indicate a neuron that has an identity response, “I” is
placed inside the neuron symbol.

6.5.2 Unsynchronized Identity Neurons

An unsynchronized identity neuron attempts to output a spike for each incoming
spike. When designing such a neuron, it is important to remember that the neuron’s
refractory period limits its maximum output frequency; thus, for closely correlated
input spikes, the neuron is unable to produce an output spike for each one. To
understand its behavior, consider a neuron with only one input synapse, and assume
that the minimum allowed time between input spikes is A;. Figure 6.11 shows an

unsynchronized identity neuron. The equation for its potential reduces to:

ij

—tK
Vz(t) = tanh2 (t C ) . l:Ri() + Rz’j tanh (

T3

Iy -U,j(t))] (6.34)

Since the identity neuron should only produce spikes when there are input spikes,
the neuron must be a silent neuron with R,y < ©;. A one-to-one correlation between
input and output spikes occurs if four constraints are satisfied. The first two con-
straints characterize the neuron’s behavior when spikes first start arriving, while the

last two constraints apply to an input spike train that suddenly stops.

1. An isolated input spike must result in an output spike, and to prevent the neuron
from lagging behind the input, the output spike should occur before another
input spike can arrive; i.e., there must exist some value of t, (0 < ¢ < A;), such

that:

i

g t
Ry + Ry tanh <%—F <——>) > 0; (6.35)

Tij
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Here, t = 0 corresponds to the arrival time of the input spike. Notice that
since the input spike is isolated, the neuron must not have fired recently; thus,
tanh? (E:;iff_) ~ 1. Also, F (%) is the response of U;;(t) to a single input spike,

and its maximum value is e~1.

. The neuron’s refractory period must not prevent the neuron from responding

when a second input spike follows the first by only Aj; i.e., there must exist

}29i

(6.36)

some value of ¢, (A; <t < 2A;), such that:
t — t} T t t—A;
tanh2< ’)-{Rio-kRijtanh[ J|:F <—> + F < J)
Ti Rij Tij Tij

where: ti =7 F7! (#‘Atanh <——]—%———0—>> (6.37)

ij ij

The neurotransmitter in Equation (6.36) is given by the sum of the responses for
the two input spikes, and ¢} is the solution of Equation (6.35) and represents
the time of the first output spike. (An algorithm for calculating F~'(—) is
given in Appendix D.) Equation (6.36) represents the worst case scenario in
the sense that it uses the minimum expression for U;;(t) following two input
spikes separated by A;. (If there were other previous input spikes Uy;(t) would

be greater.) Similarly, using ¢; minimizes the refractory recovery time.

. When the input consists of a spike train with P! = A;, there must be a oscil-
latory solution so that the neuron is able to produce one output spike for each

input spike; i.e., there must exist some value of ¢, (0 <t < A;), such that:

tanh2 (—A—]) . RiO + Rij tanh ——-—TZJ———F (i -+ 7,0 <é)>
7 Ryr (&) \7y Tij

Tij

}zeim%)

Here, U;;(t) is the result of a periodic input spike train (see Equation (4.23)),
and t = 0 corresponds to the arrival time of the last input spike, (K th input

spike). Since the solution is assumed to be oscillatory, with one output spike per
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input spike, the refractory term is set as if the neuron last produced an output

spike at the same relative phase to the previous input spike, i.e., t —tX~! = Aj.

4. The neuron can only produce one output spike for each input spike. The worst
case scenario for this constraint again occurs with a periodic spike train input,
which maximizes U;;(t). Thus, after a neuron produces an output spike, which
corresponds to the last input spike, no more spikes should be produced if the

input spikes cease; i.e., for all ¢, (t& < t):

—tK Ti; t A
tanh? <t fi ) Ry + Ry; tanh ——-—-——A—F (—— + Y <-—>) < ©;
7 Rk () \7y Tij
(6.39)
where:
Rij-k (A) 0, Rio A
tF =7 F7! | [ —=—"2% | -Atanh L — — — Tii (—)
? [( T3 R;; tanh? (%) Ri; 7T\ Ty
(6.40)

Notice that tX is the solution to Equation (6.38), and represents the time of the
last output spike generated after the last input spike. Also, X represents the

minimum possible lag time between an input and output spike.

Figures 6.12-6.13 illustrate these four constraints for one set of parameters, and
Figure 6.14 shows the potential voltages for a neuron satisfying them. Figure 6.15
shows the output spikes for an example input spike train. Notice that while this
neuron is referred to as an identity neuron, it really functions as a time filter,®> with
the strong stimuli having short delay times. While even the weakest stimuli elicit a

spike response in this identity neuron, it could have easily been designed to filter out

SUsually filters are thought of as operating in the frequency domain, where they take an input
waveshape and modify the frequency spectrum to produce an output waveshape; e.g., a high-pass
filter attenuates the low frequency components of a signal, while its high frequency components pass
through. Here, a “time filter” operates on the input signal’s magnitude (encoded in frequency),
with weak input signals being delayed and strong signals passing through with little or no delay.
If the “identity” neuron is designed so that two or more closely spaced input spike are required to
produced an output spike, then weak signals are also attenuated, and the neuron acts as a high-pass
filter. Notice also that if the time between input spike is less than A, then the neuron can produce
more output spikes than input spikes. In this case, high frequency signals are amplified.
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Figure 6.12: Plot of Identity Constraints (1) & (2). The plot shows Equation
(6.35) for 0 < t < A, and Equation (6.36) for A; < t < 2A;. For the neuron being
modeled, the parameters are: ©; = 0.5; R = 0.0; R;; = 1.0; T3; = 1.5; 7; = 1.0; and
7; = 1.25. Also, A; = 1.5. Notice that both constraints are satisfied.
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Constraints (3) & (4)
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Figure 6.13: Plot of Identity Constraints (3) & (4). The plot shows Equation
(6.38) for 0 < t < A;, and Equation (6.39) for tK < t. (¥ is determined by the
solution for ¢ in the third constraint — see Equation (6.40).) For the neuron being
modeled, the parameters are: ©; = 0.5; Ry = 0.0; Ry; = 1.0; T3 = 1.5, 745 = 1.0; and
7; = 1.25. Also, A; = 1.5. Notice that both constraints are satisfied.
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signals below a certain magnitude, by modifying the first and second constraints.

When an identity neuron has more than one input synapse, its output closely
resembles the sum of all input spike trains; however, when there is more than one
input providing a strong stimulus or there are closely correlated spikes between several
inputs, the neuron is unable to recover from its own refractory period to produce an
output spike for each input spike. In general, when the constraint equations are
satisfied, the identity neuron will not produce more output spikes than input spikes,

but may produce fewer spikes when there is “overlap” between them.

6.5.3 Synchronized Identity Neurons

The synchronized identity neuron is very similar to its unsynchronized counterpart.
They both produce an output spike for an input spike, but with the synchronized
identity neuron, the output spikes occur at regular intervals. Synchronized neurons
use an additional input signal from a beating neuron, called the pace neuron. It pro-
vides a strong input signal that causes the identity neuron to almost reach threshold
and output spikes at a regular frequency. At these times when the neuron is almost
able to spike, it is described as having a “pseudospike” output. By using small values
for the weights associated with the other inputs, they appear as perturbations of the
strong stimulus from the pace neuron. The parameters of the identity neuron are
chosen so that an input spike is able to perturb the neuron’s potential enough to
cause it to reach threshold and fire. Of course, the output spike occurs near the time
of a pseudospike, causing the identity neuron’s output to be synchronized with the
pace neuron. The output spike train is analogous to a clocked bit pattern, with each
spike representing a “1” and each non-spike representing a “0”. Figure 6.16 shows a
diagram of a synchronized identity neuron. If the same pace neuron is used to drive
several identity neurons receiving different stimuli, then the output spikes associated
with each signal are in phase.

When designing a synchronized identity neuron, it is useful to first consider the

input from the pace neuron. (All of the terms associated with the pace neuron have
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Figure 6.14: Plot of Identity Neuron’s Potentials. The plot shows U;;(t) and
V;(t) for a neuron satisfying the constraints (same parameters as in Figures 6.12-6.13).
In (A), the first two constraints imply that the neuron should produce two output
spikes for two isolated input spikes separated by A;. The input spikes occur at ¢ =1
and ¢ = 2.5, while the output spikes occur at t = 1.9075 and ¢ = 3.4570. In (B), the
third and fourth constraints imply that the neuron should produce only one output
spike for each input spike within a spike train of P! = A, and when the spike train
stops, no more spikes should be produced. During the spike train, the output spikes
lag the input spikes by only 0.0755.



121

1 Iryput Si al é
UU.(I) 0.5} })\W’\W W i
IV A \
1 Oq.tput Si
Vi) 05 Hiii——++ -+ 0t i
T T i
0 20 40 1o 100

Figure 6.15: Unsynchronized Identity Neuron’s Response to Input Spikes.
The plot shows the input and output spikes as well as U,;(t) and V;(¢) for an identity
neuron satisfying the constraints (same parameters as in Figures 6.12-6.13). In the
sample input spike pattern, all of the spikes are separated by at least A; = 1.5.
Notice that each input spike results in an output spike, with the delay between them
dependent upon the previous input activity. The maximum delay occured after the
first input spike and was 0.9075, while the minimum delay occured after the 19th
input spike and was 0.085.

Synchronized Identity Neuron

Output Spikes

Figure 6.16: Synchronized Identity Neuron. The neuron has an input connection
from a pace neuron, which beats at a regular frequency. The identity neuron shown
here has only one other input signal, although more may be used. For each spike
from the input signal, the neuron produces an output spike at the time of the next
spike from the pace neuron. To indicate a synchronized identity neuron, “I” is placed
inside the neuron symbol, and “P” is placed on the excitatory synapse from the pace
neuron.



122
a “p” subscript. Also, the delay term for the pace neuron is inconsequential, and is
considered to be zero, i.e., d;; = 0.) The output spike period of the pace neuron,
Ap, sets the maximum oscillation frequency of the identity neuron. If A, is less than
the minimum allowed time between the spikes of the input signal, A;, then there can
never be more than one input spike between pseudospikes, and the parameters can
be chosen so that there will be a one-to-one correlation between the input and output
spikes. But if A, is greater than A;, then there may be more than one input spike
between pseudospikes, and there will usually be fewer output spikes than input spikes.
Essentially A, acts as a time window for averaging the input signals, and when there
are one or more input spikes within the window, an output spike is produced. While
there is some loss of information with larger time windows, it is usually necessary
to use values of A, greater than A;, when several synchronized identity neurons are
being used to phase lock input stimuli.® Since the pace neuron is beating, its output

neurotransmitter is given by Equation (4.23), and the SNM reduces to:

Ti j=1 J

) ()
(R@pﬁ(%ﬁ)) f( Tip + ¢ Tip

Here, V;p(t) represents the resting potential, Ry, plus the potential voltage contri-

Vi(t) = tanh? (E:—f) . {V;-p(t) + IZW: R;;-tanh <%Um(t)> } (6.41)

where: V;'p(t) = Ri() -+ Rip tanh (642)

bution from the pace neuron, and N; represents the number of input synapses (not
counting the input synapse from the pacing neuron).

To prevent the identity neuron from firing without an input signal, the parameters
must be chosen so that the neuron is unable to reach threshold with just the pace

signal input. Using the maximum value for the neurotransmitter from the pace neuron

6As an example, consider two input spike trains with spikes occurring at: ¢; = {0.5,6.5,12.5, 18.5}
& ty = {4.5,9.5,14.5,19.5}. If the pace neuron had A, = 1 and created pseudospikes at: ¢, =
{0,1,2,...}, then the first spike train would produce output spikes at: t;; = {1,7,13,19}, and the
second spike train would produce output spikes at: t;o = {5,10,15,20}. But if the pace neuron
had A, = 5 and created pseudospikes at: ¢, = {0,5,10,...}, then the output spikes would be
synchronized and occur at: t;; = ¢ = {5,10,15,20}. Thus, larger windows allow for better
synchronization.
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given in Equation (4.25), this constraint becomes:

-1

T;
max{Vip(t)} =R+ Rip tanh (?—ii(—éﬁ—)> < 6 (643)
ip’

Tip

While this constraint needs to be satisfied, the LHS should be close to ©;, to ensure
that the neuron is in a state of almost firing (generating pseudospikes). Also, the
time constant associated with the input signal from the pace neuron, 74y, should be
very small. Larger values for 7;, cause the identity neuron to be near threshold over
a longer time period, which allows the actual output spikes to lead the pseudospikes.

Associated with each pseudospike is a time window when it is sensitive to input
spikes. Spikes occurring during this period cause the neuron to generate an output
spike at the time of the pseudospike. To ensure that no input spikes are lost and
that one input spike can not generate more than one output spike, the width of the
window must equal the time between pseudospikes, A,, (see Figure 6.17). Thus,
for an isolated input spike, there must exist an interval of length A, such that its
neurotransmitter contribution causes the neuron’s potential to rise above threshold.

