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ABSTRACT

Supersonic flow through a two-dimensional cascade of air-
foils is discussed from the point of view of one-dimensional gas
dynamics. Two geﬁeralizations to compressible flow of the usual
velocity vector diagrams are discussed, namely the Mach vector and
the reduced velocity vecter disgram. A relative mass flow parameter
is found which represents the isehtrapic continuity equation on the
two vector diagrams, so that for a set of given cascade inlet con-
ditions all possible outlet velocities and directions eppear on the
diagrams.

The largest possible tangential velocity component and the
largest possible change in tangential momentum in a cascade are ob-
tained as functions of the mass flow parameter. From these the largest
obtainable stagnation pressure ratie and povwer of any arrangement of
moving and stationary cascades may éasily be obtained.

Equations are given for the ratios of relative stagnation
temperatures, mass flows and Mach numbers in two systems of reference
moving with respect to each other. Methods for tracing graphically
on the vector disgrams the flow through a stage are presented.

The possibility of using cascades instead of shock weves
for the transition from supersenic te subsonic flow in diffusers
is pointed out. As an example a proposed single cascade supersonic

diffuser 1is briefly analyzed by means of the reduced velocity vector

diagram.
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I. INTRODUCTION

1. The Work of gther puthers

The earliest researches dealing with supersonic and high
speed subsonic gas flow through cascades are due to the designers of
steam turbines, notably Stodola and his associates (Ref. 1). The pos-
sibilities of a supersonic axial flow compressor were apparently first
studied by Encke and Betz (Ref. 2), and by Weise (Ref. 3) in Germany
around 1935.A These studies led to experimentzl supersonic compressors
which were hampered by mechanical difficulties. Weise operated success-—
fully a compressor with subsonic roter and transonic stator. Another
unit designed by Weise with transonic roter was destroyed by failure of
the blades. A third propesed ﬁnit with & purely supersonic rotor was
never built.,

In 1939 Sorg published a thesis on supersonic flow in the
rotors of turbe machines (Ref. 4). He studied in deteil the conditions
for existence of a minimum of channel area in both exial and radisl
flow rotors and the Mach numbers of the relative and of the absolute
velocity occurring at such e "throat'. He confined his considerations
to stream filzments and used a one-dimensional appreach. In consider-
ing the absolute velocity in a rotor he reduced the problem to one of
steady flow by assuming an infinite number of blades. OCne of Sorgts
results is briefly discussed in Section V (paragraph 2) of this paper.

Strausé (ref. 5) studied supersonic flow patterns through

two-dimensional cascades in detall. He used the Prandtl Busemzun

Apt the time of writing the author has not yet obtained the origi-
nal papers describing these early German experiments.



method of characteristics to construct such flows, with the primary
emphasis placed on cobtaining cascades without wave drag.

In England supersonic compressors have been studied since
1938 by A. A. Griffiths, Howell and Davidson.. In this country
Kantrowitz and Denaldson (Ref. 6) studied supersonic diffusers in
view of thelr application to compressors. H. S. Tsien has studied
the possibilities of supersonic compressors (see note in Ref. 7).
Wattendorf (Ref. 7) has recently published a study on the pressure
ratios that appear possible with supersonic axial flew compressors,
His calculations are based on the assumption of constant axial veloc-
ity component, which would be obtained by proper variation of the
cascade area. Alperin (Ref. 8) has studied supersonic flows through
two-dimensional cascades on the basis of the linearized (small deflec-
tion) theory. He developed a metheod for calculating the pressure ratios
that could be obtained with grids of diamond shaped airfeoils at the
optimunm chord spacing ratios. Lastly, the special solutions of two-
dimensional compressible flows by use of the hedograph plane, carried
out by Kraft and Dibble (Ref. 9), are of great interest in connection
with turbine and compressor cascades.

A great deal of work has been done in recent years on super-
sonic diffusers, OSome of the results obtained have immediate bearing
on the efficiencies obtainable in supersonic compressors {by the
methods which have so far been considered by other authers). In par-
ticular of great imporiance for the design of a supersonic compresseor
is the problem of interaction between boundary layer and shock waves

in connection with the possible separation of the flow., However a



thorough review of the literature on the above problems is cutside

the scope of thig paper.

2. Assumptions, Methods and Limitations of Thig Paper

In order to learn the potentlal possibilities and limitations

of axial flow machines the writer decided to study first the simplest
pproximation te the real problem which would still give useful, if

only qualitative, information. The most desirable flow patterns in
subsonic axisl flow machines are usually those which in any cylindricalk
surface concentric with the axis spproximate meost closely a two-dimen-
sional irrotational flew. For that reason two-dimensional cascades
of airfoils are studied as & preliminary step. The effects of radial
pressure and velocity gradients are then taken intc account as well
as possible. In the hope that also in the supersonic case the three-
dimensionsl effects could be considered as "correction® terms, the
writer, as well as other authors, chose two-dimensional cascades as
a starting point. It is clear thet especially in those cases where
waves extend ashead or aft of the cascade the mere curvature of the
cascade and casing would make an essential difference.

The next simplifying assumption usually made is that of
irrotational flow, whereby the effects of viscosity enter merely as
an area correction due to the boundary layer. The assumption of
irrotationality implies that no strong, curved (transenic) shocks are
assumed to cccur iﬁside the cascades,

In machines where several rows of blades are involved it is

desirable that the flow leaving each row should be as nearly uniform



as possible, otherwise the flow through the next row of blades will
be highly nonsteady and very hard to predict. There is, however,

in the case of a supersonic cascade, another reason for attempting
to get as nearly as possible uniform ocutflow. This lies in the fact
that in the supersonic case a bedy would have drag even in a non-
viscuous fluid, this being called the wave drag. Only in case all
the waves are cancelled inside, a "cascade withoul wave drag" is
obtained.

Thus the simplest and most idealized flow (still reminiscent
of the real problem to be solved in the end) is that of a two-dimen-
sional cascade with uniform flow entering and leaving and with only
isentropic processes inside. Such a case was assumed here. The
assumption of uniform inflow and outflow may appear very far fetched
at first, However by a suitable combination of Prandil Meyer flowsd
and sbraight channels one can, at least on paper, turn any uniform
supersonic flow isentropically into another uniform supersonic flow.
While the existence of these selutions may be taken as a justification
for the assumption of uniform flow it is likely that other (pessibly
approximate) solutions can be constructed accemplishing the same result.
It is doubtful whether blade shapes giving uniform outflow can be
found for the subsonic case. However there the uniformity of the flow
is not as important. No attempt is made in this paper to discuss the

detailed flow inside a cascade.

AAssumed possible in either directlon except near Mach number one.



