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Abstract

This thesis is presented in two parts. In the first
part the results of flow birefringence experiments and
modelling efforts on both concentrated and dilute polymer
solutions are discussed. The second part presents
thecoretical developments and complementary experiments which
demonstrate the wutility of the technique of homodyne light
scattering spectroscopy to the measurement of velocity

gradients in laminar flow fields.

The flow birefringence experiments were performed using
a four roll mill which was designed in order to allow the
simulation of a wide range of two dimensional flows ranging
from purely extensional flows to purely rotational flows.
Flow visualization and homodyne light ‘scattering

spectroscopy experiments were used to characterize the flow

fields.

Using this device the flow birefringence of
concentrated polyethylene/water and polystyrene/tricresyl
phosphate solutions was measured. Birefringence
measurements of the Polyox solutions over a wide range of
flow types indicated that the birefringence could be well

correlated against the eigenvalue of the velocity gradient
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tensor, in agreement with model calculations. Transient
experiments were performed in which the birefringence was
measured as purely extensional flows were started from
rest. Both polymer/solvent systems showed a pronounced
overshoot in the birefringence. Turbidity measurements were
also performed on the polyox soclutions and a 30% increase in
the turbidity was measured which persisted for many hours
after the cessacion of flow (whereas the birefringence
decayed to zero in a fraction of a second). This increased
turbidity and 1its persistence with time suggests the

occurence of flow induced crystallization of the polymer.

These experiments involving concentrated polymer
systems were compared to model calculations wusing the
Yamamoto network theory. Several choices of the polymer
entanglements creation and destruction functions were
analyzed and it is demonstrated that analytical results can
be obtained wusing these choices. A variety of nonlinear
Qhenomena can be predicted including the correlation of the
birefringence with the eigenvalue of the velocity gradient
tensor and the overshoot of birefringence for the start up
of purely extensional flows. The predicted response of the

Stress tensor is also presented and discussed.

Flow birefringence experiments were also carried out in
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the dilute concentration range. Measurements were taken on

three molecular weight samples (2-8x106

MW, MN/MN=1'1M'1'3)
in a viscous polychlorinated biphenyl solvent in the range of
50-100 ppm subjected to a wide range of two dimensional
flows. The birefringence was again found to be well
correlated against the eigenvalue of the velocity gradient
tensor. The normalized birefringence, corrected for
concentration, (4n/nc), was observed to approach a
saturation value at high velocity gradients in purely
extensional flow. This saturation value was independent of
both the molecular weight and the concentration ¢, in
agreement with theory. 1In addition, the magnitude of the
saturation value 1is consistent with nearly fully extended
chains and suggests extensions in the range of 20-50 +times
the rest state size. The experiments were complemented by
simple dumbbell model calculations which incorporated the
nonlinear spring, internal viscosity and variable
hydrodynamic friction. The model was found to simulate the
experimental data very well if the effects of molecular
weight distribution and finite transit times in the flow
were taken into account.

The results of a detailed investigation of the dumbbell
model used to analyze the dilute solution experiments 1is

also included. The effects of the nonlinear spring, variable
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friction factor and internal viscosity to the response of
the dumbbell to steady state and transient two dimensional
flows are exposed. A perturbation solution for the dumbbell
with a small amount of internal viscosity is presented and

it 1is demonstrated that this problem can be solved

analytically.

The technique of homodyne light scattering spectroscopy
applied to suspensions in laminar flow is investigated. It
is demonstrated both theoretically and experimentally that
use of this method allows direct measurement of velocity
gradients without the need for differentiating velocity data
which is the normal method used. This technique was used to
characterize the spatial distribution of velocity gradients
existing in the four roll mill simulating purely extensional

flow.
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Flow Birefringence of Concentrated
Polymer Solutions in Two-Dimensional Flows
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Abstract

The results of flow birefringence measurements of
polymer solutions of moderate concentration subjected to a
wide range of two dimensional flows generated by a four roll
mill are reported. The flows generated in the flow device
were characterized and it is demonstrated that use of the
four roll mill enables one to systematically vary the ratio
of the vorticity to the rate of strain in the flow while
holding the velocity gradient constant. Steady state flow
birefringence data collected over a wide range of flow types
showed that the birefringence can be correlated against the
eigenvalue of the velocity gradient tensor in agreement
with the criterion for strong and weak flows from model
calculations (Tanner (1976), Olbricht et al (1980)).
\ Transient birefringence measurements in which purely
extensional flows were started from rest are also reported.
It was observed that the birefringence went through a
pronounced overshoot in time for two different
polymer/solvent systems. Flow induced increases in the
solution turbidity were also observed and the increased
turbidity remained constant over a period of many hours
after extensional flows were arrested., The birefringence,
on the other hand, decayed to zero almost immediately after

the flows were stopped. " These changes in the turbidity



suggest that crystallization of the polymer was occurring.

The qualitative results‘of the experiments are compared
to recent network model calculations (Fuller and Leal
(1980a)) using the theory of Yamamoto (1956, 1957) for
concentrated polymer systems., It is found that this model
can predict qualitatively many of the experimental
observations if the function describing the breakage of
polymer chain entanglements 1is allowed to depend on the
conformation of the polymer segments bridging the
entanglements., In particular, this dependency of the
entanglement breakage on the. conformation of the network
segments allows the overshoot of birefringence when purely
extensional flows are started from rest to be predicted. It
is also demonstrated through this model that birefringence
data taken over a wide range of flow types can be used to
estimate the degree to which the network deforms affinely

with the flow field.



I. Introduction

Non-Newtonian flow properties of polymer solutions or
melts are a consequence of flow-induced changes in the
statistical conformation of the polymer molecules. One
approach to the development of a constitutive equation to
describe these non-Newtonian properties 1is therefore to
first wunderstand and model the macromolecular conformation
changes and then pass to a macroscopic description of the
solution or melt via an appropriate averaging process. This
procedure, which 1s known as the "kinetic theory" approach
to theoretical rheology, has recently been reviewed in some

detail by Bird et. al. (1977).

The present paper is concerned with the wuse of flow
birefringence to determine the response of macromolecular
conformation to an imposed flow for moderately concentrated
polymer solutions that are subjected to a wide variety of
two-dimensional shearing flows. In this concentration
range, the polymer molecules interact directly with each
other, and these direct interactions are usually described
via the so-called temporary entanglement network picture in
which the molecules are viewed as being connected at a
number of junction points that are continuously created and

destroyed. The polymer ' segments which bridge these
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Junctions are assumed to respond as linear, elastic springs

with equilibrium length proportional to the square root of
the number of subunits N making up the segment. Following
the original work of Yamamoto (1956), many models of this
general type have been proposed which differ primarily in
the forms assumed for the functions that describe the rate
of creation and destruction of the segments, and in the
presence or absence of affine deformation of the network
relative to the deformation of the solution (or melt) as a
whole. In spite of the relatively advanced and
sophisticated appearance of these models, however,
relatively little is known of the predicted response of the
network structure to the action of ah imposed bulk flow.
Solutions for the probability distribution function
describing the state of the network have not generally been
obtained, except for the cases of simple, linear shear flow
and, in some instances a uniaxial extensional flow.
Furthermore, it must always be recognized that the network
models are truly models, and therefore bear an essentially
unknown relationship to real macromolecular solutions or
melts. Recently, we have obtained theoretical predictions
for the segment probability distribution function for
several of the more commonly used network models and from
this, predictions of the bulk birefringence and rheological

behavior for general two-dimensional flows. The primary



motivation for the present study, as well as continuing
research in this area, 1s to develop a data base for the
behavior of real polymers in a flowing solution which can be
used to test the validity of the many network models that

have been proposed.

Previous applications of flow birefingence for
measurement for macromolecular conformation 1in a flowing
solution or melt have almost exclusively considered either a
simple shear flow or a purely extensional flow (Tsvetkov
et al. (1964), crowley et al. (1976), and Pope and Keller (1977)).
One notable exception to this is the work of Frank and
Mackley (1976) who studied flow birefringence in flows
generated by two co-rotating rollers. This work is
important ©because the ratio of vorticity to strain rate,
which determines the type of flow, 1is between}the two cases
of simple shear flow and purely extensional flow. However,
both the magnitude of the velocity gradient and the flow
type are dependent on the separation of the two rollers and
can therefore not be varied independently in a convenient
way. The results of these previous investigations clearly
point out the importance of flow type in determining the
effectiveness of a flow field in deforming the polymer

chains.



Theoretical studies of the role of flow type in the
deformation process indicate that simple shear and purely
extensional flows are two limiting cases for the <class of
two dimensional motions which we shall consider here.
Purely extensional flow, also known as hyperbolic flow in
the two-dimensional case, represents the strongest type of
flow insofar as polymer deformation is <concerned, for a
given velocity gradient. In &a simple shear flow, on the
other hand, the magnitude of the vorticity and the rate of
strain are equal, and we thus have a neutral case lying at
the boundary between "weak" flows which contain a greater
amount of vorticity and cannot induce significant
macromolecular deformation, and "strong" flows with 1less
vorticity that can produce a large degree of macromolecular
deformation if the velocity gradient is large enough. It is
important, therefore, that the response of real polymer
solutions to a wide variety of flow types be understood, and

it is to this end that the present study has been directed.

We have constructed a four roll mill which can simulate
a wide range of two dimensional flows in which the ratio of
vorticity to the rate of strain can be systematically varied
at a given velocity gradient. These flow types have been
well characterized for a Newtonian fluid and for

concentrated polyethyleﬁe oxide solutions. Flow



birefringence has then been used to measure the degree of
macromolecular deformation and orientation in concentrated
polymer solutions and it is shown that data taken over a
range of flow types (including both steady and unsteady
flows) can be interpreted in terms of molecular
characteristics which distinguishes between certain features

of the network models.
ITI. Theoretical Developments

We are concerned in ‘this paper with conformational
features of flowing polymer solutions in the range of
moderate concentrations where there are direct interactions
between the polymer molecules. As indicated in the
preceding sections these interactions are modelled via the
so-called entanglemeht network concept in which the
molecules are viewed as being temporarily connected at a
number of junction points that are constantly being created
and destroyed. Between the network junctions are polymer
segments, modelled as linear, elastic springs connecting
the two junctions, with an equilibrium 1length proportional
to the square root of the number of subunits in the
segment. We have recently investigated the response of the
network to a variety of two-dimensional bulk flows for

several different variations of the basic network theory of
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Yamamoto (1956), and it 1is convenient to summarize the
theoretical <calculations in order to facilitate
comparison between the predictions from these models and the
experimental birefringence data which we will present later

in this paper.

In the basic theory of Yamamoto, the state of the
network 1s described through a probability distribution
function f(i,N,t) such that fd3x represents the number of

segments with end to end vector x which are composed of N

subunits at a time t. The conservation equation for f 1is
then
ax * VELD = G(x,N) - B(x)E

where 2 is the rate of change of the end to end segment
vector, G 1is the distribution function describing the rate
of creation of the segments and B is the rate of
destruction of the segments. Network models of this general
form have been proposed by many authors (Lodge (1956),
Wiegel (1969), Phan-Thien -and Tanner (1977)). These models
differ mainly in the forms assumed for the junction creation
and destruction functions, G and B8, as we shall shortly
discuss in some detail. However, an additional difference

is the nature of the network deformation that is assumed



1"

when the bulk motion of the solution as a whole is given by

1c

1l
=

{1ni

where I is the velocity gradient tensor and r a position
vector. All of the older network models assumed that the
network deformation was "affine" with the deformation of the

solutions as a whole, so that

(2a)

1% .
Il
=
1%

More recently, however, Phan-Thien and Tanner (1977) and
Johnson and Segalman (1977) have independently suggested
that this affine deformation assumption should be relaxed.

In the most plausible formulation, it is assumed that

x = (I - gD)-x (2b)

where D is the bulk rate of strain tensor, (L + £+)/2 and £

.1s the so-called slip coefficient. The motivation for
inclusion of a non-affine deformation of this form probably
originated with the description of an anisotropic fluid by
Ericksen (1960), and has subsequently appeared in almost all
modern theories of dilute suspensions and solutions. The
effect this slip mechanism is that the velocity gradient

tensor 1is replaced by' an "effective"™ wvelocity gradient
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Equation (1), with either equation (2a) or (2b), can
be solved for any reasonable choice of G and B using the
method of characteristics. In a recent investigation,
Fuller and Leal (1980), we have obtained solutions for four
specific combinations of G and B8, including both the affine
and non-affine network deformation assumption. The
different models considered are outlined in table 1, and can
be seen to include what we shall <call the constant
destruction model, the quadratic law model, the square well
model and, finally, a model which only differs from
Phan-Thien and Tanner’s model in the fact that they wused a
pre-averaged form for g, i.e. B :80(1.+ o<r?>) and

replaced <r?> by 3NkT(tr 1) where 1 is the stress tensor

and kT is the Boltzmann temperature.

The parameters appearing in table 1 are defined as

follows:

x-the segmental end to end vector which has been
made nondimensional with respect to the maximum
end to end distance of a segment, Na (where a 1is

the length scale of a segment subunit)



12

o -the square of the ratio of the maximum end to
end distance of a segment to the length scale over
which the function g changes. (o is assumed to

be in the range N>>0 >>1)

B oL -the rate of junction destruction  and

creation respectively (units of inverse time)

R- the length of segments (nondimensionalized by
Na) above which the probability of breakage is

unity in the square well model

All of the models which we have analyzed have used the
Gaussian assumption (Lodge (1968) , Schowalter (1978)) for
the creation function G and, with the exception of the
Phan-Thien and Tanner model, have also assumed that the rate

of creation L is constant.

The simplest choice for B 1is the constant destruction
model in which the junctions leave the network at a constant
rate, independent of the conformation of the segments. This
model «can be shown to be equivalent to the Lodge network
model with a single relaxation time (Lodge (1968)) and it
was pointed out by Yamamoto (1957) that this choice for g

has serious shortcomings (shear rate independent viscosity
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and a zero second normal stress difference). In order to
improve upon the predictive power of the model, Yamamoto
proposed the square well model in which the destruction
function becomes infinite whenever the end to end distance
of a segment 1is greater than R, forcing such segments to
‘leave the network. Yamamoto demonstrated that this choice
for B leads to a shear thinning viscosity although he did
not arrive at completely analytical results. In the same
spirit, Phan-Thien and Tanner have taken the quadratic form
for B where the destruction function is assumed to be
proportional to r?2, They also made an additional
preaveraging assumption and replaced r? by <r?> and showed
that a wvariety of nonlinear phenomena can be described by

the resulting model.

Following specification of G and g , macroscopic
properties of the network can be determined. The velocity

gradient tensor which we have considered is

(1+1) (1-2) 0
r = Xl-a-n - a0 (3)
0 0 0

whichi, as will be demonstrated later can be simulated by the

four roll mill used in the experiments. The parameter y 1is
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the magnitude of the 1local velocity gradient and X is a
parameter which describes the type of flow. If X is 1 the
flow 1is purely extensional and when X is -1 the flow is
purely rotational. As A\ varies between these two 1limits,
the flow 1s a linear superposition of pure extension and
pure rotation with simple shear flow being simulated at A
equal to zero. The ratio of the vorticity to the rate of
strain 1in the flow field is w=(1=A)/C1+ X ). The
"effective" wvelocity gradient tensor acting on the network

when the slip mechanism is considered is

(1-8) (1+1)  (1-2) 0
E = 5 [--n) - (1-£) (1+1) 0 (4)
0 0

which produces an "effective' ratio of vorticity to the rate

of strain equal to (1= X)/(1- &E)(1+ 7).

The problem solved in Fuller and Leal (1980) was the
time dependent start up of the flow field, equation (3) from
rest at t=0. From equation (1) it is clear that the initial

probability distribution function for this situation is

f xlylz) = G(xlylziN)/B(xlylz)

O(
A detailed account of the solution of equation (1) for

all of the models described in table 1 can be found 1in
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Fuller and Leal (1980) which presents the predictions for
the stress tensor and birefringence of the deformed
network. These macroscopic quantities are related ¢to the
moments of the distribution function <x2>, <y?>, <xy> and
<z%*>. In addition the average n=<1> can also be calculated
which 1s interpreted as the concentration of segments

remaining in the network at any given time.

The birefringence from the segments making up the
network can be derived in a manner directly analogous to
that used for the dilute solution dumbbell model, in which
thé birefringence is calculated from the average
polarizibility tensor of the segments. When the network is

distorted in a two dimensional flow, this tensor becomes

Myx Hxy
_ 5
£ Yxy  Myy (5)
0 0 u

Z2z

Since the birefringence An 1is proportional to the
difference in the major axes of the refractive index tensor,
the birefringence will be proportional to the average of the

difference in the eigenvalues of this tensor, i. e.

2k
An = A<(uxx. - “yy)z + 4UXY>2 (6)
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where A is a constant of proportionality which depends on
the solution properties. Following Kuhn and Grun (1942),
the polarizability of a segment is related to the end to
end distance by

by = p + 2QI(X2 + Y2 + 22)

(8)
p - q(x2 + y2 + 22)

i

Ml
where p.is the polarizibility parallel to x and u; is  the

I

polarizibility normal to X. The constants p and q are
independent of x and depend on the polarizibility of monomer
units making up the chain. Using the relationship in

equation (7), the birefringence is seen to be following

function of the moments of the segments

5
An = B {((x‘z) - <.y2>)2 + 4<xy>2} (9)
where B is a constant of proportionality. In wsing this
reletion we are neglecting the contribution of form

birefringence which should be a good approximation for

concentrated systems (Peterlin (1976)).

A summary of the qualitative results for the four

models 1is shown in table 2. It is interesting to note that
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for constant g, the model produces precisely the same
results as would be obtained from the linear dumbbell model
of dilute solutions. The case of constant B is also
equivalent to the model of Lodge (1956) with a single
relaxation time, as pointed out previously by Lodge (1968).
For this case n is unity. This would mean that for constant
B , the number of entanglement junctions remains at the rest
state value and is not affected by the flow. In addition,
for constant B, the model also possesses a singularity (as
can be seen in the response of the birefringence in table 2)

at a critical value of the dimensionless velocity gradient

o = Y/Bo

(9)

e

where

v = a-pla+ni-a-n? (10)

The incorporation of a destruction function which 1is
dependent on the end to end vector x removes this

singularity. The effect of this dependence of B on x 1is
also to make n a diminishing function of the velocity
gradient for all flows except those which are purely

rotational in nature. This 1is demonstrated in figure 1

which displays the results for simple shear and purely
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extensional flows for the quadratic law model. The square
well model and the model of Phan-Thien and Tanner show a

similar trend and those results are not reproduced here.

Using equation (8), the birefringence can be calculated
for all four models. As pointed out above, the singularity
inherent in the constant destruction model is removed when
B becomes a function of conformation. Both the quadratic
model and the model of Phan-Thien and Tanner predict that
the - birefringence approaches a constant asymptote at
sufficiently 1large values of the velocity gradient. This
saturation effect results from the fact that the increase in
birefringence from the deformation of the segments remaining
in the network at any given value of the velocity gradient
is exactly balanced by the diminishing junction
concentration as the network deforms. For the square well
model on the other hand, a bound is placed on the allowable
segment end to end distance and, at some point the drop 1in
the entanglement Jjunction concentration must cause a net
decrease in the birefringence. This leads to an extfemum in
the predicted birefringence/velocity gradient curve. Since
the birefringence and stress are directly related in this
network model, such an extremum will also be a point of flow
instability as pointed out by Doi and Edwards (1979).

Experimentally, therefore, such a maximum way not be
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directly measurable but rather will be manifested by an
instability in the flow following a leveling off of the

birefringence with the velocity gradient.

The effect of flow type can also be studied as the
parameter A is varied. Figure 2 shows the predicted steady
state birefringence for several different values of the
parameter £ plotted against the eigenvalue of the velocity
gradient tensor /3o for the quadratic law model. It is seen
that the curves fall in close proximity to each other for a
large range of ) as long as & does not‘become too large.
This correlation with the eigenvalue of thé velocity
gradient tensor 1is predicted for all the models considered
and does not distinguish between the various forms for the
functional dependence of G “and B . It may be noted,
however, that the <criteria for correlation of the
birefringence against /Ao is that v=(1-£)2(1+2)%-(1-1)%not
be too close to zero. Therefore, experimental data could be
used to estimate the magnitude of & by determining the range

of the parameter X where the correlation withvAa holds.



The reason that the birefringence can be well
correlated with the eigenvalue of the velocity gradient
tensor can be seen by performing a linear stability analysis
on equation 1. This has been done for the case of the
linear dumbbell by Tanner (1676) and more recently for a
somewhat more general model by Olbricht et al (1980). The
analysis of Olbricht et al .included the effect of the slip
mechanism (i. e. finite &) and showed that the point of
neutral stability coincides with the singularity condition
of equation (9). Therefore, if a/v>1, the network model
will predict significant deformation whereas if the flow is
weak ( aW<1), the steady state is only a slight departure
from the rest state configuration. The quantity u/;,
therefore, directly prescribes the strength of the flow and
the amount of deformation. For this reason the
birefringence, which is a measure of the deformation, should
scale with the group o/v. This correlation will break down
when av¥v=0 because the Brownian forces which have been built
into the model by the choice of G, force the model to
achieve a finite length scale for the segments when the
flows are weak. When £ is zero, o/v tends to 2/ Ao which is
twice the eigenvalue of the velocity gradient tensor.
Therefore, one would expect the birefringence to scale with
YAaover a range of the flow type parameter A and that this

range of correlation would depend on the magnitude of &.
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For a given value of £ the "following 1lower bound on the
range of X for the correlation to hold can be found from the

criteria avv=0 or

1.b 2-¢ (1D

Therefore, when £ =0.2, the lower bound is at A=.11 and
when A is 1lower than this value (for example,the curve in
figure 2 for 1=0.1) there will be a marked departure from
the correlation. For £=0.3 the bound is at XA =.176 and this
is reflected in the departure of the A=0.2 curve from the

correlationinthis case in figure 2.

The growth of birefringence in time as the flow is
started from rest can also be calculated. As in the case of
the linear dumbbell, the constant breakage model predicts
simple monotonic growth for all flows when v>0. The
nonlinear models, with conformation dependent destruction
functions, however, show overshoot in the birefringence when
the velocity gradient 1is 1large enough. The predicted
response of the quadratic 1law model to the start up of
purely extensional flow and a simple shear flow can be seen
in figure 3. A11 four models will also show oscillatory
growth in the birefringence when the parameter v is 1less

than zero and this co}responds to the case in which the
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effective ratio of the vorticity to the rate of strain
becomes greater than unity. 1In this situation the network
segments rotate at a faster rate than the rate at which they

are deformed.

The presence of an overshoot for simple shear flow 1is
an expected result and has recently been meésured by Osaki
et al (1979). The prediction of an overshoot for purely
extensional flows 1is, however, somewhat unexpected and is
linked to the nonconstant segment density n when B8 is
nonconstant. The overshoot results from the competing
processes of segment deformation and junction destruction
which dictate the 1level of birefringence. When the time
scale of segment deformation becomes faster than the time
scale of the destruction process, an overshoot in the

birefringence is manifested.

The model of Aceirno et al. (1976) also shows this
overshoot effect 1in extensional flows and their structure
parameter, which 1is directly related to the segment
concentration, is a diminishing function of the velocity
gradient, The model of Phan-Thien and Tanner (1977)
although similar in many respects to the third model
presented here shows a monotonic rise in the birefringence

which 1s a consequence of the preaveraging approximation
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used in their destruction function. The preaveraging forces
the segment density to be constant. The model of Doi and
Edwards (1979) also leads to a constant segment density and
would predict a monotonic rise in the birefringence for the

start up of purely extensional flows.

The technique of flow birefringence offers the
possibility of testing the qualitative trends noted here and
may be wused to suggest the attributes that a network model
should possess in order to simulate the actual physical
situation. As will be demonstrated in a later section, the
existence of a correlation of birefringence with the
eigenvalue of the velocity gradient tensor can be explored
experimentally and used to provide an upper bound for the
magnitude of the slip coefficient ¢ . Existence of an
asymptote in the degree of birefringence or a flow
instability at sufficiently high velocity gradients can
suggest how strong the functional dependence of the
destruction function on the conformation should be.
Finally, the measurement of the growth of birefringénce
after the start up of flow (especially purely extensional
flows) can offer important information concerning the nature
of the creation and destruction processes operating on the
temporary junctions of the network. Existence of overshoot

for the case of pure extension would seem to suggest that
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the correct model of the network should lead to diminished
junction concentration as the network deforms. Monotonic
growth would suggest that this concentration remains
constant and that the network retains its integrity over the

time scales important to the flow process.

III. Experimental

The experimental arrangement is shown in figure 4. The
four roll mill was situated on a cross slide rotary table
which allowed translation and orientation of the flow device
independent of the optics. The rollers were powered by four
independent motors which were connected to the rollers
through electronic clutches that could be engaged
simultaneously 1in order to initiate the flow immediately.
The motors were connected to controllers which could hold
their speeds constant to within one or two percent and which
could electronically brake the rollers simultaneously in
order to arrest the flow. The speed of each motor was
monitored through electromagnetic sensors which sent a

signal to a digital tachometer.

The light source was generated using a 4 watt argon ion

laser which produced polarized light at a wave 1length of
R .

4880 A. The 1light was directed through the four roller
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apparatus from below using a mirror. For the purpose of
birefringence measurements, the 1light was sent vertically
through the device and a polarizer was positioned between
the mirror and the flow device instead of before the
mirror as shown in the figure. The 1light intensity was
detected with a 13 stage photomultiplier tube which was
mounted onto a wide angle goniometer. A polarizer and
interference filter were mounted on the goniometer in front
of the photo tube. For the birefringence measurements the
pinholes were removed and the goniometer was rotated into
the vertical position. The signal was processed with photon
counting equipment which provided the total intensity of the
light striking the phototube. For systems where the 1light
intensity of the birefringence was sufficiently strong and
for the transient experiments where it was important to have
a fast response, a laser power meter was used in place of
the photo multiplier. Both detection systems were checked
against each other and found to produce equivalent results
for steady state flows and for the start up of flows where
the response of the system was slow compared to the response

A3

time of the photon counting equipment.

In the birefringence experiment the first polarizer is
used to define the polarization of the incident beam and the

second polarizer has its polarization vector crossed at 90°
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to the first. The polarizers used were capable of producing

>to 1077,  The polymer solution when

an extinction of 10
deformed by the flow field will be characterized by an
anisotropic refractive index which can be described as a
tensor with major and minor axes at an orientation which is
directly related to the average orientation of the polymer
chains in the flow. The various polarization vectors in the

experiment can be represented by the vector diagram of

figure 5. The light intensity seen by the phototube is then

_ L 2. .28
I = I sin 26sin 5 (12)

where 6 is the orientation of the principal axis of the
refractive index with respect to the incident polarization
vector and I, is the incident beam intensity. The quantity

S is related to the birefringence An=(n|j-n|) by

s = 2T (ny - npa

where ) is the wave length of light and d is the thickness
of the sample. The birefringence experiment therefore
offers the possibility of measuring both the orientation of
the polymer and the degree of deformation through An. The
orientation of the polymer is found by rotating the flow
device while keeping the optics fixed and determining the
angle which produces a maximum in the birefringence

intensity. Measurement  of the intensity at that angle
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produces the birefringence which, as shown by the simple
model of the previous section, is related to the degree of
deformation of the segments making wup the concentrated

polymer network.

The polymer systems studied were polyethylene
oxide/water solutions in the concentration range from .75%
to 1.5% and a 500 ppm solution of polystyrene in tricresyl
phosphate. The WSR-30 Polyox sample was donated by Union
Carbide Corp. and the polystyrene was obtained from the
Japan Synthetic Rubber Co.. The polystyrene was
characterized by JSR through intrinsic viscosity and
sedimentation measurements as having a molecular weight of
18x10° and a molecular weight ratio Mw/Mn of 1.35. The
experiments using the polyox solutions were run at a
temperature of 20°C while the polystrene solutions were
studied at 12.8°C. The viscosity of the tricresyl phosphate

at 12.8°C was 1.7 poise.

The polyethylene oxide solutions were prepared by first
placing the polymer in a small amount of isopropanol and
then slowly adding this dispersion into the vortex of a
flask of water undergoing moderate mixing by a propeller.
The solution was mixed for one day and then subjected to a

vacuum which helped remove inhomogeneities. The solution
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was then passed through a course filter (50 microns) and
allowed to sit for several days. The initial solution
prepared was of 2% polymer by weight and the three
concentrations studied (.75%,1.0%,1.5%) were made by
dilution of this parent solution. This was.important as it
was noticed that it was difficult to duplicate the
measurements from two solutions prepared seperately at the
same concentration unless the steps used in preparation were
reproduced exactly. The polystrene solutions were prepared
by first dissolving the polymer in dichloromethane (a
volatile solvent) and then adding this mixture to the
tricresyl phosphate. This final solution was allowed to sit
heated from below to approximately 50°C for several days
which provided gentl=: thermal mixing of the constituents.
The solution was then placed under vacuum to draw off the
dichloromethane and finally passed through a 1 micron teflon
filter. The concentration was 500 ppm which, although
appearing superficially to be dilute, was actually quite
concentrated due to the high molecular weight and the 1large

degree of swelling caused by the solvent.
IV. Characterization of the Four Roll Mill /

The four roll mill was invented by G. I. Taylor

(1934) who used it to siudy drop deformation and breakup in
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extensional flows. The device consists of four rollers
positioned on the corners of a square. Giesekus (1962)
demonstrated that if the rates and direction of rotation of
a pair of rollers on one diagonal of the square is varied
with respect to the remaining pair, the ratio of vorticity
to the rate of extension can be systematically controlled.

It is this feature which was exploited in our experiment.

The schematic diagram in figure 6 describes the various
modes of operation of the four roll mill. If X is
identified with the negative of the ratio of the angular
velocities of rollers 1 and 3 with respect to 2 and 4, the
flow generated at the center of the device is well
approximated by a linear flow field with the velocity
gradient tenéor of equation (3). The streamlines for this

flow field are given by the following family of curves

x+ 92 - (x-v?% = ¢ (13)

where ¢ is an arbitrary constant. The ratio of vortiecity to
extension is w=(1-3M/(1+X). For the cases where 0<)<1, the
streamlines are open and are characterized by inlet and exit
streamlines which are oriented at an angle ¢ (see figure 6)

with respect to each other. This angle is related to X by

tan(¢/2) = VA (14)
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Alternatively, if O0>x%-1, the streamlines form a family
of ellipses with major axis a and minor axis b (see figure

6) related to ) by

b _ (15)
a

Equations (14) and (15) <can therefore be wused to
determine how well the actual local velocity near the center
stagnation point in the four roll mill is simulated by
equation (3). In particular, the relationship between the
actual value of X which characterizes the flow field and the
setting of the relative angular velocities of the rollers
can be measured. It is also possible to derive simple
expressions from which the velocity gradient can be
determined. 1In particular, it is a simple matter to show
that the trajectory of a particle starting at (xg,¥o) is
given by

(1 - A)

ii—t—ll sinhv/Ayt + xocosh/xyt Y, T sinh Vivt

° /%
(16)

o sinh/Ayt + yocosh/iyt
0 2/ 2/
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Therefore if the transit time for a particle to travel from

(x,,y:1) to (x,,y2) is t1,the velocity gradient is given by

-1 2VX (%77 = %3¥,)
YA At (x] + ¥y (1 -2 + 201 + Nxyyy

The above formula is most useful when )\ is positive. When A
is negative and the streamlines are closed ellipses, it is
more convenient to measure the time for a particle to make a
completé orbit. If this time 1is measured to be Atthe

velocity gradient is

v = 2m (18)

Using equations (13-18) the flow type parameter X and
the velocity gradient <can, in principle, be determined
experimentally for any given rate and direction of rotation

of the rollers.