By using the definition of v (A) implied by Figure C.1, this constraint simplifies to:

T:; A Tipe™!
Ri~tanh . ’;D (—2>>:' = @7, — Ry — R; tanh — 6.44
jtaat | 227 (1 2 o= Rptanh ( sy ) (04

Tip

4K
If the spike is isolated, the neuron must not have fired recently; thus tanh? (%b) ~ 1.
Now when this constraint is satisfied, there is both a minimum and maximum
value for § in Figure 6.17, which cause the corresponding pseudospike to become an

output spike. The minimum value is given by:

: A
& = 10 (—p) (6.45)
Tij
Of course, the maximum value is given by §™&% = A, + §™n,

Figure 6.17 shows a pseudospike train, and the time window associated with one

of the pseudospikes. Any isolated input spike arriving between §™2% and §™™ will

-
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Pseudospikes in Synchronized Identity Neuron
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Figure 6.17: Pseudospikes in Synchronized Identity Neuron. The plot shows
a train of pseudospikes separated by A,. Associated with each pseudospike, is a time
window, (§™® < § < §™3*), during which an isolated input spike will cause the neuron
to be at or above threshold at the time of the pseudospike. Also shown is the neuro-
transmitter function of f(—) for input spikes arriving at 6™ and 6™®. At the time
of the current pseudospike, both of these functions equal f (@b (%’1)), which is the
minimum neurotransmitter contribution needed to reach threshold. Any input spike
arriving between 6™ and 6™"® will contribute more than enough neurotransmitter.
All input spikes can be classified according to the region in which they arrive. The re-
gions depicted above are used to describe the constraints for designing a synchronized
identity neuron.
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cause the pseudospike to produce an output spike. But what if the input spike is
not isolated, and instead is one of many? When A, > A;, there appears to be two
possible ways to design the identity neuron. The first method would have the identity
neuron producing output spikes when an input spike fell within the pseudospike’s time
window, and if the number of output spikes lags behind the number of input spikes,
then the neuron would continue producing output spikes until it “caught up” — even if
no other spikes were being input. The second method would have the identity neuron
producing output spikes only when an input spike fell within the corresponding time
window, and if several input spikes occur within one window, then only one output
spike is produced. The problem with the first method is that short duration, high
frequency input stimuli can cause the neuron to fire constantly, with little or no
correlation between the occurrence of the stimulation and the time of the output
spikes. While the second method is ideal for synchronizing the timing between input
stimuli, it loses information concerning the intensity of the input stimuli. In reality,
both methods are physically unrealizable using the SNM.

For the first design option, where each input spike results in an output spike, the
identity neuron requires an infinite memory. To see this, consider a very long input
train of spikes separated by A,, which is also the spacing between the pseudospikes.
Assume that an “extra” input spike occurs at the beginning of the spike train, between
two of the regularly spaced spikes. Now, the identity neuron will produce an output
spike at each of its pseudospikes during the spike train, but because of the extra
input spike, it will be one output spike behind. As the spike train progresses, the
effect of the extra spike diminishes and the neurotransmitter function converges to the
solution for a periodic input, (see Equation (4.23)). Consequently, when the spike
train stops, the response of the identity neuron becomes independent of the extra
spike, and the necessary output spike is not produced. Thus, it is not possible to
design a synchronized neuron which can produce an output spike for each input spike
if the time between input spikes can be less than the time between output spikes.

For the second design option, where output spikes are only produced when an

input spike occurs within the pseudospike’s corresponding time window, the identity
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neuron needs to ignore the accumulation of neurotransmitter from multiple input
spikes. To see this, consider the neurotransmitter released by an isolated input spike.
Its functional form, f(—), must have a sufficient time constant to allow the identity
neuron to respond and produce an output spike, independent of when the input
arrives within the pseudospike’s time window, (™ < § < §™*). When several input
spikes arrive within the same time window, the total amount of neurotransmitter
is equal to the sum of the individual contributions, but all of this neurotransmitter
decays with same time constant as f(—). By the time of the next pseudospike, the
neurotransmitter can still be high enough to produce an output spike even if no input
spikes arrive during that pseudospike’s time window. Thus, it is not possible to design
a neuron to respond to each individual input spike, and not produce multiple output
spikes when an arbitrary number of input spikes occur within the same time window.

To accommodate these design limitations, the synchronized identity neuron is
designed to obey seven constraints, which determine the neuron’s behavior depending
upon when an input spike arrives within a pseudospike’s time window. The regions

used to define the desired behavior are depicted in Figure 6.17. The constraints are:

1. A pseudospike can not produce an actual output spike by itself; an input spike

is necessary. (This is the same as Equation (6.43).)

2. An isolated input spike must produce an output spike, and the window asso-
ciated with each pseudospike must be exactly equal to the time between pseu-
dospikes. The window is defined as the values for §, such that: §™» < § <
6™ = A, + 6™ where §™® is given by Equation (6.45). (This is the same as
Equation (6.44).)

3. An isolated group of n simultaneously arriving input spikes can not produce

more than n output spikes.” The total neurotransmitter contribution is given by

"Constraint (3) prevents the output from lagging too far behind the input. It does not prevent
the total number of output spikes from exceeding the total number of input spikes. In fact, when a
group of input spikes arrives with the time between each spike being close to A, the identity neuron
can sometimes produce an extra output spike at the end of the group, depending upon the phase
difference between the input spikes and the pseudospikes.
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n times the contribution of each individual spike, i.e., U;;(t) = nf (t—%‘l) Now,
the neuron can not produce more output spikes than input spikes if the total
amount of neurotransmitter concentration does not remain over the required
minimum level, f (w (%f)), for more than (n + 1) pseudospikes or nA, time

units. Therefore, this constraint becomes:

) E) e

When this equation is satisfied for all integer values of n > 2, the neuron can

not produce extra output spikes. This transcendental equation is satisfied for
n = 2 when (%JE) > 1.45127, and for higher n values, the ratio decreases. Thus,

this constraint is satisfied if:

Tij < 068905Ap (647)

. When an input spike arrives in Region (A), (0 < § < §™), the neuron may
produce an output spike at the time of the current pseudospike, depending upon
the previous input activity. By constraint (6), if no output spike is produce,
then the next pseudospike must produce one. (Since the response of the neuron
is indeterminate for an input spike within this region, there is no equation

associated with this constraint.)

. When an input spike arrives in Region (B), (6™® < § < A,), the neuron
must produce an output spike regardless of the neuron’s previous input/output
activity. When the input spike is isolated, this is automatically satisfied by
constraint (2). If the input spike is not isolated, then there might be an output

spike at the time of the previous pseudospike. Thus, the neuron’s refractory
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term must be taken into account,® and the worst case scenario is given by:

Vi(t) = tanh? (i) {max{Vzp(t)}

_9_2 'l.? 6m1n
-+ Rij-tanh e T U0 4 -f > 0; (6.48)

R;; Tij

where: U™® = Atanh <@i — m;x {Vip(t)}) (6.49)
ij

Here, U™® represents the minimum amount of neurotransmitter needed to pro-
duce an output spike, and e_%‘? U™ ig g lower limit on the minimum possible
amount of neurotransmitter remaining at the time of the current pseudospike.
Also, when § = 6™, the f(—) is at its smallest value for all possible § within

Region (B).

6. When an input spike arrives in Region (C), (A, < § < §™*), the neuron
must produce an output spike if there was no output spike at the previous
pseudospike. (In this region, the “previous pseudospike” actually occurs after
the input spike.) If the input spike is isolated, then this constraint is satisfied by
constraint (2). But if the input spike is not isolated, then there might have been
an output spike at the pseudospike which occurred at § = 24, (2 pseudospikes

before the current spike), and the worst case scenario is given by:

Vi(t) = tanh? (—QAE)-{maX{Vip(t)}

T3
_28p T; Smax
+ Rij-tanh ( i Umm ] f < ))} > @z (650)
R;; Tij

_24p
Notice e ™ U™ ig 3 lower limit on the minimum possible amount of neu-

8Gince an output spike occurs as soon as the neuron reaches threshold, in general it will not
exactly coincide with the maximum of the neurotransmitter from the pace neuron, which defines the
time of the pseudospike. When the parameters are set to satisfy all of the constraint equations, the
output spikes slightly lead the pseudospikes. Since this lead time actually increases the value of the

refractory term, tanh?® (-A;P—) represents the worst case.
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rotransmitter remaining if an output spike occurs 2 pseudospikes before the
current spike. And when § = §™**, the function f(—) is at its smallest value for

all possible § within Region (C).

7. When an isolated input spike arrives in Region (D), (6™** < §), the neuron
can not produce an output spike at the current pseudospike if there are no
input spikes in other regions. By constraint (2), the neuron would have already
produced an output spike, and since the input spike did not arrive during the
current pseudospike’s time window, it should not produce an output spike. (No

additional equation is required.)

Now, when a synchronized identity neuron is designed to satisfy all of these con-
straints, it will always output a spike when it receives a group of input spikes. If
the spikes are isolated or widely separated in time, then there will be a one-to-one
correspondence between the input and output spikes; however, if the input spikes are
closely spaced, then the neuron may still be producing output spikes several pseu-
dospikes later, but the total number of output spikes tends to be less than or equal
to the number of input spikes. (An extra spike can occur when the spacing between
the input spikes is close to A,.) When a synchronized identity neuron has more than
one input synapse, its output closely resembles what it would be if all of the input
spikes arrived at the same synapse. But the separate synapses increase the likelihood
of the neuron producing more output spikes than input spikes.

Figures 6.18-6.20 show the input and output spikes as well as U;;(t) and V;(¢) for
three synchronized identity neurons using different values for A,. All three examples
use the same input spike train, in which the spikes are separated by at least 0.25,
(A; = 0.25). The differences in the input neurotransmitter concentration, Us;(t), are
due to the different values of 7;;.° The total length of each test run was 10 units, with

the first pseudospike occurring at ¢ = 0. Notice that the neurons only produce output

9In addition to the differences in Ap, the parameters of 55, 7;, and T, were chosen as follows:
Ti; = 0.54p, 75 = 0.24,, and T, = eRip'k £2).Atanh %&1 . Notice that this choice for T;,

T'ip
sets the maximum potential reached by each pseudospike at 0.950;. Also, while not varying between
neurons, the parameters of R;g, R;j, and T;; were chosen as follows: Ry = 0.0, R;; = —Qf——nl?)%{gﬁﬂ,
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spikes near the times of their pseudospikes; the output spikes are always leading the
pseudospikes, but by never more than 0.001. The response of the neuron in Figure
6.18, with A, = 0.2 < A;, closely matches the input spike pattern. There are 21
input and output spikes, with a one-to-one correlation between them. The neuron in
Figure 6.19, with A, = 0.4 > A;, does not maintain the same one-to-one correlation
and produces only 18 output spikes, but the output spikes reflect the “character” of
the input pattern, with gaps in the input spike train appearing in the output pattern.
The response of the neuron in Figure 6.20, with A, = 0.6 > 2A;, appears to be
independent of the input spiking pattern, with each of the 16 pseudospikes becoming
an output spike. The problem with this identity neuron is that the long time between
pseudospikes prevents the output spikes from reflecting the variations within the input
pattern; however, the output spikes do correctly indicate the presence of input spikes.
Thus, while the output spike pattern from a synchronized identity neuron with a
small value for A,, closely reflects the input spikes, a larger value for A, may be
required to phase lock stimuli going into different identity neurons (see footnote on
page 122).

Finally, it is sometimes necessary to estimate the small phase difference between
the actual output spikes and the pseudospikes. In Equation (6.42), V;,(¢) is at its
maximum value when the argument of f(—) is 1, which corresponds to the occurrence
of a pseudospike. By letting dt represent the lead time of the output spike, V;,(¢) can

be expressed as:

T dt
Vip(dt) = Ry + R;ptanh | ——2—. (1——) 6.51
p( ) 0 P [Rip.n(%:) f Tip ( )

Since the tanh function is always less than one, it is apparent from Equation (6.41)
that input spikes applied to each synapse can never cause a neuron’s potential to

increase by more than R;;. Therefore, by setting Vi(t) equal to ©; in Equation (6.41),

and T;; = Atanh [ﬁ%—))} .
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Figure 6.18: Response of Synchronized Identity Neuron with A, = 0.2. The
plot shows the input and output spikes as well as U;;(t) and V;(t) for a synchronized
identity neuron satisfying the design rules. For this neuron, the parameters are:
Ry = 0.0, R, = 1.0, T, = 1.2792, 7 = 0.05, R;; = 0.02525, T;; = 0.29198, 7;; = 0.1,
7; = 0.04, ©; = 0.5. (The hash marks indicate the times of the pseudospikes.)
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Figure 6.19: Response of Synchronized Identity Neuron with A, = 0.4. The
plot shows the input and output spikes as well as U;;(¢) and V;(¢) for a synchronized
identity neuron satisfying the design rules. For this neuron, the parameters are:
RiO == 00, Rz‘p = 10, Tip = 13998, Tip = 005, Rij = 002525, Tz‘j = 029198, Tij = 02,
7; = 0.08, ©; = 0.5. (The hash marks indicate the times of the pseudospikes.)
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Figure 6.20: Response of Synchronized Identity Neuron with A, = 0.6. The
plot shows the input and output spikes as well as U;;(t) and V;(t) for a synchronized
identity neuron satisfying the design rules. For this neuron, the parameters are:
Rio = 0.0, Rjp = 1.0, Ty = 1.4039, 13 = 0.05, Ry; = 0.02525, Tj; = 0.29198, 7,5 = 0.3,
7; = 0.12, ©; = 0.5. (The hash marks indicate the times of the pseudospikes.)

the upper bound on the lead time of an output spike is found to be:

._Ti;._-Atanh ( - <—R';) JZ_(:)RU

R,,tanh? (%’1)

dt < Tip — Tip-F 71 (6.52)

An output spike will always lead a pseudospikes by less than this upper limit. And for
the identity neurons tested in Figures 6.18-6.20, the maximum lead time is bounded
by 0.0014085. (Due to the way the parameters where chosen, this number is a constant
for all three neurons.) If the phase difference is defined as X—i, then the maximum
phase differences for the three neurons tested are less than 0.00704, 0.00352, and
0.00235, respectively.