A11 velocities used in this paper are relative to the
particular cascade in which they occur.’ Thus all cascades, whether
moving or stationary, are treated alike. The change of state which
the fluld undergoes in passing through a cascade is considered like
a mathematical transformation. In this paper an isentropic cascade
transformation is used (discussed in Section III), but corrections
for small entropy changes due to friction and weak oblique shocks
can easily be introduced,

At the transition from one cascade to the next, a velocity
transformation i1s used in order to obtain the velocity, Mach number
and stagnation temperature of the fluid relative to the new system
of reference. This is discussed in Section IV. In the velocity
transformation the velocity of a cascade is always taken relative
to the one preceding it. In cases where the flow enters directly
into a moving cascade the entering flow is referred to a stationary
reference system, then the velocity transformation is used.

In this manner hypothetical machines (consisting of two-
dimensional cascades) may be made up by a sequence of cascade and
velocity transformations., It is clear that the inlet and outlet
properties of the fluid, in order 1o have meaning, must be referred
to the same (presumably stationary) system of reference.

While in most of this paper the strictly two-dimensional

case of constant cascade area was assumed, the charts presented in

Afith the exception of a brief discussion of Sorg!s results in
Section V where the "absolute" velocity is introduced.



Section III can be used for any given variation of cascade ares.

A1l curves and charts have been calculated only for s speci-
fic heat ratic § of 1.40. The basic equations used, and hence all
results of this paper, rest on the assumption of a‘perfect gas,

With the equations and charts given the highest obtainable
pressure retios and power (per unit ares) of various "ccmpressor?
end "turbine" arrangements can be obitained as simple algebraic ex-
pressions or as numerical results from the charts. A number of such
ideal performance results have been developed by the writer but these
will not be presented here.

As an example a single cascade supersonic diffuser, which
appears possible on the basis ¢f this simplified theory, is discussed.
As far as the writer was eble to determine the possibilities of the
use of cascades as supersohic diffusers have not previously been studied.
ALl the existing or pronesed supersonic compressors s8¢ far were designed
with either a transonic stator or a transenic rotor, i.e. using shock
diffusion., ©Some authors have considered only the transonic rotor
type as practicable, although Weise has suggested an all supersonic

rotor and transonic stator arrangement.



II. NOTATIGN

1. Symbeols, Subscripts and Superscripts

As far as possible the same notation sznd symbols as in
Ref. 10 were used.

Each cascade is designated by two numbers (e.g. 1-2,
3-4,) representing the two planes which enclose the cascade. The
same numbers zre used as subscripits. Thus the flow enters cascade

3-4 with velocity uj and angle G3.

Symbeolss

A ares of channel perpendicular to flow direction.

A, zscade area perpendicular to cascade normal.

a veloeity of sound.

Q angle of flow relative to cascade normael. Taken
positive when tangential velocity is positive.

c absovlute velocity (used only in Section V),

cp specific heat at constant pressure, in mechanical
units.

Cy specific heat at constant volume, in mechanical units.

f(---}) & function of ———-,

G greatest possible value of the reduced velocity u/ast
(corresponding to infinite Mach mumber. See (2) below).

g acceleration of gravity.

r ratio of specific heats.

h specific enthalpy of fluid.

J mechanical equivalent of heat,

A relative mass flow ratio (see parameters).



Symbels (continued):

VAN a function of X\ (see parameters).

M Mach number of the relative velocity, u/a.

M total mass flow.

m mass flow per unit cascade area.

Yo momentur of fluid per unit .cascade area per second.
D absolute pressure.

gas constant, in mechanicsl units,.

P mass density.
T absolute temperature of fluid.
T maximum value of reduced tangential velocity component,

(see parameters).

u velocity of fluid relative to the nearest cascade.

"] reduced relative velocity, u/a*

v cascade velocity relative to preceding cascade, (see
following page}.

v reduced cascade veloeity, V/a*

O(I
Un, “ :Cl
5 Sign
Q convention
Ugy 2
CASCADE AXIS Uy
S IETEIORPIIMIIIM -
W o\
Q
u < u __/>\
2 u U h AN
na| AN
< 1 AN




Subscripts and superscrints:

* esse pertains to a peint where ¥ = 1.

o cene " W " stagnation peint

D case " B " design condition

! " " " deviation from the design condition

12375 o0 n " the inlet side of s cascade

2996 e " " the cutlet side of a cascade

i ceva n n the inlet of an arrangement of cascades

g e " " the outlet of an arrangement of cascades

n eves " n the component normal to the cascade axis

% PR " " thg component tangential to the cascade
axis

Where several reference systems moving with respect to
each other are involved, the velocity of each cascade or reference
system is taken relative to the one preceding it, so that for each
trensition from one reference system to another the same velocity
transformation can be applied. Thus the velocity of plane (3)
relative to plane (2) is denoted by V3. The cascade velocity is
made dimensionless by referring it to the reference system frem which

it is observed, Thus V;,/a3 is written 752.

Statienary 21 NA GG AN S G RN

. 3 —
woving 2 ))))))N)))) Ve
Stationary j ddddddadaddds V54 -

Vs, = = V3
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2. oStandard Eguations

Certain well-known eguations of one-dimensional gas dynamics

have been taken directly from Ref. 10. They are repeated here for
convenience,

The energy equstion for the case of no heat transfer to

a streamtube, valid with or without internal friction and shock waves,

is used in the form
ul
5 + Sl = Colo = h, II-1

where 5 and h are in mechanical units per unit mass. An immediste

consegquence of the energy equation is the relation

ot - (__ci)z _ Ayl 117

II-2
a 2+ (y=1)M*
where the speed of sound at unit Mach number, a¥, is given by
20¢-1)
¥2
@ = CP7; II-3

Pt

For the case of expansion into a vacuum the reduced velocity U
appreoaches the limiting value.ﬂx+u,7y—n which will be denoted by G.
The folleowing other forms of the energy equatien are alsc

useds

Ts _ l‘-l a i ,_
T F+ 75 M= y+i-(r-y)a” o



-1l -

Tyl L ()M
T* 24 (p-1) M* 2

II-/b

The area-ilach number relation for isentropic channel flow

4 . L fasroe) M e
A M 4 M T/ B

is of particular importance. This can sglseo be written as a function
of T, by II-4b above. The density in isentropic channel flow mazy be

obtained from

1I-6

"'.,T“'
%‘ =/z£(}i/w*)y |

The guantities /o’,‘ /O’f T,x are related to the corresponding stag-

nation properties by

B
7 cfal o E

=
£

For derivations and discussion of these equations the reader is re-

I1-7

ferred to Ref. lQQ



3. Important Parameters

Very useful in connection with cascades is the relative

mass flow parameter A\ discussed in section III. It is given by
G2
T Z
A= M cos x P /
and is proportional to the mass flow ratio used by Kantrowitz and
Donaldson in connection with diffusers.

