RECURRENT NEURAL NETWORKS
FOR GRAMMATICAL INFERENCE

Thesis by
Zheng Zeng

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1994

(Submitted May 10, 1994)

ii

©1994
Zheng Zeng
All Rights Reserved

iil

To my parents

iv

Acknowledgments

This work would not have been possible without the help of many people. First
of all, I would like to thank my advisor, Dr. Rodney Goodman, for his continuous
support, guidance and encouragement throughout my years at Caltech. I am es-
pecially grateful to Dr. Padhraic Smyth for countless stimulating discussions and
insightful suggestions on this work and other technical issues, his experience and
consciousness as a scientist have truly benefitted me in many ways. Thanks are
owed to many faculty members of the institute, especially from the Department of
Electrical Engineering, whose teachings and love of science have been a source of
inspiration for me.

I would like to thank all my friends and colleagues in the MicroSystems Lab
during my four and a half years of study here, for many fun discussions, technical and
otherwise, and for a very relaxed and friendly environment. My thanks to everyone
for putting up with my time-consuming background processes on the machines,
especially towards the end of the thesis writing. I am indebted to Jeff Dickson
and Bhusan Gupta for their technical help in preparing the manuscript and for
sacrificing their weekends to review the thesis. Special thanks to Chuck Higgins,
whose IJATRX macros made the formatting of the thesis so much easier. To our
wonderful secretary, Bette Linn, I am grateful for all the help and support she
provided throughout the years.

Much love and thanks are given to my husband, Xiaofei Huang, with whom
I shared many helpful discussions, and whose love, understanding and support I
cannot appreciate more.

Finally, for making it all possible and worthwhile, I would like to thank my par-
ents, to whom this thesis is dedicated to, for their unconditional love and guidance
throughout my life. I would not have heen able to obtain the opportunity for my
study and to continue to finish it here in this wonderful institute and group without

their unselfish support and encouragement.

AY

Abstract

In this thesis, various artificial recurrent neural network models are investigated for
the problem of deriving grammar rules from a finite set of example “sentences.” A
general discrete network framework and its corresponding learning algorithm are
presented and studied in detail in learning three different types of grammars.

The first type of grammars considered is regular grammars. Experiments with
conventional analog recurrent networks in learning regular grammars are presented
to demonstrate the unstable behavior of such networks in processing very long strings
after training. A new network structure to force recurrent networks to learn stable
states by discretizing the internal feedback signals is constructed. For training such
discrete networks a “pseudo-gradient” learning rule is applied.

As an extension to the discrete network model, an external discrete stack is added
to accommodate the inference of context-free grammars. A composite error function
is devised to deal with various situations during learning. The pseudo-gradient
method is also extended to train such a network to learn context-free grammars
with the added option of operating on the external stack.

Another extension to the discrete network structure is made for the purpose
of learning probabilistic finite state grammars. The network consists of a discrete
portion which is intended to represent the structure of the grammar, and an analog
portion which is intended to represent the transition probabilities. Two criteria for
the network to verify the correctness of its solution during training are proposed.
Theoretical analysis of the necessary and sufficient conditions for the correct solution
is presented.

Experimental results show that the discrete network models have similar capa-
bilities in learning various grammars as their analog counterparts, and have the

advantage of being provably stable.

vi

Table of Contents

Acknowledgments

Abstract

List of Figures

List of Tables

Chapter 1 Introduction

1.2

1.1.1
1.1.2
1.1.3
1.1.4

1.2.1
1.2.2
1.2.3
1.2.4

Languages and Grammars
Chomsky Hierarchy for Formal Languages
The Task of Grammatical Inference and Its Uses

Important Results in Formal Language Inference Theory . .

Artificial Neural Networks, Back-Propagation Networks

Recurrent Networks

Chapter 2 Inference of Regular Grammars

2.1
2.2
2.3
2.4

2.5

Regular Grammars and Finite State Machines

First-Order Recurrent Networks

Second-Order Recurrent Networks and Equivalent Representations . .
The “Unstable State” Behavior of a Learned Second-Order Analog
Network o .

24.1
24.2
2.4.3
244

Training Process L.
Analysis of Network Behavior During Training
Analysis of Network’s Internal Representation

Analysis of Network Behavior During Testing

A Network That Can Form Stable States

v

ix

x1

vil

2.6 The Pseudo-Gradient Learning Method 30
2.7 Experimental Results 31
2.8 Empirical Investigation of the Pseudo-Gradient Learning 36
2.9 On the Capacity of Recurrent Networks for Finite State Machine
Representation 39
2.9.1 Discrete Networks 39
2.9.2 Analog Networks 40
2.9.3 More Powerful Networks? 42
2.10 Summaryo e e e e 42
Chapter 3 Inference of Context-Free Grammars 44
3.1 Context-Free Grammars and Pushdown Automata. 44
3.2 Analog Second-Order Recurrent Networks With External Stacks . . . 48
3.3 Discrete Recurrent Networks with External Stacks 48
3.4 A Composite Error Function for Context-Free Grammar Learning . . 50
3.5 The Extended Pseudo-Gradient Training 53
3.6 Experimental Results 55
3.7 Empirical Investigation of the Extended Pseudo-Gradient Learning . 58
3.8 Discussion 60
3.9 Summary . .o e e 61
Chapter 4 Inference of Probabilistic Grammars 62
4.1 Probabilistic Regular Grammars 62
4.2 Problem Description 63
4.3 Grammars Studied L 64
4.4 Previous Work 67
4.4.1 Work on Recurrent Networks 67
442 Workon HMMs 68
4.5 Initial Attempts 69
4.6 Discrete Network Structure and Pseudo-Gradient Learning 71
4.7 Verification During Training 75
4.7.1 First Stage Verification: a Necessary Condition 75

4.7.2 Second Stage Verification: the Sufficient Condition 79

viii

4.7.3 What Comes After the Verification 87

4.8 Experimental Results on Grammars Without Identical Sub-Parts . . 87
4.9 The Difficulty in Learning Grammars With Identical Sub-Parts . . . 92
4.10 Summary and Future Work L. 97
Chapter 5 Conclusion 99
51 Summaryof Results 99
5.2 Future Research Directions 100

Appendix A Detailed Training Process for Regular Grammars 102

Appendix B Detailed Results and Analysis of the Initial

Network Structure Learning the Reber Grammar 103
Appendix C Proof of Lemma 4.1 and 4.2 106
Appendix D Proof of Theorem 4.2 109
Appendix E Proof of Theorem 4.3 110

References 112

1.1
1.2

2.1
2.1
2.1
2.2
2.3
24
2.5
2.6

2.7

2.8

2.9

2.10

2.11

2.12

3.1
3.2
3.3

3.4

4.1

ix

List of Figures

A typical back-propagation networko o oL 6
A typical layered recurrent network oo 9
Finite state machine representations of regular grammars.. 14
Continued. 15
Continued. 16
The Elman “simple recurrent network” structure. 17
A second-order recurrent network structure.o 0oL 19
Equivalent first-order structure of second-order network 20

Hidden unit activation plot Sy — S5 in learning Tomita grammar #4. 23
(a) Extracted state machine by clustering. (b) Equivalent minimal
machine. 25

The performance curve of a learned second-order network on Tomita

Grammar #4. e e 26
A combined network with discretizations 29
Discretized network learning Tomita grammar #4.. 33

Extracted state machine from the discretized network after learning
Tomita grammar #4. L 34

Extracted state machine from the discretized network after learning

the 10-state machine. 35

Statistical record of the pseudo-gradient learning of regular gram-

TOATS. v v v v v v e e e e e e e e e e e e e e e e e e 37
Pushdown automata representations of context-free grammars. 47
A discretized second-order network with an external stack. 49

Extracted pushdown automata from the discretized network with an
external stack after learning. o0 oL 57
Statistical record of the pseudo-gradient learning of pushdown au-

tomata. e s 59

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

B.1

X

The symmetric embedded Reber grammar 66
The simple symmetric grammar 66
The ac*a Ubc*b grammar oo 67
The atbta™bt grammar 67
A simple discrete network structure.o 0L 70

The final network structure used for probabilistic grammar learning. . 72

Initial results from a network learning the simple symmetric grammar 80

Probabilistic Reber grammars 88
The process of growing states during network learning. 89
Network-derived probabilistic Reber grammar 90
The non-symmetric embedded Reber grammar. 91
The augmented networko oL, 94

An extracted state machine from a trained network. 104

2.1

3.1

4.1
4.2

4.3

4.4

4.5

4.6

B.1

X1

List of Tables

Experimental results from training the discrete recurrent network on

regular grammars.o e e

Experimental results from training the discrete recurrent network on

context-free grammars. L. L Lo Lo

Experimental results on learning probabilistic Reber grammars
Experimental results on learning the non-symmetric embedded Reber

GRAIMIMAT « .« v v o o e v e e e e e e e e e e e e e e
Experimental results on learning the ac*a U bc*b grammar
Experimental results on learning the simple symmetric grammar . . .
Experimental results on learning the symmetric embedded Reber

BLAIMINAT « v v v v v e et e e e e e e e e e e e e

Experimental results on learning the atbtatbt grammar

Initial experimental results on learning the Reber grammar

Chapter 1
Introduction

1.1 What is Grammatical Inference?

1.1.1 Languages and Grammars

In everyday life, we depend largely on various languages to accomplish communication,
be it natural languages such as English or Chinese for communication between people, or

computer languages such as C or UNIX for communication between people and machines.

For every language, there are usually certain corresponding rules we call grammar that
anyone who uses it has to obey, so that communication among different parties can be
established on a common ground. The grammar, or the set of rules for the language,
can be as large as hundreds or even thousands for the case of natural languages, or only
a few dozen for the case of computer languages. The former can be very vague, some
of the rules can be broken at times without affecting perfect understanding among the
communicating parties, while the latter are generally very strict, any broken rule may lead

to misunderstanding, or even total failure of understanding, e.g., failure to compile.

Indeed, one can think of very many examples of languages other than the two types
mentioned above, such as sign language for the deaf, “body language” in sociology and
psychology, or even mathematical or chemical formulae, and drawings for circuit designs,
etc.

In this thesis, however, of particular interest is a subset of the so called formal lan-
guages, a set of abstract concepts behind natural languages and grammars, which have
provided the theoretical basis for computer languages that today guides the design of
compilers[HU79].

In the remaining part of this thesis, the word “string” will be used instead of “sentence”

to be consistent with formal language theory conventions.

In formal language theory, a language [is defined to be a set of strings, over an
alphabet X, i.e., L C ¥*, where X* is the closure of . For a language that has a set
of specific grammar rules corresponding to it, a string is defined to be a member of the

language if and only if it is derivable from that set of rules.

2

1.1.2 Chomsky Hierarchy for Formal Languages
A grammar is formally defined to be a quadruple G =< Q,%, 5, P >, where:
e Q2 is a (nonempty) set of nonterminals.
e ¥ is a (nonempty) set of terminal symbols and N Y = 0.
e S is the designated start symbol and § € Q.
o P is a set of productions of the form o — §, where @ € (QUX)T, 8 € (QU X)*.

Given a grammar G, the language generated by G, denoted by L(G), is given by
L(G) = {2z € ¥* A § —* z}. That is, the language L(G) contains and only contains all
strings x, such that z consists of symbols from the alphabet 3, and is derivable from the
start symbol S by applying any number of the production rules from P.

We will use the words “language” and “grammar” interchangeably from now on, as-
suming the understanding that when a grammar is defined, the corresponding language is
uniquely defined also, and vice versa.

Chomsky[Chob9] defined a hierarchy of formal languages and grammars, by differen-
tiating different forms of production rules:

Type 3 grammars or regular grammars: the most restricted type of grammars.
For a regular or type 3 grammar G, either the production rules in P all have the form
A — zB, for which it is also called the right-linear grammar, or they all have the form
A — Bz, for which it is also called the left-linear grammar, where 4 € Q, B € (QU A) (A
is the empty string), and z € ¥*.

Type 2 grammars or context-free grammars:

For a context-free or type 2 grammar G, all production rules in P have the form 4 — 3,
where A € Q,8 € (QU X)*. In addition, the grammar can also allow the production of
the empty string.

Type 1 grammars or context-sensitive grammars:

For a context-sensitive or type 1 grammar &, all production rules in P have the form
a — (3, where @ € (QU)T, 8 € (QU)T, and |a| < |B]. In addition, the grammar can
also allow the production of the empty string.

Type 0 grammars or unrestricted grammars:

For an unrestricted or type 0 grammar G, the production rules in P are not restricted in

oo

any sense.
Chomsky has shown that the class of languages of a certain type fully includes all
higher-numbered language types.[HU79, CL89]
In this thesis we will only consider grammars of type 2 or 3, discussed respectively
in Chapter 3 and 2, and a special variation of type 3 grammars, probabilistic regular

grammars, discussed in Chapter 4.

1.1.3 The Task of Grammatical Inference and Its Uses

The inference of grammars is not only an invention of abstract formal language theory.
For a natural language, the basic findings of linguists, mostly well accepted grammar rules,
have long been used widely in the teachings of the language to either native young children
or foreigners.

In formal languages, various automatic inference algorithms are designed to play the
role of the “linguist.” Although the goal of inferring the underlying grammar rules are the
same for every inference algorithm, the assumed condition under which such inference is
carried out varies. Some assume only a given finite set of example strings are known. Some
assume a black box that contains a “language recognition device” is available, so that the
inference algorithm can actively query such a device on whether or not a particular string
belongs to the language being considered. Some others assume that a “language generator”
is available, which can randomly generate various strings that belong to the language an
infinite number of times. Still others assume a special “teacher” of the language exists,
who gives out useful “advice” as the inference is being carried out.

While all of the above conditions can map to comparable situations in the case of
natural language learning, in this thesis, the assumed condition is the most stringent one
(for most of the cases): only a finite set of example strings is available. The remaining
few other cases also assume that a special “teacher” in a restricted sense exists.

Thus, the general problem of grammatical inference considered in the whole thesis can
be defined as follows:

Given a set of known example strings, labeled as “grammatical” (or “legal”) or ungram-
matical (or “illegal”) according to the underlying language, derive the underlying grammar
rules so that given any new string that is not contained in the known examples, a decision

of whether it is grammatical or ungrammatical can be made correctly.

4

Of course, to accomplish the goal, one has to assume that the given example set con-
tains sufficient information about the language and its grammar being learned. Otherwise
it would be an impossible task. In addition, it is reasonable to assume that the alphabet
of the language is known, because otherwise, it is trivial to obtain from the given example
set.

The importance of the study of formal language and inference is two-fold: in the
theoretical sense, computer scientists and mathematicians have been studying the topic
to explore the properties of the languages and grammars, which in turn may help in the
design of computers and systems[HU79, CL89]; in the practical sense, a good inference
algorithm can be applied to the modeling of real world sequence analysis problems. An
excellent example is the use of formal language modeling in DNA sequence analysis, which
has uncovered very interesting properties and structures of DNA[Sea92, Hea87].

Theoretical aspects of grammatical inference have been studied extensively in the past
[Ang72, Ang78, Gol72, Gol78]. A variety of direct search algorithms have been proposed
for learning grammars from positive and negative examples (strings) [AS83, Fu82, Mug90,
KS88, Tom82]. In this thesis, however, we explore the application of an alternative and

very different tool, i.e., recurrent neural networks, to the problem of grammatical inference.

1.1.4 Important Results in Formal Language Inference Theory

The problem of formal language and its inference has been extensively studied and well
understood since the 1970’s. A whole system of theory has been established[Gol78, HU79,
AS83, Mug90].

It is not necessary to go much deeper in this thesis into formal languages and their
properties — a task which would take a whole book to accomplish. Instead, only several
very important and related results will be presented here.

Of great interest are the following:

1. There is a one-to-one correspondence between regular grammars and finite-state-

automata[HUT79].

2. There is a one-to-one correspondence hetween context-free grammars and finite-state

pushdown automata[HU79].

3. Any non-deterministic finite-state-automaton can be transformed into an equivalent

5

deterministic finite state automaton. The class of languages recognized by non-
deterministic finite automata is exactly the same class of languages recognized by

deterministic finite automata[HU79].

4. The inference of a smallest regular grammar from a finite set of positive examples

only is impossible[Gol78].

5. The inference of a smallest regular grammar from a finite set of positive and negative

examples is an NP-complete problem [Gol78, AngT78|.

Items number 1 and 2 tell us that we can try to find the equivalent automaton in
solving an inference problem for type 2 or type 3 grammars, if it turns out to be easier.
The definitions and examples of finite state automata and pushdown automata will be
discussed in detail in Chapter 2 and 3 respectively. Itemn number 3 tells us that if we
can solve the problem of deriving deterministic finite automata from examples, then we
effectively have solved the problem of deriving nondeterministic finite automata from
examples, and therefore have solved the inference problem for the whole class of regular
grammars also. Item number 4 warns us against attempting to make the inference from
positive data only. Item number 5 tells us that we can only hope to find a solution to
the inference problem that is exponential in time to the complexity of the language, or
alternatively, to find a bigger than minimum solution that has less than exponential time

complexity.

1.2 What are Feedforward and Recurrent Neural Networks?

1.2.1 Artificial Neural Networks, Back-Propagation Networks

We now turn from the discussion of formal languages to a seemingly unrelated field:
artificial neural networks. Ever since the “re-discovery” of the capabilities of perceptrons
in the 80’s[Hop82, RMtPRG86], artificial neural networks have become the topics of ex-
tensive study for researchers in a wide range of disciplines: computer science, electrical
engineering, physics, economics, biology, etc. With them, came various models of artifi-
cial neural networks, as well as learning algorithms which may or may not be biologically
plausible as was intended in the initial stage. One of the most widely used structures, the
“back-propagation” networks[RHW86], is the most relevant to the contents of this thesis,

and thus will be the only type of model considered here.

output values

——
input features

Figure 1.1: A typical back-propagation network

-
{

A typical feedforward back-propagation network is shown in Fig. 1.1. The network
shown has 3 “layers:” layer 0, the input layer, takes in external input patterns; layer 1,
the hidden layer, does computation internally and is not directly connected to the outside
world; layer 2, the output layer, produces output signals to the outside. Note there can
be more than one hidden layer or sometimes no hidden layer in the structure. Layer [
accepts inputs from its previous layer, layer [— 1, only, and its output is fed into the next
layer, layer [+ 1, only. So in the operation of the network, information is processed from
the input layer forward, through the network to the output layer.

Define S! to be the activation of unit 7 in layer I, wﬁj to be the connection weight
between unit ¢ of layer [— 1 to unit j of layer [.

The operational equations of the back-propagation network are:

Si=fOwhSh, Vil (1.1)
J

where f is called the activation function of the network. The most widely used form

of f is the sigmoid function:

1

flz) = Fpnpe—t (1.2)

In some cases, different layers can have different activation functions, or even units
within the same layer can have different activation functions, depending on the problem
at hand.

This structure provides a mapping from the input vector space into the output vec-
tor space, and thus is mostly used for function approximation, classification, or pattern
recognition tasks. Whatever the problem, the user is asked to compose a “training set,”
which contains a number of examples of input and desired output pairs. In “training,” the
network is presented with the “training set.” An algorithm is used to train the network
to learn from these example pairs and generalize, by adjusting its connection weights be-
tween the layers. An error measure is used to evaluate how well the network outputs fit the
desired outputs. The hope is that after sufficient training in reducing the network’s error
on the training set, the connection weights can be fixed, and when a new input pattern
(previously unseen by the network) is presented, it can produce an output pattern that is

satisfactory, that is, consistent to the general “trends” in the given training set.

8

The number of nodes in the input and output layers are defined by the problem,
while the number of hidden nodes has to be pre-selected before training. The connection
weights wy; are initially randomized. The most often used error measure is the mean-

squared-error(MSE):

1
MSE = a(network output — desired value)?. (1.3)

We will see another popularly used form of error measure in Chapter 4.

The most widely and successfully used training algorithm for this type of network is the
“back-propagation” algorithm. In essence, it computes an error between the desired output
and the network’s true output, then calculates the gradients of the error with respect to
each weight, in a manner that the error is propagated back to the input layer, then the
whole set of weights is modified according to the gradients in the downhill direction of the

error surface in the high-dimensional weight space[RHWS86].

1.2.2 Recurrent Networks

The back-propagation network model discussed in the previous subsection is a typical
feedforward network model, where the information flow is unidirectional: from input layer
through the hidden layer(s) to the output layer. Thus the outputs depend on what are
present at the input layer only. There is another type of network model called recurrent
networks, where the information flow can be considered bidirectional, or “circular,” or
recurrent. A typical layered recurrent network is shown in Fig. 1.2.

The differences of this model from the one shown in Fig. 1.1 are the extra time-delayed
feedback links. The feedback links are not restricted in the sense that they can be from
any layer to any other layer, including itself. Note that in this type of model, any feedback
link has a delay element, represented by the digital signal processing symbol Z~1, on it,
which means that no instantaneous feedback is allowed. The use of Z~1! symbol also
implies that we assume a discrete time space. Very often, the feedback links themselves
can have connection weights associated to them. In Fig. 1.2, for the sake of clarity, not all
possible feedback links are shown, and the labels for connection weights on the feedback
links are omitted.

Using similar notations as in the previous subsection, let S!(¢) be the activation of unit

¢ in layer [at time step ¢, w!, be the connection weight from current unit S'~1(¢) to unit
y P, 17 g J

output values

) N
T N

RO SXt) S4(M)
! |

() s
e .
-1 @W -1

SO) __f‘ FaS
‘\?* ’,ﬂ\ !

Z“1 ’
!
01

—
XK
TR

S9) (o) () (o) Sit-D
y y &) ‘f“r‘

7 T _
[1T \
\ [A

N—— _

——
input features

Figure 1.2: A typical layered recurrent network

10

Si(t), and QEZC be the connection weight from the unit of previous time step 5 Jk(t -1) to

unit S4(t). The operational equations are then:

SHty = FOowh ST + Y diFSEt - 1)), Vi, it (1.4)
J ki

Note that the above is only one out of very many recurrent structures studied by
researchers in the field, other important structures include the Hopfield networks[Hop82],
ADALINE networks[Wid62], Kohonen’s self-organization networks[Koh88], ART networks
[CG87], cascade correlation networks[Fah91], etc. Since the scope of this thesis only covers
the structure presented above, henceforth, the phrase “recurrent networks” will only refer

to the above structure.

