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Abstract

In this thesis, we are concerned with the transmission of data over noncoherent
channels (the carrier phase is random). We consider a receiving system which does not
attempt to estimate the carrier phase from the received data. Instead, the transmitter
and receiver will be designed so that the data transmission is robust with respect to the
unknown phase variations of the channel. For the transmitter, we propose new com-
bined coding and modulation, speciﬁcally designed to match the noncoherent channel.
For the receiver, efficient decoders to noncoherently decode the coded modulation are
developed. As a result, we are able to show, both analytically and by computer sim-
ulations, that Noncoherent Coded Modulation (NCM) approaches the performance of
coded coherent modulation. NCM achieves almost the same power efficiency without
bandwidth expansion or an extensive increase in complexity.

We consider the problem of the Uniform Error Property (UEP) for a broad class
of transmitters and receivers. A sufficient condition for a general linear code to satisfy
the UEP is presented and a structure of a trellis-coded modulation that satisfies this
condition is offered. We call these codes “linear noncoherent trellis-coded modulation”
since they apply to noncoherent detection. The problem of noncoherently catastrophic
codes, which can result in noncoherent detection of trellis codes, is discussed and a
general solution which does not rely on differential encoding of the code output is
offered.

High performance noncoherent detection is achieved using multiple symbol obser-
vations. Unlike previous approaches, a sliding window is used for the observations,
with each observation covering several branches of the trellis, so that the observations
are time-overlapped. We define a new type of noncoherent maximum likelihood se-
quence estimator, and analyze its performance over the Additive White Gaussian Noise
(AWGN) channel by numerical calculation of the union bound. We perform a com-
puterized search and present new high performance coded M-ary Phase Shift Keying
(PSK) modulations for noncoherent detection and their performance. The new codes
cover many useful rates and complexities and achieve higher performance than existing

codes for noncoherent detection. We evaluate the performance of NCM in the presence



of phase jitter in the channel. The method can also be used for multiple symbol de-
modulation of M-ary Differential PSK (MDPSK) and of Continuous Phase Modulation
(CPM). We provide results for both, full and partial response CPM schemes as well as
convolutionally coded CPM. The complexity and power efficiency of this new method
is superior to all past schemes known to the author for noncoherent detection.

The optimal implementation of the decoder, using the Viterbi Algorithm (VA), is
given. For L-symbols observation, it requires a number of states that grows exponen-
tially with L. Three novel sub-optimal algorithms are presented, whose number of
states is the same as the original code so their complexity has a relatively weak depen-
dence on L. For practical values of L, these algorithms are substantially less complex
than the optimal algorithm.

The first suboptimal algorithm to be described is called the Basic Decision Feedback
Algorithm (BDFA). In this algorithm, the symbols from the decisions are fed back to
be used in the subsequent decisions. This algorithm suffers from increased error event
probability and from error propagation. However, by a small modification of the BDFA,
we obtain another improved algorithm, which will be called Modified Decision Feedback
Algorithm (MDFA).

To obtain close to optimal performance, the third algorithm, the Estimated Future
Decision Feedback Algorithm (EFDFA) is offered. This sophisticated algorithm, which
uses the BDFA as a basic building block, is based on a novel concept called “estimated

future.” Performance analysis and simulation results are given.
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Chapter 1

Introduction

Digital communication is the dominant means of information transmission to large
distances. The advent of Very Large Scale Integration (VLSI) technology has made
it feasible to include coding into an increasing number of designs for reducing the
transmitter power, the antenna size, or increasing the data rate. Our information is
given in a digital form. A practical transmission medium (or a communication channel
as it is commonly referred to) only bermits the passage of continuous waveforms to
match the channel. Hence, in any digital communication system, the input bit stream
is converted to an analog waveform. As this waveform traverses the channel, it is
distorted. Furthermore, noise and interfering signals are added. Sources of impairment
include additive noise, phase shift, fading and distortion due to filtering. Timing error
between transmitter and receiver can also be considered an impairment. An attempt
is made at the receiver to decide which of the possible waveforms is the most likely to

have been transmitted.

Let us briefly go over the various steps involved in the transfer of information in a
digital communication system. Then, we will address the types of distortion and the

approaches used to overcome them.

The block diagram of a typical digital communication system is shown in Figure 1.1.
The output of the information source, which is assumed to be a bit stream, enters the
encoder. The encoder output is fed to the modulator. In the modulator, the input bits
are translated into analog waveforms. In a simple modulator, such as an M-ary Phase

Shift Keying (MPSK) modulator, one waveform is selected out of a group of possible

1
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waveforms in each symbol period, according to the modulator input. For the MPSK
modulator, the output is a sine wave of a certain frequency whose phase is selected
by the input information out of M evenly spaced phases. Most transmission channels
are located in a certain frequency band. The modulator makes use of a carrier signal
input to generate waveforms, the energy of which is concentrated within the required
spectral band. The modulator block may also include a frequency up-converter. In such
systems, the modulator consists of two stages. In the first stage, a low frequency carrier
is modulated and in the second stage the signal is up-converted to the RF frequency.

The carrier input to the modulator is generated by a local oscillator.

The transmission medium is the link required for the signal to reach the demodula-
tor. In an RF wireless system, it includes a power amplifier, transmit antenna, space,
receive antenna and receive amplifiers. Traditionally, the demodulator function is to
re-derive the modulated symbols. The decoder tries to recover the information bits out
of these symbols. In modern systems employing combined codes and modulation, the
demodulator and the decoder are combined in one block. The demodulator, as well as
the modulator, needs a locally generated carrier signal for proper operation. Any phase
difference between these two oscillators can be viewed as a phase shift in the received
signal. It is convenient to assume that the local oscillators have no phase difference,
but the phase shift is caused by the channel instead. Another source of phase shift is
the physical channel. For example, in a mobile environment, the path delay is variable,
causing variations in the phase. The final block, the decoder, should provide the best

estimate of the transmitted information from its noisy input.

There are two approaches to overcome the channel distortion. The first is to try to
cancel the distortion and the other is to design a system that is robust with respect to
that distortion. Because it is impossible to cancel the noise added to the signal, the
second approach is used for additive noise. For the carrier phase shift, both approaches
are feasible. In the first approach, the carrier phase is estimated from the received signal
or given by side information, e.g., a pilot tone. Then the phase shift can be reversed at
the receiver and thus canceled. When this approach is used, the transmission is called

coherent. In this case we can redefine the channel excluding the carrier phase shift
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Figure 1.1: A digital communication system.

distortion, and the resulting channel is called a “coherent channel.” The modulation

»

used over a coherent channel is called “coherent modulation.” The second approach
assumes no knowledge about the carrier phase, and no attempt is made to estimate
it. However, the waveforms used in the transmission are selected so that a phase shift
cannot reduce the set of distances between them, and the receiver is implemented in
such a way that it is insensitive to phase shifts. Hence, the system is robust to arbitrary
and unknown phase shifts (but there is a limit to the phase variation rate). When this

approach is used, the transmission is called “noncoherent.”

An example of coherent modulation is Binary Phase Shift Keying (BPSK). In a
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typical system employing BPSK, a Costas loop is used to lock on to the input signal
and extract the carrier phase!. This phase is used in the demodulator to detect the
information bits. Frequency Shift Keying (FSK) is an example of a modulation that can
be used in a noncoherent system. In this modulation, the information is conveyed by
the frequency of the signal. The frequency of a signal can be measured without reference
to its phase, so noncoherent reception can be implemented for this modulation. There
are many advantages of noncoherent systems over coherent ones. We will explore and
compare these two methods later in this thesis. The main drawback of noncoherent

methods is a performance degradation relative to the coherent ones, when both are

used over the Additive White Gaussian Noise (AWGN) channel.

In this thesis, we try to minimize the performance gap between coherent and non-
coherent communication systems. A new noncoherent communication system, called
Noncoherent Coded Modulation (NCM), is introduced as an alternative to coherent
coded modulation. NCM approaches the power efficiency of coherent coded modula-
tion without bandwidth expansion or an exténsive increase in complexity compared to
coherent. The same method is applied also to Continuous Phase Modulation (CPM).
The complexity and power efficiency of this new scheme is superior to all past schemes
known to the author for noncoherent detection. Unlike previous approaches, we do
not require the use of differential encoding when using PSK in a noncoherent system.
The problem of the Uniform Error Property (UEP) for multidimensional coded modu-
lation, decoded by the generalized decoder, is analyzed. UEP means that the decoder
error probability does not depend on which codeword is transmitted. A code with this
property is convenient to analyze and to design. Ungerboeck said: “Good codes should
exhibit regular structure.” [1]. Forney [2] has shown that most good known trellis
codes have an even more regular geometrical structure than might have been expected.
Consider a space with some kind of metric defined over it and a one to one mapping
between codewords and points in this space. We can heuristically argue that it is more
probable that there exist high performance codes when the points of the space are

distributed in such a way that the set of distances of any point from its neighbors are

1There is a residual ambiguity that also needs to be resolved.



5
the same for every point. This kind of distribution tends to be “more uniform” and
thus the minimum distance is maximized.

A new family of combined coding and modulation for noncoherent decoding, that
exhibits the UEP, is introduced, and high performance codes are found. The new
codes cover many useful rates and complexities and achieve higher performance than
existing codes for noncoherent detection. Unlike previous approaches, we do not require
the use of differential encoding when using PSK in a noncoherent system. The optimal
implementation of the decoder by the Viterbi Algorithm (VA) requires a large number of
states. In order to overcome this increase in complexity, a number of reduced complexity
algorithms are derived and analyzed.

If the performance and complexity of channel-robust systems are found to be close
to those of coherent methods, then these new systems may be attractive alt‘erna,tives

to both coherent and noncoherent systems employed in various applications.

1.1 Outline of the Thesis

In Chapter 2, we try to form some unifying representation for digital communication
systems. Working with this framework should enable us to treat all the different com-
munication systems as one entity. The given representation will be used throughout
the thesis. We describe the notion of noncoherent channels and their mathematical
representation. We present and discuss the traditional noncoherent modulations and
compare their performance with the performance of the coherent techniques.

In Chapter 3, we consider the general problem of UEP for multidimensional coded
modulation, transmitted over the AWGN channel and received by a correlator-based
receiver. These receivers are used in a broad class of communication systems, either
coded or uncoded, either coherent or noncoherent. A sufficient condition for a general
linear code to satisfy UEP is presented and a structure of trellis coded modulation
that satisfies this condition is offered. We call these codes “linear noncoherent trellis
coded modulation” since they apply to noncoherent detection. The main application
of the theorems presented in this chapter is the design of coded modulations which are

to be decoded by the emerging class of noncoherent decoders using multiple symbol
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observations. The scheme presented in this thesis is one of them.

In Chapter 4, we find the property of codes which allows them to be decoded
noncoherently. For codes that noncoherent decoding is not possible, we present a

possible correction to the encoder which allows the code to be decoded noncoherently.

A simple way to increase the performance of uncoded noncoherent orthogonal wave-
form modulation is suggested in Chapter 5. The idea is to overlap the transmitted
symbols in time using an appropriate set of symbols. The best upper bound of the
possible performance improvement in terms of ]%1;, when transmitting over the AWGN
channel, is proven to be HA{T An example of a set of orthogonal symbols which can
be overlapped to achieve this bound is the Walsh functions. The theory is a general-
ization of the relation which exists between binary FSK and Differential Phase Shift
Keying (DPSK) for M-ary orthogonal noncoherent modulation. In order to overcome
the limitation of possible improvement in performance, we try to extend the idea by

the use of coding. Some trials with hand designed codes show the possibility of gaining

significantly in performance. This development gave the inspiration to the development

of Noncoherent Coded Modulation (NCM), the core of this thesis.

Trellis coded modulation with two or multidimensional signal constellations, to-
gether with coherent maximum-likelihood detection, is considered an attractive solu-
tion for communications over the AWGN channel. In Chapter 6, a new noncoherent
communication system is introduced called Noncoherent Coded Modulation as an alter-
native to coherent coded modulation. NCM achieves almost the same power efficiency
without bandwidth expansion or an extensive increase in complexity. As a noncoherent
system, the method does not need carrier phase estimation. Nonetheless, differential
encoding is not required. High performance noncoherent detection is achieved by us-
ing multiple symbol observations. Unlike previous approaches, a sliding window for
the observations is used, with each observation covering several branches of the trellis,
such that the observations are time-overlapped. We define a new type of noncoherent
Maximum Likelihood Sequence Estimator (MLSE) and analyze its performance over
the AWGN channel by numerical calculation of the union bound. We perform a com-

puterized search and present new high performance codes for noncoherent detection
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with their performance. The new codes cover many useful rates and complexities and
achieve higher performance than existing codes for noncoherent detection. The method
can also be used for multiple symbol demodulation of M-ary DPSK with better results
than existing methods. We evaluate the performance of NCM in the presence of fast
randomly time varying phase in the channel. We compare the results with those of a
Phase-Locked Loop (PLL)-based system. The error probability analysis requires the
evaluation of the distribution of the indefinite non-central Hermitian quadratic forms in
complex normal random variables. A new series expansion is developed for this distri-
bution function and the cumulative distribution function. Three different versions are
presented for evaluating either the probability distribution function or the cumulative
distribution function. The series are fast converging and computationally efficient. The
series have a rapid convergence when the eigenvalues are separated adequately. How-
ever, since we cannot guarantee this property, we have developed another numerical
method. This second numerical method works well for all ranges of eigenvalues and is

computationally efficient. In addition, several approximations are given.

In Chapter 7, Several decoding methods for the IO-NMLSE are described. The
optimal implementation of the decoder, using the Viterbi Algorithm (VA), is given. For
L-symbols observation, it requires a number of states that grows exponentially with
L. Then, three novel sub-optimal algorithms are presented, whose number of states is
the same as the original code so their complexity has a relatively weak dependence on
L. For practical values of L, these algorithms are substantially less complex than the

optimal algorithm.

The first suboptimal algorithm to be described is called the Basic Decision Feedback
Algorithm (BDFA). In this algorithm, the symbols from the decisions are fed back to
be used in the subsequent decisions. This algorithm suffers from increased error event

probability and from error propagation. However, by a small modification of the BDFA,
we get another improved algorithm, which will be called Modified DFA (MDFA).

To obtain close to optimal performance, the third algorithm, the Estimated Future
Decision Feedback Algorithm (EFDFA) is offered. This sophisticated algorithm, which

uses the BDFA as a basic building block, is based on a novel concept called “estimated



8

future.” Performance analysis and simulation results are given.

In Chapter 8, we apply the noncoherent decoding technique proposed in previous
chapters to CPM. As in the case of coded PSK, we show that this scheme achieves
almost the same power efficiency as coherent CPM using VA. A new trellis diagram for
noncoherent CPM is suggested for simplifying the analysis and the decoder structure.
The error performance is evaluated by using the union bound technique applied to the
symbols-difference trellis diagram. The very efficient sub-optimal decoding algorithms
of Chapter 7, with very small degradation, are also used. The complexity and power
efficiency of this new method is superior to all past schemes known to the author. Both
full and partial response CPM schemes with arbitrary modulation index are considered

as well as convolutionally coded CPM.

1.2 Publications List

Parts of the material of this thesis will appear in coming journal and conference pub-
lications. A preliminary publications list is given here. Unless mentioned otherwise,

there are no joint authors to the following publications.
e The material in Chapter 3 and 4:

— “Uniform Error Linear Coded Modulation for Noncoherent Channels,” The
Annual Conference on Information Sciences and Systems (CISS), Princeton,

NJ, March 16-18, 1994.

— “Uniform Error Group Codes for Generalized Decoder and Their Applica-
tion to Noncoherent Detection,” IEEE Transactions on Information Theory,

submitted.
e Part of the material in Chapter 5:

— “Improvement of Noncoherent Orthogonal Coding by Time-Overlapping,”
IEE Proceedings, accepted for publication.

e Parts of the material in Chapter 6:
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— “Noncoherent Coded Modulation,” IEEE Transactions on Communications,
submitted.

— “Combined Noncoherent Detection and Decoding of Coded Modulation,”

The Annual Conference on Information Sciences and Systems (CISS), Prince-

ton, NJ, March 16-18, 1994.

— “The Performance of Noncoherent Code_d PSK Modulation in the Presence

of Phase Noise,” IEEE International Conference on Universal Personal Com-

munications, submitted.
e Part of the material in Chapter T:

— “Decoding Algorithms for the Noncoherent Coded Modulation,” IEEE Trans-
actions on Communications, submitted.

— “Efficient Decoding Algorithms for the Noncoherent Coded Modulation,”
IEEE GLOBECOM, San Francisco, Nov. 1994, accepted for publication.

e Part of the material in Chapter 8:

— “Noncoherent Detection of Continuous Phase Modulation Using Overlapped

Observations,” with D. Divsalar, Communications Theory Mini-Conference
included in GLOBECOM’94.

— “Efficient Noncoherent Decoding of Uncoded and Convolutionally Coded
Continuous Phase Modulation,” with D. Divsalar, IEEE Transactions on

Vehicular Technology, will be submitted.
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Chapter 2

Coding, Modulation and Detection

2.1 Review of Modern System Representation

Digital communication systems used in practical applications are often very compli-
cated. For example, the receiver for the NASA Deep Space Network took over one
decade to develop and cost millions of dollars. Moreover, every communication system
is different. There are many elements to be defined including the code, the modulation,
the equalizer, the transmitted frequency, etc. For any such element, there are many
possible methods of implementation. To investigate the theory of the operation of a dig-
ital communication system, it would be desirable to develop a unifying representation.
Working in such a framework will enable us to treat a large class of communication
systems as one. Next, we describe the system representation which will be used in this

thesis.

A baseband equivalent block diagram of a digital communication system is shown
in Figure 2.1. All the signals are represented by their complex envelopes [1]. Our
goal is to derive a vectorized version, as shown in Figure 2.2. Let z(¢) be one of the
possible transmitted signals and 75 the duration of an individual symbol. Let us choose

a complete orthogonal set {¢,} of complex functions such that

fso:;(t)c,om(t)dt = {33 . (2.1)

It is convenient to assume that the transmitter is turned on at ¢t = (0. Then we can

13
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represent z(t) as

2(t) = Y ai(t), (2.2)

1=0

where

D—-1
zi(t) = ZO zijp;(t —1Ty), (2.3)

and D is the number of complex dimensions needed to represent each symbol z;(¢) in
the specific coordinate system {¢,}. The symbols z;(¢) may have an infinite duration,
like in the case of Nyquist pulses. Most of the energy of z;(t) is usually found within the
time interval ¢T5 < t < (2+1)7} (with proper alignment of the time origin). For certain
modulation types or choices of {¢,}, D can be infinite. Each symbol of z(t) will be
written as a complex vector of dimension D, x; = (;0,...,%;p-1). It follows that we
can describe the whole transmitter as a code which maps the sequence of input symbols
(which are commonly bits) to a sequence of output symbols which are complex vectors,
each of D dimensions. The code is often a block code, operating on a finite number of
symbols, or a trellis code, operating on an infinite input sequence and outputting an
infinite sequence. Practically everything is finite, but for a long message the infinite
length is a good approximation. A block code is a mapping of a block of input symbols
to a block of output symbols. A trellis code is a state machine. The input symbol and
the current state determine the next state, and for each such transition one or more
output symbols are assigned. We will assume that {¢;} are chosen such that there is
no Inter-Symbol Interference (ISI) [1] at the matched filter output. This condition can
be defined as

/ O (pm(t — IT)dt =0 Vi 0,n,m. (2.4)

If no such representation is possible, then it is always possible to form an equivalent
system where the ISI is converted into a trellis code in which output symbols have no
ISI.

Let us try some examples. The first is Binary Phase Shift Keying (BPSK) modu-

lation without coding.

z(t) = i a;q(t —iT5), (2.5)

=0



15

Decoded

Input

symbols Symbols
33 ENCOdEr Modulator Channel Correlator(s Decoder ——>

Figure 2.1: A base-band model of a digital communication system.
Input symbols Output symbols Recieved symbols Decoded
(finite alphabet (complex vectors) (complex vectors) Symbols
Encoder Channel Decoder
X r.

i 1

Figure 2.2: An equivalent model for digital communication systems.

where ¢(t) is some waveform which does not lead to ISI, and «; = +1 corresponds to
the binary input symbols. Naturally, we choose po(t) = ¢(t) and D = 1. Then we
have x; = a;. The code is reduced to a one-to-one mapping from input bits to output
symbols. The next example is DPSK (Differential Phase Shift Keying) modulation.

Here

z(t) = iﬂiQ(t —i1y), Bi = Pimrc, (2.6)

=0

with initial conditions 8_; = 1. Here, we use again ¢o(t) = ¢(t) and x; = B;. There is
a trellis code which maps the input bits to the output symbols ;. This code has two
states, but has no redundancy (looked upon as a convolutional code, this encoder is
non-minimal. The minimal encoder sends the bits uncoded, i.e., it has only one state).
Its trellis is shown in Figure 2.3.

Any modulator with memory is equivalent to a code, most often a trellis code.
Adding a binary encoder in front of this modulator merely generates an equivalent
code. A good example to such modulator is CPM (Continuous Phase Modulation) [2].
Some people prefer to separate a code into two parts. The first is a binary encoder and
the second is a memoryless mapper from bits to complex valued vectors.

Let us move on to discuss the channel. A typical channel attenuates, filters, adds

noise and causes a phase shift to the signal. Coherent channels do not cause a phase
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0/+1 N 0/+1

0/-1 ~—" 0/-1
Figure 2.3: Trellis representation of DPSK.

shift to the signal (a phase shift of ¢ is mathematically a multiplication by e/® of the

base-band signal). Noncoherent channels cause random time-varying phase shifts.
The final block, the receiver, serves to decode the input signal back to the trans-

mitted information. Let r(t) be the complex envelope of the received signal. r(t), as

z(t), is decomposed by the orthonormal functions as

T(t) = i—o: T','(t) = ij: i T'i,]'(pj(t - 2Ts) (27)

Note that an infinite number of dimensions is needed in general to represent r(¢) due
to the infinite dimensionality of the noise, but later we will only usé D of them since
all the components of the received signal outside the signal space are irrelevant for the
decision. For an additive noise channel, we can express the received noise n(t) in the
same way.

A large class of receiving systems, either coded or uncoded can be represented as
follows. We will assume that there is no timing error between the transmitter and the
receiver. The receiver performs symbol by symbol correlations between the received
signal, r(t), and a candidate signal Z(¢) (a possible transmitted signal). The results-of
these correlations are the arguments of a real-valued likelihood function A(Z)'. The
receiver chooses & which maximizes this function. The correlator output for the ¢’th

symbol is defined as

o0

i = / r(t) zi(t)dt = rix;, (2.8)
where r; = (r;0,751,--,7p-1) and ‘7’ denotes the conjugate and transpose of a vector

LA is often called a “metric”.
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or matrix. The vector u = (po,---,pn-1), representing the sufficient statistics for

decision, is the input to the likelihood function

AR) = f(p)- (2.9)

Here, N is the number of symbols the decoder operates on. For a block code, N is the
size of the output block. For the case of uncoded modulation N is usually equal to 1,
and for a trellis code N — oo. For a coherent additive noise channel we can express r;
as

r; = X; +n,, , (210)

where n; = (n;0,ni1, - +,n;p-1). For a coherent decoder, for the case of equiprobable
and equal-energy waveforms over the AWGN channel, the optimal likelihood function,
f,1is
N-1
flp) = 20 Re{p:}. (2:11)
We see that the receiver is composed of two parts. The front end is the correlator,
which correlates the input signal with all the possible symbols. Its output is fed into
a decoder (or decision device for the uncoded case) which operates by maximizing
the likelihood function, A(X) and finding the information bits that correspond to the
sequence which achieves this maximum; see Figure 2.4. The correlation at the front end
is, most often, accomplished by matched filters. A matched filter will either output the
component r; ; using ; as the template, or will output y; using «;(¢) as the template.
In the first case, some signal processing block will compute the vector product r:fxi.
We will call this type of receiver a correlator-based receiver. Hereafter, a decoder will
always refer to a device which maximizes a likelihood function as described above.
The definition of the code is general and it includes also the uncoded case as a special
case. Since we have included the uncoded modulations as special case of the coded
modulations, “decoding” will include the detection using a symbol-by-symbol decision
device. |
Next, we will discuss coherent decoding, noncoherent decoding, and partially co-
herent decoding. A noncoherent decoder ignores the phase shift ¢(¢) of the channel

with the restriction that the phase is slowly varying. The noncoherent decoder is built
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under the assumption that we have no information about ¢(t), except its slow variation.
When some information is available about the phase, for example if ¢(¢) is the residual
phase error of a Phase-Locked Loop (PLL), then the resulting decoder will be called
partially coherent. We postpone the discussion on how to find the optimal noncoherent

decoder until Chapter 6.

r(t) i Data
Correlator Bank AN Decoder "

Figure 2.4: A correlator-based receiver.

2.2 Noncoherent Channels

The noncoherent channel introduces a phase shift ¢(¢) to the received waveform. As-
suming additive noise is independent of the phase shift of the signal, noise statis-
tics remain unchanged, whether the noise is added before the phase shift, i.e., r(t) =
(z(t) + n(t))e?*® or after the phase shift, i.e., 7(t) = z(t)e?*® + n(t). For analysis
throughout the thesis we will use the latter form (see Figure 2.5a). The channel phase,
¢(t), is a random process. Its statistics depend on its physical origin. In many cases,
it is very difficult to find the exact model of the phase process (also referred as phase
noise or phase jitter). We use the assumption that the phase is slowly varying relative
to the symbol rate. If this is not the case, then communication becomes difficult if not
impossible, and large degradation is unavoidable. We will constrain ourselves to cases
where the phase variation is negligible over the duration of at least one symbol®. Under

this assumption we can express the received signal in a vector form as

r, = X,;ej(ﬁ(iTs) + n;, (212)

IMore specifically, over the duration where most of the energy of the symbol is concentrated.
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see Figure 2.5b. The duration over which the phase is assumed constant will be called

an “observation.”

> >P
ot n( tj(

Figure 2.5: A noncoherent additive noise channel.

2.3 Existing Noncoherent Decoders

One of the oldest types of noncoherent modulation is M-ary Frequency Shift Keying
(MFSK). In MFSK, M frequencies wy, - - - ,wpr—1 are used to transmit the information.
Each output symbol is a sinusoidal wave s,(t) = sin(w,t + ). For optimal noncoherent
performance’, the frequencies should be separated from each other by multiples of %
This makes the symbols orthogonal® to each other. If the phase of the sinusoid is
kept continuous in the transition between symbols, we call the modulation Continuous
Phase FSK (CPFSK). The phase continuity introduces memory to the modulator and
has the effects of coding. A decoder that utilizes this memory performs better than one
that looks at independent symbols. There are many decoders for noncoherent MFSK.

One popular suboptimal detector is based on a discriminator. A discriminator is a

1Optimal with respect to a detector which looks at independent symbols.

2Orthogonality between different symbols in their complex envelope representation is defined as
Ts
[ s5(#)sm(t)dt = 0.
0
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device that measures instantaneous frequency. Obviously, one can use this device to
determine which one of the possible waveforms was transmitted. This method works
especially well when CPFSK is used, and in particular for M = 2. In fact, for M = 2,
the discriminator detector for the optimal choice of parameters has better performance
than the optimal detector for FSK with independent symbols, since it uses (indirectly)
the modulation memory.

If we assume that the channel phase is independent from one symbol to the next (in
this case the phase continuity in the modulator does not make any difference), then the
optimal decoder is as follows (this case is most commonly referred to as the only form of
noncoherent detection). We assume orthogonal waveforms, equally likely, having equal

energy and the channel is AWGN. Since the symbols are orthogonal, we can choose
on(t) =s,(t), n=0,---, M —1. (2.13)

The optimal detector is a correlator-based receiver as defined in Section 2.1. Its choice

of fis

flp) = |l (2.14)

Here N =1, so p is not a vector, and we perform a separate decision on each symbol.
The performance of MFSK over an AWGN channel becomes better and better as M
grows, and in the limit of M — oo it achieves the channel capacity [1]. However, we
must remember that the observation time length also grows with M. For each output
symbol, log, M bits are sent. Keeping the bit rate, —%;, constant, the observation length
is Tylog, M. For a large M, the assumption made that the phase is constant over
the length of the symbol may no longer be satisfied, so it is not useful over practical
channels.

Instead of using different frequencies for making the symbols orthogonal (orthogo-
nality guaranties optimum performance), we can form other sets of orthogonal wave-
forms to be used as output symbols. For example, we can use the Walsh functions [5].
These functions take only values of +1 or —1, and thus we benefit from using BPSK
transmitters and matched filters when using these functions as symbols. We also get

easier symbol time synchronization in the receiver compared to MFSK. Let us call this
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modulation Walsh Shift Keying (WSK). The matched filter bank for MFSK can be
implemented using a Fast Fourier Transform (FFT). Likewise, the matched filter bank
for WSK can be implemented using the Fast Walsh Transform (FWT) [5]. The FWT
involves only additions and substractions, thus is easier to implement than the FFT.

