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Abstract

We have accomplished Optical Nuclear Magnetic Resonance (ONMR)
experiments in an Al 3¢Gag s4As/GaAs heterojunction sample at ~2K with rf-optical pulse
synchronization. The hyperfine coupling of the electron spin to the nuclear spins enable
this spectroscopy in several ways, which are discussed herein. Moreover, the interactions
experienced by nuclear spins in III-V semiconductors, in general, and the phenomena
encountered when they are in the vicinity of a shallow donor or pseudo-donor,
specifically, are developed. Furthermore, the most accurate calculation of spin diffusion
in a spin-three-halves system to date is developed and presented using a methodology can
be readily applied to any spin-larger-than-one-half system to a yield a set of coupled
differential equations for a set of orthogonal polarizations. The behavior of these

equations under a number of physical situations is also investigated.

We have captured the first ever radially resolved Knight shift images from the
nuclei near a point defect in GaAs using laser synchronized ONMR. A deconvolution of
these images into their constituent physical interactions has been approximately carried
out using the theoretical advances developed and presented in this thesis, yielding the
shape and size of the electronic orbital in which the electron is trapped, the occupancy of
that electronic orbital, and the quadrupolar interactions in the vicinity of the defect,

including the charge state of the defect.

Computational approaches include both full, real-time analyses of every one of the

hundreds of thousands of nuclei surrounding a defect in GaAs, modeling the time domain
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evolution for each individual nucleus including its Knight shift, quadrupolar interactions
(both secular and nonsecular), individual optical polarization conditions, optical detection
weighting, and rigorously exact rf effects, and analyses of a variety of continuous medium
approximations. The only computations that fit the experimental spectra are those that
calculate spin diffusion along a radial line of spins, and use this approximation to the
radial profile of nuclear polarization in a continuous medium approximation. The
successful interface of this spin diffusion calculation and the single nucleus calculations,
leveraging their individual strengths, is clearly a desirable route to further increase

computational accuracy.
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.  Optical Nuclear Magnetic Resonance - Background

The effects resulting from the coupling of the nuclear and electronic spin systems
by the contact hyperfine interaction in semiconductors and, specifically, the ramifications

of optically exciting the electrons as well as monitoring their optical decay process have

been studied for over thirty yearsl'28. In this chapter those aspects of the contact
hyperfine coupling that pertain to optically detected NMR, optical polarization of the
nuclear spin system, and Knight shifts experienced by the nuclear spins will be reviewed.
Additionally, we will consider the sites at which the effects of these couplings on the
nuclear spins are most likely being recorded in the optical nuclear magnetic resonance
(ONMR) spectra recorded in the Weitekamp laboratory, and, indeed, in many laboratories

that are studying optically relevant defects in epitaxial GaAs microstructures.

Optical nuclear polarization (ONP) in direct-gap MI-V semiconductors is
discussed in section A. The band structure and selection rules for interband transitions in
direct-gap I1I-V semiconductors are briefly reviewed along with the cooling potential of
the electron spin system resulting from illuminating a sample with circularly polarized
light. Additionally, the contact hyperfine interaction is introduced and the magnitude of
the potential cooling of the nuclear spin system by the electron spin system to which it is

coupled is calculated.

The Hanle effect is introduced in section B. Moreover, its capacity for detecting
nuclear spin polarization as a depolarization of the luminescence emitted by electrons

during their return to the valence band is explained along with the benefits of detection of
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optical photons over radio frequency photons. The Hanle effect provides the foundation

of all the techniques of optical detection (OD) of NMR.

Specific detection techniques such as Time sequenced optical nuclear magnetic
resonance (I'SONMR) and continuous wave (CW) NMR are reviewed in section C, and
compared to each other. Indeed, the work present in this thesis is based on a modified
form of TSONMR. The modification is in the technique used during the detection period
of the TSONMR experiment, which was previously not able to detect precessing

magnetization in real time.

In section D, Larmor beat detection (LLBD) is presented in detail. Both real time
and point wise versions of the detection scheme are considered. The potential for
unwanted nonlinearity intruding into the detected signal is developed, and detailed
calculations are presented graphically for both the 99% and 90% linear signal thresholds.

The Knight shift is discussed in section E. It is a shift of the energy levels of the
nuclear spins by the presence of spin-poiarized electrons at the nuclear sites, and is third
incarnation of the hyperfine interaction encountered in this chapter. In chronological
order during an experiment it is, thus, possible to use ONP to create a large nuclear spin
polarization, subject the nuclei to the Knight Shift during evolution, and detect the
evolution of the nuclear spins with LBD. This is precisely the sort of experiment that we
have accomplished, though with greater sophistication, and which will be presented in
chapter 5 of this thesis. By so detecting the Knight shift, one has the sensitivity to the
localized electronic spin density, to which the Knight shift is proportional, that the

electronic wavefunction may be extracted from a careful analysis of the data.
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The first experiments to combine ONP and OD were conducted by Ekimov and

Safarov2.3. The dominant luminescence line from their sample was attributed to a donor
to acceptor transition; therefore, the NMR they detected was only from nuclei in the
immediate vicinity of shallow donor. This is yet another benefit of OD. That is, selective
detection of a certain luminescence band provides site specificity not available when
using inductive detection of the NMR. The properties of shallow donors and further
motivation for their study are discussed in section F. Indeed, as will become evident in
chapter 5, the model that best explains the experiments presented there is none other than
the shallow donor hypothesis. Moreover, the theoretical work in chapter 3 of this thesis

is centered on precisely this hypothesis and variations of it.

A. Optical Nuclear Polarization

When semiconductors, and certain other materials, absorb circularly polarized
light, dramatically enhanced nuclear polarization is observed. This effect is referred to as

optical nuclear polarization (ONP), and Lampel first observed it in experiments on

silicon!. The mechanism for this effect can be understood as follows.
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> ™

sh

v
Figure 1.1 The band structure of bulk GaAs, a direct gap semiconductor. E, is the bandgap
energy, (¢) denotes the conduction band with (J = Y, m, =% %) , (hh) the heavy hole
band with (J = %, m, = + %), (Ih) the light hole band with (J = %.m ==+¥), and

(sh) the slit off band with (J =V, m, = i%) located A below the valence band edge.
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Figure 1.2 The transitions between the conduction and valence bands that are induced by
exposure to circularly polarized light of energy equal to £,. The arrows connecting the
different bands depict the optically allowed transitions, their relative transition probability,
and the optical polarization required for the transition. There is an additional transition
available in the presence of linearly polarized light from the light hole states vertically to the

conduction band state with the same value of m,. This transition has a relative intensity of 2.

Figure 1.1 shows the energy level spacing of the electron bands in a direct gap
semiconductor like GaAs while figure 1.2 shows the circularly polarized transitions
available to an electron at £ =0. Selection rules dictate that the transition probability
from either of the two spin-three-halves valence band states to the conduction band is
three times higher than that of either of the spin-one-half valence band states. It is
apparent that if unpolarized GaAs is exposed to circularly polarized light at the band gap
frequency, that three times more electrons will enter the conduction band with one sign of
electron spin than will enter with the other. That is, 50% of the conduction band
electrons will be spin polarized. This corresponds to an extremely cold electron spin

temperature. For example, in the ~0.25 Tesla magnetic fields used in our labs, this is the
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population difference that arises spontaneously in the conduction band electrons of GaAs
at a temperature of about 70 millikelvin.

Additionally, these conduction band electrons have a strong contact hyperfine

coupling to the nuclear spins, expressed in Hz, using rationalized MKSA units as29
H., = A4,1-S (1.1)
where
Ay =5 MMy oy (1.2)

A, is referred to as the hyperfine coupling of the nuclear species a.. Here, o will
index the specific nuclei ("'Ga, ©Ga, or 7As), and p, is the vacuum magnetic
permeability. The factor g p,, the free electron g-factor multiplied by the Bohr magneton,
is equivalent to 7,/ the gyromagnetic ratio of the electron multiplied by Planck's
constant. Note that g and not g, the effective electron g-factor, is used in the above

equation because the effect in question is due to the Fermi contact interaction with

primarily "s-like" states (that is, ones with spatial overlap with the nucleus). The
difference between g, and g, is attributed to the electron's orbital angular momentum,
and the latter appears in the electron Larmor frequency. As usual, y, is the gyromagnetic
ratio of the o nucleus. The quantity d, is equal to ]qf(ra){az which is the probability
density of an electron at the nucleus located at r, given that the one-electron orbital y is

occupied.
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If the magnitude of this interaction is taken and the gyromagnetic ratio of the
nuclear spin is divided out, one arrives at a quantity that has units of magnetic field and
looks like an extra Zeeman Hamiltonian on the nucleus. This “electron-hyperfine-field”
also fluctuates rapidly due to the short lifetime (picosecond time scale) of the optically
excited electron in the conduction band. This allows for simultaneous nuclear and
electronic spin flips, allowing the electrons a pathway to thermal equilibration with their
surroundings. However, the nuclear spin lattice relaxation time is very long in these
materials, occurring on a time scale of minutes to days. The nuclear spin system,
therefore, is able to reach considerable thermal equilibration with the electron spin

system.

Let us analyze the equilibration of the electron and nuclear spins in a large enough
magnetic field that nuclear spin-spin interactions can be neglected. The hyperfine
coupling conserves the total spin of the system. Therefore, if the nuclear spin is to flip
between states having angular momentum p and p—1 with respect to the magnetic field,
the relaxation rates W, nuclear spin populations N, and electron spin populations n are

related by

w

Iy

Np =W, N, n,. (1.3)

However, the rates W are related to one another by the Boltzmann factor for the
combined nuclear and electronic transition. Given the relative size of the nuclear
gyromagnetic ratios compared to the electron gyromagnetic ratio, this factor can be taken

with respect to the energy of the electronic spin flip only.
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— ety (1.4)

p-lu

The temperature in equation (1.4) is the temperature of the reservoir that provides
the energy for the simultaneous spin flip. This is taken as the lattice temperature, which
is equivalent to saying that it is the electron spin lattice relaxation that is driving the
reaction. As such, the Boltzmann factor will be approximately equal to 1 in all of the
following work. This leads us to conclude that ratio of the populations of the each of the
adjacent nuclear spin levels will achieve the same ratio as those of the optically polarized

electrons.

“ = (1.5)

This is a truly remarkable result since it says that, in principle, the optical
polarization that was imparted to the electron spin system can be transferred to the
nuclear spin system in its entirety. This corresponds to our bath of conduction band
electrons at about 70 millikelvin refrigerating the nuclear spin system to a temperature of
approximately 100 microkelvin. It is worth noting that equation (1.3), and any equation
derived from it, leads to an optically pumped nuclear spin system that can be described by

a single spin temperature.

B. Optical Detection - The Hanle Effect

The electronic transitions from the conduction band to the valence band can be

used in another context, as probes of the state of nuclear polarization. The process of
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optical detection (OD) uses optical photons to detect NMR evolution occurring at radio
frequencies. The energy of the optical photon is much higher than the energy of the radio
frequency photon, and this improves signal to noise in two ways. First, sensitive photo-
detectors may be used to detect the photon instead of inductively coupled coils.
Secondly, the thermal background of radio frequencies guarantees a much higher noise
level than in the optically detected case. That is, the blackbody radiation from the sample
and experimental equipment at room temperature has only a negligible portion of its high
frequency tail in the optical region while radio frequencies are located in the central bulge

of this blackbody curve.

Optical detection is performed in this work, as in most of ONMR, by monitoring
the circular polarization of the luminescence arising from decay of optically excited
electrons back to the valence band. Returning to figure 1.1, one can see that, due to
conservation of angular momentum, each of the transitions carries with it the restriction
that the exciting light must provide the difference in angular momentum between the
initial and final state. In other words, the angular momentum of the exciting light must be

absorbed by the electron in its transition to its final state.

These same selection rules now govern the transitions back down to the valence
band. If only these selection rules are taken into account, one arrives at the conclusion
that the polarization of the light p is the normalized projection of the average electron

spin S onto the direction of observation n,.

p=-S-n, (1.6)



I-10

This relationship is valid when dealing with reasonably p-type samples, so that
hole dynamics and spin dependent recombination can safely be ignored. Additionally,
when the electron decays back to the valence band, it will emit luminescence and this
emission will be spatially isotropic. This is equivalent to saying that each electron
radiates as if it were a rotating magnetic dipole with its axis of rotation aligned along the
direction of its spin. That is, the light field will carry away one unit of angular
momentum so photons will be left circularly polarized when observed from the direction
where the electron spin is oriented, right circularly polarized when observed from the
opposite direction, linearly polarized when observed from anywhere in the plane
orthogonal to the electron spin, and elliptically polarized when observed from a direction

between any of these.

Moreover, the presence of a magnetic field oriented transverse to the electron spin
will cause a reduction in S due to precession of the electron spin about the transverse
field. If the precession is rapid over the average lifetime of an electron, the electron will
have a negligible average spin orientation. This is known as the Hanle effect, and figure
1.3 depicts the Hanle effect graphically where the screw axis is time and the
magnetization is rotating in the yz-plane. The average spin of the electrons is initially
oriented along the z-axis, and the presence of a transverse field along the x-axis causes

precession in the yz-plane.
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Figure 1.3 A graphical illustration of the Hanle effect. a) When the precession period is short
compared to the electron spin relaxation time, the electron spin is rapidly changing orientation,
yielding a small average polarization. b) When the precession period is long compared to the
electron spin relaxation, the orientation of the electron spin is roughly constant during its
lifetime, yielding a large average polarization. The observed luminescence polarization is a
measure of the average lifetime of the electron spin polarization. The more precession periods

there are before decay, the smaller the resulting luminescence polarization will be.
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When the precession frequency is low enough that most electrons decay before
they can precess an appreciable amount, the average electron spin is not significantly
reduced. However, when the vast majority of electrons precess many times before
decaying, the average electron spin is nearly zero. Equivalently, each electron emits a
photon whose polarization is determined by the direction of the electron spin at the
moment of decay back to the valence band, yet, when the electron spin is nearly randomly

oriented in the yz-plane, nearly unpolarized luminescence is produced.

One may quantify these concepts by analyzing the optical pumping cycle of the
electrons in terms of the electron Bloch equation. Presently, this approach will be used to
derive the equation for the polarization of the conduction electrons and explain the Hanle
effect. If S is defined to be the electron spin magnetization, and if P is the electron
polarization as defined below, then the following rate equations describe the dynamics of
the electronic system during the optical pumping cycle. In these equations 1 is the

electron-hole recombination time, 7' is the electron spin relaxation time, S,/ 7 is the rate at
which electrons are being promoted to the conduction band through optical pumping with
o't polarized light written in terms of S, the electron spin magnetization in the case
where T, = and B, = 0, and, finally, B, is a magnetic field that is transverse to SO. It
should be noted that S is the maximum possible value of S, and that, for optical pumping
with the quantization axis of the light along the z-axis, S, is pointed along the z-axis as

well.
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The steady state solution [%?— = O] for @ = 0 is as follows

Thus,
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(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

This is the well-known master equation for the polarization of the electrons in the

conduction band at zero magnetic field, again neglecting hole dynamics and spin

dependent recombination.  Moreover, the steady state

solution (is:Oj for
dt

(1.12)
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ozmxs—s—sz(o) (1.13)
T
5.(0)
S =3/ 1.14
(@) 1+ 70’ (119

The depolarization of the luminescence is, therefore, a Lorentzian that is centered

at zero and whose width at half height is ®,,,=1/7, or, in terms of magnetic field,

B,=B,= h/(,ug*Ts). This allows us to write

S,(0)
S(B.)=—"—L— .
L (By) (BB (1.15)

Therefore, as the transverse magnetic field grows larger, the electrons lose their

polarization. If @ is large compared to T, the electron spin precesses many times before

decay, producing nearly depolarized luminescence.

Moreover, the Hanle width will change when an extra magnetic field aligned
along the direction of the electron spin orientation is present. This is referred to as the
incomplete Hanle effect, and can be understood by reconsidering equations (1.12)
through (1.15). The electron will now precess around the effective magnetic field, which
is the vector sum of the transverse and longitudinal magnetic fields. Thus, equation

(1.15) may be rewritten as

SZ(BT)_1+B$/(B§,+BZZ) (1.16)
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That is, the transverse field must be large compared to both the longitudinal field and the
Hanle width if it is to result in an effective field that is both perpendicular to the electron
spins and large enough to depolarize these spins. Note that the longitudinal field includes
both the Zeeman magnetic field and any nuclear hyperfine fields that have been left along

the Zeeman field.

The general solution for the average electron spin orientation as a function of an

arbitrary magnetic field B has been derived by Fleisher and Merkulov1? as

_ BiS,+(B-S,)B+(BxS,) B,

S
B + B’

(1.17)

Equation (1.17) reduces to our previous expressions when evaluated under the specific

conditions for which they were derived, yet it is far more general.

Now, returning to the concept developed in an earlier section of the electron
acting as an extra magnetic field on the nucleus through their mutual hyperfine
interaction, we may instead view this interaction from the standpoint of the electron as the
nucleus acting as an extra magnetic field on the electron. Therefore, if the optically
pumped nuclear spins are reoriented to an alignment perpendicular to the electron spins,
they will precess at a frequency proportional to the size of this nuclear hyperfine field,
producing a quantifiable depolarization of the luminescence. Thus, the size of the nuclear
magnetization in the region of the electronic localization may be measured using the

depolarization of optical photons.
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C. Time Sequenced ONMR

The early work in optical detection of optically polarized NMR (ONMR) was all
done using continuous wave (CW) NMR. Optical detection of this technique, where one
slowly sweeps a weak radio frequency magnetic field (rf) though the resonance frequency
of the nuclei, was performed with optical excitation on continuously though out the
experiment to provide continuous measurement of the NMR. However, the presence of
optically polarized electrons during the experiment lead to shifting and broadening the
resulting. NMR -~ due to  the Time-Sequenced Optical NMR
presence of the hyperfine
coupling between the electrons
and nuclei during evolution. ONP &y

Indeed, the best NMR linewidth

in all of these works is

NMR
approximately 50 kHz3.

A great improvement
over these experiments is one in
which the different pieces of the oD hv

experiment are segregated in

time, so that each may act on its

o, wilhout  infedeoes o Figure 1.4 A schematic illustration of the steps in

complication induced by the the TSONMR experiment.
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others. The natural periods into which the experiment should be broken are ONP, NMR
evolution, and OD. As shown in figure 1.4, the sample first undergoes optical nuclear
polarization, and the exciting light is then turned off. The NMR experiment is now
performed over some evolution time tl, and the portion of the magnetization that one
desires to measure is then stored along the z-axis of the magnetic field. The light is then

turned back on, so that optical detection can be carried out.

Optical detection
of the field stored along
the Z-axis is
accomplished via the

change in Hanle width

" " that this extra field
IBy+ B 1
induces. This is shown

Figure 1.5 A graphical illustration of the increase in Hanle )
in figure 1.5, and can be

width that accompanies the addition of a longitudinal field,
seen as follows. Imagine
allowing the change in Hanle width to be used to measure

that in figure 1.3 there is

this longitudinal field.
an additional magnetic
field along the z-axis that is very much larger than the transverse fields. Then, the
electrons will precess about the total field, which is currently very close to the z-axis.
Thus, the z-axis orientation of the electron spins is predominately conserved. Indeed, it

will now take a transverse field that is very much larger than the magnitude of this new

longitudinal field to depolarize the electron spins. Thus, if an external transverse
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magnetic field is swept when there is a nuclear field stored along the z-axis, the resultant

Hanle width will be a measure of the size of that stored nuclear field.

Buratto and Weitekamp21724 were the first to present these ideas and their
experimental verification. They observed ONMR in GaAs with a linewidth of only about
3 kHz. This allowed NMR spectra related to optically relevant defects in GaAs to be

detected with enough sensitivity that differences were detected between samples with

nominally the same preparati0n23.

D. Larmor Beat Detection

There is a problem with detection via the Hanle effect using the previously
described methods. One may only measure the magnitude of the precessing hyperfine
field. That is, the Hanle effect is sensitive to the sum total of the perpendicular magnetic
fields, irrespective of the direction of this sum in the plane perpendicular to the Zeeman
field. Thus, one has previously been restricted to either CW detection or point wise
detection of the free-induction-decay (FID) of the nuclear hyperfine fields as

accomplished with TSONMR.

There is, however, a better experimental technique that uses the Hanle effect to
record an FID in real time. If one places a reference magnetic field along a direction in
the xy-plane, the plane perpendicular to the Zeeman magnetic field, then the nuclear
hyperfine field will subsequently beat against that field, creating a sinusoidal modulation

of the transverse component of the magnetic field. That is, if the two magnetic ficlds are
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initially aligned along each other, the two fields will then add to each other to produce a
transverse magnetic field whose magnitude is the sum of their individual magnitudes.
The nuclear field will precess, and at one half of the period of its precession it will be
exactly opposed to the reference field, producing a transverse magnetic field whose
magnitude is the difference of the magnitudes of the individual magnetic fields. Then,
after one full period of precession the two fields will be exactly colinear again.
Furthermore, the reference field may be imagined to rotate in the xy-plane at some
frequency @,. Then the time period required for the two precessing fields to recover
their colinear orientation will be the period of the difference between their frequencies of
oscillation, and one half of this period will be the time required for the two fields to

oppose one another.

This may be seen algebraically by considering the vector sum of the two

precessing magnetic fields
BT — BNeia)Nl + BReile.
This can be rearranged to produce

B, =" (By + By V), (1.18)

and this itself naturally yields

1B,||= /B: + B} +2B,B, cos((a, — @y )1) (1.19)



1-20

which is the same result one would obtain by applying the law of cosines at cach and
every point along the precession of the two fields. This result may be inserted into

equation (1.16) to give

_ S.(0)
S.(B)= 14(B} + B, + 2B, B, cos((w, -, )t)) /(B + B?) (1.20)

Moreover, if one chooses the substitutions

B, =B +B’, (1.21)

b,=B,/B,, (1.22)
and
b, = BR/B'/Q > (1.23)
equation (1.20) reduces to
S_(0
S.(B,)= -(0) (1.24)

1+b +b +2b,b, cos ((a)R - a)N)t)
which can be rewritten as

S.(0)/(1+5] +87)
2bnb,/(1 +b +b’ ))cos((a)R - a)N)t) .

S.(B;)= 1+( (1.25)

Figure 1.6 illustrates the relationship between equation (1.25), the two precessing
nuclear fields, and the Hanle curve. The upper portion, labeled as part “a,” is a schematic
of two nuclear hyperfine fields, B, precessing about the static magnetic field of the NMR

experiment. The purple and red vectors represent isotopes with distinct Larmor
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frequencies. The vector sum of transverse hyperfine fields is time dependent at the beat
between the two Larmor frequencies. The purple nuclear field is used as a reference for
detection of NMR of the red isotope. Prior to our group's introduction of such reference

fields, all ODNMR was performed as a low-resolution frequency domain experiment.

The lower portion of figure 1.6, labeled as part “b,” depicts the projection of the
vector sum the two precessing nuclear fields in part “a” onto the Hanle curve. The Hanle
curve represents response of luminescence polarization, p, to a transverse field. When
electron spins precess about such a field, changing the z component of their spin angular
momentum, p is altered (see figure 1.3 above). This response in p to transverse fields is
time dependent when the vector sum of the two beating hyperfine fields from above is

projected onto the Hanle curve.

Now the different frequency components contained within the modulation of p by
these two precessing nuclear fields will be extracted. Equation (1.25) can be decomposed

using the series summation

1
1+ax

=l-ax+a’x’ —a’x’ +a'x + . (1.26)
to obtain an approximation to equation (1.25) . That is,

S.(B,) =c(1-acos((w, — @, )t)+...+a" cos" ((w, —wy ) 1) +...) (1.27)
with

a=2bb,[(1+8 +b]) (1.28)
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and
c=(8.(0)/(1+8] +5)) (1.29)

It is clear that equation (1.27) has both linear and nonlinear components.
However, finding the magnitude of the linear component is not as easy as simply taking
the coefficient of the cosine term in equation (1.27). Powers of cosine can, of course, be
decomposed into a sum of linear cosine terms with arguments that are integer multiples of
the original argument (integers k& with k£ =0,1,2,3...). Carrying this process out to
n =200, one obtains the coefficients of the zeroeth, first, second, and third, harmonics
with reasonably high precision as shown in figure 1.7 and figure 1.8. These coefficients
arc even and odd polynomials of order » or n—1 in a, depending on the parity of the
function. The value » =200 was chosen so that even out at b, =b, =10 the curves
would be accurate to within approximately 1%. There is an alternate analytical method of
obtaining approximations to the curves in figures 1.5 and 1.6, using the series

approximation in equation (1.27) along with some additional assumptions. This is

skillfully illustrated in the thesis of John A. Marohn27, and the curves thus obtained (zero

and first harmonics) agree well with those that have been calculated here.
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Figure 1.6 Schematic illustration of the Larmor beats and their effect on the polarization
of the luminescence. a) The transverse components of two precessing magnetic fields
alternately add to and subtract from one another, producing a total transverse magnetic
field that is sinusoidally modulated at the difference frequency between the two precessing
fields. b) This modulated sum will then produce a modulation of the circular polarization

of the luminescence as indicated by the projection of the modulated transverse field on the

Hanle curve.
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Figure 1.7 Upon decomposing all terms in equation (1.27) to appropriate sums of linear cosine
terms and keeping all terms to n=200, we arrive at numerical approximations to a) the DC
Fourier component of the depolarization of the luminescence by two rotating magnetic fields,
and b) the first harmonic of the depolarization of the luminescence (i.e., the component at the

difference between the frequencies of the two rotating magnetic fields).
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Figure 1.8 Numerical approximations to a) the second harmonic of the depolarization of the

luminescence, and b) the third harmonic of the depolarization of the luminescence.

i

Conditions and underlying equations are the same as for those in figure 1.7.
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Real-Time Optical NMR
by Larmor Beat Detection

T

lon

By

Figure 1.9 The real-time LBD detected ONMR experiment is schematically illustrated
here. This experiment is conceptually easier to understand than the point-wise detected
experiment, but suffers lower signal-to-noise ratio. However, the only nonlinearity present
is that of higher harmonics in the time dependence of p while the point-wise detected
scheme must worry about clipping of the signal due to potential nonlinearities in the first
harmonic detection surface (figure 1.7b) as BN decays from its maximum value to zero.
The same phenomenon only leads to a more Gaussian lineshape in the real-time detection

case.
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Time-Sequenced Optical NMR
with Larmor Beat Detection

NMR

Figure 1.10 A schematic illustration of the point-wise detected LBD experiments. The point-
wise experiment is done with spin-locking on during detection to increase the signal to noise
ratio, but possesses an additional source of nonlinearity in that the magnitude of the higher
amplitude points can be clipped due to saturation of the linear response of the first harmonic.

See figure 1.11 and the text of this section for the relevant details.
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Figure 1.11 The first Fourier component of the depolarization (as in figure 1.7b) plotted for

—10<5h, <10. Point-wise detection amounts to sinusoidally oscillating, at some constant

value of b, from b, =5,(1,=0) to b, =-b,(z,=0).

Two different kinds of LBD detection conditions will now be considered, real
time detection and point-wise detection. For real time detection, the only source of
nonlinearity that comes from using LBD is from harmonics that are inadequately filtered
out of the NMR signal. It is easy to reduce this source to levels that are well below the
signal-to-noise level of the NMR experiment through the use of standard high and low
pass filters. However, in the case of point-wise detection, one incurs an additional source
of signal nonlinearity. Point-wise detection amounts to sinusoidally oscillating along a

single value of b, for different values of b, (from b,(f, =0) to —b,(t, =0)). This can be
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seen in figure 1.11, which is the same function as in figure 1.8b, but plotted over a

different range.

P(®ep )

021 |

Figure 1.12 The portion of the surface in figure 1.11 where the fraction of the signal due to

the term linear in a is 99% or greater compared to the higher powers of a.

Figures 1.12 and 1.13 show that portion of the surface in figure 1.11 that leads to
linear point-wise detection of the ONMR signal by LBD to 99% and to 90%, respectively.
This is computed by dividing that portion of the signal that comes from the term linear in
a by the total signal. That is, if the signal stays within the area in figure 1.12, it is
guaranteed to be clipped by less than 1%, and, if it stays within the area in figure 1.13, it

is guaranteed to be clipped by less than 10%.

Another way of illustrating this same point is demonstrated in figure 1.14 where

an approximation to the fraction of the signal at the difference frequency (w, —®, ) that
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p(mLBD )

0.32

Figure 1.13 The portion of the surface in figure 1.11 where the fraction of the signal due to

the term linear in a is 90% or greater compared to the higher powers of a.

is linear at a given magnitude of the transverse fields, and three separate cuts through the
surface in figure 1.11, are shown. The linear fraction was computed by finding the ratio
between the linear portion of the first harmonic (that portion represented by a') and the
sum of all of the other of the terms in the first harmonic (a" with 1 <n <200). Note that
the signal has the highest linearity where it has the smallest magnitude. This runs counter

to some claims that have been made about the position of the most linear signal.
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Cuts through figure 1.11 at constant  Ratio of the linear term in b, to the

values of b, sum of the nonlinear terms
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Figure 1.14. The signal linearity versus signal size tradeoff is illustrated graphically by
showing three different cuts through figure 1.11 at different values of b,, and the percentage

of a signal which is detected in a point-wise fashion that is linear at given values of b, and 4,.
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Moreover, while the experiments are still detected in a point-wise fashion only
with both nuclei spin locked during Larmor Beat Detection (to achieve the highest signal
to noise) in general practice, these experiments still have much higher resolution than any
previously accomplished because they are carried out at much higher magnetic fields than
could be accommodated in the original TSONMR experimental setup (CWNMR does
even warrant a comparison for the reasons mentioned earlier). Therefore, the LBD
technique of optical detection has now opened the full menu of high-resolution NMR

techniques to a level of availability that was heretofore unheard of.

