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SUMMARY

gct on a body when 1t

ble, Under those condl

ig possible to linearige the boundsry condition of the flow

B 2

and to divide the force and velocibty vectors Into vertical snd

horizontal components. The problem in the vertical directio

(“é

then becomes identical with that of the motion of a body sube-

- 3 - 2 e 2 g S A - R N 2 S vl 4 om e
in an Infinite fluid, and is easily solved tor bodies

simple shape., The problem in the horigontal direction

53

resolves itselfl into a problem of potentiasl fiow with a

symmetric discontinuity slong the free surfece, soc thst the

ekt

free surface may be replaced by a symmetric configuration with

velocity components opposite and egual to those in the actual

&

ellipsoid of revolution and a general ellipsoid. The method

a)

here is that of three dimensional hsrwonic snalysis.

& Fey

In conclusion, & specific example 1s given: the drag




components on a sphere which hits the surface at 45° are
calculated; the results sre compared to experimentel data

and show fair sgreement with them,



A PROBLEM IN POTENTIAL FLOW WITH A FREE SURFACE

The water impact pressures on a body which enters the water

at an obligue angle.

The purpose of the present study is to estimate the pres-
sures which act upon a body when it hits the water at any
angle, It is iwportant to know the order of magnitude of
those pressures and their distribution in order to solve the
problems which arise in the design of sea~plane floats or in the
design and ballistics of projectileé destined to naval warfare,

The general study of the mechanics of water entry of a body
may conveniently be divided into three major parts. The first
stage of the motion occurs as the body strikes the water surface;
it may be taken to last for the short time period which precedes
the formation of a cavity in the fluid. The second stage begins
with the formation of a cavity; 1t gradually merges into the
third stage, as the cavity lengthens, and an almost steady type
of cavity flow develops., Of the sequence of events just described,
this paper discusses only the first stége or impact stage, in
which the highest pressures are encountered, and which is most im-
portant from the practical point of view.

The problem of water impact has been discussed by numerous
writers, who were interested in the landing characteristics of sea-
planes and the under-water trajectories of mnaval projectiles, Be-
cause of the great difficulty of a rigorous analysis, most papers

are based on various simplifying assumptions. The earliest work of
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this type, by von Karman (lel)g approximates the fluid flow about
the entering body by the flow about a horizontal flat plate.

This approach was also taken by H, Wagner (1.3,4) who refined the
Karman analysis, and by M.S. Plesset (1.5) who applied it to am

elliptic dise.

A more elaborate &nalysis was carried out by S@hiffmaﬁ‘&‘
Spencér (leﬁg?)’wha approximated the flow of fluid about a sphere
in the case of vertical entry by the flow about a spherical lens.
P.Y. Chou (1.8), in a discussion of the same problem, replaced
the sphere by a spherical bowl, the flow potential of which was
discussed in a paper by A.B., Basset (1.12). While the last two
iﬁvestigaticms give very good results in the @asé of vertical
water impact, their complication mak@s them unsuitable for gene-
| ralization to impact at anyranglear

A different method was followed by L;I@‘Sed@ff (1.13), who
investigated the impact of simplé bodies (elliptic semi-cylinder
and flat plate) on water, without any restriction as to the di-
rection of the impa@t vel@éity@ Sedoff's results glve good agree-
ment with experimental data obtained by A. Perelmuter (1.15) for
two dimensional flow, but do not extend to three dimensional flow,

The present paper concerns itself with the developement of
methods which will give an approximate‘sdlution of the problem for
a three dimensional body which does not differ too much from an
ellipsoid. This solution, added to that of Sedoff which is re-
produced here for the sake of generality, gives a method of esti-
mating the‘hydrodymami@ pressures of ilmpact in most cases of im-

portance.
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I, SIATEMENT OF THE PROBLEM

Consider an infinite expanse of incompressible perfect fluid
of density ? o The fluid is assumed to be infinitely deep and
perfectly at rest, so that its free surface is a horizontal plane.
When a body S hits the fluid surface with velocity V, the fluid in
the vicinity of the point of impact is set into motion; a small
amount of the fluid rises high into the alr and forms a splashg
a larger quantity'is set into motion by the moving body below the
free surface, which, near the bodygzis no longer horizontal, ‘The
foreces which act upon the body at this time are of fourvkinds:

The force of gravity, the hydrostatic force of the water, a viscous
drag force and the hydrodynamic forcéo If the velocity of the body
is large, the first three forces are negligibly small, when compared
to the last. As shown by H. Wagner (1.2), the hydrodynamic force
may be considered to arise from the rate of change of momentum

of the fluid set into motion, and as the impact stage is of very
short duration (of the ordgr of one three-hundredth of a second),
the impact wvelocity V is taken to be constant as é first’approxia
mation., Under those circumstances, since the motion of the fluid
was started from rest and is consequently irrotational, the drag

force F may be written:

o P oP )
Fethe ¢ 2 dS | (2.1)

where d? is the potential of the fluid motion, t denotes a time
parameter and the integration is carried out over the wetted sur-
face of the body.

The problem is therefOre one of determining the wvalue of the

potential of velocity on the wetted surface of the body at any
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time;, as a function of time and of the geometry of the body.
. The velocity potential @ must satisfy the Laplace equation:

:;72(1?»:= () (1.2)

and a certain number of boundary conditions., It is known that
any disturbance in the fluid must disappear at large distances

from its origin, and this gives the boundary condition:

Lim VP =0 Lim P _ - (13
r—s 00 ' v

P03t -

where T denotes the distance from the origin of the disturbance.
éitvis also known that at any point on the wetted surface of the

ﬂ‘bdayg no normal velocity existss
——-acp=\/'w5?\ 1+4)
on |

where n indicates the direction normal to the wetted surface of
the body, and A is the angle between that normal and the direction
of motion of the body .

The last boundary condition must express the faet that the
pressure at any point on the free surface of the fluid is equal to
atmospheric pressure, or if atmospheric pressure is the origin of
the pressure scale, the pressure on the free surface is zero, This
fact can be expressed in functioh of known guantities by use of

Buler's equations
oh , = -
—+u-ViL=—YP (1.5)
at P
Here u is the velocity vector at any point in the fluid and p is
the corresponding pressure, When the flow is irrotational, FEuler's
equatioh is integrated as follows:

3P, ()= P
Yala (V) 5 +F®

(1.8)
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F(t) is an arbitrary function of time independent of the position
of the point Where equation (1.8) is applied. At large distances
from the disturbance, application of (1.3) shows that F(t)=0 if
Fyb = 0. Thg third boundary condition; valid on the free surface,
is therefore:
- Qb J 2 |

St +3(VP)*=0 @)

It is extremely difficult to solve equation (1.2) subject to
boundary conditions (1.3), (1.4), (1.7) because condition (1.7) is
non-linear and the surface over which it holds is unknown and must
be determined from the problem itself.

In order to obtain explicit solutions which may be used in
equation (1.1), simplifying assumptions must be made to linearize
the boundary condition (1.7) and fix the shape of the surface over
which it holds, It is noted that as the impact occurs, a small
amount of water on the free surface is displaced, and very near
the body, the disturbance rapidly damps out., Because of the very
short time duration of the impact stage (of the order of one three-
hundredth of a second), the process of impact may be compared to
an ‘instantaneous impulse with errors which are not too serious,

In that case, on the free surface, the Euler equation may be in-
tegrated and the non-linear terms are small because the time in-
terval of integration is very shorts and all velocities are finite.

The boundary condition obtained with that simplification is, on

(1?': O (1.8)

the free surfaces



This can be seen as followss

Lim f‘r 0 dt + L Lim FZV CP)" | (1.82)
o > dt =0

T>0 _ 2 >0
0 0
Lim [ (7 )
im | }
750 Jo \% q)) dt =0 (1.8b)
Therefores ,
| q) = const.

(1.8¢)

and that constant may be selected to be zero,

This assumption is equivalent to the usual interpretation
of the potential as an impulsive pressure (see ref, 2,1 etc.).
Since the pressure on the free surface is constant and selected
equal to zero, it follows that the potential can be chosen in the
same way. | |

Also, since the motion of the free surface during the short
duratioﬁ of the impulse is very small, the equation of the free
surface is given by: 77 |

Y=o (1.9)
where 3 refers to the normal distance from the free surface at
large distances from the disturbance,

In the present study, solutions of equation (L.2 ) subject to
boundary conditions (1.3), (1.4), (1.8), (1.9) will be submitted
in explicit form, and ' substituted into the drag equation (1.1)
so that spécific values of drag force in function of dynamic pres-

sure, time and body geometry for amy angle of entry will be calcu-

lated.