1.2.3 Feedforward vs. Recurrent Networks

An analogy to feedforward networks in signal processing would be FIR filters, where the
input signals travels through the filter without any feedback. Similarly, the recurrent
network analogy in signal processing would be IIR filters, where feedback links exist.

The advantage of recurrent networks over feedforward networks lies in the power in-
troduced by the feedback links, with which information from time step ¢t — 1 can still be
kept until time step ¢, or infinitely further into the future. Therefore, recurrent network
structures are mostly used for sequential information processing, problems that have time
dependencies, or require some sort of “memory.” On the other hand, feedforward networks
are advantageous in solving straight input/output mapping problems.

As will be seen in the next subsection and the following chapters, recurrent networks
are not as well studied and understood as feedforward networks (a fact that was one of

the motivations of this thesis), and they are much harder to train.

1.2.4 Overview of Previous Work

With the advent of the concepts of artificial neural networks, much work has been car-
ried out on the study and the establishment of theory of various models, especially on
feedforward networks. Here, only the most relevant findings will be presented.

For back-propagation type of networks, the following statements are true:

o For networks with hard-limiting threshold functions as activation functions (i.e., the

so-called perceptrons), and no hidden layers, the representation power is very limited:

11

they cannot properly categorize inputs whose classes are not linearly separable. A

good example is their inability to solve the simple XOR problem [MP69].

e For perceptron networks with at least one hidden layer, any Boolean function can
be realized, given enough hidden units, but no effective training algorithm has been

found[MP69, RMtPRG86].

o For networks with sigmoid activation functions, and at least one hidden layer, any
function can be approximated arbitrarily closely given enough number of hidden
units, and the back-propagation algorithm can be very effective in training. However,

it also can be trapped in local minima at times| RHW86, Lip87].

These results will be useful in Chapter 4, where we discuss the inference of stochastic
regular grammars, the learning of both the structure of the language and the probabilities
associated with it.

Similar statements of theoretical results cannot be made however, for the case of
recurrent networks, where interests are more recent. Much of the study of their ba-
sic properties and algorithms is still under way and theoretical analysis is much more
difficult. Nevertheless, there have been many investigations on various models, train-
ing algorithms, and empirical experiments, as well as analysis on their applications to
a wide range of problems: grammatical inference[CSSM89, Elm90, Jor86a, GMC*92a,
WK92, ZGS93, ZGS94], time sequence analysis/forecasting[CA91, Sch92], dynamic system
modeling/estimation[Lev91, Sgr91], state space trajectory learning[Pea89], and temporal
association[BC91, HLvH91, KPR91], etc.

As the title of the thesis implies, we will concentrate on recurrent network models
and algorithms that address the grammatical inference problem specifically. It is often
the case, however, that the model and algorithm being used are applicable to other prob-
lems as well. A variety of network architectures[Elm91, FGS92, GSC*90, Pol91, ZGS93],
and learning rulesf RHW86, WZ89, LC91, SBJ91, dVP91, ZGS93] have been proposed for
learning simple grammars. All have shown the capability of recurrent networks to learn
different types of simple grammars from examples.

Brief overviews of relevant previous work will be made at the beginning of each of the

chapters which follow.

12
Chapter 2
Inference of Regular Grammars

In this chapter we focus on studying a recurrent network’s behavior in learning type 3
or regular grammars, which are the simplest (or most restricted) type of grammar in the
Chomsky hierarchy discussed in Chapter 1.

The purpose of the study is to obtain a better understanding of recurrent neural
networks, their behavior in learning, and their internal representations, which in turn may
give us more insight into their capability for fulfilling other more complicated tasks.

This chapter is organized as follows: Section 2.1 reviews regular grammars and the
corresponding finite state automata. Section 2.2 discusses popular first-order recurrent
network structures, and their performance in learning regular grammars. Section 2.3 in-
troduces the second-order recurrent network structure. Section 2.4 demonstrates through
experiments and analysis the unstable state behavior of analog second-order recurrent
networks. Section 2.5 introduces a discrete second-order recurrent network structure, that
is capable of forming stable states. Section 2.6 describes the pseudo-gradient learning
algorithm for the discrete recurrent network structure. Section 2.7 presents experimen-
tal results in learning regular grammars using the discrete network structure and the
pseudo-gradient training. Section 2.8 shows the results of empirical investigations on the
effectiveness of the pseudo-gradient learning. Section 2.9 gives some general results on the

capacity of analog and discrete networks. Section 2.10 summarizes the chapter.

2.1 Regular Grammars and Finite State Machines

As stated in Chapter 1, regular grammars have been shown to have a one-to-one corre-
spondence to finite state machines. Furthermore, they have a one-to-one correspondence
to deterministic finite state machines [HU79]. Thus a regular language can be equivalently
defined as the language accepted by its corresponding deterministic finite state acceptor:

P =< %,U,ug, 6, F >, where
e Y is the input alphabet.

e U is a finite nonempty set of states.

13

o ug is the start (or initial) state, ug € U.
e § is the state transition function; é : U x ¥ — U.
e F is the set of final (or accepting) states, FF C U.
In the experiments described in this chapter we use the following grammars:
e Tomita grammars [Tom82]:
o #1— 1%,

#2 — (10)*.

#3 — any string without an odd number of consecutive 0’s after an odd number

o]

O

of consecutive 1’s.

[e}

#4 — any string not containing “000” as a substring.

o #5 — even number of 0°s and even number of 1’s.

o #6 — any string such that the difference between the numbers of 1’s and 0’s
is a multiple of 3.
o #7— 0*170"1".

¢ Simple vending machine [CL89]: The machine takes in 3 types of coins: nickel, dime
and quarter. Starting from empty, a string of coins is entered into the machine. The
machine “accepts,” i.e., a candy bar may be selected, only if the total amount of

money entered exceeds 30 cents.
e A 10-state machine shown in Fig. 2.1(i), which was used in [GMC*92b].

Figures 2.1(a) — (i) show the corresponding equivalent finite state acceptors for the
grammars listed above. The start state is indicated by a free arrow with an “S.” Double
circled states are “accept” states, which means the string processed up to here is a legal
one. Single circled states are “reject” states, which means the string processed up to here
is an illegal one. The Tomita grammars have been used by researchers in the field as
benchmark problems for testing grammatical inference algorithms. The vending machine
problem was used as a test for non-binary alphabet grammars (in this case, the alphabet
size is 3). The 10-state machine example is the most complex one in the experiments, and

was used to test the scaling ability of our inference algorithm.

0.1

©
S

(a) Tomita Grammar #1. (b) Tomita Grammar #2.

(c) Tomita Grammar #3.

(d) Tomita Grammar #4.

Figure 2.1: Finite state machine representations of regular grammars.

15

(e) Tomita Grammar #35.

S
(g) Tomita Grammar #7.
25¢
10c 10c 10c 10c
OO @@ = @@
25¢ 25¢ 10c,25¢

25¢
5¢,10¢,25¢

5c,10c,25c

(h) Simple vending machine model.

Figure 2.1: Continued.

16

(i) A 10-state machine model.

Figure 2.1: Continued.

17

Outputs
Output Units
A
|
|
|
|
|
I
Hidden Units S(t)
7~
AN
7/ ~
’ ~o
7/ ~
s ~o
/7 N
s S~
Z ~
Context Units S(t-1) Input Units

Inputs

Figure 2.2: The Elman “simple recurrent network” structure.

2.2 First-Order Recurrent Networks

Jordan proposed a recurrent network architecture which uses the basic framework of
Fig. 1.2, but restricts the connections by only allowing feedback from the output layer to
the input layer [Jor86a, Jor86b]. The structure showed promising results in learning to
associate a static pattern with a serially ordered output pattern. Based on that, Elman
proposed the well-known “simple recurrent network” structure in [Elm90, Elm91], shown
in Fig. 2.2. In the figure, dotted lines represent a set of fully connected trainable weights
between the two layers connected. There are the same number of units in the “context”
layer as in the “hidden” layer. The feedback connections represented by a solid line are
one-for-one. If we use S(¢) to denote the hidden units at time ¢, then the context units
are the hidden units delayed by one time step, indicated in the figure by S(¢ — 1). The
input units are an unary coded representation of the alphabet of the language, so are the
output units. During training, each example string is fed to the network through the input

units one symbol at a time. At each time step, the output units are trained to produce

18

the correct prediction on the symbol that follows based on the S(t) values. After each
time step, the S(¢) units are copied back to the S(¢ — 1) units to preserve the “state”
information. The Elman structure has been shown to successfully learn a simple regular
grammar, the Reber grammar, details of which will be discussed in Chapter 4.

Both the Jordan and Elman structures are variations (or restricted forms) of the basic
structure of Fig. 1.2. Note that all delay elements on the feedback links are omitted for
the sake of brevity. Henceforth, any feedback link shown in the figures implies that there
is a one time step delay associated with it. We will call this type of structure first-order
recurrent networks, referring to the fact that the activation of any unit is a first-order (or
linear) combination of activations of other units (which may or may not include itself),
shaped by the activation function.

Experiments with the Elman structure in learning the Tomita grammars have shown
great difficulties on the network’s part[ZGS93]. For reasons that will be discussed in the
next section, we turn to another type of structure, the second-order recurrent networks for
our detailed study. It turned out that the average convergence time of the Elman network

is several orders of magnitude longer than that of second-order recurrent networks.

2.3 Second-Order Recurrent Networks and Equivalent Rep-
resentations

Giles et al. have proposed a “second-order” recurrent network structure to learn regular
languages [GSCT90, GMC*92a]. A typical network is shown in Fig. 2.3, for the case of
binary alphabet grammars. Henceforth, all references to second-order recurrent networks
imply the network structure described in [GSC*90] and [GMC*92a].

Different from the structure shown in Fig. 1.2 is the “product layer,” (the layer of units
with “X”’s in the figure) where each node in the layer corresponds to the product of an
input unit and a “state” unit. A product, of course, is a second-order term.

In operation, a string of symbols is fed through the input line to the network one time
step at a time. At each time step, either of the input nodes “0” or “1” is on, the product
layer and the hidden layer activation values (5%’s) are calculated. At the end of a time
step, the 5* values are fed back to the S?=! units to be used for the next time step.

Since the input symbols are unary-coded in the input layer, and only one input unit

is on at any given time step, the second-order network can be represented as two separate

19

copy

Figure 2.3: A second-order recurrent network structure.

e e e e o o o e e o e o e e . e . e]

Figure 2.4: Equivalent first-order structure of second-order network

first-order networks controlled by a gating switch (Figure 2.4) as follows: the network
consists of two first-order networks with shared hidden units. The common hidden unit
values are copied back to both net0 and netl after each time step, and the input stream
acts like a switching control to enable or disable one of the two nets. For example, when
the current input is 0, netO is enabled while netl is disabled. The hidden unit values
are then decided by the hidden unit values from the previous time step weighted by the

weights in net0.

The hidden unit activation function is the standard sigmoid function, f(z) = Wi-:f

Note that this representation of a second-order network, as two networks with a gating

function, provides insight into the nature of second-order nets, i.e., clearly they have

21

greater representational power than a single simple recurrent network, given the same
number of hidden units. In the structural sense, it is also closer to the representation
of a finite state machine: different sets of connection weights are used for different input
symbols, just as a finite state machine has different sets of transition rules for different
input symbols.

This structure was used in our initial experiments.

2.4 The “Unstable State” Behavior of a Learned Second-
Order Analog Network

2.4.1 Training Process

Since there is effectively only one layer in the network, we use the superscript to represent
time instead of layer index as in Chapter 1. So S! denotes the activation value of hidden
unit number ¢ at time step £. For weights, the superscript is used to represent the index of
the subnetwork it is in. So w is the weight from unit §;~" to unit 5} in netn. n € {0,1}
in the case of binary inputs.

Hidden node S§ is chosen to be a special indicator node, whose desired activation is
close to 1 at the end of a legal string, and close to 0 otherwise. At time ¢ = 0, initialize S
to be 1 and all other S?’s to be 0, i.e., assume that the null string is a legal string. The
network weights are initialized randomly with a uniform distribution between -1 and 1.

A training set consists of randomly chosen variable length strings with length uniformly
distributed between 1 and L., where L,q; is the maximum training string length.
Each string is marked as “legal” or “illegal” according to the underlying grammar. The
learning procedure is a gradient descent method in weight space (similar to that proposed
by Williams and Zipser [WZ89]) to minimize the error at the indicator node at the end of
each training string [GMC*92a].

In a manner different from that described in [GMC*92a], we present the whole training
set (which consists of 100 to 300 strings with L,,,, in the range of 10 to 20), all at once
to the network for learning, instead of presenting a portion of it in the beginning and
gradually augmenting it as training proceeds. Also, we did not add any end symbol to the
alphabet as in [GMC%92a]. Details of the training process is described in Appendix A.
We found that the network can successfully learn the machines (2-10 states) we tested

on, with a small number of hidden units (4-5) and less than 500 epochs, agreeing with

22

the results described in [GMC*92a].

2.4.2 Analysis of Network Behavior During Training

To examine how the network forms its internal representation of states, we recorded
the hidden unit activations at every time step of every training string in different training
epochs. As a typical example, shown in Figure 2.5(a)-(e) are the So — S5 activation-space
records of the learning process of a 4-hidden-unit network. The underlying grammar was
Tomita #4, and the training set consisted of 100 random strings with L., = 15. Note
that here the dimension Sy is chosen because of it being the important “indicator node,”
and 53 is chosen arbitrarily. The observations that follow can be made from any of the
2-D plots from any run in learning any of the grammars in the experiments. Iach point
corresponds to the activation pattern of a certain time step in a certain string. Each plot
contains the activation points of all time steps for all training strings in a certain training

epoch as described in the caption. The following behavior can be observed:

1. As learning takes place, the activation points seem to be pulled in several different

directions, and distinct clusters gradually appear (Figure 2.5(a)-(e)).

2. After learning is complete, i.e., when the error on each of the training strings is
below a certain tolerance level, the activation points form distinct clusters, which

consist of segments of curves (Figure 2.5(e)).

3. Note in particular that there exists a clear gap between the clusters in the Sp (indi-
cator) dimension, which means that the network is making unambiguous decisions

for all the training strings and each of their prefix strings (Figure 2.5(e)).

4. When given a string, the activation point of the network jumps from cluster to
cluster as input bits are read in one by one. Hence, the behavior of the network

looks just like a state machine’s behavior.

2.4.3 Analysis of Network’s Internal Representation

It is clear that the network attempts to form clusters in activation space as its own
representation of states and is successful in doing so. Motivated by these observations, we

applied the k-means clustering algorithm[McQ67] to the activation record in activation

23

3 $3 $3

100k ' ' - 1.00}] 1roof §

0sof 1 osof . 1 osof .]
i] L .,] i ' Teie]
B] 5] N Ry

0.60 A prpre—] 0.60 3] 0.60 - L . l.’i‘ i
5 -t w e L. r - P . .

040 U 1 gu0f 1 o4of L E s-xi 1
- 1 - 1 - R, 1
[] :] i “fa]

020F 1 o2f 1 o2f %&]

0-()O:I L 1 L 1 I_ ovOO:l L L 1 1 l: 0'00-| 1 L L 1. I:
000 020 040 060 080 1000 000 030 040 060 080 100°0 000 020 040 060 080 1.00°0

(a) (b) (c)
$3 $3 3

Loof 1 1oof 1 1oof]
[v] e] - 1
- - - = \\ . -t - -
[‘-\\’%..] LN] C]

osof %% 1 osof 4 osof]
X . C o] []

060} *N] osof \ 1 oeof Y

040F w1 o4 1 o4 w o
X "a‘] L _ L e Sy
L - - *. o = 'e.. ‘2. 4

-] i 0y

X .\ - YUy] 0\]

0:20f y 1 oxf WV of Y
[N] L X\ N]

0'00 | 1] 1 1 1 1] 0.00 N Il 1 k. 1. 1 1] 0-00 [1. L I L 1 \l]
000 020 046 060 080 T.00°0 0.00 020 040 060 080 1.00°0 000 030 040 060 080 T.60°0

(d) (e) ()

Figure 2.5: Hidden unit activation plot Sy — S3 in learning Tomita grammar #4. (S is
the z axis.) (a)-(e) are plots of all activations on the training data set. (a)During lIst
epoch of training. (b)During 16th epoch of training. (c)During 21st epoch of training.
(d)During 31st epoch of training. (e)After 52 epochs, training succeeds, weights are fixed.
(f)After training, when tested on a set of maximum length 50.

24

space of the trained network to extract the states (instead of simply dividing up the space
evenly as in [GMC1*92a]). In choosing the parameter k, we found that if £ was chosen too
small, the extracted machine sometimes could not classify all the training strings correctly,
while a large k& always guaranteed perfect performance on training data. Hence, k& was
chosen to be a large number, for example, 20.

T he initial seeds were chosen randomly. We then defined each cluster found by the
k-means algorithm to be a “state” of the network and used the center of each cluster
as a representative of the state. The transition rules for the resulted state machine are
calculated by setting the Sf"l nodes equal to a cluster center, then applying an input
bit (O or 1 in the binary alphabet case), and calculating the value of the S} nodes. The
transition from the current state given the input bit is then to the state that has a center
closest in Euclidean distance to the obtained S¢ values. In all our experiments, the resulted
machines were several states larger than the correct underlying minimal machines.

Moore’s state machine reduction algorithm was then applied to the originally extracted
machine to get an equivalent minimal machine which accepts the same language but with
the fewest possible number of states. Similar to the results in [GMC*92a], we were able
to extract machines that are equivalent to the minimal machines corresponding to the
underlying grammars from which the data was generated.

As an example, Fig. 2.6(a) shows the extracted state machine from the same trained
network as used in the previous subsection, and (b) shows the equivalent minimal state

machine, which is the same as in Fig. 2.1(d).

2.4.4 Analysis of Network Behavior During Testing

These trained networks perform well in classifying unseen short strings (not much longer
than Ly,,;). However, as longer and longer strings are presented to the network, the
percentage of strings correctly classified drops substantially. Shown in Figure 2.5(f) is the
recorded activation points for So-53 of the same trained network from Figure 2.5(e) when
long strings are presented. The original net was trained on 100 strings with L., = 15,
whereas the maximum length of the test strings in Figure 2.5(e) was 50. Activation points
at all time steps for all test strings are shown.

Several observations can be made from Figure 2.5(e):

1. The well-separated clusters formed during training begin to merge together for longer

25

(b)

Figure 2.6: (a) Extracted state machine by clustering. (b) Equivalent minimal machine.

26

Performance Curve of an Analog Network
Percentage Correct

T T T
100.00 - "

90.00

80.00 -~ -

70.00 - -

T
1

60.00

50.00 - .

40.00

T
i

30.00 -

20.00

10.00 -

0.00

T
{

log(L._max)
le+01 1e+02 1le+03

Figure 2.7: The performance curve of a learned second-order network on Tomita Gram-
mar #4.

and longer strings and eventually become indistinguishable. These points in the

center of Figure 2.5(e) correspond to activations at time steps longer than L4, = 15.

2. The gap in the Sy dimension disappears, which means that the network could not

make hard decisions on long strings.

3. The activation points of a string stay in the original clusters for short strings and
start to diverge from them when strings become longer and longer. The diverging

trajectories of the points form curves with sigmoidal shape.

Fig. 2.7 shows the performance of the same trained network from Figure 2.5(e) tested
on randomly generated string sets with different maximum lengths. The x-axis is the
maximum string length of the test set in log scale, the y-axis is the percentage of correct
classifications by the trained network. Each point on the curve corresponds to a perfor-

mance on a test set consisting of 500 strings. As can be seen, as the test strings become

27
longer, the network’s performance drops significantly. Note that since the test sets are
randomly generated, with uniform string length distribution from 1 to Ly,qz, each set con-
tains a certain number of “not too long” strings compared to the training set, for which
the network has a better chance in producing the right answers. So had we tested it on
pure “long” string sets, the performance would have been even worse.

Similar behavior was observed for 14 out of 15 of the networks successfully trained on
different machines, excluding the vending machine model. (Similar behavior in other types
of recurrent networks has been found in different contexts [SSCM91, Pol91].) Some of the
networks started to misclassify as early as when the input strings were only 30% longer
than L,,.;. Fach of these 14 trained networks made classification errors on randomly
generated test sets with maximum string length no longer than 5L,,,;. The remaining
one network was able to maintain a stable representation of states for very long strings (up
to length 1000). Note that the vending machine was excluded because it’s a trivial case
for long strings, i.e., all the long strings are legal strings so there’s no need to distinguish

between them. This is not the case for the other machines.

2.5 A Network That Can Form Stable States

From the above experiments it is clear that even though the network is successful in
forming clusters as its state representation during training, it often has difficulty in cre-
ating stable clusters, i.e., forming clusters such that the activation points for long strings
converge to certain centers of each cluster, instead of diverging as observed in our experi-
ments. The problem can be considered as inherent to the structure of the network where
it uses analog values to represent states, while the states in the underlying state machine
are actually discrete. One intuitive suggestion to fix the problem is to replace the analog

sigmoid activation function in the hidden units with a threshold function:

1.0 ifz>0.5
D(z) = { 0.0 ifz<0.5. (2.1)

In this manner, once the network is trained, its representation of states (i.e., activation
pattern of hidden units) will be stable and the activation points won’t diverge from these
state representations once they are formed. However, there is no known method to train

such a network, since one cannot take the gradient of such activation functions.

28

A alternative approach would be to train the original second-order network as de-
scribed earlier, but to add the discretization function D(z) on the copy back links during
testing. The problem with this method is that one does not know a priori where the
formed clusters from training will be. Hence, one does not have good discretization values
to threshold the analog values in order for the discretized activations to be reset to a
cluster center. Experimental results have confirmed this prediction. For example, after
adding the discretization, the modified network cannot even correctly classify the training
set which it has successfully learned in training. As in the previous example, after training
and without the discretization, the network’s classification rate on the training set was
100%, while with the discretization added, the rate became 85%. For test sets of longer
strings, the rates with discretization were even worse.

Note that another alternative approach is to use a conventional analog network in
training and to then apply various clustering techniques in the hidden unit activation
space (after learning) to enforce stability] GMC%92a]. While this is a valid approach, here
we are more interested in constructing a network that stabilizes itself (or equivalently,
automatically performs the clustering) during the learning process. (Das et al.[DM94] have
recently proposed a structure where adaptive ciustering is performed during learning.)

We propose that the discretization be included in both training and testing in the
following manner: Figure 2.8 shows the structure of the network with discretization added.