6.5.4 Synchronized Inverse Neurons

The synchronized inverse neuron operates the same as the synchronized identity neu-

ron, except that it outputs spikes at opposite times; i.e., during the pseudospike
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Synchronized Inverse Neuron

Input Spikes : Output Spikes

Figure 6.21: Synchronized Inverse Neuron. The neuron has an input connection
from a pace neuron, which beats at a regular frequency. The inverse neuron shown
here has only one other input signal, although more may be used. When there are no
input spikes from the signal, the neuron produces an output spike for each spike from
the pace neuron. But when a spike is input from the signal, it inhibits the neuron
and prevents it from producing a spike at the time of the next spike from the pace
neuron. To indicate a synchronized inverse neuron, “I™'” is placed inside the neuron
symbol, and “P” is placed on the excitatory synapse from the pace neuron.

events in which the synchronized identity neuron produces an output spike, the syn-
chronized inverse neuron does not, and vice versa. The synchronized identity neuron
uses a pace neuron to create pseudospikes, and input spikes have an excitatory effect,
which causes the neuron to produce output spikes near the times of the pseudospikes.
For the synchronized inverse neuron, the pace neuron’s input is sufficient for produc-
ing actual output spikes, and input spikes have an inhibitory effect, which causes the
neuron to not produce output spikes during the “pseudospikes.” Figure 6.21 shows a
diagram of a synchronized identity neuron.

While it is possible to design an inverse neuron from scratch using rules similar to
those for the identity neuron, since the inverse neuron is usually used in conjunction
with an identity neuron, those parameters can be slightly modified to generate an
inverse neuron. The remainder of this section discusses one simple method for mod-
ifying an identity neuron to produce an inverse neuron. Both neurons are assumed
to be receiving the same pace signal, (A,), and employ the same time constants (7;,
Tip, and 7;;). To distinguish between the two neurons, i (instead of i) is used for the
subscripts on the inverse neuron’s parameters.

For the identity neuron, the maximum of V;,(t) is slightly below threshold, ©;,

and sets the times of the pseudospikes. For the inverse neuron, the maximum of
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Vgp(t) needs to be above threshold by the same amount the identity neuron is below

threshold; i.e., assuming ©; = ©;:
max {V;p(t)} - 0; =0; —max{V;(¢t)} >0 (6.53)

Here, the maximum values for Vi,(¢) and V;,(t) are given by Equation (6.43). This
condition can be satisfied by using the same values for the neuron’s resting potential,
(Rj = Rui), and the synaptic receiver weight from the pace neuron, (R;, = Ryp), if

T;, is given by:

i — R Tipe™"
sz = e'Rip'Kl (.A__p_) .Atanh M — tanh __pe._.A_ (6_54)
Tip Rip Rz‘p""f ( )

Tip

Since the inverse neuron is above threshold by the same amount that the identity
neuron is below, if the neurotransmitter from an input spikes is enough to cause the
identity neuron to reach threshold and fire, then the same amount of neurotransmitter
must also be enough to prevent the inverse neuron from reaching threshold. Of course
the input into the identity neuron must be excitatory while the input into the inverse
neuron must be inhibitory, i.e., let R;; = R;; and T;; = —T;.

When the variables are set as described, the inverse neuron can not produce a
spike if the identity neuron is firing; however, since both neurons still have a refractory
term, tanh? (3%5), that depends upon their own spiking history, it is possible that
neither fires during a pseudospike. Thus, the input neurotransmitter may be sufficient
to cause one of the neurons to fire, but the refractory term may be sufficiently low
to inhibit it from reaching threshold. If the neuron’s time constant is small, this
problem is minimized. But for the identity neurons tested in Figures 6.18-6.20, the
time constant was set at 7; = 0.24,, which was slightly too large to prevent this
problem. Figures 6.22-6.23 show the results for the corresponding inverse neurons.
(The corresponding inverse neuron for the last test neuron is not shown, since the
output spike train is trivial, with no output spikes except at t = 0.) When the neuron

time constants were reduced to 7, = 0.15A,, the problem of neither neuron firing
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Figure 6.22: Response of Synchronized Inverse Neuron with A, = 0.2. The
plot shows the input and output spikes as well as U;;(t) and V;(t) for the synchro-
nized inverse neuron corresponding to the identity neuron shown in Figure 6.18. The
parameters are: Ry = 0.0, R;, = 1.0, G, = 1.44439, Tip = 0.05, jo = 0.02525,
T, = —0.29198, 7;; = 0.1, 7; = 0.04, ©; = 0.5. (The hash marks indicate the times
of the pseudospikes, and the two arrows below the time scale mark the pseudospikes
when neither the identity nor the inverse neuron produced a spike.)

was eliminated for the test input spike train, (results not shown). Notice that it is
impossible for both neurons to produce an output spike during the same pseudospike,
since both can not have a sufficient amount of excitatory neurotransmitter available
to produce a spike.

Like the identity neuron, the synchronized inverse neuron also has a lead time
between its output spikes and the pseudospikes. But while the identity neuron’s
lead time increases with strong input stimuli, the inverse neuron’s lead time is at its
maximum with no input signal. (The input from the pace neuron causes it to fire
prematurely.) Therefore, similar to Equation (6.52), the maximum lead time in the

inverse neuron is bounded by:

—7—i)— .Atanh i (6.55)
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Figure 6.23: Response of Synchronized Inverse Neuron with A, = 0.4. The
plot shows the input and output spikes as well as U;;(t) and V;(t) for the synchro-
nized inverse neuron corresponding to the identity neuron shown in Figure 6.19. The
parameters are: R, = 0.0, R;, = 1.0, T, = 1.58057, ), = 0.05, R;; = 0.02525,
T;; = —0.29198, 7, = 0.2, 7; = 0.08, ©; = 0.5. (The hash marks indicate the times

of the pseudospikes, and the two arrows below the time scale mark the pseudospikes
when neither the identity nor the inverse neuron produced a spike.)
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The output spikes always lead the pseudospikes by less than this upper bound. And
for the inverse neurons tested in Figures 6.22-6.23, the maximum lead time, dt, is
bounded by 0.015345. (Due to the way the parameters were chosen, this number is a
constant for all of the inverse neurons.) This limit can be reduced by using a smaller
difference between max {V%p(t)} and ©; in Equation (6.53). If the phase difference
is defined as —gt;, then the maximum phase differences for the two neurons tested are
less than 0.07673 and 0.03836, respectively, (0.02558 for the third inverse neuron not

shown).

6.6 Summary of Special Neurons

This chapter demonstrated a few examples of some simple functions that individual
neurons can perform. It is important to remember that these neurons were designed
to deal with information that is noisy or imprecise and provide reasonable outputs,
and they are not meant to be precise computational devices. While they usually
perform their intended tasks well, their outputs may not be exactly as desired; e.g.,
the identity neurons were designed to produce an output spike for each input spike,
but for some input spike patterns, extra output spikes can be produced.

The high gain neurons of Section 6.2 output spikes at a nearly constant frequency
when the input signal exceeds the neuron’s threshold level. They are particularly
useful for detecting the presence of an input stimulus. Section 7.2 will show how high
gain neurons may be combined with synchronized identity neurons to form a stimulus
detector, which causes the spikes from several sensor neurons to become phase locked
when a sufficiently strong stimulus is presented. Such phase locking is necessary for
the pattern recognition networks which are discussed in Section 7.3.

The memory oscillators of Section 6.3 are useful for storing the state of an input
signal. Large arrays of such neurons can be used as binary memory units, with each
neuron retaining one bit of information. Section 7.6 will show how memory oscillators
can be connected to create counting networks.

The bounded threshold neurons of Section 6.4 can be used to measure the strength
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of an input stimulus. Any stimulus outside of the target range will not evoke output
spikes. Also, bounded threshold neurons can be used to signal the start and end of
an input stimulus.

The identity and inverse neurons have a wide variety of uses. The unsynchronized
identity neuron of Section 6.5.2 can be used to combine several input spike signals into
a single output spike train. Several of the synchronized identity neurons described
in Section 6.5.3 can be connected to the same pace neuron to phase lock different
stimuli. The inverse neurons of Section 6.5.4 are useful for generating inverse spike
trains. These neurons fire at opposite times of the identity neurons. Inverse signals

are often needed to evaluate logic expressions, which are addressed in Section 7.4.
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Chapter 7 Computing with the SNM

7.1 Introduction

This chapter uses the neuron configurations presented in Chapter 6 as building blocks
for larger networks, which are capable of accomplishing more complex tasks. Like the
neurons from which they are constructed, these networks are not meant to be precise
computational devices, but are intended to deal with noisy or imprecise information
and provide reasonable outputs. Also, like the neurons in Chapter 6, the parameters
are chosen a priori, without any learning. Networks which rely on learning are not
discussed until Chapter 9.

While each of the neuron configurations in Chapter 6 was developed in great detail
using a set of constraint equations, the networks in this chapter are not. Due to the
complexity of the networks involved, a complete set of constraint equations becomes
very cumbersome and unrevealing. Instead, each section begins with a schematic
diagram of the network configuration, and then proceeds with a general description
of the desired behavior for the component neurons. All of the sections include the
parameter values for a working network and show a sample output.

The chapter begins by discussing a stimulus detector network (Section 7.2), which
is used to phase lock (synchronize) different input spike trains. The network can be
configured so that the phase locking only occurs if the total activity on all of the
input lines is sufficiently strong, and when the total activity is weak, no signals pass
through. Since many of the other networks require synchronized input signals, this
network can be thought of as a preprocessor for them.

Section 7.3 presents several different type of networks for pattern recognition.
A distinction is made between temporal, spatial, and spatial-temporal patterns. A
temporal pattern consists of one input signal with a sequence of spikes. A spatial

pattern uses several inputs, but with only one target event on each input line. (Events
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may be either spikes or non-spikes.) A spatial-temporal pattern uses several input
signals with at least two target events on one or more of the input lines. The network
configuration depends upon the type of pattern being recognized. Also, the neurons
can be arranged in layers for more complex pattern recognition tasks. |

Often the number of neurons in a multilayer pattern recognizing network can be
reduced to a single logic neuron, which is described in Section 7.4. A logic neuron
can be used to evaluate any Boolean logic expression. The expression must first
be reduced to conjunctive normal form, which is a product (AND) of sums (OR).
Essentially, the neuron uses synaptic clusters to evaluate each of the sums, and the
neuron’s potential performs the product operation. An output spike is produced only
if all of the synaptic clusters are receiving spiking inputs.

Section 7.5 shows how a network with feedback connections can be used to store
entire segments of an input spike train. It can be thought of as a short term memory,
which makes no modifications to the network parameters; i.e., no learning. The spike
pattern is preserved indefinitely, until it is replaced with a new memory.

A counting network can be used to determine the number of spikes within a spike
train. Section 7.6 describes two different types of counters. The first is a linear
counter, in which the number of neurons oscillating in the network represents the
number of input spikes. The second is a sequential counter, in which only one neuron
at a time oscillates, but each neuron in the network represents a specific number.

Section 7.7 presents a multiplexer network, which selects one of many input signals
to be transferred to a single output. This network can be particularly useful for
routing data within a complex nervous system. The section also discusses how a
demultiplexer may be constructed from a multiplexer. A demultiplexer routes one
input to one of several possible outputs.

While the pattern recognizing networks are useful for determining if an input spike
train contains a specific spike sequence, it is sometimes necessary to determine if two
or more spike trains are equal to each other. Section 7.8 describes a comparator
network, which can be used for such a task. If the input spike trains are equivalent,

the network outputs spikes, regardless of the actual input patterns.
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And finally, Section 7.9 describes how a Hopfield-like associative memory network
can be constructed from spiking neurons. The basic problem is to store a set of
patterns in such a way that when the network is presented with a new pattern, it
responds by producing whichever one of the stored patterns most closely resembles
the input pattern. The stored patterns can be taken to be either a 0 or 1 value at
each neuron in the network, where 1 indicates that the neuron is oscillating, while 0

indicates that it is not.

7.2 Stimulus Detectors

This section describes a stimulus detector, which uses a high gain neuron (Section
6.2) as the pace neuron for a group of synchronized identity neurons (Section 6.5.3).
Each of the identity neurons receives a separate input signal. The network can be
configured so that when a large stimulus is presented, the output spikes from the
identity neurons become phase locked (synchronized). These spikes can then be used
in networks which require synchronized inputs, e.g., the pattern recognition systems
discussed in the next section.

Figure 7.1 shows a stimulus detector with three input signals. When a strong
input signal arrives on one of the input lines, neurotransmitter is released into the
excitatory synapse of the high gain pace neuron and the corresponding synchronized
identity neuron. But the synchronized identity neuron can only produce an output
spike when it receives an input spike from the pace neuron. Therefore, the input signal
must also be sufficiently strong to cause the pace neuron to fire. The parameters of
the high gain pace neuron may be chosen so that it only requires a single input spike
before producing an output spike, or it may require a much stronger stimulus before
firing.

When only one input spike is required for the high gain neuron to fire, any isolated
input spike will appear at the corresponding output signal. However, if the high
gain pace neuron requires multiple input spikes before it fires, weak signals (isolated

spikes) are filtered out. Furthermore, the pace neuron’s parameters may be set so
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Stimulus Detector with Three Inputs
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Figure 7.1: Stimulus Detector. The plot shows a stimulus detector with three
input signals. Each input signal connects to a synchronized identity neuron and the
excitatory synapse of a high gain neuron.
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that it requires multiple spikes from several of the input signals before any output
spikes are produced.

Once the neurotransmitter level at the excitatory synapse of the pace neuron is
sufficient for producing output spikes, its high gain causes the output spikes to fire
at a nearly constant frequency as long as the input stimulus is maintained. Thus,
the output spikes from the identity neurons are produced with a fixed underlying
frequency. Those identity neurons with no input spikes do not produce any output
spikes, while those with strong input signals produce an output spike with every
pseudospike generated from the pace neuron. (Notice that the stimulus detector
may also include synchronized inverse neurons, which produce output spikes when
the identity neurons are not; however, both types of synchronized neurons can only
produce an output spike at the time of a pseudospike from the pace neuron.) Figure
7.2 shows a sample output for a stimulus detector.