An example of a set of Walsh functions is shown in Figure 2.6.

The next type of noncoherent modulation we will discuss is DPSK. In DPSK the
information is encoded in the difference between the phase of two consecutive sym-
bols. Even though DPSK is a coded scheme, it is possible to make symbol-by-symbol
decisions. The optimal noncoherent decoder for DPSK and its performance can be
found by making the following observation. Two consecutive symbols will switch sign
if the input bit is 1, or stay the same if the input bit is 0. Refer to Figure 2.7. We
can say that when the input bit is 1, we transmit the waveform =+s,(¢) and when it
is 0, we transmit +s,(¢). The sign depends on the previous modulator output value.
The resulting output waveform can be seen as an overlap of s;(¢) and s,(t) in time.
The decoder has to make the decision, which one of s;1(¢) or s3(¢) was transmitted by
looking at the received signal over two symbols. Since s;(t) and sy(t) are two orthog-
onal waveforms, the receiver is equivalent to the receiver for binary FSK (the decoder
can be simplified to the familiar form Re{r;r* ,} < 0). Its performance is the same as
that of the FSK receiver. There is a dependency between consecutive decisions, but
this does not affect the per-bit error probability. Notice that the energy for each of
the orthogonal waveforms used is the energy of two bits. The energy in binary FSK
symbols, on the other hand, is the energy of one bit. Thus, we obtain an improvement

of exactly 3 dB, over binary FSK.

In the case of MFSK, the observation length grows with M, and the performance
improves. Comparing DPSK to binary FSK, we increase the observation length from
one bit to two bits. Hence we conclude that increasing the observation length leads to
better performance. This is indeed the case for most noncoherent decoders. Recently,
various authors have investigated the use of multiple symbol observation length to
improve the performance of noncoherent systems. This subject will be covered later in

this thesis.
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Figure 2.7: DPSK viewed as FSK with time-overlapping. (a) The two orthogonal
signals si(t) and sy(t) that will be used to construct DPSK waveform. (b) DPSK
waveform in baseband, r(¢), is constructed by time-overlapping sequence from the set

s1(t), s2(1).

In Figure 2.8, we compare the performance of uncoded schemes over the AWGN
channel. We can notice a 1 dB degradation of DPSK compared to coherent BPSK at
high Signal to Noise Ratio (SNR). 2FSK loses 3 dB compared to DPSK, but the per-
formance of 4F'SK is close to that of DPSK. Note that both DPSK and 4FSK have the
same observation length. Some coded modulations are compared in Figure 2.9, which
is re-drawn from [4]. Here we see 3 dB difference between coherent and noncoherent
modulations. To make the outputs of the DPSK detector independent for optimal
use of Viterbi Algorithm (VA), we use interleaving. Without interleaving we sﬁffer
about 1 dB of additional degradation. When coding is used, traditional noncoherent

modulations suffer high degradation compared to coherent ones, over the AWGN.
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Figure 2.8: Performances of uncoded coherent BPSK and of noncoherent DPSK, 2FSK
and 4FSK.

2.4 Advantages of Noncoherent Decoding

There are many situations where noncoherent detection is preferred. In some of them,
the elimination of the phase estimation circuitry simplifies the receiver. In others,
the channel includes oscillator phase noise, fast fading or fast Doppler effects which
cause the carrier phase to change rapidly, and do not allow its estimation and tracking
at the receiver [1, page 289]. Channels which are limited or degraded by oscillator
phase noise are found in systems employing high carrier frequencies in conjunction
with low bit rate. See for example the Space Shuttle communications [6] and the
INMARSAT standard C ship stations [7]. In [7], noncoherent techniques, in particular
MFSK, are shown to be the best choice for this channel, which includes fast fading
and oscillator phase noise, together with a low bit rate. In the cellular-mobile radio

systems, multipath fading and Doppler shifts significantly degrade the performance of



25

1.00E-02
‘\
\
Coded DPSK with =
Coded BPSK \ interleaving O
1.00E-03 - ,' N S
N . Coded 4FSK
s NZN -
AN \ \ )L
1.00E-04 \ \

A
P

A ¥
A\

1.00E-05 \ \

Pb

AY
\
\
\

L
-

7

"

f""
»
f“'—-’
/"‘

!
//

1.00E-06 \ \ \

L
ot

bt
Lt
-

Pk

1.00E-07

2 3 4 5 6 7 8 9
Eb/NO

Figure 2.9: Performance of rate 1/2 convolutionally coded BPSK, DPSK and 4FSK.
Infinite decoder memory, and infinite quantization is assumed. Ideal interleaving is

used for the DPSK.

coherent detection [8]. Mobile communication channels are characterized by fading and
Doppler shifts which make them in many cases unsuitable for coherent communications.
Therefore, noncoherent techniques are preferred candidates for this type of channels [9]-
[11]. Noncoherent detection may also be more suitable for burst operated Time Division
Multiple Access (TDMA) systems requiring fast synchronization and re-synchronization
[12],[13, Section 11.6]. Another environment that benefits from noncoherent decoding
is military spread-spectrum communication [14], [15].

There are many additional advantages of noncoherent detection over coherent de-
tection. There is no acquisition time so that no data would be lost until tracking is
established. There is no acquisition mode and system requirement involved, like lock
detection and mode switching. Fast recovery from severe fading occurs in noncoherent

modulation. There is no false-lock, phase slipping and loss of lock associated with a
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PLL circuit. In many cases, coherent modulations suffer high degradation from phase
estimation errors.

Phase estimation is a problem, especially when bandwidth efficient modulations,
like Trellis Coded Modulation (TCM) [16] and CPM [17], [18], are used. Due to the
difficulty in achieving coherency in CPM systems, many noncoherent receivers were
suggested in the literature [17]. The carrier phase tracking of CPM or TCM can be
performed by a PLL. There are two Wa,yskto implement the phase tracking. One is to
remove the data by a nonlinear operation, and then lock to one or more of the discrete
spectral components produced. The other is to decode the data and feed it back into the
loop (data aided loop). Data aided loop may be the better way when the TCM employs
Quadrature Amplitude Modulation (QAM). If discrete spectral components are to be
generated from a CPM scheme with M phase states or from MPSK modulation, the
signal has to be raised to the Mth power. Since this process results in a large SNR
drop, very narrow loops must be employed. If a data aided loop is employed, the large
decoding delay caused by the VA will only allow the operation of a PLL with a large
time constant (narrow-band). The use of extremely narrow-band PLL, as required,
is not allowed in cases where fast phase variations caused by phase noise, fading or
Doppler effects occur. The large time constant of the PLL causes additional problems

like slow acquisition.
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Chapter 3

Uniform Error Property and
Linear Noncoherent Codes

3.1 Introduction

Most commonly used channel encoders are linear over some group, commonly the bi-
nary field GF(2). The linearity property helps us considerably in the analysis, design
and decoder implementation. In particular, linear codes, which are used over a Bi-
nary Symmetric Channel (BSC), satisfy a nice property called Uniform Error Property
(UEP). UEP means that the error probability is the same for all the transmitted code-
words; P, (error) = P, {error|z;} were z; is any transmitted codeword. By using this
property we do not have to check all possible pairs of codewords in order to find the
decoder error probability when evaluated by the union bound or similar techniques.
Hence, we like to have codes which satisfy UEP when used with a noncoherent decoder
(see also the argument, of why UEP codes tend to be good codes, given in Chapter 1).
However, when linear codes are used in conjunction with carrier modulation, the re-
sulting coded modulation might no longer be linear (depending on how we define the
group addition between any two output symbols). Furthermore, in the case where we
have linearity, UEP does not necessarily hold.

In this chapter, the term “general decoder” will refer to ahy decoder that can be
represented as the decoder part of a correlator-based receiver as defined in Chapter 2.

Unlike the linearity of the code, which does not depend on the decoder, the UEP

depends on the decoder’s metric and the channel. In example 3.1.1 we demonstrate a
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linear code which satisfies UEP when decoded coherently, but when decoded noncoher-

ently, strongly disobeys UEP.

Example 3.1.1 This ezample presents a linear code with mapping to Quadrature Phase
Shift Keying (QPSK) modulation which does not satisfy the UEP under noncoherent

decoding. Consider a code which consists of the following 4 binary codewords:
{Wx} = {0000, 0001,0100,0101}.

This linear code is not a useful code; it is constructed for demonstration only. Let us
group every two bits and map them to QPSK symbols by Gray mapping. The QPSK
symbols are 1, j,—1 and —j. It is known, and also easy to show, that for QPSK modu-
lation Gray mapping conserves the UEP when the detection is coherent. Gray mapping
maps the pairs [00,01,11,10] to the symbols [1,j,—1,—j] correspondingly. The resulting

symbols for each codeword are:

{xe} = {(1,1),(1,4), (5,1), (4, 5)}-

Now let us have a block noncoherent decoder (the observation covers one block, i.e., one
codeword, and for each block the carrier phase is independent; see [9, Appendiz jc])

which operates by choosing i which mazimizes (in vector notation) !
A(x) = [rlxq)?, ‘ (3.1)

where ris the received signal. If there is no single mazimum, the decoder chooses ran-
domly from the maximal ones. If Xq or X3 is transmitted, the error probability will be
greater than 1/2 even in the case of very high SNR, since A(xo) = A(x3). However, if
X1 oT Xy is transmitted, the error probability is difficult to compute, but since it is zero

in the noiseless case, it approaches zero in High SNR. This code clearly does not satisfy

the UEP.

In [1], sufficient conditions for a code to satisfy UEP are given for the case of a coherent

receiver in which case the error probability is determined by the Euclidean distance.

1AT — (AT)*
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Anotheer approach is found in [2]. We will generalize the idea for general noncoherent
receiver (with arbitrary metric) and show a way to construct multidimensional coded
modulations such that UEP will hold. These codes will be called “Linear Noncoherent
Coded Modulation” (LNCM). If the codes can be described by a trellis diagram, we can
appropriately name them “Linear Noncoherent Trellis Coded Modulation” (LNTCM).
Here, “linear” does not mean that binary arithmetic is used. Linear codes over groups
are a special case of group codes. A good analysis of group codes is found in [3]. For
LNTCM codes, linearity guaranties UEP, the same as in the cases of the BSC and
binary linear codes. We will treat the case of equal-energy symbols transmitted over
an AWGN channel. We use a general correlator-based receiver, of which a coherent
receiver is a special case. The use of such codes not only simplifies the design and
analysis of a coded system significantly, but it also enables us to solve the problem
of noncoherently catastrophic codes (see next chapter). With some limitations, coded
PSK, differential PSK and coded differential PSK are included as a special case in the
family of LNCM. The theorems presented here are especially important in the analysis
and design of multidimensional coded modulations which are to be decoded noncoher-
ently with multiple symbol observations; refer to [4]-[7] and the method proposed in
this thesis.
A large class of receiving systems, either coded or uncoded, can be represented as
a complex correlator front end and a decoder that uses the output of the correlator
for making its decisions; see Chapter 2 for details. This class includes all the coherent
modulations and optimum noncoherent detection of DPSK, MFSK, CPM, multiple
symbol detection of DPSK and many others [9]-[13]. We will use this model in the

following analysis.

3.2 Determination of the Error Probability

In our model the decoder makes its decisions by maximizing some function f(sx) of the
outputs of the correlator. f is an arbitrary real valued function. The decoder chooses

X which maximizes

A()A() = f(rgio, r{ih e 7r;V_1)’\<N—-1)- (32)
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We can write equation (3.2) in a more convenient form as

A(%) = f({rf%}). (3-3)

We constrain ourselves to the case of equal energy symbols, such that s's = E for every

symbol s. For these systems we can prove the following theorem.

Theorem 3.2.1 The pairwise error probability between two codewords x andy assum-
ing X is transmitted s completely determined by E, the noise variance and the sequence

of symbol-by-symbol complezx correlations p; = x:-ryi.

Proof: Let x;, 7 = 0,---,N — 1 be the transmitted signal and r; = x; + n; be the
received signal components, where n; ;,2 =0,---,N—1, j=0,---,D—1 are complex
Gaussian i.i.d. (independent and identically distributed) random variables with zero
mean and variance ¢?. The probability thvat the decoder makes an incorrect decision

on sequence yis
Po(x,y) = Bf({rlx:}) < f({rly:})] =
= B[f({x}xi + nfx:}) < f({xly: + nly:})]. (3.4)
Note that f;; = n:-fxl- and ny; = n}L yi are two zero mean complex Gaussian vectors,

composed of independent r.v.’s. As such, their joint probability distribution is com-

pletely determined by their components’ variances and the cross-correlation of their

components:
, Ui?ll,i = o2x!x; = 0°E, ar%% = o?yly; = 0*E, (3.5)
Ca, . = B[N} 0y;] = E[xInmnlyi] = o1y = o2p; 3.6
Ny :,N02,4 1,zn2ﬂ XNy, Xy Pis ( . )
Copiho, =0 Vi#j (3.7)

We conclude that P.(x,y) depends only on E, o2 and pg, p1,- -, pN-1. O

If a and b are two other codewords, which satisfy
. — T :
ajb; = x;y; V1 (3.8)
then p; are equal for the two pairs of sequences, so

Pe(a> b) - Pe(x7 y)-' (39)
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By extending this theorem, it can be shown that the total error probability, when
a specific output sequence x(™) is transmitted, is a function, ¢, of all the pairwise

correlations of all possible output sequences. We can write the above statement by

P.(x™) = P {maz vigm[f({rIxN)] > F({eI™D} = gn({p(u®,u®)}),  (3.10)

where u(® and u") are two input sequences encoded to x*) and x(, p(u® u®) denotes
the vector (---, 5’){x§’°)1, SI)T Ek), fﬂxgi)l,---) and {p(u®),uM)} denotes the ordered
set of all possible combinations of k and ! with £ # [. For coherent demodulation of

constant energy signals [9], the optimal f is

{r X;}) = Z Re{rlx;} (3.11)

In this case only the real part of p; is of interest, thus the condition

Re{alb;} = Re{x!y:} is sufficient for equation (3.9) to hold. Since the last requirement

is weaker than equation (3.8), a coded modulation might have the UEP for coherent

decoding and not satisfy the UEP for other types of decoders; see Example 3.1.1.
We believe that most practical decoders will have the property that the error prob-

-ability is the same if we conjugate all the correlation sequences, i.e., the function f

will get the same value if we conjugate all its arguments. We will call this property

“conjugate-symmetry.”

Theorem 3.2.2 A code with only two codewords satisfies UEP if a conjugaie-symmetrz'c

decoder is used.

Proof: The error probability depends on the sequence of correlations p; = X}yi. Now
if we exchange xand ywe get p}. Since the decoder is conjugate-symmetric we get the
same error probability for transmitting xand deciding on yand for transmitting yand

deciding on x. O

3.3 Algebraic Framework and the Construction of
Linear Noncoherent Codes Satisfying UEP

Linear noncoherent codes will denote the codes which linearity implies UEP when

decoded with a general noncoherent decoder (and also with coherent decoder as a special
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case). In order to facilitate the code construction, we will define a special algebraic
structure. As we will show, the benefit of working with this algebraic framework is that
every linear code also becomes a UEP one. First, we would like to write the definition
of linear codes. Our definition is similar to [1], but we do not have to limit the input
alphabet to be binary and the operations do not have to be performed over GF(2). For
the input alphabet I, we will define a group operation denoted by ‘@’ under which I
forms an Abelian group, denoted by

T=1{I,) (3.12)

If I is binary then @ is the XOR operation. For the output alphabet O, we define an-
other group operation, denoted by ‘o’, under which O forms an Abelian group denoted
by O = {O,0}. The operations ‘@’ and ‘o’ can be extended to apply to sequences of
input or output symbols correspondingly, by performing them symbol-by-symbol.

Definition 3.3.1 A code v, which is a mapping from IV to OM, is said to be linear if

and only tf for any two input sequences u,v € IV,

¥(u @ v) = v(u) o y(v), (3.13)
In other words, v is a homomorphism from IV to OM,

Definition 3.3.2 A correlation group U is an Abelian group {0, 0} with alphabet O C
CP (complex vectors of D components) such that for all A,B,C € O:

a. The operation, ‘©’, and the inner product (sum of the component by component

complex multiplication) denoted by “’ satisfy

A-(BoC)=(AoB)-C. (3.14)

b. A* which is the complex conjugate of the vector A, is a member of the group U.

C.

Ao (A%) = Z, (3.15)

where Z is the zero element of the group U.
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The reason for calling ¢ a correlation group will be clarified in theorem 3.3.3. The
notation (so, $1," -+, sp—1) will be used for describing an element of O which is a complex
vector, where s; are complex numbers. The energy of an element is defined as E(A) =

A - A” where A € U. Let us now show some consequences of definition 3.3.2.
Theorem 3.3.1 All the elements of U have equal energy.

Proof:

A A=A (ZoA)=Z2Z - (Ao A =Z-Z=E, (3.16)
where F is a constant. O

Theorem 3.3.2 Z* = Z, i.e., the components of Z are real numbers.

Proof: From (c¢) Z o (Z2*) = Z, but Z, as the zero element, satisfies Z 0 Z = Z so
Z=2* 0O
The following theorem is the most important consequence of the definition of the

correlation group U.

Theorem 3.3.3 Let X, Y and Z be elements of the correlation group U and let Y =
XoZ, thenY -X*=Z-Z. This can be written also as Xy = ztZ,

Proof:
YV X'=(X02) X*=Z - XoX"=Z-Z2=27-2* O (3.17)

' The following theorem shows that every linear code has UEP if its output symbols are

taken out of a correlation group.

Theorem 3.3.4 Let U = {0, 0} be a correlation group, T = {I,®} an Abelian group
and v : IV — OM s a linear code, then v has UEP when the symbols are transmitted

over an AWGN channel and a correlator-based receiver is used for the decoding.

Proof: Let x{ and xU) be the codewords for two input sequences u() and u(® re-
spectively, namely x() = y(u®), x(0) = v(ul)). For any input sequence u(®, ul?) ¢ [V,

there is a sequence u®) € IV such that u®® = u() & u® where ‘©’ is the inverse of the
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operation ‘@ (ul) = u@ @ u®), and is performed term by term over the sequences.
From the linearity, x(*) = v(u®) satisfies x) = x o x®. Let x(© be the codeword
for the all-zero input sequence u(®. As such, x(¥) is the all-Z sequence. By theorem
3.3.3,

xMxW) = xO1 (B, (3.18)

We can write equation (3.18) as
(), vy = pu? o u® 4, (3.19)

where p is defined in equation (3.10). The same equality as equation (3.10) will hold
if we exchange the labeling of the free variables in the equation. We use the exchange

rules 4™ — 4™ © u(™ and u(™ — u® and get
Po(x) = gu({pl(u® © u™), (u? 0 ul™)]}) =

= gn({pl(u® & u™) & (@ & u™),u]}) =
= gn () & u,u)}) = g ({5, u)}) = P(x™)  (3.20)

and thus the error probability for each transmitted sequence is the same. The UEP is
satisfied. O

For the coherent case, [1] defined the term superlinearity, which guarantees UEP for
the Euclidean distance. Since any linear noncoherent code satisfies UEP for a general
correlator-based receiver, it is plausible that it is also superlinear w.r.t. Euclidean
distance (but not necessarily otherwise). Remember that the Euclidean distance is
used for a coherent decoder which is a special case of a correlator-based receiver. We

will show this, but first we will repeat the definition of superlinearity.

Definition 3.3.3 A superlinear code is a linear code in which it is possible to associate
with each symbol A € O a real number W(A) called symbol weight, so that the square
of the distance between A and B satisfies d*(A,B) = W(Ao B), VYA,B € O. The

input in this case is restricted to be binary, i.e., the input group is GF(2).

Theorem 3.3.5 Every linear noncoherent code with binary input is superlinear.
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Proof: Taking the Euclidean distance as d?(A, B) = |A — B|* (where ‘—’ is an ordinary

subtraction, remember that A and B are also complex vectors) we get
d*(A,B)=|A-BI’=(A-B)((A-B) =
A'A+ B'B — B'A— A'B = 2E — 2Re{A'B}. (3.21)

The input is binary, so for every codeword x = y(u), xox = y(u ® u) = 4(0), thus for
every symbol A, Ao A = Z. From this, if C = Ao B then B= Ao (. Using theorem
3.3.3 on the last relation we get

A'B = Z'C. (3.22)
Defining W(A) = 2F — 2Re{ZT A} we get
W(AoB)=W(C)=2E —2Re{Z'C} = 2E — 2Re{A'B} = d*(A, B) (3.23)

as required. O

We will now present a few examples to clarify the correlation group definition.

Example 3.3.1 (Used for rate i coded BPSK) Let D = 2 and our group of vectors
(The output alphabet O) be the pairs (1,1), (=1,1), (=1,-1), (1,—1). Fach of the
pairs is one output symbol. In a practical implementation it may be a transmission of
two orthogonal waveforms each with an appropriate sign or a serial transmission of two

BPSK symbols. By doing 50 we get a rate % coded BPSK transmission. The Z symbol

is (1,1) and the output group operation is defined as
(a,b) o (¢,d) = (ac,bd),

where a,b,c,d are each +1 or —1. The above definition represents an Abelian group.

We want to show that it is also a correlation group:
(a,b) - [(c,d) o (¢, f)] = abe+ bdf = (c,d) - [(a,b) o (e, f)].
(a,b)* = (a,b) since a and b are real.
(a,b) 0 (a,b)* = (a*,0*) = (1,1) = Z. (3.24)

Thus, this is a correlation group.
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Example 3.3.2 (MPSK modulation): Let D = 1, so that our vectors are merely com-
plex numbers. In addition, let the output alphabet be of the form

A;j=e®" n=0,...,R—1, (3.25)

where R (R=M for MPSK) is a positive integer. Let us define the group operation ‘o’
as ordinary complex multiplication so that we can write A; 0 A, = A(itn)ymod - The
zero element is Ag = 1. Since scalar multiplication reduces to complex multiplication,
and the last is equivalent to ‘o’ condition a of Def. 3.3.2 is satisfied. AX = Ag_,, is a
member of the group, and A, o AL = A, 0 Ap_, = Ag. We conclude that this group is

a correlation group.

Example 3.3.3 Let D = 2. We choose our group of vectors to be (£1,0), (£5,0),
(0,%£1), (0,£5), a total of 8 possible symbols. Let us denote the vector (a,0) by a® and
(0,a) by a'. If two frequencies are used as the two orthogonal functions po,p1, then
the output of the encoder will result in an FSK-like waveform. Unlike in the case of
noncoherent FSK, there is a certain phase relation between the symbols. Let us define

the operation ‘o’ as

a® o b¥ = (ab)*XORY (3.26)

where x and y get the values 0 or 1, then, as an ezxample, j* o j' = (—1)°. The zero
element is Z = 1°. Let us show that this is a correlation group.

For any a,b,c € {£1,+5}

T 1y 2\ _ T, yXOR z __ dbC, ZfCU:Z/XORZ;
- (Poc)=a (bc) N { 0, otherwize. (3.27)
On the other hand
v, T 2\ __ by . rXORz __ abc, 7,fy:.’EXORZ,
b (a%oc?) = b (ac) B { 0, otherwize. (3.28)
Since the condition x = y XOR z is equivalent to y = 2 XOR z then
a®- (Y oc”) =08 (a® o), (3.29)

thus condition a of definition 3.3.2 is satisfied. Condition b is trivial and condition c

is satisfied by a” o (a*)* = (aa*)? = 1° = Z, therefore, we have a correlation group. It is
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also possible to generalize this group definition to cases where we have more frequencies

or more phases.

Next, we want to construct UEP convolutional coded modulation. We will achieve
this goal by using the following well known construction [9], which results in linear
convolutional code over a correlation group. The structure generates rate 1/D codes

but the generalization to rate n/D codes for any integer n is straightforward.

Let K be the constraint length of the convolutional code, D the number of complex
dimensions of the modulation, B the number of input bits per trellis branch, R = 28
the number of branches reaching a node, and N = RX~! the number of states. Let
the input group {/,®} be the set of integers modulo R, Zg, and the @ operation
be addition modulo R. For encoding we use a shift register of K stages, each stage
contains an integer between 0 to R — 1. Each branch of the trellis is assigned a number
in the following manner. Let the current state and the next state be represented by
numbers in base E, then the branch number (in base R) is the most significant digit
of the current state followed by the digits of the next state. For example, we can write

the branches from state abede to state gabed as

gabede

abede "—" gabed,

where the letters represent digits in base R (least significant - --most significant). The
trellis branch that connects state abcde with gabed is assigned the number gabede. This
number will be used as the argument of the encoder output function val(z) described
below. Let G;, 1 =1,--- K, be a list of elements from a correlation group {0, 0}

which also satisfy

RGiégiOGiO--'OGi:Z, (3.30)

’

R times
i.e., the order of each G; is R or a divisor of R. The encoder output symbol is defined

as

K
val(p) =Y piGi 2 p1Gy o paGa 0+ 0 pic G, (3.31)
=1
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where p; are the digits of p in base R from least significant to most significant, and p

is a branch enumerator. In (3.31) the product p;G; is to be interpreted by

GiOGiO"‘OGz’-

p; times

Since p; is determined modulo R, and G; satisfies equation (3.30), this definition is

unambiguous. See Figure 3.1 for the encoder implementation.
Theorem 3.3.6 The val(p) function is linear.

Proof: Let a,b € I* be two string of integers modulo R.

K K
val(a) o val(b) = Y (a; ® b;)G; = D _[(a; @ b;) mod R)G; = val(a & b). (3.32)
=1 i=1
]
Input
0..R-1

AVAVEVARRVAV

Output Symbols

>

(D dimensional complex)

Figure 3.1: The trellis encoder implementation for LNCM.

Since the shift register is a linear operation, the defined code is linear. Some exam-

ples will clarify the code construction.

Example 3.3.4 We use the correlation group defined in Ezample 3.3.1. With R =
equation (3.30) is satisfied, and the encoder input is binary. Let K = 3 (RK-1 = 4
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states) and G; = (—1,-1),(1,—1),(=1,—1). This code has generators 5 and T (in octal)
in the binary convolutional code description and has the mazimal free distance of 5 [9,

table 5.3.1]; see next sub-section.

Example 3.3.5 (Differential PSK): Let us use thé correlation group defined in Fz-
ample 3.3.2 to construct a code. This code has no redundancy because the number of
possible output symbols is equal to the number of possible inputs per symbol. This code
is noncoherently catastrophic but can be corrected, as described in Chapter 4, by an ap-
propriate shuffling of the input bits according to the feedback encoder algorithm for the
catastrophic codes. For K = 2 the corrected encoder is exactly the encoder for M-ary
Differential Phase Shift Keying (MDPSK). For example, let R = 4, then G; must be
chosen out of the values 1,3,—1, and —j so all possible outcomes of val(z) are one of
the values 1,j,—1,and —j. We also choose K =2, Gy = j, and Gy = —1. The result-
ing modulation, after the application of the algorithm in Chapter 4, is of Differential
Quadratic PSK (DQPSK); see Figure 3.2. Note that although 4 states are required for
the trellis representation, an optimal coherent decoder should use only one state, i.e.,
symbol by symbol decision. The explanation is that the 4 states encoder is not minimal;

the minimal one has only one state.

3.3.1 Convolutionally Coded PSK Modulation

For multiple-dimension modulation using PSK signals in each dimension, one possibility
is to use the following correlation group: The vector (a1,as,---,ap) is composed of
components of the form e’ ”277{‘, wheren = 0,---, R—1is an integer. The group operation

‘0’ 1s defined as
(ab Aoy ,(I,D) o (bla bZ) T bD) = (aflbh (1262, o )anD) (333)

and Z = (1,1,---,1). In order to show that this group is a correlation group, we follow

Example 3.3.1 and 3.3.2. Writing the elements of G as

Gz' — (e] Rahl,eJ Rah27 . 76-7 Ra”D>) (334)
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Figure 3.2: Trellis representation of DQPSK.

where ¢ are integers in the range 0 to B — 1, we find immediately that

M=

R K
K j% z aia;1 j% D i jgg- Z i p
va,l(a) = Zasz = le i=1 , € 1 yor L, € =1

=1

(3.35)

Since the summations in each exponential expression can be performed modulo R, we
recognize that our encoder is exactly the linear convolutional encoder, with its output
mapped to PSK signals. However, we have to be careful about two things. First, the
additions in the encoder implementation fnust be performed modulo R and not by XOR
(binary additions are allowed only for R = 2). Second, the output of the code should
be mapped linearly to the PSK signal. Note that the above conditions are sufficient
but not necessary for UEP.

3.4 Conclusion

A sufficient condition for treating multidimensional coded modulation as linear (the
code satisfies UEP) for a correlator-based receiver was found. Based on this condition,

a construction method for a family of constant energy multidimensional convolutional
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coded modulations was described. By using this kind of codes, the analysis and design
are considerably simplified. Also, among the codes that satisfy the UEP, there is a
good chance to find high performance codes for noncoherent decoding as it is the case
in other applications of coding.