From the formulae below, one can clearly see that in operational mode, i.e., when

testing, the network is equivalent to a network with discretization only:

b= fQwE S, Vi, (2.2)
J
St = D(hY), where D(z) = { i —¢ E:i i 82’ (2.3)
=81 = DS wisi™))
J
= DO(JZ wfjtS;_l), where Dgy(z) = { i— c 111:2 i gg (2.4)

(Here ¢ is some constant, z* is the input bit at time step {. We use Al to denote the

analog value of hidden unit 7 at time step ¢, and S? the discretized value of hidden unit i

|

29

copy

copy

————————_ ————— ot — o 7o T o i st s o e o st s s sl

Figure 2.8: A combined network with discretizations

30

at time step t.)

Hence, the sigmoid nodes can be eliminated in testing to simplify computation.

During training, however, the gradient of the soft sigmoid function is made use of in a
pseudo-gradient method for updating the weights. The next section explains the method
in more detail.

It is found that the value of the constant ¢ can be set to any value between the range
of 0 and 0.25 without much difference in the network’s performance. A larger value of ¢
results in too small a difference between the two threshold values, which makes it difficult
for the network to learn. We use the value 0.2 throughout the experiments in this thesis.

By adding these discretizations into the network, one might argue that the capacity
of the net is greatly reduced, since each node can now take on only 2 distinct values,
as opposed to infinitely many values (at least in theory) in the case of the undiscretized
networks. However, in the case of learning discrete state machines, the argument depends
on the definition of the capacity of the analog network. In our experiments, 14 out of
15 of the learned networks have unstable behavior for nontrivial long strings, so one can
say that the capabilities of such networks to distinguish different states may start high,
but deteriorate over time, and would eventually become zero. Section 2.9 discusses the

capacity of discrete and recurrent networks with stable representations.

2.6 The Pseudo-Gradient Learning Method

1 ...,z%, the mean squared error is calcu-

During training, at the end of each string: 2%,z
lated as follows (note that L is the string length, A} is the analog indicator value at the

end of the string):

E= _;_(hg ~-T)?, (2.5)
where
T = target = { (1) ii :iﬁi?;.” (2.6)
Update wj;, the weight from node j to node ¢ in metn, at the end of each string
presentation: -
Wl =l — adl ¥ n,i,J, (2.7)

oJw?n

ij

31

~L
Ohg .
- T)-a—t;:—g, V n,t, 7, (28)

where « is the learning rate, and 5—3; is what we call the “pseudo-gradient” with
i

respect to w

;- «ais chosen to be 0.5 in our experiments. Too large an « may create

oscillations in training, and thus lead to non-convergence, while a smaller o makes the
learning and convergence speed slower
To get the pseudo- gra,dlent =) o~ , pseudo-gradients %—k— for all ¢, k need to be calculated

ij
forward in time at each time step.

2 h, y
awk =f' Zwk; 8ln + 61i0 xtS Y, Vi, jn,kt. (2.9)
] 'i
~0
(Initially, set: gzﬁ =0, Vi, j,n,k.)
ij

As can be seen clearly, in carrying out the chain rule for the gradient we replace
o~ pe]

the real gradient —;‘t;—l, which is zero almost everywhere, by the pseudo-gradient _hulZ“
A heuristic justification of the use of the pseudo-gradient is as follows: suppose we a;re
standing on one side of the hard threshold function §(z), at point 2 > 0, and we wish to
go downhill. The real gradient of §(z) would not give us any information, since it is zero
at zg. If instead we look at the gradient of the function f(z), which is positive at zg and
increases as zg — 0, it tells us that the downhill direction is to decrease zg, which is also
the case in S(z). In addition, the magnitude of the gradient tells us how close we are to
a step down in S(z). Therefore, we can use that gradient as a heuristic hint as to which
direction (and how close) a step down would be. This heuristic hint is what we used as
the pseudo-gradient in our gradient update calculation.

Note that the training process described here is very similar to the training described
in Appendix A for analog networks. Besides the difference in taking the gradients, the
stopping criteria for the two types of networks are different. Unlike the analog network
training, the discrete network training does not require a preset error threshold as the
stopping criterion. Learning is stopped only when the discrete indicator unit S, makes no

error on all training strings.

2.7 Experimental Results

32

training set # of | mean mean #
grammar # of hidden | # of o of of total
strings | Lpq | units | epochs | epochs | characters
Tomita #1 50 5 4 36.4 33.4 5205
Tomita #2 100 8 4 38.8 27.3 18120
Tomita #3 150 12 4 82.8 43.2 77040
Tomita #4 100 8 4 76.6 27.0 31712
Tomita #5 100 8 4 64.4 20.7 26662
Tomita #6 100 8 4 20.8 8.3 8611
Tomita #7 100 10 4 138.5 31.1 70774
Vending machine 365 6 5 231.8 22.4 383165
10-state machine 317 12 8 5798 — 14315262

Table 2.1: Experimental results from training the discrete recurrent network on regular
grammars. Lpq, i8 the maximum length of training strings. The numbers for epochs
and total characters processed during learning are the average numbers over 5 runs with
different random weight initializations, except for the 10-state machine, for which only
one run was obtained. o is the standard deviation of the epochs over the 5 runs. All runs,
except one in learning Tomita #3 and one in learning Tomita #7 which failed to converge,
have perfect generalization performance, i.e., 100% correct on strings of any length.

Table 2.1 shows the experimental results obtained by training the discrete recurrent
network by the pseudo-gradient learning method on various grammars. An epoch is one
presentation of the whole training set to the network. The total number of characters
processed is the cumulative count of all characters in all strings presented to the network
in all training epochs. The results in Table 2.1 demonstrate that the discrete recurrent
network model can be successfully trained to recognize simple grammars. Furthermore,
because of its discrete nature, the network is inherently stable for strings of arbitrary
length. The scaling of the network training time with respect to the complexity of the

language being learned agrees with the theoretical results described in Section 1.1.

Shown in Figure 2.9(a),(b),(c) are the hg — hg activation-space records of the learning
process of a discretized network (h values are the undiscretized values from the sigmoids).
The underlying grammar is again the Tomita Grammar #4. The parameters of the net-
work and the training set are the same as in the previous case. Again, any of the other
2-D plots from any run in learning any of the grammar in the experiments could have

been used here.

Figure 2.9(c) is the final result after learning, where the weights are fixed. Notice that

33

13 13
1.00F] 1oof]

i] i -]
080] osof- .]
060} i] 060F -~ -

i =)] i]

C o srraget O] A Lo]
040F -] 040F]

C -] [- e]
020} ; 020f -]

5 i L - —— J
O.OO—I 1 1 i 1 I- O-OO-I L 1 L 1 l- o

000 020 040 060 080 100"° 0.00 020 040 060 080 100"

(a) (b)
13 $3
1.oof] 1.00F]
0s0F] 080F]
0.60F] osof]
o.40f] 040F]
020F] 020}]
O-OO:I 1 1 1 L l- O.OO:I 1 1 1 1 l-
000 020 040 060 080 T.oo20 000 020 040 060 0806 1000

(c) (d)

Figure 2.9: Discretized network learning Tomita grammar #4. (a)ho— hs during 1st epoch
of training. (b)ho — hsz during 15th epoch of training. (c)ho — hs after 27 epochs when
training succeeds, weights are fixed. (d)So — 53, the discretized copy of hg — hs in (c).

(b)

Figure 2.10: Extracted state machine from the discretized network after learning Tomita
grammar #4. (double circle means “accept” state, single circle means “reject” state.)
(a)6-state machine extracted directly from the discrete activation space. (b)Equivalent
minimal machine of (a).

there are only a finite number of points in the final plot in the analog activation h-space
due to the discretization. Figure 2.9(d) shows the discretized value plot in Sy — 53, where
only 3 points can be seen. Each point in the discretized activation S-space is automatically
defined as a distinct state, no point is shared by any of the states. The transition rules are
calculated as before, and an internal state machine in the network is thus constructed. In
this manner, the network performs self-clustering. For this example, 6 points are found in
S-space, so a 6-state-machine is constructed as shown in Figure 2.10(a). Not surprisingly
this machine reduces by Moore’s algorithm to a minimum machine with 4 states which is

exactly the Tomita Grammar #4 (Figure 2.10(b)).

As an example of the ability of the network to learn grammars of medium complexity,

35

(a) (b)

Figure 2.11: Extracted state machine from the discretized network after learning the 10-
state machine: (a) 15-state machine extracted directly from the discrete activation space,
(b) equivalent minimal 10-state machine of (a). Note that the state structure in (a) and
(b) are quite similar, for example, states 1 and 6 in (a) are equivalent to 10 in (b), and
states 12, 13, and 14 in (a) play a similar role to state 7 in (b).

36

Figure 2.11(a) shows the effective automaton learned by the network trained on strings

from the 10-state machine. Application of Moore’s algorithm to this 15-state network

automaton results in a reduction to the correct 10-state machine shown in Figure 2.11(b).
Similar results were observed for all the other grammars in the experiments.

There are several advantages in introducing discretization into the network:

1. Once the network has successfully learned the state machine from the training set,
it’s internal states are stable. The network will always classify input strings correctly,

independent of the length of these strings.

2. No clustering is needed to extract out the state machine, since instead of using vague
clusters as its states, the network has formed distinct, isolated points as states. Fach
point in activation space is a distinct state. The network behaves ezactly like a state

machine.

3. Experimental results show that the size of the state machines extracted out in this
approach, which need not be decided manually (no need to choose k for k-means) as
in the previous undiscretized case, are of a much smaller size than found previously

by the clustering method.

It should be noted that convergence has a different meaning in the case of training
discrete networks as opposed to the case of training analog networks. In the analog
networks’ case, learning is considered to have converged when the error for each sample is
below a certain error tolerance level. In the case of discrete networks, however, learning is
only stopped and considered to have converged when zero error is obtained on all samples
in the training set. In the experiments reported in this chapter the analog tolerance level
was set to 0.2. The discretized networks took on average 30% longer to train in terms of

learning epochs compared to the analog networks for this specific error tolerance level.

2.8 Empirical Investigation of the Pseudo-Gradient Learn-
ing

Theoretical analyses of learning in recurrent networks can be quite non-trivial. In par-

ticular, analytical investigation of our proposed pseudo-gradient method for recurrent

37

20

o

g0

80

143

¥0

I5ROKU] 1011 PIIBINUNOIY —e—

9528108Q 10113 POIBNUIMOY - --

SO 000D JO LOHORL

saquiny yood3

2SE0U JOMT PARINWIDIY =

BSEB108() JOHT PBIBINUIMIY ~~---

SBAOW 00D JO LORIRL e

50

g0

20u3 1
afBumn
S emmmung
[
50
0
S0
b
Jou3zuy
abumio
S1 aagemuing
[

0

[

20

¥o F

g0

80

G0

8628100 JOLIT PBIRINUNOIY —4—

3588008(10113 PABINOOY-- ~ -

SSAON POOD) JO UOHORIS —

4 g0

L

J g

=3

g

52BN 01T DREINLNIOY —e—

2589.08(] JOLT POEINUNCOY . e e

SSOW POOD JO UOIIOE) fmmmm

g0

G

Figure 2.12: Statistical record of the pseudo-gradient learning of regular grammars.

(a)Tomita #3. (b)Tomita #5. (c)Tomita #7. (d)The vending machine.

38

networks, appears intractable. Hence, we are limited to empirical evidence to support our

claim that the method indeed appears to work well on non-trivial problems.

Figures 2.12(a) — (d) show the typical learning processes of 4 of the grammars de-
scribed in Section 2.1 (plots of other grammars and of networks with different initial
conditions have similar features and are not shown.) During each epoch of learning, the
training strings are presented to the network one by one. In processing each string, pseudo-
gradients are calculated and all weights are updated accordingly if the network makes an
erroneous decision on that string. After each such weight update, we test the network
with the new set of weights on the same string and thus a new error is calculated. If the
new error is smaller than the old one, we can then conclude that the pseudo-gradient has
successfully decreased the error on this specific string as it was intended to, otherwise, we
count it as a failure, or “bad move.” Thus, the total fraction of “successful moves” (out
of the total number of weight updates) induced by the pseudo-gradient algorithm can be
calculated for each epoch. In each of the plots, the solid curve corresponds to this fraction

of “good moves” as a function of the epoch number.

To evaluate the severity of the effect of all the “bad moves,”

we also record the mag-
nitude of each error increase or decrease on a string after each weight update, and sum
the error increases and decreases for each epoch. The lower dotted curve in each of the
plots corresponds to the summation of all the error increases (or the cumulative effect of
all “bad moves”) as a function of epoch number, while the remaining oscillating curve is
the summation of all error decreases (“good moves”) per epoch. The training set and the
number of hidden units used for each grammar are the same as in Table 1.

It is clearly evident that the pseudo-gradient algorithm induces successful moves over
80% of the time. In addition, when bad moves occur, their cumulative effect per epoch
is always smaller (and often much smaller) than the cumulative effect of the successful
moves, except during one epoch while learning the Tomita #7 grammar. Hence, the
empirical evidence clearly indicates that the overwhelming tendency of the pseudo-gradient
algorithm is to reduce the error on a per-string and per-epoch basis.

Considering the bad moves individually, the magnitude of an error increase by a single
bad move is on average much larger than an error decrease caused by a single successful
move — however it is the cumulative eflect that accounts for the convergence of the

learning. Also note that the bad moves do not necessarily occur more frequently as the

39

grammars become more complicated.
In conclusion, our empirical investigations have shown that although following the
pseudo-gradient descent direction does not guarantee error reduction, it is certainly an

effective way to conduct the training of discrete recurrent networks.

2.9 On the Capacity of Recurrent Networks for Finite
State Machine Representation

In this chapter, we have explored the ability of recurrent networks in learning to simulate
finite state machines. It is then of great interest to look at the problem from a different
perspective: what is the capacity of such networks in representing finite state machines?
In other words, if we know the finite state machine before hand, and are asked to construct

a network to represent this machine specifically, how large does the network need to be?

2.9.1 Discrete Networks

For the case of discrete networks, where threshold units are used, Alon et al. give us the
following results for first-order networks in [ADO91}:

Let m the number of states in a finite state machine, let Ki(m) be the number of
threshold units needed for a first-order network to represent the m-state machine with

binary input alphabet, then:

o If there are no restrictions on how complicated individual threshold units can be,

then
0 ((mlog(m))%) < Kqiy(m) <O (m%) . (2.10)
o If the weight alphabet of the network is limited, or if any threshold unit is only
allowed a limited number of fan out connections, then the lower bound changes to

Ky(m) > O ((mlog(m))?) . (2.11)

o If any threshold unit is only allowed a limited number of fan in connections, or if
the weight and threshold alphabets and the fan out connections are all limited, then

the lower bound changes to

40

Ky(m) > O(m). (2.12)

¢ Every m-state machine can be built with a discrete network with 2m + 1 units, which
has a fixed weight alphabet {—1,0,1}, a fixed threshold alphabet {1,2}, and fan out

connections of at most 3.

These results are derived for first-order networks, with direct connections from “current
state” units to “next state” units. The arguments are based on a simple counting method
with the number of changeable weights as the main factor of concern.

The results can be easily generalized to second-order networks as follows: A second-
order network can be represented equivalently as two first-order networks with shared
hidden units (see Section 2.3). Or one can view it as a first-order network with twice
as many units, some of whose units and weights are tied together. Thus a second-order
network is at most as powerful as a first-order network with twice as many units. Let
Ky(m) be the number of units needed for a second-order network to represent an m-state
machine. From the above argument, we have: Ky(m) < K1(m/2). That is, the above
lower bounds derived for Ky(m) also hold for K3(m) in orders of magnitude. The same is

true for machines with non-binary inputs.

2.9.2 Analog Networks

Unlike a threshold unit in a discrete network, a unit in an analog network can have
infinitely many possible activation values. One may conclude that if there is a stable state
representation in the analog network for a state machine, it should require less units than
its discrete counterpart.

Contrary to the above speculation, the following results show that if the network is
to have stable state representations, and if it uses “cluster centers” for each state (i.e.,
single, isolated points for state representation), then it is no more capable (in orders of

magnitude) than a discrete network to represent finite state machines.

Theorem 2.1 If an analog recurrent network uses single points in activation space to

accurately represent states of a finite m-siate machine, then

K(m)> O(m) (2.13)

41

for both firsi-order and second-order networks.

Proof:

For a finite m-state machine with b-ary alphabet, each state has exactly b transitions
going from itself and leading to some other states (possibly itself). Thus there are in total
bm different transitions among the m-states.

If we assume that the network uses a single point in activation space to represent a
state in the finite state machine, then for a K unit network, each transition corresponds
to a set of K equations involving an activation point with K coordinates being mapped to
another activation point with K coordinates. Thus there are in total bm K independent
such equations.

The “unknowns” in these equations are the network weights, and the coordinates
of activation points for all states. Considering the thresholds in each unit as being an
adjustable “weight” also, the number of weights are K (K + 1) for the case of first-order
networks, and bK (K +1) for the case of second-order networks. The number of “unknown”
coordinates are mK. So the total number of “unknowns” in these sets of equations are
K(K+1)+mK and bK(K + 1)+ mK for first-order networks and second-order networks,
respectively.

The existence of a solution for the bm K equations requires:

K(K 4+ 1)+ mK > bmK for first-order networks, and

bK (K + 1)+ mk > bmK for second-order networks.

So we have:

K(m) > (b—1)m — 1 for first-order networks, and

K(m)> Q’:%)Z’l — 1 for second-order networks.

If the network uses more than 1 point to represent some of the states, let the total
number of activation points to represent all m-states be m’, then the network has effectively
a representation of a m/'-state machine (m’ > m), which minimizes to a m-state machine.
Using similar arguments from above, we have:

K(m)>(b—-1)m'—1> (b—1)m — 1 for first-order networks, and

K(m) > (—b—?—})ﬂ’ -1> @Tﬁ — 1 for second-order networks.

Thus K(m) > O(m).

Q.E.D.

42

It remains an open question as to whether the network can use an infinite number of
points in a cluster to represent a state, and what the capacity is for such cases.

Note the above is only a lower bound on the capacity of a network to represent a
state machine, assuming that a stable representation exists. It does not provide us with
any information on whether there indeed exist such solutions in the set of equations
described above for all cases, nor does it tell us how easily such solutions can be found
by gradient descent. The analysis of the network dynamics is a very difficult task, and
appears to be intractable. We have seen from empirical experiments of ours and others’
in training analog networks to learn regular grammars that such perfectly stable solutions

are extremely difficult to find by gradient descent learning.

2.9.3 More Powerful Networks?

The results from the above two subsections show that under certain conditions, the number
of units needed to build a m-state machine from both discrete and analog networks can
be linear in m.

These results are based on network structures which map “current state” units directly
into “next state” units. Thus the mapping is inherently limited from the well known result
for feedforward networks described in Chapter 1. To achieve an arbitrary mapping, an
intermediate layer of units is necessary. On the other hand, adding an intermediate layer
of units itself results in a larger sized network. Whether the capacity of the network can
be increased significantly by adding just a few intermediate units is still an unanswered
question, i.e., we do not know if by adding intermediate units, the total number of units

needed for a network to represent a m-state machine can be smaller than linear in m.

2.10 Summary

In this chapter we explored the formation of clusters in hidden unit activation space as
an internal state representation for analog second-order recurrent networks which learn
regular grammars.

These states formed by such a network during learning are not a stable representation,
i.e., when long strings are seen by the network the states merge into each other and
eventually become indistinguishable.

We suggested introducing hard-limiting threshold discretization into the network and

43

presented a pseudo-gradient learning method to train such a network. The method is
heuristically plausible. The available empirical evidence indicates that the pseudo-gradient
learning algorithm is effective in training such a network. Experimental results show that
the network has similar capabilities in learning finite state machines as the original second-
order network, but is stable regardless of string length since the internal representation of
states in this network consists of isolated points in activation space.

The proposed pseudo-gradient learning method suggests a general approach for train-
ing networks with threshold activation functions.

We will see in the following chapters two extensions to the discrete recurrent network
structure, as well as extensions to the pseudo-gradient learning for higher level language

inference tasks.

Chapter 3
Inference of Context-Free Grammars

In this chapter, we extend our discrete recurrent network structure discussed in Chapter 2
to include an external stack for the task of learning context-free or type 2 grammars.

We have observed from the previous chapter the unstable state behavior of an analog
second-order recurrent network in learning regular grammars. Similar behavior can be ob-
served from analog networks learning context-free grammars. The new discrete recurrent
network structure overcomes this difficulty by using isolated, discrete points in hidden
unit activation space to achieve stability for infinitely long strings. We will see that the
extended discrete structure for context-free language learning has similar advantages over
its analog counterpart.

The chapter is organized as follows: Section 3.1 reviews context-free grammars and
the corresponding pushdown automata. Section 3.2 discusses the analog recurrent net-
work structure with “analog” external stacks, and the stability problem associated with
it. Section 3.3 introduces discrete recurrent networks which use discrete external stacks.
Section 3.4 describes a composite error function to deal with various situations in training
networks with stacks. Section 3.5 extends the pseudo-gradient training algorithm neces-
sary for such models. Section 3.6 presents experimental results in learning deterministic
context-free grammars using the discrete stack model. Section 3.7 shows the results of
empirical investigations on the effectiveness of the extended pseudo-gradient learning. Sec-

tion 3.8 discusses effective ways to speed up training. Section 3.9 concludes the chapter.

3.1 Context-Free Grammars and Pushdown Automata

Context-free grammars represent a much wider class of languages than do regular gram-
mars — finite state machines are not sufficient enough to represent all such grammars.
The theory of finite automata and formal languages states that there exists a one-to-one
correspondence between context-free languages and pushdown automata[HU79]. Thus a
context-free language can be equivalently defined as the language accepted by its corre-

sponding pushdown automaton: P =< X, ', U, up, 8, B, F' >, where

e Y is the input alphabet.

o I'is the stack alphabet.

¢ U is a finite nonempty set of states.

ug is the start (or initial) state, ug € U.

e & is the state transition function; 6 : U X (¥ U A) x I' — the set of finite subsets of
UxTIr.

e B is the bottom of the stack symbol (B € T').
e Fis the set of final (or accepting) states (F' C U).

The current configuration of pushdown automaton P as defined above is described by

a triple < u,z,a >, where
o u is the current state.
e x is the unconsumed portion of the input string.
e « is the current stack contents (with the topmost symbol written as the leftmost).