The maximum value of the reduced tangential velecity Ty

is of special importance. It is a function of A and is designated

by 1‘(/\) N

t =GV I-A
where 2

A= (1)C

This is discussed in section III also.
The third important physical quantity encountered in the

study of cascade flows is the normal Mach number ceompenent ¥ .
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IIT. TISENTROPIC FLOW THROCUGH CNE CASCADE

1. Generalizations of the Velocity Vector Diagram

In the following we shall not be concerned with the de-
tailea flow pattern inside & cascade, but rather with the simple,
general relations which describe the conditions of a perfect, ideal
gas entering and leaving a two-dimensionsl cascade. At first rels-
tions are worked.out for the strictliy two-dimensional case, meaning
that the inlet and outlet areas of the cascade (perpendicular to
the cascade normzl) are egual. This two-dimensional case brings out
qualitatively all the properties of the more genersl case in which
the cuascade area graduslly increases or decreases from one side te
the other. The diagrams which are drawn for the two-dimensional case
czn also be used for the case of changing cascade area.

For reasons already discussed in the Intreduction the cas-
cade may be considered here as a transformation which turng a uni-
fora flow isentropically inte another uniform flow, The inflow and
the outflow of the cascade are then related by the'equations of ane~-
dimensional channel flow, in particular the area-~Mach number relation
(equation II-5). For the strictly two-dimensional case the crossec-
tional aree A available to the fluid depends on a, the angle between

the flow direction and the cascade normal, by:

AI ’ Az_
=2 _ = A. (@ t) III-1
Cos o, Cos «, < constant)
\1\'
CAscape Axis &,

Ac
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We now define A* as that crossectional area at which the
given mass flow would have to assume unit Mach number. For isen-
tropic channel flow A% is a constant, as a consequence of conserva-
tion of mass and energy. It then follows from III-1 that the quan-
tity A;/A*casa; = A./A¥% is also a constant across the cascade. The
inverse of this will be used throughout this paper as a parameter,

N . The isentropic cascade "transformation" for the two-dimensional

case is thus distinguished by the property

+ +£I A¥*
A= M (Z +Y{X—’1)MZJZ[X ) cose = B = const. 112

C

For the case of varying cascade area we would have instead of III-2

the relation®

A A, = constant III-2a

In terms of the dimensionless ("reduced") velocity U = u/a¥* the

parameter A becomes

[
—2 -[
A= Ucosx (X” 'é‘”)“) d IT1-3

The parameter A can be thought of as the percentage of

the maximum possible mass flow through the area A, {for the given

AThroughaut the remainder of this paper the cascade area A, is con-
sidered a constant, except where the contrary is specifically stated.
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inlet conditions) which is actually being used; for if the actual

mass flow J[ = pu A and the maximum possible mass flow (without

any blades) xl* =f0"‘a"‘Ac , then

M puA AY A
—y = =
M pfo*Ac A Ac
A* by continuity equation

A T A

Thus M = )\VU* = A\ (o*a*Ac and the mass flow per unit cascade area

M
Ac

If the inlet conditions My and o) are given, then A\ is

*
m = = A {o*oc cees  III-4

also given and a fixed relation exists between M, and o,, the outlet
Mach number and angle. Moreover for a given A\ each of the quan-
tities My and a, is individually limited as will be evident from the
following figures. In figure III-1 A\ is plotted against M for
various values of a. A set of inlet conditions M, and ay defines
a point én the chart., If the line A = constant is drawn through
this point, the points corresponding to all possible outlet condi-
tions lie on this line. 1In particular the largest and smallest
possible Mach numbers M, are found on the line a = 0 and the largest
possible (positive or negative)value of @y is found where M = 1.

In axial flow compressor and turbine theory it is usual
to refer te velocity vecltor diagrams. For the case of incompres-
sible flow and constant cascade area the continuity relation is

easily incorporated into the vector diagram by the relation u, =



 AeuBEZ -/
—— OEprIE Moee
. FAow Aws A
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constant. (un is often called the axial velocity). Where compressi-
bility has to be taken inte account in subsonic compressor design the
condition u, = constant is often maintained and the cascade area is
assumed to be adjusted accordingly. This affords appreciable simpli-
fication of the equations to be used.

For the purpose of this paper it is however advantageous te
discuss the case of constant cascade area. For compressible flow
two generalizations of the usual velecity vector diasgram present
themselves. One may be called a Mach-vector diagram (following other
authers). This is shown in Figure III-2. It will be seen that A\ =
constant represents a family of closed curves on this diagram. A
uniform flow entering a cascade at Mach number My and angle ay is
represented by a peint on this diagram. According tec the assumptions
stated at the beginning of this chapter the flow leaving the same
cascade must then be represented by a peint on the same )\ -curve.
An incresse in entropy due to friction or shock waves would force
the state of the outflowing gas to a slightly higher value of )\ .
(This is discussed briefly in the last chapter). An incresse in
cascade area above that of the inlet side would of course lower the
A of the flow leaving the cascade, by equation III-2a. The direc-
tion and Mach number of the flow inside the cascade cannot be repre-
sented on thi; diagram since the flow is not uniform there. The
mean velocity and direction in any plene parallel to the cascade
axis might be entered in the disgram. Such a point, representing
roughly the flow inside the cascade, would have to lie on the inside

of the curve A\ = A= AL since the (presumably finite) thickness of

the blades takes up some of the cascade ares.
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The Mach vector diagram is useful especially in illustrat-
ing the transition from one cascade to another (see Chapter IV).
But since the lecal velocity of séund will in general be different
in the inlet and outlel planes of a cascade, the Mach number ef a
moving ca;cade (to be used en the Mach vector diagram) also changes
from one side to the other. If the cascade Mach number V/a; on the
inlet side of a moving cascade 1-2 is given then a simple geometrical
construction will give the corresponding Mach number V/a, on the out-

let sideg

since To/T = I+{y-1)M/2

I1I-5
L///CZ, o,

V/a, o _ l/p_wv-/)Mf
2 +ly-1) M*

By drawing right triangles with sides /2 fy-Dand M; and M, respectively
the ratio of III-5 is easily obtained on the Mach vector diagram by

eimilar triangles, as shown below,




The other generalization of the incompressible velocity
vector triangles will be called here the "reduced velocity" diagram,
figure III-3. It appears to be more instructive than the Mach vector
diagram, but has, to the author's knowledge not previously been used
in connection with cascades. The diagram consists of a plot of u vs,
the angle of the flow a, for constant values of A (equation III-3).
Again the inlet and outlet conditions of any one (two-dimensional)
cascade must be represented by points on the same A = constant-
curve. The reduced velocity diagram has several advantages over the
Hach vector diagram:

i. Since u tends toward a limit G when M tends to infinity it
is possible to include all Mach numbers in the diagram.
ii. Since it is assumed that no heat transfer tekes place,

the stagnation temperature, and hence a%*, is constant in

any one cascade. Thus the reduced cascade velocity V/a#

has the same magnitude throughout any one cascade.