As special cases, we saw that convolutionally coded BPSK and DPSK and uncoded
MDPSK have UEP. For coded M-ary PSK we need both an appropriate encoder and
mapping to symbols in order for UEP to hold.

The theorems described in this article are very important for the design of new
coded modulation schemes which are made to be decoded by the emerging class of

noncoherent decoders using multiple-symbol observation.
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Chapter 4

Noncoherently Catastrophic Codes

4.1 Introduction

Some codes cannot be decoded noncoherently. The simplest example is the memoryless
code which maps input bits to BPSK symbols. For this case, there is no way to
resolve the transmitted data without a phase reference. In other cases, even when the
information is encoded in the phase of the symbol, it may be possible to resolve the data
without a phase reference. The simplest example is DPSK, where the information is
encoded in the phase differences between consecutive symbols. A decoder that “looks”
at the phase difference between symbols does not need a phase reference. We see that

noncoherent decoding can be achieved when encoding the data before transmission.

In contrast to a common belief, differential encoding is not a necessary operation to
eliminate the need of a phase reference in a phase modulation. Many other encoders
can be used for that purpose, including most of the binary convolutional encoders
using BPSK modulation, which are commonly used in various applications. When
these encoders are used, the only change that must be done to switch from coherent

decoding to noncoherent is in the decoder, leaving the transmitter intact.

The property of a trellis-coded modulation that we define here, Noncoherent Catas-
trophicity (NC), prohibits noncoherent decoding of any kind. The other codes, for
which noncoherent decoding is not prohibited, can in principle be decoded noncoher-
ently. This means that there exists a decoder which can decode this code noncoherently.

Such decoder should use in its decisions all of the phase transitions between symbols.

49
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There can be other noncoherent decoders which cannot decode this code. For exam-
ple, a decoder which does noncoherent demodulation on each symbol separately will
not be able to decode any coded PSK modulation. However, any non-NC code can
be decoded by the decoder defined in Chapter 6, which due to the overlapping of the
observations uses all the phase transitions. A commonly used method in noncoherent
communications with PSK symbols is differential encoding of the channel encoder’s
output. However, according to the above arguments, this differential encoder is not

really necessary.

4.2 Definition of Noncoherently Catastrophic Codes
and Discussion

Usually, catastrophic codes refer to convolutional codes in which an infinite number
of decoding errors can happen as a result of a finite error event. This happens when
two infinite length codewords, which have the same output for an infinite number of
symbols, exist, and correspond to different input bits. We define NC codes as codes in
which two infinite length codewords, which have the same output or a constant phase
difference from each other, for an infinite number of symbols, exist, and correspond to
input bits differing in infinitely many positions. In principle, codes which are non-NC
can be detected noncoherently.

NC codes include the usual catastrophic codes as a special case. Every transparent
binary convolutional code, i.e., one that inverts the input of the encoder to the output,
is NC with BPSK modulation. When a code is not catastrophic in the usual sense,
but is NC, we can equivalently say that the code has phase ambiguities. This means
that if a coherent channel has phase ambiguities, this code cannot be decoded before
resolving these ambiguities. A non-NC code on the other hand, if transmitted over
a channel with phase ambiguities, can be decoded with no ambiguity. For example,
suppose that a coherent channel has 180 degrees phase ambiguity. We can operate two
decoders in parallel, one for each possible phase. We then choose the output of the
decoder with the maximum metric. Over a sufficiently long time, the choice of the

correct decoder becomes arbitrarily reliable. Another solution to phase ambiguities is
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to use rotationally transparent codes [1], codes which are insensitive to phase rotations.
Here, we present a method which solves the problem of NC for the case of LNTCM
codes. When used over coherent channels, there is no performance degradation of the
probability of error events or increase in decoding complexity. There can be a small
change in the bit error probability, since we change the bit assignments to the trellis

branches.

4.3 Correction of Catastrophic Codes:

For the LNTCM codes, almost every catastrophic code can be converted to a non-
catastrophic one, by an appropriate shuffling of the input bits depending on the encoder
states. We can already state here that if parallel transitions exist, with symbols that
are phase shift of one another, this code cannot be “cured” without adding more states
to the code (for example, by adding a differential encoder in front of the uncoded bits).
The condition of which codes cannot be corrected will be clear shortly. We propose a
feedback encoder, such that all the codewords that are a phase shifted version of other
codewords are decoded to the same bits with no errors. The resulting code may be
non-linear, but since it has the same output sequences as the original linear code, it
will still have the UEP. The correct way of assigning input bits to the trellis branches
is as follows.

We will call the codewords that happen to be a phase shift of the all-Z sequence
“constant sequences.” First, all the constant sequences are found. These can be found
by a simple search. The encoder is assumed to have the structure of Figure 4.1, where
the feedback function O(z) is yet to be determined. Let C;, j =10,---, P — 1 be the
trellis states which belong to any constant sequence (including state 0 which is always
a member of a constant sequence, namely the all-0 sequence of states). Let O; be the
input value that corresponds to the transition from the state C; to the next state in

the constant sequence which contains C;. Let us separate the states into groups
Po={zlz=ar®C;, j=0,---,P—1},

where ay, is a non negative integer that defines the group Pj and the operation ‘a @ b’ is
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performed by the input group operation applied between the digits of ¢ and b in base
R. Every state = will belong to one of the groups P, and will have a corresponding j.

We observe that there is a mapping O(z) from z to O;, defined mathematically as
O(QJ) = {OJ[:L' € P, C]‘ B ay = :U} ’(4.1)

In the modified encoder, we will add O(z) to the input value (using ‘®’) when we
are branching from state x. If multiple shift registers are used then O(z) and O; are
vectors, with each component corresponds to one shift register. Notice that only in
the rare situation of having two different constant sequences passing through the same
state, O(z) cannot be defined (or due to parallel transitions). In this case we will have
to add more states to the code. See Figure 4.1 for the modified encoder implementation

and Figure 4.2 for the flowchart for computing the function O(z).

Input @

0..R-1

Okx) [€

/
VA VA VARV V/

Output Symbols

7

(D dimensional complex)
Figure 4.1: Modified encoder for correcting catastrophic codes.
Theorem 4.3.1 If the encoder is corrected as described above, then every two possible

output sequences which are a phase shift of each other are the encoding of equal input

streams.
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O(a)
already
defined

Yes

Figure 4.2: Flowchart for computing the function O(z).

Proof: Let a and f be sequences of states which output symbols differ one from each
other by a constant phase shift. Let ¢, ig be the inputs to the encoder (before shuffling)
at time ¢. From the linearity property, the sequence ¢, defined by the components
¢ = o; © B, is a valid codeword, where ‘©’ is the inverse of ‘@’. By theorem 3.3.3 its
output is a phase shift of the all-Z codeword, so ¢ is a constant sequence, and there is
m such that C, = C;. Let C,, be the state of ¢ at time ¢. The state a; belongs to one
of the groups P and has a corresponding a; and C;. Let ¢’ be the constant sequence
which includes Cj, i.e., C; = ¢}. From the linearity it follows that ¢”, which is defined

by ¢ = ¢ © ¢, is a constant sequence, there is a number n such that C, = ¢/, and
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Cn=C0;6Cy. Froma; =a;®Cj and B = 0, 6C,p, Cp, = C; 68 By Since ar, & C,, = By
and C, belongs to a constant sequence, then a; and B; belong to the same group P,
and O, will be used for shuffling the input for the sequence f at time ¢ (O,, corresponds
to C,). Since C; = C,, ® C,, it follows that O; = O,, ® O,. The input to the shift
register after adding O(z) to the input is the input to the encoder of the uncorrected
code and is 1, ® O; for « and 15 @ O,, for 5. Since B; & ¢; = «;, and O,, is the input
value for ¢ at time ¢, it follows that O, ® i3 ® O, = i, & O;. Using the fact that
O; = Oy, ® O,, we conclude that i, = iz so that o and 8 will be decoded to the same |

input bits, as desired. O

Example 4.3.1 Let us find the correction for the encoder. which trellis is shown in
Figure 4.3 and its implementation is shown in Figure 4./. This encoder generates a
rate %, K =3 binary convolutional code with generators in octal 1,7 mapped to BPSK
symbols. FEquivalently, G; = (—1,—1),(1,—1),(1,—1). This code is transparent. The
constant sequence that leads us to define this code as noncoherently catastrophic is
the sequence of states {...3,3,3,3...}. Unless we make the correction, we will have an
infinite number of errors when the sequence {...3,3,3,3...} is received instead of the
desired sequence {...0,0,0,0...}. The first step in the correction algorithm is to find C;
and O;. The states that belong to any constant sequence are 0 and 3. With an arbitrary
order we determine that Co = 0 and Cy = 3. Also, Og = 0 and O; = 1 are the input
values that correspondingly each brings us to the next state in the constant sequence.
Setting ag = 0, we get the first group Py = {0,3}. The rest of the states will belong
to a second group Py = {1,2} with ay = 1. For each state, we determine the value of
the corresponding offset O(z) by determining to which group the state belongs and then

what the corresponding C; is:

State k  j O;
0 0 0 0
1 1 0 0
2 1 1 1
3 0 1 1
Finally,
0, z=0,1;
Ofz) = { 1, z=23.
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The corrected encoder is found in Figure 4.4.

Figure 4.3: Trellis diagram of the code used in Example 4.3.1 for demonstrating an
NC code. The constant sequences are ...,0,0,0,0,... and ..., 3,3,3,3,.... The corrected
input assignments are shown in italic.

Binary addition
Input @ .
(abiy

Bvivav;

e

Output Symbols

L

(Pair of +/-1)

Figure 4.4: The encoder used in Example 4.3.1 with its correction (marked in dashed
lines).
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Chapter 5

Improvement of Noncoherent
Orthogonal Coding by
Time-Overlapping

5.1 Introduction

Block orthogonal coding is a modulation technique that works either coherently or
noncoherently [1, Sections 9.3 and 9.8]. Using either method of detection, we can
approach the capacity of the AWGN channel as the number of symbols M grows [2,
Section 4.3.2]. Noncoherent detection is used when the carrier phase is unknown at the

receiver and no attempt is made to estimate its value.

M-ary block orthogonal coding is the optimal noncoherent modulation for the
AWGN channel in the case in which decisions are made independently symbol by sym-
bol [1, Section 9.8]. This modulation is simple to implement and has a relatively good
performance, especially for large M. Each k bits of the input stream is assigned to one
of possible 2* signals. All the signals of the set are orthogonal to each other. The sig-
nals are transmitted over the AWGN channel and received by an optimal noncoherent
receiver. As for now, we do not include coding in the transmission. Later on we will

try to benefit from the use of coding.

The optimal M-ary receiver chooses the signal which corresponds to the maximum

of the energy among the outputs of M = 2* matched filters, each matched to one of
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the possible transmitted signals. Specifically, the receiver finds ¢ which maximizes

Ts

/ 2(t)s(t)dt

2
’

(5.1)

where z(t) is the received waveform, s;(t), ¢ = 1...M are the set of the possible
transmitted signals, and T} is the symbol duration.

Let us now try to overlap the transmitted symbols in time. This means that the
“tail” of the current symbol is a part of the next symbol and so on. By doing so, and
choosing the appropriate set of orthogonal signals which can be overlapped, we will see
that we actually can have an improvement in performance. This improvement, we show,
comes in the expense of only a very small increase in the complexity of the receiver
or the transmitter. The only difference in the receiver is that the integration window
in equation (5.1) advances in time in smaller steps than T;. The receiver, as before,
makes decisions for each symbol independently. We will first show that improvement in
performance over conventional noncoherent block orthogonal signaling can be actually
achieved. |

In order to describe the idea, let us take as an example the case of binary trans-
mission (k = 1). DPSK can be described as the time-overlapping version of the binary
orthogonal transmission. As a reminder, the probability of symbol error for FSK (or

any other binary orthogonal signaling) is [3, table 3.1],

s
P.=Ze 2No, (5.2)
and for DPSK we have
_E_b
P,=2e No. - (5.3)

We can notice clearly the 3 dB improvement: half the %’; is needed in DPSK relative
to FSK to get the same error probability.

For DPSK the two transmitted signals are: +A,+A or +A, —A in baseband. The
duration of those signals is 27T, when % is the bit rate. There is an overlapping in
time between each signal and the one that follows. The amount of overlap is half of

the signal duration as described in Figure 5.1. Because of the overlapping in time,
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we are transmitting with DPSK at twice the rate we would have transmitted without
any overlapping. Yet the probability of error per bit still stays the same as in the
non-overlapping case. This error probability is the error probability of FSK in which
the symbol duration is 27

s,(1) A r(t) A
A A
> >
T 2T t T 2T 3T 41 8T t
-A -A
s o S
s,(t) A S4(1) s4(!)
A
(b)
>
T 2T t

(a)

Figure 5.1: DPSK viewed as binary orthogonal modulation with time-overlapping. (a)
The two orthogonal signals s;(t) and sa(¢) that will be used to construct a DPSK
waveform. (b) DPSK waveform in baseband, r(t), is constructed by time-overlapping
sequence from the set s1(t), sa(t).

The result is that without degrading any other aspect of performance, we get an
improvement of 3 dB with DPSK over FSK. The 3 dB corresponds to the extended
duration of the symbol: instead of T' the duration is 27". However, the errors that will
occur are no longer independent; they tend to happen in pairs, but this fact does not

change the error probability per bit.

In the following sections we will generaﬂize this notion to M-ary block orthogonal
signaling and we will find an attainable bound to the improvement in % for a constant

probability of error.
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5.2 Generalization to M-ary Transmission

Not any set of symbols can be overlapped. We will present the constraints that a set
must satisfy and show that the set of the Walsh functions [6] satisfies those constraints
and thus can be used to utilize the performance gain. It is also important to note
that the phases of the transmitted symbols are not independent when using overlapped
signals. This situation is similar to the case of continuous phase FSK (CPFSK).
Assume that the duration of the overlap in time between a given symbol and the
following one is z. In order that any two consecutive independent signals be able to

overlap in time, the set of signals must satisfy the following requirements:

1. For a window in time 0 < ¢ < z, all the signals must have the same waveform

except for a possible phase shift.

2. For a window in time T, —z <t < Tj, all the signals must have the same waveform

except for a possible phase shift, where T is the symbol duration.

In order to understand the first requirement, let the signal spel? be transmitted.
Here s, is a signal from the set and 0 is a phase shift that we introduce to comply with
the previous symbol. Now we want to transmit the next symbol, s;. The time segment
0 <t < z of this signal was already transmitted, so we just have to transmit the rest
of the signal. It is clear then that all the signals that we might transmit have to have
the same beginning or “head.” If s; does not have the required beginning section, but
only a phase shift of it, we can still transmit it if we properly phase shift the whole
signal such that its beginning will be equal to what was already transmitted. We are
free to choose any phase shift in the transmitter since the receiver is not sensitive to
phase shifts (see equation 5.1).

The following orthogonal set is an example of a set that can be used for time-
overlapped orthogonal signaling. Let M = 2* and let the set of orthogonal functions be
the set of M Walsh functions [6]. This set of functions also achieves the upper bound
that we will prove next, so it is an optimal set.

Walsh functions are a set of functions which are binary codes. In each time slot

they assume a value of either —A or +A. The functions are defined by the following



63

equation:

M-1
si(t)y=A Z aniP(t—nT,), i=1...M, (5.4)
n=0

where P(t) is a rectangular pulse of duration 7, that will be called a chip. The a,; can

have the value +1 or —1 and are computed by the following formula:

k=1
i = H(_l)bj(n)bk—l—j(i)? (5.5)

7=0
where b;j(m) is the j’th bit in the binary representation of m (j = 0 for the least
significant bit). This set of functions has the desired orthogonality property, as shown
in the cited reference.

We will always be able to overlap the first chip of a certain signal with the last chip of
the preceding signal. For example, consider M = 4, i.e., two bits per symbol. Denote T,
as the symbol duration, 7, as the chip duration, and T as the effective symbol duration .
after overlapping, i.e., the non-overlapped symbol duration. The following relations
hold:

T, =4T,, T =3T.. (5.6)

Because of the overlapping by % symbol, the performance gain over conventional 4FSK
is § which is 1.25 dB; see Figure 5.2.

Asymptotically, it can be shown that both the bit error probability of coherent
BPSK, DPSK and 4FSK approach the same expression as in equation (5.3) in terms of
the needed E,/Ny per given bit error probability. Thus, with M = 4 and overlapping
we can do up to 1.25 dB better than DPSK and even better than BPSK.

For example, we take the point P, = 1075 (P, is the bit error probability). With
DPSK we need % = 10.34 dB, with BPSK we need % = 9.59 dB. With set of 4 orthog-
onal signals (like 4FSK) we need —% = 10.61 dB, but with the 1.25 dB improvement
we need only 9.36 dB, which is better than BPSK by 0.23 dB.

5.2.1 Finding an Uppei‘ Bound

In this section, we will prove that the maximum gain possible is ?\’/IM—T We are consid-

ering only equal energy signals. For the case of constant-envelope signals, this means
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that the maximum possible overlap in time is ﬁTs, where T} is the symbol duration.
Notice that in DPSK, M = 2, and the improvement is 2—31— = 2. According to the
statement above, we cannot do better than this.

Assume that the duration of the overlap in time between a given symbol and the
following one is z. The set of signals must satisfy the requirement that from ¢ = 0
to t = x they are the same waveform except for a possible phase difference. For the
following discussion, without loss of generality, align (by phase shifting) the set of
symbols such that there is no phase difference. Adding an arbitrary phase shift to the
symbols does not affect their orthogonality, the only property that we are going to use.

Let us find the variation in the average power caused by the overlapping. The

average power of the signal without overlapping is

Py = 'TI"(O/ | si(t) | dt + j| si(t) |? dt). (5.7)

The average power of the signal after overlapping is

f_x/ | si(t) |2 dt. (5.8)

Pl:Ts

Here Py and P, are independent of ¢ since we have equal-energy symbols.
Also let us define the improvement factor I' to be the improvement in the signal

energy performance due to the overlapping in time:

T T,
T, P _ ({ | si(t) |? dt+{ | si() |2 dt

I = — =
Ts'—.’EPl

T,
J | si(t) [* di

f | s5(t) |? dt

‘. . (5.10)
[ L si(t) 2

Let us now calculate the correlation between a pair of different symbols. The

correlation has to be 0 in order to satisfy the orthogonality of the set. Thus,

Ts
o= / si(t)s3(t)dt =0, Vi # . (5.11)
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Because the symbols are identical in the window of time 0 < ¢ < z we will get
pr=[1sit) | at
0

as the contribution of this window to p (independent of ¢). The rest of the symbol, that
is the section from z to T, contributes p; = ?si(t)s;(t)dt, Vi # j. From equation
(511), pr+pr = p = 0. w

In general, for arbitrary equal energy symbols, the correlation between each pair of

symbols from a set of M symbols has to satisfy

> — E 5.12
p2—3r—E (5.12)

where E is the energy of the symbol. This follows from the following well-known

derivation:

=ME+ (M?—-M)p=ME+ M(M - 1)p.

Solving for p, we get equation (5.12).

Codes which satisfy equation (5.12) with equality are called Simplez Codes [1] and
they exist for each M > 2 [4]. By applying this theorem to the set of M signals which
correspond to the window z < ¢ < T of the orthogonal symbols, we get

/81 si(t) |2 dt. (5.14)

T

= > —
Pr=mh =T

Now we find the desired upper bound:

T si(t) 2 dt
F=l4f————=1l+7——<
] si(t) 2 dt 1 si() 2 dt
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Figure 5.2: 4-ary orthogonal modulation with time-overlapping using Walsh functions.
(a) The 4 Walsh functions. (b) The transmitted signal using time-overlapping of 4
Walsh functions.
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5.3 Trials with Hand-designed Codes

We have shown that it is possible to improve the performance of noncoherent orthogonal
signaling by using a set of orthogonal signals which can be overlapped in time. The

maximum possible improvement is given by

M
1Olog(M — 1)

in dB. Although we have bounded the possible improvement, we have not considered

the use of coding. Let us present simple code constructions, which enable us to virtually
overlap by 50% a set of M orthogonal waveforms (M is a power of 2) by using a trellis
structure. Let us begin with an example using M = 4. We begin by choosing a set
of 4 orthogonal waveforms so(t),...,ss(t), each defined for the duration of T' seconds,
where T' = 2T}, and is the span of one trellis branch. We place those waveforms on a
4-states trellis as shown in Figure 5.3a. The encoder is shown in Figure 5.3b.

We claim that this code is UEP. Let us construct the following correlation group.
The group includes 8 elements, so, —so, 51, —S1, 82, —S2, $3, —S3, and uses the following
rule for addition.

as; o 3s; = afsig;, (5.16)
where « and 3 get the values +1 or —1, and ‘@’ is binary addition. This group is similar
to the group of 3.3.3. If a bit represents the value of o or 3, then their multiplication
is equivalent to binary addition. We see that the addition rule between the group
elements can be made equivalent to binary addition by assigning a binary word to each
of the elements as; such that one bit field contains the sign « and the rest contain
the index 7. In other words, the output group is isomorphic to (Z2)3. Hence, a linear
binary encoder, with an appropriate mapping of the output to group elements, satisfies
UEP.

Let us use an observation covering 2 trellis branches (L = 2). Since the code satisfies
UEP, without loss of generality, we can assume that the all-0 path is transmitted. We
can look at paths originating from state 0 and ending at state 0. Let us investigate the
shortest error events, those covering 2 branches of the trellis. In state 0, the decoder will

choose the most likely among 4 such competitors, which carry the following lengthed
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2T signals: {so, S0}, {—S0, S0}, {51, 52}, {—31, 82}. It is easy to verify that these 4 signals
are orthogonal. Thus, we expect the decision reliability to be at least that of uncoded
4FSK with symbol energy equal to 4 times the bit energy instead of 2 times the bit
energy in uncoded 4FSK. We have virtually overlapped by 50% 4 orthogonal symbols
and gained 3 dB. This result is only asymptotically correct since we have to consider the
contribution of error events longer than 2 branches. In the method described above, we
can add 3 dB to the performance of uncoded MFSK for any M. However, the number
of waveforms that we have to use is equal to ( %)2 and the number of states is equal
to M. For the case of M = 4, we do not increase the number of waveforms, use a very
simple code, and still obtain results which are better than high complexity codes with

DPSK modulation. However, for a large M, The use of a large number of waveforms

adds to the system complexity and requires a large bandwidth.

Let us try to see if it is possible to use only _1\21 waveforms. Refer to the trellis
diagram of Figure 5.4. In this figure, for simplicity, the states related to the sign
switching were grouped together to form super-states; also every branch in the figure
represents two actual branches. This code looks promising, as all 4 signals carried
- by the shortest paths are orthogonal. However, a new kind of error event appears
which is the sequence of super-states {---,0,0,0,1,1,---} carrying the output sequence
{---, s0, S0, 51, 50,80, - - }. So we lose our 3 dB advantage leading to a performance simi-
lar to uncoded 4PSK. Before rejecting this code, let us try to “fix” the problem. We will
multiply the branches emerging from super-state 1 by +j (5 = v/—1) every second sym-
bol. The new encoder is shown in Figure 5.5. Forming this new time varying code, we
did not change the distances between the error events that end in super-state 0—those
stay orthogonal (provided that the decoder pre-multiplies the appropriate branches by
—7). Note that the decoder has to be time synchronized to the sequence which mul-
tiplies the encoder output. This synchronization can be performed the same way as
node synchronization in the Viterbi algorithm. By the modified encoder, the sequence
{--+, s0, %0, 51, S0, S0, - - -} is replaced by {- - -, s0, 30, 81, j S0, S0, J S0, S0, * - - } S0 its distance
from the sequence {sg, -, S0, -} is infinite. The error event {- - -, so, s1, S0, $1, S0, - * ' }

is possible but its error probability is approximately the square of the error probability
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of uncoded 4FSK. For larger values of M it is required to generate %I— — 1 sequences,
appropriately chosen, to multiply the encoder. Note that for a large M the number
of error events of the form of the last mentioned may be large, and the gain will be

reduced.

The actual performance results are shown in Figure 5.6 using the tools that will be
developed later in Chapter 6. Also shown for reference, the performance of uncoded
4FSK, shifted 3 dB to the left. Note that the uncoded performance is exact, while the
other curves are an upper union bound. They are tight only for low bit error rate. The

decoding implementation details will also be covered in the following chapters.

The reason why we have a problem when using % waveforms is that we want to

% bits to -1\24- waveforms so no redundancy exist. If we increase the number of
log, M

waveforms to M, we can use a rate %zgz—M’—l— binary code to map the input bits to the

map log,

orthogonal waveforms except of one bit which feeds the differential encoder and chooses
the sign of the waveform. Our only requirement from the code is that it will contain
at least two consecutive non-zero branches in every error event, which can be easily
satisfied with every short constrain length. We can extend the above ideas to the case of
L larger than 2. This will require more states in the encoder, but will hopefully achieve
very good results. For L > 2 we cannot have the benefit of the differential encoder, so
we will eliminate it from the encoder. The minimum number of states in the encoder
is ML. The number of waveforms needed is 2M or larger (without the multiplying by
+7 method). The codes to be used are those optimal for MFSK modulation in general.
Let us now try another construction, which has much less bandwidth requirements and

may have the potential for good performance.

Let us investigate the case where L, the observation length, is 4; K, the constraint
length is 3; and R, the number of branches reaching a trellis state, is 4. Having four
sequences of four symbols each, we can make them orthogonal one to each other. Let us
place those four sequences on four possible paths on the trellis, originating from state
0 and ending at state 0 again. The UEP of the codes guarantees that every 4 paths of
4 symbols originating from some state A and reaching a state B are also orthogonal to

each other. The decision at point B, which one of the sequences is the received one, is
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close to deciding which of possible four orthogonal waveforms was transmitted, and is
equivalent to the decoding of MFSK for M = 4 with symbol energy equal to eight times
the bit energy (E;, = 8F;). The expected performance is 6 dB better than uncoded
4FSK. Let us choose the sequences such that they will be orthogonal to {1,1,1,1} (for
our current discussion modulation is two-dimensional, 1.e., each symbol is a complex
number). The above sequences will be {1,7,—1,7}, {1,-1,1,—-1}, {1,—j,—1,—;j} and
{1,—j,—1,—7}. In fact these four sequences are a Discrete Fourier Transform (DFT)
matrix of dimension 4 x 4. One can immediately notice that each component of the
sequences can be expressed as af, where ¢ is the index within the sequence and k is
the sequence number. The generator of this code is G; = j, —1,j. Notice that there is
no redundancy in this code because the number of possible symbols and the number
of possible input combinations per symbol is equal and is 4. There is a need to add
another two dimensions (so that the modulation will be four dimensional), i.e., D = 2.
We choose our group of vectors to be {£1,0}, {£7,0}, {0,£1}, {0,£7}, total of 8
possible symbols as in Example 3.3.3. It is shown in that example that this group is a

correlation group. Let us test the following code (see explanations for the notations in

Example 3.3.3):

Gi - _jla_lo’jl'

The sequences that are created when we start from state 0 and immediately return to

state 0 are:
So = 1° 1° 1° 10
S, = 10 1 10 51
S, = 19 —-1° 19 —1°
53 — 10 jl _10 —jl

The first symbol in each sequence line is 1° and it belongs to the common branch of
all four paths. Note that all four sequences are orthogonal, so we can expect a decision
between them as good as in 4FSK with symbol energy four times larger than one
symbol energy of our code. This will result in an extremely good performance. Here,
we are only checking the case of the shortest error path. After further examination we

concluded that the performance of the code was less than what was expected from the
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above discussion.

We argue that these design methods described above are sub-optimal. The reason is
that these codes can always be generated by a regular convolutional encoder and PSK
symbols. For example, a rate i encoder with BPSK output, if restricted to have gen-
erators that get the values G; = {+1,+1,+1,+1},{+1,+1,-1, -1}, {+1,—1,-1,+1}
or {+1,—1,+1,—1}, will generate orthogonal outputs. Allowing G; to be arbitrary,
we enlarge our allowed codes number and hopefully find better codes. Due to the
complexity of the code performance evaluation under noncoherent decoding, we have
performed a systematic computer search. Surprisingly, some of the best codes found
for optimum noncoherent decoding are also the best for coherent decoding. For those

codes, it means that we can approach the coherent performance as the observation

length increases.