- It should be noted that since the impulsive pressure at any
point in the fluid is @ @ the total pressure impulse of the fluid
on the body, differentiated with respect to time, is

Fad d P (13 3¢d3  (1.1a)

which is identical with the drag formula derived previously.
Since the boundary conditions and the differential equation
are all linear, it is possible to superimpose various solutioms,

and in particular, to write the potential function:

Cp B VK Cﬁ +\/)' q}Z +VZ CF3 +52yz(304 +‘_sz (:)05 +.Qx3(f6(l°lo)

In this equation, Vx,y,z denote the x,y,z components of the impact

Velccity V, x being a horizontal axis in the plane of motion of

the body, z a horizontal axis normal to it and y a vertical axis,

n denote angular velocities about. the x,y,z, axes. In the
YZ, ZK, XY

problem at hand, the velocities V -Qmj will be assumed to be zeros;

if the angle of impact of the body is & , then Vx =Vcosoc 5Vy=\/5|no(

and equation (1.10) becomes:
Cp =V (g cosa + @ sina) (1.10a)

Consider now the system shown on Figure 1, where A represents
the submerged portion of the body, and the xz plane is the free
surface., Cons_truct the symmetiic image A?' of A with respect to
Xz, Let P be a point on A, P' its image‘on A', The potentials
qi,cgz of the flow can be continued across xz into the upper
half space so that (P (xyz):.-ag?(xmyz) since ¢=Q on xz by (1.9).
If the velocities in the xyz directions at any point be designated



by uyv,w, the following relations héldg
ulxyz) =-uk-yz)
VXyz) =4V (x-yz)
w(Xyz) = —w(x-y2)

(1.11)

or if mnormal components of u,v,w are taken at P and P', equations

(1.11) may be combined to give:
| (B_C_P) :,.(acp)
dn 5 3N b (1.12)

a new boundary condition which, substituted into boundary condition
(1.4) for @, and Qfé separately, gives for the whole space AA' the

boundary condition set

_ 39, _ vl
_é_;; - COS)\, Y (10153)
_ 9% _ cos hp, | (1.13D)
In ,

Here )\ is the angle between the normal to the surface of the
body AA?' and the x axis while Xz is the angle between the same
normal and the y axis. Boundary conditions (1.13 agb}, it should
be emphasized, hold over the entire space, because of the analytic
continuation carried out above,

Physicallyg the problem has been divided into two parts,
which deal respectively with horizontal and vertical components of
motion, This division is possible because of the linearity of all
the differential equations considered. Examination of equation
(1.13b)reveals that the presence of the free surface does not

affect the potential and therefore the drag integral of the body



in the vertiecal direction. The boundary conditions are the same
as those Which arise in the study of the motionm of a completely‘
submerged body of shape AAY; the potential function Ef; is there-
fore the same alsoj; the drag integral (1.l1l) is carried out over
one half of the total submerged surface AA?', This part of the
problem, therefore, presents no great difficulty, and the various
potential functions suitable for various shapes of the body A may
generally be found in standard texts on Hydrodynamics (2.,1). The
same cannot be said of the other part‘of the problem, If the
body AA' is assumed submerged in an infinite fluid, we then have
a surface of discontinuity in the velocity field from u to -u,
along the plane of symmetry of the figure. This is expressed by
the boundary condition (1.13a). In subsequent parts of this paper,
solutions of the potential fumection which satiéfy that boundary
condition, will be constructed, and lntegrated over the submerged
portion A of the body.

Two further remarks must be made before the subject of boundary
conditions is abandoned. it should first be noted that if the plane

yz is a plane of symmetry of the figure, then one may expect to have:
@ (xyz) =-Q (~xy2) (1.14)

and since the impulsive pressure P=¢9V one obtains negative pres-
sures on the rear of body A which exactly balance the positive
pressures on its fromt, This is physically impossible, and at the
point where the pressure is zero, one may expect the fluid to
separate from the body, to remain behind as the body moves, and to
create a cavity behind the body. It is known from experimental

evidence that such a cavity is created. One should take this fact
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into account in writing the boundary condition (1.13a) and treat
the problem as a three dimensional Kirchhoff-Helmholtz potential
problem. The difficulty of such a treatment is well known., It
is believed that during the short periocd of time of the impact
stage, the separation has not developed to an extent sufficient
to change the flow streamlines appreciably; the separation is
therefore not taken into account in the construction of the potential
function q& except in one case where a very elegant solution of
the flow with separation was developed by Sedoff, Since the rear
portion of the fluid is not set into motion, all integrations are
carried out over the front portion of the body A only.

It is also clear that equation (l.l) and boundary condition
(1,13) can be satisfied explicitly only for bodies of very simple
geometrical shapes;the submerged portion of any body during im-
pact<is too difficult to handle without approximation. In parti-
cularg‘when the analytic continuation process is carried out
across the free surface, it is very desirable to obtain a body
of such a shape that the siope of the normal to the surface be a
continuous function of y. This is possible only if the body in-
tersects the free surface at right angles. Following a suggestion
of P.Y, Chou (1.9), one is led to the following type of approxi-
mation. Let the submerged portion of the body considered be re-
placed by one half of a given simple geometrical figure of not
dissimilar shape; say for instance half an ellipsoid; as the
submerged portibn of the body increases in volume and changes in
shape, the approximating ellipsoid also increases in volume and

the relative length of its axes changes in such a manner that its
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shape remains related to that Qf the actual body. Specifically,
while the elligsaid does not change its basic prdpert1989 its
axes are adjusted in such a manner that its depth of penetration b
ié equal to that of the actual body; 1its half volume is equal
to the submerged volume of the body and its surface area ié‘equal
to that of the real body. Since an ellipsoid has three indepeﬁ@enﬁ‘
length parameters, it can always be made to satisfy three conditions
as stated above, The potential function is written in terms of
the parameters, and the parameters are made to vary with time ac-
cording to the functions stated above. If the approximating body
has two length parameters (ellipsoid of revolution or elliptie
cylinder) only two of the appféximating functions may be satisfied,
and the sphere or the flat plate, Satisfieg one single condition,
The potential function and the drag integral are thus functions
of time while remaining functionally invariant and the differen-
tiation in (1.1) can be carried out without excessive difficulty.
To summarize this discussiong the problem treated in this
paper is to develop clegedwexpfessions for the drag of a body
during water impact: |

| v 29 1
F = % sin 2o {w e S ds (1.15)

g o

fw @ 3% J5

2 an

= ?%{L 2 sin*n

where differentiation with respect to tim@fﬁa is replaced by V
Vsina %B » and the integration is carried ocut over the wetted
area of an approximating ideal body described above., The functlions

qg and 9?2 satisfy the Lapla@é equation and boundary conditions



12,

given by equations (1.3) and (1.13a,b). In the detailed discussion
which follows, two ideal bodies in two dimensions, an elliptic
cylinder and a flat plate will be studied by means of conformal
transformations; those analyses are almost entirely due to L.I.
Sedoff, Three bodies in three dimensions will also bevstudied:

The sphere, the ellipsoid of revolution and the general ellipsoid:
the analysis will be based on the expression of potentials as
infinite series of certain orthogonal functions. The drag integral
will be calculated in each case and differentiated to determine

the drag forces. A numerical example, with specific values for

the approximating functions will then be presented to illustrate
the working of these methods.
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IT. SOLUTION OF THE PROBLEM IN TWQ DIMENSIONS

[

In order to calculate the potential of the flow about a two
dimensional partially submerged body which travels at unit velocity
it is convenient to transform the submerged portion of the body
and its symmetric image conformally into the unit circle.

Introducing the potential function g? and the corresponding

stream function LP s one has on the boundary of the body:

Y _ dp _ dy 19 . ax
3 35 C cosot YU sinat <2 (2.1)

where s is an element along the boundary and the angle of impact

is ® as before, Equation (2.1) is'integrated as follows:
I-p:I!alco.Sm ~ ¢ sinat (2.2)

The complex potential funection F(z) = F(x+iy) = CPH"P = | @) cosa +|§(z)5iria
~is now introduced. Then:
R (2)= @+, (2.3)
R@ =g, +ull,
and the boundary conditions to be satisfied are
W, =1yl
H, = ~x

In order to transform the boundary of the body in the z plane

(2.4)

into the unit circle in the g'planeg one uses the general conformal

transformation:

z=f(3)= §+k°+k,3+ ka5%+... (2.5)

The boundary conditions (2.4) on the unit eircle become
H.(8) =th(2) =191 = | Tnz) = | Tm £ (") = I ancosnt
Ha2 () 28,22 1= ~Rtz = ~ReF(e) = 5 b, sinnd

(2. 8)
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and the complex potential functions become:

F(z) o E(S):Lga, 3"

E@oEE)=1Eh,5" (2.7)

These expansions must now be written éxpli@i“tly in terms of the
transformation function f‘(gjw

L B(5) and £(3) nhave identical real parts on the unit circle,
but f(i‘S) has a simple pole at =0 , the principal part of which
is &/K . On the unit cirele, R{ */g=Re®S 5o that the boundary
condition (2.4) is satisfied by

E($)= i F5) + %ﬁ%—cm

The following identities hold on the unit circle:

Im %[}%K)—%L%ﬁ}:@
Tm F(5)= %(J{‘w)“ﬂ'/@] (2.9,abe)

e e
2 fee

(2.8)

In the last identity, the positive sign applies when 0<B8<T and
the negative when TM<B<2mw ., If relations (2.9b and ¢) are now .
combined, a function which satisfies the boundary condition (2.4)

can be obtaineds
~ L _ LN I+¥
i, = Be §~ 5 [45) - £(lg) &g 127 (5,160
The potentiazl function is therefore written as:

(2.11)
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where A(Y) is a function, real on the unit circle, added to cancel
the singularities of the first term, since the functions F must
be régular everywhere on and within the unit circle,

The potential functions FI(X) and ?z(g) are thus expressed
explicitly in terms of the transformation function F(¥). When
the geometry of the body and therefore the form of f(x) is known,
equations (2.8) and (2.11) give the complex potential of the flow
by direct substitution.

Two specific examples of two dimensional’bodies are now dis-
cussed in some detail on the basis of the general formulas derived
above: A semi-submerged infinitely long elliptic cylinder and an
infinitely wide flat plate.
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ITI. THE WATER IMPACT QF AN ELLIPTIC CYLINDER

As discussed in part I, the problem of water impact is sub-
divided into two partss The former is the analysis of the steady
flow about a semi-submerged elliptic cylinder of semi axes a,b
(Fig. 2) and the determination of the potential and of the drag
function. The latter part is the study of the impact force which
results when the parameters a,b, vary as given functions of time.