The reduced velocity disgram is very similar ito the Mach
vector diagram in the subsonic regime, is identical with it along
the circle W = M = 1. Perhaps this similarity in the subsonic and
sonic regime gives u/a* as reduced velocity a slight preference
over the quantity u/umax = U/G. In the supersonic regime the two
diagrams differ more appreciably. It will be seen that the U dia-
gram is bordered by the semi-circle U = G and its diameter U, = O.

The semi-circle and its base together form the curve A= 0,
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The continuity equation for incompressible flow through a
two-dimensional cascade is u, = constent. The U diagram shows that
this is approximately satisfied by subsonic compressible flows if
either the mass flow A is very small or (for larger values of \ )
if the angle a is sufficiently small. It will alsc be seen that for
the incompressible case (small mass flow and small Mach number) a
very wide range of angles, nearly +90° to -90°, is possible, As the
relative mass flow is increased toward its maximum possible value
the possible flow angles become more limited. |

It may be of interest to note that the A = constant-
curves approach ellipses as A approaches unity both in the Mach

vector and in the velocity vector diagram.

2., Extrema of Variocus Importent Guantities

i. For the following work it is importent to find the
maximum value of the (dimensionless) tangential velocity
Uy = (u/a*)sina,far a given value of A . From equation III-2

we have

2.

2 z - 2\ G
cos?u = ,\‘/A*) - )‘2_ 2 +(y ’)M)
A M Y+1

III-2b

Using equation II-2 for W and III-2b we can express the tangential
velocity component Ty as a function of M and A 3
— 2 ’
Uy = (usa*) sin'
2.

gt M x( yad )‘FT —
2+ (y-1\M* 2+(-1IM*




To find the extrema of this quantity with respect to M, considering

A fixed, we set (g;‘,; = 0 and get after some simplification
2 2
T _ Y+ q _ T |6

A [z. Y1) M‘] = [W] =7

This necessary condition for an extremum may be interpreted most
conveniently by comparing it with the definition of A, egquation III-2

written in the form

G?
A= M*cos’x [77_7—-;]

This yields immediately

M?*cos’oc =1/ I1II-8a

2
We can also solve III-7 for M, giving

-2/G"
M= 2 G (A) - = IIT-8b
cos’x r-1

Equations III-8a and b are necessary conditions for an extremum of

ﬁ% and a little further algebra will convince us that they furaish a
maximum of this quantity, and hence both maximum and minimum of Wy,

It i3 interesting to note that the reduced tangential velocity becomes

a maximum when the normal Mzch number is unity. Thus the conditieons

for maximun ﬁf are found easily from figure III-2 by drawing the line

M, = 1. ©On the U vs. o chart, Fig., III-3, the locus of peints of
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maximamn 'ﬁt is an ellipse with half axes G and 1 respectively (see
equation IV-12).
The actual maximum value of the reduced tangential velocity

is found by substituting III-8b into III-6. This yields

(Ue)pax =1G V1- Az/a" ITI-9

mun

The positive value of this square root will henceforth be denoted

2 2
by T, and A /qby/\.. Thus

T(A) = Ugpax = G VI-A III-9a

When A = 0, T becomes G as would be expected. The cor-
responding Mach number is oo . In figure III-6 T has been plotted
against A for ¥= 14. While T varies between O and G the total

Mach number for maximum tangential velocity is always supersonic.

ii. The tangential component of the Mach number, My, does
not appear to have much importance for the remainder of this investi-
gation. However it may be of interest to note briefly that M, has

its maximum when

— 21

(@ cosx)* = a, =1

The ceorresponding locus on the Mach vector chart is the hyperbela
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The value of the maximum tangential Mach number is given by

2
/Mt")max = - /M"—-I) III-10a

== () I /) I11-10b
r-i

iii. The largest change of tangential momentum possible in
a two-dimensional cascade is preportional to the quantity T'A . This
quantity also appears when we try te find the design condition for
maximum power (per unit cascade area) of a particular turbine stage.

It is fairly obvious (and can easily be preved) that the
maximum tangential momentum is obtained by finding the maximum tan-
gential velocity for a given mass flow, t(fk) , and then maximizing
the product A'T(A). Differentiating with respect to A we find

as necessary and sufficient condition fer & maximum of A T that
2 +1
A = T = i+ IIT-11

and hence

_L :
(A r)max - (-&;_') - ITI-12
The normal Mach number is of course again equal to unity since that
was necessary for Uy =T. By substituting III-11 inte III-8b it is
found that the total Mach number for maximum tangential mementum

M=V2

regardless of the value of X’. Thig result is rather surprising.



By III-8a the corresponding angle a = ¥ 45°, This angle gives
maximum tangentiasl momentum also with an incompressible fluid.

If an incompressible fluid enters a two-dimensional cascade
parallel to the cascade normal, a tangentizl momentum per unit cas-
cade area per second A= p, sin Z2e may be imparted to it by the
cascade, where Po is the stagnation pressure with respect to the
cascade. A perfect gas entering a cascade in the safe manner may

leave with a tangential momentum (per unit area per second) of

{/“t)ma.x = P%ax/’\r)ma.x

d v
/2 |y +1 )77 )
/J‘“) ¥ P {4{2?) by M -12
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=(r) " pe
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The maximum chasnge of tangential momentum per second possible in a
two-dimensional cascade is of course twice the figure given zbove,

iv. It may be of interest to mention that the quantity

+1 .
)\ ﬁ has its maximum when A = #:7. The corresponding Mach
-2 2
nuzber M = /3 and cesa = —’—-. The quantity A Ue & G )\("'A)

V3

alse appears in connection with the maximum power condition of cer-

tain turbine arrangements, namely two-cascade impulse turbines.



IV, THE VELGCITY TRANSFCRMATION

1. Relative Stagnation Temperature, Mass Flow and Mach Number Ratios

When two-dimensional cascades are discussed which are in
uniform translational motion with respect to each other there is
ne essential difference between "moving" and "stationary® cascades
since there is no preferred inertial coordinste system of reference.
While in the case of rotating cascades centrifugal pressure gradients
have to be considered, at least as a second order effect, in this
two-dimensional case all cascades behave exactly alike with respect
to their own coordinate system., Thus, when only relstive velocitlies
are used the same type of cascade transformstion holds for all
cascades.

To get from cne cascade to the next the flow has to be
referred to & new coordinabte system moving with the new cascade. The
effect of this velocity transformation on the parameters describing
the flow will be developed hers.

Since only relative velocities are used, each cascade is
considered as a Ychannel" in which neither heat nor mechanical
energy are added (or teken out). The addition of mechanical energy
to the flow is, of course, a conseguence of the relative motion of
several éascades.A In (2) below it will be shown that the velocity
transformation takes care of the energy equation in the proper

manner,

ACompare this with Sorgt!s approach, section V. and Ref. 4.