While the stimulus detector can produce spikes with a fixed underlying frequency,
the starting and stopping of such oscillations is determined by the input stimulus;
hence, the output spikes are “unclocked,” and the identity neurons are only synchro-
nized with each other. The pattern recognizer networks and logic neurons discussed
in the next sections only require that the timing between events remain constant, but
the input patterns may start at any time. This is in contradistinction to conventional
computers where a master clock drives the entire system.

Other variations on the stimulus detector shown in Figure 7.1 are possible. In
one variation, the inputs into the high gain pace neuron form separate synapses.
Since the synaptic parameters of a high gain neuron are chosen to cause the neu-
rotransmitter to saturate the input synapse (see Section 6.2), each input signal can
produce oscillations. Because the effect on the neuron’s potential is independent for
each input synapse, the actual output frequency depends upon the number of active
inputs. In general, if the time between output spikes is A; with one saturated input

synapse, then the time between output spikes with N saturate input synapses can be
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Sample Output from Stimulus Detector
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Figure 7.2: Sample Output for Stimulus Detector. The plot shows a set of
random input spikes for the three input stimulus detector network shown in Figure
7.1. The top box shows the input and output spikes for the high gain pace neuron,
while the next three boxes show the input and output spikes for the synchronized
identity neurons. The hash marks correspond to the output spikes of the pace neuron.
Notice that the identity neurons can only produce output spikes at the times of the
pseudospikes. (The pseudospikes correspond to the maximums in neurotransmitter,
which occur shortly after each pace spike. Since the hash marks represent the times
of the pace spikes, many of the output spikes appear slightly after the hash marks.)
Notice that when there are only a few widely separated input spikes, the pace neuron
does not produce any pace spikes and these input spikes are filtered from the output
signals. Arrows mark the input spikes for which the identity neurons did not produce
corresponding output spikes. The values of N to the right of each signal represent the
number of spikes. The parameters for the high gain neuron were the same as those
used in Figure 6.2, and the parameters for all of the identity neurons were: R;y = 0.0,
Rip = 1.0, T}, = 1.404, 7 = 0.05, Ry; = 0.02525, T;; = 0.29198, 7,; = 0.5, 7, = 0.2,
©; = 0.5. (These parameters are the same as those used for the synchronized identity
neurons of Figures 6.18-6.20, but with A, = 1.0. See footnote on page 129.)



145

approximated by:

Ay = Atanh (EJLE\};—(NA—I)) (7.1)

A second variation has the inputs into the pace neuron and the identity neurons
coming from different sources. Thus, the pace neuron does not oscillate due to the
actual input stimulus, but rather responds to a controlling stimulus. Alternatively,
the pace neuron can simply be a beating neuron, which does not use any inputs. In
this case, all input signals are synchronized, regardless of their strength.

In a third variation, the pace neuron’s output signal is transmitted to each of the
synchronized identity neurons with different delays. This configuration causes the

synchronized identity neurons’ output spikes to have a predetermined phase difference.

7.3 Pattern Recognition

7.3.1 Introduction

The SNM may be used to recognize patterns. Much of the artificial neural network
research has been motivated by the desire to implement computational tasks that are
difficult for conventional computers, but which are routinely performed by humans
with relative ease. Perhaps the two problems where this difference in ability is most
evident is in visual object recognition and speech recognition. Humans are able to
easily identify objects in a visual scene, even if they are partially obstructed or at an
unusual orientation. In speech recognition, humans are able to quickly recognize a
wide variety of phonons and associate words and meanings to them. This recognition
is largely independent of the individual characteristics of the speaker’s voice. Even
when some of the phonons or words are obscured by noise, the listener can usually in-
terpret the speaker’s intended meaning. Both of these problems fall into the category
of pattern recognition, for which serial computers are less adept.

Since a neuron receives spiking inputs from other neurons or sensors, the problem
of pattern recognition is defined as having the neuron respond to a specific input

spiking pattern, referred to as the target pattern. Here, each of the spiking inputs
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is assumed to have a fixed underlying frequency, with the spike or non-spike events
occurring at regular intervals. Thus, any bit pattern of 1’s and 0’s can be directly
mapped into a sequence of spikes, where spike events represent 1’s and non-spike
events represent 0’s. Since the input spikes have an underlying frequency, they may
be assumed to be the output spikes from synchronized neurons, but each of the input
signals does not need to have the same frequency.

All spiking patterns may be classified as one of three types: temporal, spatial, or
spatial-temporal. A temporal pattern consists of one input signal with a sequence
of spikes. A spatial pattern uses several inputs, but with only one target event on
each input line. The events may be time delayed from each other. A spatial-temporal
pattern is the most general type of pattern. It uses several input signals with at least
two target events on one or more of the input lines. Examples of temporal, spatial, and
spatial-temporal patterns are illustrated in Figures 7.3-7.5. (In this thesis, temporal
patterns are written as row vectors, spatial patterns are written as column vectors,
and spatial-temporal patterns are written as matrices with each row specifying one

of the input lines.!)

7.3.2 Recognizing Temporal Patterns

When attempting to recognize temporal patterns, the goal is to produce an output
spike when one of the target patterns is presented on the single input line. Since
the input is assumed to have a fixed frequency of events, the target patterns may be
represented as row vectors of 1’s and 0’s.

A neuron designed to recognize a temporal spiking pattern uses N separate input

synapses branching out from the single input line, where N is the number of target

1When vectors or matrices are written within text, commas will be used to separate elements in
rows and semi-colons will be used to separate elements in columns. Thus, the matrix of:

ailp a2 @13 a4
a21 G22 423 Ga24
aszyr @32 a3z a34

can be written as: [[all, ai2, 613, a14]; [a21, 92, 423, a24]; [a31, a32, @33, a34]]. (This notation is consis-
tent with that used in MATLAB.)
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Temporal Spiking Pattern

Pattern
InputLinelIH!l ”-—)@
Last Input First Input
Spike Spike

Temporal Pattern: [0101]
Figure 7.3: Temporal Spiking Pattern. The plot shows an input temporal spiking

pattern with a fixed frequency of events. The spike on the right is the first to arrive
at the neuron, with the four windowed events representing the pattern of [0, 1,0, 1].

Spatial Spiking Pattern
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Figure 7.4: Spatial Spiking Pattern. The plot shows an input spatial spiking
pattern with each input line having a fixed frequency of events. The spikes on the
right are the first to arrive at the neuron, but each input line may have a different
delay associated with it, allowing spikes generated at different times to form the input
pattern. This is shown in the figure by the positions of the pattern windows on each
of the input lines, with the windowed events representing the pattern of [1;0;1;1;1].
(Each pattern window may contain only one event.) Notice that the input signals
need not have the same frequency, nor must they be phase locked.
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Spatial-Temporal Spiking Pattern
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Figure 7.5: Spatial-Temporal Spiking Pattern. The plot shows an input spatial-
temporal spiking pattern with each input line having a fixed frequency of events. The
figure is the same as the spatial spiking pattern; however, the pattern windows may
contain more than one event. Since the number of windowed events on each input line
does not need to be the same, an “x” is used to fill the spatial-temporal matrix on rows
representing inputs with less than the maximum number of windowed events. The
windowed events represent the pattern of ([0, 1,1];[1,0,x]; [1,0, 1]; [1,1,1]; [0, 1, x]].

bits.? Each synapse is associated with one of the target bits and has a delay of
(N — n + 1) time units, where n corresponds to the n'® bit of the pattern. (One
time unit represents the time between input events.) If the target pattern has p
bits equal to 1, then the synapses associated with the 1’s should be excitatory and
increase the neuron’s potential by a maximum of approximately (%). Similarly,
the synapses associated with the 0’s should be inhibitory and decrease the neuron’s
potential by approximately — (%). Notice that a non-spike event does not actually
release neurotransmitter, but the inhibitory synapses serve as penalty terms for input
spikes occurring when there should be none.

As a simple example, consider the target pattern of [0,1,0]. The solution to this
problem requires 3 synaptic connections with delays of 0, 1, and 2 time units, and

strengths of —©, ©, and —©. Thus, the neuron can only reach threshold, ©, and

2The target pattern may also contain “x” terms, which represent “do not care” bits. In this case,
the neuron is to respond if all of the specified target bits are presented, regardless of the value of
each input bit which corresponds to an “x” term. The neuron only requires one synapse for each of
the specified bits and those which correspond to an “x” do not require a synapse.
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respond when the target pattern is presented. This is illustrated in Figure 7.6.

Now consider the problem of recognizing several target patterns. The set of all
possible N-bit patterns comprise the vertices on an N-dimensional cube centered
at 0.5-[1,...,1]. If the synaptic time constants are small enough compared to the
underlying event frequency so that the effects from the input spikes do not accumu-
late, then each spike may be considered an independent event. Thus, the maximum
neurotransmitter in a synapse, is approximately e™!, which occurs at time (dij + T4j)
following an input spike. Now, assume that the neuron is such that: (1) the delay
of each synapse is (N — n + 1) time units for the corresponding input bits; (2) all of
the synapses have the same time constants, (;; = 7); and (3) and the ratio of (%Jd)
is the same for each synapse. Therefore, the voltage response of the neuron at the

maximums in neurotransmitter is given by:

t—tK 5
Vi(t) = tanh? < : )-{R@'o + a;- [Xi-Si]} (7.2)
Ti

where: X; = [1; z2; ...; zn] = Input bit pattern (7.3)
S; = [sgn(Tu)-Ri; sgn (Tio)- Rig; - - . ; sgn (Tin)- Rin] (7.4)
a; = tanh (kie"l) (7.5)

Ty
ki = <17%—2—|> = Constant for all j (7.6)

ij

This equation assumes that the neurotransmitter is 0 for those synapses not currently
receiving an input spike, and is e~! for those synapses that do. The firing condition

for the neuron is:

@gﬁ"ective _
i

Rio) = n; fires (7.7)

87

where O§fectiv ig defined in Equation (4.42). But this equation represents an (N — 1)-
dimensional plane in the input space of X;. The unit vector normal to the plane is

given by:

—

S;

N 52
j=1 115

(7.8)

3>
i
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Recognizing Temporal Spiking Patterns
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Figure 7.6: Recognizing a Temporal Spiking Pattern. The plot shows an exam-
ple of a neuron being used to recognize the temporal pattern of [0,1,0]. The single
input line forms three synaptic connections. The first synapse is inhibitory and has
no delay. The second synapse is excitatory and has a delay of one time unit. The
third synapse is inhibitory and has a delay of two time units. (Normally, any time de-
lay is represented by a single delay symbol, but when recognizing temporal patterns,
the delays are multiples of each other. Consequently, the number of delay symbols
can be used to indicate the relative delay times.) Also shown are the effects from
each synapse on the neuron’s potential. The net effect is given by the sum of all
of the synaptic responses, and it only reaches threshold when the target pattern is
presented. Since the spike on the right is the first to arrive at the synapse, the neu-
rotransmitter functions actually appear backward, with time increasing from right to
left. Notice that except for the sign and time delay, all three synaptic responses are
identical. All possible 3-bit combinations can be found within the sample input pat-
tern, verifying that the neuron only responds to the target pattern. For this example,
the time between events was 1.0 with the synaptic delays being: d;; = 0.0, 1.0, and
2.0, respectively. All synapses used the parameter values of: R;; = 1.0, T;; = £1.0,
and 7;; = 0.15. The neuron parameters were: ©; = 0.32, 7; = 1.0, and R;, = 0.0.
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and the distance from the origin is:

effecti
B 67, ive RiO

d= -+ -

Thus, the input space is linearly divided into two regions, and those inputs on one

(7.9)

side of the hyperplane produce output spikes, while those on the other side do not.
Of course, the inputs are still restricted to be the vertices of a hypercube, but the
neuron parameters may be chosen so that the neuron is able to selectively respond to
any linearly separable group of such vertices. The overall operation of this neuron is
similar to that of a simple perceptron with threshold units. (See [75] or [42, pp. 92-
101] for details on perceptrons.)

Of course, one key difference between the SNM and the perceptron neuron model
is that the state of the SNM does not just depend upon its current inputs, but also
depends upon its previous activity. Thus, the refractory time constant can be set so
that the neuron only produces an output spike for target patterns sufficiently sepa-
rated in time. (From a geometric standpoint, immediately after the neuron produces
an output spike, the refractory coefficient pushes the separating hyperplane out to
infinity before moving it back to its initial location. The normal vector does not
change; only the distance from the origin varies.) This feature can be particularly
useful for preventing the neuron from firing multiple times due to overlapping target
patterns. E.g., assume that the neuron is to fire when the 9-bit target pattern of
[011000110] is input. If the neuron has a short refractory time coefficient, it fires
twice when presented with the 14-bit pattern of [01100011000110]. But if the neuron
is only to fire with independent presentations of the target pattern, the time constant
can be made sufficiently long so that the neuron is only capable of firing a second
time after another 9 bits have been input. Thus, the neuron would only produce an
output spike after the 9t bit, and not again after the 14t® bit.

The synaptic time constants can also be used to reduce the required number
of synaptic connections. For the derivation of Equation (7.2), the synaptic time

constants were sufficiently small so that the effects from the input spikes could not
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accumulate. With this assumption, the maximum value of the neurotransmitter at a
synapse was approximately e™1. However, if the target pattern has repeated bits, then
only one connection is needed to account for the identical, consecutive bits. Using the
previous example 9-bit target pattern of [011000110], the neuron would only require
5 input synapses, since the bit combinations of “11,” “000,” and “11” could each
be accounted for with a single synapse. The time constants associated with each of
the multiple bit synapses must be chosen so that the synapse’s contribution to the
neuron potential is only sufficient for producing spikes when all the repeated bits are
presented; e.g., if a neuron is only to respond when n sequential 1’s are input into
a particular synapse, then the neuron’s parameters must be chosen so that it can
only fire when the neurotransmitter at that synapse approaches the maximum value
generated by n sequential input spikes. For consecutive input spikes, the maximum
value of the neurotransmitter concentration is given by Equation (E.12), which was
derived to explain the latency effect in the SNM; however, since the input spikes have
the same time separation between them, the result still holds.® The delays associated
with the multiple bit synapses must be set so that the maximum neurotransmitter
concentration occurs simultaneously at all of the synapses when the entire target
pattern is presented. For synapses that recognize multiple 0’s, the parameters must
be chosen so that the inhibitory effect from even one erroneous input spike anywhere
within the repeated 0’s of the target pattern, prevents the neuron from firing.

