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Abstract

This dissertation developed the extended energy loss fine structure
(EXELFS) technique. EXELFS experiments using the Al K, Fe Lo, and Pd Mys
edges in the elemental metals gave nearest-neighbor distances which were
accurate to within + 0.1 A. In addition, vibrational mean-square relative
displacements (MSRD) derived from the temperature dependence of the EXELFS
compared favorably with predictions from published force constant models
derived from inelastic neutron scattering data. Thus, information about "local”
atomic environments can be obtained not only from K edges, but from Loz and
Mas edges as well. This opens up most of the periodic table to possible EXELFS
experiments.

The EXELFS technique was used to study the local atomic structure and
vibrations in intermetallic alloys and nanocrystalline materials. EXELFS
measurements were performed on FesAl and NizAl alloys which were chemically
disordered by piston-anvil quenching and high-vacuum evaporation,
respectively. Chemical short-range order was observed to increase as the as-
quenched FezAl and as-evaporated NizAl samples were annealed in-situ at 300
C and 150 C, respectively. Temperature-dependent measurements indicated
that local Einstein temperatures of ordered samples of FezAl and NizAl were
higher than those of the corresponding disordered samples. Within a "pair”
approximation, these increases in local Einstein temperatures for the ordered
alloys corresponded to decreases in vibrational entropy per atom of 0.48 + 0.25
kg for FezAl and 0.71 £ 0.38 kg for NizAl. In comparison, the decrease in
configurational entropy per atom between perfectly disordered and ordered A3B

alloys is 0.56 kg in the mean-field approximation. These results suggest that



Vi

including vibrational entropy in theoretical treatments of phase transformations
would lower significantly the critical temperature of ordering for these alloys.
EXELFS investigations were also performed on nanocrystalline Pd and
TiO2. At 105 K, the MSRD in nanocrystalline Pd and TiO2 were found to be
greater than that in the corresponding large-grained materials by 1.8 + 0.3 x 10-3
A2 and 1.8 + 0.4 x 10-3 A2, respectively. Temperature-dependent measurements
were inconclusive in measuring differences in local atomic vibrations between

the nanocrystalline and large-grained materials.
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1 Historical Introduction

§1.1 and §1.2 review the history of electron energy loss spectrometry
(EELS) and the history of extended x-ray absorption fine structure (EXAFS),
respectively. §1.3 introduces extended electron energy loss fine structure
(EXELFS) and discusses some practical differences between EXELFS and
EXAFS. §1.4 schematically explains the physical origin of extended fine
structure. §1.5 discusses applications of extended fine structure in materials

science.

1.1 Electron Energy Loss Spectrometry (EELS)

The history of electron energy loss spectrometry dates back to the work of
Franck and Hertz during the years 1914 to 1920. They showed that when a
fast-moving electron collides with an atom or molecule in a gas, it bounces off
with only a very small loss of kinetic energy, unless it has enough energy to
raise the atom or molecule to an excited electronic state, or to ionize the atom or
molecule.

The first report on the characteristic energy losses of electrons in solids
was made by Becker in an abstract printed in 1924. In his abstract, Becker
briefly described the energy distribution of electrons which were dispersed by a
magnetic field onto photographic film after being reflected from solid targets. A
more quantitative study on the energy losses of electrons reflected from the
surface of a solid was published by Rudberg in 1930. Rudberg prepared
samples of various metals and oxides in-situ by vacuum evaporation
immediately before his measurements.

In 1941, Ruthemann was the first to publish the energy spectrum of

electrons transmitted through thin solid specimens. In order to achieve



transmission, Ruthemann used incident electrons with energies of several keV.
His energy-loss spectrum from a thin film of aluminum revealed a series of
peaks which were later attributed by Bohm and Pines (1951) to multiple
plasmon excitations. Ruthemann (1942) also recorded an energy loss
spectrum from a thin film of collodion which showed the K shell ionization edge
from carbon.

Since these early measurements of electron energy losses, electron
energy loss spectrometry (EELS) has developed into an important technique for
materials characterization. Electron energy loss spectrometers are now
common analytical attachments to transmission electron microscopes. A
comprehensive text on the subject of EELS in the electron microscope was
published by Egerton in 1986. An up-to-date review of the applications of EELS
in materials science was given in the book by Disko et al. (1992).

EELS is well-known as a highly sensitive tool for elemental
microanalysis. There is no theoretical lower limit for the mass fraction one can
detect with EELS (Kruit, 1986). Recently, Atwater and Ahn (1991) used EELS in
the reflection geometry for the in-situ elemental analysis of semiconductor
surfaces during molecular-beam epitaxy. Alternatively, instead of using the
spectrometer to display a spectrum, the energy-selecting capabilities of the
spectrometer can be combined with the imaging capabilities of the microscope
to obtain energy-filtered images (Shuman and Somlyo, 1981).

Today, in addition to the capability of EELS for elemental microanalysis,
there is an increasing awareness that EELS can provide information about the
electronic and atomic structure of materials. Recently, Pearson et al. (1989)
used EELS measurements of near-edge fine structure to determine the

electronic occupancy of d states in transition metals. The present thesis uses



EELS measurements of extended fine structure to probe the local atomic

structure in metals and alloys.

1.2 Extended X-ray Absorption Fine Structure (EXAFS)

The first reports of fine structure on the high-energy side of ionization
edges were made by Fricke (1920) and Hertz (1920) using x-ray absorption
measurements. The structure that they observed was confined to strong
features within a few tens of electron volts (eV) of the edge onsets, in what today
is called the "near-edge" regime. These near-edge features were readily
attributed to bound excited electronic states using the theory of Kossel (1920).
Later, as experimental methods improved, the fine structure was observed to
extend up to several hundreds of eV past the edge. These "extended"
oscillations, now called EXAFS (extended x-ray absorption fine structure),
required a new physical explanation.

The first theory explaining the EXAFS was proposed by Kronig in 1931.
Kronig suggested that the structure could be attributed to variations in the
density of electronic states predicted by the zone theory of solids. This
description became known as a long-range order (LRO) theory of EXAFS
because it depended upon the periodicity of the solid. Kronig (1932) also
proposed a short-range order (SRO) theory to explain the observation of
EXAFS in molecules. SRO theories attributed EXAFS to variations in the final
state wavefunction caused by backscattering of the photoelectron from
neighboring atoms. Although LRO theories could not explain the EXAFS found
experimentally in molecules and amorphous solids, for many years confusion

existed as to which description, LRO or SRO, was appropriate (Azaroff, 1963).



The work of Sayers et al. (1971) elevated EXAFS from an obscure
phenomenon to a useful structural tool. Using single-scattering SRO theory,
they realized that a Fourier analysis of the EXAFS with respect to the
photoelectron wave number should peak at distances corresponding to
nearest-neighbor coordination shells of atoms. By separating the contributions
from the various atomic shells, the Fourier analysis technique made possible
the direct extraction of structural information. It suddenly became clear that
EXAFS could be used as a quantitative probe of SRO.

Following the work of Sayers et al., rapid advances were made in the
theory of EXAFS (Schiach, 1973; Stern, 1974; Ashley and Doniach, 1975; Lee
and Pendry, 1975). It quickly became well-established that single-scattering
SRO theory was an adequate description of EXAFS in most circumstances.

Meanwhile, the development of synchrotron radiation sources greatly
improved the statistical quality of experimental EXAFS data (Kincaid and
Eisenberger, 1975). Synchrotron sources became typically at least three orders
of magnitude more intense than standard x-ray tube sources, and now they are
even more intense.

These improvements in both theory and experiment made EXAFS a
practical tool for probing the atomic structure of materials. Since then, a large
number of EXAFS experiments have been performed. A recent review of
EXAFS and its applications was given in the book edited by Koningsberger and
Prins (1988).

1.3 Extended Electron Energy Loss Fine Structure (EXELFS)
Although the vast majority of extended fine structure measurements are

presently being made using x-ray absorption, it is also possible to measure



extended fine structure using EELS (Ritsko et al., 1974; Leapman and Cosslett,
1976; Colliex et al., 1976; Kincaid et al., 1978; Teo and Joy, 1981). When
extended fine structure is measured using EELS, the technique is called
EXELFS (extended electron energy loss fine structure). Figure 1.1 contains the
EELS spectrum from pure aluminum which clearly shows the EXELFS above
the ionization edge.

EXAFS and EXELFS originate from the same physical mechanism; they
are both caused by the backscattering of the excited electron from neighboring
atoms. The difference is that EXAFS uses a photoabsorption process which
completely transfers the xéray photon energy to the excitation of the
photoelectron, while EXELFS involves partial energy transfers from the high-
energy incident electron beam. From this perspective, EXAFS is similar to an
infrared absorption experiment, while EXELFS is more analogous to a Raman
scattering experiment.

While EXAFS and EXELFS are basically the same physical
phenomenon, there are many significant differences between the experimental
techniques which are used to measure them. A list of important advantages
and disadvantages of EXELFS vs. EXAFS is given in Table 1.1. Unlike EXAFS
experiments which utilize x-rays from synchrotron or bremsstrahlung radiation
sources, EXELFS experiments are usually performed using the electron beam
in a transmission electron microscope (TEM). This makes it easy to combine
EXELFS experiments with the imaging, diffraction, and analytical capabilities of
the TEM. Other important advantages of the EXELFS technique are its
increased spatial resolution and its ability to measure extended fine structure in

elements with very low atomic number. Disadvantages of the EXELFS
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Figure 1.1. EELS measurement of Al K edge from foil of pure aluminum.



technique include a greater likelihood of overlapping edges and the need for

very thin samples in order to avoid large multiple inelastic scattering effects.

van f EXELES v XAF

1. EXELFS can measure core edge fine structure in lower atomic
number elements (edges < 5 keV) than EXAFS (edges > 3 keV).

2. Very small electron probes can be used, allowing inhomogeneous
samples to be studied.

3. The instrumentation is more accessible and less expensive than
synchrotron sources.

4. EXELFS can be combined with electron diffraction and imaging in
the transmission electron microscope.

Disadvan f EXELFS vs. EXAF

1. Overlapping edges are more likely to limit the data range or
complicate the analysis.

2. Samples must be very thin to limit multiple inelastic scattering
effects.
3. The electron beam may heat the samples, but this is shown not

to be a problemin §3.3.

Table 1.1. Important advantages and disadvantages of EXELFS vs. EXAFS.

Historically, EXELFS studies have been inhibited by the inherent
inefficiency of serial detection systems. With serial detectors, EXELFS data
have suffered from inadequate signal-to-noise ratios, resulting in very limited
data ranges in k-space (Csillag et al., 1981). The recent development of
parallel detectors has overcome this problem (Krivanek et al., 1987). Parallel

detection of a spectrum with 1000 discrete data channels is, in principle,



roughly 1000 times more efficient than serial detection of the same spectrum
would be.

Another factor inhibiting EXELFS studies has been their limitation mainly
to Kedges. K-edge EXELFS is easy to interpret because of its simple structure.
L and M edges, on the other hand, are complicated by the variety of possible
transitions. The present thesis shows that useful EXELFS information can be
extracted from L3 (Leapman et al., 1982) and Mys edges, in spite of their more
complicated structure. The use of Loz, Mas , and other similar edges opens up

most of the periodic table to EXELFS investigations.

1.4 Physical Origin of Extended Fine Structure

Using single-scattering SRO theory, the origin of extended fine structure
is illustrated schematically in Figure 1.2. The solid circles represent atomic
cores, and the rings represent electron-wave crests. An electron is excited from
the central atom core and can be thought of as an outgoing spherical wave
(solid rings). Note that the phase of the outgoing wave in Figure 1.2 is defined
so that there is a crest at the central atom core. The energy of the outgoing
wave is the energy loss in excess of the ionization energy. Some of the
outgoing wave is elastically scattered (dashed rings) from neighboring atoms.
From Fermi's Golden Rule, we know that it is only the interference in the region
of the initial state (i.e., at the central atom core) which changes the excitation
probability, and hence modifies the edge shape. One can visualize the
interference between outgoing and scattered waves at the central atom as
varying periodically with the wavelength of the excited electron (i.e., with the
distance between concentric rings in Figure 1.2). If constructive interference

occurs at the central atom, as in Figure 1.2a, then the excitation probability



increases, creating positive extended fine structure. For destructive
interference, shown in Figure 1.2b, the extended fine structure is negative.
Extended fine structure is thus a quantum interference phenomenon dependent
on the amplitude and phase of the backscattering from the local environment

surrounding the ionized atom.

(a) constructive (b) destructive

Figure 1.2. Schematic illustration of (a) constructive and (b) destructive
interference at the central atom.

1.5 Applications of EXELFS in Materials Science

Extended fine structure is useful because it can provide local information
which is difficult to obtain by diffraction techniques. Because of their sensitivity
to LRO, diffraction techniques are most powerful when applied to crystalline
materials. In contrast, extended fine structure is sensitive only to SRO.
Regardless of the amount of LRO in a material, extended fine structure can be
used to determine the identities and positions of nearest-neighbor atoms
surrounding the probe atom.

An important feature of extended fine structure is its ability to probe

independently the environments of different atomic species. This feature makes
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EXELFS appropriate for studies of the atomic structure of alloys, especially
alloys with high concentrations of the probe species. To my knowledge, no
EXELFS studies of dilute alloys have been made; such experiments would
require extremely good signal-to-noise ratios, which are more easily achieved
with EXAFS using a synchrotron source than with EXELFS. This thesis work
shows, however, that EXELFS can be used to observe chemical short-range
order (CSRO) in non-dilute alloys. Measurements are presented in §6.1 which
show differences in CSRO between as-quenched and annealed alloys of FezAl
and NizAl

Extended fine structure measurements are sensitive to disorder in the
local structure surrounding the probe atom. The disorder can be either
structural or vibrational in origin. Historically, extended fine structure has been
considered to be particularly suited to study the structural disorder in
amorphous materials (Sayers et al., 1971). The primary goal of such studies is
the determination of partial radial distribution functions (RDFs). The problem is
that it is difficult to differentiate between a reduction in coordination number and
an increase in disorder without assumptions about the partial RDFs in the first
place (Lee et al., 1981). Thus, in order to determine partial RDFs from
disordered systems, extended fine structure must be used in conjunction with
other techniques, such as x-ray and neutron RDF studies. There have been
many good reviews of the use of extended fine structure to study amorphous
materials (Lee et al., 1981; Gurman, 1982; Hayes and Boyce, 1982; Stearns
and Stearns, 1986; Crozier et al., 1988).

Recently the structural disorder in nanocrystalline materials has become
a topic of interest (Gleiter, 1989). EXAFS measurements have been used to

support the claim that the grain boundaries in some nanocrystalline materials
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are highly disordered (Haubold et al., 1989). In this thesis work, EXELFS was
used to investigate the structural disorder in nanocrystalline Pd and TiO».
Results presented in §6.2 indicate greater amounts of structural disorder are
present in the nanocrystalline Pd and TiO» than in large-grained materials.

Vibrational disorder results from the thermal vibrations of atoms in a
material. Extended fine structure measurements of vibrationa! disorder are
usually characterized with temperature-dependent mean-square relative
displacement (MSRD) data. Temperature-dependent MSRD data can be fit to
"local" Debye temperatures using the correlated Debye model (Beni and
Platzman, 1976). Local Debye temperatures indicate the stiffness of bonds
between the probe atom and its nearest-neighbor atoms. Data presented in
§5.3 give local Debye temperatures for the elemental metals Al, Fe, and Pd,
which correlate well with published force constant models derived from inelastic
neutron scattering data.

The vibrational entropy of a material can be estimated by a weighted
average of its local Debye temperatures. An important application of this thesis
was the measurement of the differences in vibrational entropy between
chemically disordered and ordered intermetallic alloys. EXELFS data
presented in §6.1 indicate that the differences in vibrational entropy between
chemically disordered and ordered alloys of FesAl and NizAl are almost as
large as the entropy of mixing.

In summary, previous applications of EXELFS to materials science have
been mostly meager and exploratory. This work is the first to apply the method

to contemporary problems.
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2 Electron-Atom Scattering Theory

This chapter discusses the electron-atom scattering theory that underpins
the EXELFS technique. EXELFS utilizes both the inelastic and elastic scattering
of electrons by atoms.

The inelastic scattering of fast electrons by atoms is reviewed in §2.1.
§2.1.1 describes the kinematics of the problem. §2.1.2 outlines the calculation of
ionization cross sections in the Born approximation. Lastly, §2.1.3 discusses the
deconvolution of energy-loss spectra to remove multiple inelastic scattering.

The elastic scattering of electrons by atoms, and how it causes the
extended fine structure phenomenon, is reviewed in §2.2. First, §2.2.1
determines the phase shifts and scattering amplitudes associated with elastic
scattering. §2.2.2 then discusses the theory of extended fine structure. The
equation used to interpret extended fine structure is presented, and its derivation

is discussed in detail.