To develop the velocity transformation consider two cas-
cades, 1-2 and 3-4. Cascade 3-4 (and its coordinate system) move
with a velocity V32 with respect to 1-2, It is assumed thst no heat
is added anywhere in the flow and that the flow between planes (2)

and (3) is uniform and parallel (i.e. contains no waves).
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The schematic sketch abeove of the arrangement with the correspond-
ing velocity diagram shows the assumed positive directions of uy, V,
and u,. We can write down the relation between the velocities
immedistelys
Uy = U
h3 h2 IV-1

Uss = Uy, — VA4



so that

2 -
uy = oug ot Vg (Vsy = ugy ) V-2

To find the stagnation temperature with respect to the
new coordinate system we write the energy equation (II-1) for a point

in plane {2} and for one in (3):
o 2.
ploy = L 1T uy 72
Cp 7;3 = <p 7; + (’L: /2

If there is no difference between the cascade areas at{2)and at (3}
the free stream temperature of the fluid dees not change between
(2} and (3), i.e. T, and T3 must be equal. Using this fact and

egquation IV-2 we get from the two equations shove

ol ToamTon) = Vo /2 = Vs, g,

ar
Tos Z
= | + 22— [V, -~ 2 u IV-3
7-.91. 2—Cp7;2. ( . €2 )

If we introduce a, as reference velocity, where

aX* = (2/6%) cp s I1-3

we get the equation IV-3 with dimensionless velocities:

7o / = o7 .
7—‘: = ar /stz 2 V4, Uea) IV-4
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. = ‘4 * .

where V3, has been written for V32/a2 s l.e. the cascade velecity
has been made dimensionless by referring it to the inlet conditions.®
It will be noticed that the relative stagnation temperature increases

from {2) to (3) if the quantities 732

= h T =T .
t2) 0 and hence 03 02 In

that case the velocity diagram (page 29 ) becomes symmetrical.

and (V__ - @ ) have the same
32 t2

sign. TWhen Ugg = o (V32 -1

The effect of the velocity transformetion on A is of

interest., Since the mass flow at (2} equals that zt (3),
¥ K A - N ¥ AK¥
e ar A, Ps as A;

The cascade areas Ac are assumed to be egual. Therefore

As Af X oF
= = *
A AF A

How we may write

/
X -
P =(_7_?f/*"
P A
and a similar expression for plane (3). Again T, = TB'
Also

7;* - 2 Taz_ a,hd a-f = \/ZkRToZ
Y+ ¢ */

A W
01’ %~
changed throughout this paper without further mentioning.

3*
Since T02 =T a,. These egual quantities will be freely inter-



Using these equations we get A;/{Atas a function of the stagnation

temperatures:

A (TOL }G‘/Z
As

T Tes
Thus an arrangement of cascades which increases the relative stag-
nation temperature decreases the value of N\ and thereby makes a
wider range of angles snd Mach numbers accessible.

Equation IV-5 is not limited to a single veleocity trans-
formation but applies alse te the initial and final state of a flow
which has undergone any number of velocity and isentropic cascade
transformations, as is evident from the derivation. The only assump-
tions which have been made were the isentropy and the constancy of
the cascade area A,. Actually we can easily abandon this last
assumption and allow for a change in area (although we thereby de-
part from a strictly two-dimensional flow). Since )\ is inversely

proportional te A, the more general relation would be

.1 GV ‘
.,_\.E = (7—0‘) * Ac‘ IV-—58.

>\" Tf Acf

where the subscripts i and f designate the initial and final states
respectively. Equation IV-5a is rather useful since it enables us
to predict immediafely the maximum power per unit cascade area
obtainable from any turbine arrangement, under the assumptions stated

/
gbove, if the initial and final areas are given.



In a turbine the stagnation temperature of the fluid de-
creases and thus the preduct )\ A, increases from cascade to cas-
cade. The greatest possible expansion ratio is reached when A £

becomes unity:

(7;;) ) / / Acf)”G"
7—0f moLx /\t' Aci

The power output is proportional teo

)\i {Tai"‘Tof)“ /\;/I“ %ﬁ-) T;,,‘,

= Toi Ai [I-(/\.' -/_/\‘T‘;)Z/G)]

so that for given inlet temperature and cascade area ratio the
mass flow for maximum power output and the maximum power can easily
be found.

The change in Mach number which the flow experiences when
passing from one cascade to another is of particular interest.
The Mach number used throughout this paper is that based on the
relative velocity u, and should thus properly be called a relative
Mach number. For design purposes this 1is likeLy to be the more

impertant ane.A

Aphe Mach number of the absolute velocity in both axial and radial
flow machines has been discussed in some detail by Sorg, Ref. 4.
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The Mach number at any peint may be treated as a vector,

Thus
2 2 <
Mz_ = an_ + Mt-l

In going from one cascade to the next the local velocity of sound

remains unchanged: a, = a3, so that

My, = M 5

and
Mes = "g'tj‘ = M = Jil:
thus
My = M oe B —Zp e -6
= M1 (1) -2 K]
whence

e - 1+ a2l -7
2 2

First we note that M3/M.2 >< 1 when TOB/TOQ >< 1 and vice versa.

In fact

Tos/ Tor —|/ _:__/(z(;/l-_/_z/_(z&z
(My /MI)*— | a¥/ G* 6/
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It is clear from equations IV-6 and IV-7 that a uniform
flow may be supersonic with respect to one cascade and subsonic
with respect to the next, a fact which is of course well knewm, In
some applications it is useful to know the limiting condition which
still makes possible subsenic flow entering a given cascade. If we

assune M2‘>»l and \T:2 positive we obtain from IV-6 after some algebra

3
that

4

. 2 T |* V. [ME-1 p+ )
Sth& / . "‘} 3 z A + /] IV-8
22 J’*l T, Ml Tou /T, 2V

if MB is to be smaller than unity. In figure IV-1 the minimum values

of sina, for subsonic MB are given with the reduced cascade velocity

V., as a parameter. These curves could of course be extended inte

32

the subsonic region of Mz.

The right hand side ef the ineguality IV-8 has a minimum

2

minima is the envelope in figure IV-1. Along the envelope

with respect to 752 for any given value of M,. The locus of these

Vi My -1
Vi, (y+1) /2_+{y-/)M3/ 1V-9

2. A Check ©n The Velocity Transformation

In the following the change in gstagnation temperature

will be calculated for a flow passing through three cascades, a moving
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cascade 3-4 between two stationary ones. The result obtained by
means of two velocity transformations will be compared with the

power output {or input) of the cascade. A schematic sketch of the
arrangement is shown below. It is clear that all conceivable arrange-
ments of cascades (within the general limitations of this paper)

can be made up out of a number of such "stages", with possible
omission of one or both stationary cascades. It is therefore
sufficient to show that the energy equation is satisfied for this

basic stage.

; JII2))))))

3 G,

, e >
SNV VTl

V54 is the velocity of (5) with respect to (4). Since 5-6 is con-

sidered statieonary, V54 = "V32‘

two velocity transformations in the form

Equation IV-3 is written for the

7;3 - 7;2. = ZC‘/ ( V3z - Z.l/s?- L(tz_)
P

7;5‘—7;4— = '_I“([/S?; ""21/5./,{,(,_.4/
2 C%?