The device which was actually constructed 1is seen 1in
figure 7. The ratio of the roller diameters to the diagonal
distance defined by the rollers was set at .546. This ratio
was chosen as it produced the best fit between a hyperbola
and the circular surface of a roller. The procedure for
deciding on the best fit 1is shown in figure 8 where the
ratio of the roller diameter to the diagonal distance of the

square defined by the roller centers was varied in order
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that the area between the two curves go to zero. The
rollers were mounted on a pyrex plate which formed the 1lid
of the container and the bottom was also made of a pyrex
plate. The walls of the container were formed from a brass
jacket containing grooved channels to support circulating
water for temperature control., Temperature was measured by
inserting a thermister into the thermometer well and could
be measured to within 0.01° C. In a typical operation
however, temperature gradients were observed to exist in the
system which were manifested by periodic variations in the
temperature of about 0.1°C as the fluid circulated in the

device.

Flow visualization experiments were carried out wusing
the four roll mill in order to characterize the flows
produced by the device. The polyethylene oxide solutions of
at 1% and 1.5% concentration were studied as well as
glycerin. The flow visualization was accomplished by
replacing the brass jacket of the four roll mill with one
made of lucite. A plane of light of approximately 0.125
inches in thickness was directed into the sides of the
jacket at half height which illuminated tiny particles
residing in the liquid. The particles were tiny ceramic
spheres of about 100 microns in diameter. The flow was then

visualized through a camera with a close up lens system.
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Figure 9 shows a series of photographs taken of the glycerin
system at several values of the flow type parameter A. From
these pictures and the equations (14) and (15), the
relationship between the ratio of roller speeds AM and the
value of the flow type parameter for the flow, KF could be
determined. The results of this procedure for the glycerin
and polyethylene oxide solutions are seen in figure 10 which
indicates that the trend for +the concentrated polymer
solutions 1is not significantly different from that for the
glycerin. It is important to note that the angles measured
for the <case of positive values of )\ are those extrapolated
from the center stagnation point. The angles could be
measured to within about 3°which represents a 10% spread in
the value of A. The simulation of the flow field tensor of
equation (3) is seen to be very reasonable except when A is
much smaller that about 0.1. The case of A equal to zero,
which should simulate simple shear flow, was noticeably
different than the simple empirical model and contained
circulating regions due to the presence of the two

stationary rollers.

Using equations (17) and (18) the relationship between
the angular velocity of the rollers and the local velocity
gradient at the stagnation point can be determined by

measuring the transit times of particles in the flow. This



was done for thé glycerin system for several values of the
parameter ). Figure 11 shows the measufed velocity gradients
versus the angular velocity of the rollers. The plot
indicates that the wvalues for all the values of X studied
fell on a single straight 1line from which the following
relation between the gradient vy and the angular velocity of

the fastest pair of rollers w was obtained

Y = 0.678w (19)

where w is measured in radians/sec.

For negative values of A the velocity gradients were
obtained by measuring the orbit time of the particles. For
the case of purely extensiénal flow (X=1) the data wexe
obtained by taking photographs of a given time exposure and
calculating the velocity gradient required for particles to
produce the streaklines 1in the photographs in that given
amount of time. This procedure, although accurate for 1low
values of Y becomes less reliable at high velocity gradients
as the particles move faster and the exposure times have to
be reduced causing the streaks to be fainter. For that
reason data using this technique for purely extensional flow
only covered the range from 1 to 7 radians/sec. In order to

study the derendence of the velocitv gradient on the angular
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velocity of the rollers the technique of homodyne light
Scattering spectroscopy was used for the glycerin system.
The results of this work (Fuller et al (1980)) demonstrated
that the velocity gradient was a 1linear function of the
roller velocities over the range from 0 to 35 radians/sec
which was the maximum range accessible in the experiment.
The homodyne 1light scattering experiment allows direct
measurement of the velocity gradients in the system and also
showed that the region over which the velocity gradient is
constant 1is confined to an area of dimension equal to the
gap width between two adjacent rollers. Unfortunately, it
was not possible to perform such experiments on the
polyethylene oxide solutions due to the multiple scattering

effects inherent with such turbid solutions.
V. Results
A. Birefringence Measurements

Flow birefringence measurements were taken on the three
polyethylene oxide solutions of concentrations 0.75%, 1.0%
and 1.5%. This system was also studied by Pope and Keller
(1977) and Crowley et al (1976) in purely extensional flow
produced by a four roll mill. The results obtained from the

present work for purely extensional flow can be seen in



figure 12. The birefingence 1is 1linear 1in the velocity
gradient for the 1.0% and 0.75% solutions in agreement with
the observations of Pope and Keller (1977). The magnitude
of birefringence for the 1% solution was compatible with
their measurements as can be seen by comparing the
birefringence (corrected for concentration) at a velocity
gradient of 10 sec_% The reported value of Pope and Keller
was U4.8x107° (read off of their figure U4) while the result
from this work was U.2x1072 Since the characteristic
relaxation time for such concentrated solutions is a strong
function of concentration it is expected that the
birefringence will exhibit a stronger than linear dependence
on concentration. This was 1in fact observed by Pope and
Keller and again in this work. The measurements of the 1.5%
solution, however, showed a noticeable departure from the
linear dependence of birefringence on the velocity gradient
and in fact the flow was observed to become unstable above
velocity gradients of 13-14 secn% This instablility did not
occur for the lower concentrations studied over the entire
range of velocity gradients. From the discussion of the
theoretical section, the existence of levelling off of the
birefringence followed by the onset of a flow instability
for the 1.5% solution, suggests that the elongational stress
may possess an extremum with respect to the velocity

gradient.
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One of the most important (although predictable)
observations of prior studies of flow birefringence in
extensional flows is the extreme localization of the region
over which the birefringence exists. This is =&
manifestation of the finite time required for the polymer to
deform and the fact that the molecules start from a nearly
undeformed state just 1inside the entrance of the four
rollers. Figure 13 shows the degree of localization for the
1.5% solution at a gradient of 7.1 secl It is seen that
the thickness of the region of appreciable birefringence is
about 0.015 inches. Since the incident laser beam wused 1in
the experiment was measured to be roughly Gaussian in shape
with a width of between 0.004 and 0.006 inches, the real
signal, which is the deconvolution of the measured curve of
figure 13 with the laser beam profile, is actually somewhat
narrower than 0.015 inches and probably in the neighborhood

of 0.009 to 0.011 inches.

One of the principal objectives of this work was to
study the effect of flow type on the deformation of polymer
solutions. As was pointed out in the previous section the
four roll wmill offers an excellent means by which this can
be accomplished. The procedure which was followed 1in

carrying out this study was to first set the angular
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velocities of the four rollers to achieve a desired velocity
gradient and flow type parameter ). Following this the flow
device must be rotated so that the birefringence signal is
at a maximum. The results for a velocity gradient of 9,47
sec_land for three different values of X for the 1.5%
solution can be seen in figure 14, As expected from
equation (12), the birefringence attains a maximum for pure
extension (\=1) at 6 equal to z45 ., As vorticity is added
to the flow by decreasing A, the orientation of the polymer
shifts towards zero and the magnitude of the birefringence
is decreased. The magnitude of the birefringence at the
maximum point for two separate velocity gradients as a
function of X for the 1.5% solution is plotted in figure
15. This figure demonstrates the effect that vorticity has
in tne deformation of polymers in flow. The same data were
obtained for the 1% solution and it was noticed that the
birefringence for constant velocity gradient was a 1linear
function of YA . This is shown in figure 16 which has the
birefringence plotted against Y. Since the birefringence
for purely extensional flow was also linear in the velocity
gradient for the 1% solution, this suggests that the
birefringence for this system could be well correlated with
(/AY) which is the eigenvalue of the velocity gradient tensor
of equation (3). It is important to note that the values

for A which were used for figures 15 and 16 were obtained
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from figure 10. If the ratio of roller velocities 1is used
instead of the corresponding value measured from the flow
visualization studies, the correlation of the birefringence
with vy is still quite good but is improved when the actual
measured values are used. When the data for the 1.5%
sclution are plotted against YAy as in figure 17, a good

correlation was obtained for this system as well.

As was pointed out in section 2, the fact that the data
seem to be well correlated with/)XY, the eigenvalue of the
velocity gradient tensor, may be interpreted in terms of
molecular charcteristics. Indeed, the simple model
discussed in section 2 would suggest that the slip parameter
should have a maximum magnitude of about 0.27 or less. This
value was obtained from equation (11) using the value of
0.16 for 2, ,.This was the lowest value of X which could be
produced with confidence where the birefringence was still
well correlated. In order to determine a more precise value
for £ it would be necessary to achieve lower values of the
flow type parameter ) than was possible with the present

system.

Besides the magnitude of the birefringence, one can
alsc obtain the orientation angle of the deformed polymer

system. From plots such-as figure 14, the orientation of
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the polymer is found by determining that angle at which the
birefringence achieves a maximum. The results of this
procedure for the 1.5% solution at two velocity gradients is
shown 1in figure 18. In plotting this figure we have taken
the angle of polymer orientation as 45° minus the angle
associated with the maximum. The orientation angle has then
been plotted against (45° -arctan( V1)) which is the
orientation of the principal axis of extension for the flows
of the four roll mill. It is seen that the data appear to
fall <close to the 45°© line which represents the strong flow
limit where the polymer 1is aligned completely with the
principal axis of extension. It must be pointed out,
however, that the error in determining the angle of
orientation increases substantially with the decrease in X
as the level of birefringence drops off and the maximum

becomes broader.

We have also performed transient experiments in which
birefringence was recorded as purely extensional flows were
initiated from rest. This was done by first setting the
motors to a desired speed and then engaging the
electromagnetic clutches. The signal was sent to the laser
power meter instead of the photon counting equipement as the
power meter had a faster response time. The intensity

detected at the power meter was then sent to either a
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storage oscilloscope or an x-y recorder which recorded the
signal as a function of time. The results for the 1.5%
polyethlene oxide solution for three different velocity
gradients are presented in figure 19 which shows the presence
of an overshoot in the birefringence. The magnitude of the
overshoot increased with the velocity gradient while the
time taken to reach the maximum decreased. It was noticed
that the overshoot effect was only observed if sufficient
time was given between the arrest of flow and the initiation
of a new flow or if the solution residing at the center
stagnation point after stopping the flow was pushed aside
prior to start up. Figure 20 shows a series of runs with
successively decreased time intervals between shut down and
start up. As this time is reduced to less than 10 seconds,
the overshoot effect appears to diminish. The waiting time
could not be reduced to less than about 5 or 6 seconds as it
took this amount of time for the motors to regain speed
after braking them. It should be noted that the
birefringence decays to zero very quickly upon braking the
motors. The time scale of the decay is in fact of the same
order as the characteristic time of electronic transients in
the detection equipment. The bouncing at the end of the
shut down resulted from the inertial response of the laser

power meter responding to such a fast decrease.
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The overshéot effect was not seen to occur for the 1.0%
solution. This can be attributed to the fact that this
lower concentration system would have a much faster
characteristic time scale, which could either make any
overshoot occur too quickly for the system to respond or
simply be nonexistent for the range of velocity gradients

studied.

Startup experiments were also performed on 18x10 MW
polystrene/tricresyl phosphate solutions of 500 ppm. These
solutions were visibly very viscoelastic and the addition of
the polymer increased the viscosity of the solvent by 50% as
measured using a Cannon-Fenske viscometer. Figure 21 shows
the results of start-up experiments for several velocity
gradients at a temperature of 12.8°C. It was necessary to
decrease the temperature to this level in order to achieve a
sufficient 1level of birefringence. This figure shows the
appearance of an overshoot which 1is now oscillatory in
nature. The time scale of the overshoot again has an
inverse relationship with the velocity gradient and the
magnitude of the overshoot increased with the gradient. The
reason for the oscillations is not clear to us and requires

further investigation.

In order to try to isolate the overshoot effect from
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experimental artifact, we have carried out a number of tests
in order to eliminate a number of such sources. After the
overshoot effect had passed and steady state was achieved,
the area of 1localized birefringence was passed across the
laser beam by translating the flow device in order to ensure
that the steady state did not surpass the maximum in the
overshoot. This was necessary as, when starting the flow
from rest, it was impossible to ensure that the laser beam
was passing through the stagnation point due to small,
random fluctuations in the roller velocities and the extreme
localization of the birefringence region. For this reason
the device used in this investigation with four independent
rollers is not best suited for the study of the start-up of
purely extensional flows. Care was also taken that the
speed of the motors did not "bounce" when the clutches were
engaged. This effect was measured to be only a fraction of
a percent due to the large inertia and torque of the motors
used. Measurements were also performed with the flow field
in a steady state condition at a velocity gradient where
overshoot was seen to occur but with the laser beam blocked
from passing through the flow device. At a given time the
laser beam was unblocked and the response of the detection
system To an instaﬁtaneous rise in the signal was recorded
in time. The system did show a slight overshoot following

this procedure due to inertia in the power meter, but the
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magnitude of this overshoot was never greater than 10% of

the overshoot caused by flow initiation.

Overshoot in birefringence in simple shear flows has
been recently measured by Osaki et al (1979). However, for
this flow type this is not an unexpected result due to the
precedent set through the measurement of the overshoot
effect in rheological functions. There have been very few
studies of transient behaviour in purely extensional flows
due to the difficulty in creating such flows and the
majority of studies that do exist have been performed by the
drawing of filaments of polymer melts (Meissner (1971)).
Although these studies report a sharp upturn in the normal
stress with time, steady state was not approached before
breakage of the filaments. Recently, however, Munstedt and
Laun (1979) have achieved steady state levels of the normal
stresses and observed a pronounced overshoot when the
velocity gradient was sufficiently high. This overshoot,
which was observed by experiments in two different devices
does seem to be consistent with the transient results

reported here.

Overshoot in simple shear can be predicted by a number
of molecular models (Doi and Edwards (1979), Phan-Thien and

Tanner (1977), Acerino et al (1976) and Bird and Carreau
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(1968)). For the case of purely extensional flow, however,
it would appear that only models with nonconstant
entanglement junction density such as the model of Acerino
et al and the models presented in section 2 with
conformation dependent destruction functions, will show an
overshoot in these flows. The existence of the overshoot
effect therefore offers important information about the
nature of entanglement creation and destruction in flow and
we feel that additional work in this regard is certainly
warranted. It would be interesting to determine the
dependence of the presence of overshoot on the type of
polymer studied, its molecular weight and concentration.
Experiments should also be performed in devices more suited
to the rapid initiation of flow rather than in one with the

mechanical complexities of the four roll mill.

There is relatively little experimental data on the
transient response of birefringence and stresses in purely
extensional flows. This is a reflection on the difficulty
in - creating ideal extensional flows. Recently, however,
Munstedt and Laun (1979) have measured the time-dependent
tensile stress for 1low density polyethylene melts and
observed a pronounced overshoot in the stress in pure
extension when the rate of strain was increased to large

values. This observation. does seem consistent with the



birefringence experiments reported here and the predictions
of the network models with conformation dependent

destruction functions.
B. Turbidity Measurements

The polyethylene solutions were noticeably turbid upon
preparation and remained so after aging for several weeks.
It was noticed that the extensional flows induced an
increased turbidity which was as highly localized as the
birefringence effect. For the 1.5% solution the turbidity
was seen to increase by about 30% whensubjected to purely
extensional flow . The dependence of this percent increase
on the velocity gradient can be seen in figure 22 and was
largely insensitive to the velocity gradient and reached the
plateau of 30% very soon. Unfortunately, it was not
possible to produce velocity gradients much 1lower than 1
sec before the motors became unstable. The turbidity was
observed to remain for a duration of up to 4 to & hours
after the flow was arrested, unlike the birefringence which
fell to zero almost immediately after stoppage of the flow.
This effect 1is shown in figure 23 which also displays the
fact that the turbidity remained highly localized for many
hours. This turbidity increase may be explained by possible

crystallization of the polymer by the flow field. An
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increase in turbidity has been observed by several
investigators studying the phenomena of flow induced

crystallization (Torza (1975) and Frank et al. (1971)).
VI. Conclusions

The four roll mill, when designed with the flexibility
to simulate a wide class of two dimensional flow, provides a
useful tool by which the properties of polymers in flowing
solutions can be investigated. We have shown how the flow
simulated by the device may be characterized with regard to
the flow type and velocity gradients which exist locally at
the center. When the flow type was varied in the device the
measured birefringence for concentrated polyethylene oxide
solutions was seen to correlate well with the eigenvalue of
the velocity gradient tensor which describes the four roll
mill flow fields. This correlation can be interpreted 1in
terms of molecular characteristiecs, and the simple models
discussed in section 2 suggest that it may be associated
with the ability of the solution to deform affiﬁely.
However the correspondence of this model to the real system
should not be taken too far as it clearly cannot describe
many of the observed phenomena, namely the increased
turbidity in the flow and its persistence with time. The

presence of an overshoot in birefringence upon the
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initiation of purely extensional flow has important
consequences and needs to be further verified, particularly
with flow devices which are more suited to a startup
experiment. The presence of an overshoot is related to the
nature of the entanglements forming the solution and, when
several current models are compared, seems to be 1linked to
the 1level of entanglement junctions and would suggest that
the concentration of such junctions should diminish as the

flow deforms the system.
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Captions

1. Normalized entanglement juction concentration
VErsus 0 ; ====- simple shear flow, purely
extensional flow

2. An/B versus Yiu

3. An/B versus t

4, Experimental apparatus

5. Orientation of polarization vectors and sample
refractive index tensor

6. Flow field simulation in the four roll mill

7. Schematic diagram of the four roll mill

8. Quality of fit between a roller surface and hyperbolic
streanline,

9. Flow visualization photographs - A : A) 1., B) 0.,
¢) -1., D) 1., E) .8, F) .4, G) 0., H) -.2, I) -1.

10. AF versus AM‘for glycerin and polyethylene oxide
solutions.,

11. Velocity gradient versus angular velocity of the
fastest pair of rollers for several values of A .

12. An versus velocity gradient in pure extensional
flows for solutions of polyethylene oxide in
water.

13. Light intensity due to birefringence versus the

distance along c¢enter incoming streamline for



Figure 14,

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.
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1.5% polyethylene in water at 7.1 sec-{

Light intensity due to birefringence versus the
orientation of the four roll mill for 1.5%
polyethylene oxide in water at 9.47 sec L
Birefringence versus X for 1.5% polyethylene
oxide solution.

Birefringence versus V) for 1.0% polyethylene
oxide solution.

Birefringence versus viAy for 1.5% polyethylene
oxide solution

Polymer orientation angle versus the orientation
of the principal axes of strain in the flow.

Light intensity due to birefringence versus time
for the 1.5% polyethylene oxide solution at various
velocity gradients after the start up of purely
extensional flow.

Light intensity due to birefringence versus time
after the start up of purely extensional flow.

The successive runs are for different durations of
time between the shut down and the start up of the
flow.

Light intensity due to birefringence versus time
after the start up of purely extensional flow

for the polystyrene/tricresyl phosphate solution.

Percent increasé in the solution turbidity of the



Figure 23.
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1.5% polyethylene oxide solution versus the
velocity gradient in purely extensional flow.
Light intensity transmitted through the 1.5%
ethylene oxide solution. At point (a) the flow
field was initiated and at point (b) the flow

was arrested. At point (¢)  the flow device

was translated so that the center stagnation point
of the original flow was passed back across the
laser beam in order to demonstrate the persistence
of the increased turbidity and the localization of

the effect.
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Abstract

Several choices of the functions describing the
creation and destruction processes of entanglement junctions
in the Yamamoto network theory of concentrated polymer
solutions have been examined. These choices are simple
functions of the extension of the network segments bridging
the entanglement points and it is demonstrated that the
moments of the distribution function describing the network
conformation can be solved for analytically. This has been
done for a wide range of two dimensional flows and for both
the steady state and transient problem. the macroscopic
stress tensor and flow birefringence are calculated and a

variety of nonlinear effects result and are discussed.
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I. Introduction

The traditional model of 3 concentrated polymer
solution views the system as a three dimensional network
formed from intermolecular entanglements of 1long chain
macromolecules in close proximity. The resulting complex
structure is simplified by envisioning this network as
composed of elastic strands joined through temporary
junctions, a notion which was motivated by the successful
application of statistical mechanics to the description of
rubber elasticity. Whereas the junctions in a rubber may be
formed from permanent crosslinks, the network theory of
concentrated solutions allows the jugctions to be temporary
and constantly undergoing creation and destruction
,processes. This model originated with the papers of
Yamamoto (1956,1957,1958) and Lodge (1956) and can
successfully describe many important macroscopic
properties. The model proposed by Lodge, being linear,
yields analytical results and has received a great deal of
attention. A number of authors have subsequently modified
it (Kaye (1966), Bird and Carreau (1968)) in an attempt to
improve its predictive capability but these efforts have
been largely empirical and do not offer a great deal of
insight into the behavior of the network model. The model

formulated by Yamamoto (%956, 1957), however, is of a more
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general form which, though incapable of yielding analytical
results without specification of certain molecular
variables, does offer the possibility of providing this
additional insight. This paper presents the results of
several physically realistic choices for these molecular
variables and demonstrates that simple, analytical results
can be obtained which are capable of describing a variety of

nonlinear phenomena.
II. Development of the Model

Figure 1 depicts the physical representation of the
concentrated polymer solution as envisioned by Yamamoto.
The state of the network is described through a distribution
function f(x,N,t), defined such thatfd3x is the number of
elastic segments 1in the network with end to end vector in
the range from x to x+dx at a time t, which is composed of N
statistical subunits. The objective in constructing the
model 1s to relate macroscopic quantities such as stress and
birefringence to the number, orientation and deformationyof
the network segments averaged over all possible
conformations. The distribution function f obeys

a continuity equation

-g{ + Ve(xf) = G(x,N) - B(x,N)f (1)
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in which x is the rate of change of the segment end to end
vector. The function G(x,N) governs the rate of
entanglement creation and is defined such that ‘G(x,N)d3xdt is
the number of segments formed with N subunits and end to end
vector x in the time interval dt. The destruction of
entanglement Jjunctions is assumed to occur at a rate B (x,N)
which in general is a function of the conformation of the

segments.

We shall consider the response of the network
structure, as defined by the distribution function f, when

the solution as a whole undergoes a general, linear motion
u= LR (2)

which is described via a velocity gradient tensor, I . Here
R is a position vector of a material point defined from some
arbitrary origin. If a polymer segment bridges two
entanglement points with position vectors R, and R, , the end

to end vector of the segment is defined as x = (R, - Rp).

The most common assumption is that the junctions
forming the network move affinely with the imposed velocity
field so that é==L?9 In order to relax this assumption,

Phan-Thien and Tanner (1977) have introduced an empirical
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"slip tensor" which causes the network junctions to depart
from a purely affine motion and have further assumed this
tensor to be a linear function of the rate of deformation

tensor Q(;;+L+)/2. Following this example, we shall take

x = @-& -x (3)

in which the parameter & is the slip coefficient. The
effect of the slip mechanism used here, therefore, is to
have the network deform affinely as if it were subjected to

E'3
an "effective" velocity gradient tensor L[ = (I - £D)

A similar approach has also been used by Gordon et al
(1971-77) 1in a series of papers for bead and spring models
used to describe dilute polymer solutions. Equations (1)

and (3) combine to produce
af
ST VL - &Y - xf = G(x,N) - B(x,Mf (4)

Equation (4) is identical (with £=0) to that originally
derived by Yamamoto and forms the starting point for several
variations of the Yamamoto model (Phan-Thien and Tanner
(1977), Wiegel (1969)). Since it is a first order parabolic
differential equation, the method of characteristics can be
used to solve equation (4) exactly for any choice of the

functions G and g (althdugh the resulting integrations may
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be difficult to carry out). 1In the following sections, we
shall present results for several ad hoc, though physically
‘realistic, choices of G and B . For the purpose of example

we shall consider a two dimensional linear flow in which

1+ 2 a-n 0

fI~

= %- - @-AN-@+x o } (5)

0 0 0

where v is the magnitude of the local velocity gradient.
The parameter A specifies the particular type of two
dimensional flow and varies between *1. This type of motion
was chosen because it offers the possibility of examining
the important effects which occur with variations in the
amount of vorticity in the flow and because it canberealized
experimentally in a four roll mill. Flow birefringence
experiments utilizing such a flow device have been conducted
in this laboratory for concentrated polymer solutions and
the detailed results of this work can be found elsewhere
(Fuller and Leal (1980a)). Figure 2 shows the range of
flows described by the velocity gradient tensor of equation
(5) as A is varied. The ratio of vorticity to the rate of

extension which exists in this flow is

_ (-
o (1 + 1) (6)
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In order to proceed with the solution of equation (4)
itv is convenient to diagonalize the tensor I* =(I-¢D) by
introducing a tensor I such that £—1'££= Y where ¥ is
diagonal. Furthermore we transform the coordinates to a new

frame p = (p,n,z) such that x = I-p. The tensor I is

Yot Yinl 0
1 = (<& AF o ™)
0 0 0
1
where vt o= (1@-) () = AT/2(1-8) (1)} 72 (8a)
V = (1-9)2@1+)2 - (1-0)2 (8b)

The diagonalized tensor ¥ is then

A 0 o
v = 321 o -A o0 (9)
0 0 0
and the continuity equation becomes
CH N T A O R YOI T (10)
at 2 at 2 an = -2

where G(p,N) = G(Ip,N) and B(p,N) = S(L‘Q)- The forms chosen for

G and B at the rest state' will be assumed to depend only on
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the magnitude of the square of the end to end vector
(x*x)=(p Qf3;np. It is convenient at this point to write

out the transformed value of this scalar quantity

x2 + y2 + 22 = p2 - 2upn + n? + z2 (11)

where

w o= (1-20/Q-8(a+>x (12)

When £ is zero (affine deformation) w is precisely the
ratio of vorticity to the rate of extension and the p and n
axes are the principle axes of strain for the flow field
defined by eqguation (5). In order to calculate macroscopic
properties, it is necessary to determine the moments <x? >,
<y? >, <xy>, <z? > and n=<1>. The quantity n is identified
as the concentration of junctions existing in the network at
any given time. These moments are related to the moments of
the transformed frame by the multiplicative factor of

1/2
det(;)=(1-w2)/ .

The characteristics of equation (10), expressed in

terms of the coordinates ( p,n,z) are
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p = Ooe
n = ne

(o]
2 = Z

and the solution of equation (10), obtained by the method of

characteristics is

. . %— vt' - %-/;f'
—é dt'B(poe 9noe ,Z aN)
£ , =
(psn,z,t) fo(po,no,zo)e

Y " Y
o YVt 2

t.un
N N %— vt - %— vt —{,dt'B(p e ,n e ,Z SN} (14)
+ g dt'G(pOe »n e ,zO,N)e ° °

where fo(po,no,zo) is the wvalue of the segment distribution

function at time t=0. For the case of no flow (Y=0), the

relaxation of f with time is given by

_R . _ _=B(p,n,z,N)t
£(p,n,z,t) = £ (p,n,z)e B(p,n,z,N)t | G( n,2z,N) (1-e )

= (15)
B(p,n,z,N)

For the case of non zero vy, the most important time

dependent problem is the evolution of f when the solution
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starts from rest with a flow of the type defined by equation
(5). The initial distribution for this case is given by
taking the time in equation (15) to infinity giving

G N
£ (oyn,z) = SRaMzall) (16)

B(p,n,z,N)
For a given function g(p,n,z), its average can be found
immediately by integrating against the distribution
function, f, over the coordinates (p,n,z). In carrying this

out it 1s convenient to make a change in the variables of

. . . . %—ﬂ&'
integration in equation (14) from t' and " to p' =p e“
L e o
and p%moez The average of the function g is then
o “Y AT LR
<g> = Vl-w? f/fdpdndzg(p,n,2)f (pe ,ne »2)
P
2 do'" pn
X exp [_ I [ v B(p',‘,—,Z,N>
- X p P 17
/;Y 2 vt » (17)
pe
— 2 ~ P dp'” n
+ Y1-w2 —— fffdpdndzg(p,,n,z) - G(p' ’-——T’Z’N)
Ay~ -+ At P e
pe
Py v &
2 d '
N
foy 1, g
p
Further changesin the variables of integration 1in the
. [ — PN
second integral in equation (17) from n, o', p" to n= v
. A A - X At _
and p'=Tptpe 2 v where T=(1l-e 2 M ) are made. Using the

spherical symmetry of G(x,N), the order of integration in the

second integral of equation (17) is reversed and a further
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change of variables of é%pfﬁy and 8'=p"/% shall be made.

This leads to (after dropping the overbars on p and n)

o Y Y
) S - vt o Vvt
<g>= V1-w? [/s dpdndzg(p,n,z)fo(pe 2 , e? ,z)
[ o0 - Y /— Y /_
27 de T+6 vt . -5 Vvt
+ JS[ dpdndz f 6—'g(99,——59 2 n,z)G([T+6e 2 lo,n,z,N) (18)

vy ~o
1

2 (® de'” o
X exp -——f A TR n,2)
VA 2 "V 0
Y T+ge

Equation (18) is the time dependent generalization of
the result obtained by Yamamoto (1957). In order to proceed
further, it 1is necessary to specify the forms of G and B .
Except where otherwise stated, the "Gaussian approximation"
for the distribution G(X,N) (Lodge (1968)) will be taken.
In employing this assumption, the N subunits forming the
segments are taken to be statistically independent and
undergoing a random walk in space and it is further assumed
that the mean extension of a segment never approaches the
maximum possible end to end distance of Na where a 1is the
length of a single subunit. This allows the spring function
for the segments to be approximated as linear. 1In order to
allow for the possibility that the segments might approach a
nearly fully extended state it would be necessary to use a
nonlinear spring function which ensured finite extensibility
in much the same way that a nonlinear spring function is
used in the description of dilute polymer solutions
(Peterlin (1961)). If the end to end distance is made

nondimensional with respect to the maximum end to end
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distance, the function G is

33N
3N> 7 "7 GPyea®)
. e

G(x,N) = L (2 (19)

where L is assumed to be independent of the conformation for
all the models considered here with the exception of the
model of Phan-Thien and Tanner (1977) who assumed L to be

proportional to <r2 >,

Yamamoto (1956) has calculated the stress tensor of the
Gaussian network by determining the forces related to
changes in the free energy of the’ system undergoing a
virtual deformation. Using this approach he was able to
show that

I = 3NRT <x x> (20)

I

where kT is the Boltzmann temperature.