2.1 Inelastic Scattering of Fast Electrons

When electrons collide inelastically with atoms, the incident electrons may
be classified as either "fast" or "slow" relative to the mean orbital velocity of the
atomic electrons involved in the interaction. For example, incident electrons with
1 keV of kinetic energy are fast with respect to any ionizations of He (22 eV), but
they are not fast with respect to the K-shell ionization of Al (1.56 keV). The
expression for the scattering cross section of fast collisions may be factored into
two distinct parts, one dealing with the incident electron only and the other
dealing with the target only. Because the characteristics of the incident electron

can be factored out, the study of fast collisions is effectively that of the scatterer

properties (Inokuti, 1971).
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Inelastic scattering occurs when the incident electron interacts with either
outer-shell or inner-shell atomic electrons. Interaction with outer-shell electrons
can result in either a single-electron excitation or a collective excitation of
electrons in the specimen. In a single-electron excitation, a valence electron
makes a transition to a delocalized higher-energy state (Figure 2.1b). A
collective excitation can be described by the creation of a plasmon
pseudoparticle which represents an oscillation of the valence-electron density.
Interaction with an inner-shell electron results in the excitation of a core electron
to a delocalized higher-energy state (Figure 2.1c). These inner-shell interactions
cause the core edges observed in EELS, typically at energy losses of hundreds

or thousands of eV.

(a) (b) (c)

Figure 2.1. Classical picture of electron scattering by a single atom (carbon).
Gray dots represent atomic nuclei. Black dots represent electrons.
Rings represent classical electron orbitals. Lines represent
electron trajectories. (a) Elastic scattering caused by Coulomb
attraction of nucleus. Inelastic scattering from Coulomb repulsion
by (b) outer- and (c) inner-shell electrons (After Egerton, 1986).
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2.1.1 Kinematics

Consider the scattering of a fast electron from an atom. The momentum
vectors of the electron before and after the collision are defined to be p; = #k; and
pi = %Ki, respectively. By conservation of momentum, the momentum supplied to
the atom is iq = 7k; - ki, where q is known as the scattering wavevector. The
vector relationship between q, ki, and kg is illustrated in Figure 2.2. For inelastic
scattering (k; # ki), the magnitude, q, of the scattering wavevector depends on
both the scattering angle, 8, and the energy loss, E. The relationship between q,

0, and E is derived using conservation of both momentum and energy.

q min

Figure 2.2. Vector relationship of q, kj, and k¢ due to conservation of
: momentum (After Egerton, 1986).

Applying the "law of cosines" to the vector triangle in Figure 2.2 gives

g2 = k? + k? - 2kikcos0 (2.1a)
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or
g2 = (ki- ki)% + 4kikfsin2(e/2) (2.1b)

Conservation of energy gives
Wi - E = Wy (2.2)

where Wg and W,, are the total energies of the high-energy electron before and

after the collision, respectively. From relativistic kinematics we know that the

total energy of an electron is given by W = [mgc4 + (hk)2c2]1/2, where mg is the

rest mass of the electron, k is its wavevector, and ¢ is the speed of light. Using

this expression to substitute for Wy and W, in Equation (2.2) and solving for kfz

gives

2
=k?|1-2E 4 E (2.3)
Pvi  (pc)

where vj is the speed of the incident electron. Using Equation (2.3) to substitute

for ks in Equation (2.1b) gives

172
: 2E E2
+ 4sm2(%)[1 ot (pic)z] (2.4)
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Equation (2.4) gives g as a function of q and E. Since typically beam energies
are in the hundreds of keV while energy losses, E, are at most a few keV, we can

assume that E << pjvj < pic. Therefore, we can make the approximation that

2
g = k? {[piv] + 4sin2(0/2):| (2.5)

Furthermore, if 8 << 1, then

q? = kf [of + 6°] (2.6)

where 6g = ;\—/— It is shown geometrically in Figure 2.2 that for a given energy
iVi

loss, the minimum length, qmin, for the scattering wavevector is at 8 = 0. From

Equation (2.6) we see that qmin = KBE.

2.1.2 lonization Cross Sections

Energy loss experiments, in effect, measure the energy-differential cross
section, do/dE. In this section, the theoretical calculation of do/dE for the
ionization of an atom is reviewed.

In experiments, the scattered electrons are generally collected over a
range of 8. For our calculations, however, it is more convenient to use q, rather
than 0, as an independent variable. Therefore, we use Equation (2.6) to convert

from 6 to g. The energy-differential cross section, do/dE, is then obtained by
2

integrating the double-differential cross section dd ;E

over the appropriate range

inq.
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Within the framework of nonrelativistic one-electron wavefunctions, we
assume that the collision affects only the wavefunction of the atomic electron

directly involved in the transition. The Hamiltonian for the system is then

2 2 2
H=P v Pa L)+ 5 (2.7)
2me  2mg |r—ra)

where p and pa are the momenta for the incident and atomic electrons, r and ra
are their position vectors, and V is the atomic potential. The last term,

e?/ |r—r,), is the interaction potential which perturbs the system during the
collision.

Before and after the collision, the system is assumed to be in energy
eigenstates of the unperturbed Hamiltonian, |k;}|noly) and |k )|nl), respectively.

|k;) and |k;) are the initial and final planewave states of the incident electron.

Inolo) is the ground state of the atomic electron, and |nl) are excited states of
the atomic electron.

In the first Born approximation, in which the influence of the incident
particle upon the atom is regarded as a sudden and weak perturbation, the

differential cross section for the inelastic collision is

2
do  4edmik _
— =——=— ¥ (nl|exp(iqer,)|noly (2.8)
do = gtk |4 <)Inolo)

where dQ is the element of solid angle for the scattered electrons (Bethe, 1930;

Inokuti, 1971). When the final states of the atomic electron are unbound

continuum states, |el), rather than bound discrete states, |nl), the sum over the
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final states is replaced with a density of final states, p(e), and we obtain a result

which is differential with respect to energy:

2 4e4m3k »
d?)c(;E = h4q4f<;f 9(8)12K81|9XP(iq'fa )lnolo)[ (2.9)

Rewriting the element of solid angle with dQ = 27rsin6d6 = _2_:?(_dq gives the
ik

following expression for the cross section which is differential with respect to g

and E:

2

d? 8retm _ »
dogE = e p(e)lzl<€1|exp('q°ra)lnolo)| (2.10)

The energy-differential cross section is obtained by integrating Equation (2.10)

overq:

do 8ne4 mg
dE  A4K?

Qrmax
o3 ] a%—l(ellexp(iq-ra Jnolo)fda  (211)
Qrmin

The matrix elements in Equation (2.11) are evaluated by expanding the operator
exp(iq-ra) in terms of spherical Bessel functions. Integrals over angular
coordinates are expressed as Wigner 3-j coefficients leaving a radial integral to

be evaluated numerically (Manson, 1972; Leapman, et al., 1980).

2.1.3 Deconvolution of Multiple Inelastic Scattering
This section reviews the deconvolution of energy-loss spectra to remove

multiple inelastic scattering. Multiple inelastic scattering can drastically affect the
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overall shape of an ionization edge. Although deconvolution is reviewed here,
deconvolution is not necessarily required prior to EXELFS analysis. As shown in
§4.3, if the sample is reasonably thin, EXELFS oscillations are not radically
altered by multiple inelastic scattering.

While the probability of a transmitted electron causing more than one
inner-shell ionization is generally negligible, there is a significant chance that one
or more outer-shell excitations will occur in addition to the inner-shell ionization.
These additional outer-shell excitations change the observed shape of the inner-
shell edge. The edge that we measure is basically a convolution of the low-loss
distribution with the single inelastic scattering profile of the edge.

The effects of multiple inelastic scattering are commonly removed by
Fourier-transform methods of deconvolution. There are two schemes for Fourier
deconvolution: the Fourier-log method and the Fourier-ratio method. First, let us
discuss the Fourier-log method (Johnson and Spence, 1974). Assuming
independent scattering events that follow Poisson statistics, the measured

intensity in an energy loss spectrum, I(E), can be expressed as

* 1 1
I(E) = Z(E) [8(E)+ ES(E) + 2”(2)

S(E)*S(E) + } (2.12)
where Z(E) is the zero-loss peak, lo is the area under the zero-loss peak, 6(E) is
a unit area delta function, S(E) is the single scattering distribution, and * denotes
convolution. Taking the Fourier transform of Equation (2.12) and solving for the
Fourier transform of the single scattering distribution gives

I'(v)

S'(‘U) = |o ln(mJ (21 3)
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where primes denote the Fourier transforms.

Taking the inverse Fourier transform of Equation (2.13), in principle, gives
the single scattering intensity which is unbroadened by the instrumental
resolution. In practice, however, I'(v) contains noise, and the noise begins to
dominate the signal at high frequencies. Dividing I'(u) by Z'(u) preferentially
amplifies the high-frequency noise because Z'(v) generally falls with increasing v.
Thus, the direct use of Equation (2.13) results in the extreme amplification of
high-frequency noise in a spectrum. This noise amplification can be reduced by
multiplying S'(v) by a "reconvolution" function g(v) which has unit area and falis
rapidly with increasing v (Egerton, 1986). g(v) is basically a v-space filter.

Note that some ambiguity exists in Equation (2.13) because the logarithm
of a complex number is a multivalued function. In particular, In(z) = In(r) + 6+
i2n, where z = r exp(i0) and n may be any integer. In practice, this ambiguity
becomes a problem only when the sample thickness, t, is about & times greater
than the mean free path for inelastic scattering, A (Spence, 1979).

The second method for spectrum deconvolution, Fourier-ratio method,
divides the energy-loss spectrum into the low-loss and core-loss regions. First,
the pre-edge background is subtracted to isolate the core edge. Deconvolution is
then accomplished by dividing the Fourier transform of the core edge by that of
the low-loss region. Unlike the Fourier-log method, which deconvolutes an entire
EELS spectrum, the Fourier-ratio method can remove mulitiple inelastic scattering
only from core edges.

In theory, deconvolution with respect to energy alone assumes that all of
the scattered electrons have been collected. in practice, only those electron
scattered within the spectrometer entrance aperture are collected. However,

recently Egerton and Wang (1989) have shown that the effect of the collection
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aperture on deconvolution is relatively limited. Another assumption of the
previous deconvolution procedures is that the thickness of the sample is
constant. Johnson and Spence (1974) calculated that very little unwanted
multiple inelastic scattering would remain after the deconvolution of a slightly

wedge-shaped sample.

2.2 Elastic Scattering

An important difference between inelastic and elastic scattering is that
inelastic scattering is incoherent while elastic scattering is coherent. Because of
its coherency, elastic scattering results in interference effects. Diffraction is one
example of an interference effect caused by elastic scattering. Extended fine
structure is another.

Extended fine structure is an interference phenomenon caused by the
elastic scattering of an ionized electron by neighboring atomic cores. When an
electron is ionized from an isolated atom, the final state can be represented by an
outgoing electron-wave with spherical symmetry. In condensed matter, however,
the final state is perturbed by backscattering from the surrounding environment.
Elastically backscattered electron-waves coherently modify the amplitude of the
outgoing wave in the region of the initial atomic state, thus changing the

probability of excitation in the first place.

2.2.1 Phase Shifts and Scattering Amplitudes

In order to study quantitatively the extended fine structure phenomenon,
we must first understand phase shifts and scattering amplitudes. The following
discussion of phase shifts largely follows the one in Cohen-Tannoud;i et al.,

(1977). In a central (i.e., spherically symmetric) potential V(r), there exists
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stationary states with well-defined angular momentum, i.e., eigenstates common
to the H, L2, and L, where H is the Hamiltonian, and L is the orbital angular
momentum of the particle. The wave functions associated with these states are
called partial waves. Partial waves can be written as ¢,,,(r,8,¢), where
h2k2/2m,, 1 (I+ 1)42, and m# are respectively the eigenvalues of H, L2, and L.
The angular dependence of the partial wave ¢, (r,0,9) is always given by the
spherical harmonic Yin(0,9). However, the radial dependence of the partial wave
is influenced by the central potential V(r).

Consider the case where we are dealing with a free particle, i.e., V(r) = 0.

The stationary states with well-defined angular momentum are then called free

spherical waves <pf8,)n(r,9,¢). Free spherical waves are given by

(0) 2k2
Pham (1:6,9) = = i(kr) Yim(6,0) (2.14)

where ji(kr) is a spherical Bessel function. The asymptotic behavior of ji(kr) is

given by

k) ~ - exp(—ikr)exp(ilm/2) — exp(ikr)exp(-ilw/2)

2.15
kr—eo 2ikr ( )

Therefore, the free spherical wave wf(?)n(r,e,q;) behaves asymptotically as the

superposition of an incoming wave exp(-ikr)/r and an outgoing wave exp(ikr)/r,
where the phase difference between the two waves is equal to Ix.

Assuming that V(r) = O for r > rp, the partial wave ¢, (r,6,¢) also behaves
asymptotically as the superposition of an incoming wave exp(-ikr)/r and an

outgoing wave exp(ikr)/r, with a phase difference between the two waves.
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However, the phase difference of the partial wave is not the same as that of the
free spherical wave. The potential V(r) introduces an additional phase shift 25i(k)
which is the only difference between the asymptotic behavior of ¢, (r,8,0) and
that of ¢{J) (r,8,0). The phase shift 25,(k) depends on both the orbital angular
momentum of the wave, through 1, and the energy of the wave, through k.

The phase shift can be interpreted in the following way. Suppose we have
an incoming spherical wave Ym(0,0) exp(-ikr)/r. This incoming wave is perturbed
when it enters the zone of influence of the potential V(r). After turning back and
leaving the zone of influence, it is transformed into an outgoing wave which has
accumulated a phase shift of 2§;(k) relative to the free outgoing wave that would
have resulted if V(r) had been zero. The additional phase factor expli25;(k)]
summarizes the total effect of the potential on the patrticle.

Next, we show how these phase shifts can be used to calculate the
scattering amplitude of a beam of particles with energy #2k2/2mg from the central
potential V(r). The problem is illustrated in Figure 2.3. Initially, before a particle
in the beam reaches the influence of V(r), it is represented by the plane wave
state exp(ikz). When the plane wave collides with V(r), the structure and
evolution of the wave are modified in a complicated way. Nevertheless, when the
wave leaves the influence of V(r) it once again takes on a simple form. It
becomes split into a transmitted plane wave exp(ikz) which continues to
propagate along the z-direction and a scattered wave represented by f(6,k)
exp(ikr)/r. 1(6,k) is called the scattering amplitude. Thus, for the steady-state
configuration described above, the stationary scattering state y(r,8) will have
asymptotic behavior of the form:

y(r,0) ~ exp(ikz) + (8,k) exp(ikr)/r (2.16)

—
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exp(ikz)

(a) before collision

(0,k) exp(ikr)/r

exp(ikz)

(b) after collision

Figure 2.3. Scattering of plane-wave packet from central potential (After
Cohen-Tannoudji et al., 1977).
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When V(r) is identically zero, y(r,0) reduces to the plane wave exp(ikz).

The plane wave exp(ikz) can be expanded in terms of free spherical waves:

exp(ikz) = 1/2—’;-2- §i11/4n(21+1) 0 (r,6) (2.17)

Note that because the plane wave is symmetric with respect to rotations around
the z-axis, its expansion includes only those free spherical waves with m = 0. If

we slowly turn on the potential V(r), then we intuitively expect that the free
spherical waves <pf32,(r,e) will slowly turn into the corresponding partial waves

®10(r.0). Therefore, in general, the stationary scattering state y(r,8) can be

expanded in terms of partial waves:
T
y(r,0) = ‘/W Y it Jar(21+1) ¢, (1,6) (2.18)
1=0

Using the fact that, except for the additional phase shifts 29;(k), the asymptotic

behavior of partial waves is identical to that of free spherical waves, we find:

(2.19)

F—oo

—ikreiln/2 ikr —-il1t/26128l k) }

v(r8) ~ -3 AyEREI+1) Y 0(6) {e ‘Zik‘f
1=0

Rewriting the phase factor e281(k) = 1 + 2i ei®i(k) sin §(k), rearranging the terms,

and recognizing the asymptotic expansion of the plane wave exp(ikz):

r— r

wire) ~ explikz) + eXp(ikr)%iJ4n(2l+1) eidi(K) sin §(k) Yo0)  (2.20)
had 1=0
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By comparing Equation (2.20) with Equation (2.16), we arrive at an expression

for the scattering amplitude 1(8,k) in terms of the phase shifts §(k):

4n(21+1) eidi(k) sin §;(K) Yi0(0)

_..
—_—
<

X
e
u
[Nyl

(21+1) ei®i(k) sin §(k) P\(cos6) (2.21)

I
M

._.
It
o

where Pj(cos6) are the Legendre polynomials. Finally, note that because f(8,k) is

a complex function, it is often expressed in polar notation:
f(6,k) = |f(6,k)| exp[in(6,k)] (2.22)

2.2.2 Theory of Extended Fine Structure

The physical origin of extended fine structure was briefly explained in §1.4.
This section contains a more quantitative discussion of the theory.