Since the stagnation temperature in each cascade is constant, and

since Ugg = Uy, - V32 we get

CP(f;e"‘Tou) = Var (Urg ““ts) V=9



(utk - utB} is of course the rate of change of tangential momentum
per unit mass flow, or the tangential force per unit mass flow. If
equation IV-9 is multiplied by an arbitrary mass flew, then the
right hand side represente the power put in by the moving cascade
3-4 and the left hand side is the corresponding increase in enthalpy
of the fluid (note that Cp is here in mechanical units)., Thus
equation IV-7 could have been written down directly from the energy
equation.

For further use it is convenient to bring equation IV-7
into a form in which the velocities are made>dimensionless. Using

again é; as reference velecity we get

o _ |+ ﬁ._.{é.’.—./lZ?f— _"Lu;*‘:i_&) IV-10a
7:7! G a;_

and

Too 2 V. Upe — U
= | + =212, te £3 IV-10b
721 55L ij?l

3, Graphical Representation of the Velecity Transformation

The velocity transformation is characterized by the fact
that it leaves the normal component of the Mach nﬁmber as well as
the lecal velecity of sound unchanged. For those reasons it is most
easily represented on the Mach vector diagram, or, of course, on the

conventional velocity vector diagram.
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However for the purpose of tracing a conplete flow the
reduced velocity diagram has several advantages. Therefore the
curves Mn = constant were included in figure III-3, With the aid
of these curves the veleocity transformation can easily be carried
out grephically on the W diagram, as shown in figure IV-2., Let the
vector Eé represent a uniform flow leaving cascade 1-2, and let
vﬁz
The vector additien eof ﬁé and - 552 gives a vector cf length

be the reduced cascade velocity of 3-4 (with respect to 1-2).

% . o *
with the correct le a,. Th th of =
u3/a3 e correct angle o, e proper leng U, u3/a3
is then found most easily by using the fact that Mn3 = an. Having

found point 3 on the diagram we then alsc have the value of V32/ *

%3
on the figure. The cascade transformation 3-4 then tskes place
along the curve A = A,. The dotted line 3-4 could represent
roughly the mean veleocities and directions of the flow inside the
cascade. The reduced "absolute" velocities c/a; correspending to any
peint A along 3~/ are easily found by using the vectlor V32/é§ (see
point A%, figure IV-2). The transformation from (4) to (5) is
carried cut the same way as that from (2} to (3). Note that the
point P corresponds to a velocity vector us/az. P thus does not
necessarily fall inside the circle W = G.

To obtain the curves Mn = constant in the U disgram we

write
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from which a can be calculated as function ¢f U. We could of course
cbtein them graphically by drawing the lines Mn = constant on the
Mach vector diagram. Equation IV-1l, with Mn as parameler, repre-

sents the ceaxial fanmily of ellipses

2+ Maly-0) Gy Lo
(1) M w e M =

It may be of interest to show that the guantily

JT /T = a%/af can be obteined graphically on the U diagram

0% "0z 32
without the aid of the Mn = constant curves. We draw the vectors
ﬁiz and Véz from the origin of the W diagram, as shown in figure IV-3.
By completing the right triangle BAD with hypotenuse G and side Uy,
we get the angle B whose cosine is W, /G.The triangle BDE then has
sides G and 732 and the included ahgle B. The cosine rule gives

side DE as

(DE)* = G*+V,, =21V G coss

or
(DE) = G*L2 = G*+ 0 -2, 4y
Toa
Since
N Tos | /
sz( o Ci§ 7:»;. '

we can lay out u/é: along DE and find the magnitude of u/é§ along

BD by similar triangles.
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V. USE CF THE DIAGRAMS FCR PRELIMINARY ANALYSIS OF A

SINGLE CASCADE SUPERSONIC DIFFUSER

1. Remarks on Supersonic Diffusers

The problem of diffusing a supersonic stream of gas with
a minimum loss of stagnation pressure is one of theoretical interest
as well as considerable practical importance. The existing and pro-
posed diffusefs may be grouped into two types:
i. The external shock wave diffusers, based on the ideas of
Oswatitsch., (Ref. 11).
ii. Diffusers which form part of a cleosed duct, such as those
used in supersonic wind tunnels (Ref. 6).
In some applications the two principles are combined. In all the
above»diffusers the transition from supersonic to subsonic flow is
accomplished by normal or strong (i.e. transonic) obliéue shocks,
preceded by some pattern of weak oblique shocks. Because of the
dominating influence of viscosity in flews near Mach number one it
is hard to predict the exact flow pattern in the transonic part of
these diffusers, and the flow in the subsonic part of these diffusers
is usually net very advantageous. The grester part of the losses
is due to ﬁhe shock waves, and in general these losses increase
rapidly if increased range of operating conditions is required.
| Efficient diffusion of a supersenic flow in a closed
channel is made difficult primarily by the transonic pert of the
flow. If the shock is to remain weak, only very smell variations

in mass flow can be telerated. Moving cascades appear to offer the



possibility of aveiding altegether the difficult transonic region in
the process of diffusien, since ene can get from supersonic to sub-
sonic flow without having anywhere unit Mach number relative to the
channel in which the gas is flowing, It seems then that with the
aid of cascades the transition from supersonic te subseonic flow
could be accomplished without a transenic sheck. In the following
parsgraphs this possibility will be investigated from the point of

view of the one-~dimensional approach used in this paper.

2. The Single Cascade Supersonic Diffuser

One of the simplest cascade problems and at the same time
one of the most interesting is that ef a single cascade meving at
right angles to a uniferm stream. Let this moving cascade be desig-
nated by 3-4. The flow at planes 2 and 5 is described with respect

te stationary coordinate axes. V32 is the reduced cascade velocity.

uzslly

Vo— D

o e

Let the flow at {2} be uniform and supersonic., On the reduced
velecity diagram figure V-1 peint (3) is found by use of the curves
i, = constant (as described in secticn IV), The figure shows that

the cascade 3-4 can be designed in such a manner that the tangentiszl

velocities in planes (3) and (4) are equal, i.e. EtB = EfA' If that

is done the points(3)and(4)mst be on opposite sides of the line
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M, =1, and therefore Mn4(= Mn5) will be subsonic.

Since T4 = EtA the flow leaving the cascade at (5) is
perallel to the flow at (2). No tangential momentum has been added
end of course no work has been done by the cascade 3-4.

The essential feature of this arrangement is that the
nass flow nowhere reaches the meximum possible value for the crossec-
tional channel area available to the flow, This may be associated
with the fact that in the cascade the (relative) stagnation temperature
is higher than in planes (2) and (5) which makes pessible there a
larger mass flew per unit area.