5.4 Conclusion

It is possible to improve the performance of noncoherent orthogonal signaling by using
a set of orthogonal signals which can be overlapped in time. In particular, we suggest

the use of the Walsh functions. The maximum possible improvement is given by

10log( (5.17)

M — 1)
in dB. This is valuable especially for small M. We note that with M=4, the performance
of noncoherent block orthogonal transmission with overlapping is better than DPSK
and even better than coherent BPSK for large SNR. This case might be particularly
useful. When coding is included in the transmission, we see that it is possible to
virtually overlap the orthogonal symbols to a much larger extent, leading to a large
performance gain. However, we pay the price of higher complexity and in general wider
bandwidth (overlapping in the uncoded case does not lead to an increase in complexity).
The systematic approach presented in the next chapter will lead to higher performance

codes with less bandwidth and complexity requirements.
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Figure 5.3: A code for 4FSK which makes the shortest error sequences (of length 2)
orthogonal. (a) The trellis diagram. (b) The encoder.
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0/1

3/

>e8

T-FF

0 —> -1
0/1
N 1 —> +1 0,1,0,1,...

< I

: 0 — 1

1 > j

4

Choose s; __%g>

Figure 5.5: A time varying encoder for 2 orthogonal waveforms.
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Figure 5.6: Performance of the codes described in this chapter. The encoder of Fig-
ure 5.3 which uses 4 orthogonal waveforms and the encoder of Figure 5.5 which uses 2
orthogonal waveforms are evaluated for an observation length L of 2 symbols.
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Chapter 6

Definition and Analysis of
Noncoherent Coded Modulation

6.1 Introduction

There are many advantages of using noncoherent decoding; these are summarized in
Chapter 2. Currently, there is a gap between the performance of coded noncoherent sys-
tems and the coherent ones. For example, there is about 3 dB difference in performance
on the AWGN channel between constraint length 7 rate 1/2, coded PSK and DPSK
(differential PSK), even when interleaving is used for the DPSK [1]. Moreover, there
is not much available tradeoff between bandwidth and power efficiency with currently
used noncoherent modulations as it is with coherent ones.

Recently it has been shown that the performance of noncoherent detection can be
improved by using a longer observation time' (one symbol for FSK and two symbols
for differential detection). Multiple symbol noncoherent detection of uncoded DPSK
is considered in [2],[3],[4] and multiple symbol noncoherent detection of uncoded CPM
is considered in [5], [6], [7] and [8]. Application to block coded MSK is found in [7];
and a new block coded MPSK for noncoherent detection is considered in [9]. Multiple-
symbol differential detection of trellis coded MDPSK is considered in [10] and [11].
Multiple-symbol noncoherent detection of trellis coded modulation has been confined
to applications which use differential encoding. Also, no optimization of the code se-

lection has been performed. In all of the above contributions, the observations are

!The observation is the time window in which the carrier phase is assumed to be constant.

7
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independent. In the case of uncoded or block coded modulation, one observation was
used for each decision. When convolutional coded modulations were decoded, indepen-
dent observations were used. In some methods the observations overlap in one symbol
and interleaving was used for making them independent. The interleaving function
adds extra complexity to the system and causes unwanted delay in the received data,

although in some applications such as fading channels, interleaving is required.

We show a new noncoherent decoding scheme which can be applied to almost all
types of coded modulation, without changing the encoder, and with performance that
in general approaches the coherent decoding of these codes as the observation length
grows. We also show new codes with high noncoherent performance which are also
optimal for coherent decoding (have maximum free distance), and their performance

with the efficient noncoherent decoding.

Unlike the previous approaches, we use maximally overlapped observations (see
Figure 6.1), which will not and cannot be made independent. We thus utilize the infor-
mation from all possible (time shifted) observations of length 7. When applying this
technique to trellis coded modulation, each observation spans several branches of the
code trellis. This can be viewed as a generalization of the ideas presented in Chapter 5.
The resulting novel sequence estimator is derived, and its performance for equal energy
symbols over the AWGN channel is found by the union bound. The bound is com-
puted numerically. We show by examples and prove analytically that the performance
of the noncoherent sequence estimator approaches the coherent one as the observation
length grows. Also, we suggest the use of a type of coded modulation scheme, the
Linear Noncoherent Trellis Coded Modulation (LNTCM), defined in Chapter 3, which
exhibits Uniform Error Property (UEP) when used with our sequence estimator. The
LNTCM uses constant energy symbols, e.g., MPSK. Note that the proposed decoding
algorithm can be applied to many other codes and modulations. Its application to

CPM (Continuos Phase Modulation) will be covered in Chapter 8.

The above efforts lead to a new approach for designing noncoherent systems. We
call this coded modulation and detection scheme “Noncoherent Coded Modulation

(NCM)” (see Figure 6.2). This scheme provides tradeoff between robustness with re-
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Figure 6.1: Demonstration of overlapped observations.

spect to phase variations (or frequency uncertainty) and power efliciency, by controlling
the observation length of the detector. The existence of decoding algorithms, whose
complexity depends only slightly on the observation length (which will be described in
the next chapter) makes this tradeoff efficient. NCM may be attractive even in cases
where phase synchronization is not a major problem, since its degradation relative to

coherent demodulation can be smaller than the degradation caused by imperfect phase

estimation.
Data In Encoder PSK Modulator Slowly varying phase IO-NMLSE Data Out
and AWGN channel Decoder

Figure 6.2: The noncoherent coded modulation system.

The noncoherent codes include the linear convolutional codes used with BPSK mod-
ulation. The existing coded systems with coherent detection (for example the codes
used in the NASA Deep Space Network) can be modified to be used with the suggested
detection with negligible degradation. The only limitation to this is that the code
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should not be a noncoherently catastrophic one.

In coherent coded modulations, in cases where enough bandwidth is available, better
performance can be achieved with lower code rates without considerably increasing
the complexity. In the same way, it is possible to trade bandwidth efficiency with
power efficiency in NCM. Note that this trade is not efficient when using conventional
detection of coded DPSK or MFSK.

This chapter is organized as follows: In Section 6.2, the general problem of detection
is discussed, and the Independent Overlapped observations Noncoherent Maximum-
Likelihood Sequence Estimator (IO-NMLSE) is derived. In Section 6.3, we briefly
describe the codes which will be used. Section 6.4 is devoted to the error probability
analysis for a coded system employing the IO-NMLSE decoder. The search for good
NCM codes is described in Section 6.5. Finally, in Section 6.6, the results for several
good codes, and for DPSK, are presented. In Section 6.7, some simulation results for
the case where phase noise is included are presented.

In Appendix A, the proof is given for the claim that the I[O-NMLSE performance
approaches the coherent MLSE Maximum Likelihood Sequence Estimator performance
as the observation length grows. In Appendix B, the derivation of several series ex-
pansions for the distribution of the general non-central indefinite Hermitian quadratic
form in normal random variables is given. In Appendix C, a numerical method for

evaluating this distribution is described.

6.2 The Noncoherent Sequence Estimation

The Optimal Noncoherent Maximum Likelihood Sequence Estimator (NMLSE) de-
pends én the statistics of the time varying carrier phase. When such statistics are
unavailable, the derivation of the optimal NMLSE must start from some broad as-
sumptions. The commonly used assumption is that the carrier phase is constant (but
completely unknown) during some observation interval (¢,¢+T') for any t. When trying
to use this assumption for the derivation of the NMLSE, we notice that the problem
is ill posed. If the phase is constant over any interval of a certain length, then it

has to be constant everywhere. It is clear that some phase variation should be al-
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lowed over the observation time. To make the optimal NMLSE a well defined problem,
the allowed phase variation over the observation interval, and the way to measure it,
should be defined. Then, the worst-case phase random process among those which fit
into the constraint can be found and used for deriving the maximum of the likelihood
function. This approach seems too complex and probably will not lead to any simple
implementable solution.

In previous approaches, the observations were either independent or overlapping in
one symbol. In our approach, maximally overlapped observations, which make use of
the fact that the carrier phase can be assumed to be constant for any observation of
length T', are used. Thus, the channel memory is utilized in a more efficient manner. In
fact, it will be shown in the results that the decoding performance can be improved by
increasing the overlapping ratio x (which will be defined shortly). It is further assumed
that the observations, even when they overlap in time, are independent, and have inde-
pendent phases. We call the resulting estimator Independent Overlapped observations
NMLSE (IO-NMLSE). Note that the observations are not made independent by any
means. They are only treated as such for the derivation of the estimator, thus leading
to a sub-optimal solution for the NMLSE.

In the case of coded DPSK, which uses two-symbols observations, the overlapping is
inherent. However, the observations are commonly made independent by interleaving.
Recently [12] showed that the non-interleaved DPSK can achieve higher performance
in terms of cutoff rate and capacity, thus supporting our approach. The importance of
using overlapped observations is also demonstrated in Example 6.2.1.

The IO-NMLSE discriminates between a set of possible transmitted waveforms

{z:(t)} by choosing the signal m which maximizes the following metric

n(zm(t),7) = i log Qm(kT, kT +T), (6.1)

k=—o00

where @, (1,,T;) is the ML metric for one observation interval, T, < ¢ < T}, and is
found in [13, equation 4c.12], k is the observation number, 7 is the observations spacing
and T is the observation length. The choice of 7 is a tradeoff between maximizing

BER performance and minimizing system complexity. The complexity is approximately
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proportional to %

Qo) = o[- [eattasori] ool fraz 1
Te

a

], (6.2)

where r(t) is the received waveform (both z(¢) and r(t) appear in the baseband repre-
sentation), « is the channel attenuation and g¢,,(t) is defined in [13].

The overlapping ratio is k = (T' — 7)/T and has values between 0 to 1. In the case
of kK = 0, we get non-overlapped observations.

In the case of additive white Gaussian noise with one sided spectral density Ny,
gm(t) = z,(t)/No [13, pp. 344]. In the case of equal energy signals, the estimator can

as well maximize

kT+T

(), 1) = 3 log][ ‘ ()dtu (6.3)

k=-—00

For low SNR (small argument) the log Io(x) function is approximated by z?/4, leading

to an estimator which maximizes the metric
k7‘+T
n(z 1 dt

k=—co’ [

(6.4)

We have confirmed by simulations that the use of this approximation does not lead to
any noticeable performance degradation. In a digital implementation, where z,,(t) is
a sequence of symbols of duration 7 and each symbol is constructed using a 2 x D
dimensional signal space, the metric can be written as

—(m)
Erlk iX[k4

=0

[e e}

(m)l an_z

k=00 k=-o00

, (6.5)

where S is the observation length in symbols, [ (an integer) is the observations spacing
in symbols, and for every symbol ¢, F; is a complex vector which assumes the output
of D complex matched filters, each for one complex dimension of modulation. The
sequence of vectors of dimension D, %(™), is the signal space representation of zm(t).
Let us define L as the number of trellis branches which are covered by one ob-
servation, i.e., [L = S/n| (assuming [ is a multiple of n; or else, in some cases it is

necessary to add 1), where n is the number of symbols in a trellis branch. L is more
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important than S since it determines the complexity of the decoder and also relates
more closely to the actual observation time 7T'. Unless stated otherwise, we will use
[ = n for maximal overlapping and coﬁvenient decoder implementation.

If the code is not noncoherently catastrophic (see next section), then as S increases
(and the allowed phase variations are reduced appropriately), the performance of the
IO-NMLSE approaches that of the MLSE with a completely known phase. This pro-
vides a tradeoff between robustness to phase variations and power efficiency. The proof

is given in Appendix A.

Example 6.2.1 Suppose that we want to discriminate between two possible received
signals {ry,---,rg}; oneis {1,1,1,1,1,1,1,1} and the otheris {1,1,1,1,~1,—1,—1,—1}.
Assume that our observation ignores the absolute phase. By taking the non-overlapping
observation {ry,---,r4} and {rs, - ,rs}, it is clear that the two possible received signals
are indistinguishable. By adding the observation {ry,---,rs}, we are able to distinguish
between the two hypotheses; for the first case we get {1,1,1,1}, and for the second case
we get {1,1,—1,—1}. This shows the importance of the overlapped observations.

We would like to state some insights and performance predictions supported by com-
parisons of actual schemes. Suppose that a constant phase is transmitted, zo(¢), usually
corresponding to the all-0 input to a code. Let us have another candidate sequence,
z1(t), which metric compete with the metric of the constant phase sequence. The

operation
kr+T
[ e

kTt

2

is equivalent to the signal passed through a filter with an impulse response A(t) =
z7, (T —t) and taking the squared magnitude of the result, sampled at time ¢t = T'. The
operation of equation (6.5) is to consider all possible sampling points, with some finite

resolution 7. The impulse response in the case of the candidate zg is
h(t)=1, 0<t<T.

This corresponds to a low-pass filter. In order to have the largest distance between z

and 7, in one observation (here distance serves as a qualitative term only), z; has to
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contain most of its energy in high frequency. Then for this observation the calculation
of the metric of z; will be equivalent to the energy output of a high pass filter. Passing
zo, a low pass signal through this filter will result in a low output. Hence to get low
error probability performance using the shortest observations, the energy of z; should
be concentrated at as high energy as possible. See Example 6.2.2. Note that as the
observation length T' decreases, the equivalent low pass filter of the observations of xg
broadens and the same happens to the high pass properties of z;. Instead of using
the concept of filtering, we can consider the correlation between the signals over an
observation. For a one observation noncoherent decision, the correlation determines

the error probability. Both views are mathematically equivalent.

For convolutionally coded PSK we expect to get good results for a typical good
code (for coherent detection). Observatioﬁs shorter than an error event length, which
are located inside the event, have a random-like distribution of values. This gives high
pass properties. Some specific codes may exist so that their most likely error events do
not have a random-like distribution, and these codes will require larger observations
to obtain good performance. Examining the results for coded PSK at the end of this
chapter, we see that observation length of S = 6 to S = 8 is always needed to achieve
close to coherent performance. We can think of it as the number of symbols that is
needed to randomize the values in the observation enough so that they will become
high pass (we can assume, that for our good codes, the error event symbols for all-
0 input transmitted are distributed in a close to random manner). The high pass
property of the events is also indirectly related to the bandwidth occupancy and the
spectral properties of the scheme as whole. As the scheme becomes more bandwidth
efficient, larger observations (measured in input bits) are required to achieve good error
performance. This is true for the coded PSK schemes and also for the CPM (Continuous
Phase Modulation) schemes analyzed in Chapter 8. For example, GMSK (Gaussian
Minimum Shift Keying) [14] with parameter BT = 0.25 requires L = 10 to be 0.5 dB
close to coherent, whereas in MSK (Minimum shift keying) only L = 3 is required.

GMSK has much better spectral properties than MSK.

There are other approaches for explaining why bandwidth efficiency implies longer
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observations. We can view the noncoherent decoder as one that estimates the phase
and then uses its phase estimate to coherently detect the same symbols. The quality
of the phase estimation is dependent on the SNR per observation, and the last is a
function of the length of the observation. As the scheme becomes more bandwidth
efficient, it is typically more sensitive to phase reference errors. Thus, the observation
length should be increased.

The principle underlying the operation of any noncoherent decoder is that the phase
noise spectrum is narrower than the modulation spectrum. We will call this spectrum
separation. The phase noise bandwidth is inversely related to the maximum time
constant of the detector allowed for low degradation. As the modulation spectrum
become narrower, the phase noise spectrum should become narrower as well to insure
the spectral separation property. As a result, the allowed maximum time constant of
the detector is increased. If the detector time constant is not increased correspondingly,
the degradation cannot stay low. If this is not the case, it leads to a contradiction,
since the phase noise spectrum is then allowed to be wider, disobeying the spectrum
separation property, hence impossible. The same argument applies to any receiver,
including coherent ones (when the phase tracking circuit is included, the coherent is
essentially equivalent to a noncoherent one). Noncoherent or coherent schemes in which
the time constant is variable (for the coherent this will be the PLL time constant) can

be distinguished by the different spectral separation required for a given loss.

Example 6.2.2 Let us have a code with the following three codewords (in one complex

dimension), transmitted over the AWGN:
x@={..1,1,1,1,...},

xU={..,1,1,5,4,1,1,...},

and

x@={..,1,1,5,—7,1,1,...}.

Let x©) be the transmitted codeword. x\® has more high energy content than xV), Both

x1) and x® have the same probability to be detected instead of the true message when
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coherent decoding is used. However, when noncoherent decoding is used, we have found
that for x() we need L = 7 for getting close (within 0.5 dB) to coherent error probability
but for x(2) we need only L = 2!

6.3 Linear Noncoherent Coded Modulation

We suggest the use of a specific type of trellis coded modulation called Linear Nonco-
herent Trellis Coded Modulation (LNTCM) defined in Chapter 3, in conjunction with
the above described sequence estimator. This code exhibits the UEP (Uniform Error
Property) for noncoherent detection. This property simplifies the analysis and helps us
in the search for good codes. The UEP means that the error probability is not depen-
dent on the specific codeword that was sent. By using this property, we do not have
to check all possible pairs of codewords in order to find the decoder error probability
when using the union bound.

When using coded modulation and a noncoherent metric, the linearity of the code
does not imply that the code exhibits the UEP. The LNTCM are codes who indeed
satisfy the UEP under noncoherent detection. In this paper we limit ourselves to
convolutionally coded PSK modulation. For these codes the LNTCM reduces to the
following codes.

Let K be the constraint length of the code, B be the number of input bits per trellis
branch and R = 2% be the number of branches reaching a node, and also the number of
phases in the MPSK modulation. R¥~! is the number of states and n is the number of
PSK symbols in one branch. Let the input group and the output group be the modulo
R set of integers Zp, i.e., the input field is not GF(2) for R > 2. The encoder consists
of a shift register of K stages; each stage contains an integer between 0 to K — 1. Each
output ¢ of the encoder is generated by a modulo R weighted sum of the shift register
contents and the generator G; = (1,052, +, k), 0 < o, ; < R.

The output is mapped to the phase of the PSK signals linearly (not by set parti-
tioning). The rate of the code is B/nB, which means that for every trellis branch, B
bits are entering the encoder and nB bits are getting out, followed by a mapping to n

PSK symbols. Other rates are also possible by having multiple shift registers or using
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punctured codes.

6.4 Error Probability Analysis

In this section we evaluate the IO-NMLSE error probability for a coded modulation
transmitted over a channel with AWGN and slowly varying carrier phase. We will treat
the case of UEP, while the result can be extended to non-UEP systems, but will require
much more computation time. '

Since for any slow varying phase process, in which the assumption of constant phase
over S symbols approximately holds, the metric (6.5) will give the same result, we can
assume without loss of generality that the phase is constant everywhere. This analysis
holds for any arbitrary slowly varying phase process.

The decoder compares the metrics of all the possible paths and chooses the path
with the maximal metric. For error probability computation, we assume that a specific
codeword is transmitted, namely the all-Z sequence, ¢, and find the probability that
another path on the trellis will get a larger metric. The symbol Z is the output symbol
which corresponds to the all-0 input to the encoder. When LNTCM is used, Z is the
zero element of the output group. The derivation can be easily modified to any other
transmitted sequence.

We call the codewords that happen to be a phase shift of the all-Z sequence “con-
stant sequences.” If constant sequences exist, and the code is not noncoherently catas-
trophic, i.e., the input assignments for all the constant sequences are the same, paths
branching from ¢ and reaching a constant sequence are also competitors.

We will use two bounds for estimating the error event probability. The first is the
union bound which is the sum of all the pairwise error probabilities of the possible error
events. The union bound is an upper bound. The second is the maximum among all
the pairwise error probabilities which is a lower bound for the error event probability.

We will assume that S is an integer multiple of [ and that [ = n. For the case
of [ = np, where p is an arbitrary integer, the error events have p different positions
relative to the beginning of the observations. In this case, one should average over all

the possible positions while computing the union bound.
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Unfortunately, the pairwise error probability cannot be expressed in a form suitable
for the transfer function method [15]. Instead, we numerically approximate the error
event probability as

P <Y Pz} Y Rz, (6.6)

[®(m) | < M
and approximate the bit error probability as
1

5 2 WP, (6.7)
|®(m) <M

1R

B

where %(™) are all possible competing sequences, [%(™)| is the length of the error event
in (™ (%™ itself has infinite length), and 5(%(™) is the number of non-zero bits in
the decoding of (™). P.{%(™)} is the pairwise error probability between ¢ and X. M is
a sufficiently large number such that the residual contribution of the larger error events
can be neglected. Usually, an error event is defined as one starting from state 0 and
returning back to state 0 without “Visitihg” (passing through) state 0. Here, we allow
the error event to visit state 0 for a maximum of L —1 consecutive places. The shortest
among the error events that visit state 0 has length of twice the shortest regular error
event. Commonly, the contribution of such error events to the error probability is small
and can be neglected. It is also possible to show that regular error events, i.e., those
which do not visit the zero state, can be used when the trellis diagram is the augmented
trellis defined in Section 7.2.

Let us derive P.{X}. The derivation can be easily modified to any 2 sequences. Let

T; be the received sequence,

N-§,5-1 2
H.klrz—f-kl 5 (6.8)
k=0 ':=0
and
N— - 2
Z Z Titkl (6.9)

1=0
X is an infinite encoder output sequence containing an error event of length N — 2(5 —
1). % is formed such that the S — 1 symbols {Xo,---,%Xs_2} are £ and the symbols

{XN-5t1, "y XN-1,%N, - -} are equal to either Z or a phase shift of Z. The latter is
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appropriate for sequences which diverge to a constant sequence. The pairwise error

probability is P.(X) = Pr{Y,; > Y1}. Each element, F; or X;, is a vector of dimension D.

If D is large or infinite, the following derivation might not be useful since it will

require computation with very large matrices. For the case of large D, one should refer

to the alternative derivation presented in Section 6.4.3. Let us map F, X and ¢ each to

a vector, r, x and ¢, of length DN by
I'Ditj = Tij, XDitj = Xij and ¢Di+j = %i,j = ZJ

0<i<N-1, 0<j<D-1.

N-§/5~-1D~-1 9
po— . . *
Y, = Z Z Z YDki+Di+i X DEl4+ Ditj
N-S5/DS~-1 2
%*
= Z Z FitDiXiypri| =
k=0"' i=0
N-§ ,DS-1 x ,DS—-1
p— . * . * JE—
=3 (3 reouiion) (3 memunci o) =

k=0 1=0 7=0
N-=S DS-1 DS-1

= Z Z rz+DklrJ+Dle1+Dklxg+Dkl
k=0 =0 71=0

N-S Dki+DS-1 Dkl+DS-1

Z Z Z xpx;r;rq.

k=0 p=Dkl g=Dkl
Define
w(i'k)—{l’ if Dkl <14, < Dkl+ DS —1;
2J2B) = 0, otherwise.
Then
N-S DN-1 DN-1
Z Z Z pr rqw p7 q, k)
k=0 p=0 g=0
DN-1 DN-1 DN-1 DN-1

Z Z rrqxpx Z w(p,q, k) = Z Z a2,p,qrqr;-
p=0 g=0

p=0  ¢=0

In the same way we can express Y; as

DN-1 DN-~1
. *
i= >, > a1,p,4CqTp;
p=0 g=0

where
N—S

Q1,p,q = PmOdDZ;modD Z w(p,q, k).
k=0

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)
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Let
N-§
Upg = A2,pqg — Alpq = (prz ~ Zpmod D24 modD") Z w(p,q, k), (6-16)
k=0
and A = {a,,}, a DN x DN matrix, then
Y=Y, - Y, =rlAr. (6.17)

We want to find the probability of ¥ > 0. The vector r is a complex Gaussian random

vector of length DN, with E[r] = 1¢ and a covariance matrix C = 2I (unit variance

in the real and the imaginary parts of each of the vector components), where

DNgn
2 0

= 3BE (6.18)

and I is the identity matrix. Let us express A as
A =QAQ™, (6.19)

where A is the diagonal eigenvalue matrix, and define Z = Q'r, then
DN-1

Y =r'QAQ'r = ZTAZ = Y N|Z:% (6.20)

i=0

It is easy to show that E[Z] = Q™' E[r] and that the covariance matrix of Z is 2I.

The form (6.20) resembles the x? distribution. It would have been exactly x? if all
the eigenvalues of A were equal, which is generally not the case. The distribution of Y’
is that of a non-central general quadratic form in Gaussian variables [16]. The general
case, which we have, is the most difficult case to treat. Some special cases are easier;
among them are the case where A is positive definite and the case where we have a
central general quadratic form, defined as E[Z] = 0. {a1,p,} and {az,,} are each a
positive definite matrix, but their difference is not.

For the general quadratic form expressed as
n—1
Y =Y AW - B, (6.21)
=0

where W, are unit real normal random variables and f3; are real constants, the charac-

teristic function is given by [16] and is:

I S
. i 2 9 ] Qi N
Q(iw) = E[e"¥] =e =0 7 g=0 [T = 2iw);)~=. (6.22)

=0
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In our case Z; is complex, so we can write
1Z:|* = (Wai — B2)* + (Wair1 — Bair1)?, Ao = Aaiga, (6.23)

Pai = Re{p},  Baiyr = Im{p}, pi = E[Z].

From equation (6.22) and (6.23), we get
1 DNt 1 DN-1 ]/‘i|2
A e

@(jw)—e iz 1—2Ajw H IS
— LA JW

=0

(6.24)

This characteristic function should be inverted in order to find the distribution of Y.
There is no known closed form solution for the distribution. There is not even a
good series expansion for the general case. We have developed a series expansion which,
for fast convergence, requires that the eigenvalues be distinct (see Appendix B). Since
we cannot guarantee this property, we have developed another numerical method (see

Appendix C). This second numerical method works well for all ranges of eigenvalues.

6.4.1 High SNR Approximation

Let us look at the expression for Y.
Y =rtAr = (¢ + n)TA(¢ + n) = ¢'A¢ + 2Re{n'A¢} + nfAn, (6.25)

where n is a complex Gaussian vector with zero mean and covariance matrix C = 2021,
One possible approximation is to ignore the n x n term which is the third term. In high
SNR this term will be smaller than the other noise term, the second term, since the
noise is relatively small and it appears in second order. The second term is a Gaussian

random variable (a scalar) with zero mean, and variance

2Dn N
2 = 4]A¢|? 2 Ao LY )
7t = 4|Agfo? = |AgP ] (6.26)
We can see that the third term has also zero mean:
En'An] = E[n'QAQ'n] = E[Z'AZ] = Z NE(Z:)*] = 202 Z A, (6.27)

where Z is another complex Gaussian vector with zero mean and same covariance,

which relates to n by Z = Q'n. The sum over the eigenvalues of A is equal to the trace
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DN-1
of A. It can be shown that the trace of A is zero by performing the sum 3 a,, and
p=0

using i:r)'(z = Z'Z Vi. Moreover, it can be shown that the eigenvalues of A satisfy
the property that if A is an eigenvalue, then —A is also an eigenvalue.
The error probability after neglecting the n x n term is

¢'A¢ | BE,

Pr{Y >0} ~ Q< (6.28)

The computation of the above expression is much easier compared to the exact com-
putation of the error probability which involves a calculation of the eigenvalues of a
matrix. Unfortunately, the result is not very accurate when working in moderate SNR,
but it is good for the process of the preselection of codes before testing them more
rigorously.

Surprisingly, the result of the exact calculation of the probability was always found
to be lower than this estimation. It was reasonable to assume that the extra noise
term, the third term, will be responsible for increasing the error probability. It can be
shown that the correlation between the second and third term is zero. However, there
is a negative correlation between the absolute value of the second term and the value
of the third term. When the value of the second term is positive high, the third term
tends to be negative and thus reduces the total of the first, second and third terms.
The decrease of the error probability is thus understood. The conclusion is that the

equation (6.28) can be used as an upper bound on the error probability.