A context-free grammar L can be defined by either a pushdown automaton P that
accepts via final state:
L=LP)={zeX|3reF Joael" 3 <up,z,B>F <r\a>},
or a pushdown automaton P’ that accepts via empty stack:
L=AP)={zeX|IrelU>s <up,z,B>F <r,AA>}
where F* means the configuration of the left-hand side can reach the configuration of the
right-hand side by a sequence of successive moves specified by the state transition function.
A subclass of context-free languages, deterministic context-free languages are defined
to be the languages recognized by deterministic pushdown automata. A deterministic
pushdown automata is a pushdown automaton P =< X, T,U,up, 9, B, F >, with the

following restrictions on the state transition function é:
o (Vae X)VAeT)(Yu € U)(8(u,a,A)is empty or contains just one element).

o (VAeTI')(VYue U)(6(u, A, A)is empty or contains just one element).

o (VAeT)(Vue U)(6(u,) A)%£ 0= (Va € £)(6(u,a, A) = 0)).

46

The above means that given a current automaton state, there cannot be more than
one choice of next state, so for any string, there is never any more than one path through
the machine. As in [DGS93], we further restrict the scope of deterministic context-free
grammars with the following restrictions: the alphabet of the stack symbol is the same as
the input alphabet, i.e., ¥ = I'; the language is accepted by a pushdown automaton P via
both final state and empty stack,ie., L ={z € ¥*|3r € F 3 < ug,z,B >F* < r, A\, A>};
only the current input symbol can be pushed onto the stack; A transitions (which can make
state transitions or stack actions without reading in a new input symbol) are not allowed.

In short, we consider a subset of deterministic pushdown automata, or deterministic
context-free grammars. The following simple lemma gives us a better idea of the scope
of languages we consider (by using both the stack and final state) in terms of languages

accepted via empty stack only.

Lemma 3.1 The set of languages accepted by deterministic pushdown automata via both
empty stack and final state is the same set of languages accepted by deterministic pushdown

automata via empty stack only.

Proof:

Let Lgr be the set of languages accepted by deterministic pushdown automata via
both empty stack and final state, and Lg and Lr be the set of languages accepted by
deterministic pushdown automata via empty stack and final state, respectively.

From definition,

Lsp=LsNLyp = LsrpCLg. (3.1)

On the other hand, any language accepted by a pushdown automaton
P =<¥T,U,u,6, B, F > via empty stack is accepted by a pushdown automaton P’ via
both empty stack and final state, where P’ is exactly the same as P except that F = U

(all states are final states). So we have:
Ls C Lgp. (3.2)

From (3.1) and (3.2), we have : Is = Lgp = Lg N L.
Q.E.D.
Although the above restrictions reduce the language class considered, nevertheless
this class retains the essential properties of context-free languages and is therefore more

complex than any regular language.

(a) The parenthesis matching grammar. (b) The a™b™ grammar.

Figure 3.1: Pushdown automata representations of context-free grammars.

We experimented with the same grammars as in [DGS93], i.e.,

o The parenthesis matching grammar, where the number of right parenthesis should
match the number of left parenthesis at the end of a string, and the former should

be smaller or equal to the latter at any point in a string.

o The postfix grammar, where an acceptable string of operators and operands has the

reverse Polish form.
o a™b".
o gmtnpmen,
o a"b"cb™a™.

Figures 3.1(a) and (b) show the corresponding pushdown automata for the parenthesis
matching grammar and the ab" grammar, respectively.

As in finite state machine representations, the start state is indicated by a free arrow
with an “S5,” single circled states are “reject” states. Double circled states are final
states, but are only possible “accept” states, since the criterion for a legal string has two
conditions: that the automaton ends up in a final state, and that the stack is empty, at

the end of processing the string. A transition rule is labeled by “x.y,z,” where x stands

48

for the current input symbol, y stands for the top-of-stack symbol (“-”

means an empty
stack), and z stands for the operation taken on the stack: “P5” means push, “PP” means

pop, and “-” means no action.

3.2 Analog Second-Order Recurrent Networks With Ex-
ternal Stacks

From the previous section we know that one needs to have an external stack to operate on
besides the finite state machine in order to represent context-free grammars. By training
a network to behave like a pushdown automaton we equivalently obtain a finite-state
machine with an external stack that accepts the corresponding context-free grammar.

Based on the original analog second-order structure (Figure 2.3), Das et al. have
proposed a second-order recurrent network structure which utilizes an external “continuous
stack” [DGS93] to learn deterministic context-free grammars.

Similar to the original analog second-order networks, this type of structure has a
stability problem in learning context-free grammars. As can be seen from the results
shown in [DGS93], the trained networks do not always show 100% correct classifications
on long test strings. In addition, the operations on the “continuous stack” are not directly
interpretable: in the defined continuous stack, each symbol in the stack was pushed in
with a certain “length” in the range of 0 and 1 associated with it. A pop action takes
out from the stack a set of symbols with total length 1. In the paper, it is claimed that
for most cases, at the end of training, the symbols that are pushed to the stack all have
lengths close to 1, so the stack operations simulates closely a conventional discrete stack’s
operations. However, one can easily imagine what happens when a very “deep” stack is
generated: since any symbol in the stack has a length smaller than 1 (no matter how
close to 1 it can be), each time a pop action is taken, a total length of exactly 1 worth
of symbols are taken out, which introduces a reduction in the length of the next symbol
on stack. This “error” accumulates, and eventually, the “pop” action will not take out
as “pure” a symbol as before, thus the stack operation becomes un-interpretable in the

conventional sense.

3.3 Discrete Recurrent Networks with External Stacks

49

top of stack

yoels
[BUINIX

Y
[013U0d

—__{pau

13 @

dod ‘ysnd

|
]
]
|
1
|
|
i
|
uonerodoou o |
I
|
I
1
|
L

——————————————_————_—————ﬂ

Figure 3.2: A discretized second-order network with an external stack. The thick circled
unit A} is the indicator unit: hf > 0.5 for legal strings and h§ < 0.5 for illegal strings.

50

To overcome the problems associated with the analog recurrent network, we extend
our discrete recurrent structure to include an external discrete stack. Shown in Fig. 3.2 is
the structure of a discrete recurrent network with an external stack for the case of binary
input and stack alphabets. The primary differences between this structure and the one
proposed in [DGS93] are that we have a discrete stack as well as discretized units.

In Fig. 3.2 we have in effect four first-order networks with shared hidden units. In
addition to the input symbol which acts as control to enable or disable netO or netl, the
current top-of-stack symbol also acts as a second gating control which enables or disables
net2 or net3. Note that if the stack is empty, then both net2 and net3 are disabled, a
situation that does not happen to the netO-netl pair.

As before, the unit hg is defined to be the “indicator” unit, whose desired activation is
greater than 0.5 at the end of a legal string and smaller than 0.5 otherwise. The last unit,
in this case hs, is singled out to be the “action” unit, whose activation decides what stack
operation to take. However, the value of this activation does not get copied back to the
next time step. If hy is greater than a certain value (for the experiments reported here it
is set to 0.6) then the current input symbol is pushed to the stack. If it is smaller than a
certain value (0.4 in our case), then a symbol is popped out of the stack. Otherwise no
action is taken.

The activation functions of the A units and the discretization function of the 5 units

are the same as defined in the previous chapter.

3.4 A Composite Error Function for Context-Free Gram-
mar Learning

The error functions for training networks with stacks to learn context-free grammars are
more complicated than for the simple grammars discussed in the previous chapter. Several
situations can be encountered during learning, each requiring the use of a different error
function. We start by basing our error functions on those proposed in [DGS93], but there
are some significant differences.

Let hg, b1, ..., hx be the hidden units of the network, where hg is the “indicator” unit
and hy is the “action” unit. Assume the current string being processed is z9, z1, ..., 2L,

where L is the string length. Let d* denote the depth of the stack at time step ¢, and a'

denote the top of stack symbol at time step ¢. The different error functions are as follows:

51

o For the case of a legal string:

— If the end of the legal string is reached (without any attempt to pop an empty
stack),

B = (1= B+ (d)2). (3.3)

This means that for legal strings we want both the indicator unit to be on and

the stack to be empty.

— If the network attempts to pop an empty stack at time step t < L when

processing the legal string,
1
E=g(1- A)? —dt. (3.4)

This means that for legal strings we want to correct the mistake of attempting
to pop an empty stack by forcing the action unit value away from 0, i.e., avoid
the “pop stack” action, and at the same time, encourage the stack to become

nonempty.
¢ For the case of an illegal string:

— If the end of the illegal string is reached (without any attempt to pop an empty
stack),

L gL .
= { hg — d~ if the stack is empty (3.5)

0 otherwise.
This means that for illegal strings we want either the stack to be nonempty, or

the indicator unit to be off.

— If the network attempts to pop an empty stack at time step ¢t < I when
processing the illegal string,

E=0. (3.6)

We do nothing in this case because the attempt to pop an empty stack is itself

considered an indication that the string is illegal.

Das et al. have suggested in [DGS93] that by providing the network with a “teacher”
or an “oracle” to give hints, the learning can be sped up significantly. The teacher or
oracle works as follows: there are certain illegal strings which are not prefixes to any legal

strings, i.e., any symbols that follow such strings do not provide any further information.

52

For example, strings that have a prefix “(()))” for the parenthesis matching grammar are
illegal no matter what comes after that prefix. Henceforth, we will call these strings “dead

»

strings.” The teacher is assumed to have the ability to identify such strings. Whenever
a point is reached in the input string such that no further processing of the remaining
string is necessary, the teacher produces a signal and the learning is halted. The network
is then trained to have another special hidden unit, designated as the “dead unit,” turn
on. After the network has been trained in this way, a string is considered to be classified
as illegal whenever the dead unit is turned on during testing. So the criterion for a legal
string in testing now has three conditions: the network is in a final state (indicator node
is on); the stack is empty; and the network’s dead unit is off. The error functions have to
be modified accordingly.

We found that it is not sufficient to add an error function only for the dead strings
and to keep the other error functions (3.3)-(3.6) the same. For strings other than the

dead strings, the network needs to be trained to have the dead unit turned off to avoid

confusion. More specifically, letting h¢ be the dead unit, we have:
e For the case of a legal string:

— If the end of the legal string is reached (without any attempt to pop an empty

stack, and the dead unit has not turned on before the end is reached),
1, ,
= 2((1- W + (@) + (W), (3.7)
i.e., we want the indicator unit to be on, the stack to be empty and the dead
unit to be off.
— If the network attempts to pop an empty stack at time step ¢ < I, and the
dead unit has not been turned on until now,
1
B=s(1- Ri)? = d. (3.8)
Here we do not try to force the dead unit to turn on or off because it has been
behaving as desired so far.

— If the dead unit turns on at time step ¢ < L, and there has not been any

attempt to pop an empty stack so far,

1 t\2
£ = S(h), (39)

53

i.e., we try to force the dead unit to turn off.
¢ For the case of an illegal string, but not a dead string:

— If the end of the illegal string is reached (without any attempt to pop an empty

stack, and the dead unit has not turned on before the end is reached),

(3.10)

- hy — db + L(h1)? the stack is empty
T L(Ab)? otherwise,

i.e., we want either the stack to be nonempty, or the indicator unit to be off,
and for both cases, the dead unit to be off. The dead unit should not be on for

such strings because they could be prefixes to certain legal strings.

— If the network attempts to pop an empty stack at time step ¢ < L, and the
dead unit has not been turned on until now,

E=0. (3.11)

We do nothing in this case for the same reason as the corresponding case without
the teacher, and because the dead unit has been behaving as desired so far.

— If the dead unit turns on at time step ¢ < I, and there has not been any
attempt to pop an empty stack so far,

E:Q%ﬁ (3.12)

We do not want the dead unit to turn on since the string up to this point could

still be a prefix to certain legal strings.

o If the string up to time step t < L is a dead string,

1001 _ pt)2 £\2) ‘q
- { i((1 hi)? + (h§)?) if the stack is empty (3.13)
2

(1 - hi)? otherwise.

This means we want the dead unit to turn on and either the indicator unit to turn

off or the stack to be nonempty.

3.5 The Extended Pseudo-Gradient Training

First of all, we need to define the operational equations for the network. Let af be the top

of stack symbol at time £. At each time step ¢, the network calculates

54

W= s s, v (3.14)
J J
1
where f(z)= pnpery
St = D(h}), (3.15)

1—¢ ifz>0.5
£ ifz <0.5

where D(z) = {

jszt = f(zwms; 1—-{-—2’(0”5; 1
= Do(> wg Sy wg;s*;*l), (3.16)
J 3

l—¢ ifz>0.0

where Do(z) = { e ife<00
d = d7'+ Di(hY), (3.17)

1 ifz>06

where Di(z)=+¢ -1 ifz<04 (3.18)

0 otherwise.

Again, as described in Chapter 2, the value of the constant ¢ is chosen to be 0.2 in our
experiments. Any value between 0 and 0.25 would result in similar performance.

The pseudo-gradients of the composite error function in weight space concern both
8wk for all ¢,k,m,1,7, and 3 8d

] U

before. To calculate the latter, i.e., the pseudo-gradient of the depth of the stack, we use

for all t,n,¢,j. The former is calculated the same way as

the iterative operational equation (3.17).

~0
Initially, set 835,1_ = 0 for all n,¢,j. After each time step, update:

2

-~ —~f—=1 1
od 8d~ dhy -

= ¥ nyi, g 1
gur, ~ dul | ol i (3.19)

Here, in place of the gradient of the piece-wise step function Dy, we still use the pseudo-
gradient of the action unit hy. Although the value of the action unit does not get dis-
cretized and copied back after each time step, its pseudo-gradient can still be calculated
by utilizing the pseudo-gradients of other hidden units:

For weights in the input-controlled subnetworks,

=~ N—-1 ~it-1 ~t-1
hiy . Ok « Oh, - o
8w:§ = f/ . (2 ’le 8’w Z NI Ow :‘Lj + 6N1(5nxts), Y t,w” (320)

(Similar equations can be derived for weights in the top-of-stack-controlled subnet-
works.)

In the above equation, we have left out a term concerning the top-of-stack symbol’s
dependency on the weights. Since a simple recurrent form of this term is analytically
impossible to derive, an approximation was used in [SCG190]. In our formula, the pseudo-
gradient is itself an approximation and so further fine tuning by this term may not be
necessary. FEmpirical results in the Section 3.7 will demonstrate that the networks can
indeed perform successful learning without this term in the formula. Thus, the coupling
between the stack and the network during learning is reflected only in the previous formula

for the gradient of the stack depth.

3.6 Experimental Results

As in [DGS93], a training set consists of all strings up to a certain length, with repeated
legal strings so that there are about half as many legal strings as illegal ones.

Table 3.1(a) and (b) show the detailed results for experiments with and without hints,
respectively. The numbers in each row are averages over the successful runs (out of 10
possible successful runs) with different initial conditions — a successful run is taken to
mean that the network generalizes perfectly for all string lengths. The number of overfit-
ting runs indicates the number of times in the 10 runs that the network overfits the data
by using too many internal states and did not generalize. The number of non-convergent
runs is the number of times in the 10 runs that the training had not converged after 1000
epochs and was halted. Note that the number of unsuccessful runs are significantly fewer
for the case with hints than without hints — hence, hints generally improve the reliability
of the learning procedure. It is still an open question as to how to avoid overfitting in gen-
eral by controlling the size of the derived automaton during learning. It should be noted
however that overfitting did not occur for 4 out of the 5 grammars in the experiments
when hints were provided.

The hidden unit sizes, Ly,q;’s and training set sizes shown in Table 3.1(a) and (b)

are the minimum sizes for which generalization could be obtained for each problem —

56

training set # of mean mean #
grammar # of hidden | N, | No | Ns | # of o of of total
strings | Lyee | units epochs | epochs | characters
Parenthesis 46 6 3 0 0 |10 288 16.3 5205
Postfix 63 7 4 1 019 62.3 17.1 21131
a™b" 32 6 4 2 0! 8 | 127.3 4.9 16797
a™trpm e 120 8 5 2 0| 8 63 36.0 7560
a™bmch™a™ 150 7 7 3 3 | 4 | 3288 | 249.1 243275
(a)
training set # of mean mean #
grammar # of hidden | N, | N, | Ns | #of | oof of total
strings | Lyae | units epochs | epochs | characters
Parenthesis 180 6 3 0 0 | 10| 12.0 10.5 11208
Postfix 371 7 4 4 2] 4 | 18.8 | 149.0 408464
a™b" 760 8 5 4 4 | 2 | 1505 | 87.5 793436

(b)

Table 3.1: Experimental results from training the discrete recurrent network on context-
free grammars (a) with hints; (b) without hints. The training set and hidden unit columns
indicate the fixed learning parameters for each grammar. 10 runs with different random
initial weights were carried out for each grammar. N,, the number of successful runs is
the number of runs (of the 10 possible) for which the trained network generalized perfectly
for strings of any length. The means for the epochs and total characters processed (and
the standard deviation for the epochs) were estimated only from the successful runs. N,,
the number of overfitting runs is the number where the network overfitted the data and
did not generalize perfectly. N, the number of non-convergent runs is the number of runs
where the network did not converge on the training data after 1000 epochs.

57

pop empty
stack

(b)

Figure 3.3: Extracted pushdown automata from the discretized network with an external
stack after learning (a) the parenthesis grammar without hints; (b) the grammar a"b™
with hints. Double circled means the state has an indicator unit on, Sy = 0.8: thus a
processed string is legal if the automaton arrives at such a state and if the stack is empty.
A dead state means the state has its dead unit on, S; = 0.8: a processed string is illegal
as soon as the automaton arrives at such a state.

experiments using either less training data or fewer hidden units invariably resulted in
less than perfect generalization. Larger data sets or larger networks than what is shown

in the table can produce similar performance.

As an example, Fig. 3.3(a) and (b) show the derived pushdown automata from the
networks after being trained on the parenthesis matching grammar and the a™b” grammar
respectively. As before, each state corresponds to one single point in the network’s hidden
unit activation space and the transition rules are derived similarly: set the Sf‘l units to
each of the points(states) in the activation space, give the network different combinations

of input and top-of-stack controls, and thus calculate the next state given such input and

58
stack conditions.

Note that for the parenthesis matching grammar, the network finds the same pushdown
automaton as shown in Figure 3.1(a), which has one single state. Starting from an empty
stack, when the input is a “(,” it pushes this input onto the stack. When the input is
a “),” it either pops a “(” from the stack if the top-of-stack is a “(,” or pushes the «)”
onto the stack otherwise. Thus, whenever there are more “)”’s than “(”’s, the machine
executes a “push stack” operation no matter what the input symbol is, making the stack

nonempty (indicating an illegal string) from this point on.

For the a™b™ grammar, the network finds a four-state pushdown automaton. Upon close

observation, the equivalence between Figure 3.3(b) and Figure 3.1(b) is easily confirmed.

3.7 Empirical Investigation of the Extended Pseudo-Gradient
Learning

In a similar manner to the previous chapter, we investigated how well the extended pseudo-
gradient learning performed in learning pushdown automata. Plots of the fraction of
successful moves by the pseudo-gradient algorithm, and the accumulated error increases

and decreases as a function of epoch number are shown in Fig.3.4.

Similar to Figure 2.12, in each plot, the solid curve corresponds to the fraction of
successful moves for each learning epoch. The bottom dotted curve corresponds to the
summation of error reduction on a string by all successful moves in each epoch, and the
remaining curve is the summation of error increases on strings by all bad moves. The
training set and the number of hidden units used for each grammar are the same as in

Table 3.1.

It can be observed from the plots that the pseudo-gradient algorithm makes bad moves
in learning context-free grammars more often than it did in learning regular grammars.
However, the percentage of successful moves are still mostly over 80%, and the accumulated
error increases (due to bad moves) for any epoch are much smaller than the accumulated
error decreases, except during one epoch in learning a™b™ without hints. Thus, as we
found with the regular grammars, the empirical evidence suggests that the pseudo-gradient

algorithm is quite effective in training discrete recurrent networks with external stacks.

59

poog jo
uoipey

uoljoniy

¢0 L

[AUNS

90 |

80 |

[N

85220 JOL POIEINUIOY —+—

a5eaE(] 1013 PORINLIIOIY . .. on

SBACI POOD) [0 UOJOR) Jrommmnm

¥0 L

2L L

2520.0U) 01T PARIWIOOY et

SRS JONT PIIBINUNOY = -+

SBA0W POOY) JO LONIB e

o

Gl

vd

k4

Jougm
abum)
anpmu

J0u3 ul

saEntng

focn e
PRy

sarol
pocp jo
uopoRI

4

¥0

g0

80

1

70

13

8528.0U] 011 PABINUNIOY —temm
9520108 K013 PSRNV + wx e

SO0 POOD) O LOIORIfommen

Jequinu yood3

®

88EAI0U} 1011 PAIBIIUNODY —t—

9582103 10113 PRJRIALUINODY- <~ =

SAOR POOE) JO UOJOBL]

04

G

14

o

ou3uf

angepeng

lougu
sbueyy
sAREINWND

(c)parenthesis matching, without hint.

Figure 3.4: Statistical record of the pseudo-gradient learning of pushdown automata.
(b)a™* ™™™, with hint.

(a)postfix, with hint.
(d)a™d™, without hint.

60

3.8 Discussion

Using a discrete network as well as a discrete stack results in the advantages of a stable
network, and a clear understanding of the operation of the stack. In [DGS93], where
a continuous stack was used, the results show that the trained networks do not always

generalize perfectly.

From the results in Table 3.1, it can be seen that providing the network with hints
can indeed speed up learning, or even enable the learning of the grammars in cases where
the grammar could not be learned without hints . However, unlike [DGS93], we did not
find incremental presentation of the training data helped in improving the learning. Incre-
mental presentation means that the network is initially given a small data set consisting
of only short strings. After it has learned the current data set, more strings longer in
length are added to the training set until all training strings are learned. We found in
our experiments that once the network finds a configuration to fit the small data set with
short strings, it is sometimes very hard to drag it away from that configuration to a de-
sired configuration that will fit the later (longer) strings as well. The training times with
and without incremental presentation of strings are comparable in our experiments. The
numbers listed in Table 3.1(a) and (b) are of runs with the training data set presented to

the network all at once.