Because the dipole rule does not strictly hold for EXELFS, transitions to
any angular-momentum channel are possible. However, for small scattering
angles the dipole approximation is generally valid. The dipole rule states that if Ip
is the angular-momentum quantum number of the initial state, then only
transitions to final states with angular-momentum quantum numbers g £ 1 are
allowed. Furthermore, as shown by calculations of partial energy-differential
cross sections presented in chapter 4, the transition to 1g + 1 dominates over that

to lp - 1. The dominance of the 1p to 1 + 1 channel allows us to interpret EXELFS

in polycrystalline or amorphous materials with the following equation:

fi(r, k)| S(k) _oR. 2022
x(K)=(=1)%* Z%————' (“kgg ( )e 2RiIMK) §7201 Sin2kR; + 1y(m.k) + 28, ,1(K)] (2.23)
} J
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v (K) represents the extended fine structure oscillations normalized to the non-
oscillatory intensity of the ionization edge. lg is the angular-momentum quantum
number of the initial state. The summation over jis over all atoms neighboring
the central (ionized) atom. The distance from the central atom to neighboring
atom j is denoted by R;. [fi(w,k)| and nj(r k) are respectively the amplitude and
phase shift of the backscattered wave. 2¢(k) is the central atom phase shift.
The factor S(k) approximately takes into account many-body effects such as
"shake up/off" processes at the central atom. The factor exp[-2Rj/A(K)] is a
phenomenological term which accounts for the finite lifetime of the excited state,
where A(Kk) is the inelastic mean free path of the ionized electron. Finally, the
term exp(-20j2k2) is a Debye-Waller type factor due to vibrations between atoms,
where 012 is the mean-square relative displacement (MSRD) between the central
atom and neighboring atom j.

Equation (2.23) is baéically the same as "the EXAFS equation" which is
commonly used to interpret EXAFS oscillations. The most serious approximation
made in Equation (2.23) is the plane-wave approximation. The plane-wave or
small-atom approximation assumes that the outgoing spherical wave can be
approximated by a plane wave in the vicinity of the scattering atom. This
approximation is valid if the effective size of the scattering atom is much smaller
than its distance from the center atom. At high k, say k > 4 A-1, this is generally
true because the electron penetrates deeply into the atom before scattering.
However, at low k the effective size of the atom can be about the same as the
interatomic distance. Therefore, in the low Kk region the curvature of the outgoing
wave and the finite size of the scattering atom must be taken into account.
Theories of extended fine structure that do not use the plane-wave approximation

are called curved-wave theories.
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Another approximation made in Equation (2.23) is the single-scattering
approximation. The single-scattering approximation assumes that the outgoing
wave scatters only once from neighboring atoms before being combined with the
unscattered wave. Multiple-scattering processes are neglected. Like the plane-
wave approximation, the single-scattering approximation is valid in the high-k
region, again say k > 4 A-1. This is because scattering amplitudes generally
decrease with increasing k. In principle, multiple scattering should not have any
effect on extended fine structure oscillations from first nearest-neighbor (1nn)
atoms surrounding the center atom. This is because multiple-scattering path
lengths are always longer than the single-scattering path lengths to and from 1nn
atoms.

Since both the plane-wave and single-scattering approximations are valid
at high k, the use of Equation (2.23) is restricted to the high-k region. It is this
restriction that is responsible for the "extended" in the phrase "extended fine
structure.”

We now present a derivation of Equation (2.23). This derivation closely
follows that of Boland et al. (1982), except that we focus on EXELFS rather than
EXAFS. Although many other derivations of Equation (2.23) are published
(Stern, 1974; Ashley and Doniach, 1975; Lee and Pendry, 1975; Lee, 1976), the
derivation by Boland et al. is especially clear. For an efficient curved-wave
theory of extended fine structure, see either Gurman et al. (1984) or Schaich
(1984).

Since this thesis is concerned with EXELFS, we start with the energy-
differential cross section which is given by Equation (2.11). In the dipole

approximation, the matrix element in Equation (2.11) reduces to
(a(l0 i1)]q eranolp ), where q is the scattering wavevector, ra is the position
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vector of the atomic electron which undergoes the transition, lnolo) is the initial

state, and [s(lo +1)> are final states of energy €. The matrix element is then of

the same form as that for x-ray absorption. Fortunately, the dipole
approximation is generally valid for the experiments performed in this thesis. A
simple condition for the validity of the dipole approximation is that qrmax << 1,
where q is the magnitude of the scattering wavevector and rmay is the radial
extent of the initial core wavefunction. Consider our experiments on the Al K
edge which are performed using 200 keV incident electrons and collection angles
of roughly 5 mrad. For these experiments, g = 1 A-1 and rpax = 0.1 A, S0 qrmax
= 0.1 << 1. The validity of the dipole approximation for our experiments is shown
more precisely in §A.1. §A.1 calculates the cross sections for excitation into the
various angular momentum channels and shows that dipole transitions to lp+ 1
dominate over non-dipole transitions.

Moreover, as mentioned previously, calculations of partial energy-
differential cross sections presented in chapter 4 show that the 1o + 1 transition

dominates over all others. Therefore, the matrix element further reduces to
(e(lo+1)|asra|nolo). To simplify our notation, we now substitute r for ra, |i) for

Inolo). and |f) for [e(lp +1)). In this notation, the energy-differential cross section

can be written as

do  8metm?
dE = p4K?

p(e) |n(ﬂ"-@-x—)|(f|q-r|i)|2 (2.24)
min
where gmax is the maximum scattering wavelength experimentally collected.
The initial and final states of the system are both eigenfunctions of the

Hamiltonian H:
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H=- 5”—%\7,2 + U(r) + V(r) (2.25)

where U(r) is the attractive atomic potential primarily felt by the electron in its
initial state, and V(r) is the total scattering potential seen by the final-state
electron. We represent V(r) with a muffin-tin potential, i.e., a sum of
nonoverlapping, spherically symmetric potentials centered around each atomic
site of the alloy. The potential of the center atom seen by the final-state electron
is that of a "relaxed" ion with a core hole. This is because the transit time for the
ejected electron to travel to a neighboring atom and back is much shorter than
the lifetime of the core hole, but it is generally much longer than the relaxation
time for the remaining core electrons (Teo, 1986).

In particular, we consider the scattering from two neighbors about an
atom. This problem is illustrated in Figure 2.4. The atom undergoing ionization
is at the center of the coordinate system and is labeled "c." The two neighbors
labeled "a" and "b" are located respectively at Rz and Rp.

To calculate the matrix element in Equation (2.24), it is necessary to find
the initial and final states. These states must be eigenfunctions of H. At the
large negative energy corresponding to the initial state, the scattering potential
V(r) may be ignored. The resulting Hamiltonian has eigenfunctions which are the
usual core wavefunctions obtained from atomic structure calculations.

For final-state electrons of sufficiently high energy, the attractive atomic
potential U(r), which determined the initial state, becomes negligible. The

resulting Schrédinger equation for the final state is as follows:

(e- HO) |f£) =V |f4) (2.26)
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Figure 2.4. Schematic illustration of the final state potentiél V(r) (After Boland
et al., 1982).

where HO is the free-particle Hamiltonian. This equation is inverted to give the

Lippman-Schwinger equation:

[f+) = [k) + G§ V |f)
= k) + G§ T* |k) (2.27)

where (r|k) are the normalized eigenfunctions of H0. Because we want (r|k) to

correspond to the outgoing asymptote of the scattering process, we use the

minus form of the free-particle Green and T operators.
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The full T operator can be expanded in terms of operators tj associated
with the individual scattering centers located at r = R;.

T= Ztl + thGotm + ztl GOtmGOtn + ... (228)

j#c j#m jEm,m=n

Note that successive scattering by the same potential is not permitted. The first-
order terms in the expansion correspond to single-scattering processes, second-
order terms to double-scattering processes, and so on. Figure 2.5 diagrams the
zero-scattering, single-scattering , and double-scattering processes for our three
atom system. Note that the free-particle Green functions represent free
propagation between two neighboring atom potentials.

One might assume that only processes (a) through (c) would be used in
the single-scattering approximation of extended fine structure. That assumption,
however, would be incorrect. In addition to zero-scattering and single-scattering
processes, the correct single-scattering approximation also includes some select
double-scattering processes as well. In particular, (d) and (e) in Figure 2.5
represent double-scattering processes for which the second scattering center is
the center atom potential. In such processes, the scattering path lengths to the
center atom are identical with those of the single-scattering processes (b) and
(c), respectively. Since it is the path length back to the center atom which is
important for extended fine structure, (d) and (e) must also be included in the
single-scattering approximation.

Thus, in the single-scattering formalism, the terms corresponding to
diagrams (a) through (e) in Figure 2.5 are substituted into the matrix element of

Equation (2.24):
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Figure 2.5. Diagrammatic representations of (a) zero-scattering, (b-c) single-
scattering, and (d-g) double-scattering processes for three-atom
system (After Boland et al., 1982).
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(t-laerl) = (klaerli) + T (kltfCoaerl) + T(kIEGHCIaerl) (229
j j
where, of course, we have taken the complex conjugate of Equation (2.27). To
proceed further, we must determine the effective values at the origin of all the
matrix elements in the right-hand side of Equation (2.29).
The first matrix element on the right-hand side of Equation (2.29) is
responsible for the unscattered outgoing electron and can be evaluated using the

addition theorem for spherical harmonics to become of the form:

(k|gor|i) = M(k) keg (2.30)

oo

where M(K) = (2r) ¥ 4 (i) [ jy(kr)(r[i)rdr (2.31)
0

and k is the direction of propagation of the electron as it originally leaves the

center atom. Intuitively, the term Roﬁ makes sense because it means that the

electron is most likely to be ejected in the direction of the scattering vector.

Boland et al. (1982) determines M(k) explicitly for the case where (r|i) is a

hydrogenic wave function.

The single-scattering and double-scattering terms can be expanded:

> (k[tiGogerli) = > [kt rXr|GE[r)@er(r|i)drdry  (2.32)
J ]

3 (kIEGaE Gaa ) =
]

Zj(k|tg| ra){ra|Gg|ra )ra|tf|ri)(rs|GS|r)@er(r|i)drdrdr,dry  (2.33)
i
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Assuming that the scattering potentials are due mostly to the core electrons
which are very close to the center of the atoms, the free-particle Green function

may be approximated using:

m_exp(ik|ry—r|)

(l681r) =52 m_ oxeli (o)
i

ry—r] 2nh R

(2.34)

where Kj = kﬁj is the wavevector of the outgoing electron as it heads towards

atom . Equation (2.34) is equivalent to the plane-wave or smali-atom
approximation. Boland et al. (1982) shows that substituting Equation (2.34) into
Equations (2.32) and (2.33) allows one to perform the space integrals, with the

results:

> (K[t/Gga i) = - Zﬂ%@g%wk)(doﬁjxklt”k» (2.35)

j ) j

%(kugegt;‘egq-rh): jm—i(i%gﬁ#M(k)(ﬁoﬁj)<k|tglk}><k}lt;’|kj> (2.36)
]

where k; = -k R; is the wavevector of the backscattered electron.

The matrix element ( k|t (R; )|k; ) represents the scattering of the electron
AR

by an atom at R;. We can relate <k|t,*(R])lkj> to <klt,-+(0)|k,->, which represents

the same scattering problem but is centered at the origin:

(Kt (Ry)[K;) = expi(l;—k) oy (K|t} (0)]«;) (2.37)
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Because we are dealing only with elastic scattering, the matrix elements
<k|t,* (0)|k,-> may be expressed in terms of the scattering amplitude fj(6j,k):

(K[t (0)[K;) = (Z) (61K | (2.38)

where 6j is the angle between Rj and k.

Equations (2.35) and (2.36) may now be rewritten:

> (K[t Ga@ i) = 2R1M (q-R,)f,(e,, )exp[.kR (1- cose)] (2.39)
J J

z(k|t+Gz;t+G q-r])_Z M(k( R; )fc(n-6;K)fi(mK)exp(2kR)  (2.40)

The complete matrix element of Equation (2.24) is the sum of the three
terms Equations (2.30), (2.39), and (2.40) corresponding respectively to the
unscattered outgoing electron, single scattering by neighboring atoms, and

secondary scattering by the center atom:

2
(1—laerl)f = MKk + &+ 3 (kI G+ 3 (kLGS Gsaer)  (241)
i i

Equation (2.41) emphasizes the interference nature of the extended fine structure
phenomenon in which the probability amplitude for ionization is given by the sum
of the amplitudes of three independent scattering processes. Such a sum is
required due to the indistinguishability of the individual events; the ejection of the

electron in some direction k upon ionization is indistinguishable from a process
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whereby the ejected electron scatters off of an adjacent atom into the same
direction k.

The development above treats a single ionization event. Experimentally,
however, a large number of such ionizations will occur, and the ejected electrons
will be scattered into many directions k. In order to compute the average
energy-differential cross section of such a macroscopic system, it is necessary to

average over all such directions k in Equation (2.41):

do ~ AR ko
o = Ji-laeri) <
2
= | M(k)(l“(-a)+2(k|t,-+Ggq-r|i)+Z(k|t+G+t+G+q-r| ) k (2.42)
i i
The four lowest order terms in R; in this spherical average are evaluated in

Boland et al. (1982) with the results:

MR (ked) S2 = Zmoof (2.43)

£oa . ~ e |DQ
j2 Re|rM (koq)z(k|tf”G§;q-r}|)J4—nk =

~ 2
-IMP 2( il im{exp(2ikR; )fj(x,k)+;(0,k)} (2.44)
l

Il2<klt+e*q i) =% = M Z( ) J|fi(e; | ko (2.45)
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| 2Re[ 2(k|t+G+t+G qer|i )}—49— =

- \2
1Yot P Z( Rz) |m{[exp(2|8l “)- 1]fj(n,k)exp(2ikRj)} (2.46)
J

In summing the above expressions, the forward-scattering term fj(0,k) in Equation
(2.44) cancels with Equation (2.45) because of the optical theorem. The rest of
Equation (2.44) cancels with part of Equation (2.46). Thus, the macroscopic

energy-differential cross section is of the form:

—g—g o —|M] )Io+1|M|2ZR#(Q.ﬁj)2|m[fj(n,k)exp(2ikﬂj+2i6,0+1)] (2.47)

Equation (2.47) gives the energy-differential cross section for ionization from the
initial state |noly ) into the final states le(lo +1)). By convention, extended fine

I . 1
structure oscillations are normalized to §|M|2:

do
& - M

x (k) = 9E

v

3
- (—1)|°+1Z%(ﬁOﬁj)zlf,-(n,k)lsin[QkRj+n;(n,k)+28,o+1(k)] (2.48)
J J

where the scattering amplitude fj(r,k) has been decomposed according to

Equation (2.22).
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If the sample has no angular dependence, such as a polycrystalline

material with no preferred orientation or an amorphous solid, then Equation
(2.48) should be averaged over all directions ﬁ]. Averaging in three dimensions:

I(a°ﬁl)ZdQRi 1
AT ~3

(2.49)

Therefore, for samples with no angular dependence, Equation (2.48) becomes

x(K) = (_1)lo+1z#Ifj(n,k)lsin[ZkRj +mi(m k) +28; 44(k)]  (2.50)
I I

With Equation (2.50) we have derived the basic form of Equation (2.23).
However, Equation (2.23) also contains three additional factors.

The first factor S(k) is an amplitude reduction factor due to many-body
effects during the excitation of the central atom. Equation (2.50) simply assumes
that a single electron is excited from a core state to the continuum. [n reality, the
(Z — 1) "bystander” electrons may also be excited in so-called shake-up
(excitation to a bound state) and shake-off (excitation to continuum) processes.
When these additional excitations occur, the final state consists of the ionized
electron and a partially relaxed ion with (Z — 1) electrons. In these cases, the
ionized electron ends up a kinetic energy less than (E — Ep). This tends to "wash
out” the extended fine structure signal since shake-up and shake-off processes
generally have broad energy spectra (Teo, 1986). Shake-up and shake-off
processes do not turn on until the excess energy is several times the binding

energies of the outer electrons. Thus, S(k) = 1 for low k values and S(k) < 1 for k
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greater than about 5 A-!. It has been shown that generally 0.6 < S(k) < 0.8 for k
greater than about 7 A-' (Martin and Davidson, 1977; Stern et al., 1980).