The stresses which are most commonly measured are the
shear stress and normal stress differences in simple shear
flow, and the normal stress difference in purely extensional
flow. For the case of simple shear flow, ( A=0), it should
be noted that the (x,y,z) frame used in equation (5) is

rotated 45° in the (x,y) blane from that normally used. If
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is the stress tensor in the plane rotated by 45° in the
clockwise direction in the (x,y) plane, the shear stress in
simple shear flow is

S =z 1 = BNkT
ya

Xy

(< xz—yz >) (21)

while the first and second normal stress differences are

~ ~

N{ = Tan = Ta.a
= <
- Xy 3NkT < xy > (22a)
No = T..-1T.. = 3NkT( ¥< x242xy+y2 > - < z2 >) )22b)

yy 2z

For purely extensional flow, » =1 in equation 5, the

normal stress difference of interest is

N! = T - Tyy = 3NkT < x%-y2 > (23)

In addition to the stress tensor, the birefringence
résulting from the deformed system can be calculated. The
birefringence results from the anisotropy of the
polarizability tensor of the deformed network. The
polarizability‘tensbr of the segment can be related to the
end to end vector for a segment by averaging over the
contributions to the polarizability tensor of the individual
backbone elements of the chain. This has been done for the

Gaussian chain by Kuhn and Grun (1942). Their derivation
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leads to the following polarizibility tensor for the

segments (Yamakawa (1971))

B = N(p-q)I + 3(Na)?q < x x > (24)

where p and q are constants independent of the segment
conformation. Birefringence measured in the (x,y) plane is
proportional to the difference in the major and minor
principal axes of the polarizibility tensor. Therefore, the
birefringence 1is simply proporticnal to the difference of
the eigenvalves of the tensor < x x> with the third column

and row omitted giving

N

An = A{(< x2 > - < y2 >)2 4+ h< xy >2} (25)

where A is a constant of proportionality.

In what follows, several choices for the destruction
function B will be examined and the corresponding stresses
and birefringence calculated for simple flows of the type

defined in equation (5).
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III. Specific Network Models

A. Constant Breakage Function

Let us first consider the case in which B is taken to
be a constant, i.e. B:Bo. In this case, the integrations
involved in equation (18) can be easily carried out for the

moments n=<1>, <p?>, <n?>, <pn> and <z2>. The results are

no o= L/BO (26a)

< 02 > = .L_ R _l_ l—ﬁae-(l_/‘_;ut) . (26b)

Bo 3N (1-w?2) (l—/x_r_on)

1+/vae (1+‘/\70L) t

<p? > = %—;_N (26¢c)
(1-w2) (1+/va)

< > =lé‘%ﬁw2 (26d)
1-w

< z2 > = —]é‘-—-%\]— (26e)

where a:Y/BO is the dimensionless velocity gradient and time
has been made nondimensional through multiplication by Bo'

The moments <x2>, <y2> and <xy> are then calculated by the

relation <x x>=< pT I p> and are

< Xy > = %‘——l—ﬁ (-3 (1-8) l- 2+20c sinh Ve E+2q2 cosh/;dbe—t] (27a)
(1-vo?) L
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< X2 g 2.2
L1 @a-5)@-n) [1x20-8) A+ o+ (-1 2o
< y? >}_ B, 3N (1 —va?) [ (1-8) (1+0) ] (27b)

. -t
~[1(1-8) (1+A\)a]acoshvat -e” + {(1—g) (1+0) /v } asinh/vate

v
where the upper sign in (27 b is used for <x?> and the lower

sign is used for <y2>.

The constant destruction model leads to fesults which
are precisely equivalent to the linear spring dumbbell used
to model dilute solutions of macromolecules (Bird et al
(1977)). The concentration of entanglement junctions, n, is
a constant and remains at its rest state level L/BO
regardless of the flow strength. Since this concentration
is constant, the network can be pictured as a solution of

independent spring segments at a concentration of L/BO and

is therefore identical to the linear dumbbell model.

From the moments of equation (27), the stress functions
and birefringence can be calculated. An extensive treatment
of this model, in the <context of dilute sdlutions of
macromolecules, may be found in a series of papers by Gordon
et al (1971-77). When £ =0, the model predicts a shear rate

independent viscosity and a zero second normal stress
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difference. The growth of macroscopic properties from rest
is monotonic for all flow types when the parameter v in

equation 8 is positive. When ¢ 1is nonzero, on the other

hand, the model produces a shear thinning viscosity and a
ratio of normal stress differences N,/N; = =£/2 in simple
shear flow. Examination of equation (27) shows that the

growth in the moments can become oscillatory when ¢ and A

are such that the parameter v in equation (8) is negative.
It is interesting to note that the model, for finite values
of ¢ also predicts a maximum in the shear stress with

respect to the velocity gradient in simple shear flow at

azl/V=v.

As pointed out by Lodge (1968), the constant
destruction function model 1is equivalent +to the Lodge
network model with a single relaxation time. Several
authors have modified the Lodge model in order to remove the
deficiencies of a constant viscosity and zero second normal
stress difference when & =0. These include Kaye (1966) who
related the creation and destruction functions to the lécal
level of stress and Bird andCarreau (1968) who assumed that the
creation and destruction processes are both 1linked to the

second invariant of the rate of deformation tensor /D:Q/Z.

/

As in the case of +the 1linear spring dumbbell, the
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network model with a constant destruction function, is
singular at a value of the dimensionless velocity gradient

equal to
a = 1/N (28)

With the linear dumbbell model, this singularity 1is
removed by introducing a nonlinear spring function which
forces finite extensibility (Peterlin (1961)). For a
network model, it seems more likely that the singularity is
removed by breaking of segment junctions as the structure is
deformed. This can be accommodated in the present network
model by making the destruction function, B , depend on the
segment conformation. Since the function B 1is proportional
to the probability that a given entanglement junction will
break and leave the network, g should increase as the
segments deform and the junctions support more tension. In
the remaining models of this section physically plausible
choices for the function g will be examined.

B. Quadratic Destruction Model

As the segments deform and the entanglement Jjunctions
support more tension, the probability of destruction should
increase, as suggested 1in the preceding section, The

destruction function shouid also be spherically symmetric in
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the rest state. The simplest choice for g which has these
properties and which admits largely analytical results is
the following quadratic dependence on the end to end

distance

B = B (140 (x%4y2+22)) (29)

where ¢ is the square of the ratio of the maximum end to end
distance to the length scale over which B changes. This
form for the destruction function is very similar to that
used by Phan-Thien and Tanner (1977) except that they
introduced a preaveraging approximation in their
calculations. A discussion of their model will be presented

in the next section.

In treating the time dependent problem which has an
initial distribution G(x,N)/8(x), it is necessary to assume
that o is in the range N>> o>>1. The requirement that ¢ not
approach unity allows the wuse of 1linear springs 1in the
segments, while the assumption that o is much less than N
permits the initial distribution to be approximated by
G(x,N)/Bo and the integrations in space to be carried out
analytically. These requirements are both physically
realistic and, in any case, the second requirement is

actually not necessary for the case of steady state. The
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moments in the (x,y,z) space are

_ -t L ¢ il 1 (30a)
n = L/B Q(t).e ~+ 2 dt'e ~ Q(t")
0] OO
t
L et quat LL 1 ' "tﬂQLE_Lﬁ_QL) . (30b
<x? > = e c(o) 80 3N J dt’e c(th (30b)
0
2 s - L et Qo)A () L_‘g__ft L —t'QUENA (£) (30c)
y = + dt'e
B, 3N C(t) B, 3N c(th)
0
t
_ L efowe® , L 1 et B(tD) 30d
< xy > 'Eg'gﬁ TS B 3N [ dt'e D) (30d)
0
<22 > = l_.g:f.QSE) EL-}—'Jtdt'e Q(t) | (30e)
60 3 Z(t) g 3N )
(o]
where
. ﬁ y J
Q(t)=[(1-w?)/c(t)z(t) 1 (31a)

+
K)=[{(1-6) (1+A)7 € teoshfvat
+[<1-e><1+x>;v]§}gp¢$at + € oMWz 1/(1-H (14 (31b)
v

B(t)= [(1—6)(1+A)w2(t) (1- A){costh&t + 651thVat}]/Q1 £) (1+)

e (31¢)

C(t)=1 + 2 €sinhfiat + 2 €(coshyfvat - 1) - w’Zlt) (31d)
va

Z(t)=1 + €t (31e)

€= 20/3N : (31fF) |
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The use of the destruction function as defined in
equation (29) removes the singularity of the constant
breakage model and it is a simple matter to show +that the
maximum steady state wvalue which a moment may attain is
(3N€/2) . The conformation dependent destruction function
also causes the entanglement junction density n to decrease
from its rest state value L/Bo as the network 1is deformed.
This decrease results from the 1increased probability of
junction breakage as the segments joining the junctions
stretech and supply increased tension on the entanglement

points.

Figure 3 shows the normalized junction concentration
¢%n/L) plotted against the velocity gradient for purely
extensional flow and for simple shear flow. Since purely
extensional flow will always be a "stronger" flow than
simple shear atvany given value of the velocity gradient,
the Jjunction concentration will decrease at a faster rate

for pure extension than for simple shear as shown in figure3.

The effect of the slip mechanism in purely extensional
flow is simply to scale the velocity gradient by a factor of

(1-€) and therefore it 1is only necessary to consider the
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case of £=0 in order to obtain the qualitative behavior of
the moments of the distribution for this flow type. For
flows with a finite amount of vorticity, the effect of the
slip mechanism, as already noted, is to cause the network to
behave as though it were deforming affinely with an
effective velocity gradient tenéorzgégglfg). T?is effect 1is
demonstrated in figure 3 where ¢ is varied form 0 to 0.2 for
the case of a simple shear flow (A=0). As ¢ is increased
above zero, the decrease of the junction concentration is
suppressed greatly and in fact can be shown to remain
constant at the rest state value for all velocity gradients

as f approaches unity.

The stress tensor can be calculated from equations (20)
and (30). Figures 4-6 show the shear viscosity 7=S/a and
the normal stress coefficients W;:hh/dz'plotted against the
velocity gradient for several values of €. The conformation
dependent destruction function of equation (29) produces a
shear rate dependence for both the viscosity and normal
stress coefficients for £=0 (whereas these functions were
only shear rate dependent for nonzero ¢ in the constant
breakage model). As € is increased above zere, these
functions drop off at a faster rate with the velocity
gradient. As is demonstrated by figure 6, the absolute

magnitude of the second normal stress difference is finite
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for £=0 and increases with¢ . The ratio Np/N, is still well
approximated by -£/2 (as in the case of the constant
breakage model) although this simple relation breaks down as
¢ goes to zero since N, has a finite magnitude for this

model when £=0 in contrast to the constant breakage model.

The dependence of the normal stress difference on the
velocity gradient for purely extensional flow is shown in
figure 7. The dimensionless stress difference N{/2kT
asymptotes to a value of €' as the velocity gradient goes to
infinity. The -elongational viscosity N{/a is plotted in
figure 8 and is predicted by the model to first increase
with the velocity gradient which reflects the abrupt
increase in the tension of the segments in the direction of
the principal axis of strain as the critical pointa=.5 is
surpassed. The elongational viscosity eventually passes an
extremum and decreases at a rate inversely proportional to
the velocity gradient as the gradient tends to infinity.
This decrease is a consequence of the decrease in
entanglement junction concentration with deformation which
eventually overtakes the effect of increased tension in the
remaining segments of the network. The magnitude of the
extremum is controlled by the magnitude of € in the model.
As € is decreased, this maximum will increase and will

become infinite as & goes to zero and the model passes over
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to the constant breakage model which possesses a singularity

ata=.5.

The initial increase in the elongational viscosity 1is
supported by the majority of experimental data 1in
extensional flows and in fact a maximum with respect to the
velocity gradient has recently been reported by Munstedt
Laun and (1979). A maximum in the elongational viscosity is
also predicted in the molecular model of Aceirno et al
(1976) where the authors built structure dependent
relaxation times into the network. The recent model of Doi
and Edwards (1979) which is based on the reptation concept
of Edwards (1977) and de Gennes (1971), however, predicts a

monotonically decreasing elongational viscosity.

The response of the quadratic law model to a start up
flow‘ can also be determined. Figures 9-11 show the g;owth
of shear stress and normal stress differences for the
inception of simple shear flow. The basic trend is
qualitatively the same for each of these stresses with an
overshoot occurring for large enough values of the velocity
gradient. As in the case of the constant breakage model,
the growth of the stresses becomes oscillatory when the
parameter v of equation (8) is less than zero. Figure 9

also shows the fact that the shear stress, for finite values
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of £ , possesses an extremum with respect to the velocity
gradient. As already mentioned, an extremum also appears in
the constant breakage model. A maximum exists as well 1in
the model of Phan-Thien and Tanner (1977) as can be seen in
their figure 2. As pointed out by Doi and Edwards (1979),
the existence of a maximum in the stress with the velocity
gradient leads to an instability in the flow at velocity
gradients which surpass the extremum point. The presence of
the oscillatory nature and the maximum, however, will be

smoothed out and in fact may disappear in highly
polydisperse samples where a spectrum of relaxation times
will have to be included. It would be important, therefore,
to consider the molecular weight distribution of polymer
samples used in experimental investigations of these

particular model predictions.

There is a great deal of experimental evidence which
supports the existence of an overshoot in the stresses in
the start up of simple shear flow (Huppler et al (1967),
Osaki et al (1976)). These experiments are, however,
difficult to carry out and care must be taken to account for
experimental artifact when mechanical means are used ¢to
measure the transient stresses (Lockyer and Walters
(1976)). Recently, however, Osaki et al (1979) have

conducted experiments using the technique of flow
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birefringence to measure the level of stress by appeal to
the stress optical law ( Philippoff (1963)). These
experiments avoid the inherent problems associated with the
inertia of mechanical components and do in fact show gn
overshoot for both the shear stress and the first normal
stress difference. There have been reported cases of an
undershoot following the initial overshoot (Huppler et al
(1967)) but more recent measurements (Osaki et al (1976)

have failed to demonstrate this effect.

The prediction of overshoot for this model results from
the combined action of segmental deformation and the
reduction of the entanglement junction density as the
network responds to the imposed flow. As the time scale of
the deformation process (which scales as ? ) becomes
sufficiently short relative to the time scale of the
destruction process 0%;’), the first response of the network
to an imposed flow 1is a significant 1level of segment
deformation, and the network thus supports a large level of
stress. Eventually, however, the destruction process takes
over and the number of segments availéble to support the
stress is reduced so that the stress drops off. Other
molecular models which also predict an overshoot of stresses
in shear flow include the models of Bird and Carreau (1968),

Acierno et al (1976), Phan-Thien and Tanner (1977) and Doi
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and Edwards (1979). The model of Doi and Edwards, however,
while predicting overshoot in the shear stress and the
second normal stress difference, produces a monotonic

response for the first normal stress difference.

Figure 12 shows the response of the normal stress
difference to the start up of purely extensional flow.
There is alsoan overshoot of the stress for this situation
when the velocity gradient 1is sufficiently large. This
overshoot is again a direct result of the combined effects
of segmental tension followed by a drop in entanglement
Junction concentration. Due to the difficulty of producing
extensional flows experimentally, there is not a great deal
of data on transient elongational stresses. Meissner (1971)
has measured the elongational stress produced by the drawing
of a low density polyethylene melt and although a sharp
upturn of the stress was observed with time, a steady state
was‘ not achieved before the drawn filaments failed.
Recently, however, Munstedt and Laun (1979) were able to
achieve steady state levels of the stress in an extensional
flow and a pronounced overshoot of the elongational
viscosity was observed when low density polyethylene melts
were subjected to elongational flows produced by two
different apparatuses. The overshoot was observed only

after the imposed strain rate was increased above a certain



level. We have also performed start up experiments in
purely extensional flows generated in a four roll mill.
These experiments, which are reported in detail in Fuller
and Leal (1980a), used flow birefringence to measure the
response of concentrated polyethylene oxide/water solutions
and concentrated polyethylene/tricresyl phosphate solutions
to the inception of extensional flow. Overshoot was
observed in the birefringence for both systems which would

suggest that the stresses overshoot as well.

Stress overshoot in extensional flow is also predicted
by the model of Acierno et al and is directly related to the
decrease 1in their structure parameter (whicﬁbis related to
the entanglement Jjunction concentration) as the network
deforms. The model of Wagner (1976), which is a modified
Lodge model of a rubber~like liquid using a strain dependent
memory function, also predicts an overshoot in the
elongational stress and was shown to produce good fits to
the data of Meissner (1971). The model of Phan-Thien and
Tanner shows a monotonic rise in the stress for this flow
but this is a consequence of the preaveraging approximation
which they wused as will be demonstrated 1in the next
section. The model of Doi and Edwards, which has a constant
density of junctions, shows 2 monotonic increase of the

stresses with time in a purely extensional flow. This is



also true of the variations of the Lodge model proposed by

Kaye (1966) and Bird and Carreau (1968).

Using equation (25), the birefringence resulting from
the deformed network can also. be calculated. Figure 13
shows the function 4An/A plotted against the eigenvalue of
the velocity gradient tensorv¥) a for several values of A
and f . This figure demonstrates that the birefringence (or
any invariant of the tensor <x x>) scales with VA @ for a
wide range of A as long as ¢ does not become too large.
The reason that this correlation exists can be understood by
appeal to a linear stability analysis of equation (4). Such
an analysis has been carried out for the case of the
dumbbell model by Tanner (1976) and more recently for a more
general model of deformable systems by Olbricht et al (1980)
for general 1linear flows. The results of such a study
indicate that the strength of the flow with the slip
mechanism in effect is dictated completely by the eigenvalue
of the effective velocity gradient tensor!f—.(!—fg). The
criterion for uncontrolled growth of the linearized model is
given by equation (28) and the quantity ¥v o therefore
controls the degree of deformation in the system. When ¢
is equal to zero (affine motion) the groupYv a becomes 2Vva
which is exactly twice the eigenvalue of the velocity

gradient tensor of equation (5). For this reason one would
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expect the birefringence to be well correlated againstvx—a
as long as ¢ does not become too large. The situation
becomes more complex when Brownian forces (which are
included in the model through the <creation function G)
become important as in the case of weak flows (V7d<1). The
effect of Brownian motion 1is to force the segments to
maintain a finite length even when the flows are weak. For
this reason there will be a finite amount of deformation and
birefringence even as avv=20. It is evident that the
correlation with YA @ must break down when v=0 which provides
an estimate of the range of A for a given value of & over
which the correlation will hold. Setting v to zero, this
estimate of the relationship between £, and the minimum

value of A for the correlétion to hold is

Xz £/(2-¢8) (32)

The exact results in figure 13 provide a test of the
validity of (32). For example, when ¢ is 0.2, the
correlation can be seen to break down when A is 0.1 and
this 1is below the lower bound of 0.11 set by equation (32).
When € 1is increased to 0.3, the predicted lower bound on A
is 0.176, and the correlation can be seen to break down when
A approaches 0.2. These results suggest that experiments

in which birefringence measurements are obtained for the



113

flow field considered here could be used to determine the
smallest value of A where the data correlate withv¥} a« , and
thus to place an upper bound‘on the magnitude of € . Such
experiments have in fact been performed in this 1laboratory
(Fuller and Leal (1980a)) wusing a four roll mill énd the
measured flow birefringence in concentrated solutions of
polyethylene oxide in water. In this case the degree of
birefringence wasfound to be well correlated with YA & over the
entire vrange of A accessible to the apparatus which was
1>>A >>0.16. This suggests that ¢ must be lower than
approximately 0.27 for this particular system. This bound
on ¢ s consistept with the value estimated using the
relation Np/N == ¢ /2 where the accepted range of the ratio
of normal stresses is from -0.1 to -0.4 (Graessley (1974),

Tanner (1973)).
C. Phan-Thien -~ Tanner Model

Equation (4) is the starting point for the model of
Phan-Thien and Tanner (1977). Invthis model the Gaussian
assumption 1is wused for the creation function G. The
destruction function g8 and L are both taken to have a
simple quadratic dependence on the end to end distance.

However, a preaveraging approximation is used such that
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8 :ﬁb(l4-0<x?+ y2+ 22>) (33a)

(1 +0 <+ y2u ) (33b)

=
]]

where the constants hy and g, which appear in the original
paper are directly related to the constants By and Ly, used
here. Phan-Thien and Tanner further wuse the equality
<x2+y24+22>=tr( T )/3NkT 1in order to construct a constitutive
equation. It has been demonstrated that the resulting model
is capable of fitting rheological data very well for a
variety of conditions (Phan-Thien (1978), Dealy et al
(1979)), but it would be of interest to examine the same
model without recourse to the preaveraging approximation.
This can be done in a straightfoward manner and folloWs
along the same lines as the quadratic law model. One point
worth mentioning is that because the function L has thé same
functional dependence as the destruction function, it is not
necessary to assume anything about the magnitude of%n order
to obtain analytical results for the time dependent

problem. The relevant averages in the (p,n,z) frame are

n=M1-w2) [ et/{(ac-b2)d}" !

Po ﬁ/}dt'e4'{1+([(C+a)-gﬂb_+ 1]}/{(ac—g?)df] (343a)
° 2 ac-b2. ac-b2 4

|
<p2>=M(1-w ) [ éig/{(ac-bz)dﬁ(ac-bz)
By N -

. [} 1
t/wdt éi {1+€[3c-6wb + ac-b? + 11}e (ac-bz){(ac-bz)d}ﬂ
, ° 7 ac-bZ. clac-b?) ; (34Db)
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<N2y=L(1-w f%[ éﬁg/%(ac-o‘)d%&ac-bz)

B, 3N
t ' _t1 2 1
fﬂ,dt € {1+€[3a-6wb +(ac—5§ + 1]}a/Qac~b ){(ac-bz)df%
2 ac~bZ a(ac-b2) d (34¢)
<pn>=L(1-w }é[ étg/Q(ac-bz)d%Qac-bz)
B, 3N
+ftdt' € {1+e[3(asc) - 2wlac-2b2) + l]}b/(ac-bz){(ac-bnd}'?]
o 7 ac-n? b(ac-b?) b (34d)

1 1
<z2 >:L(1-—w2)/2[ &' /{ (ac-b2)d¥d

B, 3N 1
Uftdﬁ éﬂ {1+e[ c+a=-2wb + BJh/Q(ac-bZ)dﬁHJ (34e)

o — =,

2 ac-b d

where
a = eAﬁhg € (1 - éNvdB (35a)
Nva
b = w(l +€t) (35b)
¢ = Mvat[q 4 jL(T-eSWGS} ' (35¢)
Wa

d = 1 +et (35d)

From these averages, the stresses and the birefringence
can be calculated as before. The: predictions for this model
are qualitatively very similar to the quadratic law model
and for this reason it is not necessary to present figures

describing the results. it is important to note that this
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model does predict an overshoot in the birefringence and
normal stress difference when purely extensional flow is
started from rest. This is in contrast to the conclusions of
Phan-Thien and Tanner and the difference is a consequence of
the preaveraging approximation they used. The preaveraging
approximation cannot be used successfully for this network
model because the distribution function never becomes a
strongly peaked function 1in strong flows as they assumed.
Raﬂher, the distribution function becomes a broad function
with its maximum remaining at the origin. This is not the
case for the nonlinear dumbbell model of dilute solutions
where the preaveraging can be successfully used (Hinch
(1977), Peterlin (1961), Fuller and Leal (1980b)). In this
case the use of the nonlinear spring forces the probability
mass of the dumbbell to remain confined to a finite region
of space causing the distribution function to become
strongly peaked in strong flows. In the case of the network
model with a destruction function given by equation (29),

there is no such constraint on the probability flux.
D. Square Well Model

Yamamoto (1956) originally proposed the following form

for the destruction function



By *2+ y24+ z2< B2
B= (36)
o: X2+ y24+ 72> R

where R is a length scale which has been nondimensionalized
by the maximum end to end distance and will be assumed to be
in the range N7 <<R<<1. Using this model, Yamamoto
demonstrated that a shear thinning viscosity in simple shear
flow could be predicted, as well as an extensional viscosity
with the same general trends as shown in figure 8. It is
difficult, however, to carry out the integrations involved
and Yamamoto was not able to arrive at explicit expressions
for the stresses. For the flow field given by equation (5),
a useful approximation can be used, however, which makes it
possible to arrive at largely analytical results. This
approximation is based on the observation that the
probability mass governed by equation (1) will exit
primarily out on the p axis with the 1 axis being an axis
of compression. This suggests that the problem can be
simplified by assuming the destruction function to be a

function solely of p . That is

B.: Ipl< R
B= ° (37)
oo Ipl) R
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This approximation is strictly wvalid only when w<<1
(equation (12)) since the p and M axes become coincident
when w=1.. For this reason the results obtained using (37)
are only useful for flows which are almost purely
extensional and cannot be used for the case of simple shear
flow. Using equation (18), the appropriate moments in the

(p,m,z) frame are

t

n =1L (1-w2§é{ et E(t) +f" dt'é"E(U)} (38a)
Bo © '
<p2> = L 2 [lexpl-(1-Nve)t}D(t)
Bo 3N -
+ft dt’ exp{-(1-YWe)t}D(t)1/(1-w?) (38b)
3
<M2> = L exp{-(1+Wa)t}[E(t)+2w2 D(t)/(1-w2)]
NGB, to, —_ 2
+ L [ dt exp{=(1+VWe)tI[E(t)+2w2 D(L)/ (1-w")] (38¢)
, NByJo t
<p2> "L [ pet) + [at e () 1/ (1-u2) (38d)
o]
<Z2> = n/3N | (38e)
é(t) = erfLX(1-w29ééNau2) (38f)
_v-v-at
y -Veat -X2(1-w?)e
D(t) = [E(t) - (X(1-w2)2e 2 e 172 (38g)
X= [3N R | (38h)

2

The steady state elongational stress in purely

extensional flow is shown in figure 14. The effect of the
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square well model for the destruction function B8 is to
remove all segments from the network with end to end
distances greater than R and this produces a maximum in the
stress as a function of the velocity gradient. The reason
for the extremum is that, as the network becomes greatly
deformed and all existing segments achieve an end to end
distance of R, the junction density begins to drop off
rapidly, reducing the amount of stress that the network as a
whole can support. In the quadratic law model, although the
stress attains a saturation value (as seen in figure 7), the
individual segments remaining in the network can extend
indefinitely. That is, even though the average segmental
end to end distance is limited to a maximum possible value
of (3N 6/27', the end to end distance of the segments
remaining in the network which is <x2+y2+22>/n can increase
without bound. 1In the square well model, however, the

quantity <x2+y2 +z22>/n is limited to a value of O(R’).

Doi and Edwards (1979), have pointed out that an
extremum in the stress represents a point of neutral
stability and flows at a higher velocity gradient will be
unstable. Indeed, the flow birefringence experiments in
purely extensional flows using a four roll mill (Fuller and
Leal (1980a)) did show a flow instability at sufficiently

high velocity gradients and this instability was directly
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attributable to the viscoelasticity of the polymer solutions

in which it was observed.

The square well model does predict a good correlation
between birefringence and the eigenvalue of the velocity
gradient tensor, as well as an overshoot in both the stress
and birefringence as purely extensional flow is started from

rest.
IV. Relaxation

From equation (15), the relaxation of the moments of
the distribution function can be calculated immediately,
given the form of the distribution function at the instant
the flow is arrested. This is a straightforward calculation
for all the choices of the destruction function considered

~here. For the purpose of illustration, the results for the

quadratic law model are presented below,

n= L ofH(L) + ot [T LAty O (39a)
<2>O L O-t(°°'-t'/\ PR a
X = {H(t) + € A dt e Q(t,t)A (t,t)/C(t,t)}/3N (39b)

Bo
< 2> - L ~t 4 S L VY IA ' Ayt
y o {H(t) + € {O“dt e"QUE, A (¢,£)/C(t, ) }/3N (39¢)
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<xy> = L e't-/:gt' et Q(t,t)B (£ )/C(t,t)/3N (39d)
B '
<z2> = 10 {H(t) + &t ar &L, t)/z(t + t)}/3N (39e)
(6]
where
Ble,t) = {(1-w2)? /0L, )AL + £) (40a)
AE,t) = A () + vet/(1-£)2 (1+2)° (40b)
H(t) = 1-6%/(1 + €t} . . (40c)
é(ﬂ,t) - C(t) + (€t)Y + 2€t coshvat + 2e§£§ithVb€
Wa

- w2 (Z2(t + t) - Z (tH?) (40d)

and all other variables are defined in equation (31).

The predictions for relaxation of the shear stress and
first normal stress difference after a simple shear’flow is
suddenly stopped are shown in figure 15. As the velocity
gradient increases, the time scale for decay of the stresses
decreases, and this is in general agreement with experiment

(Huppler et al (1967), Osaki et al (1979)). The predictions
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do differ from experiment, however, in that the shear stress
is predicted to relax slightly slower than the first normal
stress difference whereas the measured data indicate the
opposite trend (Huppler et al (1967)). It is generally
agreed, however, that the measurement of normal stresses is
not nearly as precise as the shear stress measurement and
further confirmation of this point is required (Huppler et
al (1967)). The effect of the slip mechanism does not
influence the general trends already noted and the results
for finite values of & are not reproduced here. Also the
same qualitative results would be predicted by the other

models presented here with different choices for G and B .

V. Conclusions

We have examined the behavior of the network model of
Yamamoto for several choices for the creation and
destruction functions which describe the dynamics of
entanglement 1loss and creation in a concentrated solution.
In particular, it is demonstrated that the model can predict
a variety of nonlinear effects whieh are supported by
experimental data if the destruction function is allowed to
depend on the end to end distance of the segments which
bridge the entanglements. If the destruction function is

Simply a constant and independent of segmental conformation,
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the model is precisely the same as the linear dumbbell model

of dilute solution theory.

The principal consequence of making the destruction
function depend on the segmental conformation is that the
number of entanglement junctions per unit volume, n, will
decrease as the network deforms wunder the action of an
imposed flow. This "loosening" of the structure causes the
variety of nonlinear phenomena which can be predicted by the
model such as shear rate dependent stress functions and the
overshoot of stress and birefringence for start-up flows.
The detailed response of the model is controlled by two
parameters, £ , the slip parameter which prescribes the
degree to which the network will deform affinely, and € (or
X for the square well model), which is related to the
segment length scale over which the destruction function
increases. This paper has dealt primarily with the
qualitative features of the Yamamoto network model and does
not address the question of how well the the model can
produce a quantitative fit to experimental data. This must
of course be the final objective of the modelliné and is the

focus of current research in this laboratory.
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Captions

1. Network representation of a concentrated polymer
solution.

2. Range of flows represented by equation (5) and
simulated in the four roll mill.

3. Normalized entanglement - junction concentration
versus da.

4, Normalized shear viscosity versus a.

5. Normalized first normal stress coefficient versus

a.

6. Normalized second normal stress coefficient versus

a.
7. Normalized elongational stress difference versus
a.
8. Normalized elongational viscosity versus a.
9. Transient normalized shear stress versus time
(in units of B;‘).
10. Transient normalized first normal stress
coefficient versus time (in units ofBg).
11. Transient normalized second normal stress
coefficient versus time (in units of‘ﬁg).
12. Transient normalized elongational stress

- - - -t
versus time (in units of B).