It mey be ef interest to discuss the above flow briefly
from the point of view of the "abselute" %elocity inside the cascade
3-4. The auther is unable to give a rigorous justification of this
approach, but merely wishes to refer the reader to Sorg!s paper
(Ref. 4) and repeat one of the results given there. A flow inside a
moving cascade which is steady with respect to the cascade is neces-
sarily nonsteady with respect to a reference system which is at rest.8
Sorg points out that we may imegine the number of blsdes incressed
indefinitely and that thereby the flow could be made to appreach, as
closely as we wish, a flow which is steady with respect to a refer-
ence system at rest. The cascade is thus assumed to do work on the
fluid in infinitesimal increments and in any plane parallel to the

cascade axis the sbsolute velocity (as well as the relative velecity)

AExcept for the trivial case of a cascade which does not deflect
the flow in any way.
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is considered steady. For such a plane inside the cascade Sorg then

writes the energy equation zs

oh +—L coe =L oL V-1
gJ J

vwhere ¢ is the sbsolute velocily and dlL is the work done en the
fluid at that peint. Sorg combines this energy equation with the
continuity relation for steady flow and the equation ef state in
order to find the necessary (and usually sufficient) condition for
the existence of a minimum of crossectional area. For the case of
an axial flow machine the work done on the fluid dL =(V/g)dcy where
¢t is the tangential component of ¢, The crossectional area of the
channel normal to the absolute velocity c is designated by F,. For
the axial flow machine Sorg gets as necessary and sufficient condi-

tion for the existence of a minimum of Fc the relsations

2 2 a4
a - g-Yde ' udu Voo
C c dc c* c olc

Thus, if the above steady flew considerations can be applied to an
actuél cascade flow, we would have the result that in general Fc has
a minimum at some sbselute Mach number different from unity. Under
some conditions a minimum of F, is not possible at all (if the

right hand sides of V-2 become zereo, negative or infinite). In
other cases the minimum of Fc is possible only at a Mach number

which does not eccur in the machine. Several examples are given

A‘I‘he symbols have been changed te conform with the notation used in
this paper.
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in Serg's paper.

Let us regard the single cascade diffuser from the view-
point of Sorg's work. The cascade would have 1o have a Vefy large
number of very thin blades. The flow inside the cascade could then
be represented by points on the W diagram, figure V-1. We can use
at any point P the reducgd cascade velocity V32/£§ te find the re-
duced absolute velocity c/ég (point Q in the figure). It will be
seen that in our diffuser cascede ¢, is zere in planes (3) and (4)
and probably will not differ much from 2zer¢ anywhere inside. Thus
Sergt's equations V-2 would indicaté that in this particular case
there has to be a "throat" with respect to the absolute velecity,
and this will occur at an absolute Mach number c/a not far from unity.

At first sight the abeve conclusion makes us suspect that
the cascade diffuser with fixed cascade velocity has no advantsges
over a coﬁvergent divergent diffuser with fixed threat dimensions.
However, it will be shown in the next paragraph that the single
cascade diffuser can accomnodate fluctuations of mass flow. Te
reconcile this fact with the existence of a "throat" ( = minimum
of F ) it should be noted that the size of this fthroat" is not
fixed but varies very rapidly with the inclination of the sbsolute

velocity ¢ (see sketeh below).
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3. Deviations from the Design Condition

Any diffuser is capeble of practical realization enly if
it can accommodate deviations from the design conditions., The fol-
lowing devisztions should be considered:

a. ©Small fluctuations in mass flow (i.e. inlet Mach number)
which must be accommedated without changes in cascade
velocity or the geomelry of the diffuser.

b. Small fluctuaiians in cascade velocily to be accommeodated
with fixed mass flew and geonmeliry.

c. Small fluctuations in back pressure on the subsonic side
of the diffuser to be accommodated without changes of the
other parameters.

d. A reasonsbly wide range of inlet conditions which may be
taken care of by some simple adjustment of the cascade
velocity or the geometry of the device, or both.

Two other important considerations will determine the practicability
of such a device:

e. Starting of the device must be possible by some reasonsbly
simple procedure (depending lsrgely on the particulear
application).

f. Stability of the cascade with respect to velocity is
desirable though not absaiutely essential, If the dif-
fuser were coupled to some other machine a certain degree
of instability could be tolerated,

Discussion of the starting procedure appears outside the

purpose of this paper, since it depends largely on the particular
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application., The other peoints will be briefly discussed within the
limitations of the one-dimensional approach used in this paper.
It will be seen that (a) and (b) above are closely related.

Referring to figure V-2, let the design condition be designated by
superscript D and the values slighily off the design point by ', »w,
etec. It is clear that inlet Mach numbers slightly above Mg de not
present a problem since increased Mach number means decreased rela-
tive mass flow. Let us then focus our attention on the case of an
inlet velocity'ﬁé slightly less than ﬁg. The inlet condition to the
moving cascade will be 3'. The relative mass flow Ag is slightly
larger than A? « A wezk shock and an expansion region will turn
the flow to the prescribed inlel angle ag. The shock will cause a
slight further incresse in )\ . The flow in the cascade will then be
net much different from the design condition except for the increased

X,lnﬁ;it will no longer be uniform at (4'). Presumably it will
leave the cascade at approximately az = g: and at an aversge Mach
P,

number'M/ which is somewhat closer to unity than was %4

4

the ability of the cascade te stand an increase in relative mass

4s expected

flow A,Bldepends on Mﬁ being sufficiently far from unity.

It will be seen that the case of slightly reduced cas-
cade velocity V;z is quite similar to that of decreased inlet Mach
number, except that the angle a; is smazller than ag, so that the
wave pattern at the entrance te the moving cascade is different.
Fhile the design condition was chosen such as to make ﬁ£2 equal

to ﬁ£3 this condition is not preserved off the design point. A

line connecting points 3' and 4! would slope to the right, indicating



- 51 -

NOLLIOND D NDIEQF (T Wwo»ys SNOILE/ATC]

TIEHNO FO

S WEIDS T AL DOT T OFITTTY

ToA Trr9/ S




- 52 -

that the cascade now requires power to drive it. TFor the case of
decreased cascade velocity, points 3" and 4", this effect is less
pronounced but still apparent. This is further discussed in a
later paragraph in connection with the stability of the cascade in
motion.

The fluctuations in back pressure must be allowed for in
the design condition. The influence of the pressure abl plane 5 ig

felt inside the cascade up to the characteristic A-B. In order to

(3)

(4)

(5) us
v

allow for fluctuations in back pressure the design pressure at (5)
should bé lower than the design pressure along the characteristic
A-B, so that normally there would be an expangien region following
A-B. A more detailed investigation might show whether or not an
obligue shock along A-C would occur and be stable if the pressure at
(5) exceeded the design pressure at A-B.

From the discussion of (a) above it is clear that the cas-
cade cannot handle a wide range of mass flows withoul some adjustment
in either cascade velocity or diffuser geometiry. Basically there
are three possible ways of increasing the range of mass flows over
which the device could operate:

i. The cascade velocity may be varied.
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ii. A cascade of adjustable inlet vanes could be used in order
to give the fleow ét (2} a variable tangential velocity
component.,

iii. The blade angle of the rotor could be made adjustable.