The second factor exp[-2Ry/A(k)], where A(k) is the inelastic mean free
path of the ejected electron, is an exponential damping term which approximates
the inelastic losses due to the excitation of other electrons or plasmons in the
neighboring environment. Actually, this exponential term can only roughly
approximate these inelastic losses. A more general expression wouid be
Lj(k)Lm(k,Rj)Lc(K), where Lj(k) represents inelastic losses due to electrons on the
neighboring atom, L¢(k) losses due to electrons on the central atom, and Lm(k,R;)
losses due to the electronic medium in between the two (Eisenberger and
Lengeler, 1980). Within the exponential damping approximation, A(k) can be

roughly approximated by

A(K) = C {(%)4 + k”J | (2.51)

where C and D are constants, 1 <n<2,Aisin A, and k is in A-1. For elemental

materials, C = 1 and D = 3 (Powell, 1974; Penn, 1976; Seah and Dench, 1979;

Teo, 1986).
The third factor exp(-2 67k%), where o? is the mean-square relative

displacement (MSRD) between the central atom and neighboring atom j, is a

Debye-Waller type factor which is used to account for disorder in the interatomic
distance between the two atoms. Generally speaking, 0',-2 has two components:

2 2 2
Gj = Gjvib + Ojstruct (2.52)
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where G]?jvib is due to vibrational disorder and cfst,uct is due to structural or static

disorder. Changes in the vibrational MSRD Gi?jvib can be measured by varying

the temperature of the sample. Theoretical calculations of vibrational MSRD

using various models are discussed in Chapter 5.
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Chapter 3 Instrumentation and Experimental Procedures

This chapter discusses the instrumentation and experimental procedures
used for the measurements in this dissertation. §3.1 reviews specimen
preparation techniques. §3.2 discusses the characterization of alloys and
nanocrystalline materials. §3.3 describes the equipment used to control the
temperature of the specimens and calculates the amount of electron beam
heating during a typical experiment. Finally, §3.4 describes the parallel-
detection electron energy loss spectrometer and outlines the procedure which

was used to mitigate its channel-to-channel gain variations.

3.1 Specimen Preparation
Specimen preparation began with elemental metals of at least 99.99%
purity. Alloys of FesAl and NizAl were synthesized from the elemental metals
using an Edmund-Buehler arc-melting apparatus. The apparatus melts metals
on a water-cooled copper hearth in an argon atmosphere. Since the mass
losses after melting were negligible, the stoichiometry of the alloys was
assumed to be that of the initial mixture of elements. The stoichiometry was
also checked by energy-dispersive x-ray (EDX) analysis and EELS.
Foils of the elemental metals Al, Fe, and Pd were prepared by cold
rolling. Foils of chemically disordered FezAl were prepared using an Edmund-
Buehler piston-anvil quenching (splat cooling) apparatus. The apparatus
levitates and melts a small piece of metal in an argon atmosphere using a radio
frequency power supply connected to a conical copper coil. When the radio
frequency current to the coil is stopped, the molten droplet falls, and two copper
disks are triggered to rapidly quench the droplet into a foil. Figure 3.1 depicts

schematically the piston-anvil quenching apparatus.
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Figure 3.1. Schematic illustration of piston-anvil quenching apparatus
(After Pearson, 1992).
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For my energy loss experiments, it was necessary to have specimens
which were thin enough to be transparent to the 200 keV electrons in the
transmission electron microscope. Specimens approximately 1000 A or less in
thickness were required. The Al, Fe, Pd, and FezAl foils were thinned using a
Fishione twin-jet electropolisher. The specimen is mounted between two jets of
electrolyte, and a voltage is applied across the electropolishing cell. When it is
necessary to cool the electropolishing solution below room temperature, the
apparatus is immersed in a bath of methanol cooled by liquid nitrogen. A light
source and a photo-detector are used to stop polishing at the moment of
perforation (Schoone and Fischione, 1966). Table 3.1 lists the conditions at

which the specimens were successfully electropolished.

Specimen | {Electrolytic Solution Temperature
Al 30% nitric acid, 70% methanol -30 C
Fe 20% perchloric acid, 80% methanol -30 C
Pd 20% perchloric acid, 80% acetic acid +20 C
FesAl 20% perchloric acid, 80% methanol -30 C

Table 3.1.  Electrolytic solutions and approximate polishing temperatures
used to prepare thin foils of Al, Fe, Pd, and FesAl.
Chemically disordered NizAl was prepared in a Denton Vacuum model
502 high vacuum evaporator. A piece of the arc-melted NizAl ingot was placed
in a tungsten wire basket. In high vacuum, current was run through the tungsten
wire until the NizAl was evaporated onto substrates of either rock salt or copper.
The substrates were at room temperature. Figure 3.2 schematically depicts the

high vacuum evaporator. Thin films approximately 1000 A thick were floated in
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water off the rock salt substrates onto copper TEM grids. Larger quantities of
NisAl were scraped off the copper substrates. Some of the thin films of NigAl

were annealed at 300 C in a heating holder of the TEM to develop L1 order.

foooaaeaea - Substrate

Tungsten
Coil

«— INgot

Vacuum
Chamber

Figure 3.2  Schematic illustration of high-vacuum evaporator.

Nanocrystalline Pd was also prepared using the high vacuum
evaporator. Thin films of Pd were evaporated onto substrates of rock salt at
room temperature and subsequently floated in water onto copper TEM grids.
Some of the thin films of Pd were annealed at 600 C to develop larger grains.

| also used a partially compacted powder of Pd nanocrystals synthesized
by inert gas condensation. Pd was evaporated into He gas. A holey carbon
TEM grid was held at the temperature of liquid nitrogen to collect some of the
particles. The powder was partially compacted in atmosphere at room

temperature using a hand-powered compaction device (courtesy Z.Q. Gao).
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The preparation of TiO, samples started with the evaporation of thin films
of Ti metal onto rock salt substrates. The Ti metal was then oxidized by heating
the substrates in air in a furnace at 500 C. At 500 C, the shiny film of Ti metal
transformed into a transparent film of TiO,. Some of the films of TiO2 were
subsequently sealed in an evacuated quartz tube and annealed for 30 minutes
at 850 C to develop larger grain sizes. To make TEM samples, the rock salt
substrates were placed in water and the thin films of TiO, were floated onto

copper TEM grids.

3.2 Characterization of Alloys and Nanocrystalline Materials

Gao and Fultz (1993) performed x-ray diffractometry measurements on
the FesAl foils prepared by piston-anvil guenching. They found an absence of
superlattice peaks in the as-quenched foils. This indicated that the FezAl did
not have significant amounts of B2 or D03 long-range order. Figure 3.3
presents the growth of the (32:) and (100) superlattice peaks as the FezAl
samples were annealed for increasing times at 300 C.

Gao and Fultz also performed Mossbauer spectrometry measurements
on the FesAl foils. Two of their M&ssbauer spectra are presented in Figure 3.4.
These spectra are basically composed of overlapping sextets of peaks which
are caused by the nuclear Zeeman effect. The distribution of 57Fe hyperfine
magpnetic fields (HMF) are obtained from these spectra using the method of Le
Caér and Dubois (Le Caér and Dubois, 1979). The HMF distributions from an
FesAl sample as it was annealed for increasing times at 300 C are shown in
Figure 3.5. The numbers of the peaks in Figure 3.5 correspond to the number of
Al atoms in the 1nn shell of an 57Fe atom. The intensities of these peaks

correspond approximately to the probability of each 1nn environment. As the
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sample is anneéled, there is significant growth in the peaks corresponding to
four and zero 1nn Al atoms. These changes in the local environment of Fe
atoms are consistent with the DO3 ordered structure.

The evaporated NizAl was shown to be both stoichiometric and
chemically disordered by the x-ray diffractometry, calorimetry, and energy-
dispersive x-ray analysis performed by Harris et al. (1991). Figure 3.6
compares the x-ray diffraction patterns of the as-evaporated and annealed
material. Average grain sizes of approximately 5 nm were determined using x-
ray diffractometry data and transmission electron microscopy dark field images.
The differential scanning calorimetry (DSC) traces of the as-evaporated
material are displayed in Figure 3.7. The DSC traces show an initial exothermic
relaxation beginning near 100 C and a larger exothermic relaxation starting
near 300 C. Harris et al. found that the large relaxation near 300 C is due to
both long-range ordering and grain growth. They speculated that the
relaxation near 100 C might be due to chemical short-range ordering.

Transmission electron microscopy was performed on the thin films of Pd.
Figure 3.8 presents a typical bright and dark field image pair and a diffraction
pattern from the as-evaporated material. The images indicate an average grain
size of roughly 5 nm. Figure 3.9 displays the x-ray diffraction measurement of
the (111) peak from the as-evaporated Pd. A simple Scherrer analysis of the
line broadening gives a grain size of 6.5 nm.

Some of these thin films of Pd were annealed in situ in the heating holder
of the electron microscope. Rapid growth of the grains was observed when the
annealing temperature reached approximately 550 C. Figures 3.10 displays a

bright and dark field image pair and a diffraction pattern from an annealed film
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Bright field (BF) and dark field (DF) image pair and diffraction

Figure 3.8.

pattern from as-evaporated thin film of Pd. DF image taken using

portion of (111) diffraction ring.
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Figure 3.10. Bright field (BF) and dark field (DF) image pair and diffraction
pattern from thin film of Pd after annealing at up to 550 C. DF
image taken using portion of (111) diffraction ring. Streaking in DF
image due to sample drift in microscope.
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of Pd. The images show that the average grain size in the annealed films is
approximately 30 nm.

Transmission electron microscopy of the partially compacted powder of
Pd nanocrystals, prepared by inert gas condensation, showed that the material
had an average grain size of roughly 6 nm. Figure 3.11 gives the bright and
dark field image pair.

Transmission electron microscopy was also performed on the thin films of
TiO2. Figure 3.12 presents a typical bright and dark field image pair and a
diffraction pattern from the as-prepared material. Analysis of the diffraction
pattern indicates that the as-prepared thin films of TiO, are dominated by the
rutile phase but also contain some of the anatase phase. The images show that
the as-prepared film has an average grain size of roughly 7 nm.

After some of the thin films of TiO, were annealed at 900 C for 11 hours,
transmission electron microscopy was again performed. A bright and dark field
image pair and a diffraction pattern from the annealed material are presented in
Figure 3.13. Analysis of the diffraction pattern indicates the presence only of the
rutile phase. The images show that the grains have grown to an average size of
approximately 20 nm. This grain growth is consistent with that seen in TiO»
prepared by the gas-condensation method after annealing at temperatures

above 800 C (Siegel et al., 1988).
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Figure 3.11. Bright field (BF) and dark field (DF) image pair from partially
compacted powder of Pd nanocrystals.
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Figure 3.12. Bright field (BF) and dark field (DF) image pair and diffraction
pattern from as-prepared thin film of TiO».
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Figure 3.13. Bright field (BF) and dark field (DF) image pair and diffraction
pattern from thin film of TiO; after annealing at 900 C for 11
hours. Streaking in DF image due to sample drift in microscope.
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3.3 Control of Specimen Temperature

During the EXELFS measurements a liquid nitrogen (LN2) cooled
substrate holder with a heating element was used to control the temperature of
the specimens. The holder, Gatan model 636, is depicted in Figure 3.14. It has
a temperature range of approximately -175 C to +150 C. Intermediate
temperatures are maintained by the feedback-controlled heating of a copper
transfer rod between the specimen and the LN» reservoir. A silicon diode is

used to sense the temperature at the specimen cradle.

specimen

cradle '
LN 5 reservoir

copper transfer rod

Figure 3.14. Schematic diagram of liquid nitrogen cooled substrate holder for
transmission electron microscopy.

The substrate holder measures the temperature at the edge of the
specimen. The temperature of the material being sampled may be higher due
to heating from the electron beam. The amount of beam heating may be
estimated as follows: Consider the specimen to be a self-supporting film of

uniform thickness 1 and thermal conductivity x that, for simplicity, lies over a
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copper support grid with a circular hole of radius rgrig. Assume that the electron
beam has a uniform current density of Jo and falls on a circular area of radius
r'beam Which is centered over the hole in the grid. Furthermore, assume that the
copper grid is held at temperature Tgsig by the temperature control unit of the

substrate holder. The situation is illustrated in Figure 3.15.

thin film
T K

iHluminated by
electron beam

Figure 3.15. Diagram of the hypothetical situation used to estimate increases in
sample temperature due to heating from the electron beam.

Assume that the film is thin enough so that the problem becomes two-
dimensional. In other words, temperature varies in the plane of the film, but it is
constant within the thickness of the film. Furthermore, the problem actually
becomes one-dimensional because of its circular symmetry. Our goal is to

determine the radial distribution of the temperature T(r).



62

Through inelastic collisions, the electron beam acts as a heat source.
Assuming that all energy lost by the beam is eventually converted to heat within

the thin film, the amount of heating per unit area is given by

s(r)=so=Jo [P(E)E ,ifr<rheam
0

=0 , if l'peam < (3.1)

where P(E) is the energy-loss probability distribution, and fP(E)dE gives the
0

average energy loss for an electron transmitted through the sample. Of course,
P(E) is determined from EELS measurements.

Assuming thermal equilibrium, the three-dimensional heat diffusion
equation becomes Poisson's equation, which has solutions that are well-known

from electrostatics. The appropriate analog of Gauss's Law for heat diffusion is
(heat flux out of surface S) = (heat generated within surface S) (3.3)

where S is any closed surface. Applying Equation (3.3) to cylindrical surfaces

appropriate to the problem gives

dr

( ( ))( nrt) = So(m rgeam) 1 I'peam < I < Tgrig (34)
and

(—K 9%)(27”1) = 5p(nre) L F < heam (3.5)
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Equations (3.4) and (3.5) depend on the assumption that no heat transfer
occurs due to convection or radiation from the top and bottom surfaces of the
thin film.  Applying the boundary condition T(rgri¢) = Tgrig allows us to solve for

T(r):

So rgeam Fgrid i
T(r) = Tgrid + 2t In - I foeam < I < Tgrig
Sorgeam rgrld SO 2 2 H
= Tgrid + In + (rbeam i g ) 1 <Toeam (3.6)
2xt Moeam 4xt

Reasonable values for the EXELFS experiments in this thesis are rgrid =

20 pm, rpeam = 10 um, s = 0.16 —\—N—2 K=1 —W— (metal) or 0.05 _Vll__
cm cmK cmK

(ceramic), and t© = 0.1 um. To obtain the value for s,, Equation (3.1) was applied

using Jo =2 x 1016 ——1—2 and jP(E)dE =50 eV =8 x 1018 J, as determined
seccm 0

from a typical low-loss spectrum.

Figure 3.16 shows the result of substituting these values into Equation
(3.6). The increase in temperature is seen to be negligible, even for the ceramic
thin film. The calculated effect of beam heating is so small because the electron
beam is rather spread-out during the EXELFS measurements. If, for instance,
'beam WeEre ten times smaller, then the increase in temperature due to beam
heating would be about 100 times larger. In contrast, the increase in
temperature is less sensitive to changes in the current density, Jo, the thermal
conductivity of the sample, x, or the distance from the grid, rgig. Changes in

sample thickness, 1, should have almost no effect on the temperature because

the average energy loss, jP(E)dE, is proportional to 1.
0
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Figure 3.16. Change in temperature due to electron beam heating as function

of radial distance using Equation (3.6) for thin film sample
illustrated in Figure 3.15. Values used for parameters in Equation
(3.6) are given on p. 63.



65

3.4 Parallel-Detection EELS (PEELS)
The experiments in this thesis were performed using a Gatan PEELS
model 666 mounted beneath a Philips TEM model EM430. The experimental

configuration is schematically illustrated in Figure 3.17.

_ - TEM column

—
e

—

— -~ Incident electron beam

* Specimen

_ Transmitted electrons

- Spectrometer
~ entrance aperture

< Magnetic prism
o y spectrometer

Detector

Figure 3.17. Schematic of electron energy loss spectrometer attached to
bottom of TEM.
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EELS measurements can be made with the TEM in either its imaging or
diffraction mode. Measurements in this thesis were made using the TEM
diffraction mode, and this mode is diagrammed in Figure 3.18. In this mode, a
diffraction pattern is visible on the microscope viewing screen, and the
spectrometer entrance aperture collects the electrons which are scattered within
the collection semi-angle B. B is determined by the diameter of the
spectrometer entrance aperture d, and the camera length of the microscope L.
d/2

tan(f) = (3.7)

The Gatan PEELS is a magnetic-prism spectrometer which utilizes a
one-dimensional array of photodiodes to record the electron energy-loss
spectrum in parallel. Figure 3.19 schematically illustrates the spectrometer.