We postulate that the reason why incremental learning worked for analog networks
but not for discrete networks is due to the nature of analog and discrete networks. The
analog network always finds a “soft” solution to a data set, which only has clear decisions
for short strings, but is vague on long strings. Thus it is easy for it to “harden” such a
solution when more restrictions about longer strings are enforced. The result is a solution
whose “hardness” or decisiveness depends on the maximum length of the training strings.
On the other hand, the discrete network always finds a “hard” solution to a data set
which has clear decisions for strings of any length. Once it settles in such a solution it
is hard to enforce restrictions about longer strings which contradict the current solution.
So one may as well provide all the restrictions to the network at once. As long as there
exists sufficient information in the data set, the resulting solution does not depend on the

maximum length of training strings.

61

3.9 Summary

The primary advantages of introducing discretization into both recurrent networks and

the external stack are as follows:

1. The network uses distinct, isolated points in hidden unit activation space as states,
which guarantees stability for infinitely long strings once the network has successfully

learned the grammar from the training set.

2. The network’s operation on the discrete external stack is directly interpretable, no

error is introduced for each operation.

3. The discretized network is easier to implement in hardware particularly when an

external stack is involved.

In conclusion, we have presented in this chapter the basic ideas and algorithms for
implementing stable discrete recurrent networks for learning deterministic context-free
grammars. Specifically, we extended our previous discrete network models to include
an external discrete stack with discrete symbols, defined an appropriate composite error
function for learning, and derived the extended pseudo-gradient learning rule for this error
function. The available empirical evidence indicates that the extended pseudo-gradient
learning algorithm is effective in training such a network. The overall experimental results
show that the proposed network has similar capabilities for learning context-free grammars
as the analog second-order networks, while avoiding any problems with instability on long

strings.

62

Chapter 4
Inference of Probabilistic Grammars

In this chapter, we make another extension to our discrete recurrent network structure for
the purpose of learning probabilistic regular grammars|[Zen94].

Section 4.1 gives a formal description of the type of grammars we will consider. Sec-
tion 4.2 defines the problem of the inference of probabilistic grammars. Section 4.3 de-
scribes the grammars we studied. Section 4.4 reviews published results of learning regular
grammars using the Elman network structure discussed in Chapter 1 and the fully re-
current network structure. A comparison of our goal and method with a newly proposed
algorithm for deriving hidden Markov models is also made. Section 4.5 presents our initial
attempts in experimenting with a simple network structure for learning probabilistic reg-
ular grammars, and analysis of results. Section 4.6 describes our final network structure
and the corresponding pseudo-gradient learning. Section 4.7 discusses a two-stage verifi-
cation of the correctness of the network’s derived grammar structure during learning and
provides theoretical analysis of these verification steps. Section 4.8 describes experimen-
tal results of using the proposed network structure and learning algorithm (along with
verifications) in learning grammars without identical sub-parts. Section 4.9 describes an
adaptive network augmentation process in an attempt to learn grammars with identical

sub-parts. Finally, Section 4.10 summarizes the chapter.

4.1 Probabilistic Regular Grammars

A probabilistic grammar is a grammar with probabilities associated with its production
rules. In the case of regular grammars, a probabilistic regular grammar can be represented
by a finite state automaton with probabilistic transition rules. We consider the class of

probabilistic regular grammars defined as: M =< X, U, ug, 6, P, ' >, where

¢ 3 is the input alphabet.
¢ U is a finite nonempty set of states.
e ug is the start (or initial) state, ug € U.

e { is the state transition function; 6 : U x ¥ — U.

63
e P is the state transition probability, a |U| by |X| matrix. P;; = P(z;]u;) is the
probability of state u; € U emitting symbol z; € ¥ and going to state 8(u;, ;).
> P =1, Vi

o [F'is the set of final (or accepting) states, F C U.

A more general definition of probabilistic grammars allows a initial probabilistic dis-
tributzon on U, and probabilistic state transitions associated with all symbols emitted
from a state [Arb69]. We have restricted the grammar by setting the initial distribution
to be with probability 1 on ug, and 0 on all other states, and having only deterministic
transitions for each symbol emitted from a state. However, the symbols emitted from a
state are still probabilistic, thus state transitions, as determined by symbols emitted, are
also probabilistic.

By definition, a general probabilistic grammar is equivalent to the well known first-
order HMM (Hidden Markov Model)[Rab89]. Thus the restricted class of grammars de-
fined above can be considered as a special case of HMMs, where the emission probabilities
of a state are tied to transition probabilities: given that a certain symbol is emitted from
a state, the next state is then deterministic instead of probabilistic. The Baum-Welch
algorithm for deriving HMM models[Rab89] can be modified to derive this class of proba-
bilistic grammars. However, the Baum-Welch algorithm requires knowledge of the number
of states, which is not a piece of obvious information available to the learning algorithm.
Stolcke and Omohundro recently proposed a model merging algorithm to learn both the
number of states and the topology of HMM from examples[S093]. We will make a brief

comparison of our method and theirs in Subsection 2.4.2.

4.2 Problem Description

In a manner different from the inference problems in the previous two chapters, we consider
another aspect of grammatical inference for the case of probabilistic grammars: learning
to make predictions by “positive” example strings only.

We define this problem as follows: given a finite set of “positive” example strings
generated probabilistically according to a probabilistic grammar, derive the underlying
grammar rules and probabilities associated with them, so that when given any prefix

string, a probabilistic prediction can be made on the following symbol(s), or successor(s).

64

We put quotation marks around the word “positive,” since for probabilistic grammars,
any string is associated with a probability, which can be considered as a measure of “pos-
itiveness.” It is then not a good practice to put binary labels of “positive” or “negative”
on probabilistic strings, as we have done for non-probabilistic grammars. Depending on
this positiveness measure, strings can have different chances of being present in the ex-
ample set. The only strings that are absolutely not present in the set are those with zero
probabilities. Those can certainly be considered as truly “negative” examples.

At this point, one may recall a well known result we stated in Chapter 1: it is impossible
to derive grammar rules for regular grammars from positive examples only. So the next
question is, are we dealing with an impossible problem here? The answer is no, and
the reason still concerns with probabilities. In our definition of the problem, we have
assumed that the example set is generated probabilistically according to the probabilistic
grammar. Thus the example set should truly reflect not only the grammar rules, but also
the probabilities associated with them. Thus the frequency of a string’s or a certain prefix’s
appearance contains crucial information about the grammar. The negative examples are
in a way represented among those not present in the set. The shorter the string that
is absent, the more probable that it is a zero probability string. Of course, we need to
assume that the example set is large enough, so that the distribution of strings and prefixes
provides sufficient information to all possible transition rules of the grammar. (We will
discuss in great detail what is considered sufficient information in Subsection 4.7.2.) Given
that, the result on non-learnability of grammars from positive only strings does not apply
here.

One should note however, different as they are, the problems considered here and the
previous chapters have one eventual goal in common: derive the underlying grammar rules.
Once the rules are correctly inferred, any task concerning the language, be it classification
or prediction, can be accomplished without further effort. Thus all problems considered

above belong to the grammatical inference category.

4.3 Grammars Studied

A specific grammar of concern in this chapter is the Reber grammar, shown in Figure 4.1.
This was originally studied as an example of nondeterministic regular grammars with

characteristics that have been the subject of investigations into human language learning

Figure 4.1: The Reber grammar

capabilities. The difficulty of this grammar lies in the fact that different instances of the
same symbol lead to different states and hence to different following symbols. The problem
can only be solved by maintaining information about characters seen previously[Reb69].
We specifically assigned probabilities to its transitions to make it a probabilistic grammar.
In the figure, transitions with probability 0 are not shown. The probability values of
the non-zero transitions will be specified when we present experiments on the grammar
with different probability assignments later on. The grammar has an alphabet of size 5:
T,S,X,P, V. In our experiments, we augment the alphabet to include a start symbol, B,
and an end symbol, F to indicate string boundaries: the network is trained to predict the

end of a string along with all other symbols.

A much more complicated grammar incorporating the Reber grammar is shown in
Figure 4.2[CSSM89]. The numbers in brackets indicate the transition probabilities. This
grammar is called the symmetric grammar since two identical copies of the Reber grammar
are embedded in its upper and lower arms. We will call it the symmetric embedded Reber

grammar here.

We devised another symmetric grammar with a simpler structure, shown in Figure 4.3.

It will be called the simple symmetric grammar here.

It has been found empirically that some of the symmetric grammars are especially
hard for neural networks to learn, where they must correlate the very last symbol with
the very first one in order to discover long distance contingencies|CSSM89, S789]. These
symmetric grammars all contain identical substructures and the transition probabilities
in the substructures are the same. We call these grammars, “grammars with identical

sub-parts.”

66

T (©0.5)

Figure 4.2: The symmetric embedded Reber grammar

Figure 4.3: The simple symmetric grammar

Figure 4.4: The ac*a U bc*b grammar

a(0.5) b(0.5) a(0.5) b(0.5)
S 4(1.0)) b0.5) g 22\ a(0.5) S 32 b.5) %% E(0.5)
_/ _/ 4

Figure 4.5: The atbtatbt grammar

Stolcke and Omohundro studied two grammars modeled by HMM’s[SO93], one of
which is ac*a U bc*b. The equivalent probabilistic finite automaton with equiprobable
transition splits is shown in Figure 4.4. This is also a symmetric grammar. However, we
will see in Section 4.9 that this is not a particularly hard problem for the network, since
the dependency between the first and the last letters are not always “long distance,” in
other words, two shortest example strings aa and bb directly reflect such dependencies.
This makes the task of inference much easier for the network than the above two other
symmetric grammars.

Another grammar studied in [SO93] is atbTa + b%, for which the probabilistic finite
automaton is shown in Figure 4.5. Different from the symmetric grammar structure,
this grammar is another example of grammars with identical sub-parts: states 1 and 3
are identical in their emission probabilities. We will see that it is the general class of

grammars with identical sub-parts that the network has difficulty in learning.

4.4 Previous Work
4.4.1 Work on Recurrent Networks

Cleeremans et al.[CSSM89] have carried out experiments and analysis of learning the Reber

grammar and the embedded Reber grammar by using the simple recurrent network or the

68

Elman network structure[Elm90]. The network is shown to be able to learn to predict the
correct possible successors for the Reber language. But for the symmetric embedded Reber
grammar, the network failed to learn even after 1.2 million string presentations. Smith et
al.[SZ89] investigated the ability of the fully recurrent network structure in learning the
Reber grammar and the symmetric embedded Reber grammar. A fully recurrent network
is a network without layer divisions: every unit has connections with every other unit
and itself, all units receive the input signals, and only output units receive the teacher
signal. Their results show that the fully recurrent network structure is able to learn to
make correct predictions for both the Reber grammar and the symmetric embedded Reber
grammar.

In the above work, the transition probabilities of the grammars are not of concern
during learning. Even though the training sequences are generated according to a defined
transition probability matrix, the learning process does not take advantage of such prob-
ability information contained in the training data. The goal is to learn the underlying
regular grammar, instead of the probabilistic regular grammar. The criterion for correct
prediction is whether the output unit corresponding to the true successor has an activa-
tion value over a certain threshold, which happens to be 0.3 in both of the above cases.
Learning is stopped when correct predictions are made consecutively for a certain number
of randomly generated strings. A language generator is assumed to exist in both the above
works to provide both training and testing sequences on demand.

Here we look at the problem from a different perspective: we will concern ourselves with
not only the structure of the grammar, but also the production/transition probabilities.
As part of the criterion for successful learning, the probability information contained in
the training data is specifically made use of. So the learning takes advantage of not only
the information of who is(are) the possible “successor(s),” but also the information of
what is the probability of a certain symbol being the “successor.” Instead of a language

generator, we assume that only a finite set of example strings is available for training.

4.4.2 Work on HMMs

As mentioned in Section 4.1, the grammars we consider form a special class of HMM.
Stolcke and Omohundro developed a model merging algorithm to learn both the number

of states and the structure of an HMM from examples. The algorithm starts with the most

69
specific model which accepts the example strings only and no other strings: each string
corresponds to a single path in the model with no loops. An exhaustive search is done
recursively to merge states according to a probabilistic penalty measure. The algorithm
demonstrates good performance on the case studies conducted in [SO93] where small data
sets are used. However the exhaustive search can become time consuming when dealing
with large data sets. Our theoretical analysis of data sufficiency in Section 4.7 shows that
to obtain reliable estimation of transition probabilities, one needs a large enough data set
to provide sufficient information. It is unreasonable to assume that the unknown model
can provide us with a “minimal” data set that reflects accurately the structure and the

probabilistic features of itself. Our approach differs from theirs in the following:

e Our approach requires a large data set, and specifically utilizes the probabilistic
distribution information from the data set to evaluate the correctness of the structure
of the model derived, and to make transition probability estimation. See Section 4.7

for detail.

o As can be observed from experiments, our network model starts with very few states
and tries to grow more states to fit the data as learning proceeds. The model merging
algorithm on the other hand, starts with many states and tries to merge more states

to generalize as learning proceeds.

Section 4.8 gives experimental results of our algorithm learning one of the examples
studied in [SO93], and makes a brief comparison. It would be interesting to conduct more

detailed comparisons between the two approaches.

4.5 Initial Attempts

A very simple network structure was used in our initial experiments, shown in Figure 4.6.
The structure is similar to a fully recurrent structure for prediction tasks when the inputs
are in fact outputs from the previous time step. Since the underlying structure of the
grammars we consider are still discrete, we again add discretization before any feedback
to enforce stable state representations. For the sake of simplicity, the network is drawn
with the discretized state units only, analog state units are eliminated, as in the testing

mode. Each connection between two layers represents a set of adjustable weights, except

70

Outputs
Copy
Next "State” Units S *! Output Units o
ot
Current "State" Units S * [Input Units [|
Inputs

Figure 4.6: A simple discrete network structure.

the copy back link, which consists of one-to-one connections only, with non-adjustable
weights fixed at 1. Analog outputs are used for the purpose of producing probabilities.
Normalization to enforce the outputs to sum to 1 is only done after training, but not
during training. All non-discretized units have sigmoidal activation functions.

We chose this first-order structure instead of a second-order one for the following
reasons: the grammars of concern (Figures 4.1 to 4.3) have a relatively large sized alphabet
compared to a binary alphabet, and a second-order structure would create a network of 7
subnetworks. (See Section 2.3 for detail.) With 3 being the minimum number of hidden
units to represent the 6 states of the Reber grammar, a 7-fold network with 3 hidden
units for each subnetwork is obviously somewhat redundant for such a simple grammar.
Moreover, our main concern here is how a recurrent network performs in dealing with a
different aspect of grammatical inference, as long as the network is large enough. Since
the focus is not on the differences between first-order and second-order networks, and the
first-order network is shown to be sufficient in learning the structure of the Reber and the
symmetric embedded Reber grammar, we opted for the simpler first-order structure.

However, one should note that the methods described in this chapter can be applied
to a second-order network structure or any other higher order structures.

The training set contains variable length strings generated probabilistically according
to the grammar. The network is trained on every symbol of the training strings to predict
the symbol that follows. Experiments on learning the Reber grammar with equiprobable

transition splits showed that the network can indeed learn quickly to predict the correct

71

possible next symbols by producing high values on the units representing those symbols,
and low values on all other units. Refer to Appendix B for details.

However, two problems exist. One is that the network has difficulty in producing
probability estimates, no matter how long it is trained. For example, for a training set of
200 strings, the network succeeds in producing high outputs for the correct symbols and
low outputs for all others within 200 learning epochs. On the other hand, for most of the
predictions, the desired outputs have values close to 0.5 on two of the units, and close
to 0.0 on all others, but the network’s outputs stubbornly stay at values close to 0.3 and
0.7 on the two high outputs respectively, even after going through the training set 1000
times, which is far from satisfactory. The reason for this is explained in accordance with
the second problem described below in Appendix B. The conclusion from the analysis
in Appendix B is that the network is not powerful enough (not enough layers or hidden
units) to produce exact probabilities.

The other problem is that the outputs depend not only on the current state, but also
on the current input symbol, whereas the true probabilistic finite state grammar rules do
not have either dependency, instead, the prediction on the next symbol should depend
on the nezt state only. Due to the configuration of the network, it automatically tries to
tie the input to the output closely. The result is its having drastically different outputs
for the same “current state” layer values, depending on how it has reached that “state,”
i.e., the input. So a true “network state” is decided by both the “current state” layer
and the input. The conclusion is that this network model tries to learn a different type of
grammar (where dependency exists for state transition and previous path) to approximate
our probabilistic finite state grammar, thus the architecture is ill-suited to the problem.

To overcome these two difficulties, an improved structure is presented in the next

section.

4.6 Discrete Network Structure and Pseudo-Gradient Learn-
ing

The network structure we used in our main experiments on probabilistic grammars is
shown in Figure 4.7. The network consists of two parts -— the recurrent part which is
discrete and is intended for the representation of the grammar states, and the feedforward

part which is analog and is intended for the representation of the transition probabilities.

72

Outputs

Output Units O |
Copy Wmo
Next "State” Units § ™ l] Intermediate Units Y
win W
WCH
. t

Current "State" Units S *] Input Units T 1

Inputs

Figure 4.7: The final network structure used for probabilistic grammar learning.

To overcome the first difficulty mentioned in the last section, the output layer is con-
nected through an intermediate layer to the “previous state” layer. This intermediate
layer is added for the purpose of making the network powerful enough to produce accu-
rate prediction probabilities from the previous state information. Recall from Chapter 1,
we mentioned a well known result for feedforward neural networks, which states that at
least 3 layers of units are needed for arbitrary function approximations, thus the 3 layers

in our structure are required for arbitrary probability estimation.

To overcome the second difficulty, the coupling between the output and the input is
removed — the output does not have any direct connections from the input (or current
symbol), nor does the intermediate layer. At any time step, the output’s only source of

information about previous inputs (symbols) is the previous state layer.

During the training phase, we train the output to “predict” what the current symbol
is based on the current state information. Clearly this is equivalent to putting the output
layer and the intermediate layer on top of the “next state” layer, and training it to predict
what the next symbol is based on the neaxt state information. (Training for either of the
two configurations would yield the same results.) After the network is successfully trained,
during the testing phase, prediction of the next symbol can be carried out either by simply

copying current state values back to the previous state values one time step ahead of time,

73
or by moving the intermediate and the output layer on top of the current state layer with
all connection weights unchanged. The latter configuration turns out to be similar to an
Elman structure, except that we have an extra intermediate layer and discrete units are
used for the current and previous state layers.

Both input and output layers are unary coded representations of the alphabet, each
containing 7 units for all grammars except the ac*a U bc*b and the aTbtatb™ grammar,
for which there are 5 and 4 units, respectively.

As shown in Figure 4.7, let S? be the state unit 7 at time ¢, I? be the input unit 3
at time ¢, ¥} be the intermediate unit ¢ at time ¢, and O} be the output unit 7 at time
t. Let wi?, wf;-‘, w7, wii® represent connection weights between current state and next
state layers, input and next state layers, current state and the intermediate layers, and
the intermediate and output layers, respectively, with ¢ being the unit number in the “to”
layer and j being the unit number in the “from” layer. The operational equations of the

network are:

St = Do(Z wi St + Zw;yfj Vi,t, (4.1)
f(Z wi" 84, Vi, (4.2)
f(z wiY}), Vi, (4.3)

where f and Dy are as defined in Chapter 2.

At each time step during the processing of a training string, the error between the
output units and the target is calculated. Since our aim is to have the output repro-
duce/predict the input presented at the input layer, the target should be the same as the

input, so the error at time step ¢ is:

1 .
E'= 5 d(OF-1?, vt (4.4)

Note, the “true” targets which we aim for are the emission /transition probabilities of
a given state, which are unknown. The probabilistic interpretation of the output units
suggests the use of cross entropy as an error measure [EJM90]. S. Solla et al. have

shown in [SLF88] that cross entropy error functions have steeper error surfaces than MSE

74

and thus can speed up the gradient descent learning process. This was confirmed éign our
experiments. The cross entropy error function is defined to be:

¢ -~ Tt

7

where T} = I! is the target of output unit ¢ at time ¢.

The experiments described henceforth in this chapter all use cross entropy as error
measures.

For the weights w{™’s and w}°’s, i.e., weights in the analog feedforward part of the
network, the error gradients with respect to these weights are calculated the same way as
in the standard back-propagation algorithm [RHWS86]. For the remaining weights, which

are in the discrete recurrent part of the network, pseudo-gradient is used for calculating

the error gradients:

1

OF _ZaEtﬁB};

. k. n = cn,in, ¥ i,j,1, (4.6)
where
opt 1t 1-1f [-op HI=1
_ _ 1k — k . V k’t, 47
00, ~ 0f T1-0f T | oy 1i=0, 0
%Z_fl,(zwm".é?;) n=cn,in, V1,71 (4.8)
owl; - 7 . dwp” IR |
Wz_f/ (chm 8~Sf) n =cn,in, V1,7t (4.9)
- : kl "7 s = Cn,tn, sJs by :
owr, ; dwy;
oo t+l a0t
55" 05t
aul;n = f/ : (Z w]c;lz ' awi + 5kz(5n,cns_§ + 5k16n,zn1;)7 n=cn, Z"l’L, Vk, i’jvt' (410)
l .

iy]

As shown by Miller[Mil93] and others|HP90], both the mean squared error measure and
the cross entropy error measure minimize to the expected value of the target, provided that
the network is sufficiently powerful. Thus in our binary target case, they both minimize
to the probability of the target taking on value 1. Therefore we can be assured that if our

network with sufficient number of units reaches a global minimum on the error surface,

its output units should give the desired approximate probability of the symbol predicted.

75

4.7 Verification During Training

Since our aim is to have the output produce probabilities, we cannot use a preset threshold
as a stopping criterion for learning, as in [CSSM89] and [SZ89]. A different criterion is
needed.

In our initial experiments, we let the network run for a fixed number of epochs, and
manually extract states from the network to check if it has reached a correct configuration.
The disadvantage of doing this is that networks with different initial conditions need
different training times to reach a good solution. Different grammars also require different
training times. No universal preset training time exists for every situation.

A more adaptive criterion is needed to verify the goodness of the state configuration
found by the network and to stop the learning of states in time to prevent overfitting. We
employ a two stage verification process which makes use of the distribution information

of the training data set in evaluating the goodness of a network’s state configuration.

4.7.1 First Stage Verification: a Necessary Condition

The first stage is called a first-order verification. After each learning epoch, a finite state
machine is extracted from the discrete recurrent part of the network by running all of the
training data through the network once without training and recording the state transition
information. The emission probabilities of each state in the extracted machine are set to
the frequencies of the symbols being emitted when going through that state.