Like the simple perceptron neuron model, the SNM can be used in a layered
network to respond to bit patterns within different regions of the input space. Each
of the neurons in the first layer responds to inputs on one side of a hyperplane, and
its output spikes can then go into neurons of a second layer, which perform logical
AND functions. These neurons can be designed to respond only when the network’s
input pattern is within a convex region of the input space. Thus, a single neuron

within the second layer is sufficient for responding to any linearly bounded, simply

3When using Equation (E.12), = represents the time after the last input spike arrives at the
synapse. Also, the first expression for max {U(n;z)} should always be used, since after the last
input spike there is not another one to further bolster the maximum neurotransmitter level.
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connected, finite region of the input space, and the number of neurons required in the
first layer depends upon the number of hyperplanes required to define the targeted
region. To extend the network’s response to arbitrarily shaped regions, a third layer,
consisting of a single neuron, can be used to perform the logical OR function on the
outputs from the AND neurons of the second layer. Thus, when an input pattern falls
within the convex target region of one of the second layer neurons, the neuron in the
third layer produces an output spike. (See [35, pp. 86-102] for a geometric description
of pattern recognition in networks of perceptrons.) Figure 7.7 shows a three layered
network connected to implement a two dimensional pattern recognition task.

In theory, when the inputs are restricted to lie on the vertices of a hypercube, the
target region need not be defined by oblique boundaries, as shown in Figure 7.7. But
regardless, the neurons can be designed to implement any linear boundary. Since the
bits are presented to the neuron sequentially, any mismatch in the timing between
events and the synaptic delays can create errors in the values detected. Each input
spike causes every synapse to reach a maximum/minimum in potential value. It is
the time delays between the synapses that determine when the extrema occur. Thus,
oblique target boundaries may be used to allow for slight timing discrepancies.

Since every Boolean logic expression can be reduced to conjunctive normal form,
no classification task requires more than three layers of neurons. (Notice that non-
convex regions can be considered to be the union of convex regions.) Furthermore,
Section 7.4 shows how any logic function can be performed with a single neuron.*
Thus, all of the neurons needed for the second and third layers can actually be
reduced to one neuron if desired. However, the layered approach is usually easier

to design and implement.

“In conjunctive normal form, a logic expression is written as either a product (AND) of sums
(OR) or a sum (OR) of products (AND). The order in which the three neuron layers perform the
pattern recognition task uses a sum of products approach, while the single logic neuron described in
Section 7.4 uses a product of sums approach; however, it is possible to switch between the conjunctive
normal forms.
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Figure 7.7: Three Layer Network for Pattern Recognition. (A) is a schematic
depiction of two convex target regions for the network to recognize. The first input
bit, 1, is delayed at the synapses to coincide with the second input bit, z5. (B) shows
the connectivity of a three layer network for recognizing the pattern. The neurons
in the first layer produce spikes when the inputs are on the appropriate side of their
respective hyperplanes. The neurons in the second layer only produce output spikes
when all of their inputs are spiking. The neuron in the third layer produces an output
spike if any of its inputs are spiking. (Notice that the first layer neurons with the
origin in their target region must have an intrinsic spike frequency; i.e., Ry > 0;.)
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7.3.3 Recognizing Spatial Patterns

For spatial pattern recognition, the goal is to produce an output spike when one of
the target patterns is presented. The target patterns consist of one event on each
of several input lines, but the events do not need to occur simultaneously; i.e., each
of the input signals may have different synaptic delays. If the neuron has N input
signals, then each target pattern may be represented as an N-bit column vector of
1’s and 0’s. As with the temporal pattern recognition task, the events on each of
the input lines should have a fixed underlying frequency, but each line may have a
different characteristic frequency.

Each input line forms a separate synapse into the neuron. Excitatory synapses
correspond to 1’s in the target pattern, while inhibitory synapses correspond to 0’s in
the target pattern. The time delay associated with each synapse depends upon the
time difference between the targeted event on that input line, and the last targeted
event in the pattern. Thus, all of the input events must be delayed enough so that
their effects on the neuron occur nearly simultaneously. For the example pattern
shown in Figure 7.4, the synapse associated with the third input signal would have
the most delay, while the synapse associated with the second input signal would have
no delay.

In addition to the different delays associated with each input line, there may
also be different window sizes associated with the targeted events on each line. The
windows may even be large enough to accommodate more than one event; however,
the target pattern may have only a 0 or 1 specified for each window, with any input
spikes occurring within the window being considered a 1. Notice that since the
frequencies differ between the input lines, the relative locations of events within the
windows change; e.g., in Figure 7.4 all of the events are initially centered in their
respective time windows; however, the second input line has the highest frequency,
and when the next event is centered within its time window, the events on the other
input lines will not be centered within their windows.

While the time window represents when an event may occur within a target pat-
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tern to influence the neuron’s potential, it does not represent the time during which
a spike is sufficiently influencing the neuron’s potential; e.g., a spike occurring at the
end of the time window will not significantly alter the neuron’s potential until after
the time window has passed. Thus, the synaptic time constants and delays must be
chosen appropriately. (It is important to realize that the time windows are not “real”
parameters, but are useful for setting the actual neuron parameters.) If a neuron
receives N input lines and is only to produce an output spike when the neurotrans-
mitter is above the level T at each of its excitatory synapses and below the level
T~ at each of its inhibitory synapses, then the neurotransmitter contribution from
a single isolated spike must remain above T for a period of time equal to the time
window, w;. This condition is necessary to ensure that any spike occurring within the
window contributes a sufficient amount of neurotransmitter to either excite or inhibit

the neuron. Using the definition of ¢ (—) in Figure C.1 this condition becomes:

YE=F <¢ (%)) (7.10)

Tij = L (F-1(T5) (7.11)

Solving for 7;; gives:

(Algorithms for calculating F~!(—) and ¢~!(—) are given in Appendix D.) After
an input spike arrives, the neurotransmitter level reaches the necessary value of T*

when the elapsed time reaches:

£ = 7 (?—) = ;- F71 (Ti) (7.12)

ij
This represents the only time after the window when the neurotransmitter level is
guaranteed to be at its necessary level if an input spike occurs during the window;
i.e., spikes that arrive at the beginning of the time window have already reached their
maximum neurotransmitter level and are about to decay below YT* at t™® after the

window, while spikes that arrive at the end of the time window have increasing neu-

rotransmitter levels, and just reach T* at ¢™® after the window. Thus, the synaptic
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delays must be set so that the occurrences of t™® after each window are aligned.

To summarize, each input line has a time window associated with it, and the
synaptic time constants must be chosen so that the effect from each input spike
remains sufficiently strong for the length of the time window. However, since it takes
time #™" for the neurotransmitter to reach the necessary level, spikes arriving at the
end of the time window do not immediately influence the neuron. Therefore, the
synaptic delays should not be chosen to align the starting time of the windows, but
instead chosen so that the times of ™" after each window occur simultaneously.

When the neuron parameters are chosen appropriately, the neuron acts as a spatial
pattern recognizer. However, since the synaptic time constants must be chosen so
that the neurotransmitter concentrations can remain at sufficiently high levels for
the length of the time windows, there can be an accumulation of neurotransmitter
at a synapse with successive input spikes. Consequently, the input spikes can not be
considered independent events as they were for temporal patterns. Thus, if one of
the input signals has been continuously producing spikes, and then stops, the first
few non-spike events occurring within the time window may be incorrectly perceived
as spikes due to the previous accumulation of neurotransmitter. This problem is
minimized when the length of the time windows are chosen to be less than the time
between events in the underlying signal frequencies. However, this choice creates
periods when no events occur within one or more of the time windows. The net result
is that 1’s in the target pattern are harder to recognize with smaller time windows,
but larger windows require longer time constants, which can cause non-events to be
misinterpreted as spikes, making 0’s in the target pattern harder to recognize.

Another problem that can occur is that the neurotransmitter level at one synapse
may be sufficiently high to compensate for the lack of an input spike at another
synapse; i.e., while the neurotransmitter concentration level is supposed to be above
T* at all of the neuron’s excitatory synapses, it is possible that it is significantly
above this level at one synapse and below at another. This problem is minimized
by setting the parameters so that the synapses’ tanh functions are well saturated at

the required neurotransmitter level. Thus, large amounts of neurotransmitter at one
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synapse can not significantly influence the neuron’s potential more than a synapse
with a neurotransmitter level of only Y. Also, T~ should be chosen to be close to
zero so that the contribution from the residual neurotransmitter at the synapses used
to recognize 0’s can not significantly influence the neuron’s potential.

As a design example, consider using a neuron with three input lines to recognize
the spatial pattern of [1;0; 1], where the spike on the first input line is to occur 2 time
units after the spike on the third line, and the non-spike event on the second line is
to occur 3.5 time units after the spike on the third line. (Time units are measured
relative to the time between events on the first input line.) Also, the times between
events on the input lines are: 1.0, 1.67, and 2.33, respectively. For this problem to
be completely specified, it is also necessary to know the time windows in which the
targeted events must occur. Here, they are set equal to the time between events. All
of the parameters depend upon the required neurotransmitter levels, which are chosen
to be: TT = 0.2, and T~ = 0.05. Using Equation (7.11), the synaptic time constants,
74, are calculated to be: 0.44, 0.38, and 1.02. The values for ™" in Equation (7.12)
are: 0.11, 0.02, and 0.26. To determine the necessary synaptic delays, all events
are referenced to the first occurring time window, which is on the third input line.
Adding the delay before the start of each window and the length of each window
to ™7 yields times of: 3.11, 5.19, and 2.59. Since the events in the window of the
second input are detected last, the other inputs must be delayed to coincide with
the second signal; i.e., dj; is: 2.08 (= 5.19 — 3.11), 0.00 (= 5.19 — 5.19), and 2.60
(= 5.19 — 2.59), respectively. To ensure that the tanh functions are well saturated at
the required neurotransmitter levels, all of the synaptic receiver weights, R;;, are set
to 0.26, and the synaptic transmitter weights, T;;, are set to: 2.41, -9.64, and 2.41,
respectively. The neuron’s parameters are:, ©; = 0.5, R = 0, and 7, = 1.0. The

design results are shown in Figure 7.8.
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Recognizing Spatial Spiking Patterns
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Figure 7.8: Recognizing a Spatial Spiking Pattern. The plot shows a neuron
being used to recognize the spatial pattern of [1;0; 1]. There are three input lines, with
different underlying frequencies and windows. In addition to the inputs, the diagram
also shows a delayed version of the spikes and their effect on the neuron’s potential.
The sum of the synaptic responses only reaches threshold when the target pattern
is presented. Since the spikes on the right are the first to arrive at the synapse, the
potential functions appear backward, with time increasing from right to left. While
the time windows could have been shown anywhere along the input lines, they are at
the location which produced an output spike, and their widths were set equal to the
times between events (1.0, 1.67, and 2.33, respectively). The first and second time
windows start 2 and 3.5 time units after the third time window. The synaptic time
delays were chosen so that the times of t™® after each window align (+™® = 0.11,
0.02, and 0.26, respectively); i.e., the first and third inputs required delays of 2.08
and 2.60.



160
7.3.4 Recognizing Spatial-Temporal Patterns

A network designed to recognize spatial-temporal patterns has several input lines,
and produces an output spike when one of the target patterns is presented. A target
pattern consists of at least two events on one or more input lines. (All input lines
should have at least one specified event.) As with spatial patterns, the events need
not occur simultaneously, but each of the input lines should have a fixed frequency
of events. (The frequencies may differ between inputs.) If the recognizing neuron has
N input signals with a maximum of M events specified for any one input line, then
the target pattern may be represented by an NxM matrix of 1’s and 0’s.

In principle, a single neuron can be use to recognize any spatial-temporal pattern,
with one synapse associated with each target event. However, when the input signals
have different frequencies and window sizes, longer synaptic time constants are need
to align their effect on the neuron’s potential, and these longer time constants make
it difficult to identify the temporal aspects of an individual input line. Consequently,
the task is best accomplished by using a two layer network, separating the temporal
and spatial recognition tasks.

At first it appears that it is possible to use either temporal pattern recognizers in
the first layer and a spatial pattern recognizer in the second layer or spatial pattern
recognizers in the first layer and a temporal pattern recognizer in the second. However,
both types of recognizers require the input signal to have a fixed frequency of events,
and while the output from the temporal pattern recognizer has the same underlying
frequency as its input signal,® the output from the spatial pattern recognizer does not
have a fixed frequency if the frequencies differ between inputs. Thus, only temporal
pattern recognizers can be used in the first layer to provide output spikes to a spatial
pattern recognizer.

Figure 7.9 shows how a two layer network can be use as a general spatial-temporal

5The end of Section 7.3.2 discussed the possibility of using a long refractory time constant to
prevent the neuron from firing multiple spikes when presented with overlapping patterns. This forces
the minimum time between output spikes to be greater than the input frequency. But since any one
input event might be the final bit in the target pattern and produce a spike, provided the neuron
has not fired recently, the underlying frequency of events is still the same as the input frequency.
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pattern recognizer. The neurons in the first layer are temporal pattern recognizers,
where each neuron receives spikes from only a single input line. If there are several
valid target patterns for one row, then a multilayer feedforward network, as shown
in Figure 7.7, can be use to replace any single neuron of the first layer. The neuron
in the second layer does the spatial pattern recognition task using the outputs from
the neurons in the first layer. Since the neurons in the first layer only spike when
presented with their respective target temporal patterns, all of the synapses into the
spatial pattern recognizer are excitatory.