(1) and (ii} both would accomplish the same thing, namely
a variation of the stegnation temperature in the cascade 3-4. If
the stagnation temperature were properly a&justed then the cascade 3-4
could be kept at a constant value of A for a fairly wide range of
inlet mass flow values. In figure V-3 the two methods are compared.
For the design condition Mg = 2 was chosen. With 722 = 1.62 we get
ag = -45°, Point 2! corresponds to a Mach number ML = 1.4. If the

2

cascade velocity is increased to 532 = 2 then peint 3' lies on the
same A-curve as 3? with aé of about -57°, An oblique shock and
expansion region would turn the flow back te -45°. From then on the
flow would precede through the cascade roughly as in the design
condition, In an actuzal problem the cascade velocity should be in-
creased slightly more in order to allow for the increase in A due
to the shock and the non-—uniformity of the flow at 4. In order teo
simplify the comparison the flow at 1" was chesen to correspond to a
Mach number of about 1.54. It is assumed that the entrance vanes
turn the flow nearly isentropically through 15° to the point 21,
The.distance 2"Q in the figure is chosen equal to ZDP, the design
cascade velocity. The points 3" and 3' then coincide. The turn-—

ing of the approaching flow by a set of inlet vanes thus would ac-

complish roughly the same result as the increase in cascade velocity.
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Adjustment of the rotor blade angle will in most cases
be impractical because of mechanical difficulties. However a brief
discussion of this possibility for widening the operating range of
the device is included. The design condition in figure V-4 is the
same as in figure V-3. The inlet Mach number is now lowered to ML =

2
= 1,67. Point

1./ and the cascade velocity is kept constant at ng
3' then lies approximately on the curve A= .3, If the blades of
the rotor were rotated by ten degrees we would obitain an ocutlet con-
dition approximated by point 4', so thalt the flow at 5' would still
be approximately parallel tc the entering flow at 2!, One disadvan-
tage of this method would be in the fact thalt the angle at 3! now
differs by some 16 degrees from the new inlet angle of the rotor,
point I in the figure, thus requiring a sheck wave of gppreciable
strength te turn the flow., It would thus be more advanitageous if
the roter blades could be made in two parts se that only the out-
let angle would be adjusted.

The question of rotational stability also needs con-
sideraﬁly more detailed treatment than it can be given here, es-
pecially in view of the fact that the back pressure on the subsonic
side of the cascade influences the final direction of the flow leav-
ing the cascade. The result of the simple one-dimensional discussion
given here must therefore be regarded as strictly unreliable. As
an example an inlet Mach number of 1,60 and a design cascade velocity
vgz = 1.24 were chosen (figure V-5). The tangential velocities at
peints BD and AD were made equél, so that the cascade would net re-

quire or furnish any power. In order to bring eut more clearly any
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possible trend of stability or instability a large increase in

cascade velocity, ?;2 = 1.85, was chosen, with the’inlet velocity
Eg unchanged. The flow then approaches the cascede at a velécity
corresponding te point 3; and would presumably be turned in the cas-
cade to the design angle ag. The shock required to turn the flow
will raise the value of A in the cascade slightly, as indicated by
point I. If it is assumed that the flow leaves the cascade at the
D

design angle a

4

tion of point 4', i.e. the direction and Mach number of the mean

the point 4% in the figure is obtained. The posi-

flow leaving the cascade, depends of cdurse on the detailed wave
patitern in the cascade and on the back pressure. In general the
greater the losses inside the cascade the further will the point 4!
move to the right, i.e. toward the stable region. In figure V-5
point 4% lies slightly to the left of 3', which would tend to speed
up the cascade still further. A similar graphical construction for
the case cf decresased cascadé velocity shows a similar behaviour

of slight instability (see figure V-2). As was pointed out the cas-
cade velocity cannot be reduced very draé{ically with all other
‘parameters held constant since at the lower stagnation temperature
the required mass flow can no longer pass through the cascade,

It may be of interest to mention that the rotational
instability of the rotor could apparently be cured by a set of
adjustable inlet vanes. If simultaneocusly with the speeding up of
the cascade to V;z the entering flow were turned to the right (by
some 20 degrees for the example of figure V-5), the cascade would

tend to return to its original velocity, as far as can be concluded

from these diagranms.
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VI. CONCLUSIONS

On the basis of the one-dimensional esrea-Mach number relation
several interesting properties of supersonic cascade flows were ob-
tained. These should qualitatively also apply to non-uniform cascade
flows, It was found that the condition of unit normsl Mach number
component is of particular importence in connection with maximum
pressure ratie and maximum power, but that it is by no means a "eri-
tical" condition with reSpéct te mass flow (except of course in cases
where the total Mach number alse approsaches unity).A In connection
with the one-dimensional snalysis of cascade problems the reduced
velocity diagram was found to be especially useful.

The use of cascades to accomplish nearly isentrepic transi-
tion from supersonic to subsonic flow in diffusers appears promising.
A diffuser cconsisting of one moving cascade with (possibly) a set of
adjustable inlet vanes was discussed. The resulis of this preliminary
analysis were:

i. The cascade would be capable of sbsorbing small fluctuaticns
of mass flow, cascade velecity and back pressure without re-
quiring any adjustments.

ii. It could be made to operate ever an appreciable range of
inlet Mach numbers if the cascade velocity or the geonetry

cf the diffuser (or both) were made adjustable.

AAt the entrance and exit plsnes ¢f & cascede the flow dees however

change its type as the normel Mach number component passes through
unity, because at that value the Mach waves become parallel ito the
cascade axis, This is discussed in papers dealing with the actual

two-dimensional flow pattern in cascades.
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iii. The cascade would be slightly unstable with respect te
velocity changes,A but could be made stable by means of
adjustable inlet vanes.

Qther cascade diffusers than the cne discussed appear
pessible. While the cembination turbine and diffuser cascade is the
most cbvious, & combination compresser and diffuser cascade also
appears feasible. However, if the single cascade diffuser proposed
in this paper eppears practical upon more detailed studyg the most
pronising arrangement would probably be a subsonic or supersonic
rotor followed by a diffuser cascade.

A preliminary one-dimensional snalysis of cascade arrenge-
ments accomplishing both compression and diffusion should be carried
out, with preper corrections for shock waves,‘especially in the off
design conditions, being included. Special attentien should be given
to the problem of starting. If the results are promising, actual blade
shapes for the blade root and blade tip should be studied by two-
dimensional methods. Experimental verification in a cascade tunnel
of the constructed flow patterns wouid then be in order. Lastly, the
effects of radial pressure and velocity gradients should be accounted

for zs well as possible before an experimentsl compressor unit is

proposed.

Aﬂf the results given this one is the least reliable.
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