S

13. Normalized birefringence An /A versus a.



Figure 14,

Figure 15.
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Normalized elongational stress versus d .
(Square Well Model)
Relaxation of shear stress (- - - - ) and

) with

first normal stress difference (

"‘
time (in units of By ). The stresses have

been normalized with respect to their values

at t=0.
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Abstract

Flow birefringence measurements have been obtained on
three molecular weight samples (2—8x10‘D MW, MW/MN:1.14-1.3)
of polystyrene in dilute solution (50-100ppm) in a viscous
polychorinated biphenyl solvent. The flows were generated
using a four roll mill which could simulate a wide range of
two dimensional flows 1in which the flow type (i.e. the
ratio of the rate of rotation to the rate of strain) could
be varied independently of the velocity gradient. The
normalized birefringence, corrected for concentration,
(4n/nc), was observed to approach a saturation value at high
kvelocity gradients in purely extensional flow. This
saturation value was independent of both the molecular
weight and the concentration c, in agreement with theory.
In addition, the magnitude of the saturation wvalue 1is
consistent with nearly fully extended chains and suggests
extensions in the range of 20-50 times the rest state size.
The data of the birefringence over a wide range of flows were
found to be well correlated against the eigenvalue of the
velocity gradient tensor in agreement with the results of
the "strong/weak'" flow theories of Tanner (1976) and

Olbricht et al (1980).

The experiments are compared with a simple dumbbell



model which incorporates the effects of a nonlinear spring,
variable hydrodynamic friction, and internal viscosity. It
is shown that this simple model <can simulate the
experimental results surprisingly wéll if the effects of
molecular weight distribution and finite transit times in

the flow device are taken into account.
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I. Introduction

When subjected to a flow field, a macromolecule in
solution will respond to the hydrodynamic forces imposed on
it by altering its conformation through reorientation and
deformation. It 1is this change in the conformation of the
microstructure which gives rise to the non-Newtonian flow
properties which are characteristic of such systems. It is
known, for example, that even minute concentrations of
macromolecules can cause a substantial decrease in the drag
in turbulent shear flows (Toms phenomena) and increased drag
in flows through porous media. These phenomena are thought
to result from flow-induced stretching of the macromolecules

(ef. Hinch (1977), Dreher and Gogarty (1979)).

There has, of course, been a substantial effort to
describe the dynamics of macromolecular motions in very
dilute solutions using a variety of molecular models (Bird
et al (1977)) and these studies have contributed
considerable understanding of the mechanisms and nature. of
flow-induced conformation changes in macromolecules.
However, it must always be kept in mind that these are model
studies, and there 1is a critical need for direct
experimental determination of the conformational response to

flow, from which the vérious models can be systematically
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evaluated and improved. The acquisition of data which can
address this issue is thezfocus of current research in this
laboratory. To this end we are employing optical techniques
which probe polymer solutions subjected to a variety of flow
conditions in order to determine the extent of deformation
and orientation of the macromolecules as well as the

kinematics of the flow.

This paper reports the results of studies of dilute
solutions (50 to 100 ppm) of high molecular weight
polystyrene dissolved in a viscous solvent (polychlorinated
biphenyl). Flow birefringence was used in order to measure
the extent of macromolecular deformation in a wide range of
two dimensional flows which are produced in a four roll
mill. The experimental apparatus used in this study has
also been wused to study polymer solutions of higher
concentration where 1intermolecular interactions play a
dominant role and the results of that work have been

reported elsewhere (Fuller and Leal (1980a)).

Previous investigations using the technique of flow
birefringence of dilute polymer solutions have been
restricted to the wuse of either simple shear flow
(Philippoff (1963)) in which fluid elements rotate at a rate

identical to the rate at which they deform, or purely
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extensional flows (Pope and Keller (1978)) where there is no
rotation of fluid elements. Consideration of the role of
flow type (which <can be characterized by the ratio of
vorticity to the rate of strain in the two dimensional flows
to be considered here) has therefore not been fully
addressed. The consequences of flow type have been studied
tLheoretically and criteria governing the onset of 1large
Scale deformations in the microstructure have been
established based upon several simple models of deformable
micro-elements (i.e. either particles of macromolecules)
(Tanner (1976), Olbricht et al (1980)). In addition, it may
be noted that an understanding of the role of flow type on
macromolecular extension is particularly imbortant in the
problem of turbulent drag reduction (c¢.f. Leal, Fuller and
Olbricht (1980)). Since it is the flow type combined
with the magnitude of the velocity gradient which prescribes
the strength of the flow, and the <corresponding degree of
polymer deformation, it is important that this point be
explored experimentally. The four roll mill wused in the
present experiments made it possible to systematically vary
the flow type over a wlide range of two dimensional flows,
from purely extensional flows to flows which are purely
rotational. The study reported here in fact considered
flows ranging from pure extension to flows which approach a

simple shearing flow.
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Prior experiments have also not systematically examined
the role of molecular weight or the distribution of the
molecular weights in the deformation process. In the
experiments discussed here, three samples were studied,
varying in molecular weight from 2x1d’ to 8.42x10°. We also
present the results of simple molecular model calculations
in order to investigate the degree to which the experimental
results can be simulated. The dumbbell model which we use
provides a relatively crude representation of a real
macromolecule, but does incorporate such effects as internal
viscosity, a nonlinear entropic spring and_ conformation
dependent hydrodynamic friction. It is demonstrated that
this simple model can fit the data reasonably well if the
molecular weight distribution and response time of a
macromolecule reacting to the flow are properly accounted

for.
ITI. Theoretical Developments

Important qualitative insight into the dynamic and
steady state response of a polymer chain to flow can be
obtained using the elastic dumbbell model introduced by
Kuhn (193&{ In contrast to the "many bead and spring"

models of Rouse (1953) and Zimm (1956) where the positions



152

of many points along the polymer chain are considered, the
dumbbell model focuses only on the response of the end to
end vector f joining the end points of the chain. Thus,
only the principal mode of relaxation is considered and the
chain is pictured as a spring joining two points in Space
(figure 1). Since it is only the relatively slow, long
wavelength motions of the macromolecule which are
considered, acceleration terms can be neglected and the
dynamical equation governing conformation changes in the
macromolecule 1s obtained by noting that the sum of all
forces acting on the dumbbell should be zero, i.e.

Fo+Fe+Fg+F. = 0 (1)

The forces which appear in equation (1) are:

(1) FS£3NkT(g(H/R)rVR2; the spring force arising from
entropy considerations. Here, kKT is the Boltzmann
temperature and N 1is the number of statistical
subunits making up the chain. The quantity N 1is
proportional to the molecular weight and can be
thought of as being equal to the ratio, N,/n, of

the total number of monomer units, N in the

m?
chain to the minimum number of monomer wunits, n,

that is required in order that a subunit obey
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Gaussian statistics. The function ‘S(rVR) is, in
general, nonlinear and dependent upon the end to
end distance of the macromolecule. Indeed, as
r'-R, where R=Na is the total possible chain
length and a 1is the 1length of a subunit,
&(r'/R)» . The form for (rYR) which will be

used here is the so called Warner spring (Warner

(1972)) in which &(ryR)=1/(1-(r/R)? ).

(2) Fe= c(r'/R)(v-r'); the hydrodynamic friction force
arising from the relative motion of the solvent
and the "beads" of the dumbbell. The parameter ¢
is the external friction factor of the entire
chain and 1in general will be a function of the
conformation of the chain (Hinch (1974), de Gennes
(1974)). The dependence of ¢ on r vreflects the
fact that hydrodynamic interaction between
different elements of the chain will change as the
polymer is distorted. Indeed, hydrodynamic
considerations (Batchelor (1970), Cox (1970))
suggest that the friction factor z should
increase roughly in proportion to the length scale
of the chain. We shall therefore use the form
£=2Q(r'/R) where Q(r'/R)=/Nr'/R. In adopting

this linear depehdence of the friction factor on



(3)

(4)
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the end to end separation distance in the dumbbell
we are neglecting a correction factor of the form
log(r 'Y Wa) which should not alter the qualitative

results of the model.

Fg=kTVIn(¥); a stochastic Brownian force which
acts on the beads of the dumbbell, and arises from
the random forces between the solvent molecules
and the polymer chain,. Here, the probability
distribution function for the end to end vector is

denoted as Y .

=z.(r~QAr%; the force due to "internal
viscosity" in the macromolecule which is
proportional to 1its rate of deformation, here
assumed to be the difference between the rate of
change of r and the rate of rotation of r'.  The
angular velocity of the polymer chain is denoted
as { and qi is known as the internal wviscosity
coefficient. The notion of an internal viscosity
mechanism 1is introduced in an attempt to account
for the effects of 1local constraints on the
dynamics of chain conformation (Cerf (1969), de
Gennes (1977)). 1In general, £ will be a function

of the conformation of the chain. For example,



when there is little deformation and the chain is
highly coiled, the polymer will rotate much like a
rigid sphere. When it becomes highly deformed, on
the other hand, the rotation will lag behind that

of a sphere.

An equation of motion for the end-to-end vector of the
dumbbell can be obtained by solving equation (1) for f', and
this can be solved (at least in principle) once the bulk
velocity field is specified. In the present paper, we

consider the general, two-dimensional linear flow

v = vI'r (2)
where
(1+1)  (1-2)
r = 2|-a-n -as o (3)
0 0 0

We have demonstrated earlier (Fuller and Leal (1980a))
that this flow can be simulated using the four roll mill
which is described in the experimental section of the
paper. The four roll mill consists of four cylinders, the

centers of which form a sqhare. The flow of interest 1is
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created in the center region of the square by the rotation
of the rollers. Figure 2 1illustrates how the flow field,
specified by equations (2) and (3) is simulated using the
four roll mill. The flow type parameter A is determined by
the relative rates and direction of rotation of rollers 1
and 3 with respect to rollers 2 and 4 and varies between
plus and minus one. When A2 =1 the flow is purely
extensional (also called hyperbolic flow in this two
dimensional case) and as A is decreased, vorticity is
systematically added to the flow until, at A =-1, the flow
is purely rotational. The case of simple shear flow 1is
simulated when A =0. The magnitude of the local velocity
gradient, Yy , is determined by the rate of rotation of the

fastest pair of rollers (rollers 2 and 4).

Using equations (1) and (2), the equation of motion for
the dumbbell is cobtained by solving for ﬁ’. Once this 1is
obtained, it can be combined with the equation of continuity

for the probability distribution function

oy o —
S T(ET) =0 (4)
Following this procedure, the conformation-space

diffusion (or Fokker-Planck) eguation for V¥ 1is obtained
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+ oV

E N
1+e/Q WZALY

1 1 1 (5)

where o = y60 and 6 =COR%6NKT is the intrinsie relaxation
time for the dumbbell. 1In equation (4) r=r'/R, w= vy |,

€ :ci/c and Z is a unit vector in the z direction.

The equations for the evolution of the moments of the
distribution <xixj> can be <calculated by multiplying
equation (5) by xixj and integrating over the coordinates
(x,y,z). However, since the functions E(r), Q(r) and w all
depend on the conformation of the dumbbell, the resulting
terms involving these functions cannot be evaluated
explicitly without first solving for the distribution
function ¥ . Since the coefficients appearing in equation
(5) are nonlinear, solution for ¥ will in general not be
possible. In order to proceed further, we therefore follow
the example of Peterlin (1961) and Cerf (1969) and replace
E?, Q and w by their appropriate averaged values. This type
of approximation has also been used by Tanner (1977), Hinch
(1977) and Phan-Thien et al, (1978). Although this
pre-averaging approach is clearly "ad hoc" and approximate,
we believe that it will yield reasonable results over a wide

range of flow strengths. When the flows are weak and the
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dumbbell is not greatly distorted, the nonlinear
coefficients in equation (5) are slowly varying functions
and do not depart much from their rest state values. On the
other hand, when the flows are strong, producing significant
distortion of the dumbbell, the probability distribution
function becomes strongly peaked and, in fact, can be
approximated as a delta function in space. This occurs as a
consequence of the typically large values of N that are
associated with a macromolecule and the fact that the Warner
spring causes the probability mass of the dumbbell to be
confined to a space bounded by a sphere of finite radius R.
As the dumbbell becomes greatly distorted, the flux of
probability mass is reflected off this boundary and Y
becomes strongly peaked in the neighborhood of the
boundary. With the functions (5 , Q and w expressed in
pre-averaged form, the governing equations for the moments .

of the distribution are then

d;§2> - 11€/Q {:(G/Q)<x > 4 a(1+)) <x’>+ Za[? > ?¥] <xy>
d;{2> - 1+i/Q {}(6VQ)<y2> - a(1+x)<y > - [( ==+ Eﬁ}<xy>

NQ (6b)
- b (S v [U5 ] o2

- a[(lgk) + %¥}<x2{} (6c)



i |
159 |

1
2 &% - 1’:&575 - /0)<z®> + 1 o} (6a)
where
6 = 1/(1 - <r2>) (7a)
Q0 = ‘/ﬁ<r2>;2 ' (7b)
W= %ﬁ!—%3<x2+y€>+ (2XxyY (7¢)

L&y

The equation for w given in equation (7) is derived in
Fuller and Leal (1980b) and comes directly from the equation

of motion for the rate of change of the end to end vector

r.

The moments of the distribution <can be obtained by
solving the four coupled equations in equation (6) for any
given initial condition. The most important initial wvalue

problem 1is when the systém starts from rest and the moments
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at t=0 are <x2>=<y2>:<22>:1/(N+1) and <xy>=0. Given the
moments of the distribution function, such macroscopic
properties of the polymer solution as the stress tensor and
birefringence <can be calculated. In particular, Peterlin

(1961) has shown that the birefringence is given by

An/nc = 27r{(n2 + 2)/3n}2(NA'/M)N(ul - “2)

2

[(<x2> - <y >)2 + 4<xy>];2 (8)

where An is the birefringence, n is the refractive index of
the solution,‘ ¢ 1s the concentration 1in g/cm3 , N 1is
Avogadro's number and M is the molecular weight. Uy and Us
are the polarizabilities of a subunit parallel and normal to
the chain axis respectively. The polarizability difference
(ul-uz) can be determined by independent measurements in
simple shear flow and data for a number of polymer/solvent
systems exist in the literature (Polymer Handbook (1965)).
The physical constants in equation (8) can therefore be
evaluated and measurements of An can provide a measure of
polymer deformation. In particular, as the polymer becomes
highly extended and anisotropic, the birefringence ‘ is
essentially proportional to the square of the largest
dimension of the polymer. As will be pointed out later, the
orientation of the distorted polymer can also be determined

from birefringence experiments.

.



In using equation (8) for the birefringence we are only
considering the intrinsic birefringence and neglecting any
contributions due to form birefringence (Peterlin (1976)).
The form birefringence is proportional to the square of the
difference of the refractive index for the polymer and the
solvent, respectively. In the polymer/solvent system
studied experimentally (polystyrene/polychlorinated
biphenyl), this difference is very small and this, combined
with the large intrinsic segmental polarizability difference
of polystyrene (Polymer Handbook (1965)), makes the neglect
of form birefringence &a reasonable approximation. Given
equation (8), Peterlin showed that the biréfringence tends
to the following saturation value when the polymer reaches

its maximum extension:

An  _ 2 2 o
vl 2r{(n” + 2)/3n} (NA/M)(ul Ho)N (9)

Figure 3 shows the predicted steady state value for the
root mean square end to end distance in the dumbbell <r2>%
for a value of N=z2500 and € =0, plotted as a function of the
velocity gradient for several different flow types. The
most striking feature which is brought out by this figure is

the existence of multiplé steady state solutions, which



presumably will 1lead to a hysteresis loop in <r2>;i in an
experiment where «a is first increased above some critical
value and then decreased. For example, if we consider the
case of X =1.0, it is suggested in figure 3 that a molecule
starting from the rest state subjected to velocity gradients
in the range between zero and the critical value o,=0.275

1
2>2/80L)becomes infinite) will achieve

(where the slope(d<r
steady states which represent only a small departure from
the rest state configuration. Oh the other hand
macromolecules residing in a hyperbolic flow with a velocity

gradient greater than g will become greatly extended at

1
steady state. Furthermore, if o 1is decreased from this
larger value after the molecules have had time to become
fully extended, the large extension will persist for all
velocity gradients greater than a2=0.026 where again the
slope in the curve is infinite. Only in very weak flows
(cx(az) will the macromolecules collapse back to a near rest
state configuration 1if they are highly extended in their
fnitial configuration. As illustrated 1in figure 3, the

existence of multiple steady states appears over a wide

b
range of flow types down to a value of A =3x10 .

The hysteresis which appears in these model
calculations is a consequence of the conformation dependence

of the external friction factor. This leads to a pronounced
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increase in the frictional grip of +the solvent on the
polymer chain as it unravels, and since its dimension
increases by a factor of 0(V/N) from the coiled rest state to
highly extended states. Therefore, even though a critical
value of the velocity gradient of oy is required to induce
the transition to a highly stretched state, it is predicted
(or suggested) that a much weaker gradient 0o is capable of
maintaining the 1large deformation of the chain, This
hysteresis was first predicted by de Gennes (1974) and Hinch
(1974), and Tanner (1975) later obtained quantitative results
showing this effect wusing a model similar to the one used
here for a single value of N and for uniaxial -extensional
flow. The existence of the hysteresis depends on both the
molecular weight (through the parameter N) and the flow
type, and a detailed discussion of this dependency is
presented in Fuller and Leal (1980b). The steady state
birefringence will have qualitatively the same dependence on
the velocity gradient as does <r2> and in fact becomes very
2

close to <Kr > in a quantitative sense for large

extensions.

Besides the steady state conformation of the dumbbell,
the transient response of the moments of the distribution
can also be determined from equation (6). In particular,

the time which 1is required to reach steady state from the
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rest state configuration can be calculated. This 1is of
critical 1importance for the experiments to be described in
the next section where the polymer molecules are only
subjected to strong flows for a finite period of time.
Figure 4 shows the required time (in wunits of 6 ) as a
function of the velocity gradient for the dumbbell to
achieve 90% of the steady state extension for the case
N=1000 and purely extensional flow (i.e. * =1.0). It will
be noted that there 1is a prbnounced maximum in the time
required to approach steady state for velocity gradients

near the critical value, «o In this domain, the

1"
hydrodynamic friction forces are too weak to overcome the
entropic "spring" except when the dumbbell is highly
. extended. Once a dumbbell becomes highly extended, the
friction forces can maintain it in an extended state, but
the only mechanism which can lead to a sufficiently extended
state is diffusion and +the times required to achieve a
statistical =steady state are therefore predicted to be very
long. As the velocity gradient is increased, the amount of
extension which 1is required for the friction forces to
overcome the spring decreases, and the time required to
approach steady state drops off rapidly. Eventually, the
friction forces become dominant for any configuration near
equilibrium, and the time required for extension scales as

-1
Y .
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In order to properly analyze the experiments described
in the next section it is necessary to consider the transit
times of the polymer chains in the flow device and compare
those times with the time required for the polymer
configuration to approach steady state. The flows generated
in the four roll mill wused in +the experiments were
characterized using flow visualization techniques and
homodyne light scattering spectroscopy. Detailed accounts
of the procedures and results are reported in Fuller and
Leal (1980a) and Fuller et al (1980). It was found that the
filow device was capable of simulating the velocity field
described by equation (3) as long as the mégnitude of the
flow type parameter A was greater than approximately
0.1. Using equation (3), the trajectory of a particle

starting at (xo,yo) at time zero is therefore

x = ii—irll sinh/Ayt + x _cosh/)iyt + y 1 -2 sinh /Ayt
o 2/% o o 2
(1o)
Y ==X 4 = A) sinh/Ayt - y d + A sinhv/iye + y cosh/iyt
O Z/X' (o]

o
273 ok

The birefringence experiments were performed by sending

a laser beam of radius % along the =z axis through the
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stagnation point of the four roller flow. The
macromolecules within this sample region will have been
subjected to a range of +transit times depending on the
particular streamline the molecule 1is travelling on. In
principle, a molecule could reside at the stagnation point
indefinitely while molecules entering the test region at the
point (x,y)=(%/v2,%/V2) will have spent the least amount of
time in the flow. Therefore, a conservative estimate of the
time available to molecules within the test domain to
respond to the flow can be obtained by calculating the time
required for a particle to reach the point (x,y)=(%/V2,%/V2)
on the sample region boundary if it starts from a radial
distance D away from the stagnation point at ﬁime zero (see
figure 5). In particular, for a particle which reaches the
point (x,y)=(%/v2,% v2) starting from (Dcos ¢ ,Dsin ¢), the
transit time and the angle ¢ can be found using equation
(10). The solution for the transit time is a straight-

forward calculation and yields

-1 o) 2 5 }
— (f) -1 (11)

t = L sinh T3
Ay

+1>

Examination of the two limits of A =1 and A =0 leads to
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_ log (Y2 Dp/%)
tl = ¥ (12)
and
/ 2
_Y(D/a)" -1
t, = v (13)

respectively, as expected.

The transit time for molecules in the four roll mill
and the required time for a molecule to achieve 90% of
steady state extension can now be compared for a given value
of the velocity gradient in order to estimate the .range of
steady states that can actually be realized experimentally.
Figure 4 shows this comparison for the case of purely
extensional flow and for two values of the ratio (%/D) which
are 1in the range used in the experiment. The results shown
in figure 4 suggest that steady state 1levels of extension
will not be achieved for velocity gradients near the
critical value, a1 , due to the finite transit times of the
. molecules in the four roll mill and the long diffusion
controlled growth times for the molecules. On either side

of the critical point, however, the experiment is capable of

attaining steady state levels of deformation.

The realizable degree of extension is shown by the
dashed curves in figure 3. These curves were computed for

A =1.0 and X =0.1, for two different values of 2/D, by
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calculating the extension achieved by a macromolecule
starting from rest and subjected to the flow field for a
duration of time given by equation (11). As the ratio /D
increases, the range of transit times is decreased and the
observed transition in o from the coiled rest state to full
extension 1is predicted to become more gradual as would be

expected.

Another important consideration whichlmust be accounted
for in comparing experimental data to theoretical
predictions 1is the molecular weight distribution of the
polymer sample. Our calculations up to this point have all
considered monodisperse distributions where thé ratio of the
weight averaged molecular weight Mw and the number averaged
molecular weight Mn is unity. In general, however,
commercial polymer samples will be characterized by a ratio
of M,/M, which is greater than unity, and by the presence of
a high molecular weight tail. If the distribution of
molecular weight is given by P(M/Mo), where Mg is the most
probable molecular weight of the distribution, any measured
quantity which depends on molecular weight will be an

average over this distribution. For example, the measured

birefringence will be

Pl

B f dNP(N/NO)N B<x2> - <y2>)2 + 4<xy>2]
<An>/n<c> = o - (14)
j dNP (N/NO)N
0]
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where B=2Tr{(n2+2)/3n€ (pl'UZ)NAf

In‘carrying out this integration it must be remembered
that the molecular weight enters into the birefringence not
only through the parameter N, but also through the
relaxation time 8 which appears implicitly in the
dimensionless velocity gradient o . From the definition for
8 following equation (5) and the fact that the friction
factor in the rest state is proportional to the rest state
3/2

chain radius, Vﬁé, the relaxation time will scale as 6 Vv N

for this Gaussian model.

A simple distribution which possesses a high molecular
weight tail and which depends only on the two parameters M,
and Mn (which are usually all that are available from standard
analysis of commercial samples) is the log-normal

distribution (Billmeyer (1962)):

Y2 - Qosz(M/Me)/N‘z'

P(M/M) =g e, (15)
2
o = log(Mw/Mn)
2
M o=ne " /?
[0 31
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Using this distribution and equation (14), we have
calculated the average birefringence for N =2500 and
Mw/Mn:1.17 which were typical values for the experiments.
The effect of the finite transit time of the polymer
molecules was taken into account using the same procedure as
described above in connection with the dashed curves in
figure 3. In evaluating (14) we have assumed that the
chains are Gaussian so that the relaxation time © scales
with the molecular weight as G’MMB/% The results are found
in figure 6 where the birefringence which 1is predicted as
observablé in the four roll mill is plotted against the
eigenvalue of the velocity gradient tensor of equation 3,
VX oo . We have considered a wide range of the flow type
parameter XA and several values of the ratio ¢ :(Ci/C )

which specifies the magnitude of the internal viscosity

effect.

Figure 6 demonstrates that the curves of "observable"
birefringence (as well as any invariant of the tensor of
moments <x x >) should fall close to one another over a wide
range of the parameter A when plotted against VA a . The
range of A over which this correlation exists depends upon
the magnitude of the internal viscosity effect and in fact

the correlation breaks dan when € becomes too large (as in
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the case of € =z0.5 in figure 6). An analogous situation was
also found for a series of network models used to describe
concentrated solutions (Fuller and Leal (1980a)) where it
was predicted that the birefringence could be correlated
against V)a over a wide range of A provided that the

effects of nonaffine deformation were not too pronounced.

The correlation illustrated in figure 6 for the case of
A =0 results from the fact that the eigenvalue of the
velocity gradient tensor prescribes the strength of the flow
and therefore the extent of macromolecular deformation.
This latter fact can also be demonstrated by a‘simple linear
stabiiity analysis of the equations of motion of the moments
listed in (6). Neglecting Brownian motion, such an analysis
(Tanner (1976), Olbricht et al (1980)) predicts that the
dumbbell will wundergo unbounded growth whenever via>1/2.
This simple calculation, although sufficient to reveal the
flow strength is not; capable of predicting steady state
results and leads to either infinite growth or complete
collapse of the end to end vector depending on the magnitude
of YAa. Inclusion of Brownian motion causes the end to end
vector to have a finite size even when the flow 1is weak
(¥XK1/2) and for that reason the correlation of the
birefringence with vAa will break down as XA ~>0. This is the

reason for the departure 6f the A =0.1 curve for € =0 from
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the correlation in figure 6.

Internal viscosity affects this situation in two
ways. As can be seen from equation (6) the internal
viscosity increases the time scale of the dynamics of the
dumbbell by a factor of (1+€ /Q) regardless of/the flow
type. Thus, in spite of the fact that internal viaﬁsity will
not affect the actual steady state end to end extension in
irrotational flows, the finite transit times inherent in the
experiment and the increased time scale for the dumbbell's
response will cause the birefringence to rise more slowly
with o as € 1is increased. This effect will carry over to
all flow types. When the flow <contains a rotational
component the internal viscosity additionally affects the
steady state conformation of the dumbbell. 1In particular,
for a given value of /TG, an increase in internal viscosity
will <cause a decrease in the end to end separation in the
dumbbell and a consequent decrease in the birefringence
whenever the flow contains vorticity (i.e. the térm £ w/Q
in equation is nonzero). Furthermore, the magnitude of the
decrease in birefringence will increase as the flow becomes
increasingly rotational (i.e. as A is decreased).
Therefore as the internal viscosity is increased, the range
of X over which the correlation of birefringence with V) a

holds will be reduced. THis point 1is brought out in figure 6
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and suggests that measurements of birefringence as a
function of flow type may provide an estimate of the
magnitude of the internal viscosity parameter ¢ for a given

polymer/solvent system.

Figure 6 also demonstrates the importance of the
influence of the molecular weight distribution. If the
sample 1s monodisperse, the model predicts a sharp
transition from the rest state configurétion to a highly
stretched state at a ecritical value of the velocity
gradient. As shown by figure 3 this transition is quite
abrupt even when the effect of finite transit times 1in an
actual experiment is considered. However, the distribution
of molecular weights can markedly broaden this transition
due to the strong dependence on the molecular weight of the
critical value of the velocity gradient at which the

transition occurs.

ITII. Experimental

A. Description and Characterization of the Materials and

Apparatus

Measurements were performed wusing three different

molecular weight sampleé of polystyrene dissolved in a
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polychlorinated biphenyl solvent. The physical properties
of the polymer samples are listed in table 1. The 8.42x106
and U.48x106 molecular weight samples were purchased from
Toyo Soda Manufacturing Co. and the 2x106 molecular weight
sample was purchased from Pressure Chemical Co.. The PCB
solvent was obtained from Prodelec Co. (France) which
produced this product under the name Pyralene 4000. All of
the experiments were run at a temperature of 20° C at which

the viscosity of the solvent is 454 cp and its refractive

index is 1.630.

Polymer solutions of 100 ppm were made by first
dissoclving the required amount of polymer in a small volume
of a volatile solvent (dichloromethane). After dissolution
for a period of one day this solution was mixed with the PCB
solvent and the entire mixture was allowed to sit heated
from below to about 50-60° C for several days. This
provided a gentle mixing of the constituents by thermal
convection. The solution was then placed under a vacuum for
one day in order to draw off the dichloromethane. Solutions
of polymer at lower concentration were prepared by dilution
of the 100ppm solutions. The final solutions were then

passed through a 1 micron teflon filter.

The experimental apparatus was described in detail 1in
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Fuller and Leal (1980a) and a simple schematic of the
arrangement used for the birefringence measurements is seen
in figure 7. The orientation of the various vectors of
polarization, the principal axes of the refractive index
tensor of the deformed sample and the orientation of the
four roll mill are shown in figure 8. If I, 1is the
intensity of the incident light beam, the intensity of the
light passing through the analyzer polarizer can be shown to

be

I = I sin®26sin? & (16)
0 2

where 6 1is the orientation angle defining the principal
axis of the sample refractive index tensor and
S =27d(nyy~-ny)/A . Here bln=(ny-ny) , A is the wavelength of
the 1light and d 1is the path length of the sample. The
procedure which was followed in measuring the birefringence
is to first rotate the flow device and determine the angle
X (see figure 7) at which the intensity measured at the
photodetector is at a maximum. This maximum occurs whenithe
orientation angle of the deformed polymer ©6 1is * 45 , At
this orientation the intensity was recorded and the
birefringence was calculated using equation 16; In using
equation 16 the path length d was assumed to be the total

depth of the flow devicé. This approximation neglects the
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fact that the velocity fields in the flow device are not
truly two dimensional due to the boundaries at the top and
bottom of the four roll mill. It is evident that the
velocity gradients in the (x,y) plane will, in fact, vary
along the z axis and go to zero at the boundaries.
Therefore the birefringence measurements reported here, for
a given value of the velocity gradient at the centerplane of
the four roll mill, will slightly underestimate the level of
birefringence which would occur if the centerplane flow

existed throughout the measurement path (i.e. for all z).

Flow visualization studies as well as homodyne 1light
scattering spectroscopy experiments were performed in order
to characterize the flows in the four roll mill and the
results of these studies are reported in detail in Fuller
and Leal (1980a) and Fuller et al (1980). 1In particular it
was found that the four roll mill could closely simulate the
velocity field of equation 3 for all !A|>O.1. Furthermore,
the velocity gradients were found to depend linearly on the
angular velocities of the fastest pair of rollers, w ,

according to

Yy = 0.678w

where is measured in radians/sec. This linear
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relationship was found to hold over the entire range of

. . ~1
roller velocities accessible in this device (0-35 sec 7).