6.4.2 Approximation by Using the Largest Eigenvalues

A good approximation to the error probability is based on equation (6.20). In the
summation we can keep only the terms of Ay, and —A.. (as it was mentioned before

the eigenvalues always come in pairs of positive and negative).
Pr{Y > 0} & Pr{dnaz|Z1)* — Anaz| Z2|* > 0} = Pr{|Z;* > | Z,]*}, (6.29)

where the indices 1 and 2 correspond to +Anae and —A,.. respectively. Equation
(6.29) is of the same form as the error probability of FSK when the waveforms are not

orthogonal. It is the probability of having one Rician r.v. greater than another Rician
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r.v.; see for example [13]. Tt is evaluated by the Markov @) function. The approximation
is good only for cases where A, is much larger than the other eigenvalues; examining
numerous error events showed that this is most likely the case. The main difficulty is
to find pq and p,, the expected values of Z; and Z;. The following procedure can be
used to find them, without having to find the other eigenvalues. For large N,

ANz 2 AN (gray + g2az(—1)"),

maxr

where a; and a; are unknown constants, x is an arbitrary vector, and ¢; and ¢, are the

normalized eigenvectors corresponding to A, and —A,.,. Let
vy = ANz, vy = AV (6.30)

Since ¢; and ¢, are orthogonal,

lor] = A (laal® + a2 l?)®%,  Jva] = AN,p(laa]? + |aa]?)®. (6.31)
Let
U1 U2 2a1q
V= 2L : 6.32
' ol VTl T Qe+ P (6-32)
~and
vy (o 2a2q;
Vo) = — — £ — } 6.33
"= ol " Toal ~ (P + e (633)
As a result, using |q1| = 1,
1
t |Vi'¢|
— |gfg| = D221 6.34
where ¢ is defined in (6.10). Similarly,
Vi
2| = lgig| = sl [{"/ | | (6.35)
2

6.4.3 Evaluating the Pairwise Error Probability for Symbols
with Large or Infinite Number of Dimensions

The pairwise error probability computation in the previous sections involved DN x
DN matrices. When D is large or infinite, the method becomes computationally too
extensive. Here, we develop a method which uses only the values of the correlations

between the symbols and thus is independent of D. In fact, the signal space presentation
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is not required; signal waveforms can be used for the computation of the correlations
between symbols. The size of the matrixes involved will always be 2N. We know that
such a derivation is possible using the results in Theorem 3.2.1. Let o, = i;gf'p and

B, = ZT%,. Let

N-L;S-1
= >0 ﬁz+kl (6.36)
k—0 '¢=0
and
N-§,5-1
=y Zamz . (6.37)
k=0 'i=0
N-S S-1 5-1 N-15-15—
= > O ciw)” Z ajpr) = D, D Z O Okl = (6.38)
k=0 i=0 k=0 i=0 j=
N~—1kl+S-1 ki+S—-1 N-1N-1
:Z Z Z oy = ZZaan w(p, q, k), (6.39)
k=0 p=kl g=kl p=0 ¢=0
where
[ 1fkl<p,q<k‘l+5——1
w(p, g, k) = {0, otherwize (6.40)
Let
N-1
apyq = Z w(p,q, k) (641)
k=0
and let A = {a,,}, a N x N matrix, then
Y, = o'Aq, (6.42)

where o and f are vectors with components a, and ,, 0 <p < N —1. Similarly,
= BTAB. (6.43)

Thus, we get
Y =Y, -V, = a'Aa — BTAB. (6.44)

Let us define the vector U of length 2N as
U= (g) , (6.45)
and the 2N x 2N matrix P as

p= (‘A 0 ) (6.46)
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Then,
Y = U'PU. (6.47)

Let us assume that T; is normalized such that each component has unit variance, and
the symbols X; have unit energy. Let V be the covariance matrix of U. Its nonzero

entries are

Vo = E{[ay — E(ap)]le] — E(oy)]} =

= E{i;[fp - E(f'p)][f'p - E(_fp)]fip} - X;Iip = i;ip =1, (6-48)
Vowtn = E{lay — E(,)][8; — E(8,)7]} =
—t e _ — — — A
E{X;[rp - E(rp)][rp - E(rp)]TZ} = ;Z = Up, (6.49)
and
Vorne = Vopyn- (6.50)
1 Ug
1 (73] 0
0
v e 6.51
AP SNCR
uj
0
UN_1 1

Here we have a quadratic form in random variables like in equation (6.17). However,
there is a difference. Here the components of the random vector U are correlated. We
proceed in a method similar to [16]. Let us find a non-singular matrix L such that
V = L'L. Since V is Hermitian, such decomposition always exists [19] and is not

unique. Let us define another random vector related to U as
W= L' (6.52)

The following relations are useful to note: L™'" = L™ and (L'L)~! = L-1L-!". The

covariance matrix of W is

B{IW — EW)IW - EW)]'} = LV E{[U = EW)|[U - E(U)]'} L™ =
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=L V"VL =LV =1 (6.53)

Hence, the components of W are uncorrelated. Let us use (6.52) in (6.47) to get
Y = WILPL'W. (6.54)

From this point we can proceed similarly to Section 6.4. Let A be the diagonal eigen-

values matrix of LPL' and () the unitary eigenvectors matrix. If we set Z = Q'W,

then N
2N-1
Y = WIQAQW = ZTAZ = Y \|Zi% (6.55)
=0
" Finally,
2N -1
P{x} = Pr{Y > 0} = Pr{ > MZ[E > o}. (6.56)

i=0
Now we can write the characteristic function as in equation (6.24) and use the tech-
niques described in the appendices for finding the cumulative distribution of Y. Note
that the eigenvalues of LP L' are the same as those of PV. Since Y in (6.55) has to have
the same distribution as in equation (6.20), A; should be the same (up to a scale factor)
under both derivations and the additional V values should be zero. This was always the

case in our tests. Another quantity that needs to be evaluated is g7 = [uo, . . ., pan-1]7.
AT = E[z) = Q'L E[U), (6.57)

where
Up

Uy

E{U]=;1; el (6.58)

and
0_2 _ Non
2BE,

The matrix L can be found by standard triangular factorization techniques. However, -

(6.59)

for our particular case we were able to find a close form for L (one of many possible
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solutions). The validity of the following expressions can be confirmed by inspection.

u 0 1 0 0
1 — Juol? 0 0 0 0
0 u 0 1 0
L= 0 1—wf? 00 0l (6.60)
UN_q 0
0 0 oo fl=|unya2 0 0 ... 0
and
1 0
—— 0 0
1
0 0 0 —— 0
0 0 0 0 ... 0 TL_P
-1 _ . —|UN—1
=1y _w 0 .. 0 0 ' (6.61)
V1-luol?
I
0 0 m— 0 0
0 0 0 0 .

oo
6.5 Searching for Good Codes

Given a specific observation length and code parameters, the optimal code was found
by a computer search. The minimum Euclidean distance serves only as a lower bound,
thus it is not very useful for NCM selection.

We have used the bit error probability bound (6.7) as the optimization criterion,
but we took care to minimize the maximum error event probability as much as possible.
For small K, R and n, the number of possible codes is not too large and a one by one
search was performed to check all possible codes in order to find the optimal one. For
larger values of the parameters, this method is not practical. In this case, the codes to
be tested were produced at random. Since there is a large number of good codes, the
probability of finding one of these good codes is not too small.

With either method, a large number of codes had to be checked. By observing

symmetry properties of the codes, we can reduce the number of codes to be checked.
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For example, a code and its reverse (the generators are reversed) have exactly the
same performance, since all the possible error events are reversed. Permutating the
generators yields to an equivalent code, and the same thing happens if we conjugate
all the generators’ coeflicients.

For each code, we have to compute the error probability of each of the possible error
events. Since there is an infinite number of error events, we will consider only error
events limited to a finite length. Error events longer than those are assumed to have
only a small contribution to the error event probability.

The exact error probability computation for an error event involves the compu-
tation of the eigenvalues and eigenvectors of a matrix and the computation of the
quadratic form cumulative distribution. We have used simple lower bound criteria
for fast preselection of codes to speed up the search. The search was performed in 4
stages, alternating preselection rules with exact computation, and in each stage M is
increased.

The first preselection is based on the computation of the correlation (absolute

squared) of the sequence with the all-Z sequence,

(6.62)

The total correlation can be used to compute a lower bound on the error probability.
Our decoder cannot be better than the optimal way of deciding between two hypotheses
under random phase conditions. The latter has an error probability (for a constant
symbol energy) which is a function of the correlation p and the sequence length N. For
the fast preselection, p was compared to a threshold which is a pre-computed function of
N. The error probability of binary noncoherent block detection is found in [13, Section
4.3.1]. This lower bound is tighter than the one based on the Euclidean distance which
is the coherent error probability.

The second preselection rule was based on the high SNR approximation, equation
(6.28), which upperbounds the pairwise error probability. The argument of the @
function was compared to a threshold.

The code search procedure consists of four stages. Every code must pass three
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stages, and then in the fourth stage the final calculation of bit error probability is
being made. In the first stage, which is the fastest, all the error events of length up
to K + 2 are checked against the preselection rules described above. Having passed
the first stage, the code reaches the second stage, in which an exact error probability
calculation using all error events up to length K + 2 is performed. To pass the second
stage, both the maximal probability and the union bound must pass thresholds. In the
third stage, the fast preselection is applied again, but now, to all error events up to
a maximal length depending on the allowed computing time. In the fourth stage, an
exact probability computation is done using error events of length less or equal to a
certain length, again limited by computing power. The result of the final stage is the
base for choosing the optimal code. The probability calculation is done for a specific

Ey/No, and L whose values will slightly influence the optimal code selection.

The codes to be presented in the next section are some of the results of this computer
search. For the BPSK and QPSK case we have used L = 4, and for the 8PSK case we
have used L = 3. The codes that use BPSK or QPSK are also found to be maximum
free distance codes. This shows their optimality to either coherent or noncoherent

detection.

Table 6.1: Best noncoherent codes found (each represents a class of equivalent codes).

R D K N o, ; o, ; Os,j
2 2 5 16 10011 11101

2 2 7 64 1000101 | 1101111

4 2 3 |16 133 231

4 2 4 64 2123 1312

4 3 4 64 2122 1323 3311
8 2 4 64 727 562
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6.6 Results and Discussion

We present the performance of some good NCM using BPSK, QPSK and 8PSK modu-
lations when detected noncoherently with various observation lengths, and coherently
for comparison. The bit error probability/ is computed by using equation (6.7). For
computing the union bound we do an exact calculation of the pairwise error probability
and sum over all error events up to a certain length, where the contribution of all other
longer error events is negligible. All the results presented are computed for codes, given
in Table 6.1, found through the search for good codes. Note that each code in this table

is a representative of a class of equivalent codes.

Fortunately, except for the case K = 7, rate 1/2 convolutionally coded BPSK, the
optimum codes found also have maximum free distance, thus they are also optimal
for coherent detection. The best convolutional codes are tabulated in [13, table 5.3].
For the K = 7, rate 1/2 case the free distance of the best found NCM is 9, while the
maximum free distance possible for K = 7, rate 1/2 is 10. For the BPSK and QPSK
cases, we get a fair comparison between noncoherent and coherent detection. By fair
comparison we mean that the best found NCM is also optimal for coherent detection,
thus the performance curves for this code will reflect the best possible for either case.
For the case of 8PSK, it is difficult to make fair comparison since to the best of our
knowledge no optimal rate 3/6 TCM using 8PSK has been published. However, the
coherent results, for the 8PSK code found, are very good (compared to BPSK and
QPSK). Thus, we get a good comparison between coherent and noncoherent detection

also in this case.

We see that as the observation length grows, the performance of the noncoherent
detection approaches that of the coherent, and we observe that the rate of convergence

seems to be only slightly dependent on the SNR.
In Figure 6.3, a K = 5 rate 1/2 coded BPSK (from Table 6.1) is evaluated. For

comparison, when we decode the same code with non-overlapped observations, we get
poor performance. The computation of the non-overlapped metric bit error rate is

performed in a similar fashion to the derivation of the performance of the overlapped
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metric treated in Section 6.4. We repeat the derivation, assuming [ = S in equation

6.5.

1 Y
10 NN
10 §§§§\ s
L4
10'3 \>>\ ‘<?b\\ \L=4 non overlapped
4 Coherent \%b\ \ \1:=2 \f\
10 \\\ N4 \ AN
% 10 \\w NEA
6 A \
10 N \
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\ \

10 \\
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Figure 6.3: BER performance with noncoherent and coherent detection of rate 1/2
coded BPSK with K = 5 (16 states). This code is the best code for noncoherent
detection. Moreover, because dge. = 7, it is a maximum free distance code. For
comparison, the performance of non-overlapped observations (k¢ = 0) with L = 4 is
included.

In Figure 6.4 and 6.5, two codes with B = 2 and n = 2 (n is the number of symbols
per trellis branch), which means rate 2/4 coded QPSK (2 bit in and 4 bit out at each
clock tick mapped to two 2 QPSK symbols), are evaluated for K = 3 (16 states) and
K =4 (64 states). We have simulated the code of K = 3 (Figure 6.4) using the VA (we
have used the optimal algorithm, Section 7.2) to confirm the results of the analysis.

Figure 6.6 presents the performance of a code with K =5, B = 2 and n = 3, which
is rate 2/6 coded QPSK. We use this example to show the possibility of using larger
bandwidth in order to improve the results. This code has a free distance of 16 which is

even better than that of the tabulated best rate 1/3 convolutional code with 64 states
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Figure 6.4: a. BER performance with noncoherent and coherent detection of 2/4 coded
QPSK with K = 3 (16 states). This code is the best code for noncoherent detection.
Moreover, because dge. = 7, it is a maximum free distance code. b. Confirmation of
analysis results by simulation for L = 4.

which is 15. In fact, the use of 2/6 code enables us to get larger free distance than the
maximum possible in 1/3 code (the bound for a rate 2/6 code is 16). An example using

8PSK is given in Figure 6.7. In this case B =3, n =2, R =8 and K = 3 (64 states).

We see that the optimal code for noncoherent detection is very close to the optimal
one for the coherent case. Can we reverse the argument and say that the best coherent
code will be the best also if decoded noncoherently? The answer is no. First, a code
which contains constant sequences (with the same input assignment for all of them such
that no error occurs if we chooses a wrong one) will have more sequences as candidates
for error events and so will have a higher error probability when decoded noncoherently.
Observation lengths significantly larger are needed in order to make their contribution
negligible. This is the case with the commonly used K = 7 rate 1/2 convolutional code

with generators in octal 133, 171 which is a noncoherently catastrophic code. With
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Figure 6.5: BER performance with noncoherent and coherent detection of rate 2/4
coded QPSK with K = 4 (64 states). This code is the best code for noncoherent
detection. Moreover, because dg... = 10, it is a maximum free distance code.

correct input assignments to the trellis branches, we can make a modified (feedback)
encoder which is non-catastrophic. This code has free distance of 10. The best NCM for
the same parameters has free distance of 9, so its performance is slightly lower than the
above code. Second, two codes with equal coherent performances might have a different
noncoherent performance. For example, in Figure 6.8, two codes with B = 2, D = 2
and R = 4. One is 111,312 and the other is 133,231 (the generators in base 4). Both
have the best free Hamming distance of 7 and almost the same coherent performance.
When decoded noncoherently their performances differ considerably; 133,231 is much
better.

Looking at the performance of the different codes, we conclude that for a degra-
dation of less than 0.5 dB relative to the coherent case, I = 3 or 4 is sufficient. It
is interesting to note that L = 3 in B = 3 code is equivalent in SNR per observation

to L =9 in B = 1. However, as was discussed in Section 6.2, the observation length
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Figure 6.6: BER performance with noncoherent and coherent detection of 2/6 coded
QPSK with K = 4 (64 states). This code is the best code for noncoherent detection.
Moreover, because dgee = 16, it is a maximum free distance code.

needed to achieve the randomizing effect is measured in symbols. This is also related
to the bandwidth efficiency of the scheme. As the scheme becomes more bandwidth
efficient, larger observation (measured in input bits) is required.

In Figure 6.9 we compare the cases of [ = 1 and [ = 2. In the case of | = 1 and
S = 2, the decoder is similar to the decoder for coded DPSK. Note that no differential
encoding takes place. We notice the slight improvement for the case of [ = 1 which
correspond to higher overlapping ratio .

Differentially encoded MPSK (DMPSK) can also be decoded by the IO-NMLSE.
We show the results for the case of M = 4 as an example. We compare our results to
the optimal block Multi-Symbol differential detector which was suggested by Divsalar
et al. [2]. In both cases, the performance for S = 2 is equal to the performance of
conventional DMPSK as expected. Also in both cases as S — oo, the performance

is equal to that of coherent detection. Unlike the block detector which utilizes one
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Figure 6.7: BER performance with noncoherent and coherent detection of 3/6 coded
8PSK with K = 4 (64 states). This code is the best for noncoherent detection.

observation at a time, the IO-NMLSE utilizes all possible observations of length S and
by this achieves a superior performance for any S > 2, leading to a faster convergence

to the coherent case as S increases. The comparison is presented in Figure 6.10.

In order to compute the bit error rate of DQPSK with I0-NMLSE, we use the
truncated sequence union bound of equation (6.7) with M = 3 since the contribu-
tion of larger error events was found to be negligible. The main contributors to the
‘error probability for the cases S = 2 and S = 3 are the error events of the form
{---,+1,41,47,+7, - -} which correspond to one bit error. The main contributor for
larger S is {---,+1,+1,47j,+1,+1,---}, the same error event that dominates in the

coherent case.

The bit error probability in the presence of phase noise is evaluated by simulation
of the IO-NMLSE detector. In Figure 6.11 and 6.12, we present the performance of the
optimal 16-states rate 1/2 LNTCM with QPSK modulation (the code of Figure 6.4)
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Figure 6.8: Comparison of two maximal free distance codes with rate 2/4 and QPSK.
It is clear that one of them is better for noncoherent detection.

when detected noncoherently, with observation lengths S = 6 and S = 8 with various
levels of phase noise. The coherent performance is also shown for comparison.

For the phase noise model we assume a very simplified model where the phase noise
is a first order Markov process with Gaussian transition probability distribution. This
corresponds to a frequency spectrum that behaves as 1/f2. In practice this means that
the phase variation between successive symbols is an independent normal r.v., with
mean zero and specified variance §2.

In Figure 6.13, we present the results of bit error probability, at F,/Ny = 4 dB,
versus 6. In this graph the increased sensitivity of the larger observation cases is clearly
demonstrated. However, it is somewhat surprising to note that the degradation at low
values of § seems to be independent of the observation length.

We see that very low degradation occur for § < 5°/symbol even for a large obser-
vation as S = 12, where the loss from the coherent case is less than 0.3 dB. We like

to compare this result to a conventional coherent technique. As checked by simulation
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Figure 6.9: a. The code of Figure 6.3 decoded with [ = 1. b. Comparison between
the decoding with { = 1 and [ = 2. Note that the [ = 2 case was plotted in Figure 6.3
where L = S/2.

of a QPSK Costas loop (at E,/No = 3 dB, rate 1/2 coded QPSK), it is not possible
to achieve stable lock at o > 0.5°/symbol, whereas the degradation of the noncoherent
scheme is very small even when o = 5°/symbol. This means that the specifications of
the allowed phase instability can be relaxed by more than 20 dB when switching from

coherent to noncoherent.

6.7 Conclusion

We have introduced a noncoherent coded modulation system which approaches the
performance of the coherent ones over the AWGN without the need for carrier phase
estimation. The method promises robustness to carrier phase noise and frequency
uncertainty, where there is a possible tradeoff between robustness and performance by

varying the observation length. It also might be appropriate with fading channels, since
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Figure 6.10: a. Performance of DQPSK when decoded by the IO-NMSLE. b. Perfor-
mance of DQPSK when detected by the block Multiple-Symbol Differential Detector

[2].

phase synchronization is difficult in those environments. Efficient sub-optimal decoding
algorithms for the NCM are presented in the next chapter.

We have shown the importance of overlapping the observations. We do not need
to use interleaving which adds to the sysﬁem complexity and causes unwanted delay in
the received data.

Our method can also be applied to differentially encoded MPSK. We have demon-
strated higher performance and faster convergence to coherent detection performance
than previously used methods. Our detection method can be applied to other known

modulations with promising results.
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Chapter 7

Decoding the Noncoherent Trellis
Coded Modulation

7.1 Introduction

In the previous chapter we have introduced the notion of Noncoherent Trellis Coded
Modulation (NTCM), the noncoherent decoding of multidimensional trellis coded mod-
~ ulation. The sequence estimator used for the noncoherent decoding is the Independent
Overlapped observations Noncoherent Maximum Likelihood Sequence Estimator (10-
NMLSE). In this chapter, we present and evaluate several practical decoding algorithms
for NTCM. First, we describe the use of the Viterbi Algorithm (VA) for an optimal
decoding by the IO-NMLSE. Optimal decoding requires the use of an augmented trel-
lis diagram with a number of states that grows exponentially with L, the observation
length in symbols. Thus, it is practical only for small L. Then, we present three
suboptimal algorithms that perform close to optimal, yet with complexity which does
not grow exponentially with L. These algorithms, which are based on the VA, use
the trellis diagram of the original code. Thus, the number of states does not increase,
and the dependence of the complexity on L has linear affinity. The first suboptimal
algorithm to be described is called the Basic Decision Feedback Algorithm (BDFA). In
this algorithm, the symbols from the decisions are fed back to be used in the subse-
quent decisions. This algorithm suffers from increased error event probability and from

error propagation (to be abbreviated as e.p.). However, by a small modification of

the BDFA, we obtain another improved algorithm, which will be called Modified DFA
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(MDFA). For some practical codes, degradation of 0.5-1 dB relative to the optimum is
demonstrated.

The MDFA still has degradation relative to the optimal algorithm, thus a better
algorithm is desired. The third algorithm, the Estimated Future Decision Feedback
Algorithm (EFDFA), which uses the BDFA as a basic building block, is based on a
novel concept called “estimated future,” and performs very close to the optimal in most
practical cases. Its degradation in high SNR (P, < 107%) is negligible. The performance
of EFDFA is analyzed by using approximate models due to its complexity.

The degradation of the suboptimal algorithms can be overcome by employing error
detection, and processing erroneous blocks off-line using an optimal algorithm. If the
probability of error is low, the off-line process can be complex, since more time is

available for its completion (causing delay in the decoding of that block).

This chapter is organized as follows. In Section 7.2, we describe the optimal im-
plementation of the IO-NMLSE by the Viterbi algorithm. In Section 7.3, the BDFA is
presented, followed by an explanation of its sources of degradation. An improvement
of the BDFA called MDFA is outlined in Section 7.4. The EFDFA is presented in
Section 7.5 and followed by a detailed example. Performance analysis of the EFDFA
is given in Section 7.6, and in Section 7.7 we give a proposed software implementa-
tion method. In Section 7.8 we give simulation results which compare the various

algorithms.

The encoder uses trellis coded modulation which has the following parameters:
e N - number of states.

e B - number of input bits per branch.

e R = 2% - number of branches reaching a node.

The trellis is assumed not to contain parallel transitions. However, only minor

changes in the algorithms are required to remove this restriction.
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7.2 Optimal IO-NMLSE Implementation by the
Viterbi Algorithm

It seems natural to choose the Viterbi Algorithm (VA) [1] for implementing the IO-
NMLSE. However, the VA cannot be used without modification. We cannot use Ani
as the branch metric since it is a function of the current branch value x;, together with
the previous branch values {xj_1,...,Xs_r+1}. Since the tentative decisions made by
the VA should not affect the following branch metrics, this choice of metric will not
cause optimal operation of the VA as a maximization algorithm. If we insist on using
this metric in the VA, we get a suboptimal algorithm that will be described in the next
section. In order to make the branch metrics independent of previous decisions, we can

construct a new trellis diagram with N RF~! states as follows.

A state in the new trellis will be assigned to each of the possible sequences of L
consecutive states {zo,---,z5-1} that can be produced by the original trellis. The
original transitions from state zy_; to state zy are mapped to transitions from state
{20, ,2p-1} to state {z1,---,21} for all possible choices of {z9,---,zr}. The corre-
sponding branch value is the sequence of symbols {xg,---,xr_1} which is the output
of the path {zo,:--,21} on the orig‘inal trellis. For an example, see Figure 7.1. When
using the new trellis, Any is a function of the branch value only, enabling correct max-
imizations of the metric (6.5) by the VA. Note that having N RE~! states is sufficient

but not necessary.

Note that in some cases the number of states can be reduced since what is important
to the independence of the branches’ metrics is that the state should correspond to the

L — 1 previous symbols and not necessarily to the L — 1 previous states.

An alternative, but essentially equivalent, trellis diagram can be constructed in
a more simple way as follows. The equivalent code is produced by adding L — 1
unconnected stages to each of the shift registers which generates the code. These stages
are only used for the purpose of delaying the merge of two sequences on the trellis by
L —1 symbols. During this “waiting period” the outputs of the two sequences are equal

and in this way we eliminate the influence of the unknown future after the merge. By
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The augmented trellis (L.=2

The original trellis

0,0

2,0

2,1

3,2

3,3

Figure 7.1: An example of the augmented trellis for using the Viterbi Algorithm.

using an example, let us demonstrate that this code has no future dependence. Let us
have one shift register in the encoder, L = 4 and K = 3. We change K to 6 by adding

3 unconnected stages. We have the following two paths leading to the same final state.

abede 25 fabed 2257 g fabe "% hgfab,

abijk 225 fabij *I2 gfabi "% hg fab.

The numbers are represented in base R (Least significant .. Most significant) such
that every letter represents a digit which is contained in one stage of the shift register.
The states are shown between the arrows and above the arrows are the shift register
contents which determines the output. We can see that in the last three (L — 1)
steps, the shift register contents differ only in the last three stages, and since they are
unconnected, the corresponding outputs are equal. With any common future path,
these two candidate paths have the same output symbols sequence for time ¢t — L+ 1 to
t+ L —1 where the decision is made at time {. As a result, any two sequences of length

L which include future symbols, each taken from one of the two candidate paths, are
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the same. We see that here the unknown future cannot influence the decision, thus the
decisions are optimal.

If the complexity of the decoder is measured by the number of correlations per
symbol, we get N R correlations. We would like to compare the number of correlations
needed to implement the multiple symbol differential detector of Simon and Divsalar
[2]. There the number of states is not increased, but every L consecutive symbols
(we ignore the overlapped PSK symbol for large L) become one branch. We get NTRL

correlations per symbol. We see that both complexities are asymptotically comparable.

7.3 The Basic Decision Feedback Algorithm

As was mentioned in the previous section, we would like to use Ay as the metric in
the VA, using the original code trellis instead of the augmented one. Doing so, the
number states as well as the number of correlations stay constant as L increases. Only
the number of complex multiplication per correlation grows with L.

In order to get the metric for the branch connecting the previous state to the current
state, the received symbols are correlated with the L last symbols of the candidate path
(the concatenation of the survivor path ending in the previous state with the branch
connecting the previous to the current state); see Figure 7.2. This metric is added to
the accumulated metric of the survivor path. The accumulated metric, like in the VA,
is saved in the accumulator array indexed by the previous state number. Note that the
metric computation for time ¢ makes use of the decisions made at timest—1,...,t—L+1.
This can be viewed as if the decisions are fed back to the decoder. Let us now describe
the Basic Decision Feedback Algorithm (BDFA) in detail; refer to Figure 7.2.

Let Z = {z0,--,2} be a path, i.e., a sequence of states of the trellis. Then define
the accumulated metric of the path at time ¢ (¢ < k) as

¢

L-1
n(Z)e= 3|3 rl_xe

k:Q 7=0

2

: (7.1)

where x;, is the output associated with the trellis branch connecting zp_; with z.

For k < 0, xx = 0 by definition. If ¢ is omitted, then we use the entire path, i.e.,
1(2) = n(Z)x-
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Previous state s;

Figure 7.2: Operation of the BDFA and the MDFA.

For each state s and time ¢, the algorithm keeps track of the associated survivor,

i.e., the most likely path of previous states,

Pts = {pts,m Tt >p§,t-17p§,t}’ pts,t =S, (7'2)

where pj], denotes the state indexed by k in the list P7. The last state in the list, pj,,
is always the current state s. Only the last M (truncation length) states are actually

stored by the decoder. The algorithm also keeps track of an accumulator metric
g =n(Fy). (7.3)

Out of all N data paths P}, the one with the largest metric value, J;, has the greatest
likelihood. The input data which corresponds to the branch in that path connecting
the two “oldest” states pj, »; and pj; psy; serves as the final estimate of the BDFA of
the transmitted data delayed by M — 1 symbols. To achieve near-MLSE performance,
M should be much larger than the memory, K, of the encoder. In our simulations
we have used M > 5K, like in the VA, and the survivors have always converged
as expected. Since the BDFA is a recursive process, it contains provisions for the
recursive update of P and J7. Denote the next state that follows the present state
s for the input symbol 0 < ¢ < R by next(s,i). Each path P} is appended with

each one of the states n; = next(s,i), ¢ = 0,..., R — 1, to form the candidate paths

A
8,7

1 = APio» > Pii1>8,n:}. There are R paths P which end in state n. For each
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of them, Atsji’{l is computed by the formula

2

A

Jor = J7 + ; (7.4)

L-1

t 585,70
Z i1 X415
=0

[0 Si,

where {X3"} are the output symbols of the path P; 41 - The index ¢ which maximizes

Atsjrln is used to update J7,; and P, by J\, = 5 and Py = Pgit correspondingly.

This algorithm seems likely to result in a survivor path that has the largest metric.
This is true most of the time, but not always. The VA assumes that when a decision
is made, it does not depend on future decisions. This will not apply in our case. We
are deciding L — 1 symbols too early. We should have decided on the branch of a state
in time ¢, after we included the contribution of the symbols on the path emerging from
this state continuing up to time ¢ + L — 1. After time ¢t + L — 1, there no longer is a
dependence between the future symbols and the current decisions. If we want to make
the correct decision, we may want to include the future path of L — 1 symbols to the
candidate paths of our current decision. But, for every state, there are R'~! possible
future paths for which we will have to consider each (or at least consider the most
probable one, as will be done in the EFDFA). Thus, the complexity of the decoder is
increased at least by RF~!, as in Section 7.2. Alternatively, we can convert the code
to an equivalent one by adding L — 1 unconnected stages to the encoder shift register.
When such code is used, the BDFA becomes the optimal algorithm, as was explained
in Section 7.2.