The physical system studied in the problem is shown on Fig. 2
with the coordinate axes, the elliptic section BCD and its image
.about X, BC'D., It 1s known that the conformal transformation

which will throw the ellipse BCDC! into the unit cirecle is:
|
Z=-% [(a~¢)3 +(a+h) /3] (3.1)

10
If the variable in the transformed plane is 3=:re‘ s the boundary

conditions which correspond to conditions (2.4) are:

= b |sinb

Lpaa a COSG

(3.2)

Boundary condition (3.2) is expanded into a Fourier series; then,
all odd terms vanish because of symmetry and the boundary condi-
tion becomes:

— —

_2b_ 4b < cos and
Lpl—-"- '"ﬁ? Z""”’"""_'

(3.3)

It follows that on the unit circle, the complex potential function
iss

F o= 2bl, 4bi 5~ 3
* T T m Zn: 4n*4 (3.4)

B=ail



The infinite series which ocecurs in the expression for F)(S) can

be summed as follows:

2n 2n+l : 2n-
;%-EL T - 3 + 3 3 (3.5)
4n*-1 (2n+) 3 (an-4)
and fx‘m _ ﬁ (8.8)
1 j-5%
Therefore o0  2p4l J La
3" IS ! 1+5 (3.7)
Ansl - Jo -y =5+ 2 %y -y
o 20~1 J
LIz L st g It
" n=l e |~5% 2 i"j | (3.8)

Sinee all the series and integrals considered converge uniformly
when 5 is inside and on the unit cirele, the above manipulations

are legitimate. Colleecting terms, ome obtains:

b T4 _¢1,
F(8)= % [3 3} (3.9)
and separating real and imaginary parts on the unit circles
6 C8) =~ 2 sinp bog |anf |
m A (3.10)

(%) = blsinbl
Combining (3.4) and (8.10) one obtains the potential function
- y 2_@ ] . = 11
¢ ’“”4@”9[;’: égffwi./w@wmmaj (3.13)

This function satisfies all the boundary conditions and is there-

fore a suitable‘d@scfiptiam of the motion under study.
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"The drag integrals can now be computed:

J oy, = &

2 (3.12)
jﬁf?é‘l4ez = %g?

Alo-

The approximating functions which correlate the elliptic cylinder

to the actual body under study may be expressed as functions of time
or also, since the velocity of vertical penetration is constant,

in funetion of the total depth of penetration. The first approxi-
mating function is b =b, the depth of penetration of the actual

body is egual to that of the cylinder. The second one is equi-
valent to expressing a as a(b)., When the results from (3.12)

are substituted into (1.15), one obtains the following expressions

for drag force per unit lengths
Yz 2b
R = /; Sin 2o 7
e P‘/z J (3.13)
= PL sin*fa 2mal
) b

These formulae complete the solution of the impact problem when

an elliptic cylinder is taken as the approximating body.
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IV, 'THE WATER IMPACT OF A VERTICAL FLAT PLATE

The method of solution of this problem 1s very similar to
the one used in the case of the elliptic cylinder. Again, steady
motion about a semi-submerged flat plate will be investigated,
and the resulting drag integral will be differentiated with res-
pect to the penetration depth,

Figure 3 shows the coordinate system and the flat plate BC, -
of depth of'penetration b. In this analysis, an attempt is made
to agcount for the separation‘of the fluid on the rear face of
the plate, so that a separation poiﬁt P is defined.

The boundary conditions in the physical plane are summarized

as followse

?:: O on AB, PD, DE

W = 4] on BCP O (4.1)
l&n 21!: 1

P %

If the image of the flat plate is also considered, the boun-

dary conditions become:

P=0 on PDP

4 =ly| on PCBCP! | (4.2)
Lim ¥ o 4
2y

A transformation must be found to map the actual space confor-
mally inside the upper half of the unit circle so that P and P?
become the points 1, -1, Then the complex potential function is
imaginary along the real diameter and in virtue of Schwartz's
lemma, the space may be continued intolthe lower half of the unit

cirele so that

¢ (6) = - P(-6)
(6) = +4(-8) (4.)
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"The construction of such a transformation function is carried
out in four steps. The vertical flat plate is first mapped on

the unit circle by the well known formulas
b I ,
Z=Z (3- /5) (4.4)

Then, a linear transformation throws the :5 plane into a } plane
in such a manner 'tha‘t the points 3 4. (e ﬂ—-i become the points
} =4, L -4. This 1s done by the mapping function:
}+hn®&
Ftan /o 44

In this plane, the pOiﬂt}:[ corresponds to the point Zz=¢b COSB,':ty,

(4.5)

Next, the plane is transformed into the plane &= e'.a as follows:

2
3 = 2+ (t‘fl) (496)

2+(¢-0)*
: ' .6,
If the tip of the flat plate isz=ib or t=e" s then the position

of the separation point is

Yy = beosh) = 2bcos b, (4.7)
1+ €58,

The last step consists in gathering results and substituting egqua-

tions (4.6), (4.5) into (4.4) to write out the required mapping

function:
-0 4bces 8 E1+LE?)
(1+t)* 14 o576, (4.8)
Real and imaginary parts are now separated to give 5(9):
_. 2b co50 cos 6,
y= = = (4.9)
Cos B + co5%6,

so that boundary condition (4.2) becomes on the unit circle:

) 25 co1 B /cos8) |
4’ - cos B +ced & (2.10)
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withuth@ additional condition:

— ?%@__' (2
Lim T 4 (4.11)

Equations (4.10), (4.11) correspond to (4.2).

To go back to the transformation egquation (4.8}, it is noted

that Flz = ~iy
| Imz =0 (4.12)
Let log ,_,,,ﬁ be defined so that Eﬁl@gt@ﬁfﬂ; Since on the
i+E i+t "2

unit cirele

-t Tef2
& L (T _ B
(+b € fan 4 E)

(4.13)
1t follows thats
L/
18)¢ T2 (21
161 > Ta,

Combining eguations (4.12) and (4.14) one can construct a

) Sbesih &0+ |
t) = .
1= = (#8408, é)ﬁ et )

whose imaginary part eguals #QQ)@H the unit circle., But g(t)

function

has two simple poles at the roots of the denominator equation:

(482)* 4 412 cas®B, =0

(4.18)

The values of those roots él,fk,t3,t@ ares

; "‘éﬁﬁ £§4= i/jé
b=-1ix ty= “"’"/)4 (4.17
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The roots ti,t} are inside the unit circle while b3 and t4
are outside. To do away with the above singularities, the function
JZ is introduced:

N= L2V gy 12 (4.18)
9 -y 14X

_J? is real on the unit ecircle, and has the following special values:

= = dog X
t t" | ﬂ l+¢ . (4@19)
t=ty J1=-4og 1
| : 1+%
so that at the points where g(t) has simple poles inside the unit

circle, f1 (t) has the same values as 4%? %ig . The complex

potential function is therefore constructed as:

F(t Fbeadb £ (14¢3) [i~t £~ g 1L
) VA (Hf")-{-[} % @L*t ;%-%Z&;Hx (4.20)

F(t) satisfies all the boundary conditions since on the unit circle,
JU(t) end £(t) are real and g(t) satisfies the boundary condition
(4.10), and‘since F(t) is regular everywhere within and on the

unit cirele,

It remains to evaluate the parameters 9, and )L in order to

solve the problem completely,

It is pOssible to write the following equation to define a

parameter € :

' 2 ¢ | Vit css®d +1
—— &7 =z T oL 4,21
%~y WL 2 e 107 T z & (4.21)

Bquation (4,20) now becomes:

it ;XACM& ¢(11EY 4 (45;22)‘
) T (141t % B /&j itt 2(6 ") €7
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To determine the parameter &, use is made of the boundary condition

(4.11). On the real axis within the unit circle, if T=FR/E,

8
F(’f =y Fbod® T4t [24ag 7 € '7 4,23
) TP )[ fan' T - £(T-D) - (4.3)
It is known that the velocity at any point u'-.JP W 3T
oy T 39

But one deduces from (4.9)
Y = 4bees B T(1+7Y

(/+z~7j)—+ T'Lwls‘ (4@24)
This is differentiated as follows:
d 7Y~
J‘ y 0 Z.J/é-f- ) 4t 97 (4,25)

At T (T T 4]

Differentiating equation (4.23) and using (4.25) one obtains the
velocity us | .
2 2
“”__ 7%”-4 22-/(#1:? +4Tcaf’9, z[(l+'zl)"+.2c¢‘ﬂ,(m1)]}] (4.26)
0TI +79*+ 477cess,|

The limit as T approaches 1 of expression (4.26) is now taken.,

For equation (4.8) to hold, the parameter € must be 1. Then, the

fallowing‘are true:s

U= 2 [ ton's 4 2TUTeod'd,
4T eods, ~(1+5)*
‘ﬁdjﬂr U =4

T-31

(4.27)

Equation (4.21) can now be solved for £, : it becomes

67 Jircog, +) - (4.28)

| +cod B
cod B, !
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A few simple transformations bring it into the form:

/
———— Mm (4@288,)