The homodyne light scattering experiments reported in
Fuller et al (1980) were performed on a Newtonian liquid
(glycerin) and were repeated here for the polymer
solutions. Since the experimental arrangement (and
corresponding theoretical analysis) of the experiment 1is
reported in Fuller et al (1980), only a brief summary will
be given here. The homodyne scattering technique involves
measurement of the autocorrelation function of the light
scattered from particles in the flowing solution. The
autocorrelation function, in turn, contains information
regarding the motion of the particles which contribute to
the scattered 1light spectrum. The principal advantage of
this method (in contrast to other optical techniques such as
laser doppler velocimetry) is that the mean motion of the
particles does not influence the measurements and it is the
variations in the particle velocities arising from velocity
gradients which dominate the autocorrelation function. This
makes 1t possible to determine 1local velocity gradients
directly with a single measurement thereby avoiding the
inherent difficulties of taking point by point velocity
measurements and differentiating experimental data to

determine the velocity gradients. One important drawback of
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this method, however, 1is that the correlation function
depends strongly on the spatial distribution of incident
light intensity wused to induce the scattered light. Since
this distribution is very difficult to measure, absolute
determination of wvelocity gradients is not an easy task.
However, if one is only interested in relative measurements
of wvelocity gradients (i.e. the dependence of the velocity
gradient on the roller speed or velocity gradients as a
function of position), the procedure for accomplishing this

is straightforward and outlined in detail in Fuller et al

(1980).

Figures 9 and 10 show the results of such measurements
for the 8.#2x106 and 4.48x106 molecular weight solutions
at 100 ppm where the measured velocity gradient (Bvx/ax) in
arbitary wunits 1is plotted against the angular velocity of
the rollers. These measurements were taken at the center
stagnation point in the flow device. 1In both cases the
velocity gradient 1is seen to be 1linear in the roller
velocities over the entire range of roller speeds which were

used in the birefringence experiments.
B. Results of Flow Birefringence Measurements

The polymer/solvent' system investigated here was



179 |

studied previously by Philippoff (1963) who measured the
flow birefringence from solutions of 9x1§ MW polystyrene
in Arochlor 1248 subjected to simple shear flow. These
experiments were performed at 25°C where the solvent
viscosity was 250 cp and over a concentration range from 500
ppm to 1%. These experiments demonstrated that the PCB
solvent is 1itself birefringent and that data taken on
polymer solutions wusing this solvent must be adjusted in
order to account for this effect. Figure 11 shows the
birefingence measured for the solvent subjected to a variety
of flow types 1in the four roller device. The angle X at
which the birefringence intensity was a } maximum was
independent of the flow type and equal to 0° which is an
expected result. The birefringence of the solvent for the
extensional flows measured here was considerably higher than
that reported by Philippoff for the case of simple shear
flow. In particular the case of A =1.0 produced
birefringence which was 20 times greater than the
measurements of Philippoff at comparable velocity gradients
which reflects the greater effectiveness of purely
extensional flow over simple shear flow in orientation of

anisotropic particles for a given velocity gradient.

Both the polymer andbsolvent will contribute to the

birefringence of the solution and the effect of the solvent
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must be subtracted out. If Ano and Anl are the
birefringence of the solvent and solution respectively and
B is the angle between the principal axes of the solvent
and soluiion refractive index tensors, Philippoff (1963)
showed that the birefringence An2 arising from the polymer
alone is given by

1
An. = [Ancz) + Ani ~ 2An AnzsinB] ? (17)

2 1

This simple relationship is derived by assuming that the
effects of the solvent and polymer c¢can be 1linearly
superimposed and that the polarizability tensors of the

solvent and polymer are additive. -

Figure 12 shows photographs of the birefringence
pattern resulting when a 100 ppm solution of the 2x106
molecular weight sample is subjected to various flow types
and velocity gradients. The region of visible birefringence
is extremely narrow and was, in fact, determined to be
roughly 0.01 to 0.02 inches in thickness. This localization
of the birefringence and therefore of the region containing
significantly deformed polymer 1is typical of extensional
flows (Crowley et al (1976), Pope and Keller (1978)) -and
results from the fact that the polymer chains require a

finite amount of time in drder to respond to the flow. This
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is demonstrated in figure 4 where very small ratios of ¢/D
in the experiment are required in order that the
majority of molecules in the sample region approach steady
state extensions. In all of the photographs the orientation
of +the camera was kept constant relative to the four roll
mill and the photographs 1indicate qualitatively that the
birefringence curves coincide with the exit streamlines
which emanate from the stagnation point of +the flow.
Assuming this to be true, the parameter X associated with
the flow can be estimated from the angle at which the
birefringence curve departs from the horizontal. For the
velocity gradient tensor of equation (3) it 1is a simple

matter to show that if this angle is ¢ the parameter X is

» = [tan(45° - ¢)1° (18)

For the case of X =0.333 (as determined by the roller
speeds), for example, an angle of 16° is measured from the
photographs of figure 12, and this yields a value of ) =0.31
from equation (18). Similarly, the X =0.2 photograph yiélds
an angle of ¢ =22 which leads to a value of A of 0.18

from equation (18).

Using equation (17), the birefringence measured for the

polystyrene solutions was adjusted in order to obtain the
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contribution due to the polymer alone. The results for 100
ppm solutions for all three molecular weights and for
several different flow types are shown in figures 13-15. It
is important to note that the birefringence of the
polystyrene is of the opposite sign to that of the solvent
and this arises from the fact that (ul-uz) is a negative
quantity for this polymer. The absolute magnitude of the
polymer birefringence is an order of magnitude higher than
the solvent birefringence for this concentration of
polymer. This 1is in contrast to the results of Philippoff
where the birefringence from the polymer subjected to simple
shear flow was only a small fraction of the solvent
birefringence for solutions of even higher concentration
(500 ppm). Indeed, when adjusted for concentration, the
birefringence measured ,in this work from the 8.142x106

molecular weight polystyrene subjected to purely extensional
flow was over three orders of magnitude greater than that
reported by Philippoff‘of a 9x106 molecular weight sample
in simple shear flow at comparable velocity gradients. This
point underscores the relative strength of extensional flows
over simple shear flow and the much greater deformation (or

stretching) of the macromolecules which this implies.

The important role that flow type plays in the

deformation of the mécromolecules and the effect of
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molecular weight on this process are both demonstrated by
the data 1in figures 13-15. As vorticity is added to the
flows by decreasing the parameter X, the polymer chains
will tend to rotate continuously into and away from the
principal axes of strain of the flow and will therefore be
alternatively exténded and compressed leading. to a decrease
in the overall distortion of the molecule. The effect of
molecular weight is principally to alter the relaxation time
of the polymer. As molecular weight 1is increased the
relaxation time increases as well and for any given value of
the wvelocity gradient the amount of deformation (and
therefore birefringence) will be greater for larger
molecular weights. "In the dumbbell model presented 1in the
previous section this effect enters through the fact that
the dimensionless velocity gradient, &® , being scaled by the
relaxation time, will 1increase with the molecular weight

thereby leading to higher deformations.

Solutions of 50 ppm for the the 8.42x106 and 4.48x10

6
polystyrene were also studied. Figure 16 compares the
birefringence from the 50 and 100 ppm solutions for the case
of purely extensional flow and 1indicates that the
birefringence is linearly proportional to the concentration

in the range from 50-100 ppm. This suggests strongly that

the polymer molecules are behaving in a largely independent
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fashion. Linearity of the birefringence with concentration
was also reported by Philippoff (1963) from about 500-1500
ppm for a 9x106 polystyrene subjected to simple shear flow
and by Pope and Keller (1978) for 2%x10%  molecular weight
polystyrene in the range of 300-5000 ppm for a uniaxial

extensional flow.

An estimate of the range of concentration over which
the flow birefringence should be a linear function of the
concentration can be obtained by considering the volume
fraction of the constituent polymer molecules in the flowing
solution. The appropriate 1length scale to use when
estimating the volume fraction is the hydrodynamic radius of
the polymer chain (Hineh (1977)) which is roughly the
largest length scale of the molecule. If Vv* represents the
volume fraction of polymer above which dilutedness can no
longer be assumed and interactions begin to become

important, this would be equal to

where r 1is the largest length scale of the polymer and c*

is the weight concentration. The maximum value of r occurs

when the chain is fully extended and is proportional to the
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molecular weight M. Therefore the lower bound on the
concentration c¢* above which interactions become important
will scale as ¢ NfM_z. Using this simple scaling rule, the
concentration range of 300-5000 ppm over which the
birefringence was reported to be linear for the 2x106 MW
sample studied by Pope and Keller is compatible with the
range of 50-100 ppm for the 4,48 and 8.42x106 samples
presented here. The much higher concentration range
reported by Philippoff for a 9x106 MW sample can be
understood by realizing that in simple shear flow the
hydrodynamic radius would never depart greatly from the

highly coiled rest state over the range of velocity

gradients he studied.

As discussed previously, it is of interest to plot the
birefringence data collected for various flow types against
the eigenvalue of the velocity gradient tensor YXo in order
to see the range of X over which the birefringence c¢can be
correlated against this group. This is done in figure 17
for all three molecular weight samples at 100 ppm and it
appears that the correlation holds in all three cases over
the entire range of A studied (1.03X 30.2). From the
dumbbell model of the previous section this would suggest
that the role of internal viscosity is relatively minor and

that the parameter € -is 0.3 or less. This estimate was
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arrived at through simple qualitative comparisons of the

data and model curves of the type shown in figure 6.

It is important to note that the birefringence for both
the 8.42x106 and 4.48x106 molecular weight samples achieve
the same asymptote at high velocity gradients to within
about 6%. The fact that this asymptote is independent of
molecular weight is in agreement with equation (9) and it 1is
possible to estimate the degree to which the polymer
molecules 1in the experiments achieved full extension from
this saturation wvalue. In the <case of the 8.42x106
molecular weight sample, for example, if it is assumed that
the minimum number of monomer units which arei required 1in
order to form a Gaussian subunit is n=10, the parameter N is
7874. Using equation (9), the saturation value of An_ /nc is
calculated to be 0.045. This value, when compared to the
measured asymptote of 0.015 would suggest that the polymer
chains in the experiment are very near to full extension.
Since the birefingence at high chain extensions is roughly
proportional to the square of the largest 1length scale of
the chain, a value of An_/nc of 0.015 would suggest that the
polymer molecules have achieved about 60% of their maximum
possible extension. These estimates, however, do strongly
depend on the value chosen for the parameter n from which N

is calculated and for thaf reason should be treated only as
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rough approximations. This value for An_/nc is also in the
same neighborhood as the value of 0.04 that was reported by
Pope and Keller. Alternatively, wusing equation (9), the
experimentally determined asymptote can be used to estimate
the parameter N associated with the macromolecules studied.
For example, values of 2500, 1330 and 594 are computed for
the 8.42x106 , u.u8x106 and 2x106 samples respectively.
Based on the number of monomer units for each polymer sample
(for example the number of monomer units for the 8.42x106 MW
sample is 78740) these estimates for N lead to a value of n,
the number of monomer units required to make a Gaussian
subunit, equal to 30. For the simple Gaussian model used
here, the ratio of the maximum extension length to the rest
state end to end distance is equal to VN which would suggest

6
that the 2.0, 4.48 and 8.42x10 MW samples have been

extended by factors of 24, 36 and 50 respectively.

It is also of interest to see how <closely the simple
dumbbell model <can predict the qualitative features of the
experimental results. 1In order to obtain a comparison iﬂ is
necessary to estimate the relaxation times of the polymer
molecules and to this end 'we have used the results of
dynamic light scattering experiments performed in this
laboratory (Sankur (1976)) for samples of 4.1x106

polystyrene in cyclohexane at theta conditions. From this
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work it was found that the relaxation time of the polymer
was 97x10_6 seconds., Adjusting this value for temperature
and solvent viscosity and assuming Gaussian statistics
(i.e. 6 n Ma/%, the birefringence was calculated for the
physical characteristices (i.e. M_/M_, n, (4 -uy)) listed in
table 1 and for the experimental estimates N corresponding
to each respective molecular weight 1listed above . The
effect of finite transit times in the test region of the
four roller device were also taken into account using the
same method by which the dashed <curves in figure 3 were
calculated. This was done assuming € =0 and for A =1.0. 1In
carrying out this calculation using the simple dumbbell
model it is necessary to adjust the relaxation time by a
factor of 2.214 as pointed out by Peterlin (1963) due to the
fact that the dumbbell model overestimates the relaxation
time by this amount relative to the more realistic
predictions of the bead and spring model of Zimm (1956)
which includes the effects of hydrodynamic interaction. The
model predictions are shown 1in figure 17 as the solid
curves, The qualitative agreement between the model and
the data is quite satisfactory considering the relative
simplicity of the model and the ad hoc choices for the forms

of the friction factor and spring functions.

The close resemblance betweenthemodel predictions and the
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experimental data demonstrates the importance of considering
the finite transit times in the flow device and the
distribution of molecular weights in the sample. Both of
these effects contribute to smoothing out the transition
from the highly coiled rest state to highly extended states
which would occur abruptly for a monomolecular systemyat a
critical value of the velocity gradient. Comparison of the
model curves to the data in figure 17 also shows that the
relaxation time of the polymer samples studied here scales

2
roughly with the molecular weight as M3/.

IvV. Conclusions

We have reported the results of flow birefringence
experiments on dilute concentrations of polystyrene of high
molecular weight dissolved in a viscous solvent. In
particular the important consequences of the flow type and
molecular weight are systematically considered. The
experimental results have been complemented by calculations
using a simple dumbbell model, and the comparison between
theory and experiment brings out many important features
which must be considered in analyzing the data. Among these
are the effects of transit times in the experiment,

molecular weight distributions and internal viscosity.



The experimental apparatus used in this investigation
is not without limitations and efforts are being directed in
this laboratory to overcome several shortcomings. One
refinement which can be made in the four roll mill used here
would be to increase the aspect ratio of the rollers (i.e.
the ratio of the length to radius) which would improve the
simulation of purely two dimensional flows and make the
assumption of constant birefringence/length along the sample
path which 1is wused in equation(16) more valid. Another
restriction of the four roll mill used here is the range of
flow types (|X|<0.1) which can be investigated. This
limitation is probably inherent to the basic design of  the
four roll mill and 1is a reflection of its inability to
simulate simple shear flow although the simulation of highly
rotational flows or highly extensional flows 1is quite
satisfactbry. However, the variation of flow type in the
neighborhood of that of simple shear flow 1is desirable,
especially with regard to the investigation of the
importance of the internal viscosity mechanism. Current
research efforts are being made in this laboratory to design

flow devices which would be capable of achieving this goal.

Another restriction which results from the
practicalities of the design of the four roll mill is that

the device is typically quite large and the dimension of the
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diagonal spacing between the rollers is typically on the
order of one centimeter. This places a restriction on the
choice of solvents which one can use when studying dilute
polymer solutions, as the solution wviscosity must be
sufficiently 1large 1in order to avoid large values of the
Reynolds number over the range of velocity gradients which
are of interest. For this reason, the effect of the
polymer/solvent interaction cannot be readily investigated
and flow devices of much small length scale such as the
sucking jet (Pope and Keller (1978)) would be preferred in

order to study such effects.

One area of interest which can be studied with the
present experimental arrangement is the effect of the
molecular architecture of the polymer (side chain branching,
rigidity etc.) and the influence of electroviscous effects
in ionic polymer/solvent systems. These effecfs have not
been systematically investigated in the past and are the

focus of current research efforts in this laboratory.
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Table 1
MW
Molecular | &= [ 7 (b, - )+
Sample | Weight n |{'p F1 - V2
1 2 x 10° 1.3 |1.6 | -145 x 10™%5cm?
2 4.48 x 10°1]1.14 " "
3 8.42 x 10%(1.17 | " "
..f.

Polymer Handbook (1965).
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Figure Captions

Figure 1. The dumbbell model
Figure 2. Flow fields describedby equation (3) and simulated
using the four roll mill.

1z
Steady state end to end distance <r23" versus the

(O8]

Figure
velocity gradient o. The dashed curves represent
the end to end distance achieved by dumbbells
residing in the flow for a duration of time specified
by equation (11) for 2/D = 0.002 and 0.003.

Time to reach 90% of steady state in units of

g

Figure
for N=1000 and purely extensional flow and the
transit times for molecules ehtering the sample region
for 2/D = 0.002 and 0.003.

Figure 5. Trajectories of molecules in the four roll mill.
The molecules are assumed to be in a near rest state
configuration upon entering the large dashed circle
of radius D. The sample region is represented by
the small solid circle in the center of the figure.

Normalized birefringence <n>/n<ec>B versus the

[®)]

Figure
eigenvalue of the velocity gradient tensor of equation
(3) YXa, MW/Mn=1. 17

Schematic diagram of the flow birefringence experiment.

-~

Figure

Relative orientations of the polarization vectors and

o0

Figure

and the sample refractive index tensor and the



Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.
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flow device.

Velocity gradient in arbitrary units versus the
angular velocity of the rollers for the 100 ppm
solution of 8.42x1(f polystyrene. Measurements
were taken at the center stagnation point at a
scattering angle of approximately 50 degrees.

Velocity gradient in arbitrary units versus the
angular velocity of the rollers for the 100 ppm
solution of 4.48x1Cf polystyrene. Measurements
were taken for the same conditions specified in
figure ¢.

Birefringence versus the velocity gradient for
the PCB solvent. ®«A=1.,A-A=0.75,+-A=0.5, X-A=0.25

Photographs of the birefringence pattern for the
2x10 molecular weight polystyrene of 100 ppm.

A A=1.0, ¥=17.7 sed ; B A=0.8, ¥=23.6 secdt;
C A=0.5, ¥=9.5 sec’; D A=0.33 , ¥=11.8 sed’
E A=0.2, ¥=23.6sec”

Birefringence versus the velocity gradient for
the 2.00fo molecular weight polystyrene at
100 ppm concentration. ® A=1.0, A A=0.8, + A=0.5,
X A=0.33, ©OA=0.2

Birefringence versus the velocity gradient for
the 4.48x15’ molecular weight polystyrene at

100 ppm concentration. ® A=1.0, A A=0.8, + A=0.5,



Figure 15.

-

Figure 16.

Figure 17.
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X A=0.33, ©OA=0.2

Birefringence versus the velocity gradient for
the 8.&2x1§’ molecular weight polystyrene at

100 ppm concentration. 0 A=1.0, A A=0.8, + A\=0.5,

X A=0.33, ©OA=0.25

Birefringence versus the velocity gradient for
the 8.Méband 4.486x10 molecular weight
polystyrene at 100 and 50 ppm concentration.

U] MW:B.NZXHf, ¢=100 ppm; A MW:U.MBXH?, ¢c=100 ppm
+ MW:8.42fo, c=50 ppm; X MW:M.MBXH#, ¢=50 ppm
Birefringence versus the eigenvalue of the velocity
gradient tensor for all three molecular weight samples.
The symbols are defined in figures 14-16 for each
respective molecular weight sample. The solid
curves are the results of the model calculations
using the log-normal distribution of molecular

weights and taking into account finite transit

times in the flow devicewith £2/D=0.003,
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Abstract

The properties of a nonlinear spring, variable
hydrodynamic friction and internal viscosity used in the
dumbbell model of dilute polymer solutions are examined in
detail for a general two—dimenéional flow. Both steady and
transient start up flows are investigated and the response
of the bulk stress 1is calculated. It is found that the
existence hysteresis in the steady states of the dumbbell
model arising from the variable friction factor is strongly
dependent on both the flow type (i.e. the ratio of
vorticity to the rate of strain) and the molecular weight.
Two methods of solution for the dumbbell with internal
viscosity are presented. The first method uses a
perturbation expansion wvalid for small values of the
internal viscosity and leads to largely analytical results.
The second technique uses the preaveraging approximation of
Cerf (1969). Both methods are shown to yield qualitatively
the same trends for both the steady and transient flows

which are considered.
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Introduction

Efforts to model the flow properties of dilute polymer
solutions using the dumbbell model are numerous and the
results of investigations towards this end are well
documented ( Bird et al.(1977) Williams (1975)). The use of this
model, which was first proposed by Kuhn (1934), is
principally motivated by the mathematical tractability
resulting from its inherent simplicity and 1its success at
describing a surprisingly large number of physical
observations. The complexity of the dumbbell model has
evolved along with the measurement of new nonlinear flow
properties of polymer solutions and a number of increasingly
exotic features have been attributed to the dumbbell in

order to account for these experimental realities.

In particular, these features include a nonlinear
spring connector, internal viscosity and conformation
dependent hydrodynamic friction. While the origin of these
effects can be argued to have a molecular basis, it must be
remembered that their precise relationship to molecular
properties is somewhat tenuous, Nontheless, a main
advantage of the dumbbell model 1is the ability to
systematically wvary the parameters associated with these

effects and thereby uncover the role of each particular
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mechanism in the dynamic response of the dumbbell. This can
be done 1in a way which 1s 1largely free of empirical
assumptions in the basic structure of the model and can
therefore provide some insight into the possible molecular

significance of observed phenomena.

In adopting the dumbbell model to describe mechanical
and optical properties of dilute polymer solutions, we are
neglecting any of the fine structure of the polymer chain.
Instead we restrict our attention to the response of a
single variable, the end to end vector gﬁ the orientation
and magnitude of which are assumed to describe the
conformation of the polymer. This simplification is
justified 1in studying most flow situations for the reason
that it 1is the relatively 1long wave length motions
associated with the end to end vector which will largely
determine how the macromolecule responds to the imposed
flow. Oscillatory flows of wultra high frequency are an
exception and in such a case the dynamics of local structure
(monomer groups, side <chains etc.) will dominate the
relaxation spectra {Lodge et al (1979)). 1In this regime the
correct model must incorporate some semblance of the fine
structure of the chain which the simple dumbbell obviously
cannot accommodate. Most flows of practical importance,

however, will not possess such high frequency components and
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the dumbbell can successfully account for“ most of the

gualitative observations in dilute solutions.

The purpose of this paper is to present the results of
model calculations which examine the consequences of the
three properties of the dumbbell previously mentioned in a
variety \of bulk flows. In particular, the effect of flow
type (specifically the ratio of the vorticity to the rate of
strain in the flow) 1is examined and several new results are
presented. This work is presented in two parts. First, we
consider the effect of the nonlinear spring and of variable
hydrodynamic friction. In the second half of the paper, the

role of internal 'viscosity is discussed.

I. Part One: Nonlinear Spring and Variable Hydrodynamic

Friction
I.I Development of the Model

The standard approach to analyzing the response of the
dumbbell model to flow, which we follow here, is to first
write down a balance of the forces acting on the dumbbell
which 1is pictured in figure 1. For the model considered

here this balance is
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-EF*ES+-F6=O (1)

where E}, F, and fg are the forces due to hydrodynamic

friction, the spring connector and Brownian motion

respectively.

The hydrodynamic friction force arises from relative

motion between the dumbbell and the solvent and is assumed

to take the form

(2)

Here r is the rate of change of the end to end vector
of the dumbbell, while gur’ is the relative undisturbed
velocity of the fluid at the two ends of the dumbbell. The
velocity gradient tensor of the undisturbed flow is denoted
as f , and it is evident from the form of (2) that the
undisturbed velocity has been assumed to vary only linearly
with spatial position. The hydrodynamic friction factor
between the solvent and the polymer, which has been denoted
as £, will,in general, be dependent on the end to end

distance gﬁ The origin of this conformation dependence of
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£ comes from consideration of the hydrodynamic interactions
existing within the chain. When the chain is in its near
rest state <configuration, its highly coiled conformation
will cause most of the interior chain elements to be
shielded from the flow and the friction factor £ will be
ptoportional to the coiled dimension ~«Na where N 1is the
number of subunits of length "a" comprising the chain. As
the polymer is distorted by the flow, more and more of the
chain elements will be exposed to the flow and contribute to
the hydrodynamic friction. From hydrodynamic considerations
(Hinch (1974), de Gennes (1974))) the fiction factor &
should increase roughly in proportion to the length scale of

the chain as it is distorted.

The proper way in which to account for this effect
would be to use a model with sufficient structure to include
intramolecular hydrodynamic interaction such as the bead and
spring model (Zimm (1956)) or perhaps an extensible,
flexible thread (Hinch (1976a, 1976b)). In order to include
this effect in the dumbbell model, the friction factor & ,
which 1is assigned to the molecule as a whole, is allowed to
depend on the end to end distance r. We shall therefore

t ake

£= £ Qr) (3)
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in which fl is the friction factor in the ‘rest state and
Q(r) is assumed to be equal to r/~ANa. This is the same
choice adopted by Hinch (1977) but differs from the form
used by Tanner (1975b) and Phan-Thien et al. (1978)
which was Q=1+r'/5ﬁa. We prefer the choice of Hinch because
in the rest state where <r%> =4ﬁa, the friction factor
becomes Z  whereas Tanner's choice leads to 2%,. Slender
body theory calculations for 1low Reynolds number flows
suggest that this linear form for Q neglects an additional
logarithmic contribution to the friction factor which 1is
proportional to 1n(r/ANa). It may also be noted that the
friction factor for a highly distorted chain should not be a
scalar quantity as assumed by (3) but rather a second-order
tensor. Accounting for these additional refinements will
not significantly affect the stretching process of the

dumbbell and for that reason will not be accounted for.

The spriﬁg connector force, ES is a consequence of the
action of the entropy of the chain which opposes deformation
of the polymer and tends to restore the chain to the
randomly coiled rest state. As the chain becomes highly
distorted and approaches the maximum extension length R=Na,
the entropic spring force becomes infinite which forces the
chain to be finitely extensible. The polymer will then be

restricted in its extensibility to the maximum value of its
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chain length. The form for F, will be taken as

s (4)
E. = -2NRTE(CTR) ¢
R_’Z

where kT is the Boltzmann temperature and %,(r?R) is a
nonlinear function of the end to end vector which becomes
infinite when r'+R. There have been a number of choices for
the form of g (Langevin spring (Peterlin (1961), Warner
spring (Warner (1972), linear locked spring (Tanner (1971,
1975a)) and while it can be argued that the Langevin spring
has some fundamental basis we shall take the simpler Warner

spring in which

\
EC7R) = TRy (5)

The precise form for <§ will not affect the general
trend of the model predictions and all of the above mentioned
spring laws share the features of a singularity at r’=Na and

a constant limit in the neighborhood of zero deformation.

The Brownian motion force is caused by random thermal
agitation of the solvent molecules onto the polymer chain.
This will be taken to be the following effective entropic

force:
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(6)
FB = -RT Y QOcﬁU

where ¢ is the distribution function of the dumbbell
conformation. Brownian forces, then, affect the dumbbell in
two ways. In the first instance, they lead to the elastic
spring connector which arises from maximizing the number of
configurations available +to the dumbbell (which leads to a
maximum entropy) and secondly, stochastic forces drive the

dumbbell conformation through all possible realizations.

In general, a polymer chain will have a finite axis
ratio. It is here that the dumbbell model considered here,
with an infinite aspect ratio, is the most 1limited. As

rigid
shown by Bretherton (1962), a "axisymmetric particle with its

symmetry axis oriented along the unit vector g will have the
following rotation

g = &+ &(Dg-2-29)9)

_ =

!

where G is a constant which is specified by the geometry of
the particle and L and D are the vorticity and rate of
strain tensors of the flow respectively. The constant G,

therefore determines the efficiency of the rate of strain
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tensor in rotating the particle. The dumbbell model, as do
all particles of infinite aspect ratio, has a value of G=1
and therefore both D and 1 will be equally effective in
rotating the dumbbell. A real polymer chain, however, with a
finite aspect ratio will in general be characterized by a
different value of G and it has been suggested by Hinch
(1977) that this parameter should be in fact a function of
the chain conformation and less than unity. The case of a
conformation independent value for G for the dumbbell model
has been investigated in detail by Gordon et al (1972).

Throughout this paper, however, it will be assumed that G is

unity.

For the purpose of example we shall consider a two

dimensional linear flow in which

o 1 O

F:Tés’x‘ >\OO , (7)
- o o0

where J is the magnitude of the local velocity gradient.
The parameter >\ specifies the particular type of two
dimensional flow and varies between 1. This type of motion
was chosen because it offers the possibility of examining
the important effects which occur with variations in the

amount of vorticity in the flow and because it can be realized.
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experimentally in a four roll mill. Flow birefringence
experiments utilizing such a flow device have been conducted
in this laboratory for dilute solutions (50 - 100 ppm) of
high molecular weight polystyrene in a viscous solvent and
the detailed results of this work can be found elsewhere
(Fuller and Leal (1980)). Figure 2 shows the range of flows
described by the velocity gradient tensor of equation (7) as
A 1ls wvaried. The ratio of vorticity to the rate of

extension in this flow is

1-X ‘ (8)

Combining equations (1-6) the equation of motion for

the dumbbell end to end distance is

s
"

[-r' = BNRT Bop’ = RTy fogifs (9)
L = = g

which when multiplied by yk gives the flux of probability
mass in configuration space. This probability mass is
conserved so that the following continuity equation can

written
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where r=r/Na, oc = Y8 and ©= £R /6NkT is the rest state

relaxation time of the dumbbell.

From the moments of the distribution function, X% 2,
the macroscopic properties of the solution may be computed.
The evolution equation for these moments can be obtained by
multiplying equation (10) by x;x; and averaging over
the distribution function. The terms involving £ and Q,
however, being nonlinear, cannot be evaluated without first
solving for %ﬁ which, in general, will not be possible due
to the presence of Q and & in equation (10). This problenm
can be cifcumvented by using the preaveraging approximation
of Peterlin (1961) in which the functions Q and & at each
instant are replaced by their values at the mean square
end-to—end distance, <r2;% which exist at that moment. This
approach has also been used by Hinch (1977), Tanner (1975b),
and Phan-Thien et al. (1978) in related problems.
Although this pre-averaging approach is clearly "ad hoe" and
approximate, we believe‘ that it will yield reasonable

results over a wide range of flow strengths. When the flows
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are weak and the dumbbell is not greatly distorted, the
nonlinear coefficients in equation (10) are slowly varying
functions and do not depart much from their rest state
values.,. On the other hand, when the flows are strong,
producing significant distortion of the dumbbell, the
probability distribution function becomes strongly peaked
and, in fact, can be approximated as a delta function 1in
space. This occurs as a consequence of the typically large
values of N that are associated with a macromolecule and the
fact that the Warner spring causes the probability mass of
the dumbbell +to be confined to a space bounded by a sphere
of finite radius R. As the dumbbell becomes greatly
distorted, the flux of probability mass is reflected off
this boundary and yV becomes strongly peaked in the
neighborhood of the boundary. With the functions éj and Q
expressed in pre-éveraged form, the governing equations for
the moments of the distribution are then

d/x3S - — Y-z' 2+ XD+ d— !
SO = N r2and v i

/@D = - LD A, ' +
R T

3{“‘9 = BN r oD + o (1)
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déézz‘) RIS PR e

in which

RN ’ (12)

l/2
Q = AN A0 (13)

The coupled differehtial‘equations (11) can be solved
in conjunction with equations (12) and (13) for any given
initial conditions. The most important initial value
problem 1is that 1in which the system starts from rest in
which <x x;>= &y3(N+1) (or <x x;>=&/3N for the linear

spring, g’and Q=1).