The suboptimal algorithm causes degradation through two processes. The first is
an increase in the error event probability and the second is e.p. The increase in the
error event probdbility can be explained as follows. Each time we make a decision we
essentially compare two truncated sequences instead of infinite sequences, as in the
[O-NMLSE. The sequences are truncated at the current symbol when we compare and
make the decision. In order to make the correct decision, we have to compare the metric
of two infinite sequences (both of which are assumed to follow the correct path after
the current decision point). However, instead of using infinite paths, it is sufficient to
include only the future L — 1 symbols in the comparison to make the optimal decision.

For example, with L = 4 it is better to compare the metric (equation 6.5) of the two
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sequences {1,1,1,—1,—1,—-1,1,1,1} and {1,1,1,1,1,1,1,1,1} than to compare the
metric of the truncated sequences {1,1,1,—1,—~1,—1} and {1,1,1,1,1,1}. The first
error event probability of the BDFA can be evaluated by the union bound when using
the truncated sequences instead of infinite sequences. Only two sequences which pass
through the same state are truncated as described when the decoder makes its decision
at that state. If there exists a path which has output symbols which are a constant
phase shift of the transmitted path symbols, this path is equally likely to be decoded
instead of the correct path. This leads to an essentially infinite number of decoding
errors if the incorrect path is decoded to different output bits. However, if that incorrect
path is decoded to the same output bits, then there is no catastrophic behavior (see
Chapter 4). In this case, additional error events are possible: The paths that diverge
from the true path and reach a path with symbols which are a constant phase shift of
the transmitted path symbols. For these error events, there is no truncation because

the decisions are being made at separate states.

Let us now discuss the e.p., which is the main cause of degradation. After an error
occurs in the decision process, the error probability for future decisions increases. If
a new error occurs, further future decisions may be in error in a chain reaction-like
fashion. This process of e.p. leads to large error bursts. For some applications this
phenomena is not crucial. For example, if a message must be transmitted without

error, and any number of errors cause the message to be discarded and re-transmitted.

The mechanism of the e.p. is explained by referring to Figure 7.3. Suppose that
Path 1 was transmitted. At point B, a wrong decision has been made (due to the
noise), i.e., n(path 1)g < n(path 2)g. Suppose that we could have decided at point B
which of the sequences 1 or 2 was transmitted using the accumulated metric up to point
A, not up to point B, i.e., using 7(-)4 instead of n(-)g. Then we might have decided
on Path 1 instead. Let us assume that this is the case, i.e., p(path 1)4 > n(path 2)4.
Returning to the algorithm, at point A we now decide between Path 3 and Path 2.
Path 3 might win even though it would have lost had it been compared to Path 1 at
point A. Even though Path 1 has the maximal metric up to point A, Path 3 has won

due to the wrong decision made at point B. Path 3 can deviate from the true path by
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more symbols than the original error, i.e., Path 2, and still win. After making the first
wrong decision, candidate paths will not have to win over the maximal path but over
a path whose metric is less than the maximal. The e.p. can continue as long as there
are candidates that pass the lower threshold. It is very difficult to predict when this

process stops.

Path 3
Path 2

Path 1

Figure 7.3: Explanation of the error propagation. Path 3 may win at point A due to
an error that was made at point B.

Let us investigate the case where we can use the future symbols of the path in the
decisions. In this case we argue that even if we make an error, no e.p. will result. Let
us suppose that we could have decided at point B which of the sequences 1 or 2 were
transmitted using 7(-) 4 instead of n(-)s. Suppose that Path 2 won again. In this case
no e.p. can occur because when Path 2 was decided at point B (although it is an error),
Path 2 had indeed the largest metric (up to point A) so we are truly maximizing the
path metric between these three paths. Note that if point A is less than L — 1 symbols
away from point B, e.p. can still occur in later decisions. An important and not very
intuitive fact is that for the same input, error events that occur both in the optimal
algorithm and in the BDFA will not cause e.p. in the BDFA.

In the analysis of the following EFDFA algorithm, we will assume that the e.p.
length can be modeled by a geometric distribution. This model results from the as-
sumption that whenever we are balready in an e.p. event, the probability that it will
stop is the same no matter when this e.p. began. In other words the e.p. is assumed
to be memoryless. This model holds well for large e.p. events. The validity of the

model is demonstrated in Figure 7.4, where the model fits the measured data taken by
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simulation of the BDFA.

0.1 1 I ! I

0.0 | ]

Figure 7.4: Measured data (solid line) against model (geometric distribution, dashed
line) of the e.p. length. The code used has 4 states, L = 3, and E,/Ny = 5 dB.

7.4 The Modified Decision Feedback Algorithm

We can improve the decision process of the BDFA even without knowing the future
L —1 states emerging from the current state. The new algorithm will be referred to as
Modified Decision Feedback Algorithm (MDFA). Let X; be the transmitted symbols.
Let us assume that the symbols X;12,- -+, X4 are known to the decoder when it has

to make a decision at time £ + 1; see Figure 7.2. If n is on the correct path, the optimal

S{,M

decision rule is then the following. For each of the new paths ]?’ts_,;’ln, we compute At )

by
L-1

t 2
588

Z Tr i Xk—j

=0

. t+L

S T8
Jr=J+
k=t+1

: (7.5)

where X" = %; (the known symbols) if j > ¢ + 1. If the next state n where we make
the decision is not on the correct path, then there is no meaning to this expression, and
using it may cause wrong decisions. Such a wrong decision can only change the paths
competing with the correct path in later decisions. For example, in Figure 7.2 wrong
decision at point (); will change the candidate path competing with the correct path
at point (J;. Assuming that the correct path has the largest metric, no other path will
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win above it no matter which path it is. Thus, the decoding error probability will not
increase.

We can express the received signal as r; = aX;e’’ + n;, where 6 is the carrier
phase and « is the channel attenuation (both assumed constant over 2L symbols, but

unknown). Since we use constant amplitude symbols such that )'(})"(j =1,
ri%; =ae® tnlx;, j=t—L+2,---t+L (7.6)

For the correct path (n is correct and s; is correct), X;"™ for y =t — L+ 1,---,t +1,

are the correct symbols. Let us define

41 t+1
- T S$im —38 A S ,'n
p= Y, rX"=LaeT+ Y nx¥ (7.7)
j=t—L+1 jet—L+1

Provided that the SNR in L symbols is high enough, ae™?’ can be estimated by £
Then we can use £ as an estimate for r}ij, whenever j >t + 1 and use it in (7.5). We
tested several other ways to estimate ae™7¢, but none were more successful than this

simple method. To summarize, the change in the algorithm is the following: Compute
p= Z P Xef 15 (7.8)

Jig = I3+ ul?, (7.9)

and
t+L

Jar = J + Z
k=t+1

(7.10)

LZI{ rl_ &, ifk—j<t+1 }2

L otherwise

7=0

81y

J2m is used as an estimate for J7F. The index i which maximizes Jiyr is used to

update J7, and PZ,, by Jp, = Jior and PR, = BT The algorithm was found to
reduce the number of e.p. events significantly. Although this algorithm cannot stop
e.p. once it has begun (since then # is not a good estimate for ae™%), it can reduce
the probability of continuing the e.p. event. It was found that the length of the error
bursts was reduced considerably compared to the BDFA.
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7.5 Estimated Future Decision Feedback Algorithm

The MDFA still has degradation compared to the optimal algorithm. Thus, a better
algorithm is desired. A novel algorithm, which performs very close to the optimal
algorithm, but with significantly lower complexity, was found. This algorithm, like the
BDFA, uses the original code trellis. On the other hand, the optimal algorithm, uses
an augmented trellis with a large number of states. The EFDFA complexity is roughly
4 times that of the BDFA. '

The algorithm uses a novel concept called estimated future to improve the decision
process. We have previously recognized that we need to include the future path to
make the current decision in order to make optimal decisions in the BDFA. If such
a future path is given, but it is not completely reliable, we call it estimated future.
The algorithm works as follows. In each trellis state, at each time, two independent
decisions are being made. One is called the no-future (n.f.) decision, which is similar
to the BDFA, and the other is a decision using the . — 1 estimated future symbols and
it is called the with-future (w.f.) decision. The first suffers from e.p. and increased
sequence error as discussed in the previous section. The second will make the best
decisions as long as the future sequence which is being used is the true one. On the
othel_‘ hand, if wrong future is used for the w.f. decision, then it can cause an error.
However, utilizing both the n.f. and the w.f. decisions, one can arrive at a combined

decision which chooses the right sequence in an optimal way.

How can one possibly know the future? The approach is to save a block of the input
signal in memory and perform the DFA (BDFA or MDFA) backwards, starting from
the end of the block. After the backward process ends, we have the survivor paths
belonging to each state at each time in the trellis within the block. These paths will
be used as future estimates. The future estimation performance by this method is as
good as the performance of the reversed code (reversing the generators) when decoded
with a DFA. The performances of the code and its reversed version can be different

only because of the suboptimality of the DFA.

The input stream is divided into overlapped blocks, each block having a length of
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A+ W symbols and starts A symbols after the beginning of the previous block; see Fig-
ure 7.5. The backward process (to be abbreviated by b.p.) operates first and processes
the whole block. Then the forward process (to be abbreviated by f.p.) operates on the
first A symbols of the block. The f.p. is continuous from block to block. The blocking
is intended only for the operation of the b.p. The section of length W is intended
for letting the b.p. converge from the initial conditions, in which no particular state
is used as a beginning state. This convergence region can be eliminated by inserting
K + B(L — 2) known input bits at the end of each block of BA input bits, where K is

the code memory, and in that way reach a known state at the end of each block.

| Backward block |

f /7 T :

Forward blocks

Backwards convergence region
Figure 7.5: How to get the estimated future.

The f.p. and the b.p. operating on the same block are highly correlated. When
there is an error event in the f.p., similar error event is also likely to occur in the b.p.
However, the initial error and the e.p. following it in the b.p. is going to the other
direction—towards the past, leaving the estimated future intact at the time needed for
correcting the forward e.p.; see Figure 7.6.

Returning to the issue of the convergence of the b.p., the first decisions in the b.p.
are made using very few symbols. In particular, the first decision is based only on the
last symbol in the block (remember, we are going backwards so this last symbol is our
first). This means that it is probable that we start with an error. Since the b.p. suffers
from e.p., the convergence time is similar to the time needed to recover from e.p. This
is why we recommend to use the MDFA for the b.p. instead of BDFA.

For the algorithm description that follows, we are using the BDFA decisions in
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Backward survivors BDFA survivors
Backward error propagation Forward error propagation

correct path
Region where good future estimate is needed

Figure 7.6: Explanation of why the backward errors resulting from the same noise
instance does not harm the future estimate needed for solving the forward e.p.

both the backward decisions and the forward n.f. decisions. Each one of them can be

replaced by the modified version without altering the principle of operation.

7.5.1 The Backward Process

The b.p. operates on a block of length A + W, kA <t < (k+ 1)A+ W. This is
exactly the BDFA going back in time. For each state s, the algorithm keeps track of
the associated survivor, i.e., the most likely path of previous states

Q; = {(Zts,(k+1)A+WaQts,(k+1)A+W~1a ‘ "7Qf,t+1a(lts,t}a (Izs,t =S, (7.11)

and also of an accumulator metric

(k+1)A+W | L . 2
Ef = > | rthXieg| (7.12)
k=t j=1

where x; is the output of the trellis branch connecting ¢7,_; with ¢;,. Denote the
previous state which produced s by moving one step forward in the code trellis for the
input symbol 0 < ¢ < R by previous(s, ). For the recursive update of Qf and E?, each
path Q)7 is appended with each one of the states p; = previous(s,:),7=10,...,R—1 to
form the candidate paths Q%% = {‘I(sk+1)A+W7 U1y asw—1>"" " Gi—15 s,p;}. There are R
paths Qfﬁ which end at state p. For each of them, Efi’{’ is computed by the formula

L-1 ; 2

2.5¢,D
Z Ty Xtys
—

~

1= B+ , (7.13)
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where {X;'"} are the output symbols of the path Q ;8. The index ¢ which maximizes

EfP is used to update EP_, and Q°_,.

7.5.2 The Forward Process

Given the estimated future (contained in @), the f.p. works as follows:
For each state s, the algorithm keeps track of two associated survivors. The first,

C}, is called the n.f. survivor and is our best guess of the ML path.

s .. f... 5 3 PN 8 S S
Cy = { y Cta—ks Ctt—kd1s >ct,t—1act,t}v Cip = S- (7.14)

Here c;; denotes the state indexed by & in the list C7. For every path C7 there is an
associated accumulator metric

G; = 1(C3). (7.15)

The second survivor, F, is called the w.f. survivor and is used as a temporary variable.

Fts = { o 7fts,t-ka fts,t-k+17 T afts,t—la fts,ta fts,t+1? e 7fts,t+L—1}' (716)
Its associated accumulator metric is
H; = o(FY). (7.17)
F' is constructed such that

foo=s and fl=¢,, 1=1,---,L—-1 (7.18)

F' is the path that includes the future estimate. It extends from the state s at time
t, L — 1 symbols, towards the future. As in the implementation of the VA, only M
(truncation length) last states need to be saved in each path list. The algorithm works

recursively. Each time we do the following:

Step 1. For each state s, form the w.f. candidate path Ft+1 , M = q;,,, by append-
ing the state g7, to Fy.

Step 2. For each £ i1, compute the accumulated metric H 1 by

2, (7.19)

A
s)m po—

t+1 ( t+1

~S5,m

where {y;™} denotes the output symbols of Ff_ﬁ
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Step 3. For each state s, find the next states n; = next(s,z) ¢ =0,...,R—1. For

every n; # m form the w.f. candidate path Fﬁﬁ‘ by appending the sequence

Ty My Ty S
{nia Qeg1,642> Det1,0430 " 7Qt-;-1,t+L} to C7.

ERN

Step 4. For each ﬁﬁ’rﬁ", compute the accumulated metric A} 1 by
-1
Z rk ]y-]f: n;

7j=0

t+L
iy =n(F5) =G+ X
k=t+1

' (7.20)

s,n;

where {y."™'} denotes the output symbols of F S

7y W

Step 5. (w.f. decision) For each state w, there are a total of R values At_H The
index ¢ which maximizes If_ff_;f' is used to update H;” and F}* by H{, = Hs“w

and I, = Fts_;’lw

Step 6. For each state s and input ¢ = 0,..., R — 1, form the n.f. candidate path

~
5,14

+i1, by appending the state n; = next(s, ) to C}.

Step 7. For each Afﬁ", compute the accumulated metric Affl’ by

2

; (7.21)

A8,

~iXth1—j

N
8,1 ( s n,

t41 = 7 t+1

~
8,1

} denotes the output symbols of the path C;}5.

»Ths

where {X},

Step 8. (n.f. decision) For each state w, find all states u;, 7 =0,---,] — 1, such that
the path F;”;,, ends with w, i.e., ¢77,,,,; = w. For an empty set, [ = 0.

Including the R values of the form GAfjr;”, we define

Gy, ifi<R . -
* {H:f’if%7 ifRSz’<R+l}’Z o it : (7.22)

The index ¢ which maximizes «; is used to update Cf; and G4, by G4, = «;

w _ [ Omp, ifi<R
Cm_{ FB fR<i<R41 [ (7.23)

and

Step 9. Find the s which maximizes Gi,,. The input data which corresponds to
the branch connecting the two “old” states c +1,0-m and ¢f g, ary serves as the

decoder output, where M is the decoder memory length.
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The operation of the algorithm is as follows (refer also to Figure 7.7). C} always
holds the best survivor path that we have at time ¢ to state s. Its update is done
in Step 8, the n.f. decision, where two kinds of competitors are compared: The n.f.
candidate paths which are extensions by one symbol of the previous n.f. survivor and
are not using the future estimate, and the w.f. candidate paths which are found in
F. The w.f. candidate paths are the survivors of past decisions that used the future
estimates. These decisions were made at time ¢t — L + 1, while the path is used at time
t. When the w.f. survivor is used, the L — 1 states that used to be the future at time
t — L + 1 are the past for time ¢, and the last state becomes the current one. In case
the future estimation was correct, that w.f. path is a result of an optimal decision.
In this case this path will either win or its metric will be equal to the maximal n.f.
path metric. A win condition indicates that wrong decisions have been made which
might lead to e.p., unless corrected by the winning path from F'. Equality between the
w.f. path and the n.f. candidate indicates that the previous n.f. decisions were correct
leading to the same survivor. Correct decisions mean that the decisions are leading to
the ML path, not necessarily to the transmitted path. In order to update F', we make .
the decisions about the survivor path at time ¢, using the future L — 1 symbols which
are assumed to be correct. The candidates that pass through the state s at time ¢ are
divided into two categories. The first category contains paths that are extensions of
previous w.f. paths, by appending the next state from the future estimate path (Step
1), like Path 1 in Figure 7.7. The second category contains n.f. paths combined with
the estimated future path (Step 3), like Path 2 and Path 3 in Figure 7.7. The paths of
the second category which share their last L states with paths of the first category, like
Path 3, are eliminated from the comparison since those two candidates have already
been compared in the previous w.f. decision. This elimination is taking place in Step 3
checking that the next state n; is not equal to the next state from the estimated future,

m.

Example 7.5.1 Refer to Figure 7.8. We would like to decode a rate %, K =3 code
with BPSK modulation, and we choose L = 3. The input to the decoder is as shown,

where the numbers are real for simplicity. The symbols are in general complex vectors.
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Figure 7.7: Explanation of the Estimated Future Decision Feedback Algorithm. In
the first example (a) the n.f. decision at time ¢ was in error. Correct future estimate
enabled the w.f. decision to be correct. The n.f. error caused error propagation in the
n.f. decisions. The w.f. survivor of time ¢ became a candidate for the n.f. decision at
time ¢+ L — 1, and wins over all the wrong n.f. candidates, leading to elimination of the
error. In the second example (b), the n.f. decision was correct, but the future estimate
was wrong, leading to w.f. decision error. At time ¢t + L — 1, the n.f. candidates did
not include the wrong w.f. survivor, but has included other (arbitrary) w.f. candidate.
The candidate which coincides with the transmitted path had the largest metric and

a. Correct future path case.

i i n. f. survivor at time ¢ ) .
w. f. survivor at time ¢ .f. candidates for time r+L-1

Transmitted sequence Path? Pt 1

Futlire path w.f. candidates for time t+1-1

b. Wrong future path case.

n. f. survivor attime ¢t  w\{. survivor at time ¢ ) )
n.f. candidates for time t+1-1

t+L-1

Transmitted sequence

Future paths

no error occurred.
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Initial conditions: 0 is received for t < 0 and the state of the encoder is 0 at time
t = —1, where all paths originate (it is not needed for the algorithm operation, only for
the example). Fort < 2 we only compute the metrics—there are no decisions.
Att=0:
Fy =1{0,0,0,0},

H? = (=0.5—1.5)24(~0.5—1.540.540.8)24(=0.5—1.54+0.54+0.8—0.9—0.9)? = 10.74,
Fy =1{0,1,2,0},
H} = (0.5+1.5)>+(0.5+1.5—0.5+0.8)> + (0.5+ 1.5 — 0.5+ 0.8 + 0.9+ 0.9)* = 26.1,
Co={0,0}, GJ=(-0.5-1.5)?°=
Cs ={0,1}, G§=4.
Step 1,2: s=0—-m=0ands=1—-m=2.

£P°=1{0,0,0,0,0}, A} =10.74+ (0.5+0.8—-0.9—0.9—1—1)*=16.99,

F?=10,1,2,0,0}, H}?*=261+4(-05+08+0.9+0.9—1—1)=26.11,
Step 3,4: For s =0, {n;}=1{0,1}. m =0 so we take only n; = 1.
= 0P +{1,2,0) = {0,0,1,2,0},
g0y = {(1,1),(=1,-1),(-1,1),(=1,-1)}, fori=0...3,
A = GY + Z Zr,ﬁ_jg;k_j g (0.5 —1.5— 0.5 — 0.8)%+
k=1'j=0

+(—05—-1.5-05—-0.8+0.9—-09)*+(-05—0.8+0.9—-0.9+1+1)*=26.27.

Fors=1, {n;}={2,3}. m =2 so we use onlyn; = 3.
1:—111’3 = {07 1a37270}’

H =12.67.

Step 5: There are no decisions to be made, only updating: FY = Flo ° Fl = Flo Loet
Step 6,7:

Cr%={0,0,0}, GY°=GE+(-05-1.5+0.5+08)" = 4.49,



134
O ={0,0,1}, G =G+ (-0.5—15-0.5-0.8) = 14.89,

Cit={0,1,2}, GY*=9.29,
Ci® =10,1,3}, G*=6.89.

Step 8: There are no decisions, only updates: C° = CY°,CL = CY' etc. The part that
involves Fy_p19 = Fy is not relevant since F' is not defined att = —1.
Att=1:

Step 1,2: s=0—-m=0,s=1->m=2,s=2—-m=0,s=3 ->m=2.
F2°=140,0,0,0,0,0}, HY* =50.63,

Fr?=10,0,1,2,0,0}, H}*=26.27,
F20=140,1,2,0,0,0}, HZ =30.95,
22 =140,1,3,2,0,0}, H>*=12.67.

Step 3,4:
P =10,0,0,1,2,0}, HY' =29.75n,

F®=140,0,1,3,2,0}, Hi®=31.47,
E2'=140,1,2,1,2,0}, HZ =11.83,
F23=140,1,3,3,2,0}, H>®=13.87.

Step 5:
1° > 03 — F) = {0,0,0,0,0,0}, HY = 50.63,

' > 1y — Fy = {0,0,0,1,2,0}, Hy = 29.75in,
Hy? > 03 — F} = {0,0,1,2,0,0}, H] = 26.27,
Hy° > B3 — F = {0,0,1,3,2,0}, H = 31.47.

Step 6,7:
CI° =1{0,0,0,0}, G9° =10.74,

€' =1{0,0,0,1}, G =517,
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Ci? =1{0,0,1,2}, Gy =25.78,

C33 =1{0,0,1,3}, GL*=125.718,
C2° = {0,1,2,0}, G2* =961,
C = {0,1,2,1}, G>' =9.54,
C3% = {0,1,3,2}, G>?=9.78,
C33 =10,1,3,3}, G3®=9.78.

Step 8: For w = 0, we have two paths from the list F' at time t — L 4+ 2 = 0 that end
with 0, i.e., | = 2. These paths are F{ and Fj.

a; = {G9°,G2° HO Hl} = {10.74,26.1,10.74,26.1}.

The mazimal o; is Gg*" so G =26.1 and C? = {0,1,2,0}. Note that at this point the
decoder made an error. Let us look at the w.f. survivor at this point (state =0, t = 2).
This path is FY = {0,0,0,0,0}. We can see that the w.f. decisions were correct, as
opposed to the n.f. decisions. Since the future estimate is correct, the w.f. decision
will override all the wrong n.f. decisions, as we will see later. Continuing Step 8; for

w = 1,2 and 3, we have no paths F§ that end with w, so we get:
Cy ={0,1,2,1}, G =9.54,

C%=1{0,0,1,2}, G2=125.78,
C2=1{0,0,1,3}, G5 =25.78.

Att =2
The paths computed at steps 1-5 are not needed for this example since we will stop
at t = 4 to read the final results.
Step 6,7:
C¥° ={0,1,2,0,0}, G3° =26.11,

CH ={0,1,2,0,1}, G3' =42.91,

C3*=1{0,1,2,1,2}, G3*=11.79,
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C3*=1{0,1,2,1,3}, G3*=11.79,

C3° ={0,0,1,2,0}, G2°=26.27,
C2' =1{0,0,1,2,1}, G%'=36.67,
C3%=10,0,1,3,2}, G>?=27.47,
C3%=10,0,1,3,3}, G =2747.
Step 8: For w = 0 we have 4 paths ending with w: FY, F}!, F? and F}.
o; = {GY°,G2° HO H! H? H?} = {26.11,26.27,16.99, 26.27,26.11,12.67}
The mazimal is G2° or H! and without ambiguity, we get CO = {0,0,1,2,0} and

GY = 26.27. Here the n.f. decision is again an error. Continuing with Step 8, there is
no path F} that ends with w > 0 and we get

Cy=1{0,1,2,0,1}, G}=4291,
C3=1{0,0,1,3,2}, G2=27.47,
C3=1{0,0,1,3,3}, G3 =27.47.
Att=3:
Again, we will omit steps 1-5.
Step 6,7: We are interested only in the decision at state 0.
700 = 40,0,1,2,0,0}, G2° =26.27,
CH = {0,0,1,3,2,0}, G>°=3147,
a; = {GY°,G5°, HY, HY, H2, HZ} = {26.27,31.47,50.63,29.75in, 26.27, 31.47}.
The mazimal is HY, so we have |
Cy = Fy =1{0,0,0,0,0,0}, . G%= H? = 50.63.

Eventually the correct path is decided on and overrides the wrong decisions of the past.
Note that without this help from the w.f. candidate, the n.f. decision would have made
another wrong decision by taking the mazimal among the G’s. This is a part of an
endless e.p. that occurs n this ezample if the fulure estimate is not used or is wrong

and the input remains —1.
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3 .

= -1 0 1 2 3 4 5
r= (-0.5,-1.5) (0.5,0.8) (-0.9,-0.9) (-1,-1) (-1,-1) (-1,-1)

Figure 7.8: The trellis of the code used in Example 7.4.1 and the input signal.

7.6 Software Implementation

A direct implementation of the algorithm requires the maintenance of a list for each
state and each time, so the memory use is infinite. It is clear, however, that only
the last list C7 and the L — 1 lists F ;_,,---, F; need to be saved per state. For
an efficient software implementation, the amount of required memory is minimized.
The first thing to note is that instead of saving a list of states, we only need to save
B bits per state. Also, we want to avoid copying whole lists, to save CPU time. In
our implementation, we only maintain two lists per state and we avoid copying whole
lists. We describe the implementation method next. The backward DFA which is
implemented very similar to the VA (therefore will not be elaborated on) provides us
with its path history @7, t =kA,...,(k+1)A+ W, s=0,...N —1. Since each
list of time ¢ is an extension of a list of time ¢ + 1, it is sufficient to save for each state
and each time one B-bits pointer. This pointer is used to choose the trellis branch
when tracking a survivor path. Hence, the whole path history has a tree structure. In

the f.p. we maintain two tree-structured path history arrays, which are implemented
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as two two-dimensional cyclic buffers, nf History and wf_History. The two are not
independent: there are links between the two, as we will describe later. The first,
nf_History, saves the n.f. decisions while wf_History saves the w.f. decisions. A path
starting in wf_History will correspond to a list in F' (except the future symbols in F')
and a path starting in nf_History will correspond to a list in C. Each entry, in either
arrays, contains one extra bit to connect to the other array. Thus, while tracking a
typical path, we move back and forth between nf_ History and wf-History. Two double-
buffer, one-dimensional arrays are used to maintain Gj and H;. For a flowchart of
this implementation, refer to Figure 7.9 and 7.10. For the w.f. decision (Step 5), we
need to form the candidate paths and their metric. These can be formed by steps 1
and 2 or by steps 3 and 4. The routine starts at a given state w and needs to find
all f{;r;” . First, we find all s;, the previous states to w on the trellis. For each s; we
decide whether to use steps 1 and 2 or steps 3 and 4 by checking if w = ¢;%,,. In steps
1 and 2 we use the path from wf_History and in steps 3 and 4 we use the path from
nf_History. After making the decision which value of ﬁfjr{” is maximal, we update H;"
and wf_History. If the candidate path formed from the nf History path in Step 3 was
decidéd on, then we set the appropriate entry in wf-History to point to that path in
nf_-History. Hence, we form a link between wf_History and nf_History. The new survivor
path formed, F},, will be used at time ¢ + L in the n.f. decisions. Thus, we have to
save some information for future use. For this purpose, we maintain two additional
data structures, cyclic buffers, each of size L — 1 per state. The cyclic buffers are used
to implement a delay of L — 1 iterations. The first cyclic buffer Projecting_path saves
the estimated future path used in the w.f. decisions (instead of saving the path we
can also save w, and read the path from ¢ when needed) and the second cyclic buffer
Projected_H saves H% , for future use. The estimated future path of state w leads to
(projects on) state z. Since the above saved information is needed when making the
n.f. decisions at state z, it helps to index the information in these arrays by z instead
of w. We update Projecting_path[z] and Projected_H[z] only if Hy}, >Projected_H|z]
(there is a value different from zero in Projected_H[z] if the previous state already led

to state z). Maximization of the saved value is needed since several states may lead to
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one state, but in Step 8 only the maximum is needed. Here, we did part of the work of

Step 8, and also saved memory.

)
)

Backward Process on

Block
kA<t<(k+D)A+W

Forward Process on
Block
kA<t<(k+1)A

Figure 7.9: High level flow chart of the EFDFA algorithm.