The verification process involves verifying a necessary condition of the extracted ma-
chine based on the assumption that the training data was generated from a finite state
probabilistic automaton. We use a property implied by the definition of finite state prob-
abilistic automata which states that the emission probabilities of a state depend on that
state itself only and nothing else, i.e., it is a first-order Markov process.

To state it mathematically, let 29, 21,...,2;—1 € ¥* be any string for which the au-
tomaton M =< X,U,ug,6, P, F > arrives at state u; € U after processing that string.
By the definition of the automaton, there is a unique sequence of transitions and states

associated with the processing of the string, i.e., Zlug, uq, ..., u;_1, u; such that

6(ug, zo) = u1, 6(ur,@1) = ug, ..., 6(Uim1,Ti-1) = u;.

The property of the automaton M says that given the present, the past and future are

70

independent. In other words, all relevant information about the past is contained in the
present state[Arb69].

Thus a necessary condition for the extracted automaton to be a correct one is: the
emission probabilities of a state depend on the state itself, and are independent of the

transitions that lead to it, i.e.,
Condition 4.1 (First-Order Necessary Condition)
P(m|ui_1,uz~) = P(w}ul) (4.11)

holds forVz € X, Vag, 21,..., 21 € X*, Yu; € U, such that the ending state of zg, z1,...,T;-2

is ui—1, and the ending state of xo,T1,...,Ti—1 15 Ui, L€, 6(ui—1,T-1) = U;.

This is called first-order condition since we only check one time step back into the
past for past-future dependencies. The full dependency check will be discussed in the next
subsection.

We use Condition 4.1 in a hypothesis test. The hypothesis states that the extracted
machine M’ is equivalent to the true underlying machine M that generated the data. If the
hypothesis is true, then the data can be equivalently generated by M’. To test the hypoth-
esis, we pretend that the data was generated by M’, and look for possible contradictions as
follows: during the running of all data through the network when extracting the machine,
for each transition rule §(u;—q,2;—1) = u; in M’, we record probabilities(frequencies) of
symbols following that transition, and compare this “emission probability” of a transition,
denoted as p(z|ui—1,u;), with the emission probability of the state u; that the transition
is going to, denoted as p(x|u;). If our hypothesis is true, then Condition 4.1 has to be
satisfied, i.e., these two emission probabilities should be equal. Otherwise, the hypothesis
is false.

Since we only have limited data at hand, event frequencies have to be used for proba-
bilities. Due to irregularities in the data, two probabilities/frequencies may not be exactly
equal even if the extracted machine is the correct one. Hence, some error should be allowed
between the two probability estimates. Due to the fact that the size of the data avail-
able for probability comparison varies from situation to situation, we should allow larger
errors for smaller sized data. Moreover, different values of the probabilities may require

different error tolerances as well. Thus an adaptive threshold is needed, so that if two

77

probability estimates are close enough such that their difference is within the threshold,
they are considered statistically equal. First, we need a probabilistic measure to evaluate

our confidence in a frequency count from a data set.

Lemma 4.1 Let p be the probability of event X happening for a probabilistic test T. Let
n be the number of tests, and k be the number of times event X happened. Then

5 (E) —p, (4.12)

n

Var (%) = E(—l——:—zﬁ (4.13)

n

The above lemma tells us that the frequency count is an unbiased estimation of p,
and provides us quantitatively the variance of the frequency count in terms of the true
probability and the sample size. The proof is given in Appendix C.

Lemma 4.1 suggests an adaptive measure to evaluate the goodness of our estimates.
Since the events of emitting any symbols from the alphabet are mutually exclusive, we
can treat each symbol separately.

To check Condition 4.1, we need to evaluate the distance between two frequency counts
as probability estimates: p(a|u;_1,u;) and p(z|u;). Note that the sample for p(z|u; 1, u;)
is a subset of the sample for p(z|u;). The next lemma gives us the variance of the difference

between two frequency counts, one of which is computed from a sub-sample of another.

Lemma 4.2 Let p be the probability of event X happening for a probabilistic test T'. Let
m be the number of tests, and k,, be the number of times event X happened. Let n be

the size of a subset of the above tests (n < m), and k, be the number of times event X

happened in that subset (k,, < k,,). Then

Var [(% — %)] = p(1—-p) (;1; - %) . (4.14)

The proof is also given in Appendix C. This lemma gives us a quantitative estimate of
how far apart two frequency counts will be, thus we can use this measure to evaluate the
similarity between two probability estimates. However, the true probability information
is not available, our own estimation has to be used in the formula in place of the true

probability p. Since we are comparing two probability estimates, it is reasonable to use

78

the one with a larger sample size, i.e., the emission frequency directly from the state, in
place of the true probability. Thus our empirical criterion for the first stage verification

is:

Criterion 4.1 Let m be the sample size of all instances of a state u, n be the sample size of
all instances of a transition 6(u;,y) = u that leads tow (m > n). Let p, = p(z|u) = %, be
the estimated probability of emitting a symbol x by frequency count in the m state sample,
and ps = p(x|ui, u) = Enll be the probability estimation of the successor being x by frequency
count in the n transition sample. If

(hu = 19 < apu(1-p0) (3 - =), (4.15)

where « is some constant, then p,, and ps are considered statistically equivalent, denoted as
*

Py = ps. Otherwise, they are considered statistically not equivalent, denoted as p, # ps. If

Pu = Ps for Ve, Yu in M’, and ¥§ leading to u, then Condition 4.1 is considered statistically

true. Otherwise, it is considered statistically false.

The constant « is defined by the user, depending on how confident he/she wants the

network’s solution to be. Let n = (Pu=pe)® Ty the ratio of the squared difference

between the two probability estimateps (ang)‘c(lfe variance of the difference. Then in the
above inequality, « is the upper bound allowed on all n’s derived from the extracted
machine.

The best way to choose a from the sampling distribution theory point of view is as
follows: Find the distribution of 5 from the true machine, given the sample sizes n and
m. Then for a certain confidence level, e.g., 95%, calculate, according to the distribution
of 1, the cut point value o, such that 7 has less than 5% probability of lying outside a.
That way, « is chosen adaptively according to the machine considered and the available
sample size, and the extracted machine that passes the criterion has an accurate confidence
level associated with it. However, there are several difficulties with this method. First
of all, the true machine is not known so we do not have the accurate information of
states and transition probabilities. Secondly, even if we do know the true machine, or
as before, assuming the extracted machine probability can be used in place of the true
machine probabilities as approximations, the calculation of the distribution of a single 7

is a combinatorial problem, and appears to be very complicated. Thirdly, not all 7’s are

79
independent: the emission probabilities of a given state should sum up to 1, thus their
corresponding 7’s are dependent with each other. In addition, states that are connected
with transitions also have non-independent samples. There is no obvious way of calculating
the joint distribution of all #’s in a given machine.

In our experiments, we have heuristically chosen a fixed «, which has worked well
with all the grammars we considered. By doing so, our heuristic assumption is that
there is sufficient data to provide all necessary information, and that there is not too
much fluctuation in terms of frequency counts from the data set. We cannot provide an
accurate confidence level to associate with our solutions, nor can it be guaranteed that
a fixed o would work for all machines and data sets, but from our empirical results of
various experiments on different machines, the algorithm with our fixed o appears to be
robust. It remains an open question as to whether there is a simple, adaptive way of
setting a according to the machine and data size.

In essence, the criterion considers two probability estimates as statistically not equiva-
lent if they are further apart from each other than \/ao, where o is the standard deviation
of the distance between the two estimates. Thus the larger the value of a, the less reliable
the solution will be. We have found that the algorithm is not sensitive to « in the range
of 3.5 and 10 for the grammars we considered. A smaller o sometimes results in a correct
structure not passing the criterion check due to data irregularity, while a larger a can
result in the acceptance of an incorrect machine. In the experiments described later, « is
always set to 3.5.

Note that we only need one round of data presentation to carry out both the state
machine extraction and the emission symbol count for both transitions and states. The

checking of the necessary condition is carried out with one scan of all transitions.

4.7.2 Second Stage Verification: the Sufficient Condition

The satisfaction of the first stage verification does not guarantee that the network has
arrived at a correct solution of state configuration, since it is only a necessary condition
that has been verified.

A good example of a finite state machine satisfying the necessary condition yet which
is not equivalent to the true machine is shown in Figure 4.8 for the simple symmetric

grammar. This machine was initially found by a network trained on the simple sym-

80

$(0.50) X(0.48)

Figure 4.8: Initial results from a network learning the simple symmetric grammar

metric grammar. Similar such false solutions were found initially by all networks trained
on grammars with identical sub-parts (except the ac*a U bc* b grammar) described in
Section 4 with a sufficient number of hidden units. It is interesting to see that the net-
work always tries to commit the same states to those that have identical behaviors in the
true grammar. For example, in the simple symmetric grammar, states 1 and 2 have the
same emission probabilities, and the states that follow them also have the same emission
probabilities, respectively. They are merged into one single state 1 in the network’s false
solution. States 3 and 4 are also merged, since once states 1 and 2 are merged, there is
no way to distinguish 3 and 4. On close observation, one can see that these false solutions
do indeed satisfy Condition 4.1.

To identify such false solutions, we need a stronger condition for further verification.
Recall that the true solution satisfies the condition that the state emission probabilities
are independent of all previous information except the state itself, where “all previous
information” includes all preceding states and/or symbols. During the first stage of verifi-
cation, we only tested the fact that the state emission probabilities are independent of its
immediate previous state/symbol. The most powerful check is clearly on the dependencies

of all previous states/symbols, i.e., a complete check such that the following is satisfied:

Condition 4.2 (Sufficient Condition) Let Dy be an infinite set of strings generated by
a probabilistic finite state automaton. Let Ry be the set of prefiz strings contained in Dy.

Let M' =< 8, U, up, 8", P', F' > be the derived machine being checked.

The condition says that for all xg,zq1,...,2;,.1 € Ry, 3 a unique state sequence
i, ub, . ul_y,ul € MY, such that
! ! ! 7 ! / A /
&' (ug, o) = uy, 6(uy, 1) = ugy ..., Sui_y,2i-1) = ur,
and

p(zlzo, z1,. .., xim1) = P'(xfug, ul,. .., u_q,ul) = P'(z]ul), (4.16)

81

where p stands for the true language probabilities from Dy, and P’ stands for the

transition probabilities of M'.

This condition checks against all possible language strings, assuming we have infinite
data. The following theorem shows that this condition is a sufficient condition on the
equivalence between the extracted machine and the true machine. The proof is very

straight-forward.

Theorem 4.1 Given an infinite data set Dy generated by a probabilistic automaton M as

defined in Section 4.1, if a machine M’ satisfies Condition 4.2 for all strings in Dy, then:

M=M,

where “=7” means that the left-hand side is equivalent to the right-hand side in the

sense that they accept/generate the same language strings with the same probabilities.

Proof:
Let M =< ,U,u0,8, P, F >, and M' =< £, U, ug, §', P, F' >.
Let Ry be the set of prefixes contained in Dy.

Consider any r = zg,21,...,%,—1 € Ry. Since Dy is generated by M, 3 a unique state
sequence Uy, Ug, ..., hi—1,4; € M, such that
6(“0"’50) = U1, 6(”17'7;1) = Uy - ey 6(U1’_1,.’L'i_]) = Uy,
and

p(z(r) = P(z|us).
Since M’ satisfies Condition 4.2, we have: 3 a unique state sequence uf, u), ..., ul_;,u} €
M’ such that
7 ! !
8'(ug, xo) = vy, 6(ul, 21) = uy, ..., §(ul_q,2i_y) = ul,
and
p(zlzo, x1,. .., zic1) = P(alug, ul, ..., ul) = P'(z|ul).

Thus,
plalr) = P(e|u;) = P(z|ui) Vr€ Ry,

82

i.e., M and M’ accept/generate the same language strings with the same probabilities.
Q.E.D.
To verify the condition for every possible string is impractical. We can only use limited
data to support our findings. Our verification proceeds as follows. The training data set is
first sorted in alphabetical order. Starting from the shortest possible prefix “B,” which is
present in all strings, find out what are the probabilities/frequencies of symbols following
it, and compare this set of probabilities with the emission probabilities of the state the
prefix leads to. Since we do not have perfect data, similar to the error tolerance derived

for the first stage verification, our empirical criterion for the second stage verification is:

Criterion 4.2 Let m be the sample size of all instances of a state u, n be the sample size
of all instances of a prefiz r that leads to that state, then m > n. Let p, = p(z|u) = %f&
be the estimated probability of emitling a symbol x by frequency count in the state sample,
and p, = p(z|r) = %ﬂ be the probability estimation of the successor being x by frequency

count in the prefiz sample. If

(v — Br)* < BPu(l — Pu) (% - i) , (4.17)

m

where B is some constant, then p, and p,. are considered statistically equivalent, denoted as
*

Pu = pr. Otherwise, they are considered statistically not equivalent, denoted as p, # pr. If

Pu = Py forVa, Yu in M, and Vr leading to u, then Condition 4.2 is considered statistically

true. Otherwise, it is considered statistically false.

Again, the constant 3 here is defined by the user, depending on how confident he/she
wants the network’s solution to be, and consideration of data irregularity should be taken.
Similar to the choice of o for Criterion 4.1, the best way to choose 8 from the sampling
distribution theory point of view is very complicated, thus we choose to use a fixed
instead. The experimental results show that the algorithm with our fixed 8 value is
robust on all grammars considered in this chapter. We have found that the algorithm is
not sensitive to 8 in the range of 3.5 and 10. In the experiments described later, 8 is
always set to 3.5.

This is repeated alphabetically for all prefixes that have more than a certain number
of occurrences present in the data set. The remaining prefixes that have relatively small

numbers of occurrences are ignored to make the criterion check more statistically reliable.

83
The reasonable assumption here is that those prefixes that are being checked provide
sufficient information about the grammar. In our experiments, the minimum number of
occurrences needed for a prefix to be checked is set to 30. As can be seen from the following
analysis of sufficient data conditions, the algorithm requires that this number be large in
order to be able to distinguish two close together but different probabilities. The larger
the number, the more capable the algorithm is in differentiating small differences.

Note that this verification process also requires only one scan of all symbols in the
training set, provided that the set is read and sorted inside the memory, where symbols
can be randomly accessed. Note also that this second state verification process which
is more time-consuming than the first stage, does not get initiated unless the first stage
necessary condition is satisfied.

The problem still remains as to whether the satisfaction of Criterion 4.2 guarantees that
the extracted machine has an equivalent structure to the true underlying machine, since we
have no way to check the full sufficient Condition 4.2. To find out the answer, we need to
elaborate more on our initial assumption that the data provides “sufficient information” on
the true underlying machine M. Exactly what is the definition of “sufficient information?”

Obviously, the definition has to be related to the true machine M itself: machines
with different structure and transition probabilities would require different amounts of
information for reliable inference. One intuitive definition is:

To provide sufficient information on M, the data set D has to be large enough so that
M s the smallest unique machine to describe D statistically.

This would guarantee that if we find a machine that describes the data statistically,
and that no smaller machines can do this, then this machine is the true one. However, the
above definition is still too vague: how do we define “smallest and unique?” And how do
we define “describe something statistically?” First of all, the following theorem answers

the question of what makes M non-redundant and unambiguous on an infinite data set:

Theorem 4.2 Given an infinite data set Dy generated by a certain finite state probabilistic
automaton M =< X, U, ug,0, P, F >, and let Ry be the set of prefix strings contained in

Dy, if M is the smallest and unique machine that generates Dy, then it satisfies:
1. Yu; € U, dr; € Ry, such that r; leads to u;.

2. Yu;,u; € U, u; # uj, the following is true:

84
Vr; that leads to u;, and Vr; that leads to uj, 3 suffiz w € £, = € X, such that

raw,r;w € Ry, rw leads to state u;,, r;w leads to state uj,, u;, # uj,, and

P(elui,) # P(ely;,).

The first condition guarantees that no redundant state exists. The second condition
ensures that each state is uniquely different from any others. The proof is given in Ap-
pendix D. The next theorem answers the question of what makes the data statistically

sufficient for M.

Condition 4.3 (Sufficient Data Condition) Let M =< X, U, uo,§, P, F > be a proba-
bilistic automaton as defined in Section 4.1, and satisfying the conditions in Theorem 4.2.
Let D be a finite set of strings generated statistically by M, and R be the set of prefiz
strings contained in D that has more than N appearances, where N is the threshold set
for the Criterion 4.2 check to happen. Let r? € ¥* be the shortest (or one of the shortest)
prefiz(s) that leads to state u; € U. The conditions on the data are:

1. r? € R.

2

2. Yug,u; € U, ui # uj, t.e., ri # r7, then
for some suffic w € X%, x € ¥, that satisfies condition 2 in Theorem 4.2 for v and
r?, the following is true for D:

riw,riw € R, and |p.(z|riw) — p.(z|riw)| > \/%,

where (3 is the constant defined in Criterion 4.2.
3. Yu; € U,z € X, such that P(z|u;) # 0, rfz € R.

4. Yus,u; € U, € B, such that P(z|u;) # 0, and j # 6(u;,), then
for some suffiz w € ¥, y € ¥ that satisfies condition 2 in Theorem 4.2 for riz and
r}, the following is true for D:

rizw,riw € R, and |p(y|rizw) — p,(y|riw)| > \/}%.

5. M passes Criterion /.2 check on D,

where p.(z|r) is the probability estimate of emitting x given prefix r by frequency count

from D.

85

The first two conditions ensure that the data contains information that reflects each
one of M’s unique states. The next two conditions guarantee that the data contains in-
formation that reflects each one of M’s unique transitions: each transition unambiguously
leads to a unique state. The last condition makes sure that the data is statistically faithful
to M.

The condition also suggests a way to calculate a lower bound on the size of the data
set D in order for it to be sufficient: For each prefix string r among the rfw’s and rizw’s
as described above for all u; € U, calculate p,, the probability of M generating r, by
multiplying consecutive transition probabilities of M when processing 7. Find 7y, the
least probable prefix string among all of the above. The lower bound for the size of D is
then N/p, ... For example, for the Reber grammar with equal probable transition splits
on all states, 7, of all rfw’s and rizw’s happens to be also the longest prefix among
them, since all transitions that are neither B nor F have the same probability 0.5. The
r$’s for states 0,1,2,3,4,5 are: B, BT, BP, BI'X, BPV, BT X S(or BPVV), respectively.
The two states that are hardest to distinguish are states 1 and 3, both having the same
emission probabilities. The shortest suffix w to distinguish them can be either S or X,
both of length 1. Thus 7, = r{zw, where r{ = BT, 2 = S, w = § or X. Therefore,
Pr.. = (0.5)° = 1/8, with N being 30 for our experiments, the lower bound on the size
of sufficient data for this grammar is then N/p, . = 240.

Finally, the next theorem shows that if the above set of conditions are satisfied, then
our intuitive definition for sufficient data is guaranteed to be true for the statistical Cri-
terion 4.2. In other words, given a data set D that satisfies Condition 4.3, the smallest
machine that satisfies Criterion 4.2 is guaranteed to be statistically equivalent to the

correct smallest true machine.

Theorem 4.3 Given data D that satisfies Condition 4.3 for a minimum and unique ma-

chine M, the smallest extracted machine M’ that passes Criterion /.2 satisfies:
where “=” stands for “statistically equivalent” as defined in Criterion 4.2.

The proof is provided in Appendix E. With this theorem, we can be assured that

with a large enough data set reflecting all aspects of M, Criterion 4.2 is sufficient for the

86

testing of our extracted machine M’ within a statistical limit, provided that M’ cannot

be minimized.

Note that the second and the fourth constraints described in Condition 4.3 put a limit
on the true machine M that can be derived. The successor probabilities of two prefixes
(which lead to different states) may have to differ at least by the amount \/g Thus if
the true machine M has two states such that none of their emission probabilities of any
symbol differs by more than \/7%—, and that they both go to the same next states with
the emission of the same symbols, the data would never satisfy Condition 4.3, and our
algorithm would never be able to distinguish the two states. On the other hand, these can
be considered rare cases with large N. And even if there exist two such states as above,
they can be merged into one single state without an error more than \/Jj@: in probability
estimation. In order to be able to distinguish such states, we can always increase the
number N, and require a larger data size. It is then a trade-off between the cost and
the accuracy of the inference. In our experiments, \/]_%‘ = 0.34, which is relatively large,
but is still easily satisfied by all the machines we studied: any two states in the machines
that transition to the same next states have a difference of at least 0.5 in their emission

probabilities.

As we will see in the next section, the network typically starts with very few states, and
tries to “grow” more and more states as learning proceeds, which is similar to a “greedy”
search. After passing both stages of the verification process, it usually arrives at a solution
equal to or not much larger than the minimal one. To make sure that we have a minimum
machine, we can try to minimize it by a process similar to what is described in the proof
of Theorem 4.2 in Appendix D. Due to frequency fluctuations of the data however, we
sometimes arrive at a machine that is larger than the minimum one and cannot be reduced
further based on the information provided in the data, yet they are still relatively close to

what is intended, as will be seen in the next section.

The verification process can be easily applied to discrete networks, where a stable
finite automaton can be extracted at any point during learning. For any given connection
weight setting, a discrete network behaves exactly like some automaton, with stable state
representations. For analog networks, however, this is not the case, and so the verification

can not be carried out due to unstable internal states.

87
4.7.3 What Comes After the Verification

Once the state configuration structure of the network is verified, our inference task can
be said to be accomplished, since the verification process provides us a side benefit of the
state transition probability estimates. which together with the extracted machine structure
make a complete description of the language being learned.

If we insist on having a network version of the language generator/predictor/classifier,
i.e., if we were to use the stand-alone network for future language related tasks without
referring to the extracted automaton, then further training of the feedforward part of the
network is needed.

Note that when the verification process declares that the network has found a good
state configuration, it only means that the discrete recurrent part of the network has
reached a desired status. It does not give us direct information on the performance of the
analog feedforward part of the network. On the other hand, the process of the recurrent
part reaching a good solution is only with the help of information input through the
feedforward part, where prediction error is back-propagated to the “previous state layer.”
Our observation is that by the time the recurrent part of the network has reached a good
solution, the feedforward part is still in its initial learning stage, i.e., the outputs do not
match the true probabilities very well. It still needs further training, preferably with the
recurrent part of the network weights frozen, if the network were to be used as the finite
state automaton.

With the help of the emission probability estimates obtained during the verification
process, the training of the feedforward part of the network is very straight-forward:
a second-stage training set that consists of all state-emission probability pairs can be
generated, and the feedforward part is trained with simple back-propagation. This avoids
any possible “over-emphasizing” of states that have large probabilities to be visited when

learning the probabilities directly from the initial data.