The transmitted electron beam enters the magnetic prism through the
spectrometer entrance aperture. The shape of the magnetic sector allows for
bending of about 90 °. Bending of the electron beam occurs because electrons
travel in circular orbits within a perpendicular magnetic field. The radius of

curvature of the circular orbits is given by

R= MMey (3.8)
eB

1

2\~ )2
v . L .

where y= (1——§J is a relativistic factor, mq is the rest mass of an electron, e
c

is the electronic charge, B is the strength of the magnetic field, and v is the

velocity of the electron.
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Figure 3.18. Ray diagram of TEM operating in diffraction mode.



68

SEEEESSE— [— o { 7= aTel ) aperture

Pre-sector lenses

Magnetic sector

Scintillator Fiber/-optic

/
/
/

N

T~ R

Post-sector
lenses

~

|
N

Photodiodes

Thermoelectric
Peltier-effect
cooler

Figure 3.19. Schematic of PEELS spectrometer.
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The strength of the perpendicular magnetic field, B, can be set so that the
electrons with the zero-loss velocity v, are bent onto the detector. Electrons
with velocities lower than v, will have smaller R and so leave the magnetic
prism with a slightly larger deflection angle. This is the source of the dispersion
in the spectrometer. The dispersion is magnified with the use of post-sector
quadrupole lenses.

The magnified spectrum of electrons falls on the detector and is
converted to light by a scintillator disk. A fiber-optic plate channels the light onto
the active area of a linear photodiode array. The linear photodiode array
consists of 1024 independent channels, each one with an active area 25 um
high and 2.5 mm wide. The total active area is 25 mm high and 2.5 mm wide.
The back of the array is cooled by a thermoelectric cooler.

Although the collection of EELS core loss data is relatively efficient when
compared to the collection of energy-dispersive x-ray (EDX) emission data, the
EXELFS oscillations superposed on these core losses are comparatively weak,
only a few percent of the signal amplitude. Consequently, data of high
statistical quality are required.

EXELFS data from serial detectors generally suffers from inadequate
signal-to-noise ratios, resulting in very limited data ranges in k-space (Csillag et
al., 1981). The advent of parallel detectors has greatly improved the statistical
quality of EELS data (Krivanek et al., 1987). Unfortunately, the EXELFS signal
is often overwhelmed by the gain variations of the linear photo-diode arrays
used in parallel detectors.

Fortunately, there are ways to mitigate the effects of these variations in
gain. A particularly effective method involves dividing by a gain calibration

spectrum followed by gain averaging over many data channels (Shuman and
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Kruit, 1985). Figure 3.20 shows a gain calibration spectrum collected in the so-
called "uniform illumination mode" of a Gatan mode! 666 parallel EELS
detector. Gain averaging involves collecting several spectra, each shifted by a
few data channels, as illustrated in Figure 3.21. These spectra are then aligned
using a feature in the data as a marker, and subsequently added together. Gain
averaging over a large energy range is particularly important in obtaining
reliable EXELFS data to large momentum transfers, because detector uniformity

over a larger energy range is required.
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Figure 3.21. lllustration of gain averaging for Fe Lo3 edge. Although only
4 spectra, each shifted by about 20 channels, are shown,
gain averaging in this thesis is actually performed using about
20 spectra, each shifted by about 3 channels.
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Chapter 4 EXELFS Analysis of K, L23, and M45 Edges

In this chapter the analysis and interpretation of the EXELFS data are
discussed. §4.1 describes the procedures used to isolate, normalize, and Fourier filter
the EXELFS oscillations for K edges. §4.2 describes how these procedures can be
extended to Loz and Mys5 edges. §4.3 discusses the effect of multiple inelastic

scattering on EXELFS.

4.1 Basic Analytical Procedures

The EXELFS signal, g, is the oscillatory part of the edge intensity, AJ(E),

normalized to the non-oscillatory part, Jo(E):

JE) - Jo(E)  AJE)
XB)=""0E) = To®)

(4.1)

where J(E) is the experimental edge intensity, and J4(E) is the smooth edge
intensity which would be observed in the absence of backscattering. In
principle, J(E) and Jo(E) should both be single inelastic scattering intensities
(Egerton, 1986). However, as discussed in §4.3, if the sample is sufficiently
thin, EXELFS analysis can be performed without prior deconvolution of the
EELS data.

Subtraction of the pre-edge background removes counts that are not due
to the particular atomic edge of interest. One method commonly used in EELS
for performing such background subtraction involves fitting an energy range
preceding the edge to a power-law energy dependence, AE-B, where A and B
are the parameters (Egerton, 1986). The power law is then extrapolated
through the edge, as shown in Figure 4.1 for the Al K edge of Al metal. Ideally,

this determines the general shape of the normalizing intensity Jo(E), which is
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Figure 4.1. Power-law extrapolation (broken line) to remove pre-edge
background for Al K edge of Al metal. Spectrum was not
deconvoluted. Sample thickness about 0.4 times mean
free path for inelastic scattering.
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the denominator in Equation (4.1). Unfortunately, the power-law extrapolation
into the extended region is not always accurate. It is especially inaccurate
when the ratio of the edge jump to the background is much less than one.

Instead of determining the general shape of Jo(E) by subtracting the pre-
edge background, a more robust alternative is to use background subtraction
simply to define the height of the edge jump, while assuming a theoretical form
for the energy dependence of J4(E) (Sayers and Bunker, 1988). Such an
approach was used in this thesis to determine the normalizing intensity J,(E).
Theoretical ionization cross sections, as calculated in §A.1, were used for the
energy dependence of Jy(E).

In principle, the edge onset energy Eo is the minimum energy needed to
free the core electron. Eg is known to be affected by the chemistry of a material.
Unfortunately, there is no unique way to determine Eq from the experimental
spectrum. Fortunately, in the analysis of extended fine structure, it is not usually
necessary to know the exact value of Eq. Any reasonable choice for Eg is
usually sufficient. It is important, however, to be consistent about the choice of
Eo when comparing the fine structure between chemically similar compounds.

Once Ey is determined, transformation from energy loss, E, to the
wavevector of the outgoing electron, k, is accomplished by the equation

h2k2 :
E-Eo =5 = (381 A2eV) k2 (4.2)

From Equation (4.2), it is apparent that the choice of Eq affects the positions of
the extended fine structure oscillations in k-space. This is especially true in the

low-k regime but is less important in the high-k regime.
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The most popular method for isolating the oscillating intensity AJ(E) from
the rest of the core edge is a polynomial spline fit. A polynomial spline function
is composed of a series of consecutive intervals, each containing a polynomial
of some order. The intervals are "tied together" by making the function and its
first derivative continuous across the boundaries or "knots" (Sayers and Bunker,
1988). If the spline intervals and the orders of their polynomials are chosen
well, a spline fit can remove the low frequency components due to the smooth
atomic edge shape, without affecting the higher frequency EXELFS signal. Too
many intervals or a polynomial of too high an order will result in the removal of
part of the EXELFS oscillations. Not enough intervals or too low an order
results in a large peak in the low-r region (r bélow about 1.0 A) in the Fourier
transform (Teo, 1986).

In k-space, the EXELFS oscillations have periods which are
approximately n/Ryn, Or less, where Ryq, is the 1nn interatomic spacing in the
material. Figure 4.2 compares two periods of a sinusoidal oscillation with a
cubic polynomial. Clearly, the cubic polynomial does not have enough degrees
of freedom to simulate well the behavior of the sinusoid over two periods.
Therefore, a reasonable first attempt may be to use a cubic spline fit with knots
spread about 2n/Rq,, apart in k-space. Figure 4.3 presents a spline fit to the Al
K edge of Al metal. Figure 4.4 displays the resultant EXELFS interference
function y(k), which was normalized by using the method described previously
to determine Jo(E).

Recall from §2.2.2 that % (k) is interpreted in the plane-wave

approximation using Equation (2.23):

fi(m k)| Sj(k) - 22
2 (k)= (- )‘o*’z “lel (k) 2R 2otk sin[2kR; + (1K) + 25, ,,(K)] (2.23)
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Figure 4.2. Comparison between two periods of a sinusoid and a
cubic polynomial.
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The symbols in Equation (2.23) have already been defined in §2.2.2.

The use of Equation (2.23) is justified only if the 1 to (1o + 1) transition
dominates over all others. Figure 4.5, as calculated by the method in §A.1,
shows this holds true for the Al K edge. Given realistic experimental
parameters, the partial energy-differential cross section for transitions to final
states with p symmetry is seen to be at least 100 times larger than that for all
other transitions combined. This result is interesting because it is well-known
that non-dipole transitions are not strictly forbidden in EELS.

To compensate for its attenuation at high-k values, x(k) is usually
multiplied by k", where n = 1, 2, or 3. This prevents the low-k data from
dominating the high-k data in the determination of interatomic distances which
depend only on the frequency, and not the amplitude, of the oscillations (Teo,
1986). In general, when the neighboring atoms are light elements, n=3 should
work well. Heavier neighbors require smaller n values (Teo and Lee, 1979). In
practice, the value of n which best compensates for the attenuation is chosen.

Fourier band-pass filtering of the EXELFS data is the most common
method used to isolate the structural information from individual atomic shells.

Fourier transformation (FT) is performed on kMy(k) using Equation (4.3).

Kmax Kmax
FT(k) = [ W(k)kny(k)cos(2kn)dk + i | W(k)kMx(k)sin(2kr)dk
min Kmin
= Re[FT(kMy)] + i IM[FT(k"y)] (4.3)

where W(K) is a window function whose edges are smoothed by Gaussian
lineshapes to reduce ringing effects. The magnitude of the FT is given by

Equation (4.4):
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lFT(k"X)I = {Re2[FT(k™)] + Im2[FT (kny)]}1/2 (4.4)

Peaks in lFT(k”x) correspond to shells of nearest-neighbor atoms, although

their positions are shifted slightly from the actual radial distances because of the
k-dependence of the scattering phase shifts nj(r,k) and 28 ,4(k) in Equation
(2.23). The reverse transform of the data within a selected window in r-space
isolates the EXELFS oscillation due to a particular atomic shell. The reverse

transform of the data is given by Equation (4.5):

1 max

FT FT()=— | w(r){Re[FT(k"x)]cos(zkr)—|m[FT(k“x)]sin(2kr)}dr (4.5)
Fenin

where w(r) is a window function whose edges are smoothed by Gaussian
lineshapes, like the window for the forward transform.

Figures 4.6 through 4.8 present the Fourier filtering for the Al K edge of Al
metal. Figure 4.6 displays the EXELFS data weighted by k2 and the window in
k-space for the forward transform. Figure 4.7 shows the magnitude of the FT
and the window in r-space for the reverse transform. Finally, Figure 4.8
presents the oscillation, due to the 1nn shell, which was isolated with this
Fourier filtering process.

In Figure 4.7, the 1nn peak is located at r = 2.34 A. The actual distance to
the 1nn shell in Al metal is 2.86 A. As mentioned previously, this shift in the
peak position is due to the dependence of the scattering phase shifts on k. The
peak near r = 1.6 A can be identified with Al-O bonds in surface oxide. Note that
some of the 1nn peak was removed by the window in r-space. Therefore,

theoretical calculations of the 1nn shell oscillation must also be put through the
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Also shown is window in k-space for Fourier transform
(dashed line). Data taken at 97 K.
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same Fourier filtering process before they can be compared to the experimental
oscillation in Figure 4.8.

The first principles calculation of phase shifts and scattering amplitudes
in the plane-wave approximation is discussed and presented in §A.2. These
calculated phase shifts and scattering amplitudes can be used to determine
theoretical EXELFS oscillations using Equation (2.23). Figure 4.9 displays the
theoretical oscillation on the Al K edge due to the 1nn shell in Al metal and
compares it with the measured EXELFS from Figure 4.4. The calculation of the
theoretical oscillation used phase and amplitude functions from Teo and Lee
(1979) and furthermore assumed: S(k) = 0.7; A(k) followed Equation (2.51) with
C=1,D=3,andn=1.2; and 62 = 0.006 A2. Given the experimental
temperature of 97 K, the results of §5.3 were used to choose the value for 62.

Figures 4.10 through 4.12 display the result of applying the Fourier
filtering process on the theoretical 1nn oscillation. Figure 4.10 shows the
theoretical oscillation weighted by k2, along with the measured EXELFS
weighted by k2 from Figure 4.6, and the window for the forward transform.
Figure 4.11 presents the magnitude of the FT of the theoretical oscillation, along
with the measured data from Figure 4.7, and the window for the reverse
transform. The theoretical data shows a shift in the 1nn peak position of -0.43 A
which compares reasonably well with the measured shift of -0.52 A. The
discrepancy between the two values is less than 0.1 A and is probably due to
my arbitrary choice of edge onset energy, Eo. Lee and Beni (1977) suggest
choosing Eg using the requirement that the imaginary part and the absolute
value of the Fourier transform should peak at the same distance. | simply chose
Eo to be at the location of the maximum edge height. Lastly, Figure 4.12 gives

the theoretical oscillation after Fourier filtering, along with the measured
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oscillation after Fourier filtering from Figure 4.8. Comparing the amplitudes of
the two oscillations and neglecting the presence of Al oxide gives an
experimental coordination number of 11.9 * 1.4 for the 1nn shell in Al metal.
Given the relatively crude and somewhat arbitrary nature of the approximations
made, this is in coincidentally good agreement with the known value of 12 for

the fce structure.

4.2 Extension to L23 and Mys Edges

EXELFS occurs above all the ionization edges in a condensed matter
sample, but the analysis of EXELFS is usually performed only for K-edge data.
K edges are simple to analyze because they correspond to transitions from 1s
core states to only those unbound final states with p symmetry (assuming the
dipole selection rule holds, as is typical in these cases). L and M edges, on the
other hand, are complicated by the variety of possible initial and final angular
momentum states. L edges, for instance, have both 2s and 2p initial states, and
transitions from the 2p initial states can result in final states with either s or d
symmetry. L edges have been previously used for EXELFS by Leapman et al.
(1982), but | believe the present work is the first time that M edges have been
used. In particular, | show that nearest-neighbor distances can be obtained by
comparing first principles calculations with the experimental Fe Loz and Pd Mys

EXELFS data.

4.2.1 Fe Lps

Figure 4.13 displays the experimentally measured EELS spectrum of the
Fe Lo3 edge from Fe metal. Figure 4.14 presents the extracted Fe Lo EXELFS
signal. As with my Al K-edge EXELFS data, Eg was chosen to be at the location
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of the maximum edge height. Fourier transformation of the EXELFS signal is
illustrated in Figures 4.15 and 4.16. Figure 4.15 displays the signal weighted by
K and the window in k-space. Figure 4.16 shows the magnitude of the FT. Note
that the main peak contains data from both 1nn and 2nn shells because the
distance to the 2nn shell (2.86 A) in bce Fe is relatively close to that of the 1nn
shell (2.48 A).

Consider the analysis of the Fe Loz-edge EXELFS. First, | show that the
Fe Loz edge is dominated by the 2p to d channel. Figure 4.17 contains
calculated partial energy-differential cross sections for the excitation of 2p
electrons in Fe into final states of s, p, d, or f character. It is seen that, in the
EXELFS region, the 2p to d channel dominates over the sum of all others by a
factor of about 25. This domination by the 2p to d channel makes possible the
interpretation of the Fe Loz EXELFS using Equation (2.23) with 1p = 1.

Having shown that transitions to final states of d character dominate over
all others for the Fe Loz edge, now consider the complications arising from the
presence of different initial states in the Fe L edge. The spin-orbit splitting
between the Lz and L, edges of about 13 eV is not a major problem because it
is small compared with the spacing between EXELFS maxima far above the
ionization threshold energy, so EXELFS oscillations from Lz and L, edges will
be nearly in phase in this energy range. The presence of the Fe Ly edge can
complicate the analysis of the Fe Lpz EXELFS for two reasons. First, the Ly
edge, which occurs as a relatively sharp jump near E = 846 eV (corresponding
to k = 6.0 A1 for the Loz edge), interrupts the Loz EXELFS signal. This problem
can be eliminated by using only Los EXELFS data sufficiently past the L1 edge
jump. Second, the Ly EXELFS signal overlaps with the Loz EXELFS. However,

as shown in Figure 4.18, the differential cross section of the Fe Ly edge in the
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region of interest is about four times smaller than that of the Fe Loz edge.
Moreover, transforming the data from the Ly edge to the k-space corresponding
to the L3 edge effectively raises the frequencies of the L EXELFS oscillations
and makes them somewhat incoherent.