H-ced™P,

This is a transcendental egquation which is solved graphically.
The solution is: caf B = 0.bb3
Equation (4.7) now gives the separation point to be at g,:o.q.zb
To finish the problem, it is only necessary to substitute cajﬁ
into the complex potential function F(t), to separate real and

imaginary parts. The resulting potential function iss
= 2 T_8) 1
SQ- ﬂy[&?‘/ﬂﬂ[" 3)+57H9_7 (4.29)

This potential function goes to 0 as x goes to o0 and therefore
fulfills all the conditions of the problem,

The drag integral is now calculated as followsg:
) _ - 2b° .2 |
$ 2L ds = ey = 26" eas™, (4.30)

Since an infinitely wide flat plate has only one parameter
to correlate it to the actual body considered, the impact force
has a particularly simple expression: The impact force per unit

width is: V2 4 2
Ro= B sinze 2o cos?h

(4.31)
F}; =0

These formulas are the solution of the problem of water
impact load determination on a flat plate. It may be noted that
as an elliptic cylinder becomes thinner and thinner, the separation

point, assumed to be at 9.=6 in the previous solution, moves up
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to the analytically determined position g'-.-.- 0.92b. Then a slight
n@gative force cdmponent exists near the bottom of the plate, and
the factor é iméqu&ti@n (3.13) becomes s, =0.440 | In the
vertical direction as @ in the elliptic'cylimder goes to O, f?
also goes to 0., This agrees with the dbvious result obtained here,
The two two-dimensional solutions obtained here are therefore con-
sistent. With these remarks, the field of two-dimensional analysis
is left, and the investigatienkaf several problems of three dimen-

sional flow is mndertakeﬁg
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V. SOLUTION OF THE PROBLEM IN THRFE DIMENSIONS

The determination of the flow potential about a partially
submerged body which travels at unit velocity 1s carried out in the
,foilawing general manner,

| A system of orthogonal coordinates XQXZ,X3 is introduced,
in such a manner that the surface of the body satisfies the egua-
tionX,= constant. When the shape of the body under study and its
image, 1is a continuous closed surface with continuous derivatives
it 1s generally possible to express the solution of Laplace's

eguation in the normal form:
CF: ;E Qﬁ Hn (x') Hw(xz) H,.(xa) (5. 1)
l . @

In this equation, H,ﬁ (%) designates a solution of Laplacéﬂs equation
in the system of coordinates (X, XXy ); that solution is generally
obtained by considering the solution of the differential equation

in X; obtained when the variables are separated in the Laplace
equation expressed in terms of the coordinate system (X, X2X3 ).
Examples of such functions ére spherical harmonics, Bessel harmonics,
Mathieu functions, Lamé functions. Since the separation of §71q7=0
into total differential eguations in xq,X;,Xa involves the intro-
duction of arbitrary constants, those appear as the summation of

all possible solutions when the constant is n=21,2,3... It is also
known that there are s=2 n+l harmonics of degree n., These state-
ments explain how a solution of the form of equation (5.1) may be
written down. The coefficients a; are constants selected to

make Cf fit the boundary conditions.
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- The nature of the harmonics f{:(ii)is such that for each co-
ordinate there are two such harmonics possible: They are the
two independent solutions of a differential equation of second
order, One solution generally converges as Xi has an upper bound,
while the other converges when X, has a lower bound., Such are for
in st ance the functions Tn‘ ) Q: in spherical coordinates, or the
functions Eﬁ . F? in elliptic coordinates.

The system of coordinates is such that a given value of X,
fixes a body of the same type as the fundamental body under study,
and of a size determined by the value of X,. The coordinates
then vary between known bounds and swee? out all the points on
the surface defined by X, . In spherical coordinates, for imstance,
X, 1s the radius while X, and Xsare the azimuth and elevation
angles., .

It follows from these remarks, that as the distance from the
disturbance increases, X, will go to infinity while the range of
variation of,xl'and Xg which may include the value 0 is not affected.
Since there are always two harmonics, one of which vanishes when
X¢{ 1is small and the other when ¥, is large, if those two harmonics
are designated by (H:zg and (H:;? the boundary cdndition (1.3)
that any disturbance must vanish at infinity is always satisfied

by a potential of the type:
oo 2nd)
CP = ;'Z‘ a.: {H:)z G")(Hz)‘uﬁ) (H:)c (13) (5.2)

The second boundary condition, given by equation (1.13a,b),
is best discussed in two parts. The boundary condition for the

potential qa_is simple and can generally be satisfied by a poten-
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tial function which includes only one or at most two terms of the
series@ For all the body shapes under investigation in the present
paper, those potential functions are given explicitly and dis-
cussed in some detail in most standard texts on Hydrodynamics.
Little need therefore be said about them here; they are introduced
directly into the solutions of the special problems, with the ne-
cessary reference as to their origin.

The situatioﬁ is quite different when the p@tentialty. is

investigated, The boundary condition to be satisfied now is:
29, A Y |
3In T TWSATY (5,3)

This equation is identical to equation (1.13b) except that all

velocities are referred to unity instead of c¢os®& so that the term

CoSot is dropped. It is reintroduced into the drag integral at

the end of the calculation.

If the curved arthogonal system of coordinates is still referred
to as Xq,7La,)L3 as discussed above, and if the cartesian system is
defined by the axes xﬁygzg'it is simpler to rewrite condition

(5.,3) as follows:
o9 _ _ax 1yl

— o

A%y X, Y (5.4)

In this equation, BX/%x;is a known function of X,,Xz, X5 which
depends on the geometry of the cocordinate system X.,Xz,X3 . Let
it be called ‘-b1:(X,szs§ . If equation (5.2) 1s used to de-
termine B‘P/zx,g equation (5.4) becomes, on the boundary of the
body, where ¥, = x‘ 3

i ZZMaZ 3(H§L(X.)

o '

(H:). (2)( ) 0s)= by (Xi%aX;) l:/"'" (5.5)
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or after absorption of the constants )(, and {(X,) into the co-

effieientsy
s )
ZZ bs (Hn) (xa)(H s) (¢s) = (szs) ")?"I' - (5.8)

It is a general theorem of harmonic analysis that the func-
tions(H:),are orthogonal with respect to a welght function whose
form depends directly on the expression of the akrea element %X,=censt
in terms of x,.,xs a Let that weight function be ‘}'(xz'xs) o Then,
any function 'f(xle) may be written as a generalized Fourier

series: o0 Znsl

f(%2%5) = ZZ‘ ¢ (H3), 0z) (), xs)

(57)

Wa W

L i 3'}:(’("(3)?0‘“3)(H:)-(x’g{Hi).(ka)dxzdxa
j:’*j (xﬁ@[ Ji(%a) Hn} Bﬂ Ax 1A% =)

where mz'wg are the upper bounds of the motion of Xz'X3 on the

surface X, = consl®

Iyl
Y

when y passes through the value O . This step function is applied

The function is a step function, a change in sign occurring
to quantities on the surface of the body, and therefore changes
the sign of a function of X;X3 when the coordinates X, xz take
certain valuesa Because of the symmetry of the body‘g, 211 values
of funectiomsof x, X3z are symmetric about the value where the step

occurs., Therefore, we may write, in the sense of (5.7 ) and (5.8 ):

% [h,‘)'(xzx,,) = F(%x3) = ;ZC: lH:uH), (";)(Hzin), (X3)  (59)



and the coefficieﬁts C?;,are calculated from formula (5.8).

It is n@w oesslble to express the coefficients b, of the po-
tential funetlone Since the right side of equation (5.8) is identical
to the left side of equation (5.7), one can combine the two equations,

and eguate coefficients of hﬂff;os It is seen therefore, that

S_ .5 ‘
by = ¢ (5.10)
so that the potential function is deterwmined.
The general discussion may be carried one step further, to the

forming of the drag integral,

__(f 6 = f f 3 QH (Yl)
56 P fZZ' Gleaty) by, B Grg) S (x )][ :3":/5 DR 065) (5. 11)
This farm is true because of the relatlon of the weight function
to the surface element., The orthogonal nroperty of the harmonic

functions will now be used:

/f 90r1s) U3 (o) E Gra) G 0 () A=
ﬂg[hh) [”s, ﬁ»ﬂ{[)fﬁj dﬁ,a’x", kfhvS)

where K(n,s) is a parameter which depends on the order suffixes n,s

(5.12)

and the geometrical constants of the»bgéys, }hmn this is substituted

into eguation (5.11), the following remarkable formula follows:

9{; ds= Zé. ba)* aﬁzﬁﬁ Kns) (5.13)

The general three-dimensional problem is thus solved formally.,
It remains to apply this method to specific body shapes: In the
following pages, the sphere, the ellipsold of revolution and the

general ellipsoid are analysed in this manner.
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VI WATER IMPACT OF A SPHERE

The first problem treated by the metheod outlined above is
that of the water impact of a body which, at all times, is ap-
proximated by a sphere. The first part of the problem is the
study of the potential flow about the épherey while the next step
consists in the introduction of the approximating function and
the calculation of a drag force.

The physical system is represented on Figure 4 and the analysis
is carried out in spherical polar coordinates: Radius r (the
constant radius of the sphere’unﬁer study is designated by R),
azimuth angle 8 , elevation angle we The normal solution of

Laplace's equation in that system valid when I—so00 is:

00 uy }
?= Z,,:Z.: ‘,:'i‘« P’ (ces) [a;". 5insw + b, cos so] (6.1)
It is known that
R ACYT)
Pns Ccosa) = Si”se -ﬁéj&‘) (6.2)

The boundary condition at infinity is satisfied since, as r
increases beyond bound, cf vanishes,

One must now find two functions q% and QPE which satisfy the
boundary conditions (1.13a,b). |

It is known that the motion defined by qa_is similar to the
translation of a sphere in an infinite fluid. In that case, one

hass on the surface of the sphere:

¢, = —g_- cos O (6.3)

which, integrated over one quarter the sphere area, gives

JEA:-TEEES S e
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'The determination of tﬁ is somewhat more complicated, The

boundary condition (1.13b) in this case is:

W P _ . Isin @]
5’? = 333‘ et @ SN - (6.5)

It is possible to expand the step function into a Fourier

series as followss

St 4
= Ll °

i..