E. The Knight Shift

In samples with short electron spin-lattice relaxation times, such as metals and
semiconductors, the time-averaged spin magnetic moment of the electrons is felt by the
spin magnetic moment of a given nucleus as if it were an extra magnetic field present at
the nucleus. This extra "electron field" shifts the Zeeman resonance frequency of the
nuclear spin involved, and, thus, the distribution of electron density in a given sample
leads to a corresponding distribution of nuclear resonances in the NMR spectrum of that
sample. These shifts are usually called Knight shifts when due to conduction electrons
and paramagnetic shifts when due to highly localized electrons. Therefore, it is, in
principle, possible to use the NMR spectrum of a sample as a fingerprint to identify the
unpaired electron distribution that produced it. Electrons in states of uniform

delocalization, like Bloch states, provide only one value of the Knight shift and y(r)]? of
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the electron state at the nucleus can be calculated from this shift. Such experiments have
been done by low resolution NMR on a variety of ground state samples for more than
twenty years.

The isotropic hyperfine Hamiltonian was introduced in equations (1.1) and (1.2)

in Hz, using rationalized MKSA units as29

oy, = 4,1-S (1.30)
where

Aa = %_luog()luB}/a,sza (1 3 1)

The constants in equation (1.31) are discussed immediately following equation (1.2);

however, one quantity in this equation requires special attention before the Knight shift is
quantitatively evaluated. This is d, = I‘P (ra )‘z which is the probability density of an

electron at the nucleus located at r given that the one-electron orbital y is occupied.

A theoretical estimation of the d, requires a model wavefunction. The approach
taken here is the simplest possible. It has been used previously to estimate Knight shifts

around hydrogenic donor centers in GaAsl0. The conduction band is assumed to be
constructed from the 4s and 4p orbitals of both gallium and arsenic. The relative
probability of these two one-electron excitations in the excited state GaAs molecular
wavefunction is determined by analogy to the case of InSb where the conduction band
ESR line is sufficiently narrow to measure the Fermi contact paramagnetic (Overhauser)

shift of the electron Larmor frequency by known (equilibrium) polarization of the In and



1-34

Sb nuclei separately30731. This is the converse effect to the Knight shift resulting from
the same hyperfine interaction. Since at equilibrium the nuclei are uniformly polarized,
the degree of localization of the electron is irrelevant and the observed Overhauser shifts
can be directly interpreted in terms of the underlying atomic orbitals. The experimental
shifts were found to agree with those calculated from atomic orbitals if the distribution of

the s-electron between the In and Sb was in the ratio 0.43:0.53, respectively. We assume

with Paget et al.10 that the same ratio holds for Ga and As in GaAs, which is reasonable

because the ionicities in the two molecules are similar (0.310 and 0.321 for InSb and

GaAs, respectively, on the Philips scale)30,31

The energy of a nuclear spin in the presence of both an external field and an

electron to which it has isotropic hyperfine contact is given by the Hamiltonian (in Hz).

2

- —h'u 8 Mo,
H,=—h"pg Ho+h SR, p(r,) (1.32)
ﬂa = —}/a,HzI'H+%luogolu8ya,HZI'S da (133)

The nuclear spin energy is the sum of the energy from its interaction with the external
magnetic field and its interaction with the electron spin magnetic moment. If the
direction of H is defined to be the z-axis, I and S are parallel to this axis since this work
is at high magnetic field, providing an electron quantization axis that is parallel to H, so

effectively (the high field limit)

‘%a = —}/a,Hz]zHo + %luogoluB}/a,Hz]zSzda (1 34)
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Since the electron spin states are short lived compared to the inverse of the

interaction frequency, the electron spin operator S, can be replaced by its average (S ) .

‘%a = _ya,HZIzHo + %—:uogolu}}}/a,l'lzlz <Sz>da (] 35)
Where (SZ> =1 P and P is the electron spin polarization (-1 < P <1).
ﬂa = —}/a,Hz[zHo + %luogo:uB}/a,HzlzP%da (136)

Hence, the hyperfine interaction acts like an extra field on the nuclear spin that

adds to f{, and, therefore, gives a shift in the resonance frequency. This shift is the

Knight shift.
Ava = %/’logoﬂB}/a,Hdea (137)

Note the all-encompassing importance of the hyperfine contact interaction thus
far. It was the thermal rod connecting the electron spin reservoir to the nuclear spin
reservoir, which caused the optical nuclear polarization discussed in section II of this
chapter. Furthermore, it was the conduit that allowed the electron spins to react to the
transverse orientation of the nuclear spin angular momentum, yielding the Hanle effect
upon which all of the optical detection techniques in sections B, C and D of this chapter
are based. Now it serves as a resonance shift, and inhomogeneities in the hyperfine

interaction will necessarily be a source of line broadening.
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F. Optically Relevant Defects - The original quantum dots

Optically relevant defects 2-4,10-14,18,21,23,24,26-28 (ORDs) are sites within
semiconductor crystals where excited state electrons become trapped long enough to
share their polarization with the local nuclei, but not so long that a great many such
electrons can still pass by a given nucleus over the time required for relaxation of the
populations of the nuclear energy levels. Defects such as these determine the
luminescence properties of many of the conduction band electrons since they become
trapped at these sites and, subsequently, luminescence from these sites. Moreover, such

defects occur even in crystals that are grown as purely as current techniques allow.

Hydrogenic shallow donor states (e.g., Si substituted at a Ga site in the lattice) are
a leading candidate for the identity of the low E-field sites relevant to the optical NMR
signal. In addition to their role as intentional or unintentional dopants, such states invite
interest due to their similarity to semiconductor quantum dots and wells. Characteristics
relevant to optical NMR and shared by quantum dots and wells and shallow donors
include electron localization to < 10 nm, efficient luminescence, and the possibility of
absorbing photon angular momentum as spin angular momentum. Thus, such systems are
nearly ideal for ONMR experiments while characterization of the electronic properties of
each of these systems down to the local atomic level is of fundamental importance in the
development of device-grade semiconductor materials. A characteristic shallow donor is
schematically illustrated in figure 1.15, which is a false color cutaway diagram of such a

site.
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Figure 1.15 A 3D cutaway false-color representation of the electron probability density
|# ()] of a hydrogenic donor, where ¥(r) = A exp(-/ay ), ap (~ 10 nm) is the Bohr radius

and A is a normalization constant.

Indeed, ONP, an NMR measurement of the Knight Shift, and optical detection by
LBD, respectively, may be combined to yield one integrated experiment that will

facilitate just such a characterization. The distribution of the Knight shifts thus measured
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is the distribution of electron-nucleus hyperfine interactions, which is also the distribution
of the [1// (r)l2 of the electrons taken at the positions of the nuclei. If Il// (r)‘2 is radially
symmetric, this experiment is an NMR imaging of the square of the wavefunction of the
electrons, and if |1// (r)‘2 is not symmetric, the image is still a radially averaged profile of

the probability density of the electron that allows competing theoretical models to be
tested until the match to this profile can be found. In either case, it is safe to say that one
has imaged the quantum mechanical probability density of the electrons that are coupled
to the nuclei, elucidating the charge of the defect atom and other relevant characteristics
of the electronic state. The one impediment to the success of this experiment is spin
diffusion, which I have addressed in detail in chapter 4 of this thesis. Results from such
experiments performed on the nuclei in the vicinity of a hydrogenic shallow donor are

presented in chapter 5 of this thesis.

In order to better understand shallow donors, some properties around a donor are
plotted in figure 1.16 as functions of distance from the center (v = 0) of the donor. They
are as follows, the magnitude of the Knight shift, which is proportional to | %(r)|* and to
the scalar product I+S of the nuclear and electronic spin angular momentum operators, in
the NMR spectrum of a given nucleus, the relative effectiveness of optical nuclear
polarization (ONP), which is dependent on fluctuations in the Hamiltonian governing the
interaction that gives rise to the Knight shift, the radial density of nuclear spins that
contribute to the observed NMR signal, and the relative contribution of nuclei to the

optically detected (OD) NMR signal. This last weight consists of factors accounting for
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the radial density of nuclear spins and for the electron density, to which the OD signal is

proportional, at each nuclear site.

(arbitrary units)

distance from center (7/ay)

——— Knight Shift ~ [\¥()['= exp(~2r/a0)

~—— ONP Rate ~ |¥(r)|'= exp(—4r/a0)

—— Radial Spin Density ~

—— OD Signal Weighting ~ 7' [V (r)|' = " exp(-2r/a0)

Figure 1.16 Properties of interest around a hydrogenic donor as a function of radial
distance r, including a pictorial representation of the square |¥(r)]’ of the electronic

wavefunction at a donor site and other properties related to |¥ (), where

= (r) = A exp(-r/a,), ay is the Bohr radius and A is a normalization constant.
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G. Conclusions

The fundamental phenomena used to conduct ONMR experiments have been
explained from ONP through various OD techniques. Additionally, the Knight shift has
been introduced, and motivation for the importance of the studying the shallow
hydrogenic donors encountered in the theoretical work in chapter 3 and the experimental
work in chapter 5 has been provided. Additionally, an experiment that combines all of
these subjects has been presented. It will be developed to a level of greater detail in

chapter 3, and experimental results will be given in chapter 5.
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ll. The Experimental Apparatus and Sample

A reasonably detailed description of the experimental equipment utilized to carry out the
experiments presented in chapter 5 will now be given. This same apparatus, in some

form or another, has been used by several other members of the Weitekamp group for the

experiments reported in their theses1-4. The apparatus that our group has built, like most
prototypes, is a one-of-a-kind, constantly changing, integrated collection of high
performance commercially purchased components, custom handmade components, and
borrowed/salvaged components. Each major subsystem will be described, and its

function within the larger experiment will be elucidated.

The structure of the sample, its characterization, and the originally intended
purpose of studying it are all covered in section A. The handmade electrical components,
rf generation, and rf delivery subsystems are discussed in section B. The optical
subsystem can be divided into two braches, the excitation and the detection paths, both of
which are explained in section C. The liquid Helium optical cryostat is presented in
section D while the role of the laboratory computers in controlling the experiments and

acquiring data is communicated in section E.



A. The Sample - Structure and Luminescence
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The sample studied in all experiments presented in this thesis is a modulation-

doped p-channel (Be-doped) Al,Ga;_.As/GaAs heterojunction (x = 0.36), schematically

depicted in figure 2.1 below. Alex Ksendzov, John Liu, and Frank Grunthaner at the

NASA Jet Propulsion Laboratory grew the sample via molecular beam epitaxy on a 001-

oriented GaAs substrate. The purpose of the p-compensation of the top AlGaAs layer is

liquid
He
GaAs T AlGaAs GaAs GaAs
Cap p-type (6.5 nm) (2500 nm) (substrate)
21 rm) AlGaAs

(30 nm)
Figure 2.1 The sample used in all of the experiments reported in

this thesis is an Aly3sGagssAs/GaAs Heterojunction structure.

to provide the band
bending illustrated in
figure 2.1. Moreover,
the purpose of the thin
undoped AlGaAs layer
between the doped
AlGaAs layer and the
epitaxial GaAs is to
provide a clean
interface between this
AlGaAs layer and the

epitaxial GaAs layer by

providing an interface internal to the AlGaAs material to catch migrating dopants from

the p-compensated layer. That is, without this thin layer the dopants from the p-

compensated layer would migrate to the AlGaAs-GaAs interface where they would

interfere with the interfacial 2D trapped hole states that are shown in figure 2.1 at the
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GaAs/AlGaAs interface as the horizontal lines to which the conduction band electrons are

relaxing.

The luminescence to these states has previously been assigned to the H-band

features of the luminescence spectrum shown in figure 2.2 belowd-0. If these

A (nm)
815 820 825 ‘ 8%0 ‘ 835

s

BA.
1.4927 eV

_ H-Band
Bulk Exciton Features

Features
. . (e

L R e L T L L LT T Ty e
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1525 1.515 1.505 1495 1.485
Energy (eV)

Figure 2.2 The photoluminescence spectrum of the sample that
was used in the experiments reported in this thesis and that is

schematically illustrated in figure 2.1.

luminescence lines are
indeed due to electron
recombination with
surface-trapped holes,
then the electrons must
have appreciable
probability density
located in the
interfacial region for
such recombination to
occur. It stands to
reason, therefore, that
the nuclei that are
hyperfine coupled to
these electrons should
experience the large

interfacial electric field

that is characteristic of this region. However, experiments that our group has performed
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conclusively prove that the sites that contribute to the ONMR signal in this region of the

luminescence spectrum experience very low electric fields if any at all3.7.

There are other competing theories for the identity of the H-band luminescence

involving various excitons, free carriers and/or the trapped hole states previously

mentioned, and there is evidence to support each claim8-11. ONMR is both in a position
to shed some light on this subject, and unable to address the full detail of the controversy.
On one hand, the results of the Knight shift imaging in chapter 5 and other experiments
pursued in our laboratory are consistent with either a donor bound electron or an
excitonic pseudo-donor (an isoelectronic defect that is substantially more attractive to the
hole part of the exciton than to the electron part, leading to properties that mimic a donor
bound electron as per the Hopfield-Thomas-Lynch model). However, we are not yet able
to say that the ONMR is originating from the same sites that give rise to the bulk of the
light observed in the region of the H-band. Indeed, we have seen ONMR signals from the
825-835nm region as well as from the 815-825nm region that are roughly equivalent in
magnitude. Therefore, the proven dependence of H-band luminescence properties on
factors that modulate the magnitude of the interfacial electric fields, as of yet, may not
have any bearing upon the search for the identity of the sites giving rise to ONMR. One
reason for this may be the requirement in the ONMR experiment that the nuclei can be
polarized by the presence of the spin-polarized electrons in a time equal to or shorter than
the ONP period of the ONMR experiments. Calculation of Tlon in chapter 3 of this
thesis shows that, even with the strong localization of a donor bound electron, the

correlation time for the fluctuations in the hyperfine coupling needs to be = 10 %s in order
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for Tlon to be shorter than the required timescale. This is approximately equal to the
residence time of an electron at a donor to which it is bound. It is unlikely that states with
much less localization or much shorter electron lifetimes would posses the requisite
ability to polarize the nuclear spins to which they are coupled by the hyperfine

interaction.

B. The Dewar and Probe

The ONMR experiments on semiconductor samples must be performed with the
sample at a temperature 10K in order to suppress phonon assisted, nonradiative
relaxation of the conduction band electrons back to the valence band. Thus, the optical
cryostat is a crucial part of the experimental apparatus. It is a blown glass dewar
manufactured by Pope Scientific that has three optical windows mounted on the tail of the
dewar for optical access to the sample from a variety of directions. Unfortunately, since
only one direction is required for the ONMR experiments, the other two windows serve
only to increase the heating of the liquid He at the core of the tail by subjecting it to the
blackbody radiation from the room temperature outer windows. A drawing of the dewar
is shown in figure 2.3 while figure 2.4 shows a schematic cross-section of the same

dewar, and figure 2.5 is a schematic illustration of the tail of the dewar.
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Figure 2.3 A drawing of the liquid helium cryostat
used in the experiments reported in this thesis. Itisa
blown glass dewar that is fused to a copper pipe that
has two branches. One branch is capped, and the
other branch leads to the high capacity vacuum pump
that is used to evaporatively cool the liquid helium to
the A point, the temperature where it becomes a

superfluid (~2K).
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Figure 2.4. A cutaway view of the
same cryostat. The inner chamber
is for liquid helium, and it is
surrounded with a vacuum space.
The outer chamber completely
surrounds these two chambers and
is, itself, further surrounded by

another vacuum space that is in

The glass walls of the dewar fold over themselves four times to yield two vacuum

jackets and two separate spaces for cryogenic fluid. That is, there is one continuous

vacuum space between all of the layers of glass, which are actually one continuous piece

of glass. The purpose of the outer fluid space is to act as a thermal blanket for the central
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Figure 2.5 A cross-section of the dewar tail at the level

of the optical window illustrates lengths A (diameter)

and B which should be chosen such that Tan(20°) < B/A

(i.e., such that from the center of the tail of the optical

window occupies an ang

le of ~40°). The cryostat used

for our experiments has B =1cm .
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fluid space. The outer
fluid space is filled with
liquid nitrogen several
times per day, and the
“belly” of the dewar is
only filled with liquid
helium at the beginning of
an experimental run. The
sample sits at the height of
the center of the optical

windows, immersed in a

bath of liquid helium.

The boiling point
of the liquid helium at 1
atmosphere of pressure is
4.2K, fulfilling the need
for sample temperatures

below ~10K. However, as

one might expect, the boiling helium is filled with bubbles of gaseous helium making

their way to the surface of the liquid, and these bubbles will refract the incident laser light

and the sample luminescence that are passing through the fluid.
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Figure 2.6 The home built NMR probe for the cryostat in
figures 2.3-5. It has one set of superconducting magnets in the
Helmbholtz arrangement that provide the Zeeman field, and a
second pair of Helmholtz coils made of 36 gauge copper wire
wound in a 3x3 array that provide the rf irradiation of the
sample. The leads are for (A,B) superconducting magnets,
(C,D) rf coils, (E,F) carbon resistor leads, and (G) connection

between the superconducting magnets.
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The solution to this
problem is to seek a
different phase of liquid
helium. If one applies a
vacuum to the space
holding the liquid helium, it
will cool, and it will
undergo a phase transition
to superfluid liquid helium
near 2K. This is a zero
viscosity fluid that obeys
Bose-Einstein statistics.
The super fluid does not
boil, and thus the optical
polarization of both the
laser light and the sample
luminescence is preserved.
The price paid for this
improved performance is

the loss of about 1/3 of the

liquid helium in evaporative

cooling of the remaining
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helium to a temperature below that of the phase transition (called the A point). When

operating with superfluid helium, the hold time of the dewar is approximately 7.5 hours

(that is, the helium will evaporate about 7.5 hours after the A point is reached).

The NMR probe is illustrated in figure 2.6, including a detailed drawing of the

probe head. The sample holder is a long, thin rod of G-10 fiberglass that threads through

—
<

0

15 2.3 3.5
Frequency (MHz)

e
)

&
N

Coil Response (a.u.)

Figure 2.7 (a) A drawing of the rf insert to the NMR
probe. The individual rf coils that make up the
Helmbholtz set are each a square array of 9 windings
of 36 gauge copper wire (i.e., a 3x3 array) that lay in a
trench 0.021” wide by 0.02” deep. Note that the
0.185” hole that is bored through the side of the plug
runs the length of the plug, and that the notch cut into
the front of the plug allows the sample rod mate into
the plug placing the sample in the center of the
Helmholz coil arrangement. (b) The response of this
same coil to input from an rf amplifier, illustrating the

breadth of the response over the region where ONMR

is practiced in our lab.

the center of the probe from top
to bottom, emerging in the
center of the Zeeman and rf coils
in the probe head. This end of
the sample rod is machined into
a thin paddle, and the sample is
mounted on the paddle with its
growth direction facing the
incoming laser beam (001
crystal orientation).
Furthermore, it is mounted on
one corner with a small amount
of vacuum grease, which
becomes sufficiently strong at
the low temperatures it will

experience in the cryostat (~77

K — 2 K). The sample used to
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be held with a thin coating of varnish across the entire surface adjacent to the paddle;
however, this induced strain in the sample due to the difference in thermal contraction
between the sample rod/paddle and the sample itself. This, in turn, induced a quadrupole
splitting in the sample that provided some interesting information, but was ultimately in
the way of the experiments being pursued. Additionally, besides mounting with vacuum
grease in only one corner, the sample must be cooled slowly to avoid residual
quadrupolar line broadening (greater than ~2 hours slow decent from cap to coils is

sufficient).

With the exception of the dewar cap, liquid helium fill port and line, and the
magnetic coils and their wiring, the probe is entirely made of G-10 fiberglass held
together with “Shygoo,” an epoxy that consists of equal parts resin (CIBA 6010),

hardener (CIBA 825), and finely chopped quartz powder whose thermal expansion

properties are matched to G-10 fiberglass!. G-10 fiberglass was selected because, while
it experiences thermal expansion and contraction in the cooling process, the thermal
changes cancel in such a way that its dimensions at 4K are approximately the same as at

room temperature.

The superconducting electromagnets built into the probe head provide the Zeeman
magnetic field, and, thereby, set the resonance frequency of the nuclear spins. These coils
provide large variable magnetic fields with minimal heat dissipation, and are constructed
of 54-filament Niobium Titanium alloy wire wound into groves in the probe head (G-10
fiberglass). The inductance of these coils at 2K is 1.67 mH, and they provide a field of

~20.5 mT/A at the center of the magnets (i.e., the sample position).
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The rf coil is wound around an insert, which can be seen in figure 2.6 between the
Zeeman coils (wire C leads to it), and is shown in greater detail in figure 2.7 along with
the response of the coil to input from an rf amplifier. A "'Ga rabi frequency of ~90 kHz
at 3.2 MHz resonance frequency has been obtained with this coil. The LR characteristics
of this coil at room temperature are L. = 0.6 pH and R = 0.55 Q while at cryogenic

temperatures (2 K) the resistance is 0.36 Q and the inductance is still 0.6 pH.

C. The Excitation and Detection Apparatus

The optical excitation path is depicted in figure 2.8, and consists of a laser that
primarily emits linearly polarized light, a linear polarizer used to further enhance the
linear polarization of the laser light, a focusing lens used to produce the smallest possible
laser beam diameter at the sample, and a variable quarter-wave-plate used to produce
either handedness of circularly polarized light depending upon its orientation with respect
to the direction of the linear polarization of the initial beam (right circularly polarized has
been used here). The optimal path for the excitation optics would be one that is normal to
the sample surface: however, the detection optics are already in this location, and 15°
from this location is about as close as the two paths can come to each other due to space

constraints.
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The excitation laser (Melles Griot, model 06DLD707) and its accompanying
driver (Melles Griot, model 06DLD103) were chosen for the following reasons. Its
wavelength was shorter than ~810 nm so as to markedly reduce the accidental detection
the laser light on the detection arm of the optics, but close enough to the detected
wavelength to assure that photoexcited electrons would not have to fall through numerous

states before arriving at

the sites from which
Excitation Optics

A4 - (variable

: they luminesce. It has a
TTL controlled angle; Tk sample v
. control)
diode laser : T
single-longitudinal,
Loy s Zeeman
l e\ > coils single-transverse mode
T _ _ structure.  Multimode
shutter focusing Bt gatls
lens

traneverss Beld lasers are difficult to
(variable angle)

focus since each mode
Figure 2.8 The excitation optics are aligned along a line that is

has its own k-vector.
about 15° from the axis of the magnetic field, which is colinear

' That is, each mode has
with the normal to the sample surface.

its own direction and

wavelength. Moreover, the modes are time dependent. Instead of all modes being

present at a given fraction of the intensity at all times, one mode at a time usually

dominates the others, and switching between modes is does not occur at constant light

intensity. Thus, there are fluctuations in the intensity of the light, potentially leading to

physics that would become convoluted with the results that were being sought. This laser

also had the highest maximum power output, which gives one the flexibility to explore



II-13

the effect of the intensity of the illumination upon the properties of the ONMR. Finally,
it had fast rise times and fall times during digital modulation (< 1ps), enabling the laser

to switched on and off precisely in selective windows of an NMR pulse sequence.

The detection optics are normal to the sample surface, which is colinear to the
direction of the Zeeman magnetic field supplied by the superconducting coils mentioned
in the description of the NMR probe. The optics configuration used during detection of

NMR spectra is

Detection Optics (parallel to B, and ~15° off axis from displayed in figure 2.9.
excitation path)

30 As the luminescence
UM A / 4

emerges from  the

sample it is collected

T

fiber focusing  collection
coupler lens lens

by a lens (1 inch in

diameter, f = 10 cm)

rf Heterodyne Spectrometer

that is held ~5 cm from

Figure 2.9 The detection optics are aligned along a line that is the sample, collimating

colinear the axis of the magnetic field as well as with the normal .
a portion of the

to the sample surface.
luminescence. This
light then  passes
through a quarter-wave-plate followed by a linear polarizer, and they are oriented such
that they pass the opposite handedness of light used in the excitation path (i.e., left

circularly polarized light). The collimated beam is then focused by another lens through

an 830 + 5 nm bandpass filter, and onto a spherical ball lens that couples the light into a
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fiber coupled (200 um core, 0.24 NA, multimode) avalanche photodiode (EG&G
Optoelectronics, model C30657-010QC-06), a sensitive detector of the total amount of

light that reaches it.

The careful selection of the frequency and circular polarization of the light that
will reach the photodiode in this apparatus serves several purposes. First, the frequency
isolation allows the study of a particular luminescent feature and the nuclear sites in the
vicinity of its origination. Secondly, the LBD signal is the modulation of the circular
polarization of the luminescence at the difference frequency between two nuclear
isotopes, and the detection of one of handedness of circular polarization separately from
the other at a given time is required to detect ONMR. Thirdly, the selection of the
orthogonal circular polarization when compared to the excitation path provides another
level of filtration of the excitation light. Meanwhile, it also serves to set the null signal at
a lower value. That is, the polarization used for excitation is likely present in larger
amounts in the luminescence (this depends on spin dynamics and relative field
orientations), providing a larger fractional modulation of the orthogonal polarization
during to the NMR experiment. Finally, during the measurement of the
photoluminescence spectrum, the normalized difference between the two orthogonal
circular polarizations probes the electron spin dynamics at the sites that give rise to that

feature in the luminescence.

The current from the avalanche photodiode is sent through a transformer that is
also an 80 kHz high pass filter, and this is followed a 1.5 MHz low pass filter. This

eliminates modulation of the photocurrent by 60 Hz electrical noise, higher harmonics of
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the LBD frequency due to nonlinear real-time LBD conditions, higher harmonics of the
LBD frequency in the photocurrent due to nonlinear detection such as saturation, and
frequency components of the noise in the photocurrent that fall outside of this band.

After the filters, the photocurrent enters the rf heterodyne spectrometer, which has been

detailed elsewherel-3-4.  Finally, the amplified, mixed down signal produced by the
spectrometer is digitized by a dual channel 16-bit A/D converter (Computer Boards,

model CIO-DAS 1402).

D. RF and DC Magnetic Field Sources

The rf waveform is generated by an arbitrary waveform generator (Signatech
model AWGS502), passed through an rf switch, and amplified by a 500 W, 0.3 — 35 MHz,
class-A, rf amplifier (ENI model 500A). The amplified signal is then sent through a high
power directional coupler, and into the rf feed-through on the dewar cap where it is
transmitted to the rf coil discussed in section B. Note the absence of tuning or matching
circuits in the rf path. The rf coil must be able to simultaneously irradiate "°As, “Ga and
"'Ga nuclei in order to fulfill its role in LBD experiments, and there is no way to tune and
match to even two separate frequencies with the robustness required by our experiments
while also achieving higher current (stronger B-field) in the coil at the specified
frequencies. That is, most of the power may be reflected, but the current through the coil
is high enough to fully meet the B-field producing requirements of the coil. This is

possible only because in the low radio frequency band (~1.5 - 3.5 MHz), where ONMR
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experiments are conducted in our lab, the coil is able to respond much more uniformly to
rf input than if experiments were conducted at higher fields (where the complicated
multiply tuned and matched circuitry would be required, and there would be virtually no
benefit to the experiments). Finally, the class A rating on the rf amplifier is of utmost
importance in enabling this unmatched circuit approach since this amplifier must be able
to take nearly 100% reflected power coming back from the rf coil without harm to the
amplifier. Class A amplifiers are rated to drive every circuit from an open to a short

without incidence of failure on the part of the amplifier.

As previously mentioned, the Zeeman magnetic field sets the resonance frequency
of the nuclear spins. Therefore, an accurate method of setting its magnitude is important
to the success and reliability of the experimental apparatus. The magnitude of this field is
controlled in two stages. In the first stage, a C program sends a GPIB command to a
lock-in amplifier (Stanford Research Systems, model SR510) to set one of two TTL
voltages. One of these voltages is the TTL voltage control input for an external power
supply (HP, médel 6264B) whose output is sent through the homebuilt current controller
that is schematically illustrated in figure 2.10, providing ~10 ppm accuracy in setting the
magnitude of the current. This controlled current is then sent to the Zeeman coils, which
produce ~20.5 mT/A at the position of the sample. These coils are typically operated at
~250mT as calculated by the positions of the NMR resonance of the isotopes addressed in

the discussion of the rf coils.
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However, in figures 2.7 and 2.8, there is also an auxiliary set of coils that are
orthogonal to both the Zeeman coils and the rf coils. This set of coils is external to the
dewar, and each of the two sets is made of an array of 31x31 windings of square (1.7
mm on a side) copper wire supported on a copper yoke with 19 cm inner diameter, 31 cm
outer diameter, and a width of 5.7 cm. Both yokes are held in variable angle, aluminum
stand at a separation of 12 cm. The variable angle capacity allows the coils to be tilted
+12° in the direction of the rf coils (i.e., relative to figures 2.7 and 2.8, in and out of the
page). The magnetic field produced by these coils is controlled by the second TTL
channel from the SRS-510 lock-in amplifier mentioned in the previous paragraph. This
TTL signal is the voltage control to a second power supply (HP, model 6675A) that feeds

directly into the external coils.

The function of these coils is to provide alternate directions for the Zeeman field.
This is necessary to more fully explore the electric field gradients induced by the presence
of a homogeneous electric field, which are discussed in chapter 3 (part b of section VI),
given that the secular portion of the NMR quadrupole Hamiltonian caused by these
gradients vanishes when the Zeeman magnetic field is oriented along the 001-direction of

the crystal (as it is for the superconducting magnets on the probe head).

E. The Computers - Command and Data Acquisition

The experiment and its timeline are orchestrated by a C program via GPIB control

from a personal computer. Meanwhile, the data acquisition is controlled by another C
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program on a second personal computer equipped with a dual channel 16-bit A/D
converter (Computer Boards, model CIO-DAS 1402). The general sequence of events is
as follows. The C program executing the experiment defines three parallel copies of the
experimental timeline. Each parallel version is for a different device, and contains
instructions relevant to that device and delay periods when it must wait for another device
to complete its own commands. The first set of instructions is sent to an external digital
word generator (Interface Technologies, model RS670) via the GPIB board (National
Instruments, model AT-GPIB) that is plugged into an ISA expansion slot on the
computer. The digital word generator is operated in 16-channel mode, where each
channel is an independent TTL voltage control signal, and the internal system clock
operates at 40 MHz, providing timing resolution of 25 ns. An additional set of
instructions sent to the 12-bit arbitrary waveform generator (Signatech model AWG502)
that is plugged into the second ISA slot of the same computer. It is responsible for
digitally generating the rf waveforms and dispensing them at the exact moment they are
needed. Pulses are sent only to the ampilifier and on to the rf coil, and the LBD reference
frequency is sent to the spectrometer to be used to mix down the photocurrent to audio
frequencies. Finally, one last set of instructions is maintained by the C program itself for

operation of other devices (lock-in amplifier and laser diode driver) by GPIB command.