Now, let us move on to describe the n.f. decisions. Here we have R + 1 candidate
paths. The first R are the paths formed from the previous states and their survived
paths from nf History, and the last is the path containing the saved estimated future
path. For a state w, the value found in Projected_H[w)] (after the delay of L—1) is already
the maximum element of {e;}, ¢=R,---,R+ L — 1 (equation (7.22)). If this value
is also the maximum element of {e;} Vi, then we should update nf History to point

to the path F;‘_(j:—ﬁ). This path is composed of two parts. Ftu_(;_};)

is a concatenation
of the survivor in wf_ History at time t — L + 2 and the saved estimated future path.

Thus, the latter path is copied into nf-History (each entry in nf_History should be



140

Iteration start
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Copy projecting_path [t+11[w]
to nf _History [t+1 1w 1.

Update  wf_History [t+1][w]
topointon  wf_History [t]{s;]
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Yes

projected_H [t+L1[x]1=H t:} ;

projecting_path {¢+L1[x] = the future path
that starts at state w

Iteration end

Figure 7.10: Simplified flowchart of one iteration of the EFDFA forward process.
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long enough) and a pointer is set to point to wf_History. This creates the second link
between nf_History and wf-History.

Now we will explain how to extract the decoded bits. Like in the VA, we start from
the maximal metric node and backtrack. After backtracking a length M (the decoder
truncation length), we assume convergence to the optimal path and start reading data.
While tracking the survivor path, we move back and forth between nf history and
wf-History since the survivor path is the combination of the formers.

We start with the n.f. survivor. We continue backtracking in nf history until the
extra bit that is used to link the two buffers is set. Then, we backtrack through the L—1
states of the estimated future path saved in nf_-History and then switch to wf_-History.
We continue backtracking in wf-History as long as the extra bit used to link the two
buffers is off. If it is on that means that we have used n.f. information in this path, so

we now backtrack in nf_history.

7.7 Performance Analysis

First, let us introduce several variables. Let p. and N, denote the probability per
symbol and the average number of bits in error respectively of an error event of the
IO-NMLSE. Let ps denote the first event error probability of the forward DFA (or the
n.f. decisions) and ps, the first event error probability of the backward DFA. p/; is the
conditional probability of a forward error event given that it is correctable, i.e., this
error can be corrected by using a correct future estimate. Let 7, denote the conditional
probability that e.p. occurs in the b.p. given the first error occurred. 7} denotes the
e.p. conditional probability given a correctable forward error event occurred. Let N} be
the average number of bit errors in a correctable forward first error event (first meaning
that it is not a part of e.p.).

We will use the following assumptions. For the worst-case, an incorrect future path
will prohibit correction of n.f. errors (any n.f. error which is the result of not making
the optimal decision is corrected by the algorithm when correct future estimate is
used, but also can sometimes be corrected by using an incorrect future estimate). e.p.

continues until a correct future is encountered, then stops within a few symbols. For
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the derivation it is assumed that the e.p. stops immediately when the correct future
is encountered. We assume that py, p’, p. << %, so there is a maximum of one error
per block. A >> L, K so that edge effects can be ignored. Finally, we assume that if a
convergence region W is used for the b.p., it converges before reaching the end of the

block A.

Worst-case Model for the Error Propagation

We begin with the simplest, but worst-case, model for the e.p. It assumes endless e.p.
until the end of the block. The resulting bound for the error event probability per

symbol, P, is

Py 1 41

N A
Piog = == < pe+ (L= D)1= w)pspe+ 7 2 pypow(A—i) = pet Tpimm, (7.24)
=0

where P4 is the block error probability. The first term stands for the errors in the
w.f. decisions even with correct estimated future. We equate this error probability
with the error probability of the natural errors, which were to be produced by the
optimal algorithm given the received signal. It is interesting to note that p. is not
equal to the error probability of the w.f. decisions but it is a tight upper-bound. The
probability of the w.f. decisions given correct future is lower than the probability of
the optimal algorithm (the other terms will compensate so the total will not lower than
the optimal). The explanation goes as follows. Suppose that a natural error occurs,
i.e., the ML path is not the transmitted path. By our assumption, the estimated future
paths are correct i.e. there is no error in the b.p. This applies only to the states on
the transmitted path. For the states of the ML path which do not coincide with the
transmitted path, the estimated future generated by the b.p. will not necessarily agree
with the ML path. Thus, the ML path may not be decided on and not included as a
candidate for decision on the transmitted path. Hence the transmitted path can win,
and error will not occur. In one of our simulations where we forced the estimated future
to be correct on the transmitted path, the bit error probability was reduced slightly
from 3.84 - 1073 in the optimal decoder to 3.6 - 1075.

The second term is the contribution of the uncorrected forward errors due to back-
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ward errors that occur in the near future (< L symbols ahead) and does not cause e.p.
The third term reflects the uncorrected forward errors which are not corrected due to
e.p. in the b.p., one which originated in the region ¢ < t < A of the block. For the bit

error probability, we get the following expression:

1 A1 ,(A—=¢)B, _ peN.
Py S Z Povs(A — 1 pf[Nf T f—w_Q—_—] 4>>1 B *
N} A A?
+pwbpf[ B9 + 7% 12] (7.25)

A—t

5 . starts at time ¢ and

ends at the first backward error. Its location is uniformly distributed leading to the
reduction of the e.p. length by half. For close to optimal operation, the second term
should be much smaller than the first term. We can immediately see that the block
size, A, should be as small as possible. On the other hand, if framed transmission is
used, then we have to keep A >> L + K to minimize degradation due to throughput
reduction. If a convergence region is used, then A >> W is needed to validate the
convergence assumption. Otherwise, backward errors originating in that region will

dominate. Thus, an optimum value for A exists.

The Refined Model

By using a probabilistic model for the e.p. length, we can get results which are more
close to the actual performance. As mentioned previously, we will model the e.p.
length by a geometric distribution with mean + (spec1ﬁca11y Ay for forward and A, for
backward). With this model, the probability that the e.p. length (excluding the first
error) is equal to k, is A(1 — A)¥~1. The probability that at time 7 we are in a backward

error 1s
A1 o
Pr(i is in error) = py(1 — v5) + po1s Z (1- /\b)1~z—~1 _
j=i+1
= po(1 =) + L= (1= )47, (7.26)

Ab
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The probability, h;, that one or more of the backward decisions at times ¢ < t <

min(z + L — 2, A — 1) are in error is

e { (L= Dpy + B2 — (1= W), i <A- L } . (2

(A —1)ps, otherwise
Since A >> L, we can approximate h; by (despite the approximation, we leave the —1
term for future simplifications)

hi = (L — 1)p, + ’-’%—7-”-[1 — (1= M)A Y. (7.28)

The probability that the complete algorithm will make an error event (per symbol) is

Py 1 41

Pseq:7<pe+zzp}hi:
1=0

PPy
AN

The forward e.p., once started, continues until it either stops naturally or encounters

= pe + (L — 1)pips + [(1=Xe)* + Ay — 1] (7.29)

a correct future. Then the bit error probability is

peN. P = ,  , LB
P < Pt 4 LES Wy 4 om0 = 1)(1 - )+
B ' BA ; FE Y
/ gl k1 kB _ jmic1 B jmie1
+mps Y [Z Ar(L=2p)" =+ (G = 2)(1 = Ay) 5’](1 — ) } (7.30)
J=1+1 k=1

Let us explain this formula term by term. The first term represents the real errors,
i.e., the uncorrectable ones. The second term (the sum over ¢) is the contribution of all
the uncorrected forward errors. The second term consists of the following components.
The first component reflects the fact that each uncorrected error event will produce at
least N} bit errors. The next component evaluates the contribution of all backward
errors which do not produce e.p. and are in the range 7...7+ L —1. For those errors, we
get an average length of forward e.p. (assuming 1/Af >> L) of L/2 which translates
to LB/4 bit errors on average. The next component (the summation over j) represents
the forward e.p. caused by the backward e.p. The forward e.p. begins at 7, and the
backward e.p., at j. The first term inside the brackets is the naturally stopping forward
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e.p., the second is the case where the e.p. continues until time j, where it stops due to

correct future. Evaluation of (7.30) yields

NI ,YI
pe N, , Ny L, Pipen(F + 555)
Poig < ==+ (L= Doy + 175 (L=m)] + AN (= Xe) + A = 1]+
psc’)’}’ybpb [)‘b — 1)/\? + (3 — 2/\5))\? + (2)\}, - 1))\f — /\b](l — QA)+
24X, (@-1)°

Al(Q4 + 2))\?( — (1= Ap)%N — /\f] (7.31)

(@ —1)? ’

where

Q= (1-—=X)(1=Ay). (7.32)

We can investigate two possible limiting cases. The first is the case of A >> %, /\ib

which means that the block length is much larger than the e.p. average length. The
second limit will be the opposite case where the block length is much shorter than the

average e.p. length. This is equivalent to the worst-case e.p. model. For the first case

AL
D

Taking the limit A — oo in (7.29) gives

A>>§;

Plepove
Ay

The result can be explained as follows. The probability that a particular decision will

Pseq S De + (L - 1)P}pb + (733)

be in backward e.p. is Pfl\zﬁ This is the result one obtains for any physical problem of
memoryless arrivals of events with memoryless distributed time duration (for example,

the model used for the availability of telephone lines). Taking A — oo in (7.31) we get

pelNe NJ” L 1 NJ/‘
Py < + (L= Dpely |5+ 77 (L= w)| + A—bp}pm§+
/7 )\ + A 6]ve /7
n pﬂﬂbe( b f) ~ p PsYPo Yo (7'34)

/\b()\b/\f — Ay — )\f)2 )\f,/\~1:<<1 B )\b()‘b -+ )\f)
Here the probability of forward e.p., Elﬁgﬂ, is multiplied by the average length of the

e.p. which is the average minimum lifetime of two processes of rate A\, and Ay;.

1
>‘b+Af’
11

SEBVE In this case the result should be the same as

The second limiting case is A <<

the worst-case e.p. case. We take the limit as Af, Ay — 0 and get

(A—1) A

7 ~ o)
5 PP = Pe + 5 PsPoYes (7.35)

Pse < €
@S Pet >>1
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and
[

<IN N: L
P 4 (L - 1)pup [—-i + (1~ %)]Jr

Py <
bit = B 4

(7.36)

A-lﬁ , A2_1>] ~ EpeNe
==

"]‘/ -+ ( AN, A2 /]
PsPeh | =55 T\ T g i B

+ Py VoD [E_Bl AETWiE
Example 7.7.1 Let us investigate the performance of the algorithm for the code of
rate %, 4 states code with BPSK modulation with L = 3 and -]Evg = 5dB. By the‘
BDFA simulation program, we have measured the following parameter values (The code

is symmetric so all backward and forward parameters are the same):

1 1

e — U. 1, = = U. 2, —_— = — =
pe=000017, py=py=0002, - =7

19, ;=7 =0.845, N, =1.72.

Since py >> p. the majority of the forward errors are correctable and we can assume
Py = ps, 7y = v; and N; = Ny. In addition, we can assume Ny = N.. Measuring
these parameters exactly is difficult and approzimation is sufficient. By simulating the

above parameters and choosing A = 50 and the framed input option, we get
P,y =0.00022, Py = 0.00056.
Actual values measured by simulation are

P, =0.00021, Py = 0.00049.

7.8 Simulation Results

The algorithms presented were evaluated by simulation. The channel used was AWGN
with a slowly varying phasé (10° change over one observation of length L symbols
generated by a frequency offset). The codes used were the quaternary (R = 4) Linear
Noncoherent Trellis Coded Modulation (LNTCM) family. These codes are built over
the modulo 4 group and use QPSK symbols. Both have rate —;- The first code has 16
states and generators (in base 4) 133,231. The second has 64 states and generators
2123,1312. The codes are maximum dgee codes with dgee of 7 and 10 respectively.
Their performance was also shown in Figure 6.4 and 6.5. For additional application

examples, see Chapter 8 where all the simulations points were produced by using the
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EFDFA. For proper operation of the MDFA, it is necessary to have enough SNR per
observation. For % =2 dB, we need L > 5 and for % =3dB, weneed L > 4. L =4
was used in the 16 states code simulation and L = 5 for the 64 states code. We chose
W = 100 for the EFDFA to achieve a good convergence. It was convenient to choose
also A = 100.

For the 16 states code, 1024 states are required for the optimal algorithm but
only 16 states are required in the suboptimal algorithms. For the 64 states example,
16384 states are required, so the optimal algorithm could not been simulated. Since
the suboptimal algorithms require only 64 states, their complexity is two orders of
magnitude lower in this example. Compared to the BDFA, the CPU time requirements
of the EFDFA is 4 — 5 times larger.

As shown in Figure 7.11 in the bit error performance curves, due to mainly e.p.
effects, the BDFA lost 2 dB compared to the optimal. The MDFA worked well, but
degradation of up to 0.5 dB in one case and 0.8 dB in the other remains. The EFDFA
algorithm essentially achieved the optimal performance in moderate and high SNR
(P, < 1073). In low SNR (P, = 1072%), we see 0.2-0.3 dB degradation. The reason for
the degradation in low SNR is that the ratio &;} becomes higher.

Examining the error event performance curves, we see that all the algorithms suffer
less degradation compared to the bit error rate case. The reason is that all the algo-
rithms suffer from increased length error bursts when they fail. We also note that the

modification in the MDFA reduces the error events probability of the BDFA.

7.9 Conclusion

Several algorithms for implementing the decoder for NCM were introduced. Their
performance was explained and evaluated analytically and via computer simulations.
The BDFA, although simple to implement, is not recommended for actual use, since
with only a slight increase in complexity we can implement the MDFA which can reduce
the degradation to less than 0.5 dB (depending on the code). The EFDFA algorithm
essentially achieved the optimal performance in moderate and high SNR (P, < 1073).

Its complexity for a practical case is two order of magnitude lower than that of the
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Figure 7.11: Performance results of the several algorithms by simulation for codes with
(a) 16 and (b) 64 states. The same codes were evaluated in Figure 6.4 and Figure 6.5.
The union bound was derived analytically in Chapter 6 and is a tight upper bound
on the performance of the optimal implementation of the IO-NMLSE. The maximum
among all the pairwise error probabilities serves as a lower bound on the probability of
error events.
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optimal implementation. Since the IO-NMLSE performance is very close to that of the
coherent MLSE, the algorithm shows a practical noncoherent decoding which performs

very close to the optimal coherent one.
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Chapter 8

Applying the New Noncoherent
Decoder to Continuous Phase
Modulation

8.1 Introduction

Continuous Phase Modulation (CPM), is a class of constant envelope modulation
schemes. CPM can have power and bandwidth efficiency, so it is an attractive scheme to
be used whenever a nonlinear channel is employed (requires constant amplitude signal).
With the addition of an encoder in front of the modulator, even better combinations
of power and bandwidth efficiency are possible. However, CPM in general requires
complex receivers, and carrier tracking is difficult. Due to the difficulty in achieving
coherency in CPM systems, many noncoherent receivers were suggested in the liter-
ature (see Section 8.7). Here, we propose a new method for combined noncoherent
detection and decoding of CPM which can be also used for coded CPM.

The separate problems of data detection and carrier phase tracking have been stud-
ied extensively. Uncoded CPM or coded CPM over the Additive White Gaussian Noise
(AWGN) channel with coherent detection can be optimally decoded by the Viterbi
Algorithm (VA) [1]. The carrier phase tracking can be performed by a PLL. There are
two ways to implement the phase tracking for CPM. One is to remove the data by a
nonlinear operation, and then lock to one or more of the discrete spectral components
produced [2]. The other is to decode the data and feed it back into the loop (data aided

loop) [3]. If discrete spectral components are to be generated from a CPM scheme with
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R phase states, the signal has to be raised to the Rth power. Since this process results’
in a large SNR drop, very narrow loops must be employed. For the data aided loop, the
large decoding delay caused by the VA will only allow the operation of a PLL with a
large time constant (narrow-band). The use of extremely narrow band PLL is required,
but such a PLL cannot be used for the cases where fast phase variations in the channel
occur due to phase noise or Doppler effects. Also such PLL may cause other problems
like slow acquisition and delayed recognition of loss of lock.

In the past reports on the noncoherent detection of CPM signals, independent block
decisions were mainly used. In those schemes, like in [28], very large observations and a
large complexity receiver must be used in order to approach the coherent performance.
Other types of noncoherent decoders have also been proposed for CPM, but have much
lower performance than the method examined here. Here we successfully apply the 10-
NMLSE which was introduced in Chapter 6 to the decoding of CPM. Since CPM has
a trellis structure, many of the concepts in Chapters 6 and 7 can be applied to CPM.
Remarkably good results were achieved. For example, MSK (Minimum Shift Keying)
can be decoded noncoherently with 3 symbol overlapped observations to within 0.5 dB
of the coherent case. We are one of the first to apply noncoherent decoding to coded
CPM. CPM is clearly not NC (noncoherently catastrophic). Although many sequences
which are a constant phase shift of another exist, all of these are the encoding of the

same input symbols.

8.2 CPM Schemes

In CPM schemes, the envelope of the RF signal is constant and its phase varies in a
continuous manner. CPM signals are described by
sa(t) = exp{jQﬂ' > haiq(t — zT)} for nT <t <(n+1)T. (8.1)
1=0
The data {a,} are M-ary data symbols, M is a power of 2, taken from the alphabet
+1,+3---,4+(M — 1), h is a modulation index and ¢(t) is the phase response func-
tion. CPM schemes are denoted by their phase response function or by its derivative

g(t), the frequency response function. Let G be the number of symbol intervals over -
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which the frequency response function is not zero. If G = 1, the scheme is called full
response, and when GG > 1 it is called partial response. The full response CPM with
rectangular frequency pulse is called CPFSK. Binary CPFSK with A = 1/2 is called
MSK (Minimum Shift Keying). In schemes denoted by multi-h, the modulation index
h is replaced by a variable modulation index h;.

CPM with rational & can be represented as a trellis code [1]. In order to use the rep-
resentation of Chapter 2, we can choose an orthonormal basis such that D, the number
of dimensions, is finite. In practice we can use the Gram-Schmidt orthogonalization
procedure for finding the basis functions. There are M© possible waveforms generated
for the interval of one symbol. Hence, the maximum number of basis functions required

is MC.

8.3 A Trellis Structure for Use in Noncoherent
CPM

A CPM scheme with a rational modulation index h can be represented by a trellis
diagram. In a full response scheme, the states are the phase states, and in a partial
response scheme, a state corresponds to the phase state and G — 1 last symbols [1].
We can apply the methods described in Chapter 7 directly using this trellis. However,
specifically for CPM, we can make some simplifications to reduce the number of states
and to improve the understanding of the factors influencing the performance of the
noncoherent system.

We can notice that for the noncoherent metric, the phase states are not required
as they contain information which is not going to be used. Hence, for the noncoherent
detection, a different trellis diagram than the one used in the coherent case should
be adopted. In this trellis diagram, the phase states disappear, since noncoherent
detection is used. Let us now define a trellis diagram for CPM in which the phase
states are eliminated, but otherwise all the waveforms can be generated without any
change. We will call this trellis the primitive noncoherent trellis. The relation between
the primitive trellis and the optimal trellis is analogous to the relation between the

original code trellis and the augmented one in Chapter 7. The primitive trellis is the
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optimal one for the case of L =1, i.e., symbol by symbol noncoherent detection.

Each state in the primitive noncoherent trellis corresponds to the last G — 1 input
symbols {a,_1,a,-2,"*,a,-g41}. The G — 1 symbols correspond to the memory re-
quired by the partial response scheme. Note that for a full response scheme, the trellis
has only one state and M parallel transitions. Let s,(t) be the output waveform for
the duration of the symbol a,,

sn(t) = exp{j27rh i aiq‘(t - iTs)} =

t==—00

G~1 n—G
= exp{j?wh > aniq(t —iTs) + jhr > a,},

1=0 i=—00

nTs <t <(n+ 1T, (8.2)

and let s/ (t) be the same waveform as s, (¢) but with a zero phase state,

s (t) = exp{j%‘h%w_:l an—iq(t — z'Ts)}. (8.3)

i=0
Each branch of the trellis is assigned a record with two information fields. The first
field contains s/, (t), and the second field contains the amount of phase rotation induced
by the input symbol a,_g41,
0, = whan_c41- (8.4)

Given a sequence {s/ (t),0,}, starting at time ng (which may be the beginning of an

observation), the signal s,(f) can be derived, up to a constant phase shift ¢ as

ult) = s exp{j 3 .4 o). (5.5

i=no
The optimal noncoherent trellis must allow for the additional memory introduced
by the overlapping as was explained in Chapter 7. We have to construct a new trellis
diagram, such that using this trellis, 7, is a function of the branch value only. Each
state in the optimal noncoherent trellis corresponds to the last L — 1 + G — 1 input
symbols {an—1,0n-2,"**,an-1-G+2}. The L — 1 symbols correspond to the amount of
overlapping between the observations which can be considered as amount of memory,

and G — 1 symbols correspond to the memory required by the partial response. The
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assignments of the branches, as in the primitive trellis, follow equations (8.3) and
(8.4). If a shift register is used as an encoder, then the most recent G — 1 symbols
together with the current input are used to choose one of the possible M% waveforms
(or complex vectors representing these waveforms). The rest of the shift register stages
are left unconnected. These stages are only used for the purpose of delaying the merge
of two sequences on the trellis by L — 1 symbols. During this “waiting period” the
outputs of the two sequences are equal. In this way we eliminate the influence of the
unknown future after the merge (see Chapter 7 for more elaboration on this method).
See Figure 8.1a-d for all the various trellis diagrams and encoders mentioned in this

section. The CPM scheme used in this example is of h = % binary CPFSK.

arn
5

Figure 8.1-a: The coherent trellis of 2 = 2/5 binary CPFSK, s,(t) = e“jél%s’, $a(t) =

-2m t

8'75 Ts
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Sl s 91 ="‘27t/ 5 Sl ’ el

SZ’ 62=27t/ 5 Sza 62

Figure 8.1-b: The primitive noncoherent trellis of A = 2/5 binary CPFSK.

-1/+1

Y

-1 ——>s;, 6="2n/5

+1——>s, 62=2n/5

Figure 8.1-c: The optimal noncoherent encoder of h = 2/5 binary CPFSK, L = 2.

8.4 Computing the Error Probability of the I10-
NMLSE for CPM Signals

CPM is not UEP, i.e., the error probability is not independent of the transmitted
sequence. There is a way to overcome this problem, by using a trellis diagram that
represents the phase difference between two CPM signals. The error probability of a
constant energy coded modulation can be completely specified by the pairwise complex
correlations of all possible waveforms (which it is equivalent to the phase difference
here). This was proved in Chapter 3 for any general noncoherent detector.

Since there is a linear mapping from input symbols to output phases, the phase
difference signal can be generated simply by feeding the difference of the input symbols
through the CPM transmitter. Also, we can form a different trellis diagram which is
similar to the previously defined trellis, but where the input symbols a,, are replaced by

difference input symbols Aa,. Each symbol a, takes the values £1,43,--- +(M — 1),



159

s, 0 ==21/5

s,,0 7275

+1

Figure 8.1-d: The optimal noncoherent trellis of A = 2/5 binary CPFSK, L = 2.

and Aa, takes the values 0, :i:2,i4,-~,:i:2(M — 1), i.e., 2M — 1 values. Refer to

Figure 8.1e-f for an example.

As, A =—4n/5 As;,AB,

AS,, A92=41t/5 AS,, A92

Figure 8.1-e: The symbol difference primitive noncoherent trellis of 2 = 2/5 binary
CPFSK, Asq(t) = e i , Asy(t) = €5 75,

Having this symbols-difference trellis, we can use the analysis developed in Chap-
ter 6. Since D for many cases is large, the large D method for the computation of the
pairwise error probability is more useful for CPM. Due to the fact that every difference
sequence may represent more than one pair of input sequences, there is a minor change
in equation (6.7) due to the fact that every difference sequence may represent more

than one pair of input sequences. The corrected formula is

5 T e ] Aol (86)

|®(m) < M

11

P,

where B = log, M, the number of bits per symbol.



160

As,, A8 =—411/5

As,,A8,=—4m/5

As,, A8, =—41/5

Figure 8.1-f: The symbol-difference optimal noncoherent trellis of A = 2/5 binary
CPFSK, L = 2.

8.5 Performance Predictions

The degradation of the noncoherent methods versus the coherent ones comes from two
sources. One is the increase in the error probability for error events which also occur in
the coherent case and the other source is due to the inclusion of additional error events,
which cannot occur in coherent reception. The additional error events are those which
start in the transmitted sequence and diverge to a sequence with a constant phase shift
from the transmitted one. In a noncoherent CPM trellis diagram, these error events
can be distinguished by having a total phase rotation, Y 0,, different from that of the
transmitted sequence. In a coherent CPM trellis, this will correspond to reaching a
different phase state, so that there would not be a merge, and thus no error event. The
contribution of the additional error events is lower as the observation length, L, grows.

In particular, when L is larger than the error event length, there are some observations
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that span the region of before and after the error event. These observations will have
a particularly large distance and thus low error probability: Error events with larger
difference in the total phase rotation tend to have lower pairwise error probability for
the same event length. ;

For this reason CPM schemes which use h near a “weak” point will suffer a larger
degradation (only if this weak point causes poor performance). A weak modulation
index, [1] means that a merge can happen prior to the first inevitable merge at ¢t =
(G + 1)T,. Suppose that a weak modulation index h,, causes a reduction in the
minimum distance. Let a and b be two sequences of input symbols which correspond
to two paths on the coherent trellis which start at state 0 at time ¢ = 0 and merges at
time t =ty < GT, for h = h,,. Now, if we use for the same CPM scheme & close to h,,
then at time #o the two sequences a and b will reach two different phase states ¢, and
¢p. It is clear that for h ~ hy, ¢, — ¢ = 0. On the primitive noncoherent trellis, a
and b correspond to two paths that merge at ¢y or prior to that. At ¢y the total phase
rotations of a and b are equal to ¢, and ¢, respectively. Thus, the difference in the
total phase transition for this error event is small, possibly having a large probability

to occur in the noncoherent decoder.

8.6 Coded CPM

It is possible to encode the input data prior to feeding it to the CPM modulator and
achieve a significant coding gain. Some good convolutional encoders for CPM (coherent
detection) were found using a systematic search [4]-[9]. All the suggested codes are
based on a binary field. The output of the encoder is mapped by a specific mapping
rule to one of the M modulator inputs. Rimoldi [9] attempted to find a more “natural”
combination of code and modulator. The naturality of his scheme is not clear; maybe
he wanted to achieve UEP. Indeed, he assumed UEP in his analysis. Unfortunately,
this assumption was invalid.

Evaluating the performance of binary encoded CPM is more difficult than uncoded
CPM since it is not possible to use the symbols-difference trellis and assume the all-0

sequence is transmitted. The encoder is implemented over GF(2) and not over the real
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field as the input symbols of the CPM modulator. It may be the subject of future

research to find an equivalent method to the symbols-difference trellis for coded CPM.
Evaluating the error probability for coded CPM will require to compute the expression
B4 MI > 2 ™z Pr{n(x™) < n(x™)}, (8.7)
mEX [R(M)|<M,m#n
where A is the set of all the sequences differing in their M output symbols. It is possible
to simplify the form of this expression to one summation, but then a pair-state trellis
diagram is used (the amount of computations is not reduced). This computation was
too extensive for us to evaluate even for short constraint length codes, so we preferred
to evaluate coded CPM only by simulation.

We observed previously for the coded PSK case, that different codes, which have
the same coherent performance, suffer different amounts of degradation in noncoherent
decoding. Since we have not performed a systematic search for the best code for
noncoherent CPM, we have to rely on codes good for the coherent decoding and hope
that their degradation in noncoherent decoding is small even for a short observation. Of
course we can always get close to the coherent performance if large observation is used,
and for this case the codes best for coherent decoding will be the best for noncoherent.
Specifically, the code which we evaluate here suffer low degradation, hence probably it
is close or equal to the best noncoherent code. The encoder for this code is shown in
Figure 8.2, and its equivalent for simulation is shown in Figure 8.3, and the equivalent
encoder for noncoherent decoding, L = 3 (for example), is shown in Figure 8.4.

We must verify that the coded CPM is not NC (Noncoherently Catastrophic). This
is true since the encoder only generates a subset of the uncoded CPM outputs, and
uncoded CPM is not NC. Hence, unless the encoder itself is catastrophic, the coded
CPM will not be NC.

8.7 Previously Proposed Schemes for Noncoher-
ent Detection of CPM

We can divide the noncoherent detection schemes into four families. The first family

is of symbol-by-symbol noncoherent detection, which was usually applied to binary
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T 00 — -3 M=
msb 01 — -1
L Jeprsk |
- 10 — +1
5 111 — 43 h=1/4

Figure 8.2: A coded CPFSK encoder, coherent detection.

CPFSK [10]. The second is a family of schemes based on differential detection. Appli-
cations to CPM signals on AWGN can be found in [1], [11]-[20]. The third family is of
schemes based on Limiter-Discriminator (LD), [1], [13],[15], [17], [21], [22]. The fourth
is multiple-symbol MLSE based approaches [1], [24], [25], [26], [27], [28], and [29], to
which the IO-NMLSE introduced here also belongs.