Figure 4.19 displays, in energy-loss space, the theoretical Ls, Lo, and L4
EXELFS signals from the combined 1nn and 2nn shells in Fe metal. The
theoretical EXELFS were generated using phase and amplitude functions from
Teo and Lee (1979) and additionally assumed S(k) = 0.7; A(k) followed
Equation (2.51) with C=1, D=3, and n=1.2; and ¢2,, = 62,,= 0.003 A2, The
results of §5.3 were used to choose the value for 62.

Figure 4.20 presents the sum of the three theoretical EXELFS signals
and superimposes the measured EXELFS for comparison. The general shape
of the theoretical and experimental oscillations compare well, especially in the
range 8 A-l< k <12 A-1, where the experimental data are most reliable. The
main discrepancy seems to be a phase shift between the two. This is probably
due to my arbitrary choice of Eq for the experimental data. Figure 4.21
compares the two oscillations after Ep for the experimental data was shifted by
-15 eV. After this adjustment of Eq, the two oscillations match very well.

Fourier filtering of the EXELFS is displayed in Figures 4.22 through 4.24.
Figure 4.22 displays the EXELFS weighted by k and the window for the Fourier
transform. Figure 4.23 shows the magnitude of the FT and the window for the
inverse FT. The main peak in the theoretical spectrum is at r = 2.29 A which
compares well with the experimental peak position of r = 2.23 A. The secondary
peak near r = 3 A can be attributed to the higher-frequency Ly EXELFS signal.
This peak does not greatly affect the combined 1nn and 2nn peak from the Log

EXELFS, but it does interfere with the weaker 3nn peak which, after accounting



99

lIlIllll'llIlllllllllllllllI|lllIlllll]lllllllll]!llllllll[lllT—-

f\

0.04

0.02

-

el

T T T T I T[T T TP T T T[T ITTT Y

L - .-
e 2,

L

-,

Q3

]

é

é

¥,

et

-0.02

o

-0.04

NERERISNERINNERI INNTD :m'lunl||||l||||l|||1|||1|l

900 1000 1100 1200 1300 1400 1500
Energy Loss (eV)

Figure 4.19. Theoretical Fe L, (solid line), L, (dashed line), and L, (dotted
line) EXELFS due to combined 1nn and 2nn shells in Fe metal.



100

lllIIIllllllllllllllllllllllllllll

0.06

0.04

0.02

Illlllllllll

=< 0.00

Sy,
st
ARSI

h [ 1, i i}} "
- T L :

k % k%’é 4

-0.04 [ ¥ _
-0.06 |- .

F ] l L 1Y I l Lt 1 1 l I . | l 1 11 l 1 & i l L1 1 i I i l-

7 8 9 10 11 12 13
k (A7)

Figure 4.20. Sum of theoretical Fe L, L,, and L, EXELFS due to combined

1nn and 2nn shells in Fe metal (solid line). Also shown is
experimental EXELFS (dotted line).



101

T ]IIll]llll]l]ll[llllllllI|llllll'llllllll'llll]llllIllllllIl ]

: il

e,
e,

-0.02

-0.04

-0.06
'SR NREN) ARRRNASRRINNRA IR NN RURRSNCIRE RN RTENINET

7 8 9 10 11 12 13

o

k (AT

Figure 4.21. Theoretical (solid line) and experimental (dotted line) Fe L,,-
edge EXELFS after E, for experimental data shifted by -15 eV.



102

-i]lllllll|ll||lllllllllllllll[IIIIIIIII|lllllllll]lllllllll[llll

“&‘4. ‘ 21; |
-0.2 & 7
1

-1.0

T T T I TP T T TTTT 0T

||||||l|I|||||||ul1111]1111111111111111111Illulnlll“nllnﬂ
7 8 9 10 11 12 13

1<)

k (AT

Figure 4.22. Theoretical (solid line) and experimental (dotted line) Fe L,,-

edge EXELFS weighted by k. Also shown is window for FT
(dashed line).



103

:llIl|llll|llll|llll|llll[Illl'llll[llll_
- ‘ 4 1.0
0.8F AV ]
] S -
- : J 05
0.6 : i
= : ' \ ]
=~ - ! N e e ] =
g - 100 =
L 04f i
2 1-0.5
02F ]
OO T.l 1 lfl 11 I‘il N RS E | i e S kel .u;-
0 2 4 6 8

Figure 4.23. Magnitude of FT of theoretical (solid line) and experimental

(dotted line) Fe L;-edge EXELFS. Also shown is window
to select 1nn and 2nn data for inverse FT (dashed line).



104

0-2 lllllllll[llll'llll|lll||llll[llllllllilllll]llll|IllI'llll]ll

0.1

lllllllll'lll

-l"1||||||||||i|||1I1|||

]

O

—
TITT T YT T[T T I T TTTT
EENESNERE FENEE N

_02 llIllIIIllllllllllllllllllllllllIllllIIlllllllllllllllllllllllll
7 8 9 10 11 12 13

o

k (A

Figure 4.24. Fourier filtered theoretical (solid line) and experimental (dotted
line) Fe L,-edge EXELFS.



105

for phase shifts, should be located near r = 3.2 A. Figure 4.24 displays the
EXELFS oscillations after the inverse FT. Comparing the amplitudes of the two
oscillations and neglecting the presence of Fe oxide gives an experimental
coordination number of about 8.5 + 0.8 for the combined 1nn ana 2nn shells in
bce Fe metal. This is 40% less than the known value of 14, but this level of
accuracy is reasonable considering the somewhat arbitrary normalizations of
both the theoretical and experimental EXELFS signals. Also, accounting for the
presence of Fe oxide would raise the experimentally determined coordination
number. This is because Fe atoms in the oxide contribute significantly to the
edge height, but only slightly to the peak corresponding to the 1nn and 2nn

shells in Fe metal.

4.2.2 Pd Mys

Figure 4.25 displays the EELS measurement of the Pd M5 edge from Pd
metal. Note the large number of counts in the spectrum. Figure 4.26 presents
the extracted Pd Mys EXELFS signal and the window for the Fourier
transformation. E, was chosen to be near the bottom at the very beginning of
the Pd Mys edge. Figure 4.27 shows the magnitude of the FT.

The EXELFS analysis of the Pd Mys edge parallels that of the Fe Los
edge. First, | show that the Pd Mys edge is dominated by the 3d to f channel.
Figure 4.28 contains the calculated partial energy-differential cross sections for
the excitation of 3d electrons in Pd into final states of various angular
momentum. The 3d to f channel is seen to dominate over the sum of all others
by a factor of about 20. This domination by the 3d to f channel makes possible

the interpretation of the Pd Mss EXELFS using Equation (2.23) with 15 = 2.
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Figure 4.25. EELS measurement of Pd M edge from foil of pure Pd metal.
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Having shown that transitions to final states of f character dominate over
all others for the Pd Mys edge, now consider the complications arising from the
presence of different initial states in the Pd M edge. The spin-orbit splitting
between the Ms and M4 edges of about 5 eV has very little effect because it is
much smaller than the spacing between the EXELFS maxima far above the
ionization threshold energy. The M3 and My edge jumps are removed from the
Mus EXELFS signal by transforming only data sufficiently past the M; edge
jump. Figure 4.29 compares the energy-differential cross sections of the Pd
Mas, M23, and M, edges. In the experimental EXELFS region, the Pd Mys edge
is about three times larger than the M3 edge, six times larger than the M» edge,r
and eight times larger than the My edge.

Figure 4.30 displays the theoretical Mys, M3, M, and My EXELFS signals
from the 1nn shell in Pd metal. The theoretical EXELFS were generated using
f(r,k) from Teo and Lee (1979), and 1(k), 82(k), and 83(k) from my Hartree-
Slater calculations presented in §A.2. The following were also assumed: S(k)
= 0.7; A(k) followed Equation (2.51) with C=1, D=3, and n=1.2; and o2 = 0.002
A2, The results of §5.3 were used to choose the value for 2.

Figure 4.31 presents the sum of the four theoretical EXELFS signals and
superimposes the experimental EXELFS for comparison. The periodicity and
phase of the theoretical and experimental oscillations compare reasonably well.
Figure 4.32 displays the magnitude of the FT. The main peak in the theoretical
spectrum is at r = 2.76 A which is close to the experimental peak position of r =
2.68 A. The theoretical spectrum also has a smaller peak near 3.9 A which
overlaps with the expected position of the 2nn peak. Figure 4.33 displays the
EXELFS oscillations after the inverse FT. The amplitude of the theoretical

oscillation is seen to be considerably greater than that of the experimental
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edge EXELFS. Also shown is window for Fourier transform
(dashed line).



[FT(x)|

0.10

0.08

0.06

0.04

0.02

0.00

114

llllllllllllll'llll'lll

,
]
I
1
1
'
]
]
I
1
1
'
'
'
1
I
1
1
1
)
|

IlllllllIIIllIlllllllllllllllllllllllll

CILL TP Lt L
ve,

l 1 1 1 1 l i 1 1 L

0 2

4
r (A)

1.0

0.5

0.0

Figure 4.32. Magnitude of FT of theoretical (solid line) and experimental
(dotted line) Pd M-edge EXELFS. Also shown is window

for inverse FT (dashed line).



115

0.03

llllll[llllIllll|lllllllll]lllTTlllI]IIIII1III[III

0.02

0.01

TTVIFTTET I UV ITTI I
1

I".lllll‘llllllllllj_lll|IlJl|llll

FT[FT(x)]

0.00 f-
-0.01F =
0.02F =
é E
_0.03il]llll_lllllJllIll.llll|lllllLlJIlllllllJ_llllllllllllE
10 11 12 13 14 15
k (A7)

Figure 4.33. Fourier filtered theoretical (solid line) and experimental (dotted
line) Pd M,-edge EXELFS.
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oscillation. This disparity is not surprising because of the somewhat arbitrary
normalizations of both the theoretical and experimental EXELFS signals.

In conclusion, the cross-section for high energy electron scattering
makes EELS possible only for core edges at energy losses below about 5 keV
(Ahn and Krivanek, 1983). Only elements lighter than vanadium (Z = 23) have
K edges below 5 keV. This does not, however, limit EXELFS experiments to
only elements of low atomic number. As this section has shown, useful
EXELFS information can be extracted from Loz and Mys edges as well. The use
of Loz and Mys edges opens up most of the periodic table to possible EXELFS
experiments. |

Nearest-neighbor distances in Al, Fe, and Pd have been determined
using EXELFS which agree with x-ray diffraction results (Ashcroft and Mermin,
1976) to within £ 0.1 A. Distances to more distant neighbor shells, however, are
probably not reliable. It should be pointed out that diffraction is, of course, far
superior than EXELFS for determining distances in crystalline solids, which
have long-range order. EXELFS is useful because it has the ability to measure

short-range order.

4.3 Effect of Multiple Inelastic Scattering on EXELFS

§2.1.3 described the use of Fourier transform deconvolution methods to
remove multiple inelastic scattering from energy-loss spectra. However, this
section shows that unless the TEM sample is exceedingly thick, useful EXELFS
information can be obtained without prior deconvolution of the energy-loss
spectrum.

The simulation presented in Figures 4.34 through 4.37 demonstrates the
effect of multiple inelastic scattering on a hypothetical inner-shell edge and its

extended fine structure. To simplify the simulation, perfect instrumental
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Figure 4.35. Simulated effect of multiple inelastic scattering on the general
shape of a hypothetical inner-shell edge. Multiple-scattering
(solid line) and single-scattering (dotted line) spectra are
shown for two different sample thicknesses.
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scattering (thin solid) and multiple-scattering (thin dashed)
spectra. Also shown is magnitude of FT of EXELFS originally
superimposed on edge (thick solid) and original EXELFS
convoluted with low-loss (thick dashed). Data in range from

5.25 <k < 8.75 A were transformed.
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resolution was assumed, i.e., Z(E) = lo 8(E). A hypothetical single-scattering
distribution, S(E), was constructed. The low-loss region was assumed to
contain a single outer-shell scattering process with an energy of exactly 20 eV.
The inner-shell edge and the background were calculated from the power law
AE-4, and the edge-to-background ratio in the single-scattering distribution was
assumed to be unity. Extended fine structure from a single nearest-neighbor
shell of atoms was superimposed upon the edge in the single-scattering
distribution. The extended fine structure was calculated using the following

simple equation:

2 = 31 sin(2kRynn) (4.6)

where x(k) is the EXELFS oscillation normalized to the non-oscillatory part of
the edge intensity, Rinn = 2 A is a hypothetical 1nn peak position, and 0.1 is an
arbitrarily chosen factor.

Figure 4.34 displays the idealized low-loss spectrum using two different
sample thicknesses. The hypothetical inner-shell edge with and without
multiple inelastic scattering is displayed in Figure 4.35. Figure 4.35 shows that
the primary effect of multiple inelastic scattering on inner-shell edges is the
presence of successively smaller "steps” in intensity above the edge. The first
step above the edge (at 20 eV past the edge onset) is due to double inelastic
scattering processes, the second step above the edge is due to triple inelastic
scattering processes, and so on. Of course, for actual spectra these steps are
rounded because the low-loss peaks are considerably broadened.
Nevertheless, the simulation shows that while the multiple inelastic scattering

steps affect strongly the near-edge structure, the steps are negligible in the
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region more than 100 eV beyond the edge onset (corresponding to k > 5 A-1). It
is possible, however, that the extended fine structure superimposed upon the
steps may contribute incoherent higher-frequency oscillations to the EXELFS
signal.

Using the procedure detailed in §4.1, EXELFS signals were extracted
from the multiple-scattering spectrum with t / A = 0.5 and from the single-
scattering distribution. Figure 4.36 displays the two extracted EXELFS signals,
along with the EXELFS that was originally superimposed upon the edge and
the original EXELFS convoluted with the low-loss. The periodicity and phase of
the four signals are seen to be very similar. From the figure, it can be deduced
that the multiple-scattering signal is, in effect, the single-scattering signal
convoluted with the low-loss. This results in a reduced signal at low k, where
the multiple-scattering and single-scattering signals are out of phase, and an
enhanced signal at higher k, as the signals become more in phase. Figure 4.37
shows the Fourier transforms of the four EXELFS signals. Each transform has a
peak centered near 2 A. The peak extracted from the single-scattering
spectrum is shifted only by about +0.1 A from the peak corresponding to the
original oscillation. Since the EXELFS technique can generally determine
radial distances to only within approximately 0.1 A, this small shift in peak
position is within the expected error. The peak extracted from the multiple-
scattering spectrum is shifted by about +0.1 A from the peak extracted from the
single-scattering spectrum.

The preceding simulation demonstrated that useful EXELFS data can, in
principle, be extracted without prior deconvolution of the EELS spectrum. The
following analysis of actual experimental data shows that this is true in practice

as well. Experimentally, EELS spectra covering the range below about 2 keV in
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energy loss were collected from a relatively thick sample of FesAl. The sample
thickness was approximately 1.1 times the mean free path for inelastic
scattering, i.e., A = 1.1. Channel-to-channel gain variations in the parallel
detector were compensated using the procedure given in §3.4. Multiple
inelastic scattering was removed using a Fourier-log deconvolution procedure.
In the deconvolution procedure, high-frequency noise amplification was
reduced by reconvolving the single-scattering distribution with a unit area
Gaussian function whose full width at half maximum (FWHM) was 4 eV. The
FWHM was chosen to be approximately equal to the instrumental resolution.

Figures 4.38 through 4.40 display the three relevant regions in the EELS
data both before and after Fourier-log deconvolution. The low loss region is
displayed in Figure 4.38, the Fe L3 edge in Figure 4.39, and the Al K edge in
Figure 4.40. After deconvolution, one can more clearly see the Fe M3 edge at
54 eV in Figure 4.38 and the "white lines" on the Fe Lo edge in Figure 4.39.
The small edge-to-background ratio makes it difficult to see any details on top of
the Al K edges in Figure 4.40. To better resolve the structure of the Al K edges,
Figure 4.41 displays the Al K edge data after background subtraction. Without
the background intensity, the Al K edges are effectively magnified. As Figure
4.41 shows, although the overall shapes of the Al K edges before and after
deconvolution are very different, the EXELFS oscillations superimposed on the
edges are remarkably similar.

For a more quantitative analysis, EXELFS data were extracted from the
multiple-scattering and single-scattering spectra using the procedure explained
in §4.1. Figure 4.42 presents the Fe Los-edge EXELFS data. Notice that the
two sets of data follow the same general pattern, regardless of whether they

were extracted from multiple-scattering or single-scattering spectra. Apparently,



123

I 1 I I 1 i i l 1 1 i I I i 1 I i

single

6x10°

<-———multiple

Intensity
w

llllllllllllll[lllllllIl[l[lllllll]lllIIllll[llll'llll[llllT

Illllllllllllllllllllll|||l||llll|llll|lIllllll||lllllllll'

150
Energy Loss (eV)

Figure 4.38. Low loss region from multiple-scattering (solid line) and single-
scattering (dotted line) spectra of FejAl.