The relationship between the moments which appear in
equation (11) and the macroscopic stress tensor for the
solution can be calculated from the following expression due

to Kramers (1944) (see also Bird et al (1977))

T =B (14)
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where F. 1s the force acting along the end to end vector.
For the present model, this 1is the spring tension Fe .
Equation (14) neglects an isotropic contribution (Bird et al
(1977)) which can Se added to the pressure term of the

overall stress tensor. Using equations (4) and (12), the

stress is then

T = 3™RY &4‘”2»4[‘0 (15)

=

In particular, for simple shear flow, the shear stress

1s

S = Ty = 2NRTE Loy (16)

and the shear viscosity is %7:SAX.

The first and second normal stress differences are

Ne= T Ty = 3NKTE [623 -4y an

i

Ny hEWV—Tzz: 1%Ngj€i{${%>d<zéﬂ

(18)

and the normal stress difference coefficients are szN,/of'
!

and 2/{:N2 / o
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When using equation (15) for purely extensional flow,
(X=1), it must be remembered that the velocity gradient
tensor in equation (7) is rotated by 45 in the (x,y) plane
from the frame usually used for this flow type. If (?}?) is
the frame rotated 45 in the counterclockwise direction in

the (x,y) plane, the elongational stress for A\=1 is
/ o p—
N'EK(\CK—ng): 5NR\§;<¥E}> (19)

In aadition to the stress tensor, the birefringence
resulting from the deformed dumbbell can also be
calculated. This birefringence is a consequence of the
anisotropy of the polarizability tensor ofrthe deformed
dumbbell. The polarizability tensor of the dumbbell can be
related to the end to end vector by averaging over the
contributions to the polarizability tensor from the
individual backbone elements of the chain. This has been
done for the Gaussian chain by Kuhn and Grun (1942). Their
derivation 1leads to the following polarizability tensor for

the dumbbell (Yamakawa (1971))

Ro= Np-9) I + 2R Lo (20)

where p and q are constants independent of the dumbbell

conformation. Birefringence measured in the (x,y) plane is



233

proportional to the difference in the major and minor
principal axes of the polarizability tensor. Therefore, the
birefringence 1s simply proportional to the difference of
the eigenvalues of the tensor <xLx&> with the third column

and row omitted giving (Peterlin (1961))

Mo < 2 %(n’}l)/SNf(/M - 1a) (Na/M)N [L x?)—Q_D)Zf 4<X7>th

(21)

where An 1is the birefringence, n is the refractive index of
the solution, ¢ 1is the concentration in g/cm3 y Ny 1is
Avogadro's number and M is the molecular weight. /4 and /4

are the polarizabilities of a subunit parallel and normal to

the chain axis respectively.
I.II Results

Let us now turn to the calculated results obtained by
solving for the moments 1in equations (11)-(13). The
predicted steady-state values in the end to end distance are
shown in the sequence of curves in figure 3 for the three
basic variations of the present model; namely, linear spring
and constant friction factor, non-linear spring and
non-linear spring with <onformation dependent friction

factor. calculations shown in figure 3 were performed for a
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single value of N equal to 2500 and for X in the range from
0 <X 1. The negative range of 2\ 1is largely uninteresting
since the corresponding flow types are incapable of inducing

significant extension.

The response of the dumbbell with a simple 1linear
spring 1is characterized by the presence of a singularity at
a critical value of the velocity gradient. At this critical
point the hydrodynamic friction forces exactly balance the
restoring force which the entropic spring can supply. It is

a simple matter to show that the critical value of the

dimensional velocity gradient oC is

OL:Z@ (22)

The flow type therefore appears to play a critical role
in determining the strength of a particular flow as measured
by its ability to induce extension of the macromolecule.
The quantity X0 is the eigénvalue of the velocity gradient
tensor of equation (7). It 1is well known from previous
theoretical investigations into the role of flow type 1in
determining the strength of flows (Tanner (1976), Olbricht
et al (1980)) that it is the eigenvalue of the velocity
gradient tensor which is the important parameter. From

equation (22) it is readily seen that simple shear flow
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( A=0) represents a neutral case in which no singularity

exists for finite values of OL.

The existence of a flow 1induced singularity for the
linear dumbbell model was first pointed out by
Takserman-Krozer (1963). The addition of a nonlinear spring
to the model was first considered by Peterlin (1961), who
used the Langevin spring function. The nonlinear spring
insures the finite extensibility of the dumbbell and thereby
removes the singularity. However, it can be seen in part
(B) of figure 3 that a fairly sharp transition still exists
from the coiled configuration to stretched states as &
surpasses the c¢ritical values specified by equation (22).

The sharpness of this transition 1is controlled by the

magnitude of N (becoming sharper as N is increased).

The addition of a conformation dependent friction
factor profoundly affects the steady state solution
structure, as is evident in figure 3C. One new feature 1is
the existence of multiple steady states in the end to end
distance for all but the smallest values of X . This 1leads
to a hysteresis in the predicted conformatio; of a polymer
chain subjected to "extensional™ flows. For example,

tracing along the A =1.0 curve in figure 3C it is evident

that a dumbbell which starts from the rest state will remain
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in a2 nearly undeformed state for all flows in which
o<, =0.277, where the slope '3<r2;&/5a becomes infinite.
Once the gradient surpasses ,, however, the steady states
are highly extended (this has been called the coil-stretch
transition by de Gennes (1974, 1979)). On the other hand,
tracing along the upper branch of the solution curve for

=1, it can be seen that a dumbbell which starts in a
highly extended state can be sustained by much lower values
of than were necessary to induce the extension in the
first place. In fact, for x=1, high extensions can be
sustained down to a velocity gradient of «,=0.026 at which
the slope 3<r2;36qv again Dbecomes infinite for this
particular value of N. The fact that CX}(X, is a direct
consequence of the greatly enhanced friction factor which
exists in the extended state (increased by O({H) over its
rest state wvalue). This hysteresis was first discussed by
deGennes (1974) and Hinch (1974). Tanner (1975b) and more
recently Phan-Thien et al. (1978) also investigated this
problem and obtained quantitative predictions of the
hysteresis effect for uniaxial extensional flow. However,
none of the work done to date fully addresses the important
effects of molecular weight and flow type on the

hysterisis.

The size of the hysteresis loop (i.e. the difference
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(o,- o,)) depends on both the type of flow, and the molecular
weight of the polymer (characterized here by the parameter
N). Figure 3C demonstrates the effect of flow type, and it
is seen that for this particular value of N = 2500 that the
hysteresis effect persists down to a value of >\=3x10"q .
This 1is an important prediction and suggests that flows
whiéh are only a slight perturbation from simple shear flow
can 1induce hysteresis in the steady state extension of

macromolecules.

In order to expose the influence of molecular weight on
the magnitude of the hysteresis loop we have calculated the
critical velocity gradients & and o, for the case of X=1.0
as the parameter N was varied over several orders of
magnitude. The results are illustrated in figure 4. It is
evident that the difference (X&,-,) increases with N, and is
in fact, nonexistent if N becomes too small even for X=1.
As N increases to large values, the critical value
eventually becomes proportional to aw/fﬁi Similar
calculations were carried out holding N constant while
varying the flow type parameter ). The calculated values
of & and ,as functions of X are shown in figure 5 for
two values of N. The range of X\ over which the hysteresis

loop exists increases with N, buf is always bounded between

0< ™41,
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From equation (21) it is clear that the response of the
birefringence to the flow will qualitatively 1look very
similar to the curves for <r%*>. In particular, the curves
of birefringence will be characterized by critical velocity
gradients and hysteresis loops in the same way depicted by
figure 3 for <rl>% For the large values of N typical of
macromolecules and for large deformations, the birefringence
will be essentially proportional to the square of the

largest length scale of the dumbbell.

Besides steady state calculations, the time dependent
problem outlined earlier can also be solved. This problem
was also investigated for a wuniaxial extensional flow by
Tanner (1975b), who noted that extremely long time scales
were required for the variable friction factor dumbbell to
approach steady state when started from rest in flows with
velocity gradients in the neighborhood of ™o = «. This
effect was 1investigated 1in somewhat more detail in the
present work, by determining the time (in wunits of 8)
required for the dumbbell to achieve 90% of the steady state
conformation. The results for the three variations of the
dumbbell model cited earlier in cconnection with figure 3 are
shown in figure 6 for X=1.0. All three variants of the
model show a pronounced maximum in the time scale for

stretching in the vicinify of the respective critical values
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of the velocity gradient. This results from a balancing of
the hydrodynamic friction and entropic spring forces at the
critical point. When this occurs, the only mechanism for
initial growth is Brownian diffusion, in which <ri>
increases algebraically with time. For the 1linear spring
model this growth continues indefinitely. On the other
hand, when the nonlinear spring is introduced, the steady
state value of <Kr*> is greatly restricted, and the steady
state is reached in a finite time. The incorporation of a
variable friction factor, and the resulting coil-stretch
transition lead to a much larger steady state value for <rZ>
and the diffusion mechanism remains operative for a longer
period of time. As the dumbbell extends and the friction
factor increases, the rate of deformation eventually picks
up. This causes the friction forces to eventually dominate
but the resulting time scale to reach steady state 1is very

long (about 1806 for N=1000).

Rheological predictions for the model can be calculated
from equation (15). Figures 7 and 8 show the steady state
shear stress and shear viscosity for simple shear flow with,
and without, the conformation dependent friction factor for
two different values of N. The use of a nonlinear spring
admits the possibility of a shear rate dependent viscosity

(the linear spring dumbbell predicts a «constant viscosity)
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and the magnitude of N controls the rate at which the
viscosity drops off with increasing & . The wuse of a
conformation dependent friction factor causes an increase in
the shear viscosity with increasing shear rate 1in the
neighborhood of Xx=1. The viscosity eventually becomes
shear thinning at high velocity gradients and the viscosity
therefore possesses an extremum (the magnitude of which
increases with N). This prediction of shear thickening was
first pointed out by Tanner (1975h) and later in more detail

by Phan-Thien <t al. - (1978) .

This shear thickening prediction is in direct contrast
to the available rheological data on dilute solutions of
polyacrylamide in water (Baird and Metzner (1977), Tsai and
Darby (1978), Argumedo et al (1978)) in which the shear
viscosity was found to decrease monotonically over the
entire range of velocity gradients investigated. It should
be noted that for truly dilute solutions the contribution of
the polymer to the shear viscosity will be small. The ratio
of the polymer contribution to the viscosity of the solvent
viscosity is c[*l] where ¢ 1s the weight concentration and
(M1 1is the intrinsic viscosity. For polystyrene of
4x1d’Mw, for example, with an intrinsic viscosity of 152
cm3/g in cyclohexane at theta conditions, the contribution

of the polymer at 100 ppﬁ would only be 1.5% of the solution
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viscosity. This would mean that if N is in the neighborhood
of lO3 for this polymer (where figure 8 shows an order of
magnitude increase in the shear viscosity), shear thickening
of about 15% is predicted by the model which should be
measurable. Phan-Thien et al. (1978) have suggested
that this inconsistency in the model could be removed by
using a conformation dependent friction factor only for
strong flows (AAX>1/2 for the velocity gradient tensor
studied here), while using the constant friction factor for
weak flows. While this would solve +the problem from a
purely operational point of view, the incorporation of the
conformation dependent friction factor is still not fully
satisfactory. The origin of this discrepency in predicting
the rheology in simple shear may be due to the infinite
aspect ratio of the dumbbell and incorporation of a
conformation dependent parameter G which controls the
rotation of the particle may alleviate this problemn.
Indeed, Hinch (1977), who built this effect into a dumbbell
model which also had a variable friction factor, reported a

shear thinning viscosity.

The first normal stress difference in simple shear is
shown in figure 9. The effect of the nonlinear spring is to
cause N; to increase with OL at a rate less than the simple

quadratic dependence in O predicted by the 1linear spring
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model. The first normal stress coefficient N, /o,
therefore, would be a monotonically decreasing function of
o in much the same way as the shear viscosity.
Introduction of the variable friction factor produces an
extremum in N,/af, which 1s again in contrast to the
experimental evidence of Baird and Metzner (1977). The
second normal stress difference N, 1s predicted to be
identically zero for the present model with or without a
conformation dependent friction factor. Unfortunately,
there is a lack of data on the second normal stress
difference for dilute solutions but it 1is generally thought

that N, /N, should be in the range from -.1 to -.4 (Graessley

(1974), Tanner (1973)).

Although the dumbbell model with variable hydrodynamic
friction fails to predict the correct qualitative response
of the rheological functions in simple shear flow, flow
birefringence measurements by Fuller and Leal (1980) on
dilute polystyrene solutions indicated that the use of a
variable friction factor was necessary in order to properly
simulate the data using the dumbbell model. The flows 1in
these experiments were generated wusing a four roll mill
where XA was varied between 0.2¢ 2€1.0 and were, therefore,
largely extensional in nature. For that reason those

results agree with the conclusions of Phan-Thien et af.
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that wuse of the variable friction factor as done for the
present model, although producing apparently incorrect
rheological predictions for simple shear, will be

satisfactory for extensional flows.

Figure 10 shows the elongational viscosity N;Ax
plotted against ™% for two values of N. The elongational
viscosity undergoes a pronounced increase when the critical
velocity gradient is surpassed and levels off as K> The
asymptote is proportional to Nahfor the constant friction
factor model and proportional to Nh‘ when the friction
factor varies with the end to end distance. The existence
of a constant asymptote for large o 1is a consequence of the
nonlinear spring which constrains the dumbbell to a finite
end to end distance. Unfortunately, it 1is extremely
difficult to produce steady state elongational flows for
dilute polymer solutions, and there 1is therefore a total

lack of experimental data with which to compare the model

predictions.

The transient shear stress and first normal stress
difference when a shear flow is started from rest are shown
in figures 11 and 12. As the wvelocity gradient is
increased, there 1is an overshoot in the stresses which 1is

supported by the recent experiments of Argumedo et al
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(1979). The overshoot in the first normal stress difference
results from the fact that the end to end distance in the
nonlinear spring dumbbell is also predicted to overshoot at
high velocity gradients. The overshoot in the shear stress
is also caused 1in part by the overshoot in the end to end
distance, but also results from the simultaneous action of
extension and vrotation of the dumbbell. 1In low velocity
gradients where the dumbbell does not extend greatly, the
distortion of the dumbbell continues éémultaneously with the
rotation until a steady state conformation is reached. At
large velocity gradients, where the effect of the nonlinear
spring becomes important, the dumbbell extension is retarded
and reaches 1its maximum before the rotation stops. As the
dumbbell continues to rotate toward the x axis, the moment
<xy> decreases  and the shear stress drops resulting in an
overshoot of the stress. The overshoots in S and N, , are

also predicted by the models of Tanner (1975a, 1975b) and

Phan-Thien e+t al. (1978).

Figure 13 shows the transient response of the
elongational stress to start wup of the two-dimensional
extensional flgw. At values of &K which are lower than the
critical points for both the constant and variable friction
factor models, the time scales to reach steady state levels

of stress are short. In the vicinity of the critical
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velocity gradients for each model, the time required to
reach steady state greatly increases, as pointed out earlier
by figure 6. Once the critical wvelocity gradient is
surpassed, the time scale for each model to achieve steady

state decreases, and eventually scales as o .
I.III Discussion

The dumbbell model which has been discussed so far 1is
essentially equivalent to the model used by Tanner (1975b)
with the exception of the different choice of the wvariable
friction factor. This, however, does not alter the
qualitative predictions of the model and the results
presented here, although more detailed, are very close to
the results which he obtained. However, the effects of flow
type, and molecular weight, have been examined here in some
detail, with specific emphasis on the existence and
magnitude of the hysterisis 1loop associated with the
inclusion of the wvariable friction factor. It was found
that the multiple steady states existed for a wide range of
flow types from purely extensional flows to flows which are
only slightly less rotational than simple shear flow. It
was also found that the range of flow types where the
hysterisis was present increased with the molecular weight.

In part II, the additional mechanism of an internal
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viscosity is explored, and several interesting predictions

are presented and discussed.
Part 1II. Internal Viscosity

The notion of an internal viscosity mechanism in
polymer chains is motivated by a desire to cast the effects
of local structural constraints on the dynamics of the chain
conformation into a simple form. This is achieved through
the addition of a force proportional to the rate of
deformation of the end to end vector, iéw , of the dumbbell
with the constant of proportionality being called the
internal viscosity coefficient Z}. Although there 1is some
conflict with regard to the precise molecular origin of the
internal viscosity coefficient (in particular its dependence
upon the molecular weight and the solvent viscosity), use of
the internal viscosity model has led to successful fitting
of experimental data in flowing polymer solutions. Direct
measurement of such internal friction forces is difficult.
Traditionally, experiments to investigate the magnitude of
the internal viscosity effect have involved measurement of
nonlinear flow effects such as non-Newtonian viscosity,
first and second normal stress differences and the frequency
dependence of the complex Qiscosity. These measurements

have been performed almost exclusively in steady and
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oscillatory simple shear flows. It is the ability of the
internal viscosity models to fit certain features of this
data and its simplicity which makes it an attractive
concept. Recent experiments reported by Fuller and Leal
(1980) have demonstrated that the magnitude of the internal
viscosity contribution to the dynamics of polymers in
flowing solution can also be extracted by measurement of
flow birefringence as a function of the flow type (i.e. the
ratio of the vorticity to the rate of strain in the two

dimensional flows which are studied here).

This section further examines the consequences of the
internal viscosity mechanism in a variety of flow
situations. In particular, the response of polymer
conformation to start wup flows 1is investigated for the
velocity gradient tensor of equation (7). The effect of
internal viscosity combined with finite extensibility by use
of the nonlinear Warner spring 1is also examined. Two
methods of solution are examined. The first method, valid
for small values of the internal viscosity parameter, uses
the perturbation scheme first introduced by Booij and van
Wiechen (1968) and it 1is shown that largely analytical
results can be obtained. The second method wuses an
approximation procedure developed by Cerf (1969) to

calculate the conformation for arbitrary values of éz.
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II.I Development of the Model

The introduction of the internal viscosity mechanism

leads to an additional contribution to the force balance of

equation (1) which is now rewritten as

= ©

F
Y Ts v Ee tE - (23)

My

where the internal viscosity force is taken as

L, = .
F\Y L—dec (2)4)

As before, the equation of motion for the dumbbell is
obtained by solving for the time rate of change of the end
to end vector of the dumbbell j/. Before doing this
however, the form of the rate of deformation iég must be
specified. Two prescriptions have been used in the past;

that proposed by Kuhn and Kuhn (1945) in which

iy r.or
Caeg = == ¥ (25)

:E“_\:__;\-\:l (26)
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where L is the angular velocity of the dumbbell which must

be determined.

Both definitions for the rate of
deformation lead to the same results. The angular velocity,
L can be determined directly from the evolution equation
for r’ which is obtained from (23) using equation (25) for
the rate of deformation. As will be brought out later,
however, 1t is often convenient to choose one form over the
other depending on the magnitude of the ratio of the
internal viscosity coefficient to the external friction
factor Zz/g’ which will be denoted as € . It will be shown
that for small values of ¢ largely analytical results can
be obtained for the time dependent response of the dumbbell
using the definitionr(25) while for larger values of € , the
definition (26) 1is more useful and  accommodates an

approximation technique from which model predictions can be

obtained for arbitrary values of & .

II.II Perturbation Solution for € <1, &I(r)=1 (Linear

Spring))cg(c):i_(Consfant Feiction F%mkor>

Let us first consider the development of an asymptotic

solution for the dumbbell with a linear spring and constant
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hydrodynamic friction factor and small values of the
internal viscosity, €<<1. Taking equation (25) as the
definition for the rate of deformation, the -equation of

motion for the dumbbell in this case 1is

-4 £ ) A
0 -V it i Lo (0eper) (27)

i ([xV?QOﬂUJ}

oNY?
In writing equation (27) we have nondimensionalized time by
the dumbbell relaxation time, and scaled the end to end

vector by R=Na. The continuity equation for Y becomes

oW, AVATY - Ly 2
ot Lr¥ ZV”FW‘@NVQW (28)

€ gl (o), 1 (PO =0
e _[Z f:;a o

Equation (28) has been studied by Booij and van Wiechen
(1968) who solved it for steady simple shear flow and for
small values of the parameter €. Boolj and van Wiechen were
able to calculate various moments of the distribution
function as functions of the velocity gradient, but did not
arrive at analytical results and only solved for the moments
of the distribution numerically. We will show that it is
possible to obtain largely analytical results for the more
general velocity gradient tensor, given by equation (7), for

both the steady state and transient start-up problems.
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Following Booij et al we shall seek a perturbation

solution for the distribution function in the form of

- 7 € .
Y(rst) = Plnt) + = Yre), .. (29)

and rewrite equation (28) in the form of

W, ¥ reX¥, . ...
2t +€ (30)

subject to the initial condition Y(r,0)=g(x,y,z)

The operators &, and & , are then defined as

(31)

Combining equations (29) and (30), the following

equations emerge

W, XVT=0 5 ¥ne) <gir) (32a)

B

V', 45 - Z¥S Wine) < o (32)
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Equations (3ds) and (32h can be solved by introducing
the Green's function G(r ,r’;t) defined by

%S, ¢ G =0 1 G rio) = S-XN8(y-y) S(z-2) (33)

where &( ) is the Dirac delta function. Once the solution
for G(r ,r’3t) is obtained, the solutions to equations (32a)

and (32b) can be simply expressed in the form

Yt = Jff dkdydz Gl rie) glr)

¢z (34)
Yloe - - [d8 [yt Cle,r' s o) ()Y r)

o /
Given ¥ and ¥ it is now possible to calculate the

moments of the distribution function as
o i
Qaxpd = Xy v S CKaxD v e e - (35)

20
: p
where xéz(x,w,z) and <X x50 = 17 dxdydz &-g’?gfx,y,z;t).

—00

It 1is a simple matter to show that the equation of motion

. > 1is

for the moment <Xi§

d%(szﬁ' = ~<X;>98€,>° - <XL‘>{J' Xc> (36)

Using the definitioﬂs of g and &, and integrating by
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parts, equation (36) becomes
) ' ! U
3§(X§> + <)§'ij> - <%j A LRX‘(> - < x'\[\-JR%h>

° N (37)
= (xomy - {8 v 2ot (L) x)
r?_

\/»2.

In general, equation (37) represents a set of six

: 1
coupled equations from which the moments <Xy X; > can be

calculated. For the special case of the "4 roller" flow of

equation (7), equation (37) leads to

n

$L> v+ (Y- 2 dx)
at

?2.

o [}
L3S - Xy Z“Xi\)>
N 2

3{@5 +<\JZ>' PRI <j2>° - .3;2 y 20 f_—é>

! ! | | S ) N (38)
jt<xj> + Gy - oK - NS = g - Xy + 26 X? jz>

el

S4B e - (S G Bk 2o

To proceed further it is necessary to solve for the
Green's function defined in equation (33). This can be done



254

in a sStraightforward manner by first introducing the
spatial Fourier transform for G and then solving the
resulting quasilinear first order partial differential
equation by the method of characteristics. For the case
where the initial condition is that of a fluid at rest, the

distribution function is
Y, -’%f(ff \jﬂzz)
(N, 2) = (?—’-S) e
Y, 2 (39)

Following the method outlined above, the distribution
o
function ¥ is found to be

_3W, 2_2bUy +cE)y*+ 23
% 2 a0 Y+ Cle)y 2

—

wgf’,t) :{%/[:,) Y&Cﬂbz e (40)
where
at) = Zlglh\)jrh subst) e - “rosh £)~e-é2+ (1-0-3) /D
P % /6 55 / 76
bit) = gz(/ q)[/— @sh(ﬁt)- e s szm?sé)-e“]/p

clt)=2 [ 1#2) ;’/ ~@suwhipt) 2 Breosh(gt)€ 7—(/ (0 —ﬁZY/D
(41)

D= (’“)Z[/— zpsmhg/at) e'f—/g,zedzé (1 ~>Ql(/~/32)]

ﬂ:Q&m
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[
Using this expression for ¥, the averages required

equations (38) can be shown to be

L& = ¢/ @)
(S = AlanaeF)
<zl>° = ,/3/\1
Y = bAv@cs)
CHR- I (ac-28"-cN2-1acts L) (42)
dac-& 2 [ (@+ )~ 4ac- bzy
<¥§: H@&m&&S(ﬁyww\&wdQM&m&m%i
.

% - BL__ @be-FEE L)

0 MaeS s e8]

Y5~ 30T, |, (81 (Yoa B L) | foed BT,
16ac-8Y" [(&@’: 4(&0\&]1(&&%) 4ef(@rF-4@B)]

<§3 5,‘ the same as <f;i§ with 3 and ¢ nterchanged .

&y Lo (@eizé) T g@a)@s STy 2(Eddb-acte VT
elac-e)™ zlacd 3[(8\ Q-4 ‘@Q“bﬂ NGNS Ar(at‘—bz)]

o
o _ \ 2 2 _
<Zz7 <ﬁ %1+ Z&Xﬂré = O

in
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T, = fdx (-2 / @)

[xz. , (X))

2 (ac-157) inQQuA

I% = g"o\x G -xz)z/Qoq

1. = de(h)@)[xz* (Ci'&)(\*x")]/Q(JQ

- 2 (8e-5)
i 202 2
To= | dad( o2+ (Q;a}(_‘;li-gm] LD
2(8e-8)

) 73

QO = {\ + (Brc-2 - (are =2 —am\:?}x“]

The functions I, through I, are simple combinations of

the following 1integrals which can be evaluated in terms of

elliptic integrals

j i /e = 2 P
~i Q& +X >
i 5 5 2 2.
jdx 1/@@@~ 2\\X§-+>&2j E(AS) ~ 2 X-F§s) _2.4)% !
- Tl
(L44)

2 Ym&, K F(g.s)-2 (- fﬂ E(%%)

/) = =
B T e

!

.uf_(zxg; -xZz +\> K% -
3 XE 41
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where
sz - \\(c+832~4 (atg) f(c+&~2>
2(Cr8-) —act’)

& = ST B I S 1
kel

X3 (O +

where F and E are elliptic integrals of the first and second
kind. It should be noted that at steady state, the above
equations simplify considerably since (c+a)=2 and x, =
X. . It can be shown from equations (42), that there is no
effect on the moment <z*> to first order in the internal

viscosity parameter & .

At steady state the moments can be calculated directly,
and figure 14 displays results for <xz>’, <y2§ and <xy§ in
a simple shear flow as a function of the velocity gradient.
Figure 15 illustrates the dependence of the internal
viscosity effect on the flow type parameter X\ for several
values of thg velocity gradient. It should be noted that in
plotting figure 15, the velocity gradient was kept below
the value of 1/2, as the linear spring dumbbell model 1is
singular at that point. As expected, the contribution of
internal viscosity effect on the moments 1is negative and

therefore suppresses the'flow induced deformation. There is
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no effect on the steady state conformation in either purely
extensional flows where the polymer does not rotate, or in
purely rotational flows where no deformation is possible.
The maximum effect of the internal viscosity can be seen to
occur somewhere between simple shear flow and purely
extensional flow, and to shift towards the purely
extensional 1limit as the velocity gradient is increased. We
have shown that the steady results can therefore be
calculated directly from equations (38,41-44). This is in
contrast to the method of Booij et al, who evaluated the
triple integrations appearing in equations (38)
numerically. For the time dependent case, it is still
necessary to proceed to a numerical solution of the
differential equations in (38) but this can be accomplished
using straightforward techniques and the results are shown
in figures 16-18, where the moments <x> , <y=> and <xy$

are plotted as functions of time for several values of the
velocity gradient and in a simple shear flow. The effect of
internal viscosity is seen to be qualitatively the same for
all three moments, with an undershoot followed by an
approach to steady state. The transient effect wupon the
total moments <x*> (i.e. <x*S +§éx2§ ) and <xy> is,
however, largely uninteresting, since both moments undergo a
monotonic rise to steady state as shown in figures 19 and 20

for a value of &€ equal to 0.1. However, since the 1linear
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dumbbell model predicts that the unperturbed moment <y2;
will remain unchanged at the rest state value for all times
in simple shear flow, the internal viscosity effect causes
the total moment <y*> to undershoot its steady state value.
This wundershoot effect seems to be unique to the internal
viscosity mechanism and does not occur when either the
nonlinear spring or the wvariable friction factor is
introduced without the presence of internal viscosity. This
suggests that direct experimental evidence for the existence
of internal viscosity could be achieved by a light
scattering experiment (Cottrell et al. (1969)in which the total
intensity of light scattered from the molecules is measured
with the scattering vector aligned along the y axis as shown
in figure 21. The appearance of a minimum in <yz> should

show up as a maximum in the intensity of the scattered light.

Figure 22 shows the transient end to end distance of
the dumbbell in a purely extensional flow (A =1.0) for a
value of &€ =0.1. When the flow is purely extensional, the
internal viscosity only affects the transient response of

the dumbbell and has no effect on the steady state.

Using equation (15), the stress tensor in simple shear

flow can be expressed in the form
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Retaining only terms up to first order in &/(1+€) and

using equation (38c¢c), the shear stress is

3 - S oae (ol - éw\?)
et Gy - |+e_< I g (46)
Similarly, the first and second normal stress
differences are
(o) t \ |
N = Oy 26 T200d0> - 9 (4685 -
SNRT NPl 1+e[ J citK ] > (47)
N, - Y2 - € A4S - _ed P
KT e dt nedt (48)

The introduction of internal viscosity leads to a shear
viscosity and first normal stress difference coefficient
which are both shear thinning. This results from the
decrease in the spring force contribution to the stress due
to the suppressed deformation when internal viscosity is

added. A portion of the lost stress contribution from the
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spring is made up by the additional internal viscosity force
but the net force in the dumbbell connector is decreased.
The steady state second normal stress difference, however,
is zero, in agreement with the predictions of Bazua and
Williams (1974) for other internal viscosity models based on
the many bead and spring model of Rouse (1953). The
contribution to the second normal stress from the spring
force which results in the finite, negative value of
(<y*>-<z*>) 1is exactly cancelled by a positive contribution
from the internal viscosity force. The dumbbell model
developed by Phan-Thien et al. (1978) 1in which the
diffusion équation governing the conformation was derived
starting from a Langevin equation (whereas we have wused a
conformation space approach) was reported to predict a

finite, negative value of N, at the steady state.

Predictions for the transient response of the stresses
in start up of simple shear flow are shown in figures
23-25. The internal viscosity causes the shear stress to
start from a non-=-zero value of -2&/(1+€)§&fxy$ “when
dumbbell subjected to an instantaneous start up flow. This
results from the fact that at t=0 the instantaneous rate of
deformation applied to the system 1is nonzero and the
internal wviscosity force thus yields a finite contribution

to the stress. The first and second normal stress
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differences start from zero.

The model predicts that there is a nonzero second
normal stress difference at finite times which is first
positive and then slightly negative before decaying tq Zero
as t>wo, The steady state second normal stress difference
is zero due to the exact balancing of the spring
contribution (which 1i1s negative) and a positive internal
viscosity contribution arising from the rate of
deformation. At finite times, these two effects do not
exactly balance and initially, when the dumbbell just begins
to respond, the rate of deformation 1is 1large and the
internal viscosity effect dominates. This results in the

positive values for N for short times.
II.III Arbitrary Values of € , E% =1; The Cerf Model

The .preceding analysis has'inyestigated the effect of
internal viscosity when the parameter < is small. For
cases where the parameter & 1is large (or at least  not
small), the perturbation solution of the previous section is
no longer valid, and an alternate method of solution must be
used. Cerf has developed a technique which does accommodate
arbitrarily large values of € and has used it to analyze

the internal viscosity model for steady state and
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oscillatory shear flow. In this section, weuxCerf's method
to examine the more general class of flow types described
here by equation (7), for both transient and steady state

conditions.