7 Sin (25t) @ (6.6)

O

SHwW
This is now substituted back into conditionm (6.5) while (6.1) is
differentiated. The boundary condition becomes:

§ sin (251w

7 2541 (6.7)

& ne) $ s . s | - 4'6059
;o E“-‘m. u(wsa)[dnsm50+‘b.,ms sw:)- Foe

A camparisom—of the coefficients of sih sw on the two sides of this
equation shows at once that bj 3 ~and af,‘ao

To simplify the writing of the next equations, }L is defined by
H:w‘a and o(: is defined by o{,f-.-»:'zr %‘; a;‘; o When the co-
efficients of sip§Wd are equated, one has: |

K : ? a(is“ ,_P”zs'ﬂ (k)

2541 (6.8)

Applying the definition of the spherical harmonic given in (6.2),

one obtains Py
B IR YR e X%
as (-9 25-" %n AR (6.9)

This last step, however, is permissible only if |f]<4 . As P
approaches 1, a'simple-singularity of order 254//2_ arises at the
nose of the sphere. Physically, this implies an infinite pressure
at the nose, which is a phenomenon similar to the one encountered

at the leading edge of a Joukowskl airfoil., Actually, the compres-
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sibility of the fluid makes the pressure high but finite., The
value f(:i’-»i i1s reached over an infinitely small area, so that
when the potenﬁial is integrated, no singularity remains, as will
be seen later. However, in the argument which follows, the restriec-
tion must be made [H/<1

With that restriction, it is possible to calculate the co-
efficients o, . First the left side of equation (6.9) is
expanded by use of the binomial theorem: then

€9

2544 2K+l
= Z 2,(,” ft (6.10)

The coefficient CZI(H or (ﬂkf-l) coefficient in the expansion

Lt 2
25+ (I,— H ) 2,
of the (25+)) term has a known definite value,

Next, we expand the derivatives of the Legendre polynomials

on the right in (6.9)

dZS’H P ) Z2m¢l | Zm! 2
-—a-,;;f;,ﬁﬂ ’()’» )o "'[)’n ),,/“ 1. (6,11)

The coefficient )’sz

refers to the (ﬂm"") differential of the
Polynomial of order n; the postseript 0,2 etc. is an ordering
index, which is 0,2,4... if n is o0dd and 1,3,5.... if n is even;
it refers to the powef of /4 which the )/ term multiplies.

With this notation, the right side of equation (6.9) can be
writtens

? a'z,su a/zmﬁ, ”,_)_. 25t ( zsﬂ) 254 ( w_,) .

A F_l’*' = Xast (Fasw fy + %25tz (2503
SH 25H 2 oH
$4l (6.12)
+r[2&z 25,7_ zs+4(f2 ) ]
[ L5 254-!) 25,., 2541
250 2513/, ¥ “ases zs+5) J

t...
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If eguations (8,10) and (6.12) are substituted into equation (6.9)
and egual powers of fa are equated, the following infinite set of

linear equations with an infinite number of unknowns is obtained:

541 1$+I 254" 25H a5 2 $4
Cl = 25‘_2_ 15*2 ) + d.z‘.,.* ()é;-“. ) - .251" [)/ s+b +

254 254 zm} 25H 254 zs# 2s¢ (6 .13)
Ca = odage [ 2s+4 t o 25+6 [ )/-?s+6) + e [ J/zsfx

25+ fzs+l 25H 25t QJH
cZ_ ( of ) 25t/

25+ 25¢6 ). + CK
5 ) J/ 5 2545’ 5+3 t 15-“0 @/35“, )5 R

In the set of equations (6.13), the coefficients ¢ are binomial
coefficients and therefore known. Similarly, the ccefficients)’
are obtained by differentiating a known Legendre polynomial and
therefore also known. The coefficients o are unknown,

While the equations (6.13) cannot be solved explicitly as
they stand, a good épproximate solution is obtained by cutting off
the set at a certain point, which cotrespends to a certain order
Legendre polynomial, In the calculation discussed here, the set
was cut off after the term Z;,/%o . Then, the last equation
(6.1%) is of the forms

254/ 254! ( %H)
CI’ 3 )/ 20 19 (6 o 14)
25¢-1 .
This is simply solved for o4, , Which thus becomes a known

coefficient in the equations above the last.

The equation immediately above the last is:

25# 25'H 25+ asH astt
Ci7 [)/ ),7“90 [)/ﬂo /)7 (6.15)
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. 2544
This equation, again, has only one unknown d,g o It i1s noted

that if this procedure is repeated, all the &'s of lower indices
are easily calculated, It is necessary, however, to check the ac-
curacy of the low index coefficients when they depend on higher
index coefficients and a starting point is arbitrarily chosen,
This}Was done by comparing cx{' calculated by starting the ecal-
culation at T% IL, o It was found that the computed value
is probably carrect to four decimal places, The list of & coef-
ficients calculated is tabulated beloﬁz |

oy = .47823

o = 09150 &2 = »00596
d, = 02910 olf = -00106 A 2 00004
€9=2.00945 g3 = .00026 ol3=.00001
gl RS |
oll; -00274 o} =.00006
o/, = .00066 $ =.00001 (6.16)
1z A2
oA!y=.00013
A= - 00002

In this calculation, all the Legendre polynomial coefficients
were determined from the recurrence formulae:

The actual coefficients in the potential formula, =X %*—,;’,z a;,
wust be determined, and the potential function is written:

) = pid “" 3 B) sinsw
60 i ZZD: N+ ?(M) ‘ (6.17)
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The drag integral is found to be:

2@ o _ SRPES ()> !
Josnds= 7 1L S, bt

o o (t))(mH) (n-5)]

("55) (6.18)

It should be noted that formula (6?18) may be expected to
h@ld»ogly;if the doubly infinite series converges absolutely. It
is clearly convergent if we have the inequality d: £ n-—s for
all n and s, This cannot be proved analytically, since no re-
currence,formuia fér cxﬁ is available., It iéy héweverﬁ true for
all ¢x£ listed in (6.16), and equation (8.18) is therefore held
to be wvalid, | |

It is possible at this stage to introduce the approximating
function, whi@hg since a sphere has only one parameter, R, is that
the depth of penetration of the sphere is equal to that of the
approximated_bo@y@} Then, making use of equationé‘(l,l5}9 (6.4),
(6@18}910ne has the results: .

F = f’%l sin 2a (0,765 R?) |
2 N (6,19)
5 = 'ﬁé‘f 2sinx (1.5708 RY) |
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VII. WATER IMPACT OF AN FLLIPSOID OF REVOLUTION

'>The simplest problem after that of the sphere treated above,

is that of the water impact of a body approximated by an ellipsoid
of revelution, The first part of the problem, the study of the
steady potential flow about the semi-ellipsoid, is taken up first,

The physical system 1s shown on Figure 5., The analysis is
carried out in ellipsoidal coordinates defined as follows: Let
the basic ellipsoid have a mwmajor semi-axis a and a minor semi-axis
b. First, the case is studied when a is part of the x axis. Then
the foei of the ellipsoid are on the x axis, at distances* R from
the center of the ellipsoid. A set of three curvilinear coordinates

is now selected as follows:
x:krg
Y=k (-p3) 2 (52)" sima (7.1)
2= k(=P % (520" cos0

In this sys-tem, the surfaces :’:clnﬂ'are confocal ellipsoids
- of revolution, the basic ellipsoid is defined by the focal length
k and 3= 30 such that d =‘k§°g The space outside the ellipsoeid
is described by a variation 3)30 » The surfaces H.':-canst are
confocal hyperboloids of revolution of two sheetsy; they intersect
the ellipses 3= const. along circles whose center is on the x axis,
so that to a given value of rt corresponds a given value of the
azimuth angle § . The surfaces wzmsfax’e planes which make an
angle w with the plane zOX .

It is known that the normal solution of Laplace's eguation in

this system of ccordinates is:

€3 nf
= ;‘Z': Pns[“) Q: (%) [A;;‘ sinsw +B; cosswj (7.2)

Since this normal form depends on § as (7 (%) , it is also
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known that the boundary conditiom at infinity is satisfied.