[t is advantageous for as many of these sources as possible to run on the same
clock, given that different clocks can have small drift that can add up to noticeable
experimental interference. For example, if two 40 MHz clocks have 10 Hz drift between

them, the difference after 5 seconds will be 50 cycles or ~1.25 ps, which is ~1.2us too



11-20

long if one clock controls the rf pulses and the other controls the laser pulses that need to
be in the windows between the rf pulses (see chapter 5). Synchronization of the two can
be accomplished by configuring the AWGS502 to accept a TTL pulse that tells it to begin

running on a 40 MHz reference supplied by the RS670.
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lll. Optically Relevant Defects - Theory and

Calculations

Interpretation of many of the experimental phenomena we have observed has
required extensive theoretical and numerical calculations of properties and phenomena in
the GaAs lattice, especially around shallow defects. These computations are reviewed
here on a component-by-component basis. First, a simple description of how one may
locate all of the nuclei in the lattice, and perform a reasonably easy, efficient summation
over all of these sites is presented. The discussion then covers the signal weighting as a
function of spatially dependent polarization (ONP) before the experiment and during the
detection as well as the optical detection weighting. Next, computations of electric field
gradients due to both spatially varying electric fields, and homogeneous electric fields in
GaAs are covered, including the spatial variation of the fluctuations in these electric field
gradients as well as the implications of this new fluctuation hypothesis on the theory of
the ONP rate. Finally, the calculation of the coherent evolution of the system without
resorting to common approximations such as the nearly ubiquitous rotating wave
approximation is described. The sum total of these components can be integrated to yield
a site by site calculation of single nucleus spin dynamics that displays rigorously accurate
tf effects upon each sites total Hamiltonian, including the Knight shift and nonsecular
quadrupolar interactions. A sample calculation of this variety is included in appendix A

of this thesis.
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The GaAs lattice consists of two interpenetrating face-centered-cubic (fec) lattices. The

gallium nuclei reside in one of these fcc lattices sites, and the arsenic nuclei reside in the

other. Moreover, the sites of one lattice are simply offset from the other lattice by a

©0o04) (@R
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Figure 3.1 Representation of a unit cell in the GaAs lattice.

(444)

(440)

translation by one
quarter of a unit cell
length (i.e., 5.65A/4)
along each of the
crystal axes  (or,

equivalently by
V3(5.65A)/4 in the

111-direction). This is
illustrated in figure 3.1
where  the  purple
points comprise one

fce  lattice and the

turquoise points comprise a separate fcc lattice. It can be difficult to see that the

turquoise points do indeed comprise an equivalent lattice. However, note that lattice

indices of each turquoise point are produced by adding (111) to the lattice indices of a

purple point. That is, the turquoise points form a replicate lattice based on the purple

points but displaced by (111). Thus, the point (111) is a corner of a unit cell like the
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point (000), and the other three blue points are the face-centers of this new unit cell like

the points (022), (220), and (202) in the first unit cell.

These concepts may extended one step further. Indeed, each fcc lattice can be
viewed as a set of four interpenetrating simple cubic lattices. Looking again at figure 3.1,
the corners of the unit cells are the most obvious of the simple cubic lattices.
Furthermore, the top and bottom face-centers form a simple cubic lattice with the top and
bottom face-centers of all of the other unit cells. Similarly, the right and left face-centers
form another simple cubic lattice, and the front and back face-centers form the final one.
Therefore, one way to sum over either all of the gallium sites or all of the arsenic sites is

to follow the following rudimentary algorithm

1. Start at (000). Take steps of one unit cell in length along each of the

crystal axes, mapping out a rectangular grid.

2. Start at (022). Repeat the stepping algorithm in part 1.

3. Start at (202). Repeat the stepping algorithm in part 1.

4. Start at (220). Repeat the stepping algorithm in part 1.

There is clearly much redundancy in this algorithm as the same thing is repeated

four times from different starting points. This may easily be eliminated as follows.

It is readily verified that the coordinates of each of the purple points in figure 3.1
can be obtained by translation from (000) by either (022), (202), (220), or some

combination of these. Rephrasing this, we can say that for any site in the lattice of purple
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points its coordinates will sum to an integer multiple of four. This is a very useful result

since it leads to the following alternate algorithm.

Start at (000). Take steps of one half of a unit cell in length along each
of the crystal axes, mapping out a denser rectangular grid. At each
point ask if the sum of all lattice indices is an integer multiple of four,

and do the calculation only if the answer is yes.

Besides being more efficient, this technique allows one to include the other fcc
lattice by including a secondary conditional statement that asks if the sum of all lattice

points minus three is an integer multiple of four.

The sum over all sites can be reduced to a sum over a subset of sites due to the
symmetry of the crystal in cases where this symmetry is unbroken. While it is true that
zinc-blend crystal structures such as GaAs lack inversion symmetry, each point in the
lattice has S4 symmetry. Consequently, if we are summing over lattice sites in the
presence of a perturbation with spherical symmetry (such as a point defect) that is
centered at a lattice point, then summation over any quadrant of the lattice about that
perturbation is equivalent to summation over any other quadrant. Indeed, if we are only
concerned about the properties of elements of only one of the fcc lattices, then, so long as
the center of symmetry is centered at one of these lattice points, we may restrict our

calculation to a single octant and still be rigorously accurate.

In the case of summation over sites near a point defect, it is also efficient to limit

our summation to those sites within a certain radius of the defect rather than using
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rectangular boundaries. This is justified since contributions to the sum decrease with
increasing radius (otherwise one would have to sum to the edges of the crystal). For

summation over a quadrant using lattice indices 7, j, and k, we let i take on values from —n

to n while j goes from zero to vn’ —i* and k goes from zero to /n’ —i* — j*. This

reduces the workload by approximately the ratio of the volume enclosed by the
summation over spherical boundaries divided by the volume enclosed by the summation

over rectangular boundaries. This can be estimated, in the limit of large », by the ratio

3
n/3 7w . ) ] )
5 { =--=0.524, and exact numerical evaluation of the ratio of the number of sites
P

included with each type of boundaries gives about 0.516 for n =144 (~200 A).

Finally, to be exact when performing the lattice sum over one of these reduced
sets of sites, the nuclei that are bisected by our chosen boundaries must be weighted by a
factor of one half for each boundary plane that bisects them. This is cumbersome since
these sites must be evaluated separately, or additional conditional statements must be

applied during the calculation to determine the proper weighting of a given lattice site.

What error would be introduced if we ignored this weighting? We should expect
this error to be very small since it goes as ratio of the surface area to the volume of the
region included in the summation. For calculation of a quadrant out to n = 144, this error
is only about 1% for either a uniformly weighted sum or an exponentially weighted sum

(with a 1/e coefficient of 100 A).
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B. Polarization and Detection Weighting

The ONP process at the site of a point defect leads to the characteristic nuclear
polarization and NMR signal distributions about the crystallographic point defect in both
the position domain and the frequency domain. These distributions will now be
considered. The two limiting cases of infinitely fast spin diffusion and negligible spin
diffusion will now be addressed using a continuous medium approximation with the
expectation that the observed signal will lie in some intermediate region between these

polar opposites.

In the case of negligible spin diffusion, the ONMR signal from the nuclei in the

vicinity of an ORD can be expressed as
S (tonps i1, ) = O P(Fotonp ) s (1,8, ) U (1,1, (3.1)

where P(r, tONp) is the polarization of the nucleus at a given position r at a time fonp (the

end of the ONP period), s(r.t,) is the NMR signal that is dictated by the nuclear spin
Hamiltonian at a given position and that the particular details of the NMR experiment,
and U (r, t'z) is the optical detection weighting of the nucleus at a given position when a
certain detection condition is used for a duration .

Spin diffusion effects could be negligible for one of two reasons. First, the rate of
ONP may be much more rapid than the rate of spin diffusion on the time scale of the

experiment for the nuclei detected by the experiment. That is, the experiment is too short

to capture spin diffusion, but long enough to capture ONP. Second, the spin diffusion
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process may be short circuited in the vast majority of the region around the point defect
by the large differences in the Quadrupole and Knight Shift Hamiltonians of neighboring
nuclei, preventing the spread of nuclear polarization to those sites where it could diffuse
rapidly to other nuclei (the so-called frozen core effect, which is approximated for the
case of an explicit spin diffusion calculation in section H of chapter 4). In any case, what
would be observed is the sum of the ONP behavior of each of the individual nuclear sites

over the time frame in question as expressed in equation (3.1).

The polarization weight P in equation (3.1) for the nuclei around a point defect
will be calculated first. As discussed in chapter 1, spin polarized electrons that are in
hyperfine contact with nuclear spins will tend to polarize the nuclei. This polarization
will develop with a time constant 7' that depends on the strength of this hyperfine

contact. That is,

P(t)zl—exp(—%]. (3.2)

1

Moreover, the time constant 7} can be very well approximated asl

— =TI ¢ (3.3)

where I' is the probability that the defect state is occupied by an electron, 4 is the strength
of the hyperfine interaction of this electron with a nucleus, . is the correlation time of the
fluctuations of the hyperfine interaction, and ® is the Larmor frequency of the electron in

the total magnetic field which it feels (the externally applied field plus the nuclear



I1-8

hyperfine field). Of course, the hyperfine interaction is spatially dependent for those sites
around an occupied defect, so equations (3.2) and (3.3) must be revised to bring them in

line with equation (3.1). This yields

P(r.t)=1 —exp(—f%)—j (3.4)

and

—r[ (r )] 1+a:212 (3.5)

U (l‘)

Equation (3.5) can, in turn, be expressed as

1 27
1|2 | |+= 3.6
]—i (r) 1:3 ﬂogoﬂB}/a,Hz '//a (r)| 2.2 ( )

where the subscript a refers to the nuclear species present at position r (o0 = "Ga, “Ga, or
As). Note that equation (3.6) demonstrates that the rate of ONP depends on the fourth
power of the amplitude of the electronic wavefunction at the nuclear site. That is, at
nuclear sites where the amplitude of the wavefunction has dropped by a factor of two, rate

of ONP will drop by a factor of sixteen.

In the case of an occupied donor, equation (3.6) becomes

o]

2
.y oo 2MT 2
T (r) = r[z Ho8oHpY o pia [GOJGXP( u 1+ 07 (3.7

or, collecting terms, this may be rewritten as
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with

* 2t
T (O) [3 HoBoHBY o iz [a H 1+a)2702 . (3.9

Additionally, inserting equation (3.8) into equation (3.4) yields

P(r,t)zl—exp( ; 20) exp( 4@'?“)) (3.10)

Q

In the absence of spin diffusion, this equation provides an adequate description of the
polarization weighting at a given nuclear site after a given duration of ONP. However,
the detected nuclear polarization is generally the sum over all radial positions (the
exception being the case of radially resolved Knight shifts, addressed later in this

section). That is,

a

o}

P(r)= 21 exp[ T(O)exp£ 4"rm. (3.11)

Note that this polarization will be ever increasing until the edge of the crystal
finally limits the amount of polarizable material that can be included in the sum. Yet,

only those nuclei that can be optically detected will actually contribute to the optically

measured polarization. The function U (r,tz) must then be addressed in order to proceed

further. An extremely reasonable starting point for this function is just the A(r) , the
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hyperfine coupling of the nucleus at position r to the electron bound to the shallow donor,
since the optical detection at any given nucleus is proportional to the strength of the

hyperfine interaction at that nuclear site. This leads to a detection factor with functional
form that is proportional to y(r) of the electron about the shallow donor. Using this
optical weighting factor is essentially an assumption that the ONMR experiment is
detected using real-time detection of the beat pattern between the two precessing nuclear
species, and that spin diffusion does not interfere with the polarization during detection.
If point-wise detection using spin-locked nuclear magnetization is being employed, then
the effectiveness of the spin-lock in the face of strong quadrupole and Knight shift
interactions near the donor site must be considered, calculating the nuclear spin-

Hamiltonian at each site, propagating the density matrix through the detection period,

and, finally, applying the w’ (r) optical detection weighting to this calculation to obtain

an accurate anSwer.

Simply applying the y’ (r) weighting to equation (3.11), produces

Py (1) = fi]Zexp(—%{jEﬂJ(l —eXp[— T 20) exp(— 4!}:“)}) : (3.12)

One may attempt to probe the accuracy of this approach by conducting a set of spin echo

experiments where the ONP time before each spin echo experiment is incremented. The
integrated peak intensity versus ONP time then will yield the sum of all the polarization

weights for the individual atomic sites weighted by the optical detection profile. That is,
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Figure 3.2 The weighted summation of the polarization from all nuclear sites within 300A of a
shallow hydrogenic donor with a 100A Bohr radius and 7} (0) =80ms (solid purple line) and the

best fit exponential to this particular data series (dashed black line). It will require ~10,000s for

the purple line to rise to within one percent of reaching unity (its asymptotic value).

the accumulated nuclear polarization versus the ONP time 7onp used to produce it is

simply a weighted sum of the single exponentials for each nuclear site.

Evaluation of this sum has been accomplished both in Mathematica and by
developing and using Fortran90 programs (these yield the same answers as the

Mathematica calculations, but run approximately six times faster). The results of a

representative calculation are shown in figure 3.2. The value of 7, (O) in this
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computation is 80 ms, and the sum is carried out to ||rn =3a, , assuring that ~99.4% of the

donor-bound electron’s probability density is included (i.e., at least 99.4% of the total

detectable nuclear signal is included). Note the fast initial rise due to sites at

¥ < @, (sites with 7; <4.4s) and the exceedingly slow long-term rise due to sites at

¥ = @, (sites with 7, >4.4s). Indeed, the units on the ordinate axis were chosen such

that, when the calculation is done at sufficiently long times that all of the included nuclei
are completely polarized and sufficiently far out from the donor that the radial sum has
converged, the asymptotic value that the computation will be approaching is one. In the
case of this particular calculation, ~10,000 seconds of ONP are required for the detectable
polarization to be within 1% of its asymptotic limit. Needless to say, the best-fit single
exponential is strongly dependent on how much of this long tail is included in the fitting
process. However, even if it is possible to ignore spin diffusion for some earlier portions
of this curve, certainly spin diffusion will be a factor long before 10,000s in any real
GaAs crystal. Therefore, in a real sample, one should, at best, expect a transition from
behavior somewhat like the beginning portion of this curve to a premature asymptotic

limitation of the detectable polarization.

It should be pointed out, however, that these calculations are all relatively
cumbersome, and they do not yield any analytical answers. Making a continuum
approximation to the discreet atomic nature of the crystalline solid may advance the
understanding of this physical system. Such a continuous dielectric medium

approximation produces an analytical solution for the radial distribution of the NMR
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signal about a shallow donor as well as for both the time and frequency domain of this
same NMR signal. Moreover, the differences between the discrete calculations and the
calculations using the continuous dielectric medium approximation indicate that
experimental detection of the difference between the signals would require a signal to
noise ratio at least of the order of magnitude of a thousand to one to for them to
convincingly rise from the grass of spectral noise. This represents a considerably higher
ratio of signal to noise than we have achieved to date, and, therefore, the continuous
dielectric medium approximation should be sufficiently sound to allow accurate

calculation of most physical properties of this system. Thus,

P(r,0) =1 —exp{—%exp(—%ﬂsﬂﬂ (3.13)

0

gives way to

P(r.1) ~ (1 —exp{—?z—é-)-exp(—gﬁm (3.14)

where r the continuous variable has replaced r the discrete vector. Equation (3.14) is
plotted in figure 3.3 for four different values of time, and the x-y axes are labeled in

dimensionless units of r/a,

In the time domain, the explicit expression for the optically detectable polarization

P, (1) = [i}zr:exp(—%:“}[l —exp[-Tl—szexp(~47”:ﬂjD (3.15)
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gives way to
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with ryax effectively determined by the length of the ONP period as well as by the signal

to noise ratio of the experiment. To be rigorously accurate one should set r,, =o0, and

this will be required for symbolic integration, which will be performed in Mathematica.

The symbolic integration yields

[)0[) (l) = 1 - qu({%7%5%};{%3%9%};- [lzo)) (3.17)

where  F, is the generalized complex hypergeometric function. Evaluation of this

function in Mathematica is accomplished by the following series solution

JF, (ab,2)= Y| S = (3.18)

which is numerically stable for z <45 (times less than 3.6s, given our sample 7, (0) of

80ms); however, this class of functions is a very well studied, and other representations of
the function that are stable over different intervals are likely available, enabling one to
compute values along the entire curve. Figure 3.4 above shows this function plotted in

Mathematica, where all of our earlier plotting was done, over the region that the series is
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Figure 3.3 Time progression of the nuclear polarization as expressed in equation (3.14) at

10, 100, 1000, and 10,000 times 7; (0) in a, b, ¢, and d, respectively. The x-y axes are
plotted in dimensionless units of r/a,. Note that each order of magnitude increase in the

ONP time increases the polarized area by roughly a,/2 in every direction.

useful, and on the same graph as the explicit sum over sites and the single exponential

best-fit to the sum over sites.
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Figure 3.4 Overlay of the plot of the generalized complex hypergeometric function

F s ;{—g—,%,%};——?iz—o)) (solid blue line) on the summation over sites (solid purple

line) and the single exponential best-fit to the summation over sites over this interval (dashed
black line). The line from the hypergeometric, achieved using the continuum approximation,
lies precisely on top of the line from the summation over all sites. Meanwhile, the best-fit
single exponential can’t duplicate the functional form of either of these, even over this

abbreviated interval.
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C. Shallow Donor-Knight Shift Calculations

Continuing upon the course set in the previous section, one of the types of NMR
signal function that we have encountered in laboratory experiments will now be
considered. That is the Knight shift, as discussed in section VI of chapter 1. This nuclear
interaction is just the resonance shift provided by the Hyperfine coupling to spin
polarized electrons. As such, when this resonance shift is the parameter being measured

by the NMR experiment, equation (3.1) can be updated to

r

4] 2|\ 2
S (fONP,tl,tz)—[i]Z(l—exp[yg?g; e Nexp(—ﬂml foe ]e % (3.19)

or in terms of continuum approximations

© 2 il 2y 2
S (oot = () [ 2 [1—e><p[yf‘23§ e " Hexp(—izmlfoe . ]e “ dr. (3.20)

r=0 "0

Note that the loss of NMR signal in the detection period to repolarization of the nuclei
has not been taken into account in these equations. This will be introduced toward the
end of this section. The present calculation is relevant to real-time detection of ONMR
while the latter discussion (the one including repolarization during detection) is relevant

to spin-locked detection of ONMR signals.

It is instructive to contemplate the special case of equation (3.20) where the
polarization weighting is assumed to be approximately spatially uniform. Progressively

more general cases will then be considered. While it is true that we are paring down the
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problem to lay a foundation for increasing levels of complexity, this is not just an
academic exercise. ONP can produce spatially uniform polarization in either of the two
following cases. First, if the ONP rate is exceedingly fast over the entire optically
detected region on the experimental time scale, equation (3.4) will be equal to one for all
sites considered. Similarly, if spin diffusion is very rapid compared to the ONP rate of
the vast majority of optically detected nuclei, these nuclei will share polarization much
more rapidly than it can accumulate at any given site, producing nearly uniform nuclear
polarization over the optically detected area. Moreover, while there will always be a
negligibly small number of nuclei with ONP rates that are faster than any possible spin
diffusion, these sites are also the most likely to experience frozen core effects and
extreme resonance shifts which further reduce their effect on the ONMR signal of the
nuclei in the optically detected region. Additionally, if spin-lock detection were being
used, the optical detection would be strongly weighted against sites with ultra fast ONP as
these sites re-ONP during detection, losing all memory of their contribution to the NMR
signal. The particulars of spin diffusion will be ignored here. The explicit case of

simultaneous spin diffusion and ONP is considered in chapter 4.

Thus, with spatially uniform polarization equation (3.1) becomes
S(IOvatlatz):Zs(r»tl)U(rJz): (3.21)

and equation (3.20) becomes

© 2 ey -2
il ol i) e, om
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Plotting just the detection weighting as a function of radius produces the familiar density
profile of a 1s orbital. Indeed, one might expect that, since the peak of that curve is at

r =a,, the peak of the NMR spectrum will also be at the Knight shift of the nuclei at
r=a,. This couldn’t be further from the truth. This can be illustrated very clearly by

pursuing a u-substitution on equation (3.22), with

2|

u=e® . (3.23)

This yields

S(4)= {?] ]J' log® (u)exp(—i2zt, fyu)du . (3.24)

u=0

If the Fourier transform of this function is now taken, its frequency domain spectrum will

be obtained, yet this is a trivial operation since this equation is already an inverse Fourier

transform of the function log”(u) over the region from 02u>1 (0< /< f, since

u=f/f,) back into the time domain. Therefore, log’ (u) is the functional form of the

spectrum, yet this function has a sharp discontinuity at zero frequency. The value of the

function is infinite at f =0. This occurs because the electronic density, and thus the

signal strength, is falling exponentially with increasing radial distance, but the Knight
shift is falling with the identical exponential function. This means that, while the signal
from a shell of nuclei at a given radius is declining extremely rapidly with increasing
radial distance, the difference in frequency space between the Knight shifts of the two

shells is also decreasing at the same rapid pace, allowing the signal to pile up to an
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infinite spike for an infinite crystal with uniform polarization. The most important
conclusion that can be drawn from this is that any attempt at analyzing an experimental
radial resolution of the Knight shift where the polarization is anywhere near uniform must
address the spatial profile of the polarization to obtain an accurate answer. That is, the
peak of that spectrum will be determined by the exact profile of the polarization’s decline
rather than by the value of the Knight shift at any given radius, as has been assumed. A
corollary to this point is that the broadening of the line by the Knight shift is a much more
sensitive probe of the size of the hyperfine interaction than the shift of the peak of the

resonance curve.

Returning to the case of non-uniform polarization, equation (3.20) will now be

broken into the following two pieces

® 2y -2
S([ONP’ll’l ) ( J Ir eXp[ i2nt, foe ]e % dr
Z0 %

oo Al Ay -2
( ] J. ’ON" “ lexp| -2zt fye © |e “ dr.

The first piece of this equation is just equation (3.22) while the second piece can be

(3.25)

Q[\
[~JR V)

solved by the same u-substitution (the one in equation (3.23)), combining these results

one obtains

S (u) o< log? (u)[l—exp( Tozz’s D (3.26)
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Finally, the effect of repolarization of the nuclei during the detection period will
be considered. When one detects for a time 5, one integrates the signal obtained over this
time frame. However, the detected nuclei are still being optically pumped during their
detection, thereby losing their memory of the polarization state that they were in at the

beginning of the detection period. Given that the fraction of nuclei that have repolarized

after detection for a time f, is l—exp(—tzu2 /T, (O)) , the fraction left in the polarization

state present at the beginning of the detection period is exp(—tzu2 /T, (O)) Integrating

this and combining it with equation (3.26) generates

S () o« log’ (u)(l - exp(_;]c’l(@ot)lz n zgu(zo ) (1 —exp(%%‘)%n (327)

This formula fits the experimental data for short ONP times (4, S0.7s) in both the £,

and £, time domains, but is utterly incapable of producing the correct line shape for any

longer ONP times2. It will see in chapter 5 that the addition of spin diffusion to these
equations provides the capacity to produce the correct line shape. That is, the data is in
an intermediate region where spin diffusion is dramatically changing the spatial profile of
the nuclear polarization but still not producing totally uniform nuclear polarization. See
chapter 5 for a detailed discussion of the fitting of experimental data of varying sorts

experiments, and chapter 4 for a more thorough discussion of spin diffusion.
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D. Electric-Field Induced Electric-Field-Gradients in GaAs

There are two sources of electric field gradient at each nuclear site in the vicinity
of an electron trapped at a defect. The first of these is the gradient of the electric field of
the net charge of the defect at that site. The net charge is the difference between the
charge of the defect atom and the amount of electric charge that screens this charge (the
amount of electronic density which is localized closer to the defect atom than the distance

between the defect atom and the nuclear site). The second source was discovered by

Bloembergen3, and it results primarily from the changes in the hybridization of the
chemical bonds between atoms in the crystal when a homogeneous electric field is
applied. When the crystal lacks a center of inversion these deformations of the electronic
structure of the crystal lead to nonzero electric field gradients at the nuclear sites. Thus,
even the homogeneous component of the electric field around an occupied point defect
will give rise to a quadrupole splitting of the nuclei in GaAs and most other

semiconductors.

There is also a smaller homogeneous electric field effect due to the
piezoelectricity of the crystal (~107 with respect to the hybridization effect in GaAs).
This results from the positively charged atoms in the crystal moving in an opposite
direction with respect to the negatively charged atoms in the crystal. This deforms the
unit cells of the crystal, and, therefore, the crystal as a whole. Note that lack of an

inversion center is not a requirement for piezoelectricity of the crystal.



11-23
1. The direct gradient of the electric field
First, let us consider the electric field gradient of a bare positive charge in a

crystal. If the crystal is a semiconductor such as GaAs, this crystal defect is known as an

unoccupied shallow donor. The electric potential in this case can be written as

V=-= (3.28)

where b is a constant that depends on the electric properties of the material that is being
studied. Computing all possible second partial derivatives of J will then generate the

electrostatic field gradient tensor V. Starting with derivatives with respect to x, one

obtains
%:”%’ (3:29)
ZZ _ b(3x:5" r’) _ _:)_3(3c052 y-1)= -—’%(3cos2 $sin® 6 — 1), (3.30)
syz;/x :_31:?’ :_%?—cos;/cos,b’=—§}%(sin2¢sin29>, (3.31)
and

oV 3bxz  3b 3b .
- =—Fcosycosa=—2—r?(cos¢sm2 0) (3.32)

ozox P
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where a, B, and y are the angles between the direction of the electric field and the z, y,
and x axes respectively for the axis system chosen, and 6 and ¢ are the polar and

azimuthal angles respectively for the axis system chosen.

Similar calculations lead us to write the entire electrostatic field gradient tensor as

3cos’gsin®@—1  2sin2¢sin®@  cosgsin® O
. b 2 2
V=——| 3sin2¢sin’@ 3sin’¢sin’@—-1 3singsin*@ 3.33
2 2

3
¥ . . .
3cosgsin’ @ 3singsin’@  3cos’ @ -1

where the rows and columns are written in order of x, y, and z respectively. Note that,
due to the radial symmetry of V, no choice of an axis system relative to the crystal has yet
been forced upon us. The magnitude of the secular portion of the quadrupole interaction
may be determined by computing the component of V along the vector describing the
magnetic field, and multiplying this by the quantum of a single electric charge e and the
nuclear quadrupole moment (. The product of these two factors represents the energetic
effect of an electric field gradient at the site of the nucleus. Moreover, that portion of the
quadrupole interaction that commutes with the Zeeman Hamiltonian (i.e., that portion of
e¢QV which is directed along the magnetic field), is approximately the only portion that
affects the energy of the nuclei, given that the Zeeman interaction is much larger than the
quadrupole interaction that arises in this way. This leads us to express the quadrupole

splitting @, as

(3.34)
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This must then be normalized by a spin dependent factor that accounts for the fact
that O has been defined in purely geometric terms. That is, it is defined by the extent to
which the nucleus is ellipsoidally shaped, yet this does not account for the fact that this
ellipsoid will precess at different angles and frequencies with respect to the magnetic field

depending on the size of its intrinsic spin angular momentum. The appropriate spin
dependent factor is 4/ (21 - 1) as given in Mehring?. This leads one to write

@, )
% = 7*7(57—_1)(312 I(I+1)) (3.35)

where the operator

31 -1(1+1)

41(21-1) (3-36)

is the normalized operator that expresses secular quadrupolar energy. If B is kept in a
general form, described in terms of O and ¢g, the following equation is produced
cosg, sinb,
w, =eQ(cosg,sinb, sing,sing, cosd,) V| sing,sind, (3.37)
cosd,
where oq is eQV, in the frame of the applied magnetic field. From this point on 0 and ¢
measured from the direction of the electric field shall be refered to as Op and ¢g. Using

this notation, and after some algebra, the following is obtained

3
d r

o =220 (3(cos(¢B — ¢ )sinf, sinG; + cosf, COSHE)—I). (3.38)
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This simplifies further if one is willing define a new angle & which is the angle between
the magnetic field direction and the electric field direction. Using trigonometric identities

one obtains

0, =2 (3c0s 5 -1). (3.39)
r

This should be expected since it is what one would obtain if one introduced a magnetic
field in the z-direction as defined by the axis system used to describe the electric field
gradient tensor above. However, given the spherical symmetry of the system it is not
surprising that any arbitrary direction of magnetic field will produce the same result

relative to that magnetic field.

Numerical evaluation of the constant b in GaAs (in MKS units) yields

b= e

47[50)G3A5h

=1.655x10” (3.40)

and, therefore,

e0b=2.970x107 (3.41)

where e is the charge of a single electron, and &,,,, is the permeability of GaAs (~13.1

times the vacuum permeability). Moreover, Arsenic and both types of Gallium are spin-
3/2 nuclei (/ = 3/2). This yields the values in table 3.1 for the magnitude of w4 as a
function of distance (satellite to satellite frequency difference, not including angular

factors). Note that the relative radius for a shallow donor with a 100 Angstrom Bohr



z=r/a, | Amount of signal Ha)q ” (Hz)
outside of this radius
0.1 99.9% 593.9
0.2 99.2% 74.24
0.3 97.7% 22.00
0.4 95.3% 9.28
0.5 92.0% 4.75
0.6 87.9% 2.75
0.8 78.3% 1.16
1.0 67.7% 0.59

Table 3.1 The quadrupole splitting arising from

the direct field gradient of a bare charge.
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radius and the relative amount of
optically detected signal outside this
radius (for the case of wuniform
nuclear polarization) are listed along

side these values of o.