The symbol-by-symbol noncoherent detection can be implemented simply by using
two bandpass filters each centered at one frequency of the modulator and followed by
an energy detector. A comparison is made between the output of the energy detector
to determine which frequency was sent. This detection, although simple, does not
use the phase continuity of the transmitted signal, resulting in poor performance. The
differential and LD detectors, in their basic forms, can reach degradation as low as 3 dB
relative to coherent, and this, only for certain binary CPM schemes. For other, more
powerful schemes, the degradation is even higher. Many methods were used to improve
the performance including zero forcing equalizer, decision feedback, error correction
~and VA. A good comparison is found in [27] for the case of MSK. The best of these
schemes provides 2 dB degradation for MSK with LD and decision feedback. [20] have
reached 1.5 dB degradation for GMSK (Gaussian MSK [30]), BT = 0.25 by combining
3 differential detectors for delays of 1,2 and 3 symbols and using the VA with similar
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Figure 8.3: Equivalent encoder of the system of Figure 8.2, coherent detection.

complexity to the optimal decoding of the IO-NMLSE. Note that the lower degradation
mentioned in [20] is due to comparison to sub-optimal coherent detection of [30] instead
of to the optimal. The observation length is equivalent then to 4 symbols. This is
about the same degradation expected in our scheme. Note that GMSK, BT = 0.25
(see Figure 8.9) in particular, suffers an increased degradation relative to other CPM
schemes when using the IO-NMLSE. It will be interesting to know the performance of
Makrakis et al. schemes for other CPM schemes, including multilevel schemes. Note
that their scheme requires the addition of differential decoder in front of GMSK. This
alone causes unrecoverable degradation of 0.5 dB even if the number of differential

detectors is increased to infinity.

In the fourth family, most of the schemes solve a noncoherent MLSE on an individual
block with complexity (except when using feedback) exponential in L. Svensson [25]
makes an MLSE decision on a block of symbols, but decides on one symbol in the
middle of the observation. Simon and Divsalar [28], made an MLSE decision on all L
symbols. Leib and Pauspathy [27], and Abrardo et al. [29] for GMSK have recognized
that the other symbols contribute more to the error probability and they ignore them,
getting improved results. In [27], the degradation of noncoherent detection of MSK is
1.4 dB even for N = 8. [29] has shown degradation of less than 0.5 dB for L = 7 in
GMSK, BT = 0.5. This compares to L = 4 in our scheme (see Figure 8.8). In [1],
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Figure 8.4: Equivalent encoder of the system of Figure 8.2, noncoherent detection with
L=3.

L = 10, for some h values even more is required to approach coherent in other partial
response schemes. Harrold and Kingsbury [26] have suggested another scheme, based
on the VA algorithm where a phase estimation is made from the best survivor and
used as a reference to evaluating a partially coherent metric on an observation. In their
scheme, L = 12-25 is required to be close within 0.5 dB to coherent with various partial
response, but the complexity is not exponential in L. There is no data to compare to

for noncoherent decoding of coded CPM.

Our scheme outperforms all of the above schemes. L = 3 only is required for
MSK, and L = 5-6 for good 4 level schemes including partial response. For GMSK,
BT = 0.25, we show less improvement, but we offer our reduced complexity algorithms
to save in complexity. Our method can also be applied to coded CPM as described,
which is a major benefit. Poor results are expected when applying differential detection
or LD to coded CPM since the working point is at low symbol SNR. The previously
proposed MLSE methods cannot be applied to coded CPM, unless the observations do
not overlap. In this case worse performance is expected as was the case in the uncoded

case and as was demonstrated for coded BPSK.
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8.8 The Application of the Decoding Algorithms
to CPM

The algorithms described in Chapter 7 are applicable to CPM or coded CPM. Some
points are worth noting. To apply the noncoherent trellis, we should first regenerate
Sn(t) out of {S](t)} and {8, }, given on the trellis, for correlation with the input signal.
In principle, we can use the primitive trellis to apply the algorithms. However, the
performance results are not so good for CPFSK schemes when using only a one state
trellis. For CPFSK, we have found that the performance is significantly improved
when using an M states trellis, the one optimal for L = 2. This trellis might also be
used for L > 2 in the BDFA, MDFA or EFDFA, and the results are good considering
the low complexity. For the partial response schemes (2RC and 3RC were tested),
it is sufficient to use the primitive trellis to get good results. This means that for
noncoherent decoding, the complexity for the 2RC scheme is equal to that of CPFSK !
We can note that for the case of CPM, in some cases the complexity of the noncoherent
decoder is lower than that of the coherent one (due to the removal of the phase states).
For example, for binary 2RC scheme, with A = -g—, we use 2 states in noncoherent
decoding compared to 10 states for coherent. However, for the noncoherent, more
processing is required per branch. On the other hand, we save the acquisition, tracking

and phase ambiguity resolving circuitry.

When applying the EFDFA, we note the following. In Figure 8.1c we see the
equivalent encoder for CPFSK, in which one unconnected stage was added to the shift
register to improve the DFA performance (its optimal for L = 2, here L > 2). Note
what happens when we apply the backward process. The encoder is reversed in time as
shown in Figure 8.5. Here, the extra stage does not provide any memory and is useless.
Thus, we get the perfor.mance of the DFA applied on the primitive trellis of CPFSK,
obtaining poor error performance and large error propagation bursts. To solve the
problem we have to use extra unconnected stages both before and after the primitive
encoder, as shown in Figure 8.6. Note that for the b.p. there is almost no complexity

increase in doing so, despite the addition of more states. In the b.p. we can operate on
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Figure 8.5: The reversed encoder.
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Figure 8.6: The corrected encoder for using in EFDFA.

2 states and copy the results to the other 2 states since they are completely equivalent.
In the f.p., due to the dependency on the b.p. decisions, we have to process the full 4
states. For all the CPM schemes we have tested, the error propagation was minor and
the backward convergence was extremely rapid (when a L = 2 trellis is used for CPFSK
and primitive trellis is used for partial response). The e.p. is relatively low also for
coded CPM. Thus, the EFDFA has negligible degradation when applied to CPM. Some
simulation results using the EFDFA were added to Figure 8.7 (full response, 2-level,
L = 5) and Figure 8.10 (partial response, 4-level, L = 10).

The low e.p. seems to be related to the low power efficiency per complexity meaning
that there is more memory in the encoder than is required to achieve the same power
efficiency as compared to PSK. This memory serves the same purpose as the memory
introduced by the extra unconnected stages in the encoder. The distance between two
candidates merging at a given state in their last few symbols is smaller than in the high
performance coded PSK. Using this qualitative argument, we can predict that coded
CPM will have larger e.p. than uncoded CPM, but lower than high performance coded
PSK. This is indeed the case.
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8.9 Results and Discussion

Here we present the performance analysis and simulation of the overlapped observations
noncoherent decoding of CPM schemes. In the following examples, maximal overlap-
ping, i.e., [ =1, is used. The first example is MSK modulation; see Figure 8.7. Using
the analysis described in Section 8.4, we computed the bit error rate performance of
noncoherent detection of MSK. Simulation points for L = 5 were added to confirm
the analysis. The difference between the simulation points and the analysis is due to
the use of the union bound technique in the analysis. In Figure 8.8 and 8.9, we show
the performance of GMSK. With BT = oo, GMSK becomes MSK. As BT becomes
lower, the side-lobes become smaller, and also, to a lesser extent, the spectrum become
narrower. We recognize by comparing Figure 8.7, 8.8 and 8.9 that as the spectral
properties improve, the degradation in the noncoherent decoding is higher for the same
observation length. The reason, as explained intuitively in Section 6.2, is that the high

frequency components are important to the noncoherent decoder.

In Figure 8.10 we show the performance of a partial response scheme. Here we use
4-level 2RC with A = 1/3. This scheme is chosen to have the same power efficiency
as MSK but have much better bandwidth efficiency (almost twice the throughput for
99% power bandwidth). In Figure 8.11 we use a 4-level CPFSK with A = 2/5. This
scheme is chosen such that the bandwidth requirements are close to that of MSK, but

the power efficiency is much better.

Comparing Figure 8.11 and 8.12, we see that as the modulation index h get close to
a weak point h = 0.5, the degradation of the noncoherent decoder increases as expected.
The shorter observations, L = 2, L = 3, as expected, do not “feel” the effect of being
near weak h point (see Section 8.5). Note that although the degradation is higher, the
performance of the h = 4/9 scheme is better than the A = 2/5 scheme. Since, unlike
the coherent case, the number of phase states does not affect the decoder complexity,

h = 4/9 should be chosen among the two.

Several other examples are shown in Figures 8.13-8.16. A coded CPM scheme is

evaluated by simulations in Figure 8.17. The coherent points were simulated as well.
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Figure 8.7: Noncoherent decoding performance of MSK.

They match with the results in [4] which were computed using union bound techniques.
We see degradation of about 0.4 dB when L = 10 is used. Compared to the coded PSK
schemes, considering the bandwidth efficiency which tend to increase to observation

length needed, this is a good result.

The simulation points in Figure 8.7, 8.10 and 8.17 were produced using the Esti-
mated Future Decision Feedback Algorithm. For this algorithm to decode MSK, a 4
states trellis diagram is used instead of 16 state which are necessary for the optimal
algorithm with L = 5. For L = 10 we should use 512 states for optimal implementation
(still compared to 2 states in the EFDFA) by the VA. For the simulation points shown
in Figure 8.10, 4 states were used in the EFDFA, compared to 4'° = 1048576 states
required for the opfimal algorithm! For the coded CPM, 8 states were used in the

EFDFA. Four states belong to the code, and one extra unconnected stage was added to
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Figure 8.8: Noncoherent decoding performance of GMSK, BT = 0.5.

improve the convergence of the b.p. We note that this algorithm is very well suited for
noncoherent decoding of CPM schemes. With this algorithm we can use observation
lengths of 10 and above and get extremely close to the optimal coherent performance

with a relatively low complexity receiver.
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Chapter 9

Epilogue

Many investigations in the past dealt with the problem of reliable communication.
Most of these considered ideal coherent channels, while others were consumed in trying
to achieve coherency by phase tracking. Both areas have reached maturity. Practical
channels are time varying. In particular, we note the areas of mobile and satellite
communications. In these environments coherent techniques are either pushed to their
limits or completely fail. Therefore, in a system where power efficiency is also a very
important factor, there is a need, now more than ever, to minimize the existing per-
formance gap between coherent and noncoherent modulation techniques. We have
succeeded in minimizing this gap. While doing so, we do not have to use impractical
schemes. Many designers of future systems will probably like to investigate the schemes
proposed in this thesis for practical applications especially for mobile, satellite, personal
and deep space communications.

In the course of this research many interesting, challenging, unsolved problems
in mathematics and communication theory have aroused. We hope that this work
will stimulate interest in noncoherent communications in general and in the methods

developed in this thesis in particular.
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Appendix A

Asymptotic Performance of the

IO-NMLSE

We will show that the pairwise error probability between two sequences x and y of the
output of a trellis encoder, when IO-NMLSE is used for the decoding, approaches the
coherent error probability for S — oco. The encoder is assumed not to be noncoherently
catastrophic.

While S increased, the allowed phase variations are simultaneously reduced, such
that the phase stays approximately constant over the S-symbols observations. In the
limit the phase must be constant everywhere. With a given phase process which is not
constant, the noncoherent performance cannot approach the performance of coherent
decoder that completely knows the phase (the phase is given to the decoder as a side
information). '

Let x be sent with an arbitrary phase shift §. Let x and y differ in d consecutive
places, i € vy = {t,t+1,---,t +d — 1}, and assume d ié small, since it is clear that the
average error probability is determined mainly by the short error events. Error events
(if they exist) which cause y; to be a phase shift of x; Vi > t 4 d will have diminishing
contribution for large S. Choose S large enough such that S >> d. Let r; = x4+ n and

P 2 oo k+S—1 2
s= Y | Xty = X | X i, (A1)
k=—cc' 1=k k=—oo! 1=k

then the pairwise error probability of deciding y instead of x is Pr{s > 0).

0o k+S-1 ; k+S5-1 ; 2 k+S-1 k+S-1 2
= Z{ Z ry: + Z ry:| — Z rix; + Z r;X; }:
k=—o00 1=k 1=k =k i=k
gy ey Ty =2
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where E = x!x;. Let

B = %Re{ i {k§1 e‘jerj(yi — xz)}} = Re{ i e“”rl(yk — xk)},

k=—o0 1=k k=—o00
1€y
and
oo 4 k+S—1 P k+S—1 P
e= 3 [T wlvf -[ X elx |
k=00 1=k =k
1€y ey
For S > d, e = €0 + (S — d)ey, where
t4+d—1 k ; 2 k ; 2 t+d—1 ,t4d—1 ; 2 t4+d—1 ; 2
o= 3 ety - [Cri| f+ 2 {3 ety | X o )
k=t i=t 1=t k=t+1 1=k 1=k
and
t+d—1 2 t4d—1 2

€1 =

E I‘}Xi .

=t

Z r:'ryz'

i=t

s=2S’Ef+¢€=25EB + ¢+ (S — d)ey.

(A.2)

(A.3)

(A.4)

(A7)

(A.8)

B, and ¢; are not a function of S so as S — oo, s = 252E . Finally, for S — oo,

Pr{s >0} = Pr{Re{ > el (yr — xz)} > 0} = Pr(coherent detection). (A.9)

k=—c0



Appendix B

Series Expansions for the
Distribution of Non-central
Indefinite Hermitian Quadratic
Forms

A new series expansion is developed for the probability distribution function (p.d.f.)
and the cumulative distribution function (c.d.f.) for indefinite non-central Hermitian
quadratic forms in complex normal random variables. The moment generating function
is inverted by contour integration using the residue theorem. The function is separated
into two parts; one part, containing an essential singularity, is expanded by Laurant
series and the other part is expanded by Taylor series. The series are combined for
evaluating the residue of the complete function. Three different versions are presented
for evaluating either the p.d.f. or the c.d.f. The series are computationally efficient.
The rate of convergence depends on the eigenvalues separation and is usually very fast.

The Quadratic Form (QF) in normal random variables appears in many applications
in statistics and in communication theory. Much attention has been given over the
years to the problem of evaluating its distribution, and various series expansions were
developed [3]-[8], [12]-[18], [25]-[26] [22], [10], [21]. However, most of the authors
considered positive definite or semidefinite cases. Relatively, little attention has been
devoted to the problem of obtaining the distribution of indefinite QF. Several series
expansions to the indefinite case were developed [3]-[13]. Most of these are complex so

their practical usefulness is limited. Here, we present a new technique for developing
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series expansions which result in some computationally efficient expansions.
Let A be a N x N Hermitian matrix, and r be a complex normal random vector

with covariance matrix V and expected value . A Quadratic Form (QF) in r is
Y =rlAr. (B.1)

A QF is said to be definite or indefinite depending whether the matrix A is definite or
indefinite. If n = 0, the QF is said to be central; otherwise, it is noncentral.

According to Section (6.4.3) and [1] and [2], the QF (B.1) can be expressed as

N-1
Y =ZTAZ = \|Zi], (B.2)
=0
where Z is a Gaussian vector with independent components each having a unit variance
in the real and imaginary parts and expected value u = E[Z] = Q1L~''p. The matrix
L is any non-singular factorization of V, such that V = LTL. ); are the eigenvalues of
LAL" and Q is the corresponding unitary eigenvectors matrix.

Here, we develop a new series expansion for the p.d.f. and the c.d.f.. We treat the
case of Hermitian QF in complex random vectors. This is equivalent to a special case
of real valued QF, where the eigenvalues are always given in pairs. The resulting series
is computationally efficient. Distinct eigenvalues are assumed, and their separation
determines the rate of convergence. However, the method can easily be extended to
the multiple eigenvalue case.

For the general quadratic form expressed as
n—1
Y =Y MW
J=0

the moment generating function is given by [1] and is:

ln—l 2 1 — w2
T3 5‘2“‘“—43,\

O(s) = Fle™] =e g=o ! H (1= 2s),)73. (B.3)

W; are unit real normal random variables and w; are real constants. In our case Z; is

complex, so we can write

lZi[2 = (WZi - wzz’)z + (W2i+1 - w2i+1)2> /\2i = )\2i+1,n = QN, (B-4)



and
= Re{p:}, waiyr = Im{us}. (B.5)

From (B.4) and (B.3) we get!

__Zl le "Z lﬂj| 1

—2)\js
O(s) = —_ B.
(S) ¢ ]';‘[ 1-— 2)\]‘8 ( 6)
By the Laplace inversion theorem [26], we get the p.d.f.
1 o+iR
p(y) = %}%g{}o /R e " ®(s)ds. (B.7)

We choose o = 0, where the function is always analytic. Since ®(s) vanishes at infinity,
we can replace the integral by a contour integral C circling the whole right half plane
for y > 0 and the left half plane for y < 0. Furthermore, we can use the residue theorem

to evaluate this contour integral. For y > 0,

1 1 '
p(y) = ———-\% —syé Z ReSe——sycp ) (B8)
272 S0 2k
and for y < 0
1
Z ReSe—sy@ ) (Bg)
k,Ax <0 2)‘16

Let us proceed with the case of y > 0. We can alternatively write

p(y) = — >_ Resg,(0), (B.10)
Ak>0
where
Gt 1
Fi(s)=e 2X (= +s). (B.11)
2k
The pole at 5~ was translated to s = 0 for convenience. We will assume that the

eigenvalues are distinct.

'In all the following summations and products, when the range is not specified, it is from 0 to
N~ 1.
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l2

1 2 1 |1
—= 12 4 =
P R TG,

Fk(s) = €
1
H 1 e—my-sy
i 1—-2)\3'(2—}\-]:—{-3)
2 lugl2 i ?
—— + =
_ . Z"' ];1—— M_g)ns  Ahes
1
1 1 TN, — Sy
11 ce 4Nk . (B.12)
;ékl —‘2)\ ;8 2Ak‘3

By following the same prlnaple we will present three different methods for obtaining
series expansions for the p.d.f. and the c.d.f.
Method 1:

Let us define

1 |
Y ,
9 “ Y . 1
gr(s) =e I7F L= s I[[— (B.13)
itk 1 —_ A — ZA]S
and ,
| sy — ||
fils) = <e Aes, (B.14)
then .
. T3 Z |uil® — oW
Fi(s)=—z€ 7 - gi(s) - fu(s)- (B.15)

2k
From this point and on, we omit the k£ whenever the dependence of k is understood.

We write f(s) as Laurant series and ¢(s) as Taylor series,

f(s) = Z b,s "+ Z A S" (B.16)
n=0 n=0
=S ans”, an = ~g™(0). (B.17)
= 3 Ay, 5 n n'g .

Since f(s) is analytic for all s # 0, equation (B.16) converges uniformly for all s # 0.

The expansion (B.17) converges uniformly in a circle around s = 0. Since the residue
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of F(s) at s = 0 is the coefficient of the s~! term in the Laurant series expansion of

F(s), we get
1 y Z |l’LJ 12 - —_y oo
Resp(0) = ——¢ Y bty (B.18)
2k opurd

Now we find a recursive formula method to compute g{™(s).
1 |ﬂJ ? < 1 >
== > 1 .
Ing(s) =3 "o T2 ™MG Jans ) (B-19)

ik & itk

o — 22
where o =1 e

Ajlpsl? 2);
ng(s)]' =y —L—4 ) ——. B.20)
( ) J}?;V (Oéj - 2)\j8)2 JS;Z‘Z Q; — 2)\j8 (
By induction we get
')\“2””1|,u-]2 (n— 1)IA72"
Ing(s)]™ = 3 = ! i 21

Since ¢’ = g(Ing)’, taking its n — 1 derivative yields to
™ =5 ("1 40 1n g
g =21, )9 (ng)" . (B.22)
=0
Now we can compute ¢ out of ¢,¢',...,¢" V). Let us move on to evaluaté b, by
contour integration. We choose a circular contour around the pole at s = 0. Since the

function f(s) is analytic everywhere except at s = 0, we can arbitrarily choose any

contour that circles the point s = 0.

s=ce®  ds =ceids. (B.23)
Then,
27 . ip leIZ
1 1 ing — eye'
by = — }{ " / n Dee do .
) = 5 [ e i, (Bay

0

i

Choosing ¢ = W we get,

n Py 2
b, = 5_-/ eV IR b gy g (—\/!—"-’“ﬂ). (B.25)
27 J Ak
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I.(z) is the modified Bessel function of the first kind of order n.

=— Y Resg(0) =
A>0
“”1‘2|#k[2 Y | '[2 n THE
24 L “on s L,m (uk )'2‘ ( I y)
= S— k - 0O —— ) I, —/—=1. B.26
© }\kz>0 2)\k n§=:0 n!gk ( ) 4:y)\k /\k ( )
Let
U F o (mPYE, [ [Py
e [ B)-
k, 2/\k0 4y)\k )‘k
lugl” ifn=0
e 2 if n=0;
—_ h . bl B.
{ -n 1 J——J—HkZ g |? : ( 27)
(—2Ax) ey I'(n,0,#:-), otherwise.
Then,
1
=) -——2—Z|ﬂk!2 % 1
Pely >0} = [plpddy=c °F -3 3 —gl(0)Byn. (B.28)
0 Ar>0 n=0

In order to find Pr{y > 7}, v > 0, we do the following changes: We substitute y 4 v
for y in (B.12). Then we define

12 [NJ|2
2 k 1 — — 2)\ ] 1 —s
a(s)=e I# e, (B.29)
and (B.15) becomes
1 Tty
1 *52 |ﬂj|2 - —Q—Xk_
Fk(s) = —‘—‘Z—Xl-c—e J . gk(S) . fk(S) (BSO)

Equation (B.19) and (B.20) change to

1 |5 1
Ing(s,v)==) ————+ ln(———~———-—> — s, B.31
( ) 2j§ca] 2)\ i S % a5 —2/\j3 ( )
0 Ajlus)? 2}
—[lng(s,y S 1 NI . . B.32
0s (s: 7)1 = ]Z‘:‘c( i —2X;8)? jé;caj —2);s ( )
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Then,
1
_izlﬂ‘kP ——l © 1 .
Pr{iy >~} =e ° & Ye 2%y ——'—g,(cn)(O)Bk,n. (B.33)
Ap>0 n=0 n.
Method 2:

By differentiating (B.33) with respect to «y, we get the following alternative series

expansion for p(y) (for a positive argument only).

1
—5 2 ll? oo (n) (n)

_ 24 e <L9 _ 99 )
p(y)=e > e 2_: nzB’““ 2 Osn 7 Oy Bsn

(B.34)

5=0

is obtained by differentiating (B.19)-(B.22):

A recursive formula for 2 Ew 8sn g

s=0
% =0, (B.35)
g 0w -1, ifn=1;
g o l/p—1\ 9 0B o»-h 0
%m s:O_ ; < l )a_’);‘é_s—lgm[lng] s=0_(n B 1)6—;9 s=0 "> 0’ (B37)
g 0
87 Ep 0— —g(0,0). (B.38)
Method 3:

Let us repeat method 1, but now let us move the e™* term from f(s) to g(s). The
form of g(s) is exactly the same as in (B.29), replacing v with y. Equations (B.31) and
(B.32) change accordingly. Let 3 = el then

42,

16"‘? g LA (B.39)

! n-4-1
~nls

f(s) =
Hence, b, = % (—f). From (B.18) we get

Resp, = ———)\;e 2 (12 —B)". (B.40)
Using (B.10), we get
1
=52 sl _L
94 1 Y 0™ gr(0,) ¢ lml®\"
= J - . .
Ply) = e 23t T LT )y ( 4)\k> (B.41)
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In order to get the c.d.f., we can integrate p(y). However, we can get the c.d.f. series

directly.
T 11, ~
[ )y = —5—= § 20 (s)ds, (B.42)
5 o)
where v > 0. Let
(55 +9)
1 G+ /1
Fi(s) = e 2\ @(———+s), B.43
1 |pl |
2 a;+s 1 1 _
gls,7) = ¢ ik % e =
].I;;‘I]:Ca] ak;s 5/1\—k+3
Lo InP |
2 a;+s 1 _
= —9\e” J#k T . —— B.44
e 0o (B.44)
where oy = —1, and
X |l
f(s) = e 4Mes, (B.45)
s
Then
1
o0 =52 lusl? _
2 < 1 0™g(0,9) (o mel’\"
dy = —e J e 2M 4 .(—— ) . B.46
! p(y)dy > Y o o (B.46)

B.1 Convergence Rate

For values of |ux|?, Ax and y on the same order, the summand value is dominated by
Qmin/(n!)? where aumin is the smallest . If there is a pair of eigenvalues close together,
Omin << 1 and then the convergence will be slow. If the eigenvalues are separated by
a ratio of at least 1.5, we observe a very fast convergence, and only a few terms will
be sufficient for practical applications. In order to overcome this problem, close pairs
of eigenvalues can be approximated by a multiple eigenvalue. The methods described

can easily be extended to handle multiple eigenvalues.



Appendix C

Numerical Method for the
Distribution of Non-central
Indefinite Hermitian Quadratic
Forms

The characteristic function of the random variable Y is given by equation (6.24). We
would like to find the value of the inverse Fourier transform of ®(jw) which is p(y),
integrated from 4 to infinity, where v is a positive number (for finding the pairwise
error probability, Pr{Y > 0}, take v = 0). A straightforward way to find our p.d.f.,
p(y), is by performing an Inverse Fast Fourier Transform (IFFT) on the samples of
O(jw). After we get the samples in “time” domain, we sum the points that correspond
to y > ~y for approximating Pr{y > v} = Tp(y)dy. With this approach we have to take
a large number of points to get a good a,;proximation and not to suffer from aliasing.
In previous approaches [2],[5] numerical integration was used in various forms. Here we
offer an alternative method to the above, which requires neither numerical integration
nor FFT. When using numerical integration we always get an approximation to the
result. Here, we get an exact formula which is of the form of an infinite series. The
method is general enough to apply to many other probability functions. This method
demands much less computation time for the same accuracy compared to the existing
methods.

Let 7(y) be a square wave of period P which assumes the values 0 and 1; the period

starts with 1 at y = 0. For large enough P and assuming p(y) vanishes for large |y,
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we get (see Figure C.1)
[t [ =y—p), (C.)

-0

The Fourier transform of #(y) is

1 =1 27
: = Z6(w—n=2). 2
055(w)+]7{_n=_§wddn5(w nP> (C.2)
Let -
g0 = [ ply+7)n(r = y)dr. (C.3)
Then its Fourier transform is
, , 1 omEe 2T N\ i
Gjw) = 270 (jw) (0.55@) it Y b n-—)>eﬂ . (Ca)
Q n=—o00,n odd n P
oG 1 [o.0] .
[ 7ww) = 90) = 5= [ Gljw)de =

=0 ] w——ngﬁ
= <0.5<I)(0) —j;lr— > —l—fb(w — n%)) 6]7( P )

n=—00,n odd n

(C.5)

Since ®(jw) is a Fourier transform of a real function, its imaginary part is odd and its
real part is even. Using also ®(0) = 1, we get
o0 ) 2T
[pdr=05-2 ) —1—Im{<1>(w - n%‘?)e”(“’ - ”?)}. (C.6)
0

T n=1,no0dd

The result is a nicely converging sum that is very efficient in computation. We have not
decided yet what the value of P will be. If we choose P to be too small, p(y) will not
vanish in the next cycle of 7(y), especially in the negative y part where we find most
of the weight of the probability. On the other hand if P is too large, the frequency
points in the summation will be spaced close together, and large number of points will
have to be summed. The last will cause a long computation time and accumulation of
numerical errors. A way to estimate the value of P that works well in practice is to
choose P as 10 times the roughly approximated “center of mass of the negative part of
Pty

P=10 > —|ul*N (C.7)

1=0,);<0
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For a certain accuracy, in order to know how many elements of the series there are
to sum, we have to check the current summed expression to see if it is small enough
relative to the total. The expression itself is not monotonously decreasing in ¢ so we use
the part which have the major influence on the size of the expression and still decrease

monotonously for large enough w. This part is:

il
R A . (C.8)

The number of elements to sum for 1% accuracy is between 10 to 40 depending mainly
on the value of the final result. As the result approaches zero, we have to sum more
elements. The computing time needed for this method is very short and is much less
than the eigenvalues’ computation time. Note that the evaluation of ® may not require
diagonalization of A. We can alternatively use the form [2]
L T[] (I -2sAV) |V 1y

O(s) = |1 —2sAV|” Ze . (C.9)

However, in this case we have to perform a matrix inversion for each new point, so it

will probably not lead to a faster computation.
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A
T(y)
p(y)
/\ ™~ N
=Yy
A O(jo)
/\ >
Jiny}
ﬁo.s
A ‘
A+TTT TTT+A -0

Figure C.1: Waveforms used in Appendix C (v = 0).
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