Ohe must now determine functions qﬂ and QﬂL which also satisfy
boundary conditions (lelﬁagb) on the surface of the basic ellipsoid
$=, |

The motion characterized by g!z is relatively simples It is
the translation of an ovary ellipsoid parallel to an equatorial

axis, In that case, the potential is given by:
k the ez NI Yot
sz fog Sot! ‘5*2 ( H) (X Dl[bﬂkn, Sz]““}(? 3)
' ﬁxo‘"}(g’-—[)

The drag integral which corresponds to such a potential func-

tion can be written down at onces

/s, 2 ds - 7{,_53 FL%)

(7.4)
S+ 25 '
z_ ‘&7 - Sful
F(jl ) (g )f .S’Q'H 2(5'@2"2? ‘
Sl G (FR) | (7.5)

The determination of the potential ﬁﬂ will now be carried
through, The boundary condition (1.13b) in this case may be

2 ., [sinw]
=

Sined

written as
(7@6)

The right side of equation (7.6) is now expanded as a Fourier
series while the right side of equation (7.2) is differentiated
with respect to 3 at 3 = ko o When the two resulting gquantities
are substituted into the boundary equation (7.8) that equation

becomes:

4) 5 51'0(251")60_‘ am.,(S'.
2 Z’\ 25+ Z

T’n (/1) [A,, Smef-BSCMS(o (7.7)
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. 4@ (%)

When the substitution o(,? 3l “el%s Aﬂ is made on the left
side of equation (7.7), and terms equal in s are equated, the fol-

lowing equation results:

254 254!
EE;I :l: n Fn (W (7.8)

That equation 1s seen to be identical to equation (6.8) obtained

in the study of'the sphere, The results obtained in that case may
therefore be taken over bodily into the present analysis, the coef-
ficients (Xi?d are given by the table (6.16) and the pofential

function is:g "
k SO0 @3 (5)
=T 2% ¥ 1oy

which 1s integrated into the following drag integral:

h (50) ‘
/% %ﬂ;a’s: é__”k_s[ I)Zz\ ,m”(gc)/dg( 5) | (h+s) ! (7.10)

(M2t (n-5) |

o(n?..( Ysinsw (7.9)

Up to the present, only a prolate or ovary ellipsoid of re-
volufion was discussed, but similar methods are applicable to an
oblate or planetary ellipsoid of revoluﬁion@ The investigation
will be focused on that problem now. The importance of such an in-
vestigation is apparent since it extends the range of permissible
values of 3 to the range where O<SW<1. , and allows more complete
freedom in selecting approximating functionse The boundary between
-the two cases ié the case of the sphere for which 3o==4;e That
case was discuséed separately.

The potential function in the case of the planetary ellipsoid

may be written as

@ - off" Fo(W 4, (5) [A35ins0 + By cos 500 (7.11)
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which is different from the previous case only in that g(f‘) has
replaced 6?(?) The analysis is carried through as before and
formulas similar to.(7.4) and.(7.10) are obtained:

/‘loz atpzds_% Ma,:/(j;j - (7.12)

F-//j,°7 - +’)},o r.;g*, COf" J;I |
3' "2 f-,f_ (7.13)
3"(f ) °

a_‘B XkZ 02 S n(fo) ("H-S)’ (7.14)
/?; 'bn dS: l [,ﬁ ) f d;’[f)/ ( ‘}(n‘*)[zﬂﬂ) (n".f)/ | ‘

The function %[ﬁ’) which has Ween introduced into the analysis

-here is @cnnected}tc thé Legendre function of the second kind by the

relations . | s . -

;nlf') = LPn (‘3') (7.15)
All the formulae ne@eséary to’calculate the drag of a body

approximated by an ellipsoid of revolution are now available., The

approximating functions are two in number: The equality of depth

of penetration gives the equation
k ,’33./ =b | (7.16)

where b is the depth of pepetration of the approximated body. It
may be noted that fS is to be considered a complex &ariableg SO
that when /§7~< / it is replaced by [f” 3 in that manner, one set
of formulas can be used to cover the;whqle range of ellipsoids

. of revolution.

Experimental investigations carried out at the Morris Dam

Hydrodynamicvstation and discussed by P.Y, Chou (1.9) seem to
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indicate that the second approximating function should be one equa-
ting the volume of the semi-ellipsoid to the submerged volume of

the approximated body, That funetion would be
ZrpP5(5%) = VIb) | (7.17)

where V(b) is a known function for the body under investigation.
By the use of equations (7.18) and (7.17) or similar equations
which way be found to be @onveni@mtg‘it is possible to express the

ellipsoidal parameters in functional form as follows:

b= F(b) | (7.18)

(7.19)

4a() >
B(8)-(52) 22 e, () d ;;*jj’, SO

¥hile analytic forms for .7“; ) fé would be extremely compli-
cated, those funetions may be plotted, particularly if, as is usual,
V(b) is not analytic but graphically determined, The drag forces

are now given bys

):’.1

\ 2
4 [24 zdﬁ 3
= 15 Sin2e k f F 6’/6 df_;j
2 (7.21)
3 3

Lot [T )

Y~ 2 < db 2 Jdb

- Wnile the formulag (7.21) do not have the simplicity of formulas
(4.,31) or (6.19), and while they do not give as simple a picture

of the variation of drag, they are much better approximations, and

do not involve any more work than the graphical solution of equations
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(7.18) to (7.20)., They are therefore practical methods of solving
the problem, as was verified at NOIS, Inyokern, by the author of
this analysis, While a fair degree of approximation may be obtained
by thelr use, a better approximation still is obtained when similar
formulas are developed for an ellipsoid with three unequal axes,

That problem is the next in the present study,
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VITI. WATER IMPACT OF A GENERAL FLLIPSOID

The general problem of the water impact of a body which can
be approximated by an ellipsoid with three unegual axes is the last
one discussed in this paper. It is divided into two partsg the
former of which deals with an ellipsoid, one half of which is sub-
merged, and the latter with the differemtiation of the drag integral,

The coordinate system in which this problem is discussed is
introduced by E.W, Hobson (2.5), whose work "The theory of spheroidal
and ellipsoidal harmonics" forms the Mathematical background of
the analysis presented below. In accordance with the discussion
presented in part V, the coofdimate system is based on the ellipsoid
whose motion 1s under investigation,

The following three equations are wriften down to define the
new variables f@tﬁf in terms of the cartesian variables Xy¥ 9%y
(see Fig. 6)

LS Y &

P~ P T pme Tt hekep
x %1 z:
e +f’-h”—r_"=—k-'~—i h<pck (8.1)

:
£y

e pshek

or after a few simple transformations:
X = Elﬂi
hk

(8.2)

'E VIEE ) (Ww) (Y
Wz

Z = V2 K)( KWk
kv
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F“Befoée proceeding with the discussion it is well to show the
phyé,i@al significance of the variables f,’(,l) o

It is cléar that the surface f: const. is an ellipsoid of focal
lengths h,k and of major axis f’ o The actual ellipsoid under study
is one whose major axis is denoted by a=fs - Its focal lengths
h,k are basic parameters of the problem.

The surface H'—rcmst is a hyperboloid of one sheet of axes y,x
and of focal lenghts h,k., When l4. is hy ¥y is equal to 0 and when
K is k, z is equal to 03 as K varies between h and k, the
hyperboloid intersects the ellipsaid ﬁ, along two ellipses sym-
metrical with respect to the plane xz.

The surface V =consfis a hyperboloid of two sheets of axes ZyX
and of focal lengths h,k. When VY 1is zero, x is equal to O and
when \)” is h, y is equal to zero; as ) varies between 0 and h,
the hyperboloid intersgcts the ellipsoid f’o along two ellipses
symmetrical with respect to the plane yz.

It is clear from these statements that single values of ﬂq\)
do not define one, but eight‘ points in space; further conventions
are therefore need’ed to-definev rHD .so that for each value of
P, HW one specific point is defined., This is done by defining
the signs of the radicals in the expressions (8.2). Figure 6 shows
eight points 1,2,3,4,5,6,7,8 defined by the intersection of curves

P,V = Comst. . It is agreed by definitlon that VpSK® may
be taken positive or negatives ' when \/;EPI is positive, it refers
to the points numberedv192§6,7@ Similarly, as the ellipsoid from
- (Jo to + Yo is described, IA. varies from k to h and back to k.
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It is agreed to define the sign of {F;EQ as positive until fL
reaches h and negative as W retraces its way back to k. Thus,
when J;;J? is positive, its value refers to the points 1,2,3,4.
Finally, as V goes from O to h and back to 0, the ellipsoid is
described agaln, By convention, when V goes from 0 to h, Vh>p*

is positive, and negative as V goes from h back to 0; thus JIE;E
positive refers to points 2,3,8,7. Therefore, as all three radicals
are positive, only point 2 1s defined; any combination of signs
similarly designates one single point, and to each point corres-
ponds a single combination of signs. With this set of definitions,

it is possible to construct a one valued transformation x,y,z into

F,ﬂ,ﬂ . The sign convention is summarized belows

Pk Z 50
—-yp2k* 240
Vi \y 70 (8.3)
-Vp=i y<o :
h*-p? X0
-V X<0

With these definitions in mind, it is possible to write the

Laplace equation in the coordinate system r F*D as follows:

l h‘L)('XL k’l.)d E(A)i‘k(ﬂx' h'k k'l.) dEO) [(h1+kL)P_n(”H‘)XLJEO):o

‘):‘. Fl ”‘)D (8@4}

The Laplacian is split into three identiecal total differential
equations in r,rh1>@ The differential equation so obtained was

first discussed by Lame in connection with the flow of heat in an
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ellipsoid and therefore bears his name. 'Its two solutions are one

of polynomial type convergent near the origin and similar to an(}()
and one of a type convergent toward infinity similar to @” “4.)