This clearly. demonstrates
that, even with a 20 Hz linewidth,
greater than 95% of the sites around
an unoccupied shallow donor have a
negligible quadrupole interaction due

to the gradient of the electric field.

Now, let us consider the

electric field gradient arising due to

the spatial variation of the electronic charge distribution of an electron bound at a

positively charged defect in the crystal. That is, a site which is positive in its unoccupied

state, and neutral in its occupied state. This is referred to as an occupied shallow donor.

As in the previous case, this system exhibits radial symmetry, so only the magnitude of

the second derivative will be computed. The electric potential may be written as

where

V:_b(l* J:'/fz(n)dn)

(3.42)
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1//(r) :%exp(—z). (3.43)

Computing V" and taking its second derivative with respect to r yields

2exp (—22)
3_3
'z

o, =eQb (1+2z+22° +42"). (3.44)

Evaluating this numerically, one obtains the values in table 3.2, assuming a 100A Bohr

radius.

This further illustrates that the gradient of the electric field around a singly

occupied shallow donor so weak

2=t Amount of signal ”a)q U (Hz) that roughly 98% of the detectable
outside of this radius signal comes from sites that have a

0.1 99.9% 593.5 negligible quadrupole interaction,
0.2 99 2%, 73.98 even with a 20 Hz linewidth.
03 97.7% 21.88 Indeed, even though the percent
0.4 95.3% 927 change in the  quadrupole
0.5 92.0% 4.81 interaction of the occupied donor
0.6 87.9% 5 85 at a given radius with respect to the
0.8 78.3% 1.29 unoccupied donor is maximal at
1.0 67.7% 0.72 radii where a high fraction of the

signal  should originate, the
Table 3.2 The quadrupole splitting arising from the

quadrupole interaction itself has
direct field gradient of an occupied shallow donor.
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fallen off to negligible values at these radii.

Now, let us consider the electric field gradient arising due to the spatial variation
of the electronic charge distribution of an electron bound at a neutral defect in the crystal.

That is, a site that is neutral in its unoccupied state, and negatively charged when it is

occupied by a free electron. Isoelectronic defectsd-10, for example, fall within this
category. As in the previous cases, this system again exhibits radial symmetry, so only
the magnitude of the second derivative will be computed. The electric potential may be

written as

b w?(r)dr
,_ofv()

r

(3.45)

where 1//(r) depends on the defect potential. Assuming this is approximately a spherical

box with a finite potential barrier, y (r) can essentially be represented as

w(r)= ﬁexp(ﬂz). (3.46)

Computing / and taking its second derivative with respect to r gives rise to

©, = eQb (3.47)

(—222 exp(—z°) - 2exp(=2") —3\/;[— erf (z)}

2z

4
aNr

where erf(x) is the standard error function evaluated at x. That is,

erf (x) = 71; fx exp(—yz)dy : (3.48)



Evaluating equation (3.47)
numerically, one obtains the
values in table 3.3 as a function of
radius for the case where the Bohr

radius is 100A.

These values are clearly
far too small to ever be of any
experimental importance. Thus,
the gradient of a spatially varying
electric field around commonly
occurring defects cannot give rise
to a significant quadrupole
interaction at the detectable sites

around such defects.
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7= 1/a, Amount of signal ”@q “ (Hz)
outside of this radius
0.1 99.9% 0.431
0.2 99.4% 0.385
0.3 98.1% 0.313
0.5 92.0% 0.124
0.75 77.1% -0.107
1.15 45.0% -0.257
1.5 16.3% -0.179
2.0 4.6% -0.027

Table 3.3 The quadrupole splitting arising from the

direct field gradient of a defect that is negatively

charged when occupied by a free electron.

2. The electric field gradient induced by a homogeneous electric field

Bloembergen has showed that there is a linear stark effect in crystals that lack a

center of inversion, which results in the appearance of a quadrupole splitting when a

homogeneous electric field is applied3. That is, when a homogeneous electric field is

applied to a crystal that lacks a center of inversion, it will induce electric field gradients at

the nuclear sites. This is predominately due to mixing of the valence (bonding) electronic
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orbitals of the atoms in the crystal. The electric field gradient tensor induced in the case

of GaAs has been shown to be

0 cosd; sing, siné,
V=E(R,+S,d,)| cosb, 0 cos ¢ sin 6, (3.49)
sing, sinf, cos¢, sinb; 0

where the rows and columns are written in order of x, y, and z respectively. This equation
is written with respect to the crystal axes since the interaction is due to the symmetry (or
lack thereof) of the crystal. However, the crystal is often oriented differently with respect
to the axes system of the NMR experiment. This greatly affects the NMR Hamiltonian
that we write since the usual practice of writing the quadrupole Hamiltonian as

__ €9 i,
q_4[(21_])1 V-1 (3.50)

is predicated on writing I, the vector whose x, y, and z components are the x, y, and z spin

operators, in the same bases as V.

a. The case of a 001-oriented magnetic field

When the magnetic field (z-axis) is oriented along the 001-axis, and the x and y
axes are oriented along the 100 and 010 axes respectively, the quadrupole Hamiltonian

can be expressed as

0 costy sing, siné; \( 1,

1)

H=—32L——(I [ 1 cosf 0 cosgysindy || / 3.51
q 4[(21_1)( x ¥y z) . .E ' ¢L E y ( )

sing, sinf, cosd,sinf, 0

z
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where
o, =eQF (R14 + S44d,4) i (3.52)
In GaAs, the constants for the induced field evaluate to

R, +S,d,=2863x10". (3.53)
14 4414

Upon carrying out the matrix algebra in equation (3.51), one arrives at

3¢, = Z-ITZ?IL——I)(COSQE [Iy,]xl +singy, sind,[1..1,], +cosgysin; | ., Iyl) . (3.54)

The secular portion of this is exactly zero since the electrostatic field gradient tensor is
exactly off diagonal in the basis of the crystal axes with which the magnetic field has
been aligned. To the extent that some small errors in alignment place the magnetic field
off of the crystal axis, there will be a small secular component of the quadrupole

Hamiltonian. For example, a 5° error will lead to a secular component which is of order
one tenth the size of the off diagonal component (that is, approximately sin(5") in

magnitude). It will be demonstrated below that this is worth considering in high-

resolution spectroscopy, given the size of these nonsecular quadrupole interactions.

The magnitude of the induced gradient quadrupole Hamiltonian with this
magnetic field orientation can be numerically evaluated for the case of a point charge in
GaAs in exactly the same manner as has already been accomplished for the direct

gradients. For the case of an unoccupied donor, a bare positive charge, one has



1I-33

E= 37 (3.55)
2
which gives
eQb
w, = 7Q2—(R14 +8,d,,)- (3.56)
For the case of an occupied donor, the electric field becomes
b -2
E=—M(l+2z+222) (3.57)
r
which yields
b(R, +S,d =2
o, =2 (R + 442‘4)6"1’( Z)(1+22+222). (3.58)

r

Evaluating equations (3.56) and (3.58) numerically, the values of @, in table 3.4 are

obtained as a function of radial distance from a donor with a 100A Bohr Radius.



zZ=1/a, Amount of unoccupied occupied
signal beyond z H(oq I] (Hz) ”a)q ” (Hz)
0.04 ~100% 5,694,000 5,694,000
0.1 99.9% 911,100 910,000
0.3 97.7% 101,200 98,890
0.5 92.0% 36,440 33,520
0.75 80.9% 16,200 13,100
1.0 67.7% 9,111 6,165
1.5 42.3% 4,049 1,714
2.0 23.8% 2,228 542

Table 3.4 The quadrupole splitting arising from the induced field
gradient around an unoccupied shallow donor is shown next to
those for an occupied shallow donor. The magnitude of this
interaction is four orders of magnitude higher thaﬁ the direct

gradient of the electric field.
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The most obvious
difference  between
these values and
those for the direct
gradient is the far
greater magnitude of
the present effect.
Indeed, one may
safely ignore direct
gradient effects when
dealing with donors
since such effects
will necessarily be
small with respect to
induced gradient
effects. That is,

despite the fact that

the induced gradient effects above are entirely nonsecular, they are so large with respect

to our magnetic field (~3.2MHz) at some sites that they will still affect the energy of the

nuclear spin at these sites more than the small secular effect from the direct electric field

gradients. This is due somewhat to imperfections in the rotating frame approximation in

the presence of nonsecular terms, but mostly to imperfections in the positioning of the
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sample so that some portion of the above quadrupole interaction is secular. Another way
to describe the relative size of the direct and induced gradient effects is to say that the
ratio of the coefficients of the two effects and the scaling as one over radius squared for
the induced gradient and one over radius cubed for the direct gradient dictate that the two
effects are equal for some very small and physically insignificant distance (~10"'? M), and
that the extra power of one over radius in the direct gradient reduces its size by a large

factor compared to the induced gradient at any distance that might be of physical interest.

For the case of an occupied neutral defect such as an isoelectronic defect, it is

seen that

(erf(\/— z) 22\/;exp( 222)] (3.59)

if the electronic wavefunction is Gaussian, which produces

wq:eQb(RM;'SMdM)[ (\/—Z) 22\/:exp( 222)J- (3.60)
T

r

However, if the electron occupies an expontial wavefunction, the E-field will be

b(1-exp(-2z)(1+22+227))

E= ; , (3.61)
r
which will result in the following quadrupole interaction
eOb(R,, +S,,d, ) 1—-exp(2z)(1+2z+22°
o, = ( 14 T 944 14)( i ( )( )) ' (3.62)

r
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Evaluating equations (3.60) and (3.62) numerically, the values of @, in table 3.5 are

obtained as a function of radial distance from the defect (100A Bohr Radius). Notice that

the neutral defect has had negligible quadrupole interactions up to this point. First, it had

exponential wavefunction Gaussian wavefunction
z=r1/a, | % of signal beyond z ”Cl)q “ (Hz) | % of signal beyond z qu “ (Hz)

0.1 99.9% 979 99.8% 1,790
0.2 99.4% 1,690 98.4% 3,460
0.3 98.1% 2,190 94.8% 4,890
0.4 95.6% 2,530 88.7% 6,010
0.5 92.0% 2,740 80.1% 6,780
0.75 77.1% 2,900 52.2% 7,240
1.0 57.2% 2,760 26.1% 6,290
1.5 16.3% 2,180 2.9% 3,680
2.0 4.6% 1,620 0.11% 2,128
3.0 0.044% 888 0.000075% 947

Table 3.5 The quadrupole splitting arising from the induced field gradient around an
occupied isoelectronic defect with either a Gaussian wavefunction or an exponential
wavefunction. The magnitude of this interaction is orders of magnitude smaller than in the

case of a shallow donor for sites close to the defect.
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a tiny secular portion due to the gradient of the electric charge distribution, and now, it
has a much larger nonsecular portion that is still insignificant with respect to our Zeeman

field (or virtually anybody else’s for that matter).

One may ask how it is possible that the Gaussian wavefunction can have

consistently higher values of |lw || than the exponential wave function. The answer
y mg A p

comes from what one defines as the Bohr radius. Here the Bohr radius is taken to be the
point where the wavefunction has decayed to 1/e of its value at z=0. Setting the 1/e
point of the Gaussian wavefunction equal to that of the exponential wavefunction dictates
that the Gaussian wavefunction has a much larger fraction of the electronic density is
inside a given radius compared to an exponential wavefunction. This is demonstrated in

figure 3.5 below, in which the two wavefunctions are plotted. In addition, figure 3.6
shows the values of Ha)q “ on the previous page plotted, further illustrating that the
quadrupole interactions in the two cases only reach equivalence at distances such that
~100% of the electronic density is located inside that radius, at which point the electric

field takes on a simple 1/ r* functional dependence.
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Figure 3.5 An electron in the Gaussian wavefunction (green line) is much more spatially
localized than one in an exponential wavefunction (purple line) with the same Bohr radius

(1/e point).

q

W
S = N W R KON

Figure 3.6 The greater spatial localization of the Gaussian wavefunction (green line) leads to
a greater electric field induced quadrupole interaction at moderate values of z (z < 3) than

the less spatially localized exponential wavefunction (purple line).
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Finally, when the magnetic field (z-axis) is oriented along the 001-axis, and the x-
axis and y-axis are oriented along the 110-axis and 110-axis respectively, the

electrostatic field gradient tensor can be expressed as

—cosf, 0 sin gy, sin 6,
V=0, 0 cosd, cosdy sind; (3.63)
sindy siné, cosd sindy 0

where the angle &, is defined by

cosd, = —-(sing, +cosgy). (3.64)
This implies that
O =y +%- (3.65)

The quadrupole Hamiltonian can be expressed as

—cosf 0 sind sing, \( 1,
1)
H=——"-(I 1 1 0 cos6, coso,sindy || 1 3.66
q 41(21_1)( X y z) . - .E E E y ( )
sind,sinfd; cosd,sinf, 0 I,

or more explicitly as

w

7, = m(coseE (£;-12)+sind, sin6, [1.1,], +cosdysind, [ 1.1, ] |. (3.67)

z> " x

The secular portion of this is still zero since the term in / yz — I is rigorously off diagonal

in the eigenbasis of /_. However, it is again true that to the extent that some small errors
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in alignment place the magnetic field off of the crystal axis, there will be a small secular
component of the quadrupole Hamiltonian. The magnitude of the quadrupole
Hamiltonian with this magnetic field orientation is the same as that just previously

considered with the x, y and z axis aligned along the crystal axes.

b. The case of a 110-oriented magnetic field.

When the magnetic field (z-axis) is oriented along the 110-axis, and the x-axis
and y-axis are oriented along the 001 -axis and 110 -axis respectively, the electrostatic

field gradient tensor can be expressed as

0 cososin@, sinogsind
V=, cosdysindy, cosd, 0 . (3.68)
sinoy sin g, 0 —cosf;

The quadrupole Hamiltonian can be expressed as

0 cosdgsin@, sind sind, \[( 1,
1)
J=——"——(1_ 1, 1) cosd,siné coséy 0 I 3.69
q 41(21_1)( x y z) . E . E E 5% ( )
sindy sing, 0 —cos b, I

or more explicitly as

w

3 = E(—z;—mﬁ(coséE ([; —]f)+sin¢E sind [1.,1,], +cosg,sind, [IX,Iyl). (3.70)

This can be rewritten as



11-41

— a)Cl 2 2 . . .
3¢, = +—47Z—27_—1)<%COSHE ([y ~1I ) +singysinf; [, 1, ], +cosd, sind, [Ix, Iyl)
(3.71)
————-—aiq———cos& (3[2 —12).
8/(27-1) "\ F
In this form, it is clear the magnitude of the secular portion of this Hamiltonian is
H, =—5w,cos0. (3.72)

The maximum value of the secular portion of the quadrupole Hamiltonian at a
given radius is just negative one half of the value calculated for the nonsecular induced
gradient in a 001l-oriented magnetic field. Moreover, in the case of a 001-oriented
magnetic field, the magnitude of the nonsecular portion of the quadrupole Hamiltonian
was independent of the orientation of the electric field despite the fact that the spin
operators in that Hamiltonian where determined by this orientation. However, even
though the total magnitude of the quadrupole Hamiltonian is still independent of the
orientation of the electric field, now the quadrupole Hamiltonian has a secular portion
which effects the NMR spectrum entirely differently than the nonsecular portion by its
very definition. That is, those sites along the z-axis of the NMR experiment (those along
the 011-axis of the crystal) will have this maximum value of the secular portion of the
quadrupole Hamiltonian while those sites in the xy-plane of the NMR experiment will
have no secular quadrupole Hamiltonian and a maximal nonsecular quadrupole
Hamiltonian, yielding a strong effect on the ONMR signal originating around any of the

types of defects considered thus far.
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E. The optically pumped state, quadrupole relaxation and ONP

When optical pumping is conducted in the presence of these large quadrupole
interactions the portion of the optically pumped state, which is putatively proportional to

I_, that does not commute with the eigenstate of the nucleus will precess about the

direction of this eigenstate and eventually dephase away. Therefore, optical pumping will
effectively accumulate nuclear polarization along the eigenstate of the nuclear spin
essentially regardless of the actual state in which the optical pumping places the nuclear

spins.

What is more, those portions of the quadrupole Hamiltonian that are off diagonal
in the cigenbasis of the total Hamiltonian can lead to relaxation of the nuclear spin to a
state of thermal equilibrium, which is nearly zero nuclear polarization for our
experiments. In the case where the quadrupole Hamiltonian has no secular piece, the
magnitude of sum of the squares of all such terms is approximately independent of the
orientation of the nucleus with respect to the electric field. One may understand this by
realizing that the magnitude of the nonsecular portion of the quadrupole Hamiltonian is
normalized. That is, considering either equation (3.51) or equation (3.66) it is evident

that

H I = (3.73)

q q q

Therefore, only the dependence of the magnitude of the electric field (radial dependence)

is important in computations the relaxation caused by these quadrupole interactions.
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The sum of the squares of the terms is the relevant quantity for a relaxation
calculation since it has been assumed that each off diagonal term is equally efficient at
relaxing the nuclear spins and since it is the square of the fluctuations in such terms that
lead to relaxation. Moreover, unless there is an electron occupying the donor and its
electronic wavefunction loses its spherical symmetry, the only fluctuations available to
the system are in the magnitude of the radial electric field. This naturally leads to

multiple hypotheses concerning the cause of such fluctuations.

One such hypothesis is that the electron is sometimes present at the defect and
sometimes absent from the defect. This produces a fluctuation in the electric field that is
the difference between the electric field of a bare charge in GaAs and the same bare
charge occupied by an electron, yet this is obviously just the electric field due to the
presence of the electron in the hydrogenic donor orbital. However, there is a problem
with this situation. As the intensity of the light generating the electrons is turned up, the
donor sites saturate to full occupancy. That is, the electron is virtually always present at
the donor, and, therefore, the fluctuations should shrink in magnitude to a negligible

level.

Another, more likely hypothesis is that the electron spends some amount of time
in the excited states of the donor. There is reliable evidence that the 2s and 2p levels of
the donor are bound states in the GaAs crystal. This excited state occupancy could be due
to either electrons falling into these states from the conduction band before eventually
falling down to the ground state of the donor, or electrons in the ground state of the donor

atom that are excited to the higher states of the donor by collisions with other electrons
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passing near the bound electron (other conduction electrons which have not yet been
captured by a donor). In reality, both of these methods of excited state occupancy are
possible. This mechanism leads to a source of fluctuations that does not vanish when the

laser intensity is raised above the saturation limit of the shallow donor.

The magnitude of the fluctuations of the electric field is the weighted difference of
the electric field when the electron is occupying the ground state and the electric field
when the electron is occupying the excited state. The electric field around a donor whose

ground state is occupied is

EdonorIs (I") = Ebare charge (r) + li‘electonls (r) (374)

b r
E‘donor]S (7") = ;—ﬁ_ + .[) les (l’i )d’i (375)
Ep, (1) = (b (222 +2241)) (a,2)] (3.76)

where q, is the Bohr radius of the donor ground state, and z =r/a, . The electric field

around a donor whose bound excited states are fully occupied is

EdonorZSzp (l") = Ebare charge (l") + ll;e:lecton25 (l") + E‘elcctonsz (f') + E‘electon2py (l") + E:electon2pZ (I") (377)
b ‘s ' ' ‘a
Esny (1) =+ [ ()i + [, ()i + [, (7)dn + w3, () 3.78)

To— (r)= (be‘z ( AR AR LN 1))/(6102)2 (3.79)
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When computing the average electric field, the appropriate linear combination of these is

l;donorAVC (r) = (1 - ]F)F“donorls (r) + f Edonoruzp (V) (380)

where [ is the probability of the electron being in one of the excited states. When
computing the strength of the fluctuations between these two electric fields, the difference
between the sum of them and the sum of their squares is taken. That is, we compute the

variance of the electric field at each radial point from

o = (3.82)

(=) Y
N

In the present situation this implies

(3.83)

(=1 1) Eu, (O (e, )
(1) Eu, ()4 S a2

where N =(1- 1)+ f =1. Furthermore, upon insertion of the electric fields that we

have calculated above into this equation, it becomes

(((1 — f)be ™ (222 +2z+ 1))2 + (ﬂ)e'z (5z4 +hZ izt 1))2)

2
O.Edonor (Z): 4
(a,2) 2 (3.84)
1-f)be (22" +2z+1)+ fbe | Lz +52 +52 +z+1
2 2 L 4 an 3 2

(a,2)’
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Figure 3.7 The magnitude of the fluctuations in the electric field as an electron that occupies

the donor moves between the 1s, 2s and 2p orbitals of the donor.

Moreover, since the quadrupole interaction is linearly proportional to these electric fields,

multiplication of o (z) by the constants used in the previous section yields the

variance of the magnitude of the quadrupole terms in the nuclear spin Hamiltonian as

O'jlq (Z) = eQ(RM + S44d|4)0'édm (Z) . (3.85)

Finally, using (3.85) and the general form of a relaxation time as expressed in equation

(3.3), one may write

1 9 27
= ‘; ————_c‘— » 3'
T,(z) (2) 1+ w’t] 58]

If 7, is taken to be the same order of magnitude as the residence time of a single

electron at the donor (~107s)11, the very fastest possible 7] ,(2) relaxation times are



I1-47

produced. Note that under any reasonable circumstances that the term @’z is
approximately zero since even under this most optimistic assumption (z, ~107s) it still
yields only @’z = 0.04 when calculated for "'Ga. That is, in our experiments the highest

w is that of "'Ga (the nucleus that most of the experiments are conducted upon), and @ for
this nucleus is 27z x3.2MHz =20Mrad/s ). At this point, evaluating equations (3.85) and
(3.86) is straightforward, yet instructive. In figure 3.7 and 3.8, respectively, these
equations are plotted for f =1/2, the case where the magnitude of the fluctuations is
maximized. Note that, while the values of T, thus obtained qualitatively match the time
Tiqark in the light-off relaxation time experiments in chapter 5, there is essentially an
additional source of decay of nuclear polarization. That is, spin diffusion carries spin

polarization to ever-greater distances from the donor, where it is less optically detectable.
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Figure 3.8 The relaxation time of the nuclei due to the fluctuations in electric field that are
shown in figure 3.5. The minimum value of T,y here is ~27s, and the optically detected
average is obtained by integrating the OD weighting times the relaxation rate across

0 <z <o, which yields ~76s.

Note that these very same oscillations in electric field are not without
consequence to the ONP dynamics. The very same transitions into excited states of the
hydrogenic donor will provide oscillations in the hyperfine coupling of the nuclei to these

very same electrons. Applying the same procedure that was used with the electric field in

equations (3.82) through (3.86) to the y° of the 1s, 2s and 2p states of the donor yields
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Equation (3.87) has been plotted in figure 3.9 versus radial distance z. It is interesting to
note that this curve looks very much like the y* in figure 1.16 from chapter 1. Indeed,

the ratio of these two is plotted in figure 3.10, proving the exact similarity of the

functional form at low z. However, z >3 the fluctuations represented in equation (3.87)
start dropping much more slowly than the y* dependence that comes from fluctuation in

the presence/absence of the electron in the 1s state.

Evaluating 7] at z=0 fora 100A Bohr radius hydrogenic donor occupied by an

electron with 25% spin polarization yields ~512ms for the 1s, 2s, and 2p fluctuations and
~113ms for the 1s electron presence/absence fluctuations (w*), assuming that the time

constant 7. is approximately the same for both fluctuations with a value of ~107%,
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§.3 2

Figure 3.9 The spatial dependence of the fluctuations in the 1 of the donor bound electron

that lead to the nuclear spins achieving equilibrium with these very same spin polarized

electrons.
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Figure 3.10 Dividing the fluctuations plotted in figure 3.9 by the fluctuations proportional to
l//4 shows that the two have the same functional dependence, but are smaller than these 1/14

fluctuations by a factor of ~3.5/16 until z~3.
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F. The Rotating Wave Approximation

When considering the effect of linearly polarized electromagnetic radiation upon a
given spin or set of spins, it is useful to decompose this radiation into a sum of counter
rotating circularly polarized electromagnetic fields. One may then transform to a frame
of reference that rotates at the same frequency as one of these circular components. In
this frame everything that was previously time-independent becomes time-dependent at
minus the frequency of rotation while everything that previously rotated in resonance
with this circular component will be time-independent. Moreover, the counter rotating
circular component appears to be rotating at exactly twice its original frequency when
viewed from this new frame of reference; therefore, for frequencies that are high
compared to the bandwidth of the radiation and resonances in question, the counter
rotating component is so far off-resonance that its influence can safely be ignored. This is
the famed rotating-wave approximation. It transforms the problem of a time-dependent,
resonant (or nearly so) rf-field applied to a high-field spin system into a time-independent
magnetic-field problem. However, if the bandwidth of the radiation is too wide (perhaps
due to a relatively short pulse of such radiation) or the bandwidth of the resonance is
extremely wide, the counter-rotating component will make a contribution to the physics
of the system, making the approximation invalid. Finally the restriction to high-field
spin systems, where the Zeeman Hamiltonian is much larger than all other Hamiltonians,
is necessary since the transformation to the rotating frame is to be accomplished by
rotation about the z-axis at the frequency of the applied rf-field, and this rotation must

commute with the individual elements of the Hamiltonian (i.e., they must be truncated to
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their secular portions). Thus, since ONMR in GaAs, as we practice it, combines
relatively low Zeeman frequencies with potentially large, non-secular quadrupole
Hamiltonians, and relatively short pulses (~10 cycles) of rf-radiation it is extremely

unwise to make this assumption.

G. General Laboratory Frame Density Matrix Calculations

If one is not to make the rotating wave approximation, what path is available for
such computations? The individual oscillations of the applied rf-field can be decomposed
into short intervals of constant field just like a curve approximated by a series of slender
rectangles in a Reimann sum. For these short intervals of time the rf-field is viewed as
constant magnetic field in its instantaneous direction, changing in stepwise fashion to its
next magnitude and/or direction for the next time interval. This allows us to solve for the
quantum evolution of the system at each of these instantaneous values, and concatenate
the individual evolution propagators to produce the evolution propagator for the entire
period of time under investigation. This approach lacks aesthetic appeal and involves
enormous numbers of complicated calculations, but it yields answers that cannot be

obtained in any other manner.

Evolution propagators during rf-pulses may be computed by dividing the pulse
into an integer number of cycles of the rf-wave and a remainder piece, computing one
cycle of the rf with the correct laboratory-frame phase, exponentiating the resulting

propagator by the integer number of cycles, computing the remainder piece, and, finally,
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concatenating the remainder onto the end of the exponentiated propagator. Free evolution
between the pulses is then calculated, and concatenated onto the previous pulse in the
sequence. The next pulse is then computed such that it is phase coherent with the
previous pulse, and the concatenation is con. Even if it rotating frame phase is the same,
its laboratory frame phase will be different, so it must be recalculated. It is obviously to
ones advantage to pursue any cyclic feature of experiments present due to the nature of
the AWG board’s generation of the rf-waves, such as the cyclic conditions on the CLSW-
16 experiments that allow one cycle of the CLSW-16 sequence to be calculated and used

repeatedly for the entire experiment.

Finally, because we have kept nonsecular quadrupole terms and carried out our
computation in the laboratory frame, care must be taken that phenomena that would be
filtered out of the signal in the actual experiment are not detected. Some good examples
of this are frequency components at multiples of the Larmor frequency due to breaking
the magnetic dipole selection rules and frequency components arising from the effect of
nonsecular quadrupole terms upon the energy levels of nuclei close to the ORD. The
computational intervention is relatively painless, but somewhat awkward and only
approximately accurate. The detection operator that is used in the trace operation to
detect the evolution of the density matrix can be edited as follows. It is placed into the
eigenbasis of the free-evolution Hamiltonian, and evolution phase factors are computed
for each of the matrix elements. Any term with a phase factor that falls outside of the

detected frequency range is truncated to zero. The detection operator is then returned to
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its original basis set, and is now insensitive to oscillation at any frequency that would not

be detected in an actual experiment.

H. Conclusions

The individual components of a large-scale multi-site computation of single
nucleus spin dynamics have been introduced and developed, and a representative
computation is presented in appendix A of this thesis. Such isolated spin computations
possess the unique capacity of addressing nonsecular phenomena such as the nonsecular
terms in the quadrupolar Hamiltonian encountered in this chapter in an absolutely
rigorous way. Unfortunately, it will be shown in chapters 4 and 5 that spin diffusion
(multi-spin dynamics) is essential to describe the experiments presented in chapter 5 to
the level of accuracy that motivated the rigorous laboratory-frame single-spin dynamics
calculations to begin with. However, if the experiments are carried out in such a way as
to defeat the interference of spin diffusion to begin with, the work presented in this
chapter and the sample calculation in appendix A will be invaluable in simulating the

results of those experiments.
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IV. Spin Diffusion in a Spin-Three-Halves Spin System

We now address the theory of spin diffusion in detail. It will become clear as we
do this that spin diffusion in GaAs proceeds at a previously unforeseen, extremely rapid
rate. This is fully predicted by theory and is also now supported by experimental results

that will be presented in chapter 5.

In section A, we provide a brief introduction to the dipolar Hamiltonian and
discuss how it gives rise to spin diffusion. While reading this, it should be apparent that
spin diffusion is simply “cross polarization” between nuclei of the same type. That is,
cross polarization is radio frequency induced spin diffusion. This should help the reader
who may be familiar with the concept of cross polarization in NMR, but is unaccustomed

to considering dipolar couplings in solids.

We will consider those properties relating to dipolar couplings in solids that are
calculable by summing over a static lattice of nuclei in section B. These properties are
the necessary ingredients in calculations of spin dynamics, but they themselves are
regarded as constants of the sample material. The homonuclear dipolar linewidth, the

correlation time of homonuclear dipolar fluctuations, and 7, the time constant for the

equilibration of polarization with the local neighborhood of spins, are introduced and

calculated here.

Section C deals with the explicit calculation of spin diffusion from a microscopic

perspective. This differs from most spin diffusion calculations in that the spin-three-
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halves nature on the nuclei has been explicitly included. Novel equations for the
polarization dynamics are developed both with and without simultaneous optical nuclear

polarization.