In order to implemenﬁ Cerf's method of analysis, it 1is
necessary to wuse equation (26) as the definition for the
rate of deformation. In using this expression, the angular
velocity must be specified, and it 1s here that some
confusion has arisen in the past. Initial studies simply
set L equal to the angular velocity of the fluid, and the
resulting stress tensors lacked the proper symmetry. Cerf
corrected for this by choosing L to ensure that there was
no external torque on the dumbbell, and arrived at an
expression for L which was a function of the dumbbell
conformation. The same procedure can be repeated for the
dumbbell model here, but it 1is more straightforward to

calculate L directly from the equation of motion (27).

Given a general steady 1linear flow field, it 1is
convenient to first rotate the coordinates so that the
vorticity axis is parallel to the z axis. The velocity can

then be written as

(49)

1<
il
—
Ue)
+
e
S~
=
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N ,
where D=(VV+VV)/2 1is the rate of strain tensor, and
Sb=(W -9y")/2 is the vorticity tensor. After the above
prescribed rotation of the coordinates, D and Q}, can be

written as

a d e
Q: dbg
C [ c
(50)
O ¢ o
Q= 1 o o
O O o

The rate of rotation of the dumbbell is

Y - (51)
rl
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Since we are seeking the mean rotation of the
dumbbell in the (x,y) plane, we can set z to zero in the
above equation. The x and y components of the rotation in

the xy plane are then

. _ (-0t ()N - (b-a)x 2 42 Lok @ 1o
Reot = % b —_— jlv LA é(\%%}g%{f %é%y

(53)

U =- “(é—ﬁ %2} (d&)jz*(b—a))q J 2 Q%QF_ 1%O_ESM+ y%\)g}na’l# g ?7&
jr‘)t 2 — (&N 13\5 —)—(
Xal +j

a?sz

In this approximation, we shall wuse a preaveraged
value of L. When the terms within the curly brackets of
(54) are averaged over the distribution function, the
Brownian motion terms drop out and the average angular

velocity is

<L\> : < —(d—%x?.; ::—Q)\)Z”(b“ali\ﬂ>% (54)

Vol . . . .
where z is a unit vector in the z direction.

Following Cerf, we make the further approximation that
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<L=xix3>:<\:><xix5> which leads to

| = (A0S s (DS — (b -a) x> A
(Ly= -@B Q@(M?ﬁ; GRS z (55)

The above relation for <L > is -equivalent to that
which would be obtained by following Cerf, and determining
<L > on the basis that the dumbbell be free of external
torques. For the 4 roller flow field of equation (7), the

average angular velocity is

(W= ¥w? (56)

where

W= {4 -AHGS

SN
(57)

The evolution equation for the end to end vector, r,

of the dumbbell is now

(58)

IO+ OLE\N/_z\Ag)/(Hé)

I3

= (e —(D—‘&vﬂog“dﬁ
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The diffusion equation is therefore found to be

(59)
%;ﬂ oLy ./__\-ﬂrw-;jvaﬁ\/ VL revwEary = o

where we have introduced a scaled time variable z=t/(1+€).
Using equation (59), equations for the moments of the
distribution can be obtained by multiplying through by

<x{x; >, and averaging over YW, This leads to

|

i4x1> = -3+ ZOL<HQW><X7> + =

Q,L <\f> = - <\f\7 S ZOCO\—Q\N}(X\p & éi\k

dr
(60)

alxy> = ~<><7> FoLl+en) (D + oLA-EW) O
d—

déz = - +'SLN
anc

One consequence of the preaveraging scheme 1is that
the moments <xz>, <y?*>, and <xy> have no dependence on the z
coordinate. This results from the disappearance of the
Brownian motion terms when calculating the average angular

velocity in (55). From the results of the perturbation
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solution where the internal viscosity had no effect on <z

to first order, this will probably not be very important,.

The solution of (61) for the steady state moments is

208 () Greew) /
| = 4020+ el Oew) ( oN

L&) =

cpr- e mtenoee) ey
i—~40@(\+éw§(>v€w\ l

G- (N aaw (en)
= 4oCGrew)0ew)

LEY = 3N

Substituting the expressions for <xZ> and <y?% into

the definition for w, the following cubic equation is

obtained

Boe* W + 40 € (142) (2-e)w? ¢ z[n —4&2 N+ o (Y
(62)

ﬂmféuf¥f+d?(wAf€]“1~(Vﬁxd/4A&%::O

Given values for «, X and & s this equation can be

solved for the roocts w which, in turn can be used in

equation (61) to determine the steady state moments. Figure

>
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i
14 shows the quantities <x x> i&;g((xix;>—<xtgié=o )
plotted against « for simple shear flow. Comparison between
the results from the preaveraging method and the

perturbation method indicates qualitative agreement over the

entire range of ® . Furthermore, for large values of X the

results from the two methods are quantitatively close. The
reason for the discrepancy at small values of is that
Brownian motion effects, which are neglected in &L the

calculation of the angular velocity for the preaveraged
model, become important for such weak flows. Figure 15
compares <xZ; +<yl$ calculated with the preaveraged model
with the same quantity resulting from the perturbation model
as a function of the flow type parameter A, Here the two
models are again qualitatively similar, but since the
maximum value of & considered must be smaller than 1/2, in
order to avoid the singularity at X =1, the flows included
in this figure are all weak flows and for that reason the
two models are not quantitatively close. In spite of the
detailed differences in the two sets of results, however,
the relatively good qualitative agreement for weak flows,
where the pre-~averaging technique must clearly break down,
indicates that both solution techniques are providing a
reasonable approximation of the exact solution. Let us now
consider the steady state solutions for finite & where the

perturbation technique is no longer valid. Coincidentally,
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we note that the pre-averaging technique used to obtain
these solutions is expected to provide a better

approximation to the exact solution as & 1is increased.

Figure 26 shows the results for the end to énd distance
plotted against the velocity gradient for several values of
€ and A =0.2. As pointed out in the previous section, and
as can be clearly seen from equations (61), the linear
dumbbell with no internal viscosity (¢ =0) contains a
singularity in the moments when d;:1/2€1 . This corresponds
to a value of L =1.118 in figure 26. However, the addition
of 1internal viscosity suppresses the ‘moments, and if ¢
becomes large enough, the singularity is removed
altogether. For the flow type of figure 26 this occurs when
I exceeés a value of 5.85. Above this critical value of
¢, multiple steady states are possible as evidenced by the
curves for € =6 and higher in figure 26. The detailed
features of figure 26 require further explanation. For
€<&,=5.85, a steady solution is seen to be possible only
for A< X ~.=1.118 and this solution is unique. The steady
state values for <rZ;Q‘ are decreased by the presence of
internal viscosity as & is increased, but in every case the
solution becomes singular as -, ,and the end to end
distance becomes unbounded. Although internal viscosity can

reduce the average degree of deformation, it cannot
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influence the existence of, or conditions for, the
singularity. The situation for &€ > & 1is, however,
dramatically changed. 1In all cases, except for a very small
range of & exemplified by € =6 in figure 26, there is one
branch of solutions which exhibits only a very small degree
of deformation (actually indistinguishable from N<r2;2=1 in
figure 26) for arbitrary values of ol including d~>0kqu The

exceptional cases, for ¢ near & exhibit a similar

o !
behavior but steady solutions only exist up to a finite
value of o . This 1is the case for & =6 in figure 26. A
second branch of steady solutions is also evident for € > e .
and o greater the some value (which depends on ) near to
A+ Near O ..this second solution branch exhibits two
possible steady states. The upper portion
corresponds to 1large extensions and represents stable
solutions which we have indicated by a solid line in figure
26. The lower portion, on the other hand, (which we have
indicated with a dashed 1line) represents unstable steady
sclutions which could not be realized. In summary, then,
for € >¢&.., there 1is a unique stable steady solution in
which the dumbbell hardly deformed at all, for almost all
values of L, 1including o > CKG_ For X~ L g2 there is a

second branch of stable solutions with larger values of

i
b
<r*>°,
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Similar behavior also occurs for other values of >  1in
the range 0<><\. An expression for ¢, as a function of
the flow type parameter )& can be derived from eduation
(62). In particular, we set Oh_ equal to its critical value
of 1/2{\_ and look for roots of the resulting cubic equation
which 1ie in the region of interest between w=0
(corresponding to an infinitely stretched dumbbell) and
w=(1- )/2 (the normalized rotation rate of a highly coiled
dumbbell). The critical value €.~ as a function of the
flow type parameter D). is found to be

P
€ = () X4 S0 1%
(-aF 4N

v (63)
€ = 8 +4B0U+) D% 0. .oV 1%

vy

WhenAE:>E(r, there are three real roots of -equation
(62), one of which is w=0. Of the other two, only one root
will lie in the region of interest 0O<w<(1-A)/2. The
parameter < 1s a rapldly rising function of and tends
to infinity for purely extensional flow. For simple shear
flow (X =0) € is unity, a result previously found by
Cerf. Whenr & is much greater than €, the dumbbell

behaves 1like a rigid particle with very little deformation,
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and its rotation approaches the rotation of fluid elements.

The fact that internal viscosity alone can cause a
linear dumbbell model of a macromolecule to remain in an
essentially undeformed state 1is a potentially important
theoretical result. It must be noted, however, that
internal viscosity is competely ineffective in a purely
extensional flow, except to alter the time scale for
molecular deformation. Furthermore, the required magnitude
of the internal viscosity parameter € which is required to
inhibit deformation over the whole range of & 1is quite
large, 1 S<oo, and it is not at all clear that values of
this magnitude would be achieved in a real system. Thus, the
practical significance of these results remains to be
determined by comparison with experiment. Let us now turn
briefly to the time-dependent start wup problem for the

linear dumbbell with finite internal viscosity.

The time dependent problem can be solved by standard
numerical methods to integrate the moment equations (60).
Figures 16-20,22 show the comparison between the results
from the preaveraged model and from the perturbation
solution, for simple shear (X =0) and extensional
flows{X =1). The two models predict qualitatively the same

effects, and are even quantitatively quite similar for the
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relatively 1large velocity gradients that were used in the
figures. In particular, the preaveraged model predicts a
minimum in the moment <y?®> for the start up of simple shear

flow as was alsc found using the perturbation model.

As in the case of steady state flows, the time
dependent solutions reveal a transition in the response of
the dumbbell conformation when the parameter & exceeds 1its
critical value. In particular, as the dumbbell becomes more
rigid, the time scale for rotation shifts towards the
rotation time of a fluid element, and the dumbbell
experiences a tumbling motion in the start up of simple
shear flow. The moments and the angular velocity for this
case are plotted against time for different values of & 1in
figures 27 through 30. The tumbling action is most clearly
evidenced in figure 29 where it can be seen that the moment
<{xy> continuously changes sign for € >1 (the critical value
for shear flow) as the dumbbell responds to the start up of
the flow. The frequency of the oscillations associated with
this tumbling motion increases with the velocity gradient as
illustrated in figures 27 through‘BO by comparing the cases
of ™=10 and o®L=20 for &«=1.5. This time dependent behavior
is analogous to the motion of a viscous drop which also
experiences this tumbling phenomenon when the ratio of the

drop viscosity to the viscosity of the suspending fluid is
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large enough. This effect has been predicted theoretically
for the viscous fluid drop in simple shear flow, and has
also been confirmed experimentally (Cox (1969), Torza et al

(1972)).

Finally, let us briefly consider the predicted behavior
of the bulk stresses for the linear dumbbell with internal
viscosity. The stress tensor for the preaveraged model can

be calculated using equation (15). For simple shear flow

the shear stress and normal stress differences are

Bﬁ% = {Q‘}D v 20LewW <Xﬂ /(e (64)

N = | OB D e 2ae Q'Z\’\O(X\jﬂ/(\*@
3NRT L

BNRT (65)
Ny = [<>l2~22> y 2 AEW (xup] /Qre)
BNRT \

(66)

. I
_ Jf*

The shear stress and normal stress differences for
small values of &€ show qualitatively the same response with
the preaveraged model as with the perturbation model as can

be seen in figures 23-25 for the start up shear flow with
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< =0.1. In particular, both models show the same trends in
the second normal stress difference which 1is predicted to

first rise and then decay to zero in time.

As was stated previously, the viscosity and cbefficient
of the first normal stress difference, Zq‘, become shear
thinning when the internal viscosity is considered. This
point has been brought out previously in detail by Bazua and
Williams (1974). As & exceeds its critical value of unity
for simple shear flow, the stress functions begin to
oscillate in time. This effect is displayed in figures 23 -
25 for the shear stress N, and N, and is a consequence of

the "tumbling" action of the dumbbells.
I1.1v Nonlinear Spring, Arbitrary Values of €&

In the preceding sub-section, we have considered the
effect of internal viscosity (of arbitrary magnitude) on the
behavior of the dumbbell model with a linear spring and a
constant hydrodynamic friction factor. Let us now turn to
the <case for a nonlinear spring in the form given in
equation (5) and internal viscosity. We have seen, 1in the
previous sections, that the dumbbell with a linear spring
possesses a singularity for & =1/2{N, and this is still true

when internal viscosity is 1included in the model unless
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€ >C . This unrealistic singular behavior is removed by
incorporating a nonlinear spring into the dumbbell. Using

the Warner spring function, equations (60) become

c\i@ = —E G2 2ok Qraw) o + 5

dT
YD = CELP ¥ 2 (N-eoap
T

AP = — By v Ly red Y 4 o« -en) O

T (67)

W L g

Let wus consider the solutions of these equations
beginning with steady state conditions. In this case, the

solutions (steady state) are easily shown to be

. 26 (1) (+ew)
45 5N5, {\ + &2'- 4&1(\@0}()\,@,\)\]‘

Ofy= L Ny 2€ 0 Oewy
! 3’\@[ " EZ — 4o rew) (,\{-w)? (68)

_oollied)
<xyr = - EF;- —4ol (1) O\—ew};

{&y= '/ang
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Adding the equations in (68) to give the moment <r2>
and substituting the expressions for <x*> and <y*> into the
equation for w, we have two coupled equations, which when

arranged are

3[‘5’:,4 ol \t+e®)£k-ew%(\ NE)+ 208 QHX)Z = o
(69a)

2 (69b)
[53 40 (ew) Ocewﬂﬂ\/\—?_w) _2.C(14) (hOW =0

Using equation (12), <r2%> can be eliminated from the
above equations in favor of % . The equations (69) can then

be combined to give the following expressions

W= Q/%Z‘ 3(\4(@)(\—N‘Ejl

(70)

o 3&?(&«%\/&2(«%@0\—%@0 -Ng)- (‘”‘ﬂ

Using these equations the steady state moments of the
nonlinear dumbbell with internal viscosity can be calculated

as a function of foé given values of X\ and € by first



279

choosing the value of the end to end vector which specifies
Ei. From there w can be calculated directly, and & can
then be determined. These values for A, &, gncx and W <can
then be wused 1in equation (70) to calculate the moments of
the distribution. This procedure was carried out for €=10of
10 for several different flow types and the results are
shown in figure 31. Since a value of 10 for is the
critical value for )\:0.228, we can expect multiple steady
states for flow types where X\ is less than this value but
unique steady solutions for larger values of A Figure
31 indicates that this is indeed the case. For 7\ >0.288,

a single, unique steady solution exists, and the results are

essentially identical to those calculated earlier for a
dumbbell with a nonlinear spring, but no internal
viscosity. For X_<0.288, on the other hand, one branch of

stable steady solutions exists with N<fz;?~1 for all values
of &L , and a second branch of stable solutions exists for
sufficiently large L which again is nearly identical to the
results obtained without any internal viscosity in figure
3B. The 1lower portion of this upper branch of solutions,
indicated in figure 31 with dashed lines, is wunstable. It
may be noted from figure 31 that the value of 0L at which
multiple steady states start to appear tends to infinity as

A~ 0 (simple shear flow).
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The effect of the nonlinear spring is then to allow two
stable steady states to exist when both <o and & exceed
their critical values for a given flow type. For flows
between simple shear flow, and purely extensional flow, the
dumbbell could either be in a highly extended state, or in
an essentially undeformed conformation depending on its

initial conditions and the values of € and o .

All of the properties of the dumbbell with ' the
nonlinear spring and internal viscosity such as the moments
of the distribution and the stresses can be calculated as
before. However, the qualitative features of the presence
of both effects will essentially be a straightforward
combination of .the predictions already presented and for
that reason detailed results will not be presented here.
The salient points which deserve mention 1include the

following:

1. The combination of internal viscosity and the
nonlinear spring still produces the appearance of a
miﬁimum in <y*> as simple shear flow 1is started from
rest. However, the magnitude of the minimum increases

with increases in the internal viscosity parameter S

2. The second normal stress difference is still
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zero at steady state but is finite (and initially

positive) for the transient case of a start up shear

flow.

3. The introduction of the nonlinear spring does
not greatly influence the quantitative relationship
between the values of & = & ,and € = €~at which the

dumbbell will have multiple steady states, and XA in

flows where 0< A\K1.

4., The "tumbling" action of +the dumbbell still
occurs with the introduction of the nonlinear spring
when € > ¢, and this leads again to oscillations in the

macroscopic properties.

II.V Discussion

The influence of internal viscosity has been examined
in detail using two calculation techniques for the problems
of +transient and steady two dimensional flows. The
perturbation scheme was solved analytically and the moments
of the distribution and the stresses were calculated. The
internal viscosity effect was then shown to be strongly
influenced by the flow type, having a maximum influence for

flow types between thét of simple shear flow and purely
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extensional flow. Its effect on the transient response to
simple shear flow when & 1is small is most strongly seen in
the moment <y?> which is predicted to experience a minimum
in time. Using the perturbation solution, it was also

demonstrated that the model predicts shear thinning in Dboth

the viscosity and first normal stress difference
coefficient. The second normal stress difference is,
however, zero. at steady state although its transient

response is norizero and in fact is initially positive.

The preaveraged solution was shown to be in good
qualitative agreement with the perturbation solution for
small € and is capable of predicting the model response
when the internal viscosity becomes large. The most
striking effect of large values of the internal wviscosity
parameter € 1is the appearance of multiple steady states for
flow types in the range of 0< A<1 and the removal of the
singularity at & =1/2¥X . For the linear spring dumbbell ,
this occurs when € exceeds a critical value which depends
on the flow type. In the region where the multiple steady
states exist, the dumbbell is characterized by either a
largely distorted configuration in which the spring forces
balance the viscous forces with a negligible contribution
from internal viscosity or a highly coiled configuration

where the internal Qiscosity forces are the primary
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"restoring" forces. In the transient response to start up
of flows where &> &¢~, the dumbbell conformation responds
much like a viscous drop and experiences a tumbling action.
When this occurs, the macroscopic properties of the dumbbell

suspension oscillate in time until steady state is reached.

We have not presented resﬁlts for the combination of
the internal viscosity, nonlinear spring and 'variable
friction. Calculations with all three effects combined have
been performed but it was found that no significantly new
predictions result and that the unique contributions of each

effect combine in a straightforward fashion.
III. Conclusions

In this paper, we have examined the effects of three
attributes which have been suggested for the dumbbell in
order to model observed flow phenomena in dilute polymer
solutions subjected to flow. In some instances the results
presented here are basically reviews of several acknowledged
predictions of the model (the rheological predictions of
part one in particular), but other model predictions, the
authors believe, are new. This is the case, in particular,
for the predicted effects of flow type and molecular weight

on the features of a dumbbell with a nonlinear spring and
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variable friction factor.

The additional effects introduced by viscosity have
also Dbeen explored via two methods of solution. These
included a largely analytic perturbation solution to the
time dependent problem (in contrast to prior solutions which
were numerical and restricted to the steady state) and a
second method based upon the preaveraging technique due to
Cerf. Several interesting predictions were uncovered which
include the transient response of the moments of the
distribution and the stresses. At large values of the
internal viscosity parameter, the solution structure was
found to undergo profound changes which led to multiple

steady states and oscillatory response of the moments and

stresses.

While these predictions are interestiné, the degree tc
which they are manifested in an experiment will be strongl
affected by the molecular weight distribution of the actual
polymer sample and the transit times experienced by the
molecules in the region of the flow 1in which measurements
are taken. The effect of finite transit times is especially
important in extensional flows (i.e. A >0) which cannot be
created over a finite domain. These two points are taken up

in detail in Fuller and Leal (1980) which reports the

results of flow birefringence experiments in a four roll

mill.
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Captions

1. The dumbbell model.

2. Flow field described by equation (7).

3. End to end distance of the dumbbell versus the
velocity gradient. (A) Linear spring, constant friction
factor, (B) Nonlinear spring, constant friction factor,
C) Nonlinear spring, variable friction factor.

4, Hysteresis effect as a function of N.

5. Hysteresis effect as a function of A.

6. Time to reach 90% of steady state (in units of @) versus
the velocity gradient.

7. Shear stress versus the velocity gradient.

8. Shear viscosity versus the velocity gradient.

9. First normal stress difference versus the velocity gradient.

10. Elongational viscosity versus the velocity gradient.

11. Shear stress versus time.

12. First normal stress difference versus time.

13. Elongational stress versus time.

14.N<x;{j; versus the velocity gradient.

15.r2>  versus A

16. N<x2> versus time, perturbation solution,
----- preaveraged solution.

17.8y%>  versus time, perturbation solution,
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----- preaveraged'solution.
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1
NMxy> versus time, perturbation solution,
----- preaveraged solution.
M x%2> versus time, €=0.1, -=---- perturbation solution,

-.=-.= preaveraged solution.
Nxy> versus time, €=0.1, -=-=-- perturbation solution,
----- preaveraged solution.
Total intensity light scattering experiment to measure
the transient value of <y2>.
NMr®> versus time, A=1.0, €=0.1, ——e-- perturbation solutior
-.=-.~ preaveraged solution.
Shear stress versus time. —=-=- perturbation solution,
All other dashed curves are for the preaveraged solution.
First normal stress difference versus time.
All other dashed curves are for the preaveraged solution.
Second normal stress difference versus time.
All other dashed curves are for the preaveraged solution.
End to end distance versus the velocity gradient for

A=0.2. Unstable branches are denoted by dashed lines.

.x*> versus time. da=10 for the solid curves, @=20 for

the dashed line.

N<y1> versus time. a=10 for the solid curves, a=20 for

the dashed line.
NMxy> versus time. d=z10 for the solid curves, da=20 for
the dashed lines.

W versus time. d=10 for the solid curves, a=20 for
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‘the dashed line
Figure 31. End to end distance versus the velocity gradient for € =10,

Unstable branches are'denoted by dashed lines.
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ABSTRACT

A technique for measuring of velocity gradients in laminar flows by
homodyne 1ight scattering measurements is presented. A theory which
describes the 1ight scattering spectrum is derived, and includes the
effects of different types of linear flow fields, particle diffusion and
the intensity profile in the scattering volume. The conditions which
must be satisfied in order that the theory describe the experimental
situation are outlined and complementary experiments are performed which
both verify the theory and apply the technique. Verification is provided
by the flow in a Couette device, and that due to a single rotating
cylinder in a large bath of fluid. The technique is then applied to

measure the spatial variation of the shear rate in a four roll mill.
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I.  INTRODUCTION

The development of an accurate experimental method for determination
of velocity gradients in a flowing liquid is a problem of obvious
practical importance. There is, of course, a variety of experimental
techniques to determine the velocity “n z flowing fluid, one of the most
popular methods being laser doppler velo-imetry. The use of laser Tight
as a probe has the distinct advantage that it imparts essentially no
disturbance to the velocity field. However, relatively little has been
done which addresses the direct determination of velocity gradients.

The usual procedure for measuring velocity gradients using the laser
doppler velocimeter (LDV) is to first measure the velocity as a function of
spatial position and then differentiate the data. However, this pro-
cedure suffers from the inherent difficulties of differentiating exper-
imental data and is particularly suspect in the regions of large velocity
gradients which are likely to be of greatest interest. Not only may the
region being studied be too thin to allow sufficient spatial resolution
of the velocity field for differentiation with any reasonable accuracy
[the LDV system yields an average velocity over the scattering volume
which is typically about 0.5 mm 1in linear extent], but the LDV signal
is also complicated by a large variation in velocity across the scattering
volume and is difficult to interpret. In this paper, we demonstrate how
the homodyne mode of 1ight scattering spectroscopy may be used to directly
measure the average velocity gradient in the scattering volume from a
single in situ experiment, thereby minimizing both of these problems.

The paper consists of two main parts. In the first, we present the
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theoretical developments which are necessary to determine the local
velocity gradient from the homodyne spectrum of light scattered from

small particles which are immersed in a flowing liquid. In the second,
we report complementary experimental results which verify the method and
illustrate its application. A primary objective of both the analysis

and the experiments is to delineate the conditions which must be satisfied
in order that the measurement of velocity gradients by homodyne 1light
scattering be accurate and unambiguous. For this reason, our theoretical
analysis considers not only the effect of a velocity gradient (and the
corresponding variation in particle velocity across the scattering volume)
on the observable frequency spectrum, but also the effects of different
types of laminar motion, of variations in the light intensity profile of
the incident beam in the scattering volume, and of random, diffusive

motions of the scattering particles.

II. Theory
We consider the 1ight scattered by small particles which are immersed

in a liquid that is undergoing an arbitrary steady, laminar motion. The light
scattering experiment is sketched in figure 1. The incident light is a
single, monochromatic beam which is generated by a laser source, and the
scattered 1ight is viewed by a square-law detector (in our case, a photo-
multiplier tube) through two pinholes which serve to collimate the

scattered beam, and thus define the extent of the scattering volume. The
particles are assumed to be rigid, and small enough that their mean

translational velocity is indistinguishable from the 'undisturbed'
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velocity of the suspending 1iquid. Furthermore, they are assumed to be
present at low concentration so that they neither alter the motion of
the suspension as a whole, nor contribute to a significant level of
multiple scattering events. Finally, the Rayleigh-Debye condition

( Berne and Pecora 1976) is assumed to be satisfied, which requires an
upper bound of ¥4m|m - 1| on the average particle dimension, where A

is the wavelength of the incident 1ight and m is the ratio of the solvent
refractive index to that of the particles.

The frequency spectrum of the scattered light from the scattering volume
V is determined by the motions of the scattering elements (both random and
deterministic). By measuring the spectrum of the scattered 1ight mixed
with the incident 1ight (heterodyne mode) it is possible to determine
the mean velocity of the scattering centers in the scattering volume
(Edwards et al. 1971). The effect of velocity gradients and of random
motions due to diffusion is to broaden the heterodyne spectrum, but these
are second-order effects compared to the doppler shift of the frequency
which is caused by the mean motion of the particles in suspension.

The present paper is concerned with the frequency spectrum of
scattered light when it is “mixed with itself" (i.e. the so-called homo-
dyne mode). In this case, it will be seen that the effect of the mean
velocity on the frequency correlation function can be neglected, relative
to the effects of differences in the mean velocity across the scattering
volume or of particle diffusion, provided'on1y that the time scales
associated with the mean ve]ocity gradient, or with diffusion on the

Tength scale Igl'l (see, for example, fiqgure 1) are sufficiently short
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compared to the transit time of a particle across the scattering volume.
In these circumstances, we shall see that the homodyne scattering exper-
iment provides a direct measurement of either the mean velocity gradient
or of the particle diffusivity, depending upon which of these dynamical
processes is characterized by the shorter time scale.

The scattered light spectrum for the heterodyne mode is given by
the heterodyne correlation function, Fy» which, in the time domain has the

form (Berne and Pecora, 1976)

Q N * ig-lr.(t) - r.(0)
Fylast) = 1 (E; (0K (t)e o[ ) ]> (1)
F1 |

Here, q is the scattering vector which is defined in figure 1, Ej(t) is the

amplitude of the light scattered by particle j and rj(t) is the position

of the centroid of particle j with respect to an arbitrary origin in the

scattering volume. The summation is over all particles in the scattering

volume for a given realization of the scattering experiment and the

angle brackets represent an ensemble average over many realizations.
Provided that the contribution of each particle to the scattered

light is statistically independent of the other and randomly distributed,

it may be shown (Berne and Pecora, 1976) that the homodyne spectrum, FZ’,

is related to the heterodyne spectrum by
) 2
Fz(gst) 'lFl(gst)l (2)

It can be shown that this relation is also valid for the case of flowing

particles where the deterministic motions dominate those due to random pro-

cesses provided the time scale associated with the decay of the heterodyne
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correlation function is sufficiently short compared to the reciprocal of
the Tocal velocity gradient y'l.‘ This condition ensures that during the
time scale of the experiment, any two particles will be statistically
independent allowing the homodyne correlationfunction to be factored into
the square modulus of the heterodyne correlation function as in equation
(2). This condition is almost always satisf‘ed under normal laboratory
conditions. Thus, we shall first analyze the heterodyne spectrum via
equation (1), and then use (2) to calculate the corresponding homodyne
spectrum,

Equation (1) can be simplified if the amplitude function Ej(t) and
the phase factor exp(i g-Lr(t) - r(O)])vary on sufficiently different time
scales. For spherical, optically homogeneous particles the amplitude
function varies principally with the transit time of a particle across the
scattering volume. If the particles are optically or geometrically aniso-
tropic, the amplitude function will also vary on the additional time scale
associated with particle rotation. However, we shall focus our attention

for the moment on the simpler case of particles which are isotropic
scatterers and return to the question of anisotropy at the end of the
section. Thus, the amplitude factor will be assumed to vary on the
transit time scale

where L is a length scale characteristic of the scattering volume, and U
is the mean particle velocity in the volume. The phase factor, on the
other hand, varies principally on the shortest of the possible time scales

which is characteristic of particle displacement over a length scale,

|9|-1. As we shall show later, this is usually



¢ = oyl cos¢)'1 , (4)

which is inversely proportional to the magnitude of the local velocity
gradient. Here, ¢ is the angle between the scattering vector, g, and the
local mean velocity vector, v. In qrder to minimize T this angle will
normally be set to zero in the present application. Now, a typical

1

magnitude for !9] is 105 cm ~. Thus, by controlling the size of the

scattering volume, L, the time scale, Tgs of variations in the phase factor of
(1) can be made quite short [say, 0(10'2)'or smaller] relative to the time seale
Ty s of variations in the amplitude factor for most systems. We shall

therefore assume the condition
1)1 = L2/ u s> 1 (5)

to hold, thus implying that the particle moves only a short distance
relative to L on the time scale Tg- Under these circumstances, the am-
plitude factor in (1) is essentially constant over the time scale for
decay of the correlation function (i.e. TS), and equation (1) can be

approximated in the simpler form

N . N
_ iq-[ri(t) - r:(0)I\ _
Fi(q,t) = jgl Ijé EES -3 >- jgl I,Fg;(gt) (6)

where Ij = <Ej(0)*Ej(0)> is the intensity of light scattered by particle

J and st is the so-called self-intermediate scattering function. We may note
that for intermediate values of /7., i.e. s 1, the

phase and amplitude factors in (1) vary on comparable time scales, and experi-
mental analysis of the frequency spectrum is impractical except in the oppo-

site FimitT, /1, <<1, where measurement of Fl(g, t) corresponds to the single
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beam velocimeter, described by Pike (1976).