124

1-OX108 lllIIlllllIIIIlIIll]llllllllllllllllllllIlll'llIIIIIII

0.8

multiple

llll||l|l|'lll||[ll
]

0.6

v RSN

Illlll'lIlIllllJllllllllllllIlllllllllllllllll

=
‘» C
C -
9 -
— :
—  04F
0.2F
;‘“\-..w
:llllllllllllllllllllIllIlllllllllllllllllllllIllllll.l..‘.l.f
700 800 300 1000 1100 1200

Energy Loss (eV)

Figure 4.39. Fe Lp3 edge from multiple-scattering (solid line) and single-
scattering (dotted line) spectra of FesAl.



125

7
1'OX1O 3 11 l LI L] l L L L l L DL L I L IR D I | I L L L

0.8 multiple

o
o))

Intensity

0.4

Livaadaagaly lllllllllII1|IlIl|lllI|lII

0.2

................
..................
Rt TIPS

llll|lllI‘l‘:lll]llllllllllllIlIllIllllllllllllll L]

: S T N | I L1 1 1 I | I T | l Lt 1 I l 11 1 ! l b1 1 1

O'10500 1550 1600 1650 1700 1750 1800
Energy Loss (eV)

Figure 4.40. Al K edge from multiple-scattering (solid line) and single-
scattering (dotted line) spectra of FezAl.



126

E L l LI B I | l LR l T 1T T I 1 LRI l LI :
6x10° E =
5E E
3 multiple E
4 =
= - .
[ = =
- - . 3
9 3 '_-_ i "\.,.,-,.'.‘..-.-_..H"'Vu,.'.-f—__ _:
...C_ - ~ ., vf.f’"""--r-"“"'*'»-.,‘- e E
2F =
3 single E
1E 3
O ":‘.1( b 1 J L1t 1 I § I I l it 1.1 l i1 1.1 l L1 1 1 E

1500 1550 1600 1650 1700 1750 1800

Energy Loss (eV)

Figure 4.41. Background subtracted Al K edge from multiple-scattering (solid
line) and single-scattering (dotted line) spectra of FejAl.



127

Illlllll|lllIIllll]lllllllf['IlIllIlllllll]llllllllllllll

T

0.4

1
i

i, -—single

-"r“l‘lllllllll]llll

L LI LI L LA I

multiple

T T T T T T T[T T T ITTT
et
EEEENE RN EENEN W

_04 IlIlIIIll|IlllllIIllllIIIlll|lIllllllllllllIIIIll‘IlllIlIII

7 8 9 10 11 12
k (AT

Figure 4.42. Fe Lpz-edge EXELFS from multiple-scattering (solid line)
and single-scattering (dotted line) spectra of FezAl. Both
signals have been "smoothed" to somewhat reduce noise.



128

0-35 lIIl[lIllllIlllllllllllI|Illllllll|llll

T

-,

0.30 single

0.25

L E multiple E
=3 - ]
— L i
L o1sf ]
0.10 -
oosf [\ YV \UAL 3
O'OO—IIlllllllllljlllllllllljlll'.l. A

0 2 4 6 8

r(A)

Figure 4.43. Fourier transforms of Fe Lo3-edge EXELFS from multiple-
scattering (solid line) and single-scattering (dotted line)

spectra of FezAl. Data in the range 7 <k < 12 A were
transformed.



129

the main difference between them is that the single-scattering data has a
greater amount of high-frequency noise. As discussed in §2.1.3, a side-effect of
the Fourier-log deconvolution procedure is the amplification of high frequency
noise in the single-scattering spectrum.

Figure 4.43 displays the magnitude of the FT of the Fe Lo3-edge EXELFS
data. Notice the similarities between the transforms of both the multiple-
scattering and single-scattering data. Each transform has a 1nn peak near 2.1
A

Figure 4.44 presents the Al K-edge EXELFS data. Both signals follow
the same general pattern, although a greater amount of high-frequency noise is
present in the single-scattering signal.

Figure 4.45 displays the magnitude of the FT of the Al K-edge EXELFS
data. Both transforms contain a 1nn peak near 2.2 A. In addition, the smaller
peaks in the two transforms match well.

In conclusion, the analysis of both simulated and experimental data has
shown that, unless the sample is exceedingly thick, useful EXELFS information
can be obtained without first deconvolving the EELS spectrum. This is
especially true for the experiments in this thesis which aim to measure only
relative changes in the amplitude of the EXELFS oscillations as either the
temperature or the state of SRO of the sample is varied, but the thickness is held
constant.

On the other hand, deconvolution is important when comparing data from
samples of different thicknesses. Deconvolution is also irhportant when

comparing EXELFS data with EXAFS data.
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Chapter 5 Temperature-Dependent EXELFS of Elemental Metals

This chapter discusses the interpretation of my temperature-dependent
EXELFS data from Al, Fe, and Pd metals. As temperature increases, vibrations
between atoms in the sample increase. This causes a decrease in amplitude of
the EXELFS oscillations which is accounted for in Equation (2.23) by the
Debye-Waller type factor exp(-267k2), where o? is the vibrational mean-square
relative displacement (MSRD).

§5.1 contains a brief derivation of the Debye-Waller type factor. §5.2
then derives an expression for the vibrational MSRD as a function of the
"projected” density of vibrational modes and contrasts the vibrational MSRD
with the vibrational mean-square displacement (MSD).  §5.3 discusses the
force constant model of lattice dynamics. Finally, §5.4 presents my
experimental data on elemental metals and analyzes them within the Einstein,
Debye, and force constant models. Debye temperatures from my MSRD
measurements are compared with published Debye temperatures from heat

capacity measurements.

5.1 Debye-Waller Type Factor for EXELFS
This section briefly derives the Debye-Waller type factor for EXELFS. For

simplicity consider "half" of the sine term in Equation (2.23):

<exp(i2k|rj 1, |)> (5.1)

where ro and r;j are the instantaneous position vectors of the central and

neighboring atoms, respectively. The brackets { ) represent averaging over an

ensemble of systems. The amplitude-reducing terms of Equation (2.23) which
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depend on the bond length |rj — ro| can be neglected because they are less
sensitive to small changes in the bond length. The sine term, on the other hand,
is very sensitive to changes in the bond length because such changes affect the
phase of the sinusoidal oscillation.

rj - ro| can be approximated to first-order by ﬁr(rj - to), where ﬁj is the
equilibrium direction between the central and neighboring atoms. Substituting

this approximation into Equation (5.1) gives

<exp(i2k|rl —r°|)> = <exp[i2k|91j o(r) —ro)D (5.2a)
= (expli2kR; + (Ry+u;-0-uy ) (5.2b)
= exp(i2kR)) <exp[i2kﬁj e(uj-up )D (5.2¢)

where Up and u; are the instantaneous displacements of the central and
neighboring atoms from their equilibrium positions at 0 and R;, respectively.
The second factor on the right-hand side of Equation (5.2c) can be

expanded into a series:
(expli2k8; o (5 uo)]) = 1+ 2K (R (1~ ) ~ - (Ry o (- w0 ) .. (53)

The first-order term on the right-hand side of Equation (5.3) vanishes because
the ensemble averages of the displacements are zero. Thus, the second-order

term is the lowest-order correction:

(oxplizkfty s (u;~up)]) = 1 - 242(R; o (- ug ) (5.4)
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The right-hand side of Equation (5.4) is approximately equal to

exp(-2k26?) (5.5)
where of = (ﬁ] o(y; —uo))z.

5.2 Vibrational Mean-Square Relative Displacement (MSRD)

This section derives an expression for the vibrational MSRD, cﬁ, asa
function of the "projected” density of vibrational modes, gr(w). This is done
using the quantum theory of lattice dynamics. For contrast, the vibrational MSD,
02, is also discussed.

Consider a monatomic Bravais lattice. Let ug denote the displacement of
the atom whose lattice site is associated with the Bravais lattice vector R. From

the quantum theory of lattice dynamics, it is well known that ug can be
expressed as a function of annihilation aqs and creation ans operators:

\/_I\_l E 2M Oge (ags + a )éqs exp(ig-R) (5.6)

where wgs is the frequency and € is the polarization vector of the phonon with
wavevector q and polarization s, N is the number of atoms in the crystal, and M
is the atomic mass. The summation is over all allowed wavevectors q in the first
Brillouin zone and over the three independent polarizations s (Ashcroft and
Mermin, 1976).

As shown in §5.1, the vibrational MSRD between atoms at 0 and R is

given in a first-order approximation by



2) (5.7)

where the brackets { ) indicate time (or thermal) averaging. From Equation

(5.6), we find:

w2 / ZMZ — (2as aly,) &g *R [exp(ig°R)-1]  (5.8)
gs s

Squaring the magnitude of Equation (5.8):

- . 2
h 1—-cosqe R
= NM Z © 1 (éqs R) ( qsa—qs quags + aqsags + aqu —qs) (5-9)
qs qs

where we have used the fact that operators on different modes (q,s) commute.
In the Heisenberg picture, the time dependences of the annihilation and

creation operator are determined to be

ags(t) = ags exp(-imt) (5.10a)
al () = al; expliot) (5.10b)

Therefore, the agsa_qs and af  al; terms vanish when time averaged, leaving

o} = —Em-qzl—%’):'—‘R(éqs R12(2(ngs)+1) (5.11)
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where (nq ) is the time-averaged phonon occupancy of the vibrational mode
qs

with wavevector q and polarization s. For phonons, the distribution function
<nqs) is well known to be

1

= 5.12
(Mas) exp(hgs/kgT) — 1 (5.12)
In this way, phonons are like bosons whose chemical potential is hwgs/2.
Substituting Equation (5.12) into Equation (5.11) gives
h 1—-cosqeR
gs  @qgs
or equivalently
th(hw/2kgT
o3 = %fda) gr(®) coth( 8T) (5.14a)
where gr(w) = —;—2(1—cosqu)(éqs-ﬁ)2 3(w—wgs) (5.14b)

qs

gr(w) is called the "projected"” density of vibrational modes. gr(w) weights the
contribution of each mode to the mean-square compression of the bond
distance between the atoms at 0 and R.

For contrast, consider the vibrational mean-square displacement (MSD),
represented by o2, which is used in the Debye-Waller factor for Bragg peaks in
x-ray diffraction. In x-ray diffraction, the intensities of Bragg peaks are reduced

by the factor exp(-o2k2), where k is the magnitude of the scattering vector.
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Similarly, in M&ssbauer spectrometry, the recoil-free fraction is also given by
exp(-02k?) (Gonser, 1975).
The vibrational MSD of an atom from its equilibrium lattice position is

defined as

uek

-

where u is the instantaneous displacement of the atom, k is the direction of the

2> (5.15)

scattering vector, and the brackets indicate time (or thermal) averaging. It turns

out that
h coth(hw/2kgT
02 = 337 [do g(w) . ) (5.16a)
1 -
where g(w) = NZ (Bqs°k)? 8(w—wqs) (5.16b)
qs

g(w) is equivalent to the normalized density of vibrational modes since (éqsﬂ“()2
averages to 1/3 and there are a total of 3N vibrational modes. By normalized, |

mean that

ofdcog(co) =1 (5.17)
0

Equation (5.16) should be contrasted with Equation (5.14). The most important
difference is that the additional term cosq*R in Equation (5.14b) insures that
only the out-of-phase motion of the atoms in the direction of R contributes to the

MSRD (Beni and Platzman, 1976).
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5.3 Force Constant Model of Lattice Dynamics

This section determines the vibrational modes of a lattice within the force
constant model of lattice dynamics. This is done for a monatomic crystal using a
classical description of the atomic vibrations which largely follows the one given
in Ashcroft and Mermin (1976).

Assume that the equilibrium position of each atom in our monatomic
crystal is a Bravais lattice vector R. Define r(R) to be the instantaneous position
of the atom whose equilibrium position is R. The total potential energy or

cohesive energy of the crystal can then be written as

U= o[r(R) - F(R")] =%§ Y o[R+u(R)—R -u(R)]  (5.18)

m[-s

2
R R'=R
where ¢(r) is the interaction energy between atoms separated by r, and u(R) is
the deviation of the atom from its equilibrium position R, i.e., r(R) = u(R) + R.
From now on it will be implicitly assumed that the summations over R' exclude
R.

Assume that the deviations u(R) are small compared with the interatomic
spacing. The potential energy U can then be expanded about its equilibrium

value, using Taylor's theorem in three dimensions:

U=-;-22 (R -R") +222[u R)-u(R')]s Vo(R-R')
R R
+%§§{[U(R)—u -V} ®(R-R")+ ... (5.19)

The zero-order term is simply the equilibrium potential energy. The coefficient

of u(R) in the linear term is Y, V4(R—R'), but this is simply the force exerted on
Rl
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the atom at R by all the other atoms, when each is placed at its equilibrium
position. Clearly, by definition of the equilibrium position, this coefficient and
therefore the linear term must vanish.

Since the linear term vanishes, the quadratic term is the lowest order
correction to the equilibrium potential energy. In the harmonic approximation

only this term is retained:

U = Uea 4 Yharm (5.20)

where Ued is the equilibrium potential energy, and Uharm js the harmonic
approximation to the extra potential energy due to the deviations of the atoms
from their equilibrium positions.

Changing notation and rearranging the expression for Uharm:

Uharm — -1_22{[u(ﬂ)_. ]QV}2¢ R-R')
4 R Rl
1
= 7 22 T X U R0 B—R")us (R)-U, (R)0,, (R R (R)] - (5.21)
TS
_ 9%(r) .
where ¢, (r) = o and the summations over p and v are over x,y,z. The
p¥

summations over the first term in Equation (5.21) can be manipulated to give

%EZZU (R)¢yy (R—R")u,(R) = ZZZZU (R)o,, (R—R")u, (R)
pov
EZZZZSRR Uu(R)(bm)(R R")UD(R')

R R p v

= %;zzup(ﬂ)[aﬂﬁ'g‘pp\)(n_R"):,uu(R') (522)
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Therefore, Equation (5.21) can be written simply as

Uharm -

N~

%;ZEUMR)CW(R—R')UD(R') (5.23)
(Ll

where the force constant matrix C,,(R-R') = SR, ¢y (R—R")— oy (R—R").
o
Equation (5.23) is analogous to the familiar U = %kx2 for a single spring.

Now consider the 3N equations of motion for the system. In analogy with

the familiar F = ma = —%g— = —kx, the force on the atom at site R in the p-

direction is

Mi(R) = =3 ¥ C,oo (R~ R")u, (R') (5.24)
R v

where M is the atomic mass, and double counting cancels the factor of 1/2 in
Equation (5.23). Thus, —Cp,(R-R")u,(R") is the force on the atom at site R in the
u-direction when the atom at site R' is displaced by uy(R') in the v-direction.

Equation (5.24) can be rewritten in matrix notation as

Mi(R) = —¥ C(R—R')u(R") (5.25)
<

Consider solutions to Equation (5.25) of the form u(R,t) = Aeexpli(g:R - wt)]:

—Maw?Aéexp(iqR) = -Aé [2 C(R-R')exp(iqe R‘)]
<

—Aé{ Y. C(R")exp[iqe (R—R")]} (5.26)
R"=R-R'

~Ma?é = D(q) & (5.27)
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where the dynamical matrix D(q) = )’ C(R)exp(-iq+R). The dynamical matrix
R

can be thought of as a Fourier transform of the force constant matrix. Using

inherent symmetries of the force constant matrix C(R) (Ashcroft and Mermin,

1976), the dynamical matrix can be rewritten as

o in2(9°R
D(q) = 2§C(R)sm( . ) (5.28)

Equation (5.28) shows that the dynamical matrix must be real and an even
function of q.

For each of the N allowed wavevectors q in the first Brillouin zone,
solving Equation (5.27) gives three orthonormal eigenvectors éqs and three
corresponding eigenvalues wqgs. Of course, the eigenvectors and eigenvalues
correspond respectively to the polarization vectors and the frequencies of the
normal modes of vibration. The normalized density of vibrational modes, g(w),
is simply the probability distribution of frequencies Wgs. The projected density of

vibrational modes, gr(w), can be determined by applying Equation (5.14b).

5.4 Results from Al, Fe, and Pd

This section presents temperature-dependent EXELFS measurements
from Al, Fe, and Pd foils and analyzes the results within the Einstein, Debye,
and force constant models. Debye temperatures obtained from MSRD and heat
capacity measurements are compared.

Figures 5.1 through 5.3 present the temperature dependence of the
magnitude of the Fourier transform of the Al K-edge, Fe Lps-edge, and Pd Mys-

edge EXELFS. In this section, for simplicity, it is reasonable to consider the
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major peak in the FT of the Fe Lpz-edge EXELFS to be due solely to the 1nn
shell although the 2nn shell also contributes to it.