The behavior of these same novel equations of motion for the nuclear polarization
are explored and further developed in section D. Moreover, in this section, we will prove
the common hypbthesis that dipolar flip-flops act to drive the spin system to a state
described by a single spin temperature, and do so rigorously, within the current theoretical
constructs (a ladder of states exchanging population though a set of equations analogous

to those used in reaction-kinetics).

These equations are further expanded in section E to include the case of ONP
during spin diffusion about an ORD. In chapter 5, a simplified version of these results is
compared to experiments that can now be understood in terms of rapid spin diffusion in a

spin-three-halves spin system.

The modification of spin diffusion by the presence of a well-resolved quadrupole
splitting is addressed in section F, and the behavior of the equations thus derived is
explored in section G. This includes the nullification of the spin temperature hypothesis
under select circumstances. Finally, an approximate inclusion of frozen core effects into

the spin diffusion processes discussed in the earlier sections is developed in section H.
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A. The Dipolar Hamiltonian

Two spins, | and S, separated by some distance, are each subject to the magnetic
field associated with the magnetic moment of the other spin. This leads to an
energetically preferential alignment of the two spins. Furthermore, if both spins are

present in the same homogeneous external magnetic field, the Hamiltonian describing

their coupling (in units of Hz) is given as follows!, using MKS units.

V L7 )(S - rig
ﬂd:ﬂ°y’7/;*h(l-8—3( r[s)g rlb)j (41)
4 T
9, =TI (B DY ELF) (4.2)
drrg

A=18, (1 —~ 3c0529)

B=1(1S, -1 S)(l - 300520)
C=-3(LS, +LS,)sinfcosfe ™"
D=-3(LS_+LS,)sinOcosfe”
E=-318, sin*@e?*

4 T4+

F=-218_ sin® fe*"

(4.3)

Where r, is the distance between the two spins, @ and ¢ are the polar angles that the
vector joining the two spins makes with the magnetic field, and the I and S, are the
operators for the various components of spin angular momentum on spins I and S.

This particular factoring of terms is referred to as the dipolar alphabet. It is

readily apparent that the A and B terms of the dipolar alphabet involve only diagonal

operators and zero quantum operators. Therefore, the A and B terms commute with total
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spin angular momentum operator F, =1_+S_, and, as such, they form the secular portion
of the dipolar Hamiltonian. The C and D terms couple states that differ by one unit of
spin-angular-momentum, and the E and F terms couple states that differ by two units of
spin-angular-momentum. These terms are truncated by large applied magnetic fields
since they represent small off-diagonal terms coupling states separated by large Zeeman
energy differences. In other words, in the rotating frame these terms become time
dependent at either plus or minus the Larmor frequency (terms C and D, respectively) or

at plus or minus twice the Larmor frequency (terms E and F, respectively).

The B terms of the dipolar Hamiltonian conserve the total spin angular
momentum. That is, they do not mix states with different amounts of total spin angular
momentum. They do, however, mix states that have the same amount of total spin
angular momentum (different many particle states that have the same numbers of spins up

versus down). In terms of spin operators on two spins [ and S these terms may be written

as v (LS. +1.S,) where v,= Hol'sh (1 ~3cos’ 9,5). These “flip-flop” terms

3
4rrg

correspond to a simultaneous but opposite spin flip on each of the nuclei when they are
each in a state of definite angular momentum (that is, (+,—) = (—,+)). Indeed, if the spins
start in the state (+,—), the flip-flop terms in the dipolar Hamiltonian will cause them to

precess from this state into the state (—,+) in period 1/v, , and, then, cause them to precess
back to the state (+,—) also in period 1/v,. Thus, the round trip will be characterized by

oscillation at the frequency v, /2.
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This situation is formally analogous to the precession of a spin about a transverse

field. The transition probability per unit time, ¥, in that case can, therefore, be used here.

It is given at short times (Wt << 1) by the following perturbation expression 2,
W, =mv (I+m)(I-m+1)g(v) (4.4)

The short time approximation used in the perturbation treatment is applicable in
all of the following work since the time scale over which we will concern ourselves is
very short compared to the inverse of the dipolar couplings. The function g(v) is the
resonance line shape of the individual nuclear spin transitions. It is well approximated by
the homogeneous line-shape of the sample, which is nearly gaussian. Furthermore, we
understand that, since equation (4.4) was drawn from the analogy of these transitions with
the transitions due to a transverse magnetic field, it leaves out a factor of

(I+m')(I-m'+1) on the other nucleus (the one that is simultaneously flip-flopping

with the nucleus we are calculating), leading us to write

w

m,m-1

=7Z'2Vd2 (I+m)(1-—m+l)(1+m')(1—m'+ l)g(v) (4.5)

Finally, we can get a feel for what time and length scales we should expect to be
pertinent to calculations in GaAs by evaluating W for each of the separate transitions in
"'Ga. In a 001-oriented magnetic field the largest coupling to a nearest neighbor is to the
four spins in the plane perpendicular to the magnetic field (in the
110, 110, 110, and 110 directions). These sites are located at a distance of almost

exactly 4A. Using the calculated homogeneous linewidth from section B below, the



IV-6
gyromagnetic ratio of "'Ga (the largest of the available isotopes), and equation (4.5), we

compute W for the different "'Ga transitions as

Wy s =7 (175H2)’ b (L4 m) (1 =m+ 1) (L +m') (1 = m'+1) 46)

=973(I+m)(I-m+1)(I+m")(I-m'+1) s~

Where the spin dependent factor ([+m)(l —-m+ 1)(1 +m')(l —m'+ 1) evaluates to
sixteen if both transitions are between the ¥ and — )4 levels, to nine if they are both
between the +% and £ )4 levels, and to twelve if the transitions are mixed (one of each

type). We have left this factor explicitly unevaluated in equation (4.6) since it will

become separated from the part we did evaluate in later equations.

B. Static Properties - Theory and Calculations

A number of properties that are either important in calculating spin diffusion or
that provide insight into the general speed of polarization equilibration in GaAs crystals

will be reviewed and calculated here.

1. The Dipolar Linewidth

The second moment of the resonance line due to the dipolar Hamiltonian is just
the norm of the commutator of the secular portion of the dipolar Hamiltonian (the A and

B terms) with the initial condition which we shall take to be 1,. For two spins of the

same nuclear species we compute this as.
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M, = (Ao’ =Tr([3€, +3,1.1)

[%¢, + %,.1 | = {ZA” + By.,Z]xk}

i#f

Evaluation of these equations is straightforward but cumbersome. Fortunately,
the commutator portion has been solved?, leaving only the summation over the lattice of

nuclei. This is the well-known Van Vleck formula2, (expressed here in MKS units)

_ 2
(Aa)2> = 1_63;ﬂ°}/4h21(1 + 1)2(1—3%08—9) .

i<j T

This homonuclear lattice sum has been performed for all three isotopes in GaAs in

each of three orientations of the static magnetic field, and these results are presented table

4.1 below.
2 2 2
BZ <Aw >7lGa <Aa) >(’9Ga <Aa) >75As
[001] 285000 173000 74000
[110] 380000 242000 106000
[111] 459000 285000 116000

Table 4.1 The squares of the homonuclear dipolar linewidths of the three isotopes that are
found in abundance in GaAs are displayed here for three different magnetic field
orientations. Diffusion of spin order through the thermal reservoir of a given isotope is

directly proportional to this quantity.
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2. Calculation of 7, and 7

These two time scales are not used in the calculation of the spin diffusion below.
They were originally computed as an intermediate result in a calculation of cross
polarization efficiencies reported in a research proposition. However, they yield
important insights into spin diffusion processes since they allow us a secondary and
somewhat independent verification of the fast spin diffusion calculated below and

observed in our experiments.

The time 7, is the time scale over which excess polarization is transferred from a

single spin I in the sample to the other I spins in its local area, that is the time scale over
which the I spin system will reach a local single spin temperature. It is simply the time

scale T}, the time scale over which the I spin system comes to local equilibrium with a

lone S spin, computed for the case where an I spin replaces the S spin. This time scale
tells us how fast we should expect polarization to equilibrate over an area of several unit
cells in radius. It is obviously related to spin diffusion, but its calculation includes
concepts of the spectral density of dipolar fluctuations and correlations between the
dipolar couplings of the lone spin to its neighbors and the dipolar couplings of those
neighbors. As such, 7, is related not only to how likely a polarization transfer is, but
how likely it is that a polarization transfer will happen and the polarization will never
come back. That is, it has an additional element of irreversibility explicitly included in it

that is absent in all of the further work in this chapter.
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The time scale 7, is simply the correlation time of the spectral density of the

dipolar fluctuations. The relationship between 7}, 7., and <Aa)2> is simply3

Furthermore 7, is readily calculable if we assume a Lorentzian functional form for the

spectral densityl.

£(B-B)
1l 220
o 27 3 > B

I

where

B = -‘l—li’—zl—}i;ﬁ(l ~3cos’ 9,.)
4rr,

2
Vll'lo;ylh 2
A =22l _(1-3¢cos° 8. ).
] 87[7;13 ( ’/)

Evaluation of these formulas over the lattice of spins in GaAs yields 7, ~ 10.6 ms
for 71Ga and T, ~ 2.2 ps for all three different nuclear species in GaAs. The identical

values of T, are not a coincidence. The factors of gyromagnetic ratio and isotopic

abundance which make <Aa)2> and 7, different for each of the nuclear species exactly

cancel in the computation of 7}.
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We might at first think that there is some discrepancy between the value of 1/7

and the value of W computed previously. However, we must keep in mind that the W/ we
calculated is a single flip-flop transition rate for a nearest neighbor spin, and it is the sum
of all these rates that is acting together (and in concert with the rates these neighboring
spins have to yet other spins, and that those spins have to still others and so on) that leads
to the fast polarization sharing present in GaAs. That is, if we imagine each site in the
computation as the origin of an fcc crystal, then a full computation would include
couplings not to just the 62 sites just within each of the eight unit cells that share that one
site, but to hundreds of sites that also have a network of couplings to each other and to

hundreds of even more distant sites.

The extremely short time scales that we calculate here are in general
agreement with the fast transition rates for individual flip-flops calculated below. This
means that spin diffusion is faster than almost any other process in GaAs, including ONP

and any type of spin relaxation via quadrupolar effects.

C. Spin Diffusion - Theory

Spin diffusion in a system of spin-three-halves nuclei will be developed based on

a straightforward extension of the theory for spin diffusion in a spin-one-halves system as

presented in Abragam2. As such, this computation will be reviewed, and the equations

relevant to a spin-three-halves system will then be developed for various situations.
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1. The Spin-One-Half Polarization Diffusion Equation

We shall first concern ourselves with the case of a line of spin-one-half nuclei that
have dipolar couplings to their nearest neighbors only. This is a bridge to a purely
microscopic understanding of spin diffusion in a system of spin-three-halves nuclei since
it begins with the sort of microscopic equations we will use shortly, and, then, takes the

results of these into a continuous medium approximation.

If we define p_(x) as the probability that the spin at position x is in the minus

one half state and p, (x) as the probability that the spin at position x is in the plus one
half state, we see that the equations for the time dependence of these probabilities under

the influence of the flip-flop terms are2

%917_55_@ =p.(x)(p.(x-a)+p (x+a))-p (x)(p,(x—a)+p,(x+a)) 47)

and

%Qp_éf_{) =p (x)(p, (x—a)+p. (x+a))= p, (x)(p-(x—a)+ p_(x+a)). 48)

However, these probabilities are bound by the relationship p_(x)+ p, (x)=1, so

there is really only one free variable between these two quantities. One can express all of
the dynamics by following only one of these variables. However, the polarization, P, the
difference between them, is the most enlightening of the choices of variables since it
represents both of the individual populations within one variable. Taking the difference

between the above equations and simplifying, we arrive at
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1 or(x)

Ay =P(x—a)+P(x+a)—2P(x). (4.9)

Moreover, when we take the difference between the above equations, the terms from
equation (4.7) that are quadratic in populations are precisely canceled by equal and

opposite terms in equation (4.8) so that equation (4.9) is exact.

Therefore, to the extent that any spin is more polarized than its neighbors, its
polarization will decrease while the neighbors polarization will increase, and to the extent
that any spin is less polarized than its neighbors, its polarization will increase at the

expense of the polarization of its neighbors.

If we view the crystal lattice points as fine grid points like those used in a
numerical evaluation of a continuous polarization variable, we see that the above
equation is an approximate form of a one-dimensional diffusion equation.

GP(x,t) W 82P(x,t)

4.10
ot 0*x ( )

Extending the line of spins to a rectangular lattice of spins we see that we are left
with one such equation in each dimension, so that the total rate of change of polarization

with respect to time is the sum of these equations.

aP(r,t):Waz(azp o’P o°P

+ = DV?P(r,t 4.11
ot ’x Oy 622) (r.1) 1D

Where the diffusion constant D is equal to Wa*. This equation allows us to use a
continuum model to approximate the many body effects of a discrete lattice of spins. This

approximation is limited by the fact that we have considered only nearest neighbor
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couplings. One may try to sum all of the couplings in a given direction, but this will
underestimate the spin diffusion rate since it amounts to decreasing a to the nearest
neighbor distance for all transitions. That is, diffusion is #* times faster (¢ in equation
(4.11)) for spins further away than we have allowed. This is due to the increase in
efficiency in the polarization jumping directly to a given spin versus diffusing there over
the intermediate spins. This can only be fixed by computing spin diffusion over all spins
in the lattice, giving up our continuous medium advantage. This raises two more issues.
Firstly, the diffusion in a real lattice will have anisotropy due solely to the grid of atoms if
it is not a simple cubic lattice. Secondly, there will be spatial anisotropy in the spin
diffusion due to the angular dependence of the dipolar coupling as expressed in equations
(4.1) through (4.3), which in turn leads to anisotropy in W and, ultimately, to anisotropy

n D.

Any realistic computation of spin diffusion will require an explicit summation
over a large body of sites with respect to each and every site at each and every time step.
This is an onerously high level of work given the extremely short time increments
demanded by the high speed of the spin diffusion process, the massive number of sites
with which we concern ourselves in the application of a such calculation to ONMR at
shallow defect sites in GaAs, and large spatial extent of the area of nonzero couplings.
Indeed, the problem will only increase in complexity as we add the very real concern of
the spin-three-halves nature of the nuclei in GaAs to the present equations. However, the
continued progression of Moore’s Law indicates that this exact level of calculation will

eventually become computationally tractable, allowing routine investigation of these
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phenomena. The computational work included in this thesis was completed on 300-
500MHz Pentium based computers with 64-96Mb of RAM. The top of the line Pentium
and Athlon computers are currently at ~1.5GHz with ~256-512 of high speed RAM. If
Moore’s Law holds (that is, if continuing to throw exponentially more resources at
doubling the speed of processor approximately every 18-24 months does not hit limiting
forces), then in 5-10 years there should be computers with enough RAM available to any
program that needs it to hold the entire computation in memory (~3Gb), eliminating disk
caching of the data which is the single highest impediment to actual computational speed

as processor speed continues to accelerate.

2. Microscopic Rate Equations and a Polarization Basis Set for a Spin-

Three-Halves

Now, let us work through the case where the single quantum flip-flops of a spin-
three-halves nucleus assist in the spatial equilibration of the polarization. We will only
consider one pair of spins at a time since the effects of a second nucleus are additive as
above.

1 6p%(x)
w ot

=3p,(x)Cp,(x+a)+4p (x+a)+3p (¥ +a) (4.12)

=3p,(0)@p,(x+a)+4p (x+a)+3p,(x+a))
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1 ap%(x)
W ot

= 3p3(x)(3pi(x+a)+4p7%(x+a)+3p_1(x+a))
-Bp%(x)(3p%(x+a)+4p%(x+a)+3pv%(x+a)) (4.13)
+4p (x)3p,(x+a)+4p (x+a)+3p_ (x+a))
—4p,(0)@py(x+a)+4p_(x+a)+3p_,(x+a))

1 9., (x)
wooo

=3p.()OBp(x+a)+4p (x+a)+3p_ (x+a))

— 3p4%,(x)(3p%(x +a)+ 4p_%(x +a)+ 3pAgy(x +a)) (4.14)
+4p,(X)3p,(x +a)+4p_(x+a)+3p_(x+a))

- 4p_1(x)(3p;(x + a) + 4p%(x + a) + 3p4;(x + a))

1 ap_;(x)
W o

= 3pm;’(x)(3p%(x +a)+ 4]7_%(35 +a)+ 3p7§(x +a)) (4.15)

—3p,(x)3p;(x+a)+4p,(x+a)+3p ,(x +a))
Note that these equations can be transformed by introducing the following
orthogonal basis for the spin-polarization. The Zeeman polarization (i.e., the magnetic
dipole polarization of the nucleus) at a given position is defined as follows (/ = 3/2 in all

formulas here).

1
Pz(x) = p;;,(x) +%pé(x) —%p_,;(x) - p_%(x)) = <_IZ—> (4.16)

We can visualize Zeeman polarization as follows. When we conduct a standard

NMR experiment, the Hamiltonian is proportional to I, and, thus, the high temperature

approximation to the density matrix yields

Exp(~hol /KT)  1-hol /kT

- ~ cl-hwl, [kT. 4.17)
Tr(Exp(-hol,[kT)) Tr(Exp(-hol,[kT))
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We immediately see that this polarization is characterized by population differences,

which precisely reflect the equidistant energy separations of the Zeeman Hamiltonian.

pi=p,Rp —p,~p,—p, <hofkT (4.18)

1
2 2

Indeed, it is clear that any polarization obtained from a high temperature approximation
will precisely reflect the energy differences found in the dominant term of the

Hamiltonian.
The magnetic quadrupole polarization of the nucleus at a given position £),(x)

and the magnetic octapole polarization of the nucleus at a given position F,(x) are

defined as

| (317 -1-1)
PQ(X)=p;(x)—P%(x)*PW%(x)JFP_%(x)2—1“(2‘—[—_T)_ (4.19)
(rr(iH =1ra D)
Py (x) =% py(x) = p,(x) + p_ (x) =3 p_,(x)) = 5/ (4.20)

As a pedagogical point, the normalization (9/2) on the lower right side of equation (4.20)
should be written as a function of 7, but this function is complicated since the maximum
matrix element that we a trying to normalize moves on the diagonal as a function of /
rather than remaining stationary with respect to either the edge or the middle of the

matrix. It is, therefore, expressed numerically here for the case of a spin-three-halves.

The quadrupolar polarization corresponds to the experimentally observed

polarization in experiments, such as NQR, were the Hamiltonian is proportional to the
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quadrupole operator (3Iz2 —1I-1). Likewise, the octapolar polarization is the polarization
that would result if a nuclear octapole moment existed, and the interactions of this
moment were the dominant term in the nuclear spin Hamiltonian. It useful to note, that
these equations can be inverted to give the level populations as a function of the various

kinds of nuclear spin polarization.

p,=%(3P, +P,)+%(P, +1) (4.21)
p,=5(P, -3P,)-4(p, - 1) (4.22)
P =P, -3P,)-4(p,-1) (4.23)
Py =538, + B)+4(8, +1) (4.24)

We may now re-express the equations for the time dependence of the populations
of the various spin levels in terms of these orthogonal polarizations. This produces the

following set of somewhat simplified equations.

1 0P, (x) _
b =S (B )~ Py(x) (4.25)

+2(Py(x +a)Py(x) = By (x)P,(x +a))

1 0By(x)
W ot

=—15F,(x) + 6L, (x)F,(x +a)

—25—7(3>(x) '2P2(x))(PZ(x +a))

(4.26)

1 0P, (x
W——((;—l(—) =-30P,(x)+12P,(x)P,(x +a)+ 6P, (x)P,(x +a) 4.27)
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The reduction from a set of four coupled differential equations to a set of three coupled
differential equations is possible since only three out of the four populations can be
independently specified before the fourth one can be calculated from the others.
Alternately we can say that we still have four differential equations, but the fourth is for
the time evolution of the identity operator. This equation is trivially equal to zero since

the identity operator is time independent.

We immediately see that the diffusion of the polarization for a spin-three-halves
does not obey the same equation as for a spin-one-half. This is exactly as we would
expect since there are now three separate types of polarization. In particular, it should be
noted that there are qualitatively three types of terms in the above equations, those that
involve a spatial difference in a polarization, those that involve bilinear couplings of the
polarizations, and exponential decay terms. The terms that consist of a polarization
difference taken between two spins are exactly analogous to spin-1/2 polarization
diffusion. Note that the quadrupolar and octapolar polarizations have no such diffusive
term, and that they have strong negative feedback terms on their local value (decay
terms). The bilinear coupling terms keep the each of the polarizations connected to both
the local value and the curvature of the other polarizations. Finally, another very
interesting aspect of these equations is that the coefficient of Zeeman polarization

diffusion is approximately 5 times greater than for a spin-one-half.
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D. Behavior of the Spin-Three-Halves Diffusion Equations

It is worth integrating the above equations in an approximate sense under a few
different initial conditions in order to build an understanding of their behavior. Of
course, we must integrate these equations over all couplings in the solid to arrive at
exactly what happens in the sample in the general case, but this earliest time behavior will
give us some idea of what direction the system starts to move toward when it has been

placed in a given initial condition.

1. Spin Diffusion in a Spin-Three-Halves System Initially in a State of

Uniform Pure Zeeman Polarization

If there is equal Zeeman polarization on both of the spins and no quadrupolar or
octapolar polarization on either spin, then after a short time increment A7, equations

(4.25) through (4.27) yield

P,(At)=P,(0) (4.28)
P, (At) =3 AtP; (0) (4.29)
P,(At)=0 (4.30)

Where we have used the equivalence of the spins in this specific case to eliminate the

spatial variable. Note that, if we consider the sum over all couplings to other spins W

should be replaced with ZVK .
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-32 32 It may appear bothersome that the
< » ot T
vy v quadrupolar polarization could “arise

-12 =12
‘ A bkl 3
3 ; from nowhere” since the Zeeman

12 12 . .

5 A polarization  did not  decrease.

32 32 However, consider the two spins in

Figure 4.1 Level populations of two  figure 4.1, which are both in states of
representative spins in states of pure Zeeman pure Zeeman polarization, and
polarization. equations (4.12) through (4.15). We

see that flip-flop rates for a flip from ¥
to )4 on one spin simultancous with a flop on the other spin from )4 to }; is exactly

canceled by the reverse reaction. This is true of all the “parallel” transitions down the

ladder of states. However, if we consider the “diagonal transitions” such as 4 to Y4
simultaneous with —3% to — )4 we see that there is a net transition rate after the reverse

reaction is considered. Indeed, using the relative populations in figure 4.1 and equations

(4.12) through (4.15), we see that there will a net rate into the % level that is proportional
to (24(32+18)-30(24+12))/28” =120/28?, a net rate into the —3% level that is
proportional to (18(24 +24) —12(30 +32))/28’ =120/28 , a net rate in to the 4 level
that is  proportional to  (30(24+12)-24(32+18))/28° =-120/28°  plus
24(30+18)-32(24+12)=0, and a net rate in to the —} level that is proportional to
(12(30+32) - 18(24+24)) /28> =—120/28" plus 32(24+12)~24(30+18)=0. The

terms that are equal zero are the ones involving a flip-flop between the )4 and —)4
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levels, demonstrating again tﬁat the only net transfer of populations was from the 4 and
— % levels to the ¥ and -3 levels. Immediately, we recognize the preferential
depopulation of the 4 and — )4 levels and the simultaneous population of the }4 and
—3% levels as the addition of quadrupolar polarization, yet the Zeeman polarization did

not change since there were equal movement up and down the ladder of states. Now that
we have nonzero quadrupolar polarization, this will feedback into the equation for the
octapolar polarization (the Zeeman feedback in equation (4.25) is zero due to the
equivalence of the two spins). We will, therefore, have induced quadrupolar and
octapolar polarizations without disturbing the Zeeman polarization in the slightest.

However it was the very presence of the Zeeman polarization that induced the

quadrupolar and octapolar polarizations. Finally, if we calculate 32p; (O) from equation

(4.29) for the spins depicted in figure 4.1, we will see that the value is 480/ 28%, perfectly
matching the value we arrive at by using equation (4.19) on the relative population shifts
that we have just calculated above.

Before going any further, we must verify whether we are just generating the
amounts of I’ and I necessary to describe the system with a single Zeeman spin
temperature. We may suspect this because the term in equation (4.29) that we are
concerned about is of order (7w/kT)" since each term of I is of order (hw/kT) in the

high temperature approximation. There are two ways to accomplish this calculation, by
extending the high temperature approximation to higher powers of inverse temperature or

by using exact formulas usually reserved for low temperature due the complexity of
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solving them. We shall examine both here, and show that the high temperature
approximation gives the wrong answer when it is taken out to quadratic powers of inverse

temperature.

In using the high temperature approach, we compute the equilibrium density
operator to higher powers of inverse temperature and insert this into equations (4.25)

through (4.27) to see whether the rate of change of F, is still of order (ha)/kT)z. To

achieve this, we consider the expansion of the density operator again.

Exp(~hol JkT)  1—hol, [kT + 10 (hoo/kT) - U (ha/kT) +

_ - " (4.31)
Tr(Exp(—hol /kT)) Tr(Exp(—hol  [kT))

We may obtain the various polarizations from this expansion by computing the
expectation values given on the right side of equations (4.16), (4.19), and (4.20). These
evaluate to

" Tr(I]Z(l _hol_JKT + A1 (ho/kT): = T (ho/kT) +))

p ==l , (4.32)
S § Tr(Exp(—hol, /kT))

_=S(ha/kT)— 4 4 (ho/kT) — 3¢ 4 (heo/KT) = 54 (ho/KT) +...

& S Tr(Exp(~hal, [kT)) (433)
-1 e :
(1.2 11) Tr(j(ﬂ_ 5y (1 hool, JkT + 31 (hw/KT) +)}
Py = - (4.34)
©I(21-1) Tr(Exp(—hol, /kT))
4L(h@/KT) +10 ) (heo/kT)" + 5 L (heo/kT)’ + 25 L (ho/kT) + .. (435)

¢ Tr(Exp(-hol_/kT))
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T (3(1r (@O = Tr(U, O, ) (1= heol /KT + )

By ={Tr(I), = Tr(L)L, ) = B ol i) (4.36)
 24(hw/kT) =54 (ha/kT) ~ 5% (hao/kT) =% & (ha/kT) + 437)
o Tr(Exp(—hol_ /kT)) '
with
Tr(Exp(—hol JkT)) =1+5L (ha/kTY +411(heo/kT)'
r(Exp(—hw / ) + ( a’/ ) +44( a)/ ) (4.38)

+35 1 (heo/kT)" +328 4 (hoo/kT) +

If we keep terms in inverse temperature squared, and insert these equations into equations
(4.25) through (4.27), we should obtain cancellation of the time derivative of the
quadrupolar polarization if that time derivative was previously due to not keeping such

terms. Upon making these substitutions we arrive at

opP,

=0 4.39
) (4.39)

1oR,()_ . 4L(ho/kT) +6( 41 (ho/kT)’ ]2

woa T 1+si(ha/kT) | 1+5% (ho/kTY (4.40)
+270(ha/kT )’
o, _ 41 (ho/kTY  5(heo/kT) (441)

ot 1451 (heo/kT) 1451 (heo/kT)’

Note that there is no single temperature for which equations (4.40) and (4.41) yield a zero
rate of change for the quadrupolar and octapolar polarizations. That is, setting equations

(4.40) and (4.41) equal to zero produces equations that have complex roots. Thus, we see
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that, taken at this level of accuracy, a high temperature approximation appears to indicate

that dipolar flip-flops really do move the system away from a single spin temperature.

Let’s try to calculate this again, but this time we will not make any high
temperature approximation. We may carry out the traces in equations (4.32), (4.34),

(4.36) exactly, producing

1 _ Exp(3heo/2KT) + | Exp(hao/2KT) ~ } Exp(~ha/2KT) - Exp(-3ho/24T)
“ Exp(3ha/2kT) + Exp(ha/2kT) + Exp(—haw/2kT) + Exp(-3ha/2kT)

(4.42)

_ Exp(3hw/2kT) — Exp(hw/2kT) — Exp(—hw/2kT) + Exp(-3ha/2kT)
© " Exp(3hw/2kT) + Exp(hew/2kT) + Exp(-ha/2kT) + Exp(—3hao/2kT)

(4.43)

_ 1 Exp(3 hw/2kT)— Exp(haw/2kT) + Exp(—hw/2kT) - Exp(-3ho/2kT)
© Exp(3h@/2kT) + Exp(he/2kT) + Exp(—hw/2kT )+ Exp(=3ha/2kT)

(4.44)

Inserting these equations into equations (4.25) through (4.27), and letting

Mathematica do the pages of algebra to simplify the results, we obtain

o, (x) _0h,(x) _0R,(x) _
ot ot ot

0 (4.45)

Thus, for a spatially uniform spin-three-halves system, we have proved the spin
temperature hypothesis, which states that the dipolar couplings bring the spins towards a

single spin temperature along I .

Since the spatial dependence drops out in this particular case, we can numerically
integrate the equations. That is, since all the nuclei are equivalent whatever one does to

another is exactly reciprocated. This means that, whether we think of the spin
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Figure 4.2 The recovery of a system from a non-Boltzmann

state. Equations (4.25) through (4.27) have been numerically
integrated for a spatially homogeneous system. The initial state
is PZ:1/3,PQ:—1, P, =1,

which  corresponds to

= ‘—%)(—%l The line is color coded to illustrate the time

scales over which different polarizations have fallen to 1/e
times their initial value. The purple line is 0 <t <1/40W , the
green line is 1/40W <t <1/20W, and the blue line is

1/20W <t <1/2W .
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reciprocating perfectly
with a neighbor or we
think of the spin cross
coupled to its own

polarization levels, it does

not matter.

We choose to start
the spins from a point
where they have all been
prepared in the !—%)
state. ~ The quadrupolar
and octapolar
polarizations then race
towards equilibrium with
the Zeeman polarization.
However, since the flip-

flops preserve the total

Zeeman polarization and since each spin is equal to all others, the Zeeman polarization is

absolutely constant here. Figure 4.2 illustrates just such a system. The time scale for

recovery should be roughly 1/, where Wy is the sum of all of the individual rates

driving this reaction, given by
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T LA w(A), (4.46)
Var(av?)y om(av?)