4.8 Experimental Results on Grammars Without Identical
Sub-Parts

Incorporating the two adaptive criteria for verification during learning indeed helped

the learning process to identify a good solution, and stop the training as soon as it is

88

s (0 5) S(O 20)

V(O 58)

T(OS) T(042)
(a) (b)
Figure 4.9: Probabilistic Reber grammars

found.

For the case of the Reber grammar, it turns out that the network converges very
quickly, and learning is stopped mostly within 20 epochs through a data set of at most
1000 strings, a fact that was not known to us when the verification process was not
implemented. Two cases of the Reber grammar with different transition probabilities are
studied. They are shown in Figures 4.9(a) and (b). Figure 4.9(a) is the case where even
split probabilities are assigned to all state transitions. Figure 4.9(b) has uneven split
probabilities.

As mentioned in Subsection 4.7.2, a stable finite state automaton can be extracted
from a discrete network at any time during training by freezing all weights and running
the training data through the network. We can thus record the number of states in the
automaton the network has found after every learning epoch, and observe how the number
of states evolve with training. Note again that the advantage of the discrete network is
that one can easily identify states during the learning process, i.e., they are explicit. It is
interesting to observe that the network starts with an internal representation consisting
of a very small number of states, and tries to “grow” the states during learning to fit the
data. In figures 4.10(a) and (b), the processes of “state growing” are shown for two sets
of networks learning the grammars in Figures 4.9(a) and (b), respectively. Both figures
contain plots for the same five networks with different weight initializations. All networks
have 4 units in the recurrent “state” layer, and 5 units in the feedforward intermediate
layer. The number of states in a network’s internal representation is plotted against the

learning epochs. As can be seen that the network adds more and more states almost

89

Learning the Even-Split Reber Grammar Learning the U Split Reber G
Number of states Number of states

i

~3
L I N SN S S NI N NN NN R S N AMAE N SN S S S M
I T NN S TN S TN T OO WUUW IO NN NN N N N NN N N N |

1 i 1 1 1 I Epochs 1 L i Epochs

(a) (b)
Figure 4.10: The process of growing states during network learning,.

monotonically as training proceeds.

Figures 4.11(a) and (b) show the machines derived a network trained on the even
split and uneven split Reber grammar, respectively, each after learning was stopped when
the verification process returned true. Probabilities are assigned directly from the results
obtained by the verification process. As can be seen, they are equivalent to the true ma-
chines in Figure 4.9 within a very small error tolerance. The small errors in the transition
probabilities derived are strictly due to frequency fluctuations in the data.

For each Reber grammar, 10 runs are made using different network weight initializa-
tions. All networks have the same number of units as described above. The training set of
the even split Reber grammar contains 600 strings. For the uneven split Reber grammar,
more strings are needed to make the data statistically reliable for the derivation of those
transitions that have relatively small probabilities associated with them. The training
set of the uneven split Reber grammar contains 1000 strings. Table 4.1 gives detailed
results on these runs. Each row corresponds to one of the network trained on both gram-
mars. The number of epochs needed to find a correct solution, and the number of states
that solution contains are shown for each grammar. All networks converged to equivalent
structures to the Reber grammar. The last row shows the average numbers over all runs.

Note that the minimum machine contains 6 states. On average, the networks were able

90

5(0.18)

$(0.51)

T0A9) T(041)

(a) (b)

Figure 4.11: Network-derived probabilistic Reber grammar

network | Fven-split Reber grammar || Uneven-split Reber grammar
number | epochs states epochs states
1 7 7 5 6
2 13 6 17 10
3 6 6 11 9
4 5 8 4 7
5 13 6 5 8
6 11 6 6 8
7 3 6 7 6
8 8 7 3 7
9 11 6 6 6
10 4 6 6 7
l average [8.1 [6.4 l] 7.0] 7.4

Table 4.1: Experimental results on learning probabilistic Reber grammars

91

T©.7)

Figure 4.12: The non-symmetric embedded Reber grammar.

structures to the Reber grammar. The last row shows the average numbers over all runs.
Note that the minimum machine contains 6 states. On average, the networks were able
to find machines very close to minimum size to describe the data for the even split Reber
grammar. Note that even though the average number of epochs needed for the uneven
split grammar is smaller than that for the even split grammar, it in fact takes longer to
train since the training set for the former has 1000 strings, as compared to only 600 for the
latter. It is reasonable to see longer training times needed and bigger machines derived by
the networks to describe the uneven split Reber grammar due to increased fluctuations in

the data set with some probabilities much smaller than others.

To compare the network’s behavior in learning grammars with and without identi-
cal sub-parts, we experimented with the embedded Reber grammar structure with non-
identical transition probabilities assigned to the two Reber grammar sub-parts. It is shown
in Fligure 4.12. Note this grammar has the same structure as the symmetric embedded Re-
ber grammar, but the small differences in probability assignments make it non-symmetric,
thus it is a grammar without identical sub-parts. The grammar is a much more compli-

cated one than the Reber grammar, and thus requires a much larger network to learn.

92

network number | training epochs | number of states
1 41 26
2 130 34
3 >200 -
4 66 38
5 48 25
average l 71.25 [30.75 |

Table 4.2: Experimental results on learning the non-symmetric embedded Reber grammar

(See the discussion on network capacity in Chapter 2.) Five networks with 11 state units
and 9 intermediate units and different initial weights are trained on a data set of 2400.
The results are shown in Table 4.2. As will be seen in the next section, a small change
in transition probabilities that makes the grammar symmetric leads to great difficulty in

learning for the network. Similar observation is made in [CSSM89].

4.9 The Difficulty in Learning Grammars With Identical
Sub-Parts

It is observed in our experiments that in learning grammars with identical sub-parts
(except the ac*a U bc*b grammar), the network always quickly finds a false solution that
satisfies Criterion 4.1 first. It then becomes extremely difficult for it to split states that
should be different but are merged into one in the false solutions. Prolonged training does
not seem to help. Similar observations can be found in [CSSM89, SZ89].

As discussed in Section 4.3, the symmetric ac*a U bc*b grammar turns out not to be a
hard problem for the network, which discovers the first and last letter dependency from the
two shortest strings aa and bb before any possible false solution is to be formed. Table 4.3
shows the results of five networks trained on the grammar, each with 3 hidden units and 4
intermediate units. The training set contains 1000 strings. Since our algorithm requires a
large data set, and the experiments done in [SO93] uses only very small data sets (up to
20 sample strings), we cannot conduct a direct comparison. (Due to the small sample size,
the probability estimates resulting from the model merging algorithm in [SO93] are far off
from the correct ones.) It would be interesting to apply the model merging algorithm to

the large sample set we used for our network training and compare the results from the

93

network number | training epochs | number of states
1 8 4
2 79 5
3 19 4
4 20 4
5 182 4
] average | 61.6 | 4.2]

Table 4.3: Experimental results on learning the ac*a U bc*b grammar

two algorithms.

For the hard to learn grammars with identical sub-parts, we employed a new training
algorithm which dynamically augments the network when such false solutions are found,
and forces the network to learn the long distance dependencies while retaining what it has
already learned. A false solution is defined to be one that satisfies Criterion 4.1 but fails

Criterion 4.2.

The training starts with the original pseudo-gradient learning process as described in
Section 4.6, for a fixed number of state and intermediate units as before, until Criterion 4.1
is found satisfied. If Criterion 4.2 is satisfied as well, as were the cases during the learning
of grammars without identical sub-parts and the ac*a U bc*b grammar, then the learning
can be stopped with a verified good solution. Otherwise a false solution has been found
and the training is switched to the augmentation mode: The network is augmented by

one new state unit, denoted by Sg. Figure 4.13 shows the augmented network structure.

The new unit Sg is allowed connections to itself, and to the intermediate layer, but
not to any of the other state units. The recurrent part of the network weights from the
original network, i.e., wi}’s and wf;?’s, are frozen, indicated in the figure by solid lines.
The feedforward part of the network weights, along with the newly added connection
weights are to be adjusted in the learning that follows. These “free” weights are indicated
by dashed lines. The reason for this arrangement is that the passing of Criterion 4.1
indicates that the network has learned part of the structure of the language and that
part of the structure is worthwhile to keep. By freezing the original recurrent weights, we

effectively keep the state transition relations already found so far.

The aim for adding the new unit is to have this unit trained specifically to distinguish

94

Outputs

Output Units o

i
Copy !
mo
Copy wo
i
]

l Intermediate Units Y*

~
-~

N\,
N\,

st1| | Next"State" Units S *!
LFL\‘

~ ~
S
piod
i
ot
| é' l Current "State” Units $ * I [Input Units I l

.

A S
S cn
o < . W

| P ——

Inputs

Figure 4.13: The augmented network

the long distance relations that have not been learned by the network. To make sure
that the information already correctly learned by the network does not interfere with the
augmented network training, we label in each string the prefixes for which the network fails
the Criterion 4.2 check. The augmented network is then trained on these labeled prefixes
only. Some strings may not contain any such prefixes. Thus training the augmented

network differs from the training of the original network in the following:

¢ Instead of updating the weights after every symbol presentation, we wait till the end
of a labeled prefiz is reached, and update the weights specifically to reduce the error

on those prefixes.

e Instead of calculating the pseudo-gradient on all weights, we only do the calculation

on the free weights, i.e., those weights that are not frozen.

Note both of the above make the learning epoch significantly shorter than that of the
original training. To deal with cases when adding one unit is still not sufficient for the
network to learn the correct grammar, we repeat the augmentation process by adding
more and more units until the network reaches a satisfactory solution, or the maximum
number of epochs allowed has been reached. The criterion for adding another unit is that

the augmented network has not been able to find a good solution after a certain maximum

95

number of epochs. This number is set to be 100 in our experiments. It remains an open

question as to whether there can be an adaptive criterion for adding more units.

network | False solution Correct solution

number | epochs | states | epochs | new units | states

1 22 4 >350 >4 -

2 17 4 97 1 7

3 25 6 223 2 12

4 4 4 142 2 9

5 17 5 305 3 7
| average | 15.75 | 4.75 [191.75] 2.0 | 8.75 |

Table 4.4: Experimental results on learning the simple symmetric grammar

Table 4.4 shows the experimental results on five networks with different initial weights
learning the simple symmetric grammar. All networks initially contain 4 units in the
recurrent “state” layer, and 5 units in the feedforward intermediate layer. The training
set contains 1000 probabilistically generated strings. Each row corresponds to one of the
network trained on the grammar. The number of epochs needed for and the number
of states contained in a solution are shown for both the false solution initially found,
and the correct solution finally arrived at. For the correct solution, the number of new
units added to the network during the augmented learning is also shown. All networks
except one converged to equivalent structures to the simple symmetric grammar within
350 epochs. The last row shows the average numbers over the successful runs. Note that
the network always finds a false solution very quickly, and even with augmented learning,
it takes much longer for the newly added units to discover long distance dependencies.

For the symmetric embedded Reber grammar and the atbtatbt grammar however,
the network fails to find a correct solution even with augmentation for most of the runs.
For the symmetric embedded Reber grammar, five networks each having 8 state units
and 8 intermediate units with different initializations are trained on a data set of 2000.
For the atbTatbt grammar, five networks each having 5 state units and 6 intermediate
units with different initializations are trained on a data set of 1000. For all networks, false
solutions are found within 10 training epochs. Augmentation is employed for up to 350
epochs, with one new unit added every 100 epochs. For each of the grammars, 4 out of

the 5 networks fail to find a correct solution within 350 epochs, with up to 4 new units

96

Reber grammar and the atbTatbt grammar, respectively.

added. Table 4.5 and 4.6 show the results of the five runs for the symmetric embedded

network | False solution Correct solution
number | epochs | states | epochs | new units | states
1 3 20 >350 >4 -
2 4 11 >350 >4 -
3 2 13 >350 >4 -
4 2 14 140 2 26
5 9 13 >350 >4 -

Table 4.5: Experimental results on learning the symmetric embedded Reber grammar

network | False solution Correct solution
number | epochs | states | epochs | new units | states
1 2 3 >350 >4 -
2 3 3 6 1 5
3 3 3 >350 >4 -
4 2 3 >350 >4 -
5 2 5 >350 >4 -

Table 4.6: Experimental results on learning the atbta™bt grammar

It appears that the network model has an extremely strong tendency to commit the
same internal states to those true machine states that have the same immediate behav-
iors: same emission probabilities. Note that states 1 and 2 in the ac®e U bc*b grammar
(Figure 4.4) do not have the same emission probabilities even though they are symmetric
parts in the grammar, thus the network does not have trouble distinguishing the two. As
discussed in Section 4.7, to differentiate between such “similarly behaved” states, a suffix
is needed so that by processing the suffix from each of the two “similarly behaved” states
the automaton is led to two “differently behaved” states: states that have different emis-
sion probabilities. The longer such suffix that is minimally necessary, the further back the
the network is required to remember, and the harder it is for it to learn. In addition, the
more such “similarly behaved” states there are in a grammar, the harder the problem.

In the simple symmetric grammar (Figure 4.3), the only pair of “similarly behaved”

states are states 1 and 2. To distinguish them, the suffix V' is needed, which is only of

97
length 1. Suffix V leads states 1 and 2 to states 3 and 4, respectively, which have very
different emission probabilities. With the help of the augmented learning, the network is
able to differentiate the two states most of the time.

The symmetric embedded Reber grammar on the other hand, has 5 pairs of “similarly
behaved” states: one less than the size of the Reber grammar. The pair that requires
the longest suffix to be differentiated is states 1 and 7, for which the suffix is of length 3:
either TX S or PVV. This makes it a very difficult problem for the network, and even
the augmented learning fails most of the time to force it to learn.

It is puzzling to see the difficulty the network has in learning the simple a*bta®bt
grammar, where only one pair of “similarly behaved” states exists: states 1 and 3. The
shortest suffix that is needed to distinguish the two states is b, which is only of length 1.
In a sense, this grammar is very similar to the simple symmetric grammar, except that
the two “similarly behaved” states are cascaded, instead of in parallel with each other. It
takes at least two more symbols to reach state 3 from the beginning than to reach state
1 (Figure 4.5). The results show that the network has more difficulty in distinguishing
“similarly behaved” states in cascade than in parallel.

It is clear from these experiments that the gradient-descent algorithm is not a powerful
one in training the network tolearn grammars with identical sub-parts. The high frequency
and speed with which the network converges to false solutions via gradient descent and
the difficulty for the algorithm to pull it away from such false solutions demonstrate that
there are many local minimum points in the search space for such grammars, and very
few global ones. To overcome this difficulty, a better training algorithm that avoids local
minima, or a different network structure that does not create as many false solution local

minima points in the solution space is worth investigating.

4.10 Summary and Future Work

We have presented in this chapter a recurrent network structure for the inference of prob-
abilistic regular grammars. The network consists of a recurrent part which is aimed to
represent the structure of the grammar, and a feedforward part which is aimed to represent
the probabilities of the grammar. The pseudo-gradient learning is extended to train the
recurrent part of such a network by using error information provided by the feedforward

part. Theoretical analysis of necessary and sufficient conditions for the network’s derived

98

structure to be correct are given. A two-stage verification process with adaptive error
thresholds is derived for the case of limited data, and incorporated during training. In
addition, an adaptive network augmentation process is used for the learning of grammars
with identical sub-parts, which are known to be hard problems for recurrent networks.
The experimental results demonstrate the effectiveness of the verification criteria and the
learning algorithm in learning grammars without identical sub-parts. The augmented
learning made a small improvement in the learning of grammars with identical sub-parts.
The two criteria described in this chapter do not restrict their use in recurrent network
learning: they can be applied to any inference algorithm for this class of probabilistic
grammars, provided that the algorithm greedily grows states during inference, and derives
the transition probabilities directly by frequency count from the given data.

The advantage of using discrete units to represent the structure of the grammar is again
demonstrated by the facts that the verification process can be applied during learning, and
that the learning of the structure of the grammar and of the probabilities can be easily
separated.

It has been found that for grammars with identical sub-parts, there are many false
solutions existing as local minima in the network’s solution space and they are much
easier to reach than the few correct solutions which are global minima, even with our
augmentation process. Future research lies in investigation of other algorithms that do
not rely on gradient descent, and other network structures that inherently prevent false
solutions from becoming local minima.

To increase the network’s representation power, one suggestion is to add an interme-
diate layer between the current state and the next state layers, so that limitations on
the mapping of current and next state configurations can be eliminated. In addition, our

algorithm can also be applied to higher ordered networks.

99

Chapter 5
Conclusion

5.1 Summary of Results

We have presented in this thesis a general scheme for training artificial recurrent neural
networks to solve grammatical inference problems. The scheme consists of a discrete
recurrent network structure to overcome the stability problem associated with conventional
analog network structures, and the pseudo-gradient learning method to effectively train
discrete networks. The discrete network and pseudo-gradient learning are applied to the
inference of three types of grammars.

For regular grammars, a second-order discrete network structure along with the idea
of pseudo-gradient training is introduced. Experimental results on training such networks
to learn grammars with various levels of difficulty demonstrate the capability of the new
network to be similar to its analog counterpart, while sustaining stable representations for
arbitrary long strings after learning.

For a class of deterministic context-free grammars, the second-order discrete network
structure is extended to include a discrete external stack. Pseudo-gradient learning is also
extended. A composite error function is constructed to deal with various situations during
learning. Empirical evidence supports our claim that the learning scheme is effective.
Unlike its analog counterpart, the discrete network’s operation on the external stack is
directly interpretable.

For a class of probabilistic grammars, a combined discrete/analog structure is suggested
from analysis of the inference problem. By using discrete units to represent the structure
of the grammar, the learning of the structure can be separated from the learning of
the probabilities. Pseudo-gradient learning is again extended for the combined network.
Theoretical aspects of necessary and sufficient conditions on the correctness of a derived
grammar are analyzed in detail. Empirical criteria for limited data are constructed and
incorporated during learning. Results on learning several probabilistic grammars without
identical sub-parts indicate the effectiveness of the verification criteria and the learning
scheme. For grammars with identical sub-parts, where long distance dependencies exist,

and which are particularly hard to learn, an adaptive network augmentation scheme is

100

used which results in some improvement of learning. The gradient descent mechanism is
found not powerful enough for this particular type of grammars.

The general scheme of discrete network and pseudo-gradient learning can be extended
and applied to any problems with discrete hidden structures, as well as to feedforward
networks [GZ94]. Any successfully trained discrete recurrent network has the ability to
process arbitrarily long strings without error.

The general criteria derived in Chapter 4 can also be applied to any inference algo-

rithms for the same class of probabilistic grammars.

5.2 Future Research Directions

We have studied various aspects of using recurrent networks to derive grammars rules from
examples: learning behavior, internal representation, capacity of networks and difficulties
in learning certain grammars.

Yet several questions still remain unanswered and are worth investigating for future

research.

1. Theoretical analysis of learning for analog networks: Why do analog networks tend
to form clusters in activation space in learning? Can it be proven that they form

unstable clusters most of the time?

2. Are there stable solutions for analog networks which have infinitely many points in
a state representation? If so, what is the network capacity for such representations?

And is there an effective training algorithm for finding such solutions?

3. Theoretical analysis of learning for discrete networks: What is the convergence prop-

erty of discrete networks in learning an arbitrary grammar?

4. How can we design new learning algorithms and network structures for probabilistic
grammars that can overcome the difficulty associated with the scheme presented in

Chapter 47

5. Extensions on the probabilistic network training: Can a network learn a general
HMM? In addition, can we extend the structure even further to outperform HMM,

in cases where the underlying relationships are not first-order Markov?

101

6. Can our model be applied to very large-scale problems, such as DNA sequence
modeling and analysis? And can it be applied in problems other than grammatical

inference, such as time sequence prediction and modeling?

The answers to the above questions will be useful for a even better understanding of

recurrent networks in general, and for their applications in solving real-world problems.

102
Appendix A
Detailed Training Process for Regular
Grammars

The operational equations of the network shown in Figure 2.4 are:
st=ATuis v

where
1

14e-’

fz) =

Error is calculated at the end of each string 29, 2!, ..., 2’
1
= 5(5(1); - T)2a

where
1 if “legal”
T=t i = e oW
arge { 0 if “illegal”,
and S§ is the “indicator” unit’s activation at time step L.

Update wf;, the weight from node j to node ¢ in netn, at the end of each string

presentation according to the error gradient:

w? = wh ————aE Y .. d
A L—Y 1
1% i 8’!1):;’ n,%, 7,
oF (95'

S - 0 s 9 .': .7
8w” = (% 'aw;’; Vi

where « is the learning rate, which is chosen to be O 5 in all of our experiments.

L
To get the gradient value gi‘; , the gradient values 3 for all ¢, k need to be calculated
5] ‘]

forward in time at each time step:

a8t L 0S!™

dw™ = (Z kl Ow™ + 6ki5nx“g;—l)v Vi, j,n,k,t.
(¥ ZJ
(Initially, set: —g—g;%- =0, Vi, j,n,k.)

The stopping criterion for training is that the network error for every training string

is below a certain threshold. In all of our experiments, this threshold is set to 0.02.

103
Appendix B

Detailed Results and Analysis of the
Initial Network Structure Learning the
Reber Grammar

The Reber grammar with equiprobable transition splits is shown in Figure 4.9(a). A data
set of 200 strings is generated randomly according to the grammar. Five networks with
different random weight initializations are trained on the data set. All networks have 3
state units. Both the number of input and output units are 7, the same as the alphabet
size. For each run, learning is stopped after 200 epochs of data presentation. Table B.1
shows the results of the 5 runs. A successful run is defined to be that the network has
found a solution after 200 epochs where it produces high outputs (> 0.3) for correct
successors and low outputs (< 0.3) for non-successors for all the training data. As can be
seen from the table, 4 out the 5 runs are successful runs. The number of states derived
from a network for the successful runs are also shown. Since the output prediction can
be drastically different for different inputs, with the same “state” unit values, we define a
“network state” to be a configuration of both the “state” units and the input units. Two
such configurations are considered to be the same “network state” if they both predict the

same successors with high output values and go to the same next “state” units.

network | successful | number of
number run? “states”

1 Yes 7

2 Yes 9

3 No -

4 Yes 8

5 Yes 8

Table B.1: Initial experimental results on learning the Reber grammar

Although there can be two different configurations of the “state” unit and input values
belonging to the same network state and they both give high output values on the same

units and low values on the others, the exact values they produce can differ. These are

104

T(0.38)

Figure B.1: An extracted state machine from a trained network.

values we would like to interpret as probability estimates, and thus they are desired to be
equal for any configurations belonging to the same network state. Qur experiments have
shown however, that this goal is very difficult to reach. Prolonged training does not make
the network outputs for each configuration closer to ideal.