In general, the 1nn peaks are seen to decrease in size with increasing
temperature. This effect is usually represented by the Debye-Waller type factor
exp(-2 cs?nnk2), where c,znn is the mean-square relative displacement (MSRD)
between the central atom and the 1nn shell.

Figure 5.4 compares the Fourier filtered 1nn shell EXELFS from Al at 97
K and 296 K. Using a simple least-squares routine given in §B.4, the difference
in MSRD between the two oscillations is determined. This difference in MSRD
is denoted by Aof?nn. To show the quality of the fit, Figure 5.2 also displays the
97 K data multiplied by exp(-2A65,,k2), where Ac%,, = 5.3 x 103 A2,

Figure 5.5 through 5.7 display Ao?nn for the EXELFS from Al, Fe, and Pd
metals relative to the EXELFS at the lowest temperature. The error bars were
obtained from values of A012nn at which the variance of the least-squares fit
increased by 20%. As expected, Aoa’;m is seen to increase with increasing

temperature. The temperature dependence of Acsﬁm can be interpreted within

the Einstein, Debye, and force constant models.
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5.4.1 Einstein Analysis
The Einstein model is the simplest. In solid-state theory, a solid of N
atoms is considered to have 3N vibrational modes. The Einstein model

assumes that all 3N modes have the same characteristic frequency wg. In other
words, the Einstein model assumes that the density of vibrational modes is

simply
9(w) = 6(w — wE) (5.29)

The projected density of vibrational modes in the correlated Einstein model is

also a delta function:
gR(®) = 8(0 — wg) (5.30)

Substituting Equation (5.30) into Equation (5.14a) gives the following

expression for the MSRD within the Einstein model:

of = = — coth(hoe/2ksT) (5.31)

_h_
MCOE

The Einstein frequency wg and Einstein temperature 6g are related by the

simple equation

hog = KgBg (5.32)
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Using the computer program listed in §C.1, Einstein temperatures can be

determined from A o%,, vs temperature data. Allowing the value of o2, atthe

lowest temperature to float, the program fits the temperature-dependent data to
Equation (5.31). Figures 5.8 through 5.10 display the Einstein model! fits to the
A of‘nn data from Al, Fe, and Pd metals. The fits gave 6g = 318 + 10 K for Al, 306

+ 16 K for Fe, and 223 + 30 K for Pd.
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offset of data was allowed to float. Fit gave 6, = 306 + 16 K.



154

: I 1 i T I 1 | 4 1 ¥ ' H i ] T l | T 1 I 1 | 1 1 I ] ¥ 1 1 4 l l:
6F :
5F 3
< F ]
<L - =
? C ]
2 4f E
~_. F .
v F ]
3 3

2F 3

: 1 1 1 1 I ] ] L 1 l i | 1 i l 1 [] 1 1 I 1 1 1 1 l 1 ] 1 1 l l:

0 50 100 150 200 250 300

Temperature (K)

Figure 5.10. Einstein model fit to 1nn MSRD data from Pd metal. Absolute
offset of data was allowed to float. Fit gave 6. =223 + 30 K.
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5.4.2. Debye Analysis
The Debye model is slightly more sophisticated than the Einstein model.

The Debye model assumes a linear dispersion relation w = cq and that the

density of vibrational modes is given by

Va2 . kg6p
gw=523 ., if o<wp=—7—
=0 , ifo>op (5.33)
. kefp
where V = atomic volume, ¢ = Hap ap = (6x2/V)13, 6p = Debye temperature.

In the correlated Debye model, the summation in Equation (5.14b) over
all allowed q in the first Brillouin zone is replaced by an integral in q-space over

a sphere of radius qp. Furthermore, since the polarization directions are
orthonormal, Z(éq,s-lﬁ)2 = 1. The projected density of vibrational modes
s

becomes

do T
qu'2nq'25—(ga—g—) Jde[1—cos(q'rcose)]sin6

9gR(0) (5.34)
ﬂqs
34D
The integral over 6 works out to
T ina'R
G[deﬁ—cos(q'rcose)]sine = 2(1 - s%%) (5.35)

Therefore, Equation (5.34) becomes
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qo
3 . " oy sing'R
OR(0) = 5oz [aq'8(a-q )a2(1 - 4R )
o
_3¢? {_ singR
'cq%( R )
30)2 Sin —
=1 - = (5.36)
@p oR
c
Substituting Equation (5.36) into Equation (5.14a) gives
Wp
. oR
34 sin “C—
2 _~f T - .37
OR Mm% dw coth(aw/2kgT) o | 1 oR (5.37)
c

(Sevillano et al., 1979).

The Debye frequency wp and the Debye temperature 6p are related by

hop = kgbp (5.38)

Using the computer program listed in §C.2, Debye temperatures can be
determined from A012nn vs temperature data. Figures 5.11 through 5.13 display

the Debye model fits to the Ac,2, data from Al, Fe, and Pd metals. The fits gave
Op =438+ 13 K for Al, 417 £ 22 K for Fe, and 306 + 40 K for Pd. These values

for 6p are approximately 0.73 times the corresponding values for 6g. Disko et
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Figure 5.11. Debye model fit to 1nn MSRD data from Al metal. Absolute offset
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al. (1989) obtained a value of 6p = 415 = 30 K from the temperature-dependent
EXELFS of Al

8p derived from MSRD measurements are expected to be different from
0p derived from MSD or heat capacity measurements. Each measurement can
be thought of as placing emphasis on different regions of the frequency
distribution of vibrational modes. MSD data emphasizes the lower-frequency
modes more than MSRD or heat capacity data. Moreover, 6p are usually
derived from heat capacity data by matching the data near the point where the
heat capacity is about half the Dulong and Petit value. Obviously, 6p must be
determined from MSRD and MSD data using a completely different
methodology. Despite these differences, the values for 6p determined from
these measurements should be roughly comparable. From heat capacity
measurements, 6p = 394 K for Al, 420 K for Fe, and 275 K for Pd (Seitz and
Turnbull, 1956); these values are roughly comparable to those from my MSRD

measurements, which were 438, 417, and 306 K, respectively.

5.4.3. Force Constant Analysis

The force constant model discussed in §5.3 uses interatomic force
constants from inelastic neutron scattering experiments to determine the
frequencies and polarizations of the 3N vibrational modes in a crystal. Unlike
the Einstein and Debye models, the force constant model does not have any
"free" parameters because all the necessary parameters are determined from
the neutron scattering data.

Table 5.1 contains interatomic force constants for Al, Fe, and Pd metals
which were derived from neutron scattering data. The density of vibrational

modes, g(m), can be determined from these force constants using my program
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fcc bcc
force const Al Pd force const Fe
110 XX 10.46 19.76 111 XX 16.88
2z -2.63 -2.51 XY 15.01
XY 10.37 23.19 200 XX 14.63
200 XX 2.43 0.92 YY 0.55
YY -0.14 0.42 220 XX 0.92
211 XX 0.099 0.91 2z -0.57
YY -0.24 0.13 XY 0.69
YZ -0.29 0.61 311 XX -0.12
XZ -0.18 0.91 YY 0.03
220 XX 0.14 -1.04 YZ 0.52
Y4 0.19 -0.13 XZ 0.007
XY 0.38 -1.86 222 XX -0.29
310 XX -0.30 0.09 XY 0.32
YY 0.18 -0.23
Y74 0.26 -0.27
XY -0.32 0.12
222 XX -0.14 0.22
XY 0.20 0.15
Table 5.1.  Interatomic (Born-von Karman) force constants (in N/m) for the first

several near-neighbor shells in Al (Cowley, 1974), Fe (Minkiewicz
et al., 1967), and Pd (Miiller and Brockhouse, 1971).
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listed in §C.3.‘ Figures 5.14 through 5.16 display g(w) for Al, Fe, and Pd metals.
In each case, the breakdown into the longitudinal and two transverse branches
is indicated.

Figures 5.17 through 5.19 show the projected density of vibrational
modes, ginn(®), for the 1nn shell in Al, Fe, and Pd metals. In comparison to the
density of modes, the projected density of modes weights more heavily the
higher frequency modes. In particular, the high frequency (or equivalently the
short wavelength) longitudinal modes are most heavily weighted. This is as
expected because the short wavelength longitudinal modes contribute most
heavily to the MSRD between 1nn atoms.

Applying Equation (5.14a), these g1nn(®) can be used to determine the
vibrational MSRD "1ﬁn as a function of temperature. Figures 5.20 through 5.22
shows 6,2, calculated from the force constant models for Al, Fe, and Pd. My
experimental data are superimposed for comparison, and they match well with

the predictions of the force constant models.
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Chapter 6 Applications to Intermetallic Alloys and Nanocrystalline
Materials
EXELFS can be applied to problems in materials science which utilize its
sensitivity to local atomic environments. §6.1 presents measurements of
chemical short-range order (SRO) and vibrational MSRD in FesAl and NizAl
using EXELFS. Differences in vibrational entropy between the ordered and
disordered alloys are discussed. §6.2 presents measurements of structural

disorder and vibrational MSRD in samples of nanocrystalline Pd and TiOa.

6.1 Chemical Short-Range Order (SRO) and Vibrational MSRD in
FezAl and NizAl
This section presents EXELFS measurements from FezAl and NizAl
alloys which were chemically disordered by piston-anvil quenching and high-
vacuum evaporation, respectively. Chemical SRO was observed to increase as
the as-quenched samples were annealed. Temperature-dependent
measurements indicated that the local environments of the annealed samples

were "stiffer" than those of the as-quenched samples.

6.1.1 FesAl

Figures 6.1 displays the phase diagram for Fe-Al. The phase diagram
shows that near the Fe-25at%Al composition, the equilibrium phase for the alloy
below about 500 C is the intermetallic compound FesAl. Intermetallic FeszAl has
the DO3 ordered structure which is displayed in Figure 6.2. The DOg structure
can be thought of as consisting of four interpenetrating fcc sublattices, one of
which is occupied by Al atoms. Basically, the Al atoms tend to repel each other

as either first or second nearest neighbors.
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Figure 6.2. DOg3 ordered structure of FesAl.
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Piston-anvil quenching, described in §3.1, cools metals at rates on the
order of 106 K per second. This cooling rate is rapid enough to preserve a
significant amount of chemical disorder in the as-quenched bec FesAl samples.
As shown in §3.2, the lack of superlattice peaks in x-ray diffraction spectra
indicate a lack of long-range order in the as-quenched samples, while
Mé&ssbauer spectrometry shows a lack of short-range order. Both short-range
and long-range order evolved when the as-quenched samples were annealed
at 300 C.

Since EXELFS is sensitive to the chemical composition of the near-
neighbor environment surrounding the central atom, Table 6.1 lists the average
number of 1nn and 2nn Fe atoms surrounding either Al or Fe central atoms in
disordered and ordered FesAl. The number of neighboring Fe atoms is
important because the backscattering in FegAl is dominated by the heavier Fe
atoms. It is interesting to note that for both 1nn and 2nn shells, when going from
disordered to ordered FezAl, the average number of Fe neighbors surrounding
Al central atoms increases by one third, and the average number surrounding
Fe central atoms decreases by one ninth.

To show the sensitivity of EXELFS to chemical SRO, the theoretical
contribution to the EXELFS from the 1nn shell was calculated for completely
disordered and perfectly ordered FesAl. The calculations were made simply by
substituting phase shifts and scattering amplitudes from Teo and Lee (1979)
into Equation (2.50). For purposes of illustration, Figure 6.3 displays the
theoretical Al K EXELFS signal from completely disordered FesAl which has an
average of 6 Fe and 2 Al 1nn atoms. It is seen that the 2 Al component of the
signal destructively interferes with the dominant 6 Fe component. Fourier

transforms of the theoretical EXELFS were taken over ranges in k-space which
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Average number of 1nn Fe atoms

Al central atom Ee central atom
disordered FesAl 6 6
ordered FejAl 8 5.333

Average number of 2nn Fe atoms

Al central atom Ee central atom
disordered FesAl 45 4.5
ordered FejAl 6 4

Table 6.1.  Average number of 1nn and 2nn Fe atoms surrounding Al and Fe
atoms in completely disordered and perfectly ordered FesAl.
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are similar to the corresponding ranges in the experimental data. Figure 6.4
presents the magnitude of the FT of the theoretical Al K and Fe Loz EXELFS
signals. In going from disorder to order, the height of the 1nn peak increases for
the Al K EXELFS (which correspond to Al central atoms) and decreases by a
smaller amount for the Fe Loz EXELFS (which correspond to Fe central atoms).
This result makes sense intuitively when one considers the 1nn shell
occupancies given in Table 6.1.

Figure 6.5 displays EELS measurements of the Al K and Fe L edges from
an electropolished sample of piston-anvil quenched FegAl. Figures 6.6 shows
the Al K and Fe Ly3 EXELFS from a sample of the as-quenched FezAl at 296 K.
Figure 6.7 compares the magnitude of the FT of the EXELFS from the sample
as-quenched and after it was annealed in situ at 300 C for 10 and 30 minutes.
The positions of the experimental nearest-neighbor peaks are in good
agreement with the theoretically calculated positions for the 1nn peaks shown
in Figure 6.4. Moreover, after annealing, the increases in the height of the 1nn
peak of the Al K EXELFS is accompanied by smaller decreases in the height of
the 1nn peak of the Fe Loz EXELFS. Figure 6.8 displays the change in the
EXELFS amplitudes as a function of annealing time. The quantitative
determination of order parameters from these results is complicated by the
changing vibrational characteristics of the local environment as the alloy orders.
If the local environment stiffens as the alloy orders, then the size of the nearest-
neighbor peaks for the annealed samples would increase. Taking this effect
into account, my results are consistent with the results from the M&ssbauer
spectrometry experiments discussed in §3.2. My EXELFS results indicate that
the piston-anvil quenched FezAl develops partial short-range order after

annealing at 300 C for 10 and 30 minutes.
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from 1nn shell of completely disordered and perfectly ordered
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Spectra were not deconvoluted.
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Temperature-dependent EXELFS measurements can be used to probe
vibrational characteristics of local atomic environments. Measurements of local
vibrational characteristics can be used to estimate the vibrational entropy of a

material.
Consider comparing a state, o, of a material having 3N vibrational modes

(of, 0F, ..., ®f) to another state, B. In the classical (high temperature) limit, the

difference in vibrational entropy between the two states is:

3N 3N
Hw‘} ]‘1[9?
ASyibr = Sw%r -S % =kglin :N =kg In ;;N (6.1)

vibr
Het J \11¥f

where the correspondence between characteristic frequencies ® and
characteristic temperatures 0 is made using hw = kg6.

From my temperature-dependent EXELFS experiments on FesAl and
NizAl, | obtain local Einstein temperatures of the each atomic species in the two
states (disordered and ordered) of the material. In the Einstein model of a solid,
each atom behaves like three independent harmonic oscillators and so
contributes three of the total 3N vibrational modes of a solid. Therefore, within

the Einstein model, Equation (6.1) applied to FesAl or NizAl becomes

dis ord 3 ngr/(rj\li 1 93{?’
ASvibr = Svibr - SVibf = 3NkB Zin 0 dis + Zln edis (6.2)
Fe/Ni Al
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Since the correspondence between local Einstein frequencies and the
frequencies of the normal modes is very rough at best, Equation (6.2) is
expected to be only qualitatively useful.

The above approach is a mean-field approximation. Another approach
would be to interpret my EXELFS results within a pair approximation. Instead of
considering individual atoms, a pair approximation considers the interatomic
bonds between each pair of 1nn atoms.

For a binary A-B alloy, there are three different types of bonds: A-A, B-B,
and A-B bonds. For an alloy that develops chemical order, we expect the A-B
bonds to be stiffer than the A-A and B-B bonds (i.e. 0% > waaogg).

Table 6.2 gives the fraction of each type of 1nn bond in completely

disordered and perfectly ordered FesAl (or NizAl).

Fraction of 1nn bond type
disordered FesAl (or NizAl) 3/8 9/16 1/16
ordered FesAl (or NizAl) 1/2 1/2 0

Table 6.2.  Fraction of each type of 1nn bond in completely disordered and
perfectly disordered FezAl (or NigAl).

Allowing the frequencies waiFe, ®FeFe, @and walal to be dependent on the state of
order in the alloy, then the change in vibrational entropy between perfectly

disordered and ordered FesAl becomes in the classical limit
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(o) (et )"

. . . (6.3)
(G%%e )3/8 (eg:asFe )9/1 ° (92'3\1 )1/1 °

ASvibr = 3NkB In

EXELFS is more sensitive to the heavier Fe neighbors than lighter Al
neighbors. In fact, a first-order approximation would be to ignore the
backscattering from the Al neighbors. In that case, the temperature-dependent
Al K EXELFS measures values for 8,,