As a design example, consider using a two layer network to recognize the five
windowed patterns used in Figure 7.9; i.e., [[0,1,1];[1,0,x];[1,0,1];[L, 1,1}; [0, 1, x]].
Assume that the times between events are given by: [8;4;5;9;6], and the window
widths are equal to the number of targeted events multiplied by the time between
events; i.e.: [24;8;15;27;12]. (Notice that for a spatial-temporal pattern, each window
width must be greater than (M; — 1)-A; and less than or equal to M;-A;, where M; is
the number of targeted events and A; is the time between events. This is necessary
to ensure that the window is wide enough to contain all targeted events, but can
never have more events than the target pattern.) Also, the window on the third
input line starts first, with the other windows starting [8;42;0;17;12] time units
later, respectively. For each of the temporal pattern recognizers, the parameters
can be chosen as they were in Figure 7.6, with the delays, d;;, equal to the times
between events, the time constants, 7;;, equal to 0.15 of the times between events
(1i; = [1.2;0.6;0.75; 1.35; 0.9]), the synaptic transmitter weights, Tj;, equal to & (;}),
where p is the number of target bits equal to one (T;; = +[0.5;1.0;0.5;0.33;1.0]), and
the synaptic receiver weights, R;;, equal to 1. Also, the refractory time constants, 7,
are set equal to half of the times between events (7; = [4;2;2.5;4.5; 3]).

Now, while the windows represent when the temporal patterns on each input line
can occur, they do not represent when the spatial pattern recognizer neuron can
expect to receive an input spike from the temporal pattern recognizers in the first
layer. Since each targeted pattern is only (M; — 1)-A; time units in length, the tem-

poral pattern recognizer can first output a spike at (M; — 1)-A; units after the start
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Network for Spatial-Temporal Pattern Recognition
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Figure 7.9: Two Layer Network for Spatial-Temporal Pattern Recognition.
The plot shows the connectivity of a two layer network for spatial-temporal pattern
recognition. Each neuron in the first layer receives input spikes from one input line,
and acts as a temporal pattern recognizer. The number of synapses into each neu-
ron depends upon the number of bits to be recognized in the corresponding row of
the target pattern, and the synaptic delays are based on the input frequency. The
neuron in the second layer acts as a spatial pattern recognizer, and fires only if the
correct temporal patterns are found on all of the input lines. Its synaptic delays
are determined by the time differences between the window locations in the target
pattern.
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of the window. And when the target pattern occurs at the very end of the time
window, the temporal pattern recognizer should produce a spike before the neuro-
transmitter contribution from the last possible spike in the target pattern reaches its
maximum at 7;; time units after the end of the window. Therefore, the relative start
times for the windows associated with the spatial pattern recognizer are found by
summing the start times for the windows of the temporal pattern recognizers with
(M; —1)-Aj; i.e.: [24;46;10; 35;18]. Similarly, the relative end times for the windows
associated with the spatial pattern recognizer are found by summing the end times
of the windows of the temporal pattern recognizers with the synaptic time constants;
i.e.: [33.2;50.6;15.75;45.35; 24.9]. Obviously, the difference between the start and end
times of these windows provides their widths; i.e.: [9.2;4.6;5.75;10.35;6.9]. Notice
that the spatial windows are considerably smaller than the temporal windows, and all
of the target inputs are 1’s. With T+ = 0.2 as in Figure 7.8 and using Equation (7.11),
the synaptic time constants for the spatial inputs are: [4.03;2.01;2.52;4.53;3.02]. Us-
ing Equation (7.12), the values for t™® are: [1.04;0.52;0.65;1.17;0.78]. Adding ¢t™®
to the end times of the windows gives: [34.24;51.12;16.40;46.52;25.68]. Therefore,
to align the times of t™® after each window, the spatial neuron’s synaptic delays
are: [16.88;0.00;34.72;4.60;25.44] (= 51.12 — [34.24;51.12;16.40; 46.52; 25.68]). Fi-
nally, the synaptic weights can be chosen as they were in Figure 7.8. (Here, all
inputs are excitatory and correspond to a 1 in the target pattern.) Previously, with
two excitatory inputs, R;; = 0.2632, so with five excitatory inputs, R;; = 0.1053
(= 2-0.2632/5). And to keep the same ratio between T}; and R;j, Ty; is set to 0.9642.
Also, the neuron’s parameters are: ©; = 0.5, R;p = 0, and 7; = 6. Figure 7.10 shows

the simulation results from this network.

7.3.5 Problems with Variable Frequencies

The design of all of the pattern recognizers previously discussed assumes that the
input signals have a fixed frequency of events, which is possible with a stimulus

detector, provided that the pace neuron is operating in its high gain region. But
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Sample Output from Spatial-Temporal Pattern Recognizer
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Figure 7.10: Recognizing Spatial-Temporal Spiking Patterns. The plot shows a
sample output for the spatial-temporal pattern recognizing network in Figure 7.8. The
five long boxes show the input spike trains and the output spikes from the temporal
pattern recognizers of the first layer. The hash marks on the top lines indicate the
times of the input events. The last line represents the output spikes from the spatial
pattern recognizer of the second layer. Also shown are the windows around the events
which matched the target pattern, and led to the single output spike. The windows
on the input lines are the same as those shown in Figure 7.8, while the windows on
the temporal neurons’ outputs represent the effective time windows for the spatial
neuron’s inputs. Notice that since time increases from left to right, the spike trains
are opposite of those shown in Figure 7.8, but the input spike patterns exactly match
from 20 to 75.
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what if the input spikes do not have a fixed frequency? The purpose of the frequency
assumption was to set the synaptic delays and time constants.

For the spatial pattern recognizer, the frequency can vary since the widths and
relative locations of the time windows remain fixed. In fact, because there is only
one target event per input line and spikes occurring anywhere within the window are
considered 1’s, the constraint of a fixed frequency of events can be relaxed. However,
higher input frequencies increase the chance of a non-spike event being misinterpreted
as a spike event. This is because the neurotransmitter contribution from a series of
closely spaced spikes accumulates and does not dissipate as rapidly as the neurotrans-
mitter from a single isolated spike. Thus, even though there may not be any spikes
within a time window, the residual neurotransmitter from a previous burst of spikes
can have the same effect on the neuron’s potential as an actual spike within the time
window. In some circumstances, this may have some possible advantages, with short
bursts of spikes being used to represent a regularly spaced series of spikes. Also, at
higher input frequency there are several events within each window, so several con-
secutive non-spike events are required before the input signal is actually perceived as
a 0. If the synapse is excitatory (input line corresponds to a 1 in the target pattern),
the higher input frequency causes the neuron to become more likely to fire, and if
the synapse is inhibitory (input line corresponds to a 0 in the target pattern), the
neuron becomes less likely to fire. Therefore, higher input frequencies can be thought
of as causing an expansion in the effective time window, making 1’s more likely to be
detected.

When the input frequency for a spatial pattern recognizer is lower than antic-
ipated, it is possible for the width of the time window to be less than the time
between input events. In this case, there will often be occasions when there are no
events occurring within the window. Since the parameters are chosen so that a spike
must occur sometime within the window for the input signal to be considered a 1,
the input patterns will be perceived to contain 0’s even if there are spikes occurring
at every possible event. Thus, lower input frequencies can be thought of as causing a

contraction in the effective time window, making 0’s more likely to be detected.
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In general, the temporal pattern recognizer is more sensitive to input frequency
variations than the spatial pattern recognizer. The underlying frequency sets the nec-
essary time delay of the synapses, and any changes in the frequency affect the timing
between the bits of the input pattern. Essentially, each synapse can be thought of
as having a time window associated with it, which is equal in width to the time be-
tween spikes for which the neuron was designed. But since each synapse is delayed
by exactly one time unit more than the previous one, the windows do not overlap.
Different frequencies can cause the events being compared at the input synapses to
not be aligned; e.g., with a higher frequency, the first synapse may be affected by both
the first and second input events instead of just the first, while the second synapse
may be affected by the third and fourth input events instead of the second. (As with
the spatial recognizer, high frequency spikes can lead to a buildup of neurotransmit-
ter which can cause non-spike events to be perceived as spikes; however, since the
synapses usually have smaller time constants, the problem is less severe in tempo-
ral pattern recognizers.) Therefore, when a target pattern arrives at an incorrect
frequency, it is often not recognized. Figure 7.11 shows that when the same input
pattern for the temporal pattern recognizer of Figure 7.6 is presented at a higher
frequency, the neuron is unable to respond when the target pattern arrives.

While input spikes arriving at higher frequencies usually go unrecognized, one
important exception to this is when the temporal target pattern consists of all 1’s.
Such a pattern can be used to test when an input signal is spiking at or above a
specified frequency. Since the maximum neurotransmitter level depends upon the
time between incoming spikes, a neuron with a single input synapse can be used to
test the input spike frequency; however, a short burst of relatively few spikes causes
the neuron to reach threshold and fire. By using a temporal pattern recognizer,
with all 1’s in the target pattern, the input spikes must continue over the period of
time specified by the maximum synaptic delay. Thus, high frequency spikes are only
recognized if they continue for a sufficient duration of time. The neuron responds
when the average frequency of the input spikes is above a preset limit, but it is not

susceptible to errant high frequency bursts.
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A) Recogmzing Temporal Patterns at Normal Frequency
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B) Recognizing Temporal Patterns at Higher Frequency
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Figure 7.11: Recognizing Temporal Patterns at Different Frequencies. The
plot shows two neurons being used to recognize the temporal pattern of [0, 1,0]. (A)
is the same as Figure 7.6. When the input pattern matches the target pattern, an
output spike is produced. (B) uses the same neuron parameters, but the input spikes
are presented at four times the frequency of (A). Since the synaptic delays were chosen
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for a lower frequency, the neuron is unable to recognize the target pattern.
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7.4 Evaluating Logic Expressions

The synaptic clusters discussed in Section 3.4.3 can be used to evaluate any Boolean
logic expressions. When the T;j; variables of Equation (3.14) are sufficiently large
(and positive), the tanh function associated with each cluster will saturate near the
value of one if any of the cluster’s inputs are spiking. In this sense, a synaptic cluster
performs the logical OR function. Furthermore, the R;; coefficients of the clusters can
be set so that the neuron can not produce an output spike unless all of the clusters
are saturated. This allows the neuron to perform the logical AND function. Since all
Boolean expressions can be written in conjunctive normal form as a product (AND)
of sums (OR), a single neuron can evaluate any logic expression. A neuron design
to evaluate a specific Boolean expression for a given set of input variables is called a
“logic neuron.”

While different weight values can be used for each input connection, T;;;, and each
synaptic cluster, R;;, to implement a “fuzzy-like logic” scheme where some variables
and clauses have more importance than others, in the simplest case (standard Boolean
logic), all of the Tj; variables are set equal (T35 = T'), and all of the R;; variables are
set equal (R;; = R). (Notice that all of the inputs are excitatory.) Also, all of the
synapses can be assumed to have the same time constant, (7;; = 7), and no delay,

(diji = 0). Now, when R;y = 0, the neuron’s potential is given by:

K
Vi(t) = tanh? (t—t>

T;

N; M;;
R-;tanh ((%) l; Uijl(t))} (7.13)

Here, N; is the number of clusters (clauses) and M;; is the number of input connections
(literals) into the j** cluster.

The problem in designing a logic neuron is deciding how to choose the appropriate
neuron parameters. Assume that all of the input events are actually the synchronized
outputs from a stimulus detector (Section 7.2), whose pace neuron has a time between
spikes of A,. While each spike may lead the pseudospikes by a slightly different

amount, all of the occurring spikes are within d¢ of each other (see Equation 6.52).
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Since the neuron is to respond if just one of the inputs into each of the clusters receives
a spike, the minimum value of Zi\i’l’ U,u(t) for each cluster to which the neuron must
respond is given by:

M dt

> Ui(t) > f (¢ (-—)) (7.14)

=1 T
Here, the lower bound on the total neurotransmitter concentration is given by the
contribution from just one spike, f(—), and the spread of the input spikes reduces
the maximum from e™! to f (w (%)) (see the definition of 1 (A) implied by Figure
C.1).

The neuron’s potential should be above threshold when all of the synaptic clusters

have at least one input spike. This applies even if the logic neuron already produced
an output spike at its last opportunity, which occurred A, time units ago. Therefore,

the minimum value for V;(¢) that should result in an output spike is given by:

tanh? (%)-{Ni-R-tanh [(%)f <¢ <%)>H > ©; (7.15)

It is easy enough to choose the neuron’s parameters to make this equation hold, but
the trick is to make sure that the neuron does not fire even if only one synaptic cluster
does not receive an excitatory spike input. The worst case scenario occurs when all of
the possible inputs have been continuously spiking, and at one synaptic cluster they
suddenly stop. When this occurs, the neuron should stop producing output spikes.
Using Equation (4.23), the neurotransmitter available at the synaptic cluster which

stops receiving input spikes is given by:

Swo- (s (@) e

=1

Here, t = 0 refers to the time of the last set of input spikes at the other synapses.
The last input spikes at this synapse occured ¢ + A, time units ago. Notice that
the previous input spikes are assumed to have been periodic with P! = A,; i.e., this
synapse was receiving input spikes at every possible pseudospike until now.