Figure B.1 shows an example of extracted state machine from one of the successfully
trained networks. Each state is labeled by a binary number denoting the state unit values
and one or more letters denoting the input values: each letter along with the binary
number is a configuration of that network state. Depending on how many possible ways
there are to reach a network state u; from some other network state u;, and how many
configurations there are in u;, a transition from network state u; can have several different
probability estimates produced by output units. For simplicity, only one set of normalized
transition probabilities which are closest to the ideal numbers are shown in the figure for
each state. It should be noted that most of the other sets of probabilities not shown are
far worse than the ones shown. As can be seen from the figure, these numbers are far from
the true probabilities shown in Figure 4.9(a).

The reason for this behavior can be explained as follows: For networks with n state
units, assume that it has found a minimum configuration of network states to represent

the grammar, i.e., 6 network states and 11 transitions. As mentioned above, each transi-

105

tion can correspond to different paths from different network configurations of the same
previous network state. To produce the ideal probabilities, each such path defines a set of
equations mapping the configuration of a network state to the output probabilities. There
is one equation for each output unit in any of the sets of equations. From our example
above, we know that in fact, there are 2 configurations in all of the network states, except
the ending states (this is true for all the machines extracted), thus we have in fact at least
11 4+ 10 = 21 equations for each output unit to satisfy. From the network architecture,
there are only n+ 7+ 1 = n+ 8 weights connecting the state units, input units and a bias
unit to every output unit, n = 3 in our case. It is then very unlikely that the network can
use the limited set of 11 adjustable weights to satisfy all 21 equations. This is true for
all of the 7 output units. Also can be seen from Table B.1, none of the networks in fact
found the minimal machine — a larger machine results in more transitions, which in turn
results in more equations for the outputs to satisfy.

The conclusion is that the network is not powerful enough to fully represent the proba-
bilities. One way to compensate for this is to add more units, but from the above analysis,
we need a lot more units, much more than the number of states in the true machine. An
alternative way is then to add an intermediate layer between the output and the state
units, and to remove the possibility of having more than 1 configuration for a network

state. Section 4.6 describes an improved network structure to accomplish the goals.

106
Appendix C
Proof of Lemma 4.1 and 4.2

Lemma
Let p be the probability of event X happening for a probabilistic test. Let n be the

number of tests, and k be the number of times event X happened. Then

r(2)-n
n

Var <E> = Z_l_(l___—_pl

n n
Proof:
Let ¢ be an index over the tests, 1 <17 < n.
Let X; be the event that X happens for test i,

then P(X;) = p by definition.
1 if event X happens for test ¢

Let Ix, = 0 otherwise,

then E[Ix,] =

By definition, k& = 3_1, I'x,, we have:
k 1 " 1 & np
HEE [Z Xz] S Flx) = =

Note that I%, = Ix;, so

Var(Ix] = E[I%,] - (E[Ix.]))’ = E[Ix] - p* = p - p* = p(1 - p).

Since the n events are independent,

var [g] B __V“T = “V‘” [ZIX] = ;};ivar] = 2=pn _p(-p)
1=1

n? n

Q.E.D.

107

Lem ma

Let p be the probability of event X happening for a probabilistic test T. Let m be the
number of tests, and k., be the number of times event X happened. Let n be the size of
a subset of the above tests (n < m), and k,, be the number of times event X happened in

that subset (k, < ky,,). Then
km kn 1 1
var| (G- 2)] =000 (5)-
m n n m

From the previous Lemma, we have:

Proof:

E(ky) = np, E(kn)=mp, Var(k,)=np(1l- p),

Var (%) _l=p oy, (%”) _rl-p)

m n

£[(-)] r-r

Let k,_,, = ki, — ky, the number of times X happened in the m tests excluding the n

sub-samples, we have:

va[(e-2)] = (-5]-([Ce-5))

GG R CERCE)

= Var <%‘—) + Var (%) - ——2——E [(kr, — np)(km — mp)].

mn

Since k,, and kj,_,, are independent,

E{(kn = np)(kw = mp)] = E[(kn = 1p)(kn = np+ ks — (m = n)p)]
= B (ko = 1p)?] + E [(kn — np)(kin—r — (m - n)p)]
= Var(ka) + E[(kn = np)] - E [(kn— ~ (m — n)p)]
= Var(k,)+0= np(1 - p).

108

k k k k 2
m I - VvV _m ony 2, —
Var[(m n)] Iar(m)—l—Var(n) — np(1 — p)

p(1 - p) Lpd=p) 2p(1-p)

= p(1-p) (%—i)

m

Q.E.D.

109

Appendix D
Proof of Theorem 4.2

Theorem Given an infinite data set Dy generated by a certain finite state probabilistic
automaton M =< 2,U,up, 6, P, F >, and let Ry be the set of prefiz strings contained in

Dy. If M is the smallest and unique machine that generates Dy, then it satisfies:
1. Yu; € U, dr; € Ry, such that r; leads to u;.

2. Yug,u; € U, u; # uj, the following is true:
Vr; that leads to u;, and Vr; that leads to u;, 3 suffiz w € ¥*, z € ¥, such that

rw,rjw € Ry, rw leads to state u;,, rjw leads to state u;,, u;, # uj,, and

P(zlu,) # P(zu;,).

Proof by contradiction:

Given that M is the smallest and unique machine that generates Dy,

1. If condition 1 is not satisfied, then Ju; € U that no prefix strings in R leads into.
Then we can construct a new machine by eliminating u; from M while keeping
everything else the same. The new machine is a smaller machine than M, and can

generate Dy exactly the same way as M — a contradiction.

2. If condition 2 is not satisfied, then Ju; € U, u; € U,u; # uj, that satisfies the
following:
For Vr; that leads to u;, Vr; that leads to u;, and V suffix w € X* such that r;w, W €
R, and rw leads to state u;,, rjw leads to state u;,, the equality P(z|u;,) =
P(z|u;,) holds for Yz € ¥. Le., u; and u; behaves exactly the same for all prefix
strings leading to them. Thus we can construct a new machine by eliminating state
u; and redirecting all transitions going into u; to u; instead. Keeping everything
else the same, the new machine is one state smaller than M, and can generate Dj

exactly the same way as M — a contradiction.

Q.E.D.

110

Appendix E
Proof of Theorem 4.3

Theorem
Given data D that satisfies Condition 4.3 for a minimum machine M, the smallest

eztracted machine M’ that passes Criterion 4.2 satisfies:
M =M,

*®
where “=7

Proof:
Let M =< X,U,u0,6, P, F >, M' =< X, U’ ug, &', P/, F' >.

stands for “statistically equivalent” defined as in Criterion 4.2.

o If |M'| > |M]|, then from Condition 4.3-5, M also passes Criterion 4.2. This leads

to a contradiction to the fact that M’ is the smallest of such machines.
o If |M'| < |M]|,

— Consider Vu;,u; € U, such that u; # uj, i.e., rf # ri.

From Condition 4.3-1: r{,r} € R, thus Ju{,u; € U’, such that r} leads to u},

r? leads to u;

From Condition 4.3-2 and condition 2 in Theorem 4.2: 3 suffix w € £*,2 € ¥

ki

such that rfw,riw € R, thus Ju} ,u; € U’, such that rfw leads to state ul

Jw ’

riw leads to state u’ .

Also from Condition 4.3-2, |p.(z|rjw) — p,(z|riw)| > \/—7%,

By Criterion 4.2: P'(z|uf) = p,(a|rfw), and P'(z|u)) = pr(z|riw),
thus |P/(alut,) = pr(alriw)] <[5 (s — 515) - Pllalul, (1 el)
< \/ﬂ (2£) -05(1-0.5) < 14/4,

where my,, is the number of instances of state u;w from D, and n;, < N is the

number of instances of prefix rfw from R. Similarly,

|P'(zlu;,) ~ r(alrsw)] < 3/£.

Therefore, | P'(z|u;) — P'(z|u})|

= [P (elui,) = Br(alriw)] = [P'(z]uf,) = br(z|riw)] + [Br(e|riw) — pr(z|riw)]]
2 |pr(z|riw) = pr(e|rjw)| - |[P(alui,) - B, (z|riw)] = [P'(z]uf,) — B, (z|riw)]

111

2 |pr(e]riw) = pr(afrjw)| = [[P(elu,) — pr(z|riw)] + [P'(2]uf,) = br(|rfw)]]
VR - E- B
= 0.

Thus P'(zlu;,) # P'(z|u),), and w] # u) , sou} # .

Jw?
Thus the number of states in U’ is at least the same as that of U:
| M| > |M].
Therefore, |M’| = |M], and the states in U has a one to one correspondence

to the states in U': u; <= ul.

— Consider Yu; € U,z € X, such that P(z|u;) # 0. Let up = 6(ui,z), and
take Yu; # uz. From Condition 4.3-1 and Condition 4.3-3: r{z,r$ € R, thus
Eu;,z, uj € U', such that rfz leads to u;-é, ie., 8'(ul,z) = u;&, and r} leads to u.
From Condition 4.3-4 and condition 2 in Theorem 4.2: 3 suffix w € ¥*, such

that rjzw,rfw € R. Thus Hugéw,u’,-, € U’, such that rizw leads to state u;,w,

J
g
J

Also from Condition 4.3-4, 3y € X such that |p,(y|rizw) — Pr(ylriw)| > \/%.

rfw leads to state u;{».

By Criterion 4.2: P'(y[u;,) = pr(y|rizw), and P'(yluj,) = pr(ylriw).
Similar to the derivation above, we have:

Pluluty,) # P(yludy), and ufy #

Since ul, and u;, are arrived at by processing the same suffix string w starting
from states “;'gt and u’;, respectively, we have:

8(u},z) = ug,m # u; holds for Vj, such that u; # ug(= é(u;,x)). Therefore,

6'(ul,) = uf.
In conclusion, we proved that
o [M'|=|M|

e For Vu; € U, Ju; € U’ such that »{ leads to u; in M, and %! in M’. That is,

o For Vé(u;,2) = up € U, M’ has §'(ul.a) = u}, € U'.

That completes the proof of the fact that the structures of M and M’ are the same. For
the probability part, the statistical equivalence is automatically satisfied by the verification

of Criterion 4.2. Q.E.D.

[ADO91]

[AngT72]

[AngT78]

[Arb69)]

[AS83]

[BCO1]

[CA91]

[CG8T]

[Cho59]

[CL89)

112

References

N. Alon, A. K. Dewdney, and T. J. Ott, “Efficient simulation of finite
automata by neural nets,” Journal of the Association for Computing Ma-

chinery, 38(2):495-514, 1991.

D. Angluin, “Inference of reversible languages,” Journal of the Association

for Computing Machinery, 29(3):741-765, 1972.

D. Angluin, “On the complexity of minimum inference of regular sets,”

Information and Control, 39:337-350, 1978.

M. A. Arbib, Theories of abstract automata, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1969.

D. Angluin and C. H. Smith, “Inductive inference: theory and methods,”
ACM Computing Survey, 15(3):237, 1983.

B. Bartell and G. W. Cottrell, “A model of symbol grounding in a temporal
environment,” In Proceedings of International Joint Conference on Neural

Networks, volume I, pages 805-810, Seattle, WA, 1991.

J. Connor and L. Atlas, “Recurrent neural networks and time series predic-
tion,” In Proceedings of International Joint Conference on Neural Networks,

volume I, pages 301-306, Seattle, WA, 1991.

G. Carpenter and S. Grossberg, “A massively parallel architecture for a self-
organizing neural pattern recognition machine,” Computer Vision, Graphics

and Image Processing, 37:54-115, 1987.

N. Chomsky, “On certain formal properties of grammars,” Information and

Control, 1(2):137-167, 1959.

J. Carroll and D. Long, Theory of Finite Automata, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1989.

[CSSMB8Y]

[DGS93]

[DM94]

[dVPO1]

[EJM90]

[Elm90]

[Elm91]

[Fah91]

[FGS92]

113
A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland, “Finite state

automata and simple recurrent networks,” Neural Computation, 1:372-381,

1989.

S. Das, C. L. Giles, and G. Z. Sun, “Using prior knowledge in an NNPDA
to learn context-free languages,” In S. J. Hanson, J. D. Cowan, and C. L.
Giles, editors, Advances in Neural Information Processing Systems 5, pages

65-72. Morgan Kaufmann, San Mateo, CA, 1993.

5. Das and M. C. Mozer, “A unified gradient-descent/clustering architec-
ture for finite state machine induction,” In J. D. Cowan, G. Tesauro, and
J. Alspector, editors, Advances in Neural Information Processing Systems

6. Morgan Kaufmann, San Mateo, CA, 1994.

B. de Vries and J. C. Principe, “A theory for neural networks with time
delays,” In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Ad-
vances in Neural Information Processing Systems 3, pages 162—-168. Morgan

Kaufmann, San Mateo, CA, 1991.

A. El-Jaroudi and M. Makhoul, “A new error criterion for posterior prob-
ability estimation with neural nets,” In Proceedings of International Joint
Conference on Neural Networks, volume III, pages 185192, San Diego, CA,
1990.

J. L. Elman, “Finding structure in time,” Cognitive Science, 14:179-211,
1990.

J. L. Elman, “Distributed representations, simple recurrent networks, and

grammatical structure,” Machine Learning, 7(2/3):195-225, 1991.

5. E. Fahlman, “The recurrent cascade-correlation architecture,” In
J. E. Moody R. P. Lippmann and D. S. Touretzky, editors, Advances in
Neural Information Processing Systems 3, pages 190-196. Morgan Kauf-
mann, San Mateo, CA, 1991.

P. Frasconi, M. Gori, and G. Soda, “Local feedback multilayered networks,”

Neural Computation, 4:120-130, 1992.

[Fu82]

[GMC*92a]

[GMC*92b]

[Gol72]

[Gol78]

[GSCT90]

[GZ94]

[Hea87]

[HLvHO1]

114

K. 5. Fu, Syntactic Pattern Recognition and Applications, Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.

C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee,
“Learning and extracting finite state automata with second-order recurrent

neural networks,” Neural Computation, 4(3):393-405, 1992.

C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, and Y. C.
Lee, “Extracting and learning an unknown grammar with recurrent neural
networks,” In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Ad-
vances in Neural Information Processing Systems 4, pages 317-324. Morgan

Kaufmann, San Mateo, CA, 1992.

E. M. Gold, “System identification via state characterization,” Automatica,

8:621-636, 1972.

E. M. Gold, “Complexity of automaton identification from given data,”

Information and Control, 37:302-320, 1978.

C. L. Giles, G. Z. Sun, H. H. Chen, Y. C. Lee, and D. Chen, “Higher
order recurrent networks and grammatical inference,” In D. S. Touretzky,
editor, Advances in Neural Information Processing Systems 2, pages 380—

387. Morgan Kaufmann, San Mateo, CA, 1990.

R. Goodman and Z. Zeng, “A learning algorithm for multi-layer perceptrons
with hard-limiting threshold units,” In Proceedings of IEEFE International
Conference on Neural Networks, Orlando, FL, 1994, to appear.

T. Head, “Formal language theory and dna: An analysis of the genera-
tive capacity of specific recombinant behaviors,” Bulletin of Mathematical

Biology, 49(6):737-759, 1987.

A. V. M. Herz, Z. Li, and J. Leo van Hemmen, “Statistical mechanics of
temporal association in neural networks with delayed interactions,” In R. P.
Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural
Information Processing Systems 3, pages 176-182. Morgan Kaufmann, San

Mateo, CA, 1991.

[Hop82]

[HP90]

[HU79]

[Jor86a]

[Jor86b]

[Koh88]

[KPRY1]

[KS88]

[LCY1]

115

J. J. Hopfield, “Neural networks and physical systems with emergent col-
lective computational abilities,” Proceedings of the National Academy of

Sciences, 79:2554-2558, 1982.

J. Hampshire and B. Pearlmutter, “Equivalence proofs for multi-layer per-
ceptron classifiers and the Bayesian discriminant function,” In D. Touretzky
et al, editor, Proceedings of the 1990 Connectionist Models Summer School,
pages 159-172, San Mateo, CA, 1990. Morgan Kaufmann.

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, Reading MA, 1979.

M. L. Jordan, “Attractor dynamics and parallelism in a connectionist se-
quential machine,” In Proceedings of the 1986 Cognitive Science Conference,

pages 531-546, Lawrence Erlbaum, 1986.

M. I. Jordan, “Serial order: A parallel distributed processing approach,”
Technical Report 8604, University of California at San Diego, Institute for

Cognitive Science, 1986.

T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag,

Berlin, second edition, 1988.

A. Kuh, T. Petsche, and R. L. Rivest, “Learning time-varying concepts,”
In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances
in Neural Information Processing Systems 3, pages 183-189. Morgan Kauf-
mann, San Mateo, CA, 1991.

M. Kudo and M. Shimbo, “Efficient regular grammatical inference tech-
niques by the use of partial similarities and their logical relationships,”

Pattern Recognition, 21(4):401-409, 1988.

R. R. Leighton and B. C. Conrath, “The autoregressive backpropagation
algorithm,” In Procecedings of International Joint Conference on Neural

Networks, volume II, pages 369-377, Seattle, WA, 1991.

[Lev9l]

[Lip87]

[McQ67]

[Mil93]

[MP69]

[Mug90]

[Pea89]

[Pol91]

[Rabg9]

[Reb69]

[RHWS6]

[RMtPRGS6]

116
E. Levin, “Modeling time varying systems using hidden control neural
architecture,” In R. P. Lippmann, J. E. Moody, and D. S. Touretzky,

editors, Advances in Neural Information Processing Systems 3, pages 147—

154. Morgan Kaufmann, San Mateo, CA, 1991.

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE

ASSP Magazine, pages 4-20, April 1987.

J. B. McQueen, “Some methods of classification and analysis of multivariate
observations,” In Proceedings of Fifth Berkeley Symposium on Mathematical

Statistics and Probability, pages 281-297, 1967.

J. Miller, Building Probabilistic Models from Databases, Ph.D. thesis, Cal-
ifornia Institute of Technology, 1993.

M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge, MA, 1969.

S. Muggleton, Grammatical Induction Theory, Addison-Wesley, Turing
Institute Press, 1990,

B. A. Pearlmutter, “Learning state space trajectories in recurrent neural

networks,” Neural Computation, 1:263-269, 1989.

J. B. Pollack, “The induction of dynamical recognizers,” Machine Learning,

7(2/3):227-252, 1991.

L. R. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proceedings of the IEEE, 77(2):257-286,
1989.

A. S. Reber, “Implicit learning of artificial grammars,” Journal of Verbal

Learning and Verbal Behavior, 6:855-863, 1969.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal

representations by error propagation, chapter 8, MIT Press, Cambridge,

MA, 1986.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Parallel
Distributed Processing, MIT Press, Cambridge, MA, 1986.

[SBJIO1]

[SCGH90]

[Sch92]

[Sea92]

[SLFSS]

[S093]

[Segr91]

[SSCMY1]

[$Z89]

117

S. Santini, A. Del Bimbo, and R. Jain, “An algorithm for training neural
networks with arbitrary feedback structure,” Technical Report DSI 10/91,

Dipartimento di Sistemi e Informatica, Universita di Firenze, 1991.

G. Z. Sun, H. H. Chen, C. L. Giles, Y. C. Lee, and D. Chen, “Connectionist
pushdown automata that learn context-free grammars,” In Proceedings of
the International Joint Conference on Neural Networks, volume 1, page 577,

Washington D. C., 1990.

J. Schmidhuber, “Learning complex, extended sequences using the principle

of history compression,” Neural Computation, 4:234-242, 1992.

D. B. Searls, “The linguistics of DNA,” American Scientist, 80:579-591,
1992.

S. Solla, E. Levin, and M. Fleisher, “Accelerated learning in layered neural

networks,” Complex Systems, 2:625-640, 1988.

A. Stolcke and S. Omohundro, “Hidden Markov model induction by
Bayesian model merging,” In S. J. Hanson, J. D. Cowan, and C. L. Giles,
editors, Advances in Neural Information Processing Systems 5, pages 11-18.

Morgan Kaufmann, San Mateo, CA, 1993.

E. Sgrheim, “ART2/BP architecture for adaptive estimation of dynamic
processes,” In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, edi-
tors, Advances in Neural Information Processing Systems 3, pages 169-175.

Morgan Kaufmann, San Mateo, CA, 1991.

D. Servan-Schreiber, A. Cleeremans, and J. L. McClelland, “Graded state
machines: the representation of temporal contingencies in simple recurrent

networks,” Machine Learning, 7(2/3):161-193, 1991.

A. W. Smith and D. Zipser, “Encoding sequential structure: experience
with the real-time recurrent learning algorithm,” In Proceedings of Inter-
national Joint Conference on Neural Networks, volume I, pages 645-648,

Washington, DC, 1989.

[Tom82]

[Wid62]

[WK92]

[WZ89]

[Zen94]

[2GS93]

[ZGS94]

118

M. Tomita, “Dynamic construction of finite-state automata from examples
using hill-climbing,” In Proceedings of the Fourth International Cognitive
Science Conference, pages 105-108, Ann Arbor, Michigan, 1982. Lawrence

Erlbaum Assoc.

B. Widrow, “Generalization and information storage in networks of ADA-
LINE neurons,” In G. T. Yovitts, editor, Self-Organizing Systems. Spartan
Books, Washington DC, 1962.

R. L. Watrous and G. M. Kuhn, “Induction of finite-state languages using
second-order recurrent networks,” Neural Computation, 4(3):406-414, 1992.

R. J. Williams and D. Zipser, “A learning algorithm for continually running
fully recurrent neural networks,” Neural Computation, 1(2):270-280, 1989.

Z. Zeng, “Discrete recurrent neural networks for probabilistic grammar
learning,” to be submitted to the IEEE Transactions on Neural Networks,

1994.

Z. Zeng, R. Goodman, and P. Smyth, “Learning finite state machines
with self-clustering recurrent networks,” Neural Computation, 5(6):976-

990, 1993.

Z. Zeng, R. Goodman, and P. Smyth, “Discrete recurrent neural net-
works for grammatical inference,” IEEE Transactions on Neural Networks,

5(2):320-330, March 1994.