Those solutions are generally labelled E and F, n and p are constants
whi@h arise :m separating variables in the Laplacian; n is an
integer 1,8,3,., while p 1s chosen so that the polynomial E will
have a finite nuwber of terms, It is further discussed later. For
each value of n, there are AN+ polynomials ES s as follows:

é(HH) polynomials of the form
5
Kn= %t LU+a j*+... a,, W (8.52)

There are é—(m-g polynomials of the forms

L2 = Vi@ (byt b+ bept..) (8.50)

There are -7':(n+a) polynomials of the forms

M::"l’ k- (c°+c'f‘~+(z‘flz+...) (8.5¢)

There are fipally %(nﬂ) polynomials of the form:
s N ,
N = VIR0 (do + d, pot daji®+..) (8.54)

The general'solution‘of Laplace's equation 1s therefore written

ass: oo 24t

P= 22 AT E (WE G (8.8)

: ; S . ‘
The presence of the function Fn (f’) guarantees that the
boundary condition at infinity is satisfied., The boundary condi-
tion on the surface of the body is writtenm in two parts: eguations

(1.13a,b) become

?iﬂz-cos’h,%i %g'" % L;‘, (8.7)

o e
S T M2 T
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The second solution is readily written out:

4= ¢ Ll GERiST (8.8)

%F&%@r
or substituting for Ff(f). on the boundary of the body

| © dp PRSI
2 AT Uk (=Y Q
qu=p '*J‘ﬂ""‘f’-*)L r&»*-xl)(f&ﬁ] W=D o9

The drag integral is also readily found: In Clebsch's no-

5'
] ¢.%%ds = § ===
Z 305,

where 56 is the integral of q; evaluated by a power series expan-

tatian“

(8,10)

sion and Z; is the square root of the products of the axes. (See
ref. 3.7), ‘
The determination of qﬁ is not nearly so simple, If egua-

tion (8.6) is differentiated, the boundary condition (8.7) becomes

53 48 WP,
?i An --»—E,—-r) En(WESM) = - %‘4% P (wv) (8.11)

) (k) = + VT >0
i (W)= — 1| \}H}.htko (8.12)

The function — kh &Hfﬂ) must be expanded into an infinite
series of Lamé polynomialss then coefficinets in (8.11) may be
equated, (8.11) is written as:

as-=- 3";:@,1”1,,;( Z‘Z‘a ES(WEF 6 = oy = ) (8:19)

But, application of a very general theorem of harmonic ana-

lysis gives

]L//“)) = i’fﬁ En()EIW) (8.14)
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“/4Kh-v7(k-v9 n///« h‘)( ) (- #) Few) €510 €5 b

[~ *:-»'— EX(n) B3 )
/;V/h‘ ) l/{/c‘—h‘)/k—p? )[ " ]

Whem the present value of 7[//1)9 is. substituted into the above

(8.15)

equations, it is seen that symmetry cancels all terms for whi@h n
is even and doubles all tems for which n is odd. The form of f//(ﬂ
also indicates that the expansion is in terms of Kzsh_” terms only,
The number of coefficients C,;s is ‘thu,s reduced by a factor of &
just as it was in the éase of the sphere and the ellipsoid of

revolution., Equa’tions (8 14) and (8.15) are now rewritten:

7£//“9 Z‘Z‘ am-: g,,,, () kzm-: w) (8.16)

hek oy ap_ o
/ B VK R (h= )/" zm,//‘)kzm,/V)

[l i =
(Y W

.‘MH =

| 2
(53] Koy )i 8.2

To evaluate the coeff’lclems @ any) » 1t 1s convenient to write

the K functions as follows:
l a |
3
k?MH = anH = Qpt Azt @, /42"”

2
,(,2,}]741 = Kﬁ};v = b,/o{ + A3F3j~,,, 62'H1 /"uﬁ

— O™ e om &

(8.18)

%

¢ | t . .
sz—; = Kz»m" Lt ‘3/"37"-‘ LGﬂ/L‘Z”H

The coefficients a;by000 1o0o can be calculated in function

of the index numbers and the /;. constants by the following re-
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cursion fcrmulaé obtained by substitu‘tibn into the differential
equation and equaﬁiOn of egual powers of >\ H
- 9(2”;’)'“n-z =(h2+k")a., (/oa'”z)
H2n-3)a,. 4 = (H4k?) (pam(n2)) Az + Bk (r-a, (8,19)
6 (2n )y, = ( B +KD(py-(n-4] )a,,.,, +WKb-2)p1-3)a,

where p is given by the condition that @,,, - Qe ,.. =0 . It
can be shown that under that condition, p is determined by equating

to 0 the determinant:

0 0 2(2-1) - (Fp-)
| | 4(mm-3)  WOp-0d]  _ nin-)
0
| (8.20)
Wpw2g] Rz 0

That determinant is of degree el , thus defining é-(nH) values
of P Pa'Pb""Pt' all of which are real and distinet for all
values of h and k. v

In view of the remarks just made, the coefficients a,bj,cceijyoos
v+4 ... are known functions of the basic length parameters h,k.

The following integrals are now define@g
h 2
A = f P
m= e
o AR (8.212,D)

B =Ik pdp
2 )
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. Z 2 212
With the ald of the substitutioms V =% %Z’S %?; k}[k»@t%pfj
it is easily verified thats

Ay= L FU) Ax =k [FOR) - E ()
E

k
| % = Eé F(W> (BQ: k (@j} (8.22a,b,c,d4)

k.

where F,E, are complete elliptic integrals of the first and second

kind, of the shown complementary moduli.
ﬁ” .’3 e -

slﬁ?§3ﬁ§§§ 5 %fwg

By differentiating the expressions % ~¥é5g%kvyﬁ

and integrating the results between 0 and h and between h and k, it

is possible to establish the recurrence formulas:

@n-0(AB),,, = ~ (2n-3) RIE[AB]_ +2n-4)(DE] (&22)
H= 2AN=2

The integrals 4@2M,?§2% are therefore real, simply calculated
functions of the metric parameters h,k, and of‘th@'@ompl@t@ elliptic
integrals characteristic of the ellipsoid under imvestigatidm@

Imkterms of the calculable gquantities ﬁﬁzm+a s ByB, it is

now easy to ualcul&te both the numerat@r and the deﬁ@min&t@f of

a
C*&W@@

ence of two products of two simple integrals. The result for the

o iD e@@h aseﬁ the integral. is senarat@d into the differ-

numerator is seen to. be:

G , | .
N 2/

20 = G (Byhy~BA - 2 (8.24)

G { 47 v2 4)‘5“@3@.(3&42 @2@} “3’@,3 (@éﬁﬁ,“gé.ﬁé}%uo

a
A similar calculation is carried out for the depominator 2>2n+l

It is convenient to write first an expression for [ﬁ@}@}éy%}i as
followss

Z K‘?Ml ({ﬁ) @m i V) ]X ",?;o VAR

N

(8.25)

= @L,"'/prz+ daZa, KR (fCT) + G5al P



Then the integration 1s carried out as above and gives:

a
D,?nﬂ = af (ﬁgﬁz“ B;zﬂa-) + 3434}3 Mz'BI ‘/9632) (8.26)

When results are collected, it is seen that the coefficient .

@
C2n+, can be expressed in function of h and k as follows:

O a(Beha-Boha) 4452 (B Ar-Befis)t...
Nt ap(Byhy-BAy) 4055 (B Ar-Be Al) ..

When this result is substituted into (8,13), the potential

Comps (1K) (8.27)

fun@tion is written as:

an ) (ﬁ) a ) _
' hk ;Z‘% oFZ +(,»)/a Z:I-l (hik) Ai/zw,[/f)f(z:,, ) (8.28)

Because of the orthogomnality property of the Lamé polynomials

K, the drag integral is deduced at once as follows:

34% 28 Fonlh)
¢ i A‘k‘ ZZ 3F,m{f% [cm,(’\ ) Unk)ﬁﬁ?}ﬁ)@ 29)

Before applying equation (8.29) to any specific calculation,
it is convenient to calculate the coefficients C and D in function
of f%yhyke It is clear from equations (8.24) and (8,28) that

c =1

D,= 3442__32'44 _ é’;;ﬁz [F'E"' F"(F"E}ji (8.30)

since the coefficient @,/=41 and all other coefficients vanish. The
terms P and E are complete elliptic integrals of modulus h/k while

F! and B! are elliptic integrals of modulus Qﬁﬂf
K
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- Suprisingly enough, when the calculation of C;' and Cf' was
-@arriedvéut in detail, up to five decimal places, for values of h
and k ranging from O to 0,7, the coefficients vanished identically.
Such a result can be proved analyti@alLy for the special cases when
the ellipsoild becomes an ellipsoid of revolution (then, h —0)3;
thé proof is rather tedious and is not reproduced iﬁ the present
pa@ere An aﬁalyti@al proof of such a result in the gemeral case,
while desirable from the point of view of rigor, is probably q@ite
involved, and was not attempted. But on the basis of the veri-
fication that the coefficients of order 3 vanish and of the proof
that coefficients of order 3 and 5 vanish in the special case of
the éllipsoid of revolution (h—# 0), it is felt reasonable to
neglect all terms of order higher than 1, This simplifies the ana-
lysis donsid@rably® _

The new expression for the drag integral, based on equations
(8,29) and'(8;50) and the above argument, becomes:

/¢ %ﬁ% ds = { (=R [Fe-Ficr-e) ur (8.31)

ofite)fap,

It remains to evaluate the Lamé function of the second kind
and its derivative and to put them in a form suitable for computation.

The form of FQO given by Hobson is:

Fy (8.32)
=% / 21///" WKy

The derivative of E[f} is therefore

45, , 1
df {/ £ 4//’1"77[[’1/(9 Pm} (8.33)
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An integration of the formula (8.32) can be carried out as follows:
' /

r.[;w//,-;.kg'
® dp -1 = . |
2 » = ) df, ‘ﬂ
/ FUPHIP=E)  PhZei) H /f [T +/; ek (8-54)

The integral is rewritten in terms of the differential of

With the aid of equation (8,.34), the drag integral is re-

written ass

| + 3V
[¢ %f 5= V. [Fe- F'(F-E)][ f’(’r(i;) ] (8.35)

where V ® ‘%nfdlr‘!h‘)(r’:l(’) is the volume of the ellipsoid under study

and Iramd I, are the two integrals defined in equation (8,34),

2
Those integrals must now be calculated,

; .