For all of the synaptic clusters that are still receiving input spikes, the tanh func-
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tion must be less than one. Therefore, the neuron is guaranteed not to produce an

erroneous output spike when there are no input spikes into one of the clusters if:

(N; — 1)-R + R-tanh [(M)f (1+é—’i)J < ©; (7.17)

o (%) f
In this equation, (N; — 1)-R represents an upper bound on the maximum contribution
to the neuron’s potential from the V;—1 synaptic clusters that are still receiving input
spikes. Also, for a worst case scenario the synaptic cluster that stops receiving input
spikes is assumed to be the cluster with the most input synapses. Notice that the
maximum neurotransmitter concentration occurs when the argument of f(—) is 1,
and while the other synapses are at there maximum level, the “off” synapse, which
did not received any input spikes at the last pseudospike, had its last maximum
neurotransmitter level %"— time units ago. Thus, the argument of its neurotransmitter
function is (1 + %2)

Any set of neuron parameters that satisfies constraint Equations (7.15) and (7.17)
allows the neuron to evaluate a particular Boolean logic expression. Notice that when
a set of parameters is found for a given value of Ap, any larger value for A, may also
be used; i.e., increasing Ay, increases the RHS of Equation (7.15) and decreases the
LHS of Equation (7.17). Thus, while the neuron has a maximum input frequency
(minimum value of A,) for which it is guaranteed to work, lower input frequencies
may be used without any problem. This is in contradistinction to the temporal
pattern recognizer, which was designed for a particular input frequency.

As a simple example, assume that a neuron is to evaluate the expression of:

B(z1,...,25) = (z1+22+23) (1 + 24+ Ts) (T2 + T3+ 25)- (T2 + Ty + Ts)
(Z1+ Ba+ T5) (x5 + T4 + 25) - (T2 + 23 + 24)

-($1+$2+f3)-(fl +$2+$5)-(I1 +.i‘2+f4) (7.18)

Here, z; is a binary variable that takes the value of 0 or 1, and Z; represents its

inverse; i.e., if z; is 0, then Z; is 1 and vice versa. (This problem has a unique solution
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of X = [0,1,1,0,1].) Notice that N; = 10, which represents the number of clauses,
and max {M;;} = 3.5 The network can be connected as shown in Figure 7.12.

All of the input spikes into the logic neuron are first synchronized. Assume that
the pace neuron has A, = 0.4, and that the identity and inverse neurons have the
same parameters as the neurons shown in Figures 6.19 and 6.23. Of these neurons,
the inverse one has the larger possible lead time with d¢t < 0.015345. (In general,
inverse neurons always have larger possible lead times — compare Equations (6.52)
and (6.55).) To satisfy the constraint equations, the logic neuron’s parameters were
chosen as follows: ©; = 0.5, 7 = 0.01, ; = 0.08, T = 10, and R = 0.05105. The
results from a set of random input spike trains are shown in Figure 7.13. The logic
neuron correctly evaluates the Boolean expression and only produces an output spike
when the solution vector is presented.

Finally, it should be noted that as the number of clauses and literals increases,
the region in parameter space for which Equations (7.15) and (7.17) may be satisfied
shrinks. In theory, for any finite number of clauses and literals, a solution can always
be found, but the neuron becomes very susceptible to noise and rounding errors in the
simulation; i.e., the difference in the logic neuron’s potential voltage is small when
there is only one true literal in each clause and the neuron should fire (Equation
(7.15)) versus when all of the literals in all of the clauses are true except for one
clause which is all false and the neuron should not fire (Equation (7.17)). Thus,
for large expressions, a two layered approach similar to Figure 7.7 is best. (This is
actually a three layer network, but only the last two layers are needed to evaluate
a logic expression. Also, this figure performs the AND functions before the OR
function, but the neurons may be switched to evaluate the expression in the same
order as the logic neuron. See footnote on page 153.) With the two layer network,

each clause is evaluated independently of the others. And only if a clause is true does

5Any Boolean expression can be reduced to conjunctive normal form, and any expression in
conjunctive normal form can be reduced to one containing only 3 variables per clause; however,
additional Boolean “dummy” variables may need to be used. Expressions with only 3 variables per
clause are referred to as 3-SAT problems. To use a neuron to evaluate a logic expression, it is not
necessary to reduce it into the 3-SAT formulation.
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Connections for Boolean Logic
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Figure 7.12: Connections for Boolean Logic. The diagram shows how the five
inputs may be connected to ten synaptic clusters to evaluate B (z1,...,z5) in Equa-
tion (7.18). The inputs go through a stimulus detector to synchronize their signals
and calculate their inverses.
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Figure 7.13: Response of Logic Neuron. The first five boxes show the input
spikes, while the last box shows the output from the logic neuron. The input spike
trains were randomly generated and input into synchronized identity and inverse
neurons. For each of the input boxes, the spikes in the bottom half, z;, represent the
output from the identity neuron; the spikes in the top half, Z;, represent the output
from the inverse neuron; and the spikes in the middle, S;, which partially overlap
both the identity and inverse spikes, are the randomly generated input signals. The
logic neuron only produced one output spike, which occurred when the synchronized
inputs corresponded to X = [0,1,1,0,1], the solution to the Boolean expression.
(The hash marks indicate the times of the pseudospikes, and the arrow below one of
the pseudospikes in the second box indicates a time when neither the identity nor the
inverse neuron produced a spike. The values of N to the right of each signal represent
the number of spikes.)
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the corresponding neuron in the first layer output a spike to the neuron in the second
layer. The second layer neuron only produces spikes when all of its input clauses are

firing; i.e., the entire expression is true.

7.5 Memory Networks

Previously, Section 6.3 showed how a neuron could be used to save the state of a
single input bit. This section describes how entire segments of an input spike train
can be stored. The basic idea is to have a network with feedback, so that a series of
input spikes continues to oscillate indefinitely through the network. Memory networks
may be constructed in a variety of ways, depending upon the length of the memory
and how the storage is controlled. When an input line contains a series of spikes,
a connection with delay can be used to temporarily store all input spikes. But to
permanently store the spikes within any finite memory, it is necessary to limit the
time range in which the memory is sensitive to new input spikes. This sensitivity time
window determines the length of the memory, with spikes occurring before or after
the time window having no effect on the stored memory. And when it is necessary to
store a new memory, all information from the previous memory is lost.

Figure 7.14 shows a synchronized memory network. The network uses a pace
neuron to synchronize all network spikes. There are two inputs: one contains the
input spike train to be stored, and the other is a controlling signal, which indicates
when the previous memory should be erased and a new memory formed. Both input
signals are first synchronized before connecting to the two neurons actually responsible
for storing the memories. Only one of the neurons is used to store the memory, while
the other is used to indicate the start of the spike pattern. Since the memory is
created by using a delayed feedback connection, the memory neuron is continuously
producing output spikes. Therefore, there is no way to determine which output spike
is the initial spike in the memorized pattern. The second neuron uses the same delayed
feedback connection, but it only spikes at the time of the initial memorized event,

thus indicating the start of the memorized pattern.
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Since all of the network’s spikes are synchronized by the pace neuron, the memory
network can be described in terms of the number of events that it holds in memory,
N. Thus, the time length of the memory is actually (N — 1)-A,, where A, is the time
between spikes from the pace neuron.

When designing a synchronized memory network, the parameters must be chosen
so that a control spike erases the current memory and only allows the input spikes
occurring within the sensitivity time window to be stored in memory. Ideally, an
input control spike is able to precisely regulate the network by turning off the feedback
synapse that allows the currently stored spikes to continue, and turning on the input
synapse so that new input spikes can be stored in memory. And when the elapsed
time is equal to the length of the memory, the input synapse is turned off while the
feedback synapse is turned on again. The problem with actually implementing such
a design is that the effects from a control spike do not instantaneously turn on or
off. The neurotransmitter released at a presynapse takes the same functional form
as the neurotransmitter released at a synapse, te™%; thus, after a control spike arrives
at a presynapse, its effect on the synapse increases to a maximum before gradually
decaying away. For a synchronized network, this is not a significant problem since
the presynaptic parameters and delays can be chosen so the transition regions, from
off to on and on to off, occur between pseudospikes.”

Now, the presynaptic connection from the control identity neuron onto the input
synapse of the memory neuron must increase the effective weight so that input spikes
are able to produce output spikes. The weight must be sufficiently elevated for at
least N — 1 time units, but less than N time units. If any shorter, not all possible
input spikes would be stored in memory, and if any longer, later input spikes would

be erroneously included in the stored memory. Of course, the time delays for the

"If the total length of the memory is long, while the time between pseudospikes is short, presy-
naptic clusters can be used to provide for faster transitions and less susceptibility to noise. In this
case, all of the connections into the cluster still come from the control signal, but they each have
different delays, and their time constants are smaller than would be needed for a single connection.
Thus, several copies of the same spike arrive at different times, with each copy only able to influence
the synapse a short duration. Essentially, the idea is to allow a single control spike to have the same
effect as a burst of spikes.
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Synchronized Memory Network
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Figure 7.14: Synchronized Memory Network. The plot shows the connectivity of
a synchronized memory network. The network uses a pace neuron, with R,; > ©; to
synchronize all network spikes. The top right neuron is used to store the memorized
pattern, while the bottom right neuron is used to store the start spike, which indicates
the beginning of the memorized pattern. The output from the synchronized control
neuron forms an inhibitory presynaptic connection onto the feedback synapse, and an
excitatory presynaptic connection onto the input synapse. The inhibitory presynapse
prevents the currently stored memory from producing any more output spikes. Notice
that the length of the feedback delay determines the maximum number of events
that can be stored in memory. The excitatory presynapse allows the input spikes to
produce new output spikes, which are then store in memory. When there is not an
initial control spike, the effects from the input spikes are too weak to produce any
output spikes, and the current pattern in memory remains unaltered. The neuron
used to store the start spike is identical to the one used to store the spike pattern,
except that the control spikes are used as the input signal, and there is no presynaptic
connection on the input synapse. Thus, each control spike automatically creates a
new start spike.
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input and pace signals must be chosen so that the elevated level begins before the
next possible input spike.

Similarly, the presynaptic connection from the control identity neuron onto the
feedback synapse of the memory neuron must decrease the effective weight so that
the feedback spikes are unable to produce output spikes. The weight must be suffi-
ciently depressed for at least N — 1 time units, but less than N time units. If any
shorter, feedback spikes from the previous memory could erroneously produce output
spikes and be included in the new memory. If any longer, the new spikes would be
unable to produce output spikes and would be lost from memory. The delay on the
feedback synapse must be chosen so the neuron is able to store N events, with the
maximum contributions from the feedback spikes occurring simultaneously with the
pseudospikes of the output neuron so as to produce new output spikes.

Figure 7.15 shows a sample output for the synchronized memory network of Figure
7.14. The pace neuron’s parameters were: ©; = 0.5, Rjp = 1.0, and 7; = 0.4538, which
yielded an output spike every 0.4 time units. The network was designed to store eight
events (N = 8), or a spike train of 7-(0.4) = 2.8 time units. Notice that with this
type of memory, the initial time between input spikes may be slightly altered by the
synchronization procedure, but then the time between spikes is accurately preserved
within the memorized pattern. Of course, the network may be designed for a faster
sampling rate (time between spikes from the pace neuron) to minimize the initial
errors. Conversely, an unsynchronized memory network can be used, but since the
input and control spikes can occur at any time relative to each other, the transition
regions in controlling the presynapses can cause errors in erasing old memories and
storing new patterns; i.e., input and feedback spikes may occur before the synapses are
turned completely on or off. Also, an unsynchronized network is unable to accurately
preserve the timing between the spikes in memory; consequently, the timing error
becomes significant the longer the pattern is stored.

The parameters for all of the other neurons were: ©; = 0.5, Ry, = 0.0, and
7; = 0.08, which are the same as the parameters used for the synchronized identity

neuron in Figure 6.19. Likewise, the parameters from Figure 6.19 were used to set the
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Sample Output from Synchronized Memory Network
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Figure 7.15: Sample Output for Synchronized Memory Network. The plot
shows the results when five different input spike patterns are stored. The top box
shows the control spikes and the output from the synchronized control neuron. The
middle box shows the input spikes and the output from the synchronized input neuron.
The numbers underneath indicate the binary code for the first eight events after a
control spike. These are the spikes which are to be stored in memory. The bottom
box shows the output spikes from the start spike neuron and the memory neuron.
Arrows designate the start times of new memories, while the hash marks indicate the
times of the corresponding pseudospikes for each of the neurons. (Since the input
from the pace neuron is slightly delayed into the start and memory neurons, their
pseudospikes do not exactly align with the pseudospikes for the synchronized control
or input neurons.) Initially, the network was receiving input spikes at the maximum
possible rate, but without a control spike, no output spikes were produced. Only
after the first control spike were there any output spikes. Even when the input spikes
stopped immediately after the last memory event (8 event after the control spike),
the memory neuron continued to produce output spikes at every pseudospike. When
the next control spike arrived, there were no input spikes until nine pseudospikes
later. Thus, these late input spikes had no effect on the neuron, and the stored
pattern was all non-spike events. The next three control spikes stored the patterns of
“11001010,” “01110010,” and “10110010.” Notice that these are the binary numbers
for the values of 83, 78, and 77 (first bit is least significant) which representation
the ASCII characters of “SNM.” The network was able to correctly store all five test
patterns, and ignored any input spikes that occurred outside of the sensitivity time
windows, following each control spike.
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synaptic parameters on the input and control identity neurons; i.e.: R;; = 0.02525,
Ty = 0.292 and 7;; = 0.2 for the input signal; Ry = 1.0, Ty = 1.4, and 7, = 0.05 for
the pace signal.