We shall restrict our attention in the present communication to the
1imiting case (5) where the approximation (6) is valid. Further
analysis of the correlation function thus reduces to a deter-
mination of the s&l1f-intermediate scattering function, st(g,t). ‘This
analysis is facilitated by first solving for the Fourier transform of st

(the Van-Hove self space-time correlation function)

-ig-X; /7 iq-[r.(t) - r.(0)]
J d3g e S §%<; 333 ] :> (7)

(% [rs(t) - rj(O)])>

o
1t

sj ~

and then inverting to determine st. It may be seen from (7) that st is

nothing mere than the conditional probability density for a particle to be
at a position rj(t) at a time, t, giventhat it starts at rj(o) att =0

(Berne and Pecora, 1976). Thus, G_. represents the solution of the

sJ
classical convective diffusion equation for the particle,

oG

sJ . - nvle = 1
5 Y !stj DV st 0 (8)
subject to
(X, = §(X.).
6g5(%5,0) (53)

Here, it should be emphasized that X. is defined relative to a coordinate
system with an origin at rj(G)m Once st is known, the function st can be
determined by means of the inverse transform

= 1 i e Mg (x..1)
st(g,t) = z5;3§7§'J xe sj §j, .
The diffusion coefficient, D, has been taken as isotropic in (8) as a con-

sequence of the earlier restriction to spherical particles.
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Since the convection/diffusion process relevant to the 1ight scattering
experiment is characterized by a maximum length scale, L, corresponding to

the scattering volume, we can approximate the velocity of particle j as
Vi = 0.+ Ix, (9)

where yj is the velocity of a particle in the scattering volume at the

point x = rj and T is the local velocity gradient tensor. Substituting

(9) into (8) and taking the Fourier transform thus leads to

aF .
__§i— .-,0 . - o T . 2 =

3 1!3 gFSJ g-T vq(gFSJ) +.Dq st 0 (10)
Foy (2,0) = —ps

J - (27

The solution of (10) can be obtained by the method of characteristics.
The result is

t 2
] J dt'[0q'?(t") + i0,-9'(t") ]
° (11)

In order to calculate the heterodyne correlation function Fl(g,t), it
is necessary to sum over all the particles in the scattering volume.
Provided the number of such particles is large, this sum can be transformed
to a volume integral giving

M sttnarBe) + ii0-a' (43

Filg.t)=[[[e* 1e 0 (12)
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where 1(5) is the intensity profile of the incident beam in the scattering

volume, and‘y(x) is the velocity of the particles, which is approximated

as

V(x) = U+ Tx (13)

Here U is the average particle velocity within the scattering volume, rather
than the the mean velocity of the position of particle j at time zero as in (9).

Substituting (13) into (12), the heterodyne correlation function then becomes

t t
- j [DQ'Z('C') + T'l_J'CI'(t')]dt' -| dt'q'(t") X
Filg,t) =e °° i ”de31(,_()e 0
‘ (14)
- j [a?(t') + iu-g' (¢t .
= ‘0 I (I dt'g'(t')-g)

0

The corresponding homodyne correlation function, calculated from equation (2),

is then
t . t
-2 f dt' Dq'2(t") -1 [ dt'g'(t')Ioxy,
Folgst)y = e 70 “”dx?’l(x)e ° -
(15)
t
2 [ anaen "
R g
X A

where f is the Fourier transform of the intensity profile I, and

dq’

_ T
w=-r

-g's q'(0) = g

The homodyne correlation function differs from the heterodyne function
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primarily in the fact that there is no dependence on the mean velocity u.
In particular, both functions invoive the velocity gradient, I's and both
therefore could, in principle, provide a basis for its experimental deter-
mination. As a practical matter, however, the homodyne mode provides
a much superior technique. The response of the heterodyne
correlation functionwith time will, in most cases, be dominated by the
mean velocity term since thé associated time scale, (qU)'1 will usually
be much shorter than either of the time scales, (qu)'1 or (qu)'l, which
are associated with diffusion or the velocity gradient, ||T||= vy. Thus,
except for extremely small values of U, determination of the velocity
gradient from the heterodyne correlation function would be essentially
impossible. The magnitude of the homodyne correlation, on the other hand,
will normally be dominated by the velocity gradient term. Furthermore,
the homodyne technique is much simpler to implement since no additional
optics or alignment is required to deflect and mix the incident beam with
the scattered signal.

The effect of the velocity gradient enters primarily through the

~ It .
Fourier transform, I (J dt'g'(t')'g), of the intensity profile of the
)

incident beam in the scattering volume. By way of example, we have calcu-
lated the complete homodyne correlation function for two specific linear
flows of the type (13). The first is simple shear flow where

0 1 0
I'=y{0 0 0
0 00

and
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F (q t) = e—ZD [kz(l +%' (Yt)z) + 'Yt‘k‘l + 2,2 +m2]t 2
olgst) =

[ 2w
(16)

and the second is plane, hyperbolic flow where

24t Lty
I T I
Folg,t) = e 2y 2y JJJ d3§ I()_()equ(1 - ')

2 (17)

. T -yt
e15L.y(1 e ')

The components of g have been denoted as (k, £,m) in (16) and (17). Exam-
ination of these expressions shows that the homodyne correlation function
varies on three independent time scales
- -1
Te 2 Y

(qZD)'1

Hi

D
and t,(¢ = 0) which was defined in equation (4). Homodyne 1ight scattering
spectroscopy is practical as a means for determining the local velocity
gradient, only when

T, << (16,7p) . (18)

In this case, the expressions (16) and (17) can be approximated in the

simpler forms

Fz(g,t)m JJJ d35 I(§)e'ikYyt'2 | (19)

and

Fola,t)™ JJI a3 I(x)e-iykgt + iylytlZ (20)
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respectively, and the time rate of decay of the correlation function pro-
vides a direct measure of the velocity gradient. In the case of a general

linear flow subject to the same assumptions we obtain

q .=T.)-(t 2

Fola,t) = ”” a3 I()_()e-i - (21)

The expressions (19) - (21) provide the theoretical basis for deter-
mining the velocity gradient from a measurement of the homodyne correlation
function, and will be used to analyze the experimental data of section 3 of
this paper. If either of the conditions (18) or (5) is not satisfied for a
given experimental set-up, the homodyne spectrum will reflect (or even be
dominated by) additional contributions which arise from particle diffusion
and/or translation across the scattering volume. In this case, the utility
of homodyne scattering as a tool for determination of the local velocity
gradient will be lost. Because of the importance of the relative magnitudes
of the various time scales, Tes Tg and T in establishing the domain of
validity of the homodyne experiment as a method of measuring the velocity
gradient, it is worthwhile to consider their relative values for typical

experimental conditions. Thus, we have

T

f. L

w- o)
and

o PeL

Tg gL \ 2

where £ is the characteristic length scale of the particle and Pe = vzz/D
is the particle Peclet number. Now, the ratio (L/2) will typically be 0(103) or

larger, whereas q# is generally 0(1) or less in order that the Rayleigh-Debye
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approximation be valid. Thus, /7 ~0(10%), while o/ % ~10° Pe. The
latter ratio, TD/TS, will be large provided Pe > 107! - 10'2.‘ For nonzero
Y, this condjtion on Pe will almost always be satisfied. Thus, the con-
dition (18) will be satisfied and the homodyne scattering experiment will
almost always be dominated by the contribution of the velocity gradient in
the form (19) - (21).

To complete the determination of the expected homodyne spectrum, when
the conditions (5) and (18) are met, it is necessary to calculate the
Fourier transform, (21), of the intensity distribution of the incident beam
in the scattering volume. In general, however, this intensity profile will

not be precisely known,+

and it is thus important, if homodyne scattering

is to be effective for determination of the local velocity gradient, that the
spectrum be relatively insensitive to moderate variations in 1(5). For pur-
poses of investigating this sensitivity, we have considered the following two

intensity distributions for the beam geometry of figure 1 with q = (q,0,0)

I(l)(x'y‘z') = exp - (x'2 +,y2)/€ - z'z/aszcscze (22)
and the 'tophat' profile
\ 2 12y ¢ 42
(2) -z'z/aszcscze 1 (x'"+y'") <L
I/ (x'y'z') = e 2 2 2 (23)
0 (x'"+y'") 21

where 6 is the scattering angle, x' = (x4y'z') is the beam coordinate

system defined in figure 1, L is the length scale characteristic of the

JrIn spite of the fact that I(x) can be measured in a reasonably straight-

forward manner, it will only stay fixed for about 24 hours, and accurate
knowledge of I(x) would thus require constant recalibration of the
instrument.
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width of the incident beam and a is the ratio of the Tength of the scattering
volume in the z direction to the width L. With these expressions for the in-

tensity profile, the equations (19) and (20) yield, respectively for shear flow,

g-I'xt = qwt,

2.2.2,2
(a) dintensity profile I(l): Fz(g,t)= e”d YZL t/e (24)

(b) intensity profile 1(2), Fo(g,t) = [2J1(qut)/qYL£]2 (25)

and for two-dimensional extensional flow, q-T.-xt = gxyt

qz'singyt + qx'cosgyt

02
exp [—qusztz (c052 g + az _T_sm 9/2)/2]
sin 6

(a) intensity profile I(l): Fz(q,t)

- (26)

exp _qZYZLZaZSinze/Z

L 251n26 .

(b) intensity profile 1(2): F2(q,t)

~2J1(qut c0s6/2)]

gyLt cose/2 (27)

b

where J1 is a Bessel function of the first kind.

Figure 2 compares the correlation functions described by equations (24)
and (25). For large times, the behavior of the correlation function, Fz(q,t), is
fundamentally different for the two intensity distribution functions: Izl)

produces monotonically decreasing correlation functions while those calcu-
lated for 1(2) show time dependent oscillations. However, the characteristic
time scale in both cases is proportional to qyL and in the region of primary
experiment interest (qgyLt < 4) the qualitative behavior produced by both

11 2nd 102} 15 the same. Comparison of (24) and (25) or (26) and (27)
suggests that the principal influence of the flow type on Fz(qt) is to

alter the dependence of the characteristic decay time on the scattering
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angle 8.

In general, the correlation function will be a function of more than
one component of the velocity gradient tensor I, which has eight independent
components if the fluid is incompressible . For the two specific flow types
considered above and in the experiments described in the following section,
the orientation of the vector q was chosen so that only one component of [

was projected onto g. This will not in general be possible. However, the
indjvidual components of T can still be measured, at least in principle, by
creating an anisotropic scattering volume which has one length scale which
is considerably larger than the other two. Thus, for example, we may con-
sider an incident intensity distribution

I(x) = 8(x)8(y)f(z), with 8( ) a Dirac delta function,
in which it is assumed that the length scale of the scattering volume in the
z direction is much larger than along x or y. In this case, the gradients
in the velocity with respect to z will dominate the decay of the correlation
function and each individual component of T can be measured by independently
varying the orientations of the scattering vector, g, and the vector defining
the largest length scale of the scattering volume.

A1l of the analysis of this section, from equation (3) onward, has been
restricted to spherical particles, whiéh are optically homogeneous and
jsotropic. If the particles are non-spherical or optically anisotropic, their
rotational motions will inf1uence the 1ight scattering spectrum, both through
the amplitude function and the phase factor of equation (1). The time scale
1

of rotationally induced variations in the amplitude factor will be Q

where Q is the magnitude of the angular velocity of the particle. In order



340

to consider the roie of rotations on the phase factor is necessary to
include an integration over the internal coordinates of equation (11).
For a rod-like particle of length ¢ and unit vector g(t) along the rod

axis, the homodyne correlation function (neglecting diffusive motions) is

/2
” eia-{r'p(t) - r"p(0)) 4 g dzg(O),

|
/2

Thus, the time scale of variations in the phase factor which are caused by

2

F,(g.t) = ]m 3% 1(x)e 19°I"xt

particle rotation is

t, = (qm)'l.

I

Since the angular velocity @ will be at most the same order as the velocity
gradient v, the time scales characteristic of rotations of anisotropic
particles will in general be long compared to the velocity gradient time
scale (q yL)'1 and so may be ignored.

The analysis can also be extended to include the effects of curvature

32v.

in the velocity field 5;—5%— . This may be important if there is a sig-
J 7k

nificant change in the velocity gradient over the scattering volume. For
example, in the case of shear flow already considered, if the velocity
field is actually

v=(U +vyy+ 8y%.0,0)
the homodyne correlation function becomes (using the Gaussian intensity

distribution I(l) and the geometry of figure 1)
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Fo(g,t) = IJJJ_d3X}I(1)(§.)ef9Yyt + ﬁquztlz

_ — oo |- qu2%2§24 ]
1+ q°glLt? 2(1 + g%8°L%2)

If BZLZ/Y2'<<1, the curvature effect will be unimportant and this expression
reduces to the form (23) found earlier for a linear shear field. If this
condition is not satisfied, on the other hand, the homodyne correlation
function is no Tonger the square modulus of the Fourier transform of the
intensity function and a new time scale (qBLz)'1 is introduced. Experi-
mentally, the generally undesirable effects of curvature in the velocity
field could thus be detectable, in principle, by the presence of an
algebraic, rather than exponential, decay in the correlation function with

at! dependence if the intensity distribution is Gaussian.

ITI. Experimeﬁtai

In the preceding section, we have consfdered theoretically the light
scattering correlation function for the classical homodyne scattering
experiment applied to a flowing suspension. We have shown that the dominant
contribution, under normal circumstances, will derive from the mean velocity
gradient in the scattering volume, thus‘suggééting the potential of applying
the homodyne scattering experiment to the technological problem
of actual'y measuring the magnitude of velocity gradients in flowing 1iquids.

In this section, we report the results of some exploratory experiments
which were designed to test the validity of our theoretical results, and to

explore the utility of homodyne light scattering as a method of measuring
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velocity gradients. Thus, two sets of flow experiments were performed

under conditiens, discussed in the preceeding section, where the homodyne
correlation function should decrease exponentially with time at a rate which
‘depends principally on the Tocal shear rate. In one case, the velocity gradient
field is known, a priori , and the measurements serve to verify the
utility and accuracy of the method. In the other, we study the experi-
mentally impertant "four roller" flow device where the velocity gradient
field was only abproximate]y known before the present investigation.
Additional experiments were also performed in order to investigate the
effects of smaller values of the time scale ratio, Tt/TS, illustrating

a situation where the theory presented would not be applicable. These
experiments also suggest the necessary conditions for the effects of
diffusion to be measurable - in the presence of flow.

The experiments were performed on two separate flow devices: the
four-roll mill, illustrated in figure 3, which is used to approximate the
two-dimensional, hyperbolic flow of equation (17); and a concentric
cylinder, "Couette" device, shown in figure 4, which approximates the
simple, shear flow of equation (16). The Tight source for both
experiments was an argon ion laser operating typically in the neighborhood
of 500 mW, and the scattered light was detected using an EMI 9789 photo-
multiplier tube. Two pinholes separated by about 10 inches were used to
collimate the scattered 1ight and thereby define the scattering volume.
The pinhcies had a diameter of 1/32 inch in the four-roll experiment, and
1/64 inch in the case of the Couette device, and the incident wavelengths
of the light were 5145 X and 4880 R, respectively. The output of the photo-

multiplier tube was amplified by a Princeton Applied Research 113
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preamplifier and processed with a Saicor 43 A 400 channel correlator.
The computed correlation function was then output onto a Hewlett Packard
700 A X-Y recorder.

The dimensions of the four roll mill are shown in figure 5. A1l
rollers were driven separately with independent motors and each could be
removed to allow for a one ortwo roller operation. The top and bottom
of the container were constructed of one-quarter inch pyrex through which
the laser beam passed. A photographic study of the flow field generated
by the apparatus was undertaken using a dilute suspension of glass spheres
of mean diameter 100 p in glycerin. A typical streakline photograph of
the centerplane velocity field is shown in figure 6, from which it appears
that the two-dimensional hyperbolic flow of equation (17) is reasonably
well approximated in the central region between the four rollers. Assuming
this to be true, the (uniform) velocity gradient in this region can be
obtained by measuring the traveltime At for a tracer particle to move from
position (xl,yl) to (xz,yz). The velocity gradient for a two-dimensional,

hyperbolic flow 1is

I Y
(i) m () 2

This procedure+ was carried out for rotation rates, w, of the rollers

ranging from 1.4 to 35 sec!,

The result was a 1fnear relationship between
roller speed and apparent velocity gradient,

Y = 0.678 w sec” (31)

+Further details are reported by Fuller (1980).
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as would be expected if the flow were truly given by equation (17). An
interesting question, which we shall investigate later in this section,

is whether detailed pointwise measurements of the velocity gradient field
would support the conclusion of a very good approximation to the hyperbolic
flow which is the obvious and strong inference of our streakline visuali-
zation studies. In the four roll mill, light scattering experiment, the
incident beam was directed on to the flow dévice through its bottom by
means of a front surfaced mirror, mounted on a rotation stage capable of
360° orientation to within 0.25 degrees. The rotation stage was in turn
mounted on a translation stage capable of a twelve inch traverse to within
0.001 idinch. Angular variation of the scattered light wave vector was
provided by mounting the photomultiplier tube on a wide range vertical
goniometer which could be positioned to within 0.01 degree. This
capability of orjenting the incident and scattered wave vectors separately
allows the orientation and magnitude of the scattering vector q to be
varied independently. In addition, the four-roll mill itself was mounted
on a cross-slide rotary table which provides the capability of trans]ating
and rotating the flow device, while holding the optics stationary. Thus,
scattering experiments at different positions and orientation relative to
the flow are possible.

The Couette device was constructed of a rotating inner cylinder of
black, anodized aluminum, enclosed by a heavy-walled, precision bore glass
tube which was held stationary. The dimensions of the various components
are indicated in figure 4. 1In this case, the incident Taser 1ight was

introduced into the gap between the two cylinders through a solid lucite
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cylinder which was cut to fit- onto the outer glass cylinder such that the
composite glass plus Tucite wall formed a cylindrical section with its
central axis at the center of the gap. This enabled the incident beam to
enter the gap region with a minimum of refraction at the lucite/air inter-
face. The Couette device was itself mounted on an x-y translation stage
which, in turn, was fastened to the hub of a horizontal goniometer. The
goniometer hub could be rotated independently of the rotating arm which

supported the photomultiplier tube.

Experiments in both apparatus were conducted using a suspension of
100 ppmw of Dow Polystyrene Latex spheres in glycerin. The particle diameter
was 0.091 p and the viscosity of the glycerin was found to be 7 poise at

20°C. The water content of the glycerin was not known.

In order to use equation (20) to analyze the experiments, it is
necessary to ensure that the dynamics of the 1light scattering process
occur primarily on the shear rate time scale (qu)'l. The data necessary
to determine the various time scale ratios for the two experiments are 1isted
in Table 1. In Table 2, we show the corresponding time scale ratios, Tt/TS,
TD/TS and Tf/TS. It may be seen, in both cases, that the time scale Tes
associated with the mean velocity gradient is very much the smallest, and
it is thus expected that equation (21) should adequately represent the
measured correlation functions.

To obtain absolute values for the shear rate from (20)
and the measured correlation function, it is necessary to also measure the
intensity profile of the beam, as we have already noted. However, this

was not done in the present experiments. Instead, the characteristic
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time, in each inStance, was estimated as the time for decay of the -

correlation function to one-half its initial magnitude, and the shear

rate was taken as being proportional to the inverse of this time. Thus,

the velocity gradients obtained (and reported) are all relative values.

The first flow field studied was that generated by a single rotating
cylinder and this was accomplished by removing all but one of the rollers
in the four-rol1imill. Analysis of an infinitely long cylinder of radius

2

R, rotating with angular speed w, yields an r “ dependence of shear rate

on distance from the cylinder center

2

" : (32)
r

Measurement of the spatial dependence of the velocity gradient should thus
lead to the same radial dependence, provided that the flow device approx-
imates an infinitely long cylinder.

The experimental arrangement for this case is shown in figure 6. The
scattering vector g was oriented in the azimuthal directionand the experi-
ment was carried out by holding the optics stationary while translating
the flow device along the path indicated in figure 7. At each interval of
translation, the correlation function was obtained and recorded. A typical
correlation function is pictured in figure 8. The results of this procedure
for two-roller speeds are shown in figure 7 where we have plotted the °
measured velocity gradient against the square of the reciprocal of the
radial distance from the roller center. The linearity of the data, when

plotted in this fashion, indicates that the measured velocity gradient is
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consistent with the theoretical expression (32). Furthermore, the fact that
the s]bpe doubles when w is doubled is also consistent with (32). Both of
these results support the validity of the homodyne scattering method as a
way of measuring the velocity gradient.

The data do  depart from linearity farther from the roller surface,
but we attribute this to boundary effects associated with the finite
cylinder length. The presence of a top and bottom on the four-roller con-
tainer causes the velocity gradient to drop off faster than the analysis
for an unbounded fluid would indicate. It is important to note that
throughout the experiment, the shapes of the correlation functions were
observed to remain constant. That is, by scaling the time, the correlation

functions could be made to trace out a single curve. This verifies the

assertion that the only quantity changing is the velocity gradient and that

there is only a single time scale controlling the correlation function.

A second experiment was conducted using the Couette device, again
intended to verify the homodyne method for measuring velocity gradients.
In this apparatus, the flow field is a good approximation to simple shear
flow and the velocity gradient should thus be nearly constant throughout
the gap. The incident wave vector Ei was kept parallel to the direction
of flow and correlation functions were obtained as a funcfion of scattering
angTe. Care was taken to ensure that the centroid of the scattering volume
remained fixed as the scattering angle was varied.

Taking the velocity to be locally in the direction of x and the gradient
to be in the direction of y, the quantity g-[-xt would be 2y15ilsin2§yt.

Therefore, the measured characteristic decay time for the z correlation
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function should be linear with respect to the quantity sinzg._ The data
plotted in figure 9 show that this relationship is satisfied, thus again
confirming the accuracy of the method for measurement of the velocity
" gradient.

Finally, as an indication of the kind of study which can be done in
more complicated flows, we have used the homodyne scattering method to
determine the velocity gradient profile for the four roll mill when it
is supposed to be generating hyperbolic flow. These data are of some
intrinsic interest as the four roller device has often been used in studies
of particle and droplet deformation and orientation but has previously been
characterized only via visual, streakline photography+(Pope and Keller, 1977,
Rumscheidt and Mason, 1961, Taylor, 1934). The four roller device isusually
designed to simulate two;dimensional extensional flow and.it is important to
know how well the device performs in actually creating this type of homogeneous
flow. The most important feature of the flow, for most of the particle dynamics
experiments, is the absence of spatial variation of the velocity gradient field.

As discussed in section 2, the scattered light spectrum will generally
be influenced by all nonzero gradient components of the projectéd velocity
v-q, However, for the case of a single rotating clyinder, with
the Tight scattering volume situated half way between the top and bottom
of the cylinder, there is, at leading order, only a single, radial com-
ponent of the velocity gradient, and there is therefore no ambiguity in
interpreting what the experiment measures. However, in the more complex

geometry of the four-roll mill, there will 1in general be more than one

TA more comprehensive study of the four-roller device are reported by
Fuller (1980).
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nonzero component of the velocity gradient. By making the scattering
volume highly elongated onecouid, in principle, determine each velocity
gradient component separately. We did not attempt this procedure here,
but instead used symmetry of the flow field at the center plane and took
measurements along the center streamline of the center plane with the
scattering vector g parallel to the velocity component in the x direction.
Along this center streamline, avx/ay and avX/az are zero to at least a
first-order of approximation, and the experiment thus yields values for
Bvx/ax.

It may be anticipated that the velocity field in the four-roll mill con-
tains a saddle point close to the position of closest approach between any
two adjacent rollers. At these points the velocity gradient will vanish
and the time scale ratio Tt/TS will no longer be large enough for the
correlation function to be related to the intensity profile by equation
(20). Therefore, in the vicinity of these points one would expect the
correlation function to change shape and to no longer be characterized by
a single time scale which is inversely proportional to the velocity
gradient. It was found, however, that the regions where there was a
noticeable change in the shape of the measured correlation function was
very small (less than one-tenth of an inch in the flow direction) and data
in these regions-are simply not included here.

The measured velocity gradient profile is pictured in figure 10. Data
taken with the direction of the roliers reversed fell on the same curve.
The profile clearly shows that the region of homogeneity in the flow field
(constant velocity gradient) is confined to an area whose length is approx-

imately equivalent to the gap width between the rollers. A study was also
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undertaken of the dependence of the velocity gradient on roller speed with

the scattering volume stationary at the center of the four roller device.
This study showed that the dependence was linear over the entire range of
roller speeds (0 - 35 sec‘l).

A short investigatjon was also carried out in order to see whether
conditions could be achieved where it would be possible to see the effects
of the diffusion process in the scattering data. Such data would be of
considerable interest since the rate of diffusionis sensitive to the con-
formation of the scattering particles (or mo]ecu1e$) and would provide
information about flow-induced deformation or, in the case of rigid non-
spherical particles, orientation. This study was carried out in both
apparatus and involved an attempt to set the scattering vector g normal to
the plane of flow so that g-I'-x = 0 everywhere in the scattering volume. 1In
‘the Couette device, the vector g was oriented radially with a scattering
angle of about 60°. In the four-roll mill experiment, q was set para11e1 to
the z axis with a scattering angle of 1205. If equation (15) was appropriate
and the orientation of q sufficiently precise, this confiquration would
eliminate the effect of the shear rate on the 1light scattering
correlation function, Teaving only the diffusion process. However,
in the case of the Couette apparatus, the presence of a small but finite
curvature in the streamlines and a nonzero mean velocity in the scattering
volume caused the correlation function to be dominated still by flow effects
and the measured time scale for the correlation function remained orders of
magnitude faster than the diffusive time scale. In the four roll mill, on the

other hand, the measured characteristic time scale was reduced to the same

order of magnitude as the diffusive time scale. This was accomplished by
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placing the scattering volume in the vicinity of the stagnation point 1in
the flow and using a high scattering angle. There was, however, a small z
component of velocity and an associated velocity gradient due to the effect
of the top and bottom boundaries, and for this reason it would probably not
be possible for the diffusive process to compietely dominate the correla-
tion function in the pfesent system. )

The criterionwhich must be satisfied in order that the diffusive effects

dominate the spectrum is that

2
- qD°L
Tt/TD i > 1.

If the scattering volume is centered on the stagnation point, the velocity

U will be of the order of yL and the ratio becomes

2 2
1,/T, = 9b. KQEQ__
t'D Y Pe

For most situations of interest, the Peclet number will be no larger than
0(1). Therefore, in order to exhibit a dominant diffusive effect, the
experiment would have to be performed at higher angle using relatively large
particles. It would also be necessary, as in the present experiments, to
have the scattering vector normal to the plane of flow and to have the

scattering volume centered on the stagnation point.

Conclusions
We have examined the application of homodyne light scattering tech-
niques to a laminar flow field, both theoretically and experimentally.
““Although many dynamic processes céntribute to the frequency spectrum of the

scattered 1ight, we have seen that the dominant effect on the light scattering
\
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correlation function will normally be due to the presence of velocity
gradients in the scattering volume. Thus, we have shown theoretically,
and confirmed via experiment, that the homodyne 1ight scattering experiment
provides a direct method to measure the velocity gradients.

In its present state of development, the most serious limitation of
the method is that all components of the gradient of the projected velocity,

-q, contribute to the spectrum. Although this deficiency may be overcome

1<

in principle by creating an anisotropic scattering volume, this was not
pursued in the present investigation since the experiments studied had only
one gradient component of velocity in the scattering volume. A second
limitation is that the intensity profile of the beam must be known in order
to quantify the gradients in an absolute sense. This information can be
obtained experimentally without much difficulty. Unfortunately, however,
the iﬁtensity profile will generally not be maintained for extended periods
of time. The laser beam profile in our system was certainly stable for
periods of the order of days, but often changed in as little as a week as
the laser optics require cleaning and retuning.

The chief advantage of the homodyne 1ight scattering technique
relative to more conventional measurement techniques is that the shearﬁrate
can be obtained in a single, "noninvasive" experiment, without the need for
accurate repositioning of the measurement point as would be required if one
were to simply differentiate velocity data. The results are therefore more
accurate and reliable than was previously possible. In addition, the
present technique can be used in situations where the velocity changes
rapidly in narrow regions (and in this case, the principal component of

Vu is normal to u, thus minimizing the major ambiguity of interpretation
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which was discussed above).

In contrast, the usefulness of homodyne scattering experiments to
determine anything of the diffusive motions (and, thus, indirectly the
conformational state) of the scattering elements as is con?entiona11y done
in quiescent solutions or suspensions, would appear to be highly Timited
for flowing systems. The short investigation which we have carried out here
suggests that it would be necessary for the scattering volume to be centered
on a stagnation point of the f]ow, in order even to approach the necessary
conditions for the correlation function to be dominated by’the effects of
Brownian diffusion. In addition, in order that ty/t, < 0(1), it is
necessary that g2 > 0(1) and this requires that the measurements be carried
out at high scattering angles with relatively large particles. These
various restrictions greatly reduce the potential utility of homodyne
dynamic scattering for purposes other than measurement of the local mean

velocity gradient in flowing systems.
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Table 1
four roller . Cauette
q 105 em ! 10° em™?
L 0.08 cm 0.04 cm
R 1 cm 1 cm
D 10710 en/sec 1071 em?/sec
W 1 sec'1 1 se-c'1
Table 2
four roller Couette
2 2
Tt/TS 6.4 x 10 1.6 x 10
Ty/T 8 x 10 4 x 10°
3 3
Tf/TS 8 x 10 4 x 10
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Figure Captions

(oA B N L]

10.

Light scattering geometry. The vector q is orientated along the

x axis in the laboratory frame.

Calculated homodyne correlation function for two choices of the
light intensity profile in the scattering volume, using the
scattering geometry of figure 1.

Light scattering set-up with the four roll mill.

Light scattering set-up with the Couette apparatus.

The four roll mill.

Streakline photograph of flow generated by the four roll mill. The
particles were illuminated by a planar sheet of light at the mid-
height of the rollers.

Measured shear rate as a function of the radial distance from a
single rotating roller. The illustration in the upper left corner
represents the experimental arrangement.

Typical correlation function for the single rotating roller exper-
iment. Data taken at a scattering angle of 30°.

Characteristic frequency of the homodyne correlation function vs.
sinzg . The flow is simple shear with the direction of flow
para%lel to the incident beam vector.

Characteristic frequency as a function of distance along the center
streamline in the four roll mill simulating hyperbolic flow. The
scattering angle was 50.7° and the fate of rotation of the rollers

1

was 1.75 sec”~. The large circles indicate the position of the

rollers with respect to the bottom ordinate.
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Incident ,
ks Scattered light Ereacnf\ré z
R" wave vector Y=Y
Scattering
\ Angle X'
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Incident light
wave vector
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Tube defined by
detection optics

Flowing
Suspension .
Scattering volume

having length scale L
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Laboratory Frame

Fig. 1
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