I, is calculated by making use of the substitution /’.. Anu

With this substitution, the limits become y=F', u:d”“'h/r and

the integral becomes:

_/” qr -.@./K /-’-‘—Eézsn‘u
B 2 3 L4 : — (8.26)
FWe2w) ¥k h U sntu

This integral can be further reduced into the following closed

forms

_k [ /h°
L= o GaF=6)~2aith + £lany) 3 D oo

The integraliiz is calculated in a very similar manner. The

substitution is now r = /e/snu s S0 that the limits become Y=¢



24,

= 2]
and U=9H ﬁ?} . The integral becomes:

/ = / ° n |
ﬁ”k) 6'4{7 lz (k=HY J 50 k/f Cnu (8.38)

This lntegral can also be put into the following closed formg

I, = U ,j[E[Sn"k) k@] (8,323’:9)

The results (8.37) and (8.39) may now be substituted into the

drag integral (8.35) to obtain a closed calculable formula as follows:

b9 2ods . £x pfTFH [FE- F(r-E)]
M #%W’ﬁl/?{;‘,'éi[l’:":‘r’s]—hd"ﬁ% +Eldh A/")’Li M‘A v (8.40)
212 1% L —} : !
:" el ) )4,4// aF ‘9‘;,’1 " + €A tis 2 Vﬂ%{ﬂ'yj [y (et )5 Fye i /zJ }
+ei5 (Eorip- R IR

Equations (8,10) and (8.40) complete the solution of the first

part of the problem: The analysis of the flow a bout a half sub-
merged ellipsoid. It remains to show how a body of any shape is
approximated by an ellipsoid and to differentiate the drag integrals.,

Since an ellipsoid has three free parametefs fggkghy it is
possible to write three independent approximating functions which
define rvﬁkgh in function of three characteristics of the approxi-
mated body.

The first approximatiﬁg function states the equality'of the
minor axis of the ellipsoid with the depth of penetration of the

body and is written:

L = va:uz‘

(8.41)



The second function states the egquality of the major axis of

the ellipsoid with the length of the submerged body.
L_::zf (8.42)

The third function states the equality of the volume of half
the ellipsoid with the submerged volume of the body.

V= %ﬂ. F!/(ngp)(f';_ W (8.43)

These three equations are easily inverted to give f’ghyk in

terms of the body parameters b,L,V. Thuss

L
/0= =z (8.44)
:./Lz__ z
h zb (8.45)
k=)L _ (3
| (7L
(8.46)

For most bodies, the parameters V and L cannot be expressed
in function of b analytically so that fhghyk are determined as
functions of b by graphical methods. . It is then possible to differen-
tiate equations (8.10) and (8.40) to obtain the formulae for the
forces exerted on the submerging body (1.15). Because of the in-

volved form of the equations, they will be given symbolically only:

dk d , dhd | (.3
Fy = P 2""“[dbalf db +a'EZT1] /‘ﬁigds (8.47)

F= & sz [3h %+ 5% + 247 [0, 22,

(8.48)
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Formulae (8.,47) and (8.48) in conjunction with equation
(8.40) complete the investigation of the forces which act on a body
approximated by a general ellipsoid. The results of that lnvesti-
gation are somewhat too complicated to be visualized and therefore
a numerical example is carried out in detail as an illustration of
the analysis., It concerns the water impact at 45° of a sphere of

unit radius., The details of the calculation form the subjeet of

the next section of this paper.
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IX, NUMERICAL EXAMPLE: WATER IMPACT OF A UNIT SPHERE

The first step in discussing the specific problem of the
hydfddynamic impact fordes which act on a unit sphere at an angle
of entry of 45% ig a discussion of the approximating functions
(8.44), (8.45), (8.46), Fortunately, in this case, one is in a

position to write analytical forms for them as follows:

p= yx (2-x) (9.1)
b= 1)’.1:( (1-x)

(9.2)
h=41 X (1-x)(7-3%)
27 2%)
(9.3)
_b
X= /R 04X <1
(9.4)

The variation of the parameters nggh as functions of x is shown
on figure 7,
The calculation of the drag i1s now carried out in two steps.

First, the integrals (8.10) and (8.40) are calculated in terms of

f> sky,h, and plotted on a scale based on x. Because of the com-
plexity of the functions, the differentiation with respect to x
is carried out graphically, and an approximate curve results.
The two curves mentioned above are reproduced on Figures 8,9.
It is noted that curve 8 shows a type of variation already obtained

in the previous investigations by Shiffman & Spencer and P.Y. Chou,
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for the vertical drag component., Figure 9 shows that the horizontal
drag component is much smaller than the vertical one; while its
variation is of the same type as in the previous case, it is notable
that the point of maximum drag is reached at a somewhat greater

depth of penetration,



X. DISCUSSION OF RESULTS

The pre@edimg developement appears to indicate that, provided
certain approximating assumptions are nearly satisfied, it is
possible to predict the first portion of the underwater trajectory
of a submerging body. The three principal assumptions ares

(a) That the splash may be neglected; this assumption is
made -when boundary condition (1.7) is replaced by condition (1.8),
This 1s essentially a linearization of the boundary condition which
1s necessary to allow the splitting of the velocity potential
function into additive vertical and horizontal components. It is
most easily justified for a swall fast moving body.

(b) That the walls of the body are normal to the free surfaces
this assumption is made when the actual body is replaced by an
approximating body of simple geometrical shape, While it may be
possible to study the motion of spherical lenses subtended by any
variable angle g? s 1t is feared that the integratiom of the
pressure function will be of extreme difficulty.

(¢) That only the portion of the water in front of the prin-
cipal section of the body is set into @otion by the impact. This
is admittedly an arbitrary assumption but the exact calculation
carried out in comnection with the problem of the flat plate shows
it to be fairly accurate in that case, and the most acceptable
simple assumption which can be made.

In view of the three serious assumptions stated above, it is
necessary to justify the results of the calculations shown above by
some experimental data, The difficulty of analysing water impact

test results is well known; the parameters and physical phenomena
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‘which influence the results are very numerous and their individual
effects are not easily separated. In a paper presented before the
American Physical Society Fluid Mechanics Symposium, Dr. H.L., Wayland
of the U,S., Naval Ordnance Test Station Underwater Ordnance Division
has listed the more important ones. An examination of that long
list is sufficient to convince the anélyst that he cannot hope to
account rigorously for all the effects which may manifest themselves,
The present theory is therefore admittedly approximatea It does
however give a good indication of the results to be expected, and
some of the results obtained are given here.

An important characteristic of the water entry of projectiles
is the "whip" or change in angular velocity during impact. It is
well known that any projectile oscillates about its mean path in
the air, so that at the instant of water entry, it has pitch and
pitch velocity. The forces of water impact cause a rapid change
“in pitch velocity, which occurs approximately between the time of
first contact and the time when the projectile is submerged to a
depth of half a diameter, This whip can be measured by photographic
methods, as has been done by the Morr%s Dam Hydrodynamic Station.
Since it 1s due to the moment of the water impact pressures during
the time interval considered in this research, it can also be cal-
culated, It should be noted that since the whip is proportional
to the integral of the forces between contact and the time when
the projectile is submerged to a depth of half a diameter, at the
limits of integration, the condition that the body walls are per-
pendicular to the fluid surface is actually satisfied, so that the

assumption wade in the analysis introduces no error here, It is
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found’that for the case when the angle of piteh is 0, experimental
results and @omputéd results agree within 5%. A change in angle
of pitch changes the correlation functions, since the submerged
volume at a given depth of penetration depends om the pitch angle.
Appr@ximate calculations of whip for various angles of pitech also
'app@ar to agree with experimental results of the variation of whip
as a function of piteh angle., Since the results obtained by the
M.D.H, Group are classified, it is not possible to show_the o) (8
parison at the present time, but some data are given imn a paper by
P.Y. Chou (0 pitech) while the calculation of whip as a function of
pitch is as yet unpublished. Some experimental data on the drag
coefficient of spheres which hit the water vertically are given by
P.Y. Chou (Ref. 1.8) and are reproduced in the present paper on
Fig. 8, They show fairly good agreement with the calculated results,
It is hoped, therefore, that the method outlined in the present
paper, although lengthyg gives fair estimates of the order of mag-
nitude of the forces which may be expected to act on the submerged
portion of bodies which hit a water surface.

It is noted that the greatest forces are exerted when the depth
of penetration is of the order of a tenth to a sixth of the radius,
that is a zone in which\the present method, and the assumption
on a horizontal free surface, are still not far from reality. It
is known from experimental and theoretical evidence that the drag
then decreases and reaches a value of (p = 0,33 for cavity flow,

The present type of calculation may therefore be found useful to
estimate the critical load which will act onm a structure as it

passes from air into water. The more complete knowledge of the drag



@@effi@ients may also help predict the early phases of underwater
trajectories of projectiles., Finally, the drag integrals may be
- found useful in estimating the power necessary to maneuver ships,
While the present paper is most concerned over total forces, the
pressure distribution is, to the degree of approximation of this
analysis, given by the potential function, and may easily be cal-

culated alego,
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