For "'Ga this leads us to evaluate W, as

_ 7?(545.5 Hz)’

¥ (1239 Hz)V2x

=946 Hz (4.47)

We see that the entire system recovered from the extreme perturbation we have

imposed after a time of ~1/2W which evaluates to ~530 ps for "'Ga. Moreover, the 1/e
decay time of ~1/40W for octapolar polarization evaluates to ~26 ps for 71Ga, and the
1/e decay time of ~1/20W for quadrupolar polarization evaluates to ~53 ps for 71Ga.
Keep in mind that the time constant 7, (=~ 2.2 us) that we previously calculated was for a
single spin whose polarization differs from the thermal bath consisting of all of the other

spins in the crystal. These time constants are for the entire bath to reach equilibrium

within itself.

At first glance, it appears odd that the system can find the Boltzmann state defined
by its Zeeman polarization without the introduction of thermal or statistical concepts into
our mathematics. However, our very concept of a ladder of discrete levels that
continuously exchange population through a reaction kinetics type of scheme, eventually
leading to equal forward and reverse reactions, implicitly introduces thermal equilibrium

into the equations.
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2. Spin Diffusion in a Spin-Three-Halves System Initially in a State of Pure

Zeeman Polarization with a Polarization Difference

Let us consider for a moment what would happen if we introduced a Zeeman
polarization difference between the two nuclei considered above when there is no
quadrupolar or octapolar polarization. Let the spin at position x+a be in a state of pure
Zeeman polarization, and let the spin at position x be completely depolarized. Again, at a

short time At later, we may then write

P, (x,At) = 5SWAtP, (x +a,0) (4.48)
P, (x,A1)=0 (4.49)
P,(Af)=0 (4.50)
We may then extend this to
P, (x,2A1) = P, (x,At) + 5W At(P, (x + a,At) - P, (x,Ar)) (4.51)
P, (x,2A1) = 2WALP, (x,At) P, (x +a,Ar) (4.52)
P, (x,2A1)=0 (4.53)

We see that the second term of equation (4.26) has now been activated, leading to
quadrupolar polarization that will feed into octapolar polarization. Thus, we will again
have an induction of quadrupolar and octapolar polarization by pure Zeeman polarization

on the neighboring spins. In this case, we absolutely must integrate equations (4.25),
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(4.26), and (4.27) simultaneously over each spin pair to allow for many body effects if we

are to achieve an exactly correct description of spin diffusion.

_3/2 OO0 01020101020 OOOO00
< » < »

1 00000 * A 000000 ® ¥ 000000
£ 4 5 4

0102020101020, ¥ A 000000 w ¥ 000000

1 / 2

5 4 5 4

B/ZOOOQQ(\’\}OO O0O0000 000000

A B C

Figure 4.3 A schematic illustration of the energy levels and transition probabilities in a series
of spin-three-halves nuclei. Nucleus A is in a state of pure Zeeman order while the other two
nuclei are not polarized. The flip-flops represented by horizontal arrows have a 9:16:9 ratio of
transition rates while the flip-flops represented by diagonal arrows all have a ratio of 12

relative to these. Note that the flip-flops between the 5 to }4 levels on one spin with the
—¥% to —}% levels on another spin are not drawn here but have a relative transition

probability of 9.

We can arrive at the same conclusions about the cross coupling of the Zeeman,
quadrupolar, and octapolar polarizations by simply considering figure 4.3 and using
equations (4.25) through (4.27), as in the previous section, to gain a qualitative
understanding of the behavior of the polarization as diffusion starts. Using the relative

populations in figure 4.3, we see that for nucleus A there will a net rate into the }4 level
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that is proportional to 3(7 —9)60 = -360, a net rate in to the )4 level that is proportional
to =3(7+9)60—4(7+5)60 =—120, a net rate in to the — )4 level that is proportional to
=3(5+3)60+4(7-5)60=120, and a net rate into the —}4 level that is proportional to
3(5-3)60=360. Meanwhile, nucleus B will have a net rate into the 4 level that is
proportional to 18(70)—18(50) =360, a net rate in to the )4 level that is proportional to
—18(70)+18(50) + 24(70) —24(50) =120, a net rate in to the —) level that is
proportional to 18(70)—18(50) +24(50)—24(70)=-120, and a net rate into the —%
level that is proportional to 18(50) —18(70) =-360. We immediately recognize this as

the transfer of Zeeman polarization from nucleus A to nucleus B. Moreover, now that
there is Zeeman polarization on both nuclei, there will arise quadrupolar polarization on
both nuclei in the next step precisely as we computed in equation (4.52), and in direct
analogy to our work in the previous section that was based on using the populations in
figure 4.1 of that section. Finally, normalizing all of these population shifts by dividing
by 24° and subsequent application of equation (4.16) to calculate the relative quantity of
Zeeman polarization being transferred exactly agrees with equation (4.48) when it is

applied to the populations in figure 4.3.

3. The Spin-Three-Halves Continuous Medium Polarization Diffusion

Equation

Equations (4.25) though (4.27) can be amended by adding a spin at x—a,
equating the second difference with the second derivative as in equation (4.10), and by

recognizing that
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P (x-a)+P,(x+a)=P,(x-a)+P,(x+a)-2P,(x)+2P,(x)

_ 0P (x) +2P,(x) , (4.54)

ox?

The point of expressing these terms in this way is to make equation (4.55) through (4.57)
depend only on the value of the polarizations at x and the derivatives of the polarizations

at x, yielding

iaPz(x) _ 5, o2P (%) 2 [5 P()(X)P( )— P  (x )PQ(X)J (4.55)

e o’ ox’
1 0k, , O°F, )
= é{x):—3OPQ(x)+6 Q(x)PQ(x)+12PQ(x)
v22 00 2O (1, (m-20,() (4.56)

+3P, (x)(P()(x) - 2PZ(x))

10P,(x) & Py(x) o’P, (x)

AR —60P,(x)+124a°

P, (x)+6a’ Fy(x)

(4.57)
+24P,(X)P,(x) + 12P,(x)P,(x)

We may again generalize this result to a rectangular grid of such spins. Upon doing so

we obtain
1 OP,(r,t
W_z_a(t__)z 5PV, (r.1) +2a* (V2P (r.0)) P, (r.0) = (V2B (70)) Py(r.0)) (4.58)
(” 1) 2¢72 2
W 6[ —9OP (r, 1)+ 6P, (r,t)a \Y% PQ(r,t)+36PQ (r.1)
+2Z(P,(r,t) = 2P,(r,1)) @’V P,(r.1) (4.59)

HI2(By(r0) =2, (r.0) P, (r.0)
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1 8P, (r.1)
W—Oa?— =—180P, (r,1) +6a’ (2P, (r, )V By (r,0) + Py (r, )V P, (r,1)) (4:60)

+ 728, (r,0) By (r,0) + 36 B, (r, 1) P, (r,1)

These equations are necessarily more complicated than the corresponding spin-
one-half equations, and, therefore, we do not expect the diffusion process to be
characterized by a single constant in this case. However, we note that the factor
D =Wa’, the diffusion constant in the spin-one-half case, is present as a coefficient of

each of the spatial second derivatives in this case as well.

E. Spin Diffusion During the ONP Process

We will now consider the effects of optical nuclear polarization, ONP, occurring
simultaneously with spin diffusion. If optical polarization is taken to proceed through
fluctuations in the hyperfine contact between the electron and nucleus, then the
equilibrium polarization of each of the nuclear Zeeman transitions will approximately
equal the polarization of the electron spin. This can be reworded by saying that the
nuclear density matrix that results from optical pumping will be approximately the same
as the thermal nuclear density matrix taken at the electron spin temperature. However,
the electron spin temperature can easily be in the micro-Kelvin range given the optically

polarized origin of the electrons, and the high temperature approximation will likely fail

even for small nuclear spin energy spacing. What results is a sum of I, I, IZZ, and IZ3

terms that will converge upon p=—LtI—LI +11°+11’ = |3)(3| as the temperature



approaches absolute zero. In this state p, equals 1 while all of the other levels are

unpopulated; consequently, P, and £, equal 1 while £, equals 3. It should not bother

us that at extremely low electron spin temperatures we will directly optically pump
quadrupolar and octapolar nuclear polarization since these are the natural basis functions

at high temperature and, thus, our notions about them are quite out of place here.

Let us now consider the case where a spatially dependent optical nuclear
polarization feeding the population differences and a competing relaxation process.

These are included in equations (4.61) through (4.64).

O 1) )
ot B Tlon (x) p%at()Np')OO p,; ﬂoff (x) p;,Lattice p;

+ W(3p%(x)(3p3y (x+a)+ 4p% (x+a)+3p (x+a)) (4.61)

=3p,(x)Bp,(x+a)+4p_ (x+a)+3p_(x+a))

op,(x)
p(%tx - Tlonl(x) (p’zxtoma—m - p%(x)) _?’lj;cj(p;,mme _P%(x))

+ W(3pl(x)(3p%(x +a)+ 4p_%(x +a)+ 3p_%(x +a))
—3pl(x)(3p%(x+a)+4pl(x+a)+3p_%(x+a)) (4.62)

+4p (X)@p,(x+a)+ 4p%(x +a)+3p (x+a))
~4p,()0p,(x+a)+4p_, (x+a)+3p_(x +a)

8]7,,%(35) 3 1 ( B
o T\ ™ PO g P =2 9)
+ W(3pV%(x)(3p%(x +a)+ 4p%(x +a)+ 3p_,2!,(x +a))
- 3p_%(x)(3p% (x+a)+ 4p‘%(x +a)+ 3p_; (x+a)) (4.63)

+4p, (x)Bp,(x+a)+4p_ (x+a)+3p . (x+a))
—4p (x)Bp;(x+a) +4p% (x+a)+ 3p7%(x + a)))
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ap_;(x) 1 |
ot B TIon (x) (pA%,lOva)OO - p_%(X)) - Tloff (x)( -3 Lattice - p% (X))
FWEP(N)Cp(x+a)+4p (x+a)+3p (x+a) (4.64)

=3p,()C@p,(x+a)+4p (x+a)+3p_ (x+a)))

We may again express these equations in terms of the orthogonal polarizations.
The equations are further simplified if we define the following asymptotically limiting

values of the various types of polarization.

Zlonp—® = p%,‘ONP—”O + %péstow"w - %p‘%v’ow*w N p"%JONP—)w (465)
Q.lonp—> - p’%a’(mp—”’ _pgly_'slow*’w N p*%JONp—”O + p“%JONP%"O (466)
O.lonp=>e0 = —;-p%JONP“"’O - p%a’oqu‘”o + “%Jow‘”o w%p";"a/owﬁw (467)
PZ Lattice — p 3, Lattice + %p 1 Lattice —%p —4.Lattice -p -3 Lattice (468)
PQ,Lattice =P 3 Lattice —P 1 Lattice -P ~1 Lattice tp ~3 Lattice (469)
PZ,Lanice = _;—pg,Lattice - p—;,Lattice + -1, Lattice - %‘-p—%,l,aﬂice (470)

The first three polarization values are those that the nuclei would reach if they
were allowed to polarize until they reached thermal equilibrium with the electron spins
without any couplings to the lattice, and the second three polarization values are those
that the nuclei reach when they are only allowed to thermally equilibrate with the lattice.
However, the polarization values due to thermal equilibration with the lattice are
essentially the high temperature limit values, since the high temperature approximation

holds to well below one degree Kelvin even for a one Gigahertz resonance frequency (our
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resonance is at ~3.2 Megahertz). Inserting the asymptotic polarization limits above, we

have

1

aPZ(X) 1 (P710Np——>oo P (X)) ( Z Lattice P (JC))
6’ lon( ) ]off( ) (4 71)
+5a2——82PZ§x)+2a ( §x)p( )— azp (x) )(x))
ox ox
oP(x) 1 1
L@t ](m( )(PQIONPAaw_ Q(x)) loff( )(l)QLamcc ‘P()(x))
~30P,(x)+6a Zagigx)%(x)ﬂng(x) (4.72)
+2 2(6 gx(x) 2P (x)j(PO(x) 2P,(x))
GB)(x) 1
5! 1on( )( O lonp—>© ])() (X)) 1Off( )( (,Lattice P() (x))
~60P,(x)+124° o P( )p P,(x)+6a 262PZ§x)PQ(x) 4.73)

+24F,(x)F,(x) +12F,(x) P, (x)

We see that the results of ONP and spin diffusion are not mixed or altered by the
two processes occurring simultaneously. That is, the result of the sum of the processes is
the sum of the results of the individual processes. Therefore, we may calculate the ONP
exactly from one discreet time point to another by integrating the equations without spin
diffusion. This polarization is then allowed to diffuse over a set number of sites before
the time is moved forward. The ONP is then calculated for the next time step and the
process repeats until we have stepped forward through the desired time interval. This a

tremendously tedious process since the time scale for spin diffusion is so incredibly short
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(~microseconds) compared to the time scale of the experiment (hundred of milliseconds
to seconds), and since there are tens to hundreds of thousands of nuclei in the relevant

volume about each defect.

However, because equations (4.71) though (4.73) are just equations (4.25) through
(4.27) with ONP at each point added in, we suspect that moving to a continuum model
will greatly improve the computational tractability of the problem. Upon making the

appropriate changes, we arrive at

OP,(x) _ 1
- Z tonp ™ © P X Z Lattice P X
o T (x )( ) »off( )( (<) (4.74)
+5a°V2P,(r 1) + 24> ((vzp (r.0)) P, (r.t) = (V*P,(r.1)) Q(r,z))
6P)(x) 1
TR e | L e L)
—90P,(r,1)+6P,(r,0)a’V>P,(r,1)+36F, (r,t) (4.75)

+Z(P,(r,t)=2P,(r,0))a’V*P,(r,1)
+]—(5)1(P()(I”,l‘)-2PZ(I’,I))PZ(I",I)

aP()(x) 1 ( D donp—> -k (x))

ot lon( ) loff( )( O, Lattice - P, (x))

—180P,(r.0)+6a’ (2P, (r.)V’ By(r.0) + Py(r. OV’ Py(r,1))  (4.76)
+72B,(r,0) P (r,0) + 36 P (r, ) P,(r,1)

This set of coupled differential equations describes the simultaneous polarization

diffusion and ONP subject to the same constraints we encounter in the spin-1/2 case.

Namely, the anisotropy of W was neglected in order to form V* from the one-
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dimensional derivatives, and the anisotropy due to the structure of the crystal lattice not

being simple cubic is also absent.

F. Spin Diffusion in the Presence of a Well Resolved
Quadrupole Splitting.

The Hamiltonian of a spin that is subject to both Zeeman and secular quadrupole
interactions and that has a Zeeman Hamiltonian that is large enough to truncate the

quadrupole Hamiltonian is written asl
2
H=-w,l+0,(3-11) (4.77)

The effect of the quadrupole term above is to shift the )4 and — )4 levels down in energy

by @,/4 and to shift the 4 and —3 levels up in energy by ®,/4. This results in
satellite transitions at ®, +@, /2 and an unshifted central transition. ~When the

quadrupole Hamiltonian is strong enough to split the resonance into three resolved lines,
flip-flops between the lines become a non-energy-conserving process. Equivalently, such
flip-flops are truncated by the large quadrupole shift of one resonance from another.
Therefore, the relevant spin diffusion equations are

1 6p% (x)
W ot

=9p, ()P, (x +a)=9p,(x)p,(x + @) (4.78)
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1P -9 (x+

W a = p%(x)p%(x'}'a) p;(x)p; x+a) (4.79)
+16pV,;(x)pL(x +a) - 16p%(x)p_i. (x + a)

1P +a)-9p_(x)p_(x+a)

L S 0p (p (@) -9 (0)p(r+a 50
+16p,(x)p_(x+a)=16p_,(x)p,(x +a)

1P +a)-9 (x +a) 4.81

VV— ot = p,%(x)p-%(x a) p_%(x)p_% X+da ( )

Again, we may gain insight by converting these equations to our orthogonal polarization

basis. This yields

1or™ _n _ _3 _
W o 10 (Pz(x+a) Pz(x)) S(P()(x+a) B)(x))
= 3(P, ()P, (x+a) = P (x +a)Py(x)) (4.82)
+8(P,(x)Py(x +a)~ P,(x+a)Py(x))
%é‘%‘fﬁ:%(PQ(“C’)-%(x))+ré(1’o(x)l’z(x+a)—Po(X+a)Pz(x)) (4.83)
1R (x)_4 _ . -
W o 5 (Po(x+a) P(,(x)) S(PZ(x+a) Pz(x))

+Z(P,(x)Py(x +a) = Py(x +a) Py(x)) (4.84)
+8( P, (x) By (x +a)— P,(x +a)By(x))

These equations have several interesting features. Note that all three types of
polarization now have diffusive behavior analogous to the spin-1/2 case, and the
coefficients of these terms are in a ratio of 17:45:108 for Zeeman, quadrupolar and

octapolar polarizations respectively. Additionally, there are now small negative diffusion
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feedback terms between the Zeeman and octapolar polarizations. That is, diffusion of one
type of polarization somewhat impedes diffusion of the other type of polarization.
Moreover, while the quadrupolar polarization lacks such a diffusive term connecting it to
the Zeeman and octapolar polarization, it is still connected to them by the bilinear
coupling terms that attempt to equilibrate each of the polarizations with respect to the

others. Finally, there are no decay terms like the ones we encountered earlier.
The continuous medium versions of these equations are

1 oP,(r.1)
L VR (r ) =30V By (1)

~ 2.8 (B,(r,OV*By(r.0) ~ By (r.)VPB,(r,1)) (4.85)
+ 2.0 (P,(r.)OV Py(r.0) = Py(r, )V Py(r,1) )

1 0P (r,t i
_‘—%t——l:%aZVZPQ(r’[)jL%az(P()(r’t)vzpz(ra[)—PZ(I”,I)VZP()(r,t)) (4.86)

w

1 of(x) _

o B@VP (r,) - 2a’VPP,(r,1)

+2.a" (B, (r.)V By (r.0) = By(r, )V Py (.1)) (4.87)
+£a” (P,(r. )V By (r,0) = By (r.OV* P, (r,1))

G. Behavior of the Equations for Spin Diffusion in the Presence

of a Well Resolved Quadrupole Splitting

We see that it is also worth integrating these new equations in an approximate

sense under a few different initial conditions to build a similar understanding of their
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behavior as we did in section D of this chapter. Again, we must integrate these equations
over all couplings in the solid to arrive at exactly what happens in the sample in the
general case. Nevertheless, this earliest time behavior gives us some idea of what
direction the system starts to move toward when it has been placed in a given initial

condition.

1. Spin Diffusion in the Presence of a Well Resolved Quadrupole Splitting

for a System Initially in a State of Uniform Polarization

If there are equal amounts of each of the polarizations on both spins, then

equations (4.82) through (4.84) yield

8PZ _ aPQ _ aP() _
ot ot ot

0 (4.88)

where we have used the equivalence of the spins in this specific case to eliminate the
spatial variable. That is, the subset of dipolar flip-flops that are allowed here are
incapable of equilibrating uniform polarization of any kind to any other state that is more
preferred on the basis of enthalpy or entropy, standing in stark contrast to the effect of the
sum of all flip-flops considered in previous sections. However, before we conclude that
each polarization is its own thermal reservoir let us consider a gradient in one of the

polarizations.
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2. Spin Diffusion in the Presence of a Well Resolved Quadrupole Splitting

for a System Initially in a State of Nonuniform Polarization

Let us consider for a moment what would happen if we introduced a Zeeman
polarization difference between the two nuclei considered above when there is no
quadrupolar or octapolar polarization. Let the spin at position x+a be in a state of pure
Zeeman polarization, and let the spin at position x be completely depolarized. Again, at a

short time At later, we may then write

P, (x,At) =W AP, (x +a,0) (4.89)
P, (x,A1)=0 (4.90)
P, (At)==3WALP, (x +a.,0) (4.91)

We may then extend this to

P, (x,2At) = P, (x, M)+ ZW A1(P, (x +a,Ar) - P, (x,Ar))

(4.92)

~3WAL(P (x+a.Ar)= B, (x.A1))
P, (x,2At) = 9W At (P, (x,At) P, (x + a,At) = P, (x + a, At) P, (x,Ar)) (4.93)
P, (x,2At) =P, (x, At) + %WAI(PO (x + a,At) -P, (x, At)) 4.94)

—3iWAI(P,(x+a,A)- P, (x,A1))

We see that the second term of equation (4.83) has now been activated, leading to
quadrupolar polarization. This is assured by the equivalent magnitude and reversed signs

of the octapolar polarizations for the two spins. Thus, we will again have an induction of
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quadrupolar and octapolar polarization by pure Zeeman polarization on the neighboring
spins.

Now, let us examine what would happen if we introduced a quadrupolar
polarization difference between the two nuclei considered above instead of a Zeeman
polarization difference. Let the spin at position x+a be in a state of pure quadrupolar
polarization, and let the spin at position x be completely depolarized while the
quadrupolar and octapolar polarizations are both still zero. Again, at a short time Ar

later, we may then write

P,(x,Ar)=0 (4.95)
B, (x,Ar)=5W AP, (x +a,0) (4.96)
P,(A)=0 (4.97)
We may then extend this to
P, (x,2At)=0 (4.98)
P, (x.2A1) = $W AL (P, (x+a.At)— P, (x,Ar)) (4.99)
P, (x,2A1)=0 (4.100)

We see that the quadrupolar polarization will not leak out to the Zeeman and octapolar
polarizations precisely because they are initially zero. That is, if either the Zeeman or
octapolar polarization is simply nonzero while the quadrupolar polarization is spatially

inhomogeneous, both the Zeeman and octapolar polarizations will become coupled to the
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quadrupolar polarization, thereby participating in the diffusion of spin order. Indeed,
these equations show that it is practically impossible to maintain a system of pure
quadrupolar polarization if gradients exist in that polarization since any small fluctuation
in the Zeeman or octapolar polarizations about their zero value would quickly grow to an
equilibration of all the three polarizations. Thus, in the absence of other polarizations
quadrupolar order is an absolutely separate thermal reservoir, but it is in a position of
unstable equilibrium like a pencil standing on its pointed end. It will not persist in this

state, and will achieve thermal equilibrium on a rapid time scale.

H. Frozen Core Effects

There are two more ways in which the large electric fields and Knight shifts close
to the center of a shallow hydrogenic donor can perturb with the process of probing these
sites with an ONMR experiment. Firstly, the quadrupole interactions can be so strong as
to interfere with the ONP of the nuclear spin. Secondly, the quadrupole and Knight shifts
in the nuclear spin Hamiltonian can effectively truncate the homonuclear dipolar flip-
flops. Both of these processes can be roughly approximated by application of the results

of a single spin-one-half in the presence of an off-diagonal interaction. Following Cohen-

Tannoudji et al.4, one may write

P 4.101
—WEZ' (4.101)
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Moreover, if one calls the eigenstates of the unperturbed Hamiltonian [a) and ] ,B) , then

the new eigenstates are

|+>=cos§la>+sin-§—]ﬁ> (4.102)
and
'—>=00s£[ﬁ>—sing|a> (4.103)
2 2
where
tang = —2 (4.104)
1 Ez

With respect to ONP we take « and f as two adjacent states in the ladder of spin

levels, and the w as the off-diagonal terms that tends to inhibit the transition between

these two levels. Clearly the matrix element <+]I+ |~> captures this behavior. That is,

when w is zero, the matrix element is one and ONP is unimpeded. However, when w is

not negligible

(+|L|-)= (cosgj — (sin gj =cosf . (4.105)

Moreover, it is clear from this that when w gets very much larger than £, — E, 6 tends to

7/2 and the matrix element <+] I, I—} goes to zero, precisely as one would expect.

With respect to spin diffusion, a and f are taken to be middle states in a product

operator basis set. That is,

a) = |y§> and |ﬂ> = [(5}/), so that



|+) = cos§]7§>+sin§-|5y>

and

o . 6
|-)= 0055|5y>-sm5|y§).

Inverting these equations gives
|}/§> = cos§[+> - sin%[—)
and

0 . 0
]57) = c055|—> + sm5|+>
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(4.106)

(4.107)

(4.108)

(4.109)

Using the orthogonality of the states [+) and I—) , the matrix element of the dipolar flip-

flops that give rise to spin diffusion can now be calculated as

(o X1o) =?_cos€sin—6—=sin9.
(r8]07) =2c0s T sin>

Thus, when E,-E,, in the form of Knight shift and quadrupole interaction

differences, is very much larger than w, which is a flip-flop term in the homonuclear

dipolar Hamiltonian, € will go to zero, and so does the spin diffusion rate. Conversely,

when the two spins have negligible Knight shift and/or quadrupole differences, 8 goes to

7/2 and the spin diffusion rate goes to the value that was calculated earlier in this

section.
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I. Conclusions

Spin diffusion has been addressed in more detail and more accurately here than in

virtually any other work in the last 40 years. We have proved that the standard

computational approach presented in Abragamz.

It should be clear by now that, without theoretical foresight and the resultant
experimental intervention, the results of the experimental determination of the electronic
wavelunction at the optically relevant defect would be convoluted with spin diffusion to
the point where they may very well be inseparable. The experimental intervention is
relatively painless. Simply decouple the nuclei with any of a variety of simple dipolar
decoupling multiple pulse sequences during the optical nuclear polarization. However,

hindsight is usually 20/20, and this experiment has yet to be done.

However, we have shown that there is strong theoretical and experimental
evidence for fast spin diffusion in GaAs. Moreover, the non-ideal satellite ratio observed
in the presence of a uniform quadrupole Hamiltonian strongly suggests that, if the optical
nuclear polarization process attempts to continuously support a single Zeeman spin
temperature, the sample polarization is largely due to ONP at sites near the defect whose

polarization has diffused outward.

However, it is interesting to note that, when we have had quadruple splitting of
the transitions, we have observed spectra with about 40% more central transition than
expected from Zeeman polarization, and, simultaneously, the satellite lines were

asymmetric in a way that could not be fit by a single Zeeman spin temperature.
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V. Experiments on a Heterojunction - Optically Relevant

Defects

The theoretical foundation presented in chapters 3 and 4 of this thesis has been
developed to allow us to perform calculations simulating various experimental results.
We now consider those experiments, their results, and the simulation models for those

experiments. We shall also put forth suggestions for more accurate simulations.

The first LBD experiment completed, beyond the proof of the LBD effect, was to
record a free-induction-decay, FID, of a single nucleus using LBD and to Fourier
transform this FID. This is commonly referred to simply as an FT experiment, and
consists of only pulses to the signal and reference nuclei, followed either by real-time
LBD, or by an incremented period of free evolution and dual spin-locked LBD (mapping
out the FID point by point). The position of the peak of the resonance curve yields the
position of resonance relative to the rf frequency of the pulse. In the FT experiment the
best estimation of what pulse duration will make the pulses into 90°-degree pulse is made,
but, once the rf-frequency and/or the magnetic field is set so that the resonance matches
the rf frequency, one is then able to set the 90°-degree pulse exactly by performing a
nutation experiment. This is accomplished by measuring the transverse magnetization
after a single pulse whose length is incremented. Again, this is a point-wise experiment,
and it yields the frequency of the signal nucleus rotating about the rf field. This,
consequently, provides the size of the rf field as well as the best pulse times. The FT

experiment suffers from additional width in the spectral line due to inhomogeneity in first
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rank and pseudo first rank tensor interactions of the nuclei, primarily inhomogeneity of
the Zeeman field and heteronuclear dipolar couplings. This can be eliminated using the
spin-echo (Hahn echo) experiment, illustrated in figure 5.1 below. This is essentially a
point-wise FT experiment with a 180°-pulse half way through the free evolution period,
resulting in a refocusing of all interactions that are inverted by the 180°-pulse at the

detection time.

The Hahn echo is a sensitive probe of the magnitude of the nuclear magnetization.
It has been utilized here to measure the rise of the polarization with the light on, and its
dissipation with the light off. It also serves as a basis for obtaining a low resolution
radially resolved Knight shift image of the signal nuclei when it or a modification to it,
the stimulated echo, is synchronized with light in between the pulses that define one of

the evolution periods. Moreover, a high resolution radially resolved Knight shift image

of the signal nuclei is also obtained using the CLSW-16 pulse sequencel-d. A full
dissection of the Knight Shift image into its constituent physical underpinnings is highly
valuable. Putatively, one can learn the shape and size the electronic orbital in which the
electron is trapped at the defect, the occupancy of that electronic orbital, and about
quadrupolar interactions in the vicinity of the defect. We can easily obtain all or most of
this information if spin diffusion is nonexistent or if it is so fast as to produce uniform
polarization over the area of the electronic wavefunction even at the shortest ONP time;
however, if it is in the intermediate region between these extremes, the spin diffusion will
require its own set of calculations in order to deconvolute the from the Knight shift

image.
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Two different theoretical approaches where used in analysis of this work. They

are somewhat polar opposites in their methodology. In the first technique, a full, real-
time analysis of each and every one of the hundreds of thousands of nuclei surrounding a
defect in GaAs has been accomplished and the results of computations with it will be
presented here. This was achieved using a non-interacting nucleus model. That is, the
time domain is computed for each and every individual nucleus including its Knight shift,
quadrupolar interactions (both secular and nonsecular), individual optical polarization
conditions, optical detection weighting, and rigorously exact rf effects, for a time of order
of magnitude of a million cycles of the relevant rf frequency. This can be accomplished
precisely because it is a summation of a large number of single nucleus calculations. If
one were to require that the nuclei couple to one another, shifting resonances and
redistributing polarization, then the computation would very rapidly become unworkably
large. First, resonance shifts would involve increasing the number of atoms being
considered during the quantum mechanical calculations, such as diagonalization, from 1
to at least 16 (keeping only nearest neighbor Ga and As atoms), requiring us to move
from diagonalizing 4x4 matrices to diagonalizing 65536x65536 matrices. This matrix
size is computationally intensive, yet it is still quite tractable by itself. However, our
exact calculations require enormous numbers of such computations for each and every
nucleus since we consider many time steps in the cycle of the rf wave, and do this
computation for each and every laboratory-frame phase that the rf takes on. This clearly
places such large matrix diagonalizations well beyond the level of computational
complexity that is tractable for these calculations. The Mathematica code for this

simulation and other less complicated experiments is located in appendix A of this thesis.
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Moreover, the explicit computation of spin diffusion in three dimensions at every nuclear
site during each portion of the experiment (some of them lasting for seconds) hits a

similar catastrophically rapid increase in the computational complexity.

As such, using this approach, we are only able to compute spin diffusion effects
when they are present or absent to such an extreme extent that they allow us to make
certain blanket assumptions that apply to each individual computation. For example, if
spin diffusion can be considered infinitely fast, then every nucleus polarizes at the same
rate since spin diffusion redistributes polarization among the nuclei faster than they can
accumulate it individually, leading the polarization as a function of time towards a single
exponential functional form. In fact, the experiments presented in this chapter were
exhaustively fit with every manor of single nucleus calculation, representing the
asymptotic limits of the multi-nucleus computations, and no single nucleus calculation

came reasonably close to fitting the spectra over the entire 5 second range of ONP times.

In the second technique, the GaAs crystal is reduced to a continuous dielectric medium.
There are no matrices, no rf effects, and no discrete lattice. However, spin diffusion
during ONP can be approximately calculated from a 1D radial integration of the relevant
equations over time. This produces the best fits to the experimental data. That is, the
very high speed of spin diffusion makes any analysis that ignores it incapable of
reproducing a large fraction of the physics in the experiments. Moreover, estimation of
the approximate behavior of the system in the presence of the physics that gives rise to
frozen core effects is still possible with these computations while various approximations

the anisotropy of both the lattice and the dipolar couplings can also be included here.
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What one is left with is a collection of approximations that capture most of the
relevant physics of the experiment rather than a collection of exact calculations that
misses a large portion of the physics of the experiments. The best results that can be
obtained in the near term are highly likely to be generated as follows. An approximate
radial polarization distribution would be produced using this 1D integration, and that
radial polarization distribution would be used as an input into an exact “sum over all

individual spins” calculation like the one in appendix A of this thesis.

A. Experiments

The most important of the NMR pulse sequences used in this work are shown in
figure 5.1 below. The common spin echo experiment, long employed to remove
unwanted line broadening effects, functions essentially by inverting the magnetization
after the free evolution period titled Evolutionl in the figure. This assures that the free
evolution of the spin system in the period titled Evolution2 will occur in the opposite
sense as that in the period titled Evolutionl for all first rank tensor interactions, when
viewed in the rotating reference frame of the nuclear spins. This leads to a cancellation of
evolution due to such first rank tensor interactions over the entire evolution period
(Evolutionl and Evolution2). Essentially, this leaves the spin system with only evolution

due to higher order tensor interactions at the end of the evolution period.
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Figure 5.1 Pulse sequences of NMR experiments used in this work: a) the spin echo (Hahn
echo) is used to remove first rank tensor interactions, b) the stimulated echo is,
approximately, a spin echo cleaved in half with the two halves separated by a delay, c) the
CLSW16 sequence is a higher order line narrowing sequence that removes virtuaily all

NMR interactions. The pale-purple area represents the detection period in each experiment.
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Figure 5.2 Synchronization of the laser light excitation to the NMR pulse sequence allows
the nuclear spins to experience the frequency shifting influence of the hyperfine contact with
spin polarized electrons for a select fraction of the cycle over which they are being averaged,

assuring that this interaction will not be averaged away.
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The spin echo experiment can be used in a variety of ways. For example, one may

vary one of the parameters of the ONP period such as its duration or the intensity of the
laser light, and perform the experiment once at each chosen value of the variable
parameter. This experiment can also be modified to yield similar, yet different,
experiments. One such modification is to break the central 180°-pulse into two

consecutive 90°-pulses by drawing an imaginary line at the midpoint of the 180°-pulse.

The sequence still functions in an essentially equivalent manner, but, now, a delay
can be inserted between the two 90°-pulses. Once this delay is introduced between the
two halves of the former 180°-pulse, the experiment is called a stimulated echo. The
delay allows a parameter, such as the Knight shift, that would have been refocused by the
echo (due to its odd order symmetry under the influence of the “180°-pulse”) to be
introduced or altered during the delay. The net effect of this is that the Hamiltonian in the
second evolution period is different from that in the first evolution period, in other words,
a selective reintroduction a first rank interaction into the average Hamiltonian over the
entire evolution period has occurred, resulting in a change in the NMR signal while

maintaining a narrow underlying NMR lineshape.

Initially, we used this stimulated echo experiment to achieve our goal of
measuring a radially resolved Knight shift image. However, there is a different, more
accurate technique for achieving this goal. This is the CLSW16 pulse sequence, a high

order multiple pulse line narrowing sequence capable of removing all NMR interactions

regardless of their tensor rank in an average sensel-3. Pulse sequences such as CLSW-16

are referred to as time suspension sequences because, with all interactions removed from



V-9
the average evolution, time appears to stand still. The price paid for such spectacular
performance is that one must observe the system stroboscopically. That is the spin
system can only be monitored at the exact same point of the sequence on each cycle of the
sequence for this averaged “ time suspension” to be observed. An additional caveat is
that there is a maximum size of interaction that can be averaged. This is of order of
magnitude of the inverse of the time for one complete cycle of the pulse sequence, which
is ~8.3 kHz in the present work. Interactions larger than this will be partially averaged at

a level commensurate with the magnitude of the interaction.

Just as the Knight shift is averaged away by a stimulated echo experiment unless
it was modulated during the course of the experiment, we must similarly modulate the
laser light (the supply of polarized, excited-state electrons) so that it is present only in
specified periods of the CLSW-16 experiment. The relevant modulation scheme for each
of these experiments is illustrated in figure 5.2 above. Note that in each case there is a
choice of two different schemes that produce the same average Hamiltonian. One may
also change the sign of the circular polarization of the light in either of these schemes to
produce an average Hamiltonian with the exact same magnitude of Knight shift yet

introduced with the opposite sign.

B. Results and Discussion

A representative set of the experiments that [ have conducted, contributed to,
and/or provided theoretical models for will now be presented. These range from the

characterization of the rise of the polarization from ONP to the imaging of the electronic
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wavefunction of the electron trapped at the ORD. There are additional experiments that
the could be presented and dissected using the 1D radial spin diffusion integration. First
amongst these is a spin echo experiment from the days when a resolved quadrupole
splitting was observed due to sample strain. It posses anomalous satellite to central
transition intensity ratios, and application of theory in chapter 4 that shows that each type
of polarization diffuses with a different rate could potentially explain this. Unfortunately,
there is only so much that can be accomplished before it is time to move on and graduate,
so this analysis waits for newer students in the Weitekamp lab, should they decide to take

it on.

1. Initial Characterization of ONP Dynamics

Detailed experiments probing the ONP dynamics about the ORD as a function of
ONP time and laser output power have been accomplished along with the a determination
of the dependence of the signal intensity on the laser output power during the detection
period. Without spin diffusion, the characterization of the amount of nuclear polarization
generated as a function of ONP time yields insight into the correlation time for electron
hyperfine field experienced by the nuclei (assuming a given donor Bohr radius) as well as
some indications about the spatial distribution of the hyperfine interaction. With spin
diffusion, the analytical fit to a simple functional form is replaced by a numerical
calculation that takes hours to days, depending on the complexity of the simulation model

and the speed of the computer carrying out the computations.
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Figure 5.3 Two different fits to the time dependence of the

optical nuclear polarization. (a) The solid blue curve is a

continuous dielectric medium approximation to a shallow

donor. (b) The dashed violet curve is a single exponential.

The chi-squared for the blue curve is a factor of ~5.6 lower

than the violet curve. The fit values for the blue curve are

; - (0) =430 ms and 7,4 =11s while those for the violet

curve are 7,
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=35sand Iz =6s.

V-11

Ignoring spin
diffusion in the process of
fitting data acquired with
ONP times ranging from 0
to 30 seconds with laser
output power at 32 mW
produces the upper fit
(blue line) in figure 5.3
while assuming that it is
so fast as to produce one
T'1on for all nuclei produces
the lower fit (red line).
Both fits accounted for a
uniform background
relaxation. Notice that the
shallow donor with quasi-
uniform polarization
model does not fit the data
as well as the shallow
donor without spin

diffusion model.
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Figure 5.4 (a) The dependence of the signal intensity due
to variation of the laser output for both the ONP and
detection periods simultaneously. (b) The dependence of
the signal intensity due to variation during only the
detection period. Full occupancy of the sites that are being
optically detected is achieved with ~10 mW of laser output
power. The laser output power can be converted into
power density by dividing by ~0.001 cm’ (ie., the

diameter of the laser spot on the sample is ~350 um).
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Unfortunately, both
models give progressively
shorter 714, times as they are
applied to progressively
truncated subsets of the data
where only the earlier time
data is retained. This is an
indication that neither model
captures all of the relevant
physics in the data. For
example, an analysis of the
asymptotic limit of these
shorter time fits to zero time
yields a 16 ms value of
1., (r = O) 5, implying a
correlation time of the order
of 107 s, about an order of
magnitude longer than is
expected for any variety of
shallow defect (i.e., Bohr
radius on the order of 10

nm). This is evidence of
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importance of spin diffusion at all timescales relevant to ONP and detection. Further
evidence of the importance of spin diffusion will be encountered during the analysis of

the Knight shift imaging experiments below.

The dependence of the signal intensity as a function of varying the laser output
power across the entire experiment as well as the dependence of varying it only during the
detection period is presented in figure 5.4, showing that the signal intensity saturates well

below the 32 mW maximum output power of the laser. Indeed, subsequent experiments

prove that the signal intensity saturates at ~11 mW for both excitation and detection?.

2. Polarization Decay in the Absence of Laser lllumination

With the intent of measuring the background relaxation of the nuclear polarization
during the experiment, we have measured the dissipation of the nuclear polarization when
the laser light is turned off. To this purpose, a set of experiments where ONP was carried
out for a specified constant period of time that was followed by a variable delay where the
laser light was turned off, and completed by optically detecting (via LBD) the remaining
detectable nuclear polarization. The signal intensity, being a measure of the remaining
nuclear polarization, for each of these experiments is plotted versus the delay time

between the ONP and detection periods in figure 5.5 below.
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The best-fit single

1!l
/:\g 0.8 exponential for this data is
Nt
2 0.6 found to have a decay

constant T'gai that is ~21 s,

Intensit
(e} <o
o

but the single exponential is

a less than optimal fit. It

drops too slowly at early
Figure 5.5 Signal intensity remaining after a light-off

times and too rapidly at
delay between ONP and LBD detection. The time pIcLy

constant is ~21 . longer times. A better way
to model the system would
likely be to allow for both spin diffusion and a 7 relaxation that is either uniform or

spatially dependent (such as the fluctuations in transitions between 1s, 2s and 2p orbitals

of the hydrogenic donor calculated in chapter 3).

3. Deconvolution of the Synchronized rf-Optical Simulated Echo — The

First Radially Resolved Knight Shift Image

The results of the optically synchronized stimulated echo that is illustrated in
figure 5.2, and described in the text of the earlier sections of this chapter are shown in
figure 5.6, and will now be discussed. Additionally, a method of extracting a low-

resolution radially resolved Knight shift image from this data is also presented.

The “light-on” stimulated echo signal may be viewed as the inverse Fourier

transform of the weighted distribution of Knight shifts around a donor that has been line
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Intensity (a.u.)

Frequency (kHz)

Figure 5.6 "'Ga ONMR spectrum obtained using a stimulated echo without optical pulses in
any of the windows (purple line) and with o, laser light on in the second evolution period

(red line). Both experiments had 5 s of ONP, and were detected using ’As as the reference
field. The resonance line is both shifted and asymmetrically broadened by the distribution of

hyperfine interactions experienced by different nuclei.

broadened by the presence of homonuclear dipolar and scalar couplings. However, the
homonuclear dipolar and scalar couplings are what broaden the “light off” stimulated
echo signal, giving it its lineshape. Moreover, in the time domain, line broadening is
simply the multiplication of the time domain of the unperturbed spectrum and the time

domain of the lineshape of the interaction leading to the line broadening (the well known

convolution theorem®). This may be inverted to say that extraction of the unbroadened
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lineshape of an interaction can be accomplished by dividing its line broadened time
domain by the time domain of the line broadening mechanism. This correlates to
dividing the time domain of the light-on stimulated echo by the time domain of the light-

off stimulated echo.

The one practical issue that arises when pursuing this is that there is no imaginary

channel to the signals collected in the lab; therefore, zeroes in the time domain of the

Intensity (a.u.)
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Figure 5.7  Deconvolution of the distribution of hyperfine interactions experienced by
different nuclei from the light-on ONMR stimulated echo spectrum by utilizing the light off
spectrum as a reference (dividing it out in the time domain). This distribution of hyperfine

couplings is a low-resolution radially resolved Knight shift image.



V-17
light-off signal produce a quotient that diverges to infinity and is numerically unstable.
The way to fix this is to separately Fourier transform both the light-on and light-off
signals, leading to the symmetric spectra that are guaranteed by a real time domain.
Then, one sets the branch of the spectrum that contains the reflection of the spectral
feature of interest to zero. For example, if the spectral line really lies in the range of
frequencies below zero, then the amplitude of the frequencies above zero are reset to
zero. These spectra are then returned to the time domain via inverse Fourier transform
where they can be divided, and, finally, the time domain this produces is Fourier

transformed into the frequency domain.

This has been accomplished for both of the spectra in figure 5.7, and the result has
been plotted in figure 5.7, showing that, indeed, one does extract a low resolution radially
resolved image of the Knight shift distribution. This result can be compared to the 5 s
ONP data in the CLSW-16 section below. The peak appears smaller and narrower
because the signal to noise is much worse in the present case. That is, the noise in the
light on and light off experiments is random, so division of the two signals produces a
signal that is limited by the noise in these experiments and not by the noise in an
experiment that really did eliminate the broadening interaction altogether. Moreover, the
knight shift is spread out over the noise in the spectrum to a greater extent due to the
increased duty cycle (one half here compared to one tenth for CLSW-16), burying the

high frequency tail of the spectrum under the noise.
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4. Optically Synchronized CLSW-16 — The High Resolution, Radially

Resolved Knight Shift Image

The results of CLSW-16 experiments and light synchronized CLSW-16
experiments will now be presented and discussed along with some simulations of the

physics that gives rise to their lineshapes and relative intensities. The experimental
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Figure 5.8 Experimental data from CLSW-16 Knight shift imaging experiments (light-on)
with various ONP times and from CLSW-16 experiments without optical pulses (light-off).

The excitation power was 32 mW (well over the saturation value), the magnetic field was
longitudinal (001-direction), o was detected at the LBD beat frequency, the sample
temperature was ~2 K, and the CLSW-16 cycle time was 120 us while the 71Ga pulse time

(m/2) was 3 ps.
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results are shown in figure 5.8, and the results of an exact “sum over all sites
independently” calculation (developed in chapter 3 and presented in Mathematica code
format in Appendix A following this chapter) are given in figure 5.9, illustrating the
fundamental disconnect in this sort of approach between fitting the lineshape of a
spectrum at a given ONP time and getting the relative amplitudes of the signals a
different ONP times correct. That is, these lineshapes are far too rounded, looking more
like the pointy side of a set of progressively elongated ovals than the rounded wedges

seen in the experimental spectra.

The simulation in figure 5.9 was conducted to try to match the relative amplitudes
more than the lineshapes of the spectra. Nevertheless, it graphically depicts a number of
features in common with the experimental data. First, the light-on spectra increase in
amplitude for all sites where the spectra can be distinguished from each other until 3
seconds of ONP, after which a portion of the high frequency tail is saturated as captured
by the spectrum with 5 seconds of ONP. What is more, the low frequency end of the
spectrum does not saturate at any frequency. Note that these spectra should really be
inverse Fourier transformed, line broadened, and Fourier transformed to match the ~40

Hz of line broadening still exhibited by the light-off spectrum.
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One may attempt to fit the lineshapes first; however, the relative intensities
between the different ONP times become smaller and smaller (3 and 5 seconds lay almost
directly on one another). Therefore, what is needed is a mechanism whereby the intensity
at lower frequencies (higher radial distance from the donor) can be preferentially
increased over intensity at higher frequencies in a way that matches the experiment. Spin

diffusion answers this description and is expected to be too strong to ignore from
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Figure 5.9 Results of the sum of single spin simulations approach to modeling that was
presented in chapter 3 as applied to simulating the experimental data in figure 5.6. While
these simulations can exactly replicate features of the light off data and the general trends in
the light-on spectra, they are incapable of producing the exact line-shape of the light-on

spectra for all ONP times with one set of parameters. For these -calculations

T, (0) =280 ms, {s)=0.06
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calculations presented in chapter 4. The full 3D spin diffusion problem would require a
faster computer and more memory than is currently available (~3 GB of RAM, and a
computer fast enough to rapidly deal with such large amounts of data), yet it is possible to
do computations based solely on a radial line of spins that extends from the center of the
donor outward. This is an approximation, lacking the irreversibility of a spin at the center
sharing its polarization with a much larger volume of spins simultaneously through
different routes. It also lacks a rigorous handling of the dipolar anisotropy that gives rise
to radial polarization anisotropy and the anisotropy due to the crystal lattice. Despite all
of these approximations, this method produces the best fits to the experimental spectra

that have ever been produced.

For these computations, ¥ is taken to be one half of the total spin diffusion rate

experienced by each nucleus scaled by the isotopic abundances of those nuclei. That is,
W =(0.396)" (W, /2)=74. (5.1)

The isotopic abundance factor in this is the only way to take the ~40% isotopic
abundance of "'Ga into account, and maintain a reasonable level of computational
complexity. Moreover, the use of the total rate of spin diffusion for a given site divided
by two (one half for the forwards reaction and one half for the backwards reaction) is
plausible given that, while there are transitions that do not advance or reduce the position
of a given piece of nuclear polarization by one full inter-nuclear spacing, there are also
transitions that advance or reduce its position by more than one full inter-nuclear spacing,
and we are considering W to be a nearest neighbor coupling rate. Thus, spin diffusion

will move polarization away from a given nucleus considerably faster than the at just the
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rate of the nearest neighbor coupling, and estimation of the effective radius that the sum

of the spin diffusion rates acts from on average ((sza)2>”G / <Aa)2>ﬂc computed for

the semicircle where x in is positive) shows that this value is close to one inter-nuclear

distance, indicating that the choice of this value as an average is qualitatively correct.

This technique has been applied, at first, without any attempt to address frozen

core effects. The best simulation results obtained are for 7,,,(0)=1s and <s> =0.175,

lon
which are reasonable values, and the results are shown in figure 5.10, overlaid on the
experimental data. A crude approximation to the anisotropy of the lattice and the dipolar
coupling is also included here. The anisotropy was handled by summing three separate
computations, one with W =74 to account for the diffusion of polarization transverse to
the magnetic field to the nearest neighbors, one with W = 74/4 to account for diffusion to
the nearest at 45° to the magnetic field and the next nearest neighbors that are in a
direction that is colinear to the magnetic field, and one at W =0 to account of the
directions that require many zigzags to reach that are near the ~54.7° null of the dipolar

coupling.
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The weights of these individual calculations where initially worked out for the

case where the third computation was along the z-axis, however this turns out to have half
the rate of spin diffusion as the transverse nearest neighbors while the transverse next

nearest neighbors ([100] and [010] directions) were found to have W = 74/4. This called

for reassigning the some of the intensity from the first calculation to the second while

===light on, 5s ONP

| —light on, 3s ONP
=—=light on, 1s ONP
light on, 0.25s ONP |
——theory, 5s ONP ;
——theory. 3s ONP !
~—theory. 1s ONP

i theory, 250ms ONP

amplitude (a.u.)

Frequency (kHz)

Figure 5.10 A reasonably good simulation of the data can be obtained by integrating the
spin diffusion equations for a one dimensional radial line of spins during just the ONP
period. This version approximates the 3D case where spin diffusion is uniform at all radii,
and ONP is unperturbed by electric field induced quadrupole splitting (no frozen core). It
also includes the sum over different directions approximation to the anisotropy of the spin

diffusion that arises from the angular dependence of the dipolar coupling that is discussed in

the text. For this computation 7}, (0) =1s, <5> =0.175,and W =74.
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Figure 5.11 Inclusion of frozen core effects produces improvements in the fit of the spectra

at shorter ONP times, but simultaneously removes needed intensity from the high frequency

tail of the spectral fits. In this calculation 7;, (0) =200 ms, <S> =0.13,and W =74 .

moving the third. In the end, the weights were kept since they have roots in the relative
fractions of signal that are available from 0<6 <. The weights were obtained by

breaking the calculation into the following pieces 0<O0<7z/8 and 77/8<6<rm,
7/8<0<37/8 and 5z/8<0<7x/8, and, finally, 37/8<6<57/8. The relative

intensities of the three calculations obtained by integration are then 0.2:2 4

respectively.

The frozen core effects that were calculated in chapter 4 where added to these

calculations, and the result are displayed in figure 5.11, note the improvement in
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Figure 5.12 Using an average spin diffusion rate keeps the improvements in the fit of the

spectra at shorter ONP times, and simultaneously restores intensity to the high frequency tail

of the spectral fits. In this calculation 7;,, (0) =200 ms, <9> =0.15, and W =37. This is

the best fit to the experimental data obtained thus far. A second x-axis is provided here that

displays the radial position of the nuclei giving rise to the signal at a given frequency.

lineshape of the 250 ms ONP time Knight shift image and the loss of high Knight shift

intensity for the longer ONP time Knight shift images.
There is another way to pursue these calculations so as to produce a radial
polarization profile that will fit the average radial polarization profile. This is to average

the spin diffusion rates in different directions, performing one computation at this average

spin diffusion rate. This leads to W =74/2, and the results of this computation are

shown in figure 5.12.
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Clearly this is the best fit to the radially resolved Knight shift images ever
obtained. It includes the vast majority of the important physics in one approximation or
another, and the sum total of these well matches the laboratory data. Of course, there is
still an opportunity for more exhaustive calculations and finer tuning of the current
calculation to decrease the margin of error. It is now obvious that the shallow hydrogenic
donor model with a single positive charge at the center (exponential wavefunction with
~100A Bohr radius) can fit the data well, proving the likelihood of this assignment of the
identity of the optically relevant defects in the our sample. The Mathematica code for this

calculation is given in appendix B of this thesis.

This figure also shows the radial position of the nuclei that gives rise to the signal

at a given frequency. Comparing the Knight shift image at 3s ONP time from this figure

with figure 4.18 of James Kempf’s thesis?, it is clear that these simulations show a much
higher relative contribution to the spectrum from sites close to the center of the donor
than the analysis using empirical weights yields. Indeed, all of the spin diffusion
calculations presented here show a very similar radial profile of contributions to the
detected signal. This relative disagreement is due to the inaccurate assumption that the

spectra at 144ms to 720ms ONP time are roughly free of the effects of spin diffusion.

An analysis of the spin diffusion constant makes it apparent that, even if it is taken
as solely arising from the nearest neighbor coupling, it is still significant at even times
much earlier than the earliest ONP times. However, while spin diffusion will change the
shape of the plot of polarization versus distance, it can still be fit to a continuous

dielectric medium approximation without spin diffusion but with an artificially faster
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ONP time, and it will only deviate from the family of shapes fit by any possible ONP rate
at longer times. Moreover, these short ONP time fits without spin diffusion assign the
signal as arising from artificially more distant sites than they are actually coming from
since it is such functions that can still fit the altered shape of the spectrum produced by

spin diffusion.

One consequence of this is that it may undermine the analysis of the electric field
POWER NMR spectra presented in section D of chapter 4 of Jim’s thesis by providing a
wider spread to the quadrupole satellites surrounding the central transition. More
accurate computations of the POWER NMR experimental results that can yield answers
about which donor model(s) match the observed spectra should be accomplished using
spin diffusion to obtain a polarization versus distance relationship from the Knight shift
image with the same ONP time, and, then, using this as an input to a sum-over-all-sites-

around-a-donor calculation.

C. Conclusions

We have captured the first ever radially resolved Knight shift images from those
nuclei near a point defect in GaAs. Additionally, a deconvolution of these images into
their constituent physical interactions has been approximately carried out, yielding the
shape and size the electronic orbital in which the electron is trapped at the defect, the
occupancy of that electronic orbital, and the quadrupolar interactions in the vicinity of the
defect, including the charge state of the defect. We can most easily learn all of this

information if spin diffusion is nonexistent or if it is extremely fast; however, the current
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evidence is that it is in the intermediate region between these extremes, requiring a higher
order approximation to spin diffusion in order to disentangle this information from the
Knight shift image. Such a model has been developed, and representative calculations

have been presented.

Additionally a full, real-time analysis of each and every one of the hundreds of
thousands of nuclei surrounding a defect in GaAs has been accomplished. This was
achieved using a non-interacting nucleus model that computes the time domain evolution
for each and every individual nucleus including its Knight shift, quadrupolar interactions
(both secular and nonsecular), individual optical polarization conditions, optical detection
weighting, and rigorously exact rf effects. The successful interface of these two
computations to leverage their individual strengths is clearly a desirable route to increase

the accuracy of the computations to an even higher level.

There are two different techniques that have been employed to reach the goal of
achieving a radially resolved Knight shift image. Initially, we used a stimulated echo
experiment, and, later, we used the CLSW16 pulse sequence, a high order multiple pulse
line narrowing sequence capable of removing all NMR interactions regardless of their
tensor rank. In both cases, the Knight shift, a first rank tensor interaction, would be
removed by these line-narrowing techniques if it were present at all times in the
experiment. However, we overcame this by turning on the light (the supply of polarized,
excited-state electrons) during certain periods of the experiment, and leaving it off during

the rest of the experiment, thereby preventing this interaction from being averaged away.

The computations presented here provide insight in to the defect and its electronic
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state as well as the shape, size, and occupancy of the electronic orbital. Moreover, a
strong theoretical and computational framework has been developed, and this can serve as
a basis for future work, solving these and other related problems. Furthermore, as the
continued driving of Moore’s Law increases the extent of computational power available
for application to problems such as these, progressively more exact computations will

naturally become tractable.
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Appendix A — Mathematica Code for the Sum Over Single Spins

Calculations
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This Mathematica notebook computes
some properties (such as quadrupole
coupling and LBD signal) around a
donor site in a GaAs semiconductor
device.
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The Rhodonor series of notebooks do a density matrix
calculation at each atomic site. This notebook has
been programmed to simulate a light-on/light-off
CLSW-16 experiment in the laboratory frame (i.e., it
computes the FID following a series of rf pulses
without using the assumptions involved in rotating
frame calculations), including pulse offsetting.
Furthermore, this particular experiment has the RF
pulses TPPl'ed into the rotating-frame(the way pulses
are actually given in the experiment) and Spin-Lock
detection.

Hq = L.V.1 is calculated in this version (only for the
specific case of B in the [001] direction). Also this
version uses a Neutral ("shielded charge"” model)
Donor assumption to calculate the E-field around the
donor when the light is on, and a charged donor ("bare
charge in a dielectric medium"” model) assumption to
calculate the E-field around the donor when the light is
off.

It starts by setting up various properties as a function of position in the
lattice, and it uses the fact that only one quadrant need be calculated (due to
the symmetry of the problem). Furthermore, it sets up the fcc lattice of galliums
in GaAs in three separate steps. Firstly, it sets up a simple cubic lattice
corresponding to the atoms in the corners of the fcc lattice. Secondly, it sets up
another simple cubic lattice corresponding to the atoms in the face-centers of
the tops and bottoms of the unit cells of the fcc lattice (note that this lattice and
the lattice from step #1 are a pair of identical, interpenetrating simple cubic

Printed by Mathematica for Students
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lattices where the lattice from step #2 is just offset from the other lattice by 1/2
of a cell width in x and y). Next, it sets up yet another set of interpenetrating
simple cubic lattices which correspond to the atoms in the front and back faces
and the left and right faces of the unit cell respectively. The positions of the
atoms in terms of array indices (where each increment in an array index is
equal to a step which is one half of a unit cell in length) are as follows: the
origin, which is (0,0,0), (0,1,1), (1,0,1), (1,1,0) and all points which differ from
these by addition of an even number to each digit. For example, (2,2,2) =
(0,0,0) +(2,2,2), (7,4,19) = (1,0,1) + (6,4,18) and (13,3,0) = (12,2,0) + (1,1,0)
are all positions of atoms in the gallium lattice; however, there are no atoms at
(1,1,1=(0,0,0) + (1,1,1) and (17,4,8) = (1,0,1) + (16,4,7) = (1,0,0) + (16,4,8).
The general rule is that points with indices which are all even numbers and
points with indices which consist of two odd numbers and one even number
have gallium atoms at them. Moreover, points with indices which which consist
of all odd numbers or two even numbers and one odd number correspond to
the octahedral holes of the gallium lattice. It should be noted that gallium
arsenide has arsenic atoms at one half of the tetrahedral hole sites of the
gallium fcc latice (at all of the positive tetrahedral hole sites or all of the
negative tetrahedral hole sites depending on your definitions), and these four
tetrahedrally arranged aresenic atoms are closer to this "octahedral" site than
the six octahedrally arranged gallium atoms. Therefore, this octahedral hole
site in the gallium fcc lattice is now a tetrahedral hole in the gallium arsenide
lattice. Furthermore, the other type of tetrahedral hole in the gallium lattice is
still vacant, and, thus, still tetrahedral in nature.

Step #0

m Set Numerical Values to Constants

Printed by Mathematica for Students
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Note that RR = R(1,4) - S(4,4)*d(1,4) converted into units of 1/(meters)
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N[ , ndigit
3107 (100010%%) 2
hyperFineAs75 =
2 (4 7r) 9274 2 gammaAs75 electronDensityOnAs75
N| , ndigit

3107 (1000 10%%) 2
LuminPolarization =N[1/8];
100

1010

a0 = N[ , ndigit];

565

10010%° 2 a0
C2cubed = C213;
2 LuminPolarization hyperFineGa71l C2cubed

c2 = N| , ndigit];

ksconst = N[ ,
s
ksconstAs75 =
2 LuminPolarization hyperFineAs75 C2cubed o
N[ ' nd:LgJ.t] ;

T
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8.522777196766995x10°"*

Step #1

Note - Pulse phases (X, Y, X, Y) are determined by the
relative phase of the rf-since wave used to generate them.
However, some backwardsness of Mathematica which we
do not understand requires that if X is zero relative phase
then Y is -n/2 and Y is n/2. This is the opposite of both the
experiment (in C) and the fortran version of this simulation.

rho = Table[N[O0, ndigit], {i, 4}, {3, 4}]1;
Table[N[1, ndigit], {i, 4}, {3, 4}]1;
Von = Table[N[0, ndigit], {i, 3}, {3, 3}1:
Voff = Table[N[0, ndigit], {i, 3}, {3j, 3}1:
propon = Table[N[O, ndigit], {i, 4}, {3, 4}]1-
propoff = Table[N[0, ndigit], {i, 4}, {3, 4}1:
identity = IdentityMatrix[4];

One

3
2 0 0 O
o X o o
Iz = N[ - , ndigit] ;
o 0o -1
oo o -2
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= o @
E oy g g
Ix = N[ " ndigit] ;
0 1 0 @
0 0 ——‘/25 0
0 -1V3 0 0
2
123 0 ~F 0
Iy = N| , ndigit];
13
0 I o -3
0 0 123 0

Iplus =Ix+I1Iy;

Iminus = Ix-I Iy;

IxSqrd = MatrixPower[Ix, 2];

IySqgrd = MatrixPower[Iy, 2];

IzSqrd = MatrixPower[Iz, 2];
ItotalSgrd = IzSqrd + IxSqrd + IySqrd;
IySgrdminusIxSqrd = IySqrd - IxSqrd;
IzIxplusIxIz =TIz .Ix+Ix.Iz;
IzIyplusIyIz=Iz.Iy+1Iy.Iz;

rhonorm = Apply[Plus, Flatten[IxIx]];

(0+11./60) 4661/ 60

14.2419
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(0+11./60) 15215/ (60 24)

1.93709
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(0+11./60) 117289/ (60 24)

14.9326

Note - Pulse phases (X, Y, X, Y) are determined by the
relative phase of the rf-since wave used to generate them.
However, some backwardsness of Mathematica which we
do not understand requires that if X is zero relative phase
then Y is -n/2 and Y is #/2. This is the opposite of both the
experiment (in C) and the fortran version of this simulation.

28
resonant90time = ——;

107’
RFfreq = N[3200000, ndigit];
Larmor = N[3200000, ndigit];
StepsPerCycle = 25;
npts = 512;
SW =N[50010"3, ndigit];
Idetect = Transpose[Iplus];
UniformOmegaQ = N[0 * 15000, ndigit];

1
Omegal = N ndigit|;
o [ 4 resonant90time ' ]
1 .
delta = N[ i nd:l.g:l.t] :
StepsPerCycle RFfreq

datal = Table[N[0, ndigit], {i, npts}];
UtppiRFframe = Table[N[0, ndigit], {4}, {4}]’
RFfreq

Do[UtppiRFfra.me[n, n] = Exp[I N2Pi Iz[n, n] ], {n, 1, 4, 1}];

UtppiRFframeadj = Conjugate[Transpose[UtppiRFframe]] ;

InitTime = Round[StepsPerCycle ( (((101752605%10"-6) /100) » RFfreq) -
Floor[ ((101752605% 10~ -6) /100) *RFfreq])];

Q0Ga g” RR

4 reGaAsh

LuminPolarization=N[1/8];

el = o] , ndigit];

100 L
a0 = N[—IOT, nd:l.g:l.t] ;
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565

10010'° 2 a0
C2cubed = C2%3;
2 LuminPolarization hyperFineGa71 C2cubed

c2 =N| , ndigit];

ksconst = N[ y ndigit];

7
2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs75 = N , ndigit];
n
Do[
Do[
Do[
rr = N[\/iz +3%+k? , ndigit]; z =N[C2 rr, ndigit];
EEon = N| ————, ndigit| Exp[-2z] (22°+2z+1);
(a0 z)?
Cl EEonk NhalfSqgrt2 Cl EEon (-j + i)
von[2, 2] = ——— ; Von[1, 3] = ;
rr rr
NhalfSqrt2 C1 EEon (j + 1)
vVonf[2, 3] = ;
rr

ks = OxksconstExp[-2 z];
Hevolutnon = (Larmor - ks) Iz +

0 * (Von][2 , 2]] IySgrdminusIxSqgrd + Von[[1l, 3] IzIxplusIxIz +

UniformOmegaQ
Vonf2, 3] IzIyplusiylIz+ 2 (IzSgrd - ItotalSqrd/ 3) ) ;
Exp[-2 z]
norm = ——————— ;
rhonorm

rhozero = Iz;
time = InitTime;
Ucycle = identity;

1
Do [Htotal = Hevolutnon + Omegal (Cos [N2Pi RFfreqdelta (tt - -2—) ] Ix+

1
Sin|[N2Pi RFfreqdelta (tt - ?)] Iy) ;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
UpulseCycle = Ucycle;
datal{[l1] = norm Apply[Plus, Flatten[rhozero Iplus]];

Do [
ncycles = Floor[RFfreq (tl -1) /SW];
pulseRemainder =

Round[StepsPerCycle ( (RFfreq (t1l -1) / SW) - ncycles)];
Upulse = MatrixPower [UpulseCycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnon + Omegal (Cos [N2Pi RFfregdelta (tt - -2—) ] Ix+
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d
Sin|[N2Pi RFfreqdelta (tt - E'] ] Iy) ;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pivalsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + pulseRemainder, 1}] -
Upulse = Ucycle . Upulse;
rho = Upulse . rhozero . Conjugate[Transpose[Upulse]] ;
datal[[tl] = norm Apply[Plus, Flatten[rho Idetect]];
Idetect = UtppiRFframe . Idetect . UtppiRFframead]j
. {t1, 2, npts, 1}]
, {k, 100, 100, 4}]
. {3, 100, 100, 4}]
, {i, 100, 100, 4}];

28
resonant90time = ——;
10’

RFfreq = N[3200000, ndigit];

Larmor = N[3200000, ndigit];

StepsPerCycle = 25;

npts = 512;

SW =N[50010"3, ndigit];

Idetect = Transpose[Iplus];

UniformOmegaQ = N[0 » 15000, ndigit];
1

Omegal = N ndigit]|;
o [ 4 resonant90time ]
1 5
delta = N[ . nd:l.g:l.t] 5
StepsPerCycle RFfreq

datal = Table[N[0, ndigit], {i, npts}];

UtppiRFframe = Table[N[0, ndigit], {4}, {4}1/

RFfreq
SW

UtppiRFframeadj = Conjugate[Transpose[UtppiRFframe]] ;

InitTime = Round[StepsPerCycle+ ((((101752605%10"-6) /100) *RFfreq) -

Floor[ ((101752605% 10 -6) /100) xRFfreq])];

Q0QGa g? RR

4 wreGaAsh

LuminPolarization=N[1/8];

Do [UtppiRFframel[n, n] = Exp[I N2Pi Iz[[n, n] ], {n, 1, 4, 1}];

C1=N|[ , ndigit];

100 L
a0 = N[ 107 ; nd:.g:.t] ;
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565
Cc2 = N[——-—-——-——-—, ndigit] ;
10010%° 2 a0
C2cubed = C2+3;
2 LuminPolarizationhyperFineGa7l C2cubed
ksconst = N[ ’ ndigit];

b4
2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs75 = N[ , ndigit];
7
Do|
Do[
Do[
rr = N[V iz + 32 +k2, ndigit] ; z=N[C2rr, ndigit];
EEon = N[—-—-——-, ndigit] Exp[-2z] (222+22+1);
(a0 z)?
Cl EEonk NhalfSqrt2Cl EEon {(-j + 1)
Vonf[2, 2] = —; Von[[1, 3] = ;
rr rr
NhalfSqgrt2 C1 EEon (Jj + i)
vonf2, 3] = ;
rr

ks = 0 xksconstExp[-2 z] ;
Hevolutnon = (Larmor - ks) Iz +

0* (Von[[Z , 2] IySgrdminusIxSqgrd+ Von[[1, 3] IzIxplusIxIz +

UniformOmegaQ
Vonf2, 3] IzIyplusIylz + 2 (IzSgrd ~ ItotalSqrd/ 3) ) ;
Exp[-2 z]
norm = ———— ;
rhonorm

rhozero = Iz;
time = InitTime;
Ucycle = identity;

1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
UpulseCycle = Ucycle;
datal{[1] = norm Apply[Plus, Flatten[rhozero Iplus]];

Do [
ncycles = Floor[RFfreq (t1l-1) / SW];
pulseRemainder =

Round[StepsPerCycle ( (RFfreq (t1l -1) / SW) - ncycles)];
Upulse = MatrixPower [UpulseCycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
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DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + pulseRemainder, 1}] §

Upulse = Ucycle . Upulse;

rho = Upulse . rhozero . Conjugate|[Transpose[Upulse]] ;
datal[[tl]] = norm Apply[Plus, Flatten[rho Idetect]];
Idetect = UtppiRFframe . Idetect . UtppiRFframeadj
, {t1, 2, npts, 1}]
, {k, 100, 100, 4}]
, {3, 100, 100, 4}]
. {i, 100, 100, 4}];

8125
t90pulse = =
10
28125
resonant90time = ———;

10%°
RFfreq = N[3200000, ndigit];
Larmor = N[3200000, ndigit];
StepsPerCycle = 25;
nmax = 120;
npts = 512;
SW = N[8000 103, ndigit];
UniformOmegaQ = N[0 % 15000, ndigit];
1

Omegal = N ndigit|;
ol [ 4 resonant90time ' ¥ ]
1 . .
delta = N[ g nd:LgJ.t] ;
StepsPerCycle RFfreq

datal = Table[N[0, ndigit], {i, npts}];
UtppiRFframe = Table[N[0, ndigit], {i, 4}, {3, 4}1-
RFfreq

= ] {n, 1, 4, 1}];

Do [UtppiRFframeﬂn, n] = Exp[I N2Pi Iz[n, nJ

ncycles = Floor[RFfreq+ t90pulse];

pulseRemainder = Round[StepsPerCycle (RFfreq t90pulse - ncycles)];

InitTime = Round[StepsPerCycle+ ( (((101752605%10"-6) /100) » RFfreq) -
Floor[ ((101752605%10~-6) /100) *xRFfreq])];

QQGa q° RR

4 teGaAsh

LuminPolarization =N[1/8];

cl=N[ , ndigit];

aO:N[

100

, ndigit];
1010
565

el ndigit] ;
10010 2 a0

c2=N[
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C2cubed

c273;
N [ 2 LuminPolarization hyperFineGa7l1l C2cubed

ksconst , ndigit] ;

big
2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs75 = N[ , ndigit];
b g
Do [
Do[

Do[
rr = N[‘\/ i2 + 32 + k2, ndigit] ; 2 =N[C2rr, ndigit];

1
EEon =N[—, ndigit] (L+0xExp[-2z] (222+2z2+1));

(a0 z)?

ClEEonk NhalfSqrt2 Cl EEon (-3 +1)

vonf2, 2] = —————; Von[l1, 3] = ;
rr rr

NhalfSqgrt2 Cl EEon (j + 1)

vonf[2, 3] = ;
rr
ks = ksconst Exp[-2 z] ;
Hevolutnon =
(Larmor - ks) Iz +Vonf2, 2] IySqrdminusIxSqrd+ Von[1l, 3] IzIxplusIxIz +
UniformOmegaQ
Von[[2, 3] IzIyplusIylz+ p (IzSqrd - ItotalSqrd/ 3) ;

{valson, vecson} = Eigensystem[Hevolutnon]; valson = Re[valson];
IN2Pi (valson[n] - valson[m]) ]
I
SW

Do [propon[[n, m]] = Exp [—

{n, 1, 4, 1}, {m, 1, 4, 1}];
Exp[-2 z]

norm =
rhonorm

Idetect = Conjugate[vecson] . Transpose[Iplus] . Transpose[vecson];
UtppiRFframe = Conjugate[vecson] . UtppiRFframe . Transpose|[vecson] ;
UtppiRFframead]j = Conjugate[Transpose[UtppiRFframe]] ;

rhozero = Iz;

propa = propon;

time = InitTime;

Ucycle = identity;

1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose{vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—-) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
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, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
rho = Upulse . rhozero . Conjugate[Transpose[Upulse]];
rho = Conjugate[vecson] . rho . Transpose[vecson] ;
Do[
datal[[tl]] = norm Apply[Plus, Flatten[rho Idetect]];
rho = rho propa;
Idetect = UtppiRFframe . Idetect . UtppiRFframead]j
¢ {81, 1, npts, 1}]
., {k, 0,0, 4}]
, {3, 20, 20, 4}]
., {i, 20, 20, 4}];

28
t90pulse = ——;
10’

resonant90time = ——;

10’
RFfreq = N[3152000, ndigit]:;
Larmor = N[3152000, ndigit];
StepsPerCycle = 25;

nmax = 120;
npts = 256;
nt2pts = 10;

SW = N[200 103, ndigit];
TPPIfreq = N[50 10°, ndigit];
UniformOmegaQ = N[15000, ndigit];

1.

Omegal = N ndigit|;

o [ 4 resonant90time ' ]
Om 2 ( — ) Om 1

egas = egal;
o 1400 9
1 . .
delta = N[ i nd:Lg:Lt] i
StepsPerCycle RFfreq

datal = Table[N[0, ndigit], {i, npts}];

UtppiRFframe = Table[N[O0, ndigit], {i, 4}, {3, 4}];

ncycles = Floor[RFfreq* t90pulse];

pulseRemainder = Round[StepsPerCycle (RFfreq t90pulse - ncycles)];

InitTime = Round[StepsPerCycle* ((((101752605%10*-6) /100) * RFfreq) -
Floor[ ((101752605+10*-6) /100) x RFfreq])];

Q0Ga g* RR

4 teGaAsh

LuminPolarization =N[1/8];

c1l=N[ , ndigit];
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100 o
a0 = N[ 10w , nd:l.g:.t] ;

565

10010%° 2 a0
C2cubed = C273;
2 LuminPolarizationhyperFineGa7l C2cubed

c2=N| , ndigit];

p ndigit] ;

ksconst = N[
7T

2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs75 = N[ , ndigit] ;
7
Do[
Do[
po|
rr = N[\/ iz + 52 +k?, ndigit] ; z=N[C2rr, ndigit];
EEon = N[ , ndigit] Exp[-2z] (22°+2z+1);
(a0 z)?
Cl1EEonk NhalfSqrt2Cl EEon (-j + i)
von[2, 2] = ———; Von[1, 3] = H
rr rr
NhalfSqrt2 Cl EEon (J + i)
von[2, 3] = ;
rr
ks = ksconst Exp[-2 z] ;
Hevolutnon =
(Larmor - ks) Iz +Von[2, 2] IySqrdminusIxSqrd+ Von[[l, 3] IzIxplusIxIz +
UniformOmegaQ
Vonf[2, 3] TzTIyplusIylz + (IzSqrd - ItotalSqrd/ 3) ;

4
{valson, vecson} = Eigensystem[Hevolutnon]; valson = Re[valson];
I N2Pi (valson|n] - valson[m]) ]
!

SW

Do [propcnl[n, m] = Exp[—

{n, 1, 4, 1}, {m, 1, 4, 1}];
Exp[-2 z]

norm = —————— ;

rhonorm
Idetect = Conjugate[vecson] . Transpose[Iplus] . Transpose[vecson];
RFfreq
e f o n, 1 4! 1 7

o ] {n, 1, 3

UtppiRFframe = Conjugate[vecson] . UtppiRFframe . Transpose[vecson] ;

UtppiRFframeadj = Conjugate[Transpose[UtppiRFframe]];

Do [UtppiRFframelIn, n] = Exp[I N2Pi Iz[[n, n]

rhozero = Iz;
propa = One;

Do[
time = InitTime;
(€1 -1)
phi = e TPPIfreqN2Pi;

Ucycle = identity;
Do [

1
Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) + phi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
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Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;
Do [

1
Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - -2-) + phi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] §
Upulse = Ucycle . Upulse;
rho = Upulse . rhozero . Conjugate[Transpose[Upulse]] ;
rho = Conjugate[vecson] . rho . Transpose[vecson] ;
rho = rho propa;
datal[[tl]] = norm Apply[Plus, Flatten[rho Idetect]];

Idetect = UtppiRFframe . Idetect . UtppiRFframead]j;

propa = propa propon;
, {t1, 1, npts, 1}]
, {k, 20, 20, 4}]
. {3, 20, 20, 4} ]
., {i, 20, 20, 4}];

28
t90pulse = i

10’
resonant90time = ——;

107’

RFfreq = N[3152000, ndigit];
Larmor = N[3152000, ndigit];
StepsPerCycle = 25;
nmax = 120;
npts = 128;
nt2pts = 10;
SW = N[200 10°, ndigit];
TPPIfreq = N[50 10°, ndigit];
UniformOmegaQ = N[15000, ndigit];

1

ndigit|;
4 resonant90time ]

Omegal = N|
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Om 2 ( 200 )Om 1
egas = egadl;
g 1400 g
1
delta = N[ , ndigit] ;
StepsPerCycle RFfreq

datal = Table[N[0, ndigit], {i, npts}]:

UtppiRFframe = Table[N[0, ndigit], {i, 4}, {3, 4}1:

ncycles = Floor[RFfreq* t80pulse] ;

ncycles2 = Floor[RFfregx 2 x t90pulse] ;

pulseRemainder = Round[StepsPerCycle (RFfreq tS0pulse - ncycles)];

pulseRemainder2 = Round[StepsPerCycle (RFfreqgx 2 » t90pulse - ncycles2)];

InitTime = Round[StepsPerCyclex* ((((101752605%x10*-6) /100) »RFfreq) -
Floor[ ((101752605%10*-6) /100) *xRFfreq])]:;

G RR
M_— , ndigit] ;

LuminPolarization = N[1/8];
100
a0 = N[ ——, ndigit];
10%°
565

10010 2 a0
C2cubed = C2%3;
2 LuminPolarization hyperFineGa7l C2cubed

cz2 =N[ , ndigit];

ksconst = N[ P ndigit];

b
2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs75 = N[ ; ndigit] ;
b
Do |
Do |
Do[
rr = N[\/ i + 42 + k2, ndigit] ; z =N[C2rr, ndigit];
EEon = N[ ————, ndigit] Exp[-2z] (22°+2z+1);
(a0 z)?2
Cl1 EEonk NhalfSqrt2 Cl EEon (-j + i)
vonf2, 2] = ——; Von|[1, 3] = ;
rr rr
NhalfSqrt2 Cl EEon (j + i)
Vonf2, 3] = ;
rr
ks = ksconst Exp[-2 z] ;
Hevolutnon =
(Larmor -~ ks) Iz +Von[2, 2] IySqgrdminusIxSqrd+ Von[l, 3] IzIxplusIxIz +
UniformOmegaQ
Von[2, 3] IzIypluslIylz + (IzSqrd - ItotalsSqrd/ 3);

4
{valson, vecson} = Eigensystem[Hevolutnon]; valson = Re[valson];
IN2Pi (valson[n] - valson[m])

SW I

Do [propon[[n, m] = Exp[—

{n, 1, 4, 1}, {m, 1, 4, 1}];
Exp[-2 z]

norm = ——————————;

rhonorm

Idetect = Conjugate[vecson] . Transpose[Iplus] . Transpose[vecson] ;
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RFfreq

SW
UtppiRFframe = Conjugate[vecson] . UtppiRFframe . Transpose[vecson] ;

Do [UtppiRFframe[n, n] = Exp[IN2PiIz[n, n] ] {n, 1, 4, 13];

UtppiRFframeadj = Conjugate[Transpose[UtppiRFframe] ] ;
rhozero = 1z;
time = InitTime;

Ucycle = identity;
1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfregdelta (tt - ;) ] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
rhozero = Upulse . rhozero . Conjugate[Transpose[Upulse] ] ;
rhozero = Conjugate[vecson] . rhozero . Transpose[vecson] ;
propa = One;
Do
(t1-1)

time = InitTime + pulseRemainder + ——;
delta SW

t1-1
phi ——( )

TPPIfreqN2Pi/ 2;

rho = rhozero propa;
Ucycle = identity;
Do|

1
Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfregdelta (tt - ?) - phi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pivalsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower [Ucycle, ncycles2];
Ucycle = identity;
Do [

1
Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) - phi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose{vecs] .
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DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + pulseRemainder2, 1}] 3
Upulse = Ucycle . Upulse;
Upulse = Conjugate[vecson] . Upulse . Transpose[vecson] ;
rho = Upulse . rho . Conjugate[Transpose[Upulse] ] ;
datal[[tl]] = norm Apply[Plus, Flatten[rho Idetect]];
Idetect = UtppiRFframe . Idetect . UtppiRFframead];

propa = propa propon;
¢ 1€1, 1, Hipts, 1}]
. {k, 20, 20, 4} ]
, {3, 20, 20, 4}]
, {i, 20, 20, 4}];

28
t90pulse = H

10’
resonant90time = ——;

107’
RFfreq = N[3152000, ndigit];
Larmor = N[3152000, ndigit];
StepsPerCycle = 25;
nmax = 120;
npts = 128;
nt2pts = 10;
SW = N[200 103, ndigit];
TPPIfreq = N[-50 10, ndigit];
UniformOmegaQ = N[15000, ndigit];

1
Omegal = N[ 7 ndigit] §
4 resonant90time
Om 2 ( ko )Om .
ega2 = egal;
W 1400 o
1
delta = N| , ndigit];
StepsPerCycle RFfreq

datal = Table[N[0O, ndigit], {i, npts}];

UtppiRFframe = Table[N[0, ndigit], {i, 4}, {3, 4}1;

ncycles = Floor[RFfreq* t90pulse];

ncycles2 = Floor[RFfreq=* 2 * £t90pulse] ;

pulseRemainder = Round[StepsPerCycle (RFfreq t90pulse - ncycles)];

pulseRemainder2 = Round|[StepsPerCycle (RFfreqgx* 2 % t90pulse - ncycles2)];

InitTime = Round[StepsPerCyclex* ((((101752605%10%-6) /100) » RFfreq) -
Floor[((101752605%10%-6) /100) *RFfreq])]:’
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Q0Ga q° RR

cl = N[———-—-———, ndigit] ;
4 wreGaAsh
LuminPolarization = N[1/8];
100
a0 = N[ ’ ndigit] ;
10%°
565
c2 = N[ . ndigit] ;

10010'° 2 a0
C2cubed = C243;
2 LuminPolarization hyperFineGa71l C2cubed

ksconst = N[ , ndigit];

7T

2 LuminPolarizationhyperFineAs75 C2cubed

ksconstAs75 = N[ P ndigit] ;

Do[ "
Do|

Do[
rr = N[\/iz +32 + k2, ndigit] ; z=N[C2rr, ndigit];
EEon = N[—————-—, ndigit] Exp[-22z] (22°+22z+1);
(a0 z)?
ClEEonk NhalfSqrt2 Cl EEon (-j + i)

; Von[1, 3] = ;
rr rr

NhalfSqrt2 Cl EEon (j + i)

’

Von[2, 2]

vVonl[2, 3]
rr

ks = ksconst Exp[-2 z] ;
Hevolutnon =
(Larmor - ks) Iz +Von[[2, 2] IySgrdminusIxSqrd + Von[l, 3] IzIxplusIxIz +
UniformOmegaQ
vonf2, 3] IzIypluslylz + 2 (IzSqrd ~ ItotalSgrd/ 3) ;
{valson, vecson} = Eigensystem[Hevolutnon]; valson = Re[valson];
IN2Pi (valson[n] - valson|m])

Do |proponfn, m]] = Exp| -
[proponin, m] = Exp| o ]
{n, 1, 4,1}, {m, 1, 4, 1}];
Exp[-2 z]
NOXM = b
rhonorm
Idetect = Conjugate[vecson] . Transpose[Iplus] . Transpose[vecson];

RFfreq
Sw
UtppiRFframe = Conjugate|[vecson] . UtppiRFframe . Transpose|[vecson] ;

UtppiRFframead]j = Conjugate[Transpose[UtppiRFframe]];

Do[UtppiRFframe[n, n] = Exp[I N2Pi Iz[n, n] ], {n, 1, 4, 1}];

rhozero = Iz;
time = InitTime;
Ucycle = identity;

1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - —é—-) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
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, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;
1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfregdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
rhozero = Upulse . rhozero . Conjugate[Transpose[Upulsel];
rhozero = Conjugate[vecson] . rhozero . Transpose[vecson] ;

propa = One;

Do [
_ (t1-1)
time = InitTime + pulseRemainder + ———;
delta 2 SW

(t1-1)
phi = E— TPPIfreq (N2Pi/ 2);

rho = rhozero propa;
Ucycle = identity;
Do [

1
Htotal = Hevolutnon + 2 Omegal Sin [NZPi RFfreqdelta (tt - ?) + phi] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles2];
Ucycle = identity;

Do |

1
Htotal = Hevolutnon + 2 Omegal Sin|N2Pi RFfreqdelta |tt - —| + phi| Ix;
2 P

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder2, 1}] ;

Upulse = Ucycle . Upulse;
Upulse = Conjugate[vecson] . Upulse . Transpose[vecson] ;
rho = Upulse . rho . Conjugate[Transpose[Upulse]];
rho = rho propa;
datal[[tl]] = norm Apply[Plus, Flatten|[rho Idetect]];
Idetect = UtppiRFframe . Idetect . UtppiRFframeadj;
propa = propa propon;

, {t1, 1, npts, 1}]

Printed by Mathematica for Students



Chapter 3 - Appendix 1 Rhodnr32 2-printout.nb 23

. {k, 20, 20, 4}]
. {3, 20, 20, 4}]
, {i, 20, 20, 4}];

t90pulse = -
1

resonant90time = —E-—;

10’
RFfreq = N[3200000, ndigit];
Larmor = N[3200000, ndigit];
StepsPerCycle = 25;
nmax = 120;
npts = 512;
nt2pts = 10;
SW = N[20010°%, ndigit];
TPPIfreq = N[50 10°, ndigit] ;
UniformOmegaQ = N[O % 15000, ndigit];

1

Omegal = N ndigit]|;
¥ [ 4 resonant90time ' - ]
Om 2 ( e Om 1

egal = egal;

S 1400 ) o
1 .
delta = N[ P ndig:l.t] 7
StepsPerCycle RFfreq

datal = Table[N[0, ndigit], {i, npts}l;

UtppiRFframe = Table[N[0, ndigit], {i, 4}, {3, 4}1;

ncycles = Floor[RFfreq* t90pulse];

ncycles2 = Floor[RFfreqx 2 * t90pulse] ;

pulseRemainder = Round[StepsPerCycle (RFfreq t90pulse - ncycles)];
pulseRemainder2 = Round[StepsPerCycle (RFfreqx* 2 x t90pulse - ncycles2)];

InitTime = Round[StepsPerCycle ((((101752605+10"-6) /100) » RFfreq) -

Floor[((101752605%10%-6) /100) *RFfreq])];

Q0Ga g” RR
4meGaAsh
LuminPolarization =N[1/8];
100
100

c1=N[ , ndigit];

a0 = N[ 7 ndigit] H
565

10010*° 2 a0
C2cubed = C273;

c2 =N| , ndigit];
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2 LuminPolarizationhyperFineGa7l C2cubed
ksconst = N[

, ndigit] ;
7
2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs75 = N[ R ndigit];

Do[ i
Do[
Do|

rr = N[V i2 + 92 + k2, ndigit] ; z =N[C2 rr, ndigit];

EEoff = N[ , ndigit]; EEon = EEoff Exp[-22] (22" +2z+1);
(a0 z)?
Cl EEonk NhalfSqrt2 Cl EEon (-j + i)
vonf2, 2] = ——; Vonl[1l, 3] = ;
rr rr
NhalfSqrt2 C1 EEon (j + 1)
vonf2, 3] = ;
rr
Cl EEoff k NhalfSqrt2 Cl EEoff (-j +1i)
Voff[[2, 2] = —————; Voff[[1, 3] = ;
rr rr
NhalfSqrt2 Cl EEoff (j +1i)
Voff[[2, 3] = ;
rr

ks = ksconst Exp[-2 z] ;
Hevolutnon =
(Larmor - ks) Iz +Von[[2, 2] IySgrdminusIxSqrd+ Von[l, 3] IzIxplusIxIz +
UniformOmegaQ

Voniil2, 3] IzIyplusIyIz + 2 (IzS8qrd - ItotalSqrd/ 3) ;

Hevolutnoff =
Larmor Iz + Voff[[2, 2] TySgrdminusIxSqrd + Voffff1, 3] IzIxplusIxIz +
UniformOmegaQ
Vofff[2, 3] IzIyplusIyIz + 2 (IzSgrd - ItotalSqrd/ 3) ;
{valson, vecson} = Eigensystem[Hevolutnon]; valson = Re[valson];
I N2Pi (valson[n]] - valsonm])

2 SW ]

Do [propon [n, m]] = Exp ['

{n, 1, 4,1}, {m, 1, 4, 1}];
{valsoff, vecsoff} = Eigensystem[Hevolutnoff]; valsoff = Re[valsoff];
I N2Pi (valsofffn] - valsoff[m])

Do |propoffn, m]] = Exp| - ,
[propoffln, m] = Exp| o ]
{n, 1, 4,1}, {m, 1, 4, 1}];

Exp[-2 z]
norm= ———;

rhonorm

Idetect = Conjugate[vecson] . Transpose[Iplus] . Transpose{vecson];
RFfreq
SW
UtppiRFframe = Conjugate[vecson] . UtppiRFframe . Transpose[vecson] ;

Do[UtppiRFframe[[n, nj = Exp[I N2Pi Iz{n, n] ], {n, 1, 4, 1}];

UtppiRFframeadj = Conjugate[Transpose[UtppiRFframe]];
rhozero = Iz;