The synaptic parameters of the memory neurons were: R;; = 0.21, T;; = 0.21,
i1 = 0.0694, and d;; = 0.1306 for the synchronized input signal; R; = 0.33,
Ty = 0.33, 12 = 0.0848, and dj = 3.1152 for the feedback signal; and R;, = 1.136,
T3 = 1.136, 73p = 0.05, and d;, = 0.2 for the pace signal. Notice that with these small
time constants, each synchronized spike acts as an isolated event, with no significant
accumulation of neurotransmitter possible. Because of this, the maximum neuro-
transmitter concentration from each spike is approximately e™!. And when Ri; = Ty,

the parameters must be chosen so that:

R-tanh (e7!) + R,-tanh (e71) > ©;
or:

Foa < tanh (e7!) & 0.3521 (7.19)

Only if this equation is satisfied can an input spike produce an output spike. Thus,
for the parameters used, when there was no significant effect from the presynapses,
the feedback synapse’s weight values caused an output spike to be produced for each
feedback spike, while the input synapse’s weight values were unable to produce output
spikes as a result of any input spikes. The synaptic parameters for the start spike
neuron were the same as for the memory neuron except on the input synapse, whose
parameters were: R;; = 0.33, T;; = 0.33, 71 = 0.05, and d;; = 0.15, which allowed all
synchronized control spikes to produce output spikes.

The parameters of the excitatory presynaptic connection onto the input signal’s
synapse were: R;y = 3.0, T;2 = 3.0 and 735 = 0.9. These values allowed input spikes to
create new output spikes during the next eight possible events after a control spike.
The parameters of the inhibitory presynaptic connection onto the feedback synapses
were: R;3 = 3.0, T;3 = —3.0 and 7,3 = 0.75. These values prevented any spikes

previously in memory from producing output spikes during the next eight possible



180

events after a control spike occured.

7.6 Counters

7.6.1 Introduction

For some computing problems, it is useful to have a network which can count the
number of incoming spikes. This section presents two such networks. Both networks
encode the total number of spikes via memory oscillators. Section 7.6.2 describes a
linear counter, in which the number of oscillating neurons increases with each input
spike. It can not count higher than the number of neurons it has in the network, and
once that number is reached, additional input spikes have no effect on the network
until it receives a reset signal. Section 7.6.3 describes a sequential counter, in which
the nezt neuron starts oscillating with each input spike, and all other neurons are
silent. When the last neuron in the network is oscillating and another input spike
arrives, the first neuron starts oscillating and the cycle repeats. By cascading sev-
eral sequential counters together, large numbers can be encoded with relatively few

neurons, with each counter encoding the value for one digit.

7.6.2 Linear Counters

A linear counter network uses two inputs. One is a reset signal which stops all network
oscillations. The other is the input signal, which contains the spikes to be counted.
Each input spike causes another neuron in the network to start oscillating. Thus, the
total number of oscillating neurons in the network represents the number of input
spikes since the last reset spike. Obviously, the network can not count higher than
the number of neurons it contains. Figure 7.16 shows a linear counter network which
contains five neurons.

Each neuron in the linear counter network has a similar behavior to the Dual
Control Memory Neuron of Section 6.3.2. The reset input acts as the “OFF” input,
while the feedback and the input signal act as the “ON” inputs. Each neuron (except
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Figure 7.16: Linear Counter Network. The plot shows the connectivity of a linear
counter. The network is composed of a chain of Dual Control Memory Neurons. The
reset signal inhibits the neurons and stops all oscillations. Each neuron (except the
first neuron) has three excitatory connections. The first is from the input signal.
The second is the feedback signal required for oscillation. And the third is from the
previous memory neuron. Each neuron is able to sustain an oscillation once it starts
producing output spikes, but it is incapable of producing any output spikes unless it
receives spikes from both the input signal and the previous neuron.
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the first neuron) has three excitatory connections. The first connection is from the
input signal. The second connection is the feedback signal required for oscillation.
And the third connection is from the previous memory neuron. The weights are chosen
so that each neuron is able to sustain an oscillation once it starts producing output
spikes, but it is incapable of producing any output spikes unless it receives a spike
from both the input signal and the previous neuron. Thus, with each input spike, the
next neuron in the chain starts oscillating. (The first neuron starts oscillating with
the initial input spike.)

Figure 7.17 shows a sample output for the five neuron linear counter of Figure
7.16. When the network receives a reset spike, all of the neurons stop oscillating.
Notice that after the second reset spike, the first input spike to arrive is not counted.
This is because there is a “dead time” associated with each reset, in which all of
the neurons are insensitive to input spikes. The parameters for all of the neurons
were: ©; = 0.5, R;o = 0.0, and 7; = 0.2. The reset input’s synaptic parameters were:
R; = 0.10, T3 = —0.10, and 7; = 1.0. The excitatory synaptic cluster’s weight
value was R;o = 0.53, and the excitatory connection parameters were: T = 2.0
and 791 = 0.375 for the input signal; Tjoe = 2.75, 700 = 0.375 and d;5 = 0.2 for
the feedback signal; and Tjo3 = 0.265 and 753 = 1.0 for the input from the previous
neuron. (For the first neuron, Tjp; = 2.75 and 7;9; = 0.375 for the input signal, and

there was no connection from a previous neuron.)

7.6.3 Sequential Counters

The sequential counter network is very similar to the linear counter network, but
rather than just having the next neuron in the network start oscillating with each
input spike, the previous neuron stops oscillating. Thus, only one neuron oscillates
at a time.

Like the linear counter, the network uses two inputs. One is a reset signal which
stops all network oscillations, and the other is an input signal, which contains the

spikes to be counted. Each input spike causes the next neuron in the network to start
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Sample Output For Liear Counter
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Figure 7.17: Sample Output for Linear Counter. The plot shows a set of random
input spikes for a five neuron linear counter. The network receives a reset signal at

t = 0.1 and ¢t = 25. With each input spike the next neuron starts oscillating, until all
are oscillating. Additional input spikes do not affect the network.
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oscillating. Figure 7.18 shows a sequential counter network with five neurons.

Like the linear counter, each neuron (except the first neuron) has three excitatory
connections. The first excitatory connection is from the input signal. The second
excitatory connection is the feedback signal required for oscillation. And the third
excitatory connection is from the previous memory neuron. The weights are chosen
so that each neuron is able to sustain an oscillation once it starts producing output
spikes, but it is incapable of producing any output spikes unless it receives a spike
from both the input signal and the previous neuron. Thus, with each input spike,
the next neuron in the chain starts oscillating. However, each neuron has a delayed
inhibitory connection from the output signal of the next neuron. Therefore, once that
neuron starts oscillating, it then turns off the neuron whose oscillations allowed it to
get started.

The first neuron does not receive an excitatory input signal from any of the other
neurons but instead receives an inhibitory signal from all but the last neuron. When
none of the neurons in the network are oscillating, it is uninhibited and an initial
input spike causes it to start oscillating. (The weights from the input signal are
larger for the first neuron than the others, which also require the previous neuron to
be oscillating.) The next input spike causes the second neuron to start oscillating, and
its inhibitory input into the first neuron stops it from oscillating. Each subsequent
input spike causes the next neuron to start oscillating, but since all of the neurons
inhibit the first, it is unable to start oscillating. When the last neuron in the network
starts oscillating, the first neuron no longer receives an inhibitory signal, and the next
input spike causes it to start oscillating again. Its output inhibits the last neuron,
which then stops oscillating, leaving only the first neuron to produce spikes. With
each additional input spike, the next neuron starts oscillating and the cycle repeats
until a reset spike is received and all of the neurons stop oscillating.

Figure 7.19 shows a sample output for the five neuron sequential counter of Figure
7.18. Notice that after the second reset spike, the first input spike to arrive is not
counted. This is because there is a “dead time” associated with each reset, in which

all of the neurons are insensitive to input spikes. The parameters for all of the neurons
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Figure 7.18: Sequential Counter Network. The plot shows the connectivity of
a sequential counter. The network is composed of a chain of Dual Control Memory
Neurons. The reset signal inhibits the neurons and stops all oscillations. Each neuron
(except the first neuron) has three excitatory and two inhibitory connections. The
first excitatory connection is from the input signal. The second excitatory connection
is the feedback signal required for oscillation. And the third excitatory connection
is from the previous memory neuron. Each neuron is able to sustain oscillation once
it starts producing output spikes, but it is incapable of producing any output spikes
unless it receives spikes from both the input signal and the previous neuron. The first
inhibitory connection is from the reset signal. The second inhibitory connection is
the delayed output from the next memory neuron. Therefore, once the next neuron
starts oscillating, the oscillation in the previous neuron stops.
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were: ©; = 0.5, Rjg = 0.0, and 7, = 0.2. The inhibitory synaptic cluster’s weight
value was R;; = 0.10, and the inhibitory connection parameters were: Tj; = —0.10
and 7;11 = 1.0 for the reset signal; and T;2 = —0.10, 7,30 = 1.0 and d;;2 = 0.2 for
the input from the next neuron. (For the first neuron, Tj;; = —0.10 and 7;; = 0.2
for the inputs from neurons #3 and #4.) The excitatory synaptic cluster’s weight
value was R;; = 0.53, and the excitatory connection parameters were: T = 2.0
and 701 = 0.375 for the input signal; Ty = 2.75, 700 = 0.375 and d;p = 0.2 for
the feedback signal; and Tje3 = 0.265 and 793 = 1.0 for the input from the previous
oscillator. (For the first neuron, Tjo; = 2.75 and 7;0; = 0.375 for the input signal, and
there was no excitatory connection from a previous neuron.)

With the linear counter, the network could not count higher than the total number
of neurons it had, and once this limit was reached, additional input spikes had no effect
on the network. For the sequential counter, no input spikes are lost, since the network
continues to cycle through its neurons. Because of this, it is possible to use several
cascaded sequential counter networks to encode totals containing several digits. The
number of neurons in each counter determines the base unit for the counting system;
e.g., for a decimal system (base 10) each counter requires 10 neurons to represent the
digits of 0 to 9. When the last neuron in the network is oscillating and an additional
input spike arrives, the first neuron starts oscillating and a carry spikes is generated,
which becomes the input signal into the next counter.

Figure 7.20 shows an example of how sequential counters may be cascaded together
to represent two digits. Since each of the sequential counting networks has only 5
neurons, this network encodes the total number of spikes using a base 5 counting
system. The first counter represents the 5° digit, and the second counter represents
the 5! digit. Additional counters may be cascaded together to represent digits for
higher powers of 5. Notice that the first neuron no longer represents “1,” as it did in
the sequential counter of Figure 7.18, but instead represents “0.”

Figure 7.21 shows a sample output from the base 5 counter of Figure 7.20. All of
the parameters for the neurons in each of the two sequential counters were the same

as those used for Figure 7.19, except for the first neuron’s synaptic parameters. All of
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Sample Output For Sequential Counter
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Figure 7.19: Sample Output for Sequential Counter. The plot shows a set of
random input spikes for a five neuron sequential counter. The network receives a

reset signal at ¢ = 0.1 and ¢t = 15. With each input spike the next neuron starts
oscillating, until the last neuron is oscillating and the cycle repeats itself.
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Figure 7.20: Base 5 Counter Network. The diagram shows the connectivity
of a base 5 counter network, which consists of cascaded sequential counters with 5
neurons each. Each counter operates independently of the others, but a “carry bit”
is produced when both its first neuron and the delayed output from the last neuron
are oscillating. This is the case only when the last neuron is oscillating and another
input spike arrives, causing the counter to repeat the cycle. The carry spike is then
used as the input signal to the next counter in the cascade. Except for the first
neuron, all of the neurons in each counter are connected exactly as they were for the
sequential counter of Figure 7.18. But now the first neuron represents “0” instead of
“17; consequently, the reset signal causes the first neurons in each counter to oscillate
while still inhibiting all of the other neurons from oscillating.
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Output from Base 5 Counter
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Figure 7.21: Sample Output for Base 5 Counter Network. The plot shows the
output spikes from the two digit, base 5 counter of Figure 7.20. The input spikes being
counted are random. The network receives a reset signal at ¢ = 0.1 and ¢t = 25. The
reset spikes cause the first neurons (0** numbers) in each sequential counter (digit)
to start oscillating. Notice that after the second reset spike, the first input spike to
arrive is not counted. This is because there is a “dead time” associated with each
reset, in which the neurons are insensitive to input spikes. With each input spike
the next neuron starts oscillating, until the last neuron is oscillating and the cycle
repeats itself, but not before producing a carry bit, which is the input signal for the
next sequential counter.
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its parameters were the same as the other neurons in the counter network except that
its reset signal was excitatory, with the parameters being: R;3 = 0.70, T;3 = 2.50 and
7;3 = 0.50. Also, the parameters for the neuron which produced the carry bit were:
©; = 0.5, Rjp = 0.0, and 7; = 1.0; and its synaptic parameters were: R;; = 0.27,
T;; = 2.00 and 7;; = 0.20 for both synapses, but the connection from the last neuron

had a delay of d;; = 0.2.

7.7 Multiplexers

A multiplexer network selects one of many inputs to be transferred to a single output.
Multiplexers can be used to interleave data from several sources. One of its possible
uses is to route sensory data to a pattern recognizer network. For example, if the
system is to recognize a particular object in its visual field, it is not necessary to
have multiple copies of the pattern recognizing network associated with every pos-
sible location in the visual field. Instead, the spike trains from all locations can be
alternately routed to the pattern recognizing network to search for the desired pattern
in the entire field.

Figure 7.22 shows a multiplexer with three input signals and one output signal.
To control which signals are passed to the output, each input must first go through a
passing neuron, whose sole function is to reproduce the input spikes if that signal has
been selected. An input signal is selected when the corresponding controlling oscil-
lator, a dual control memory neuron, is producing spikes. (A single control memory
neuron may also be used to generate the necessary spikes.) The passing neurons work
like unsynchronized identity neurons, but with negative resting potentials, (R; < 0).
The excitatory input spikes from the oscillating memory neuron boost the neuron’s
potential enough to compensate for the negative bias, but not enough to produce any
output spikes. The memory neuron’s feedback parameters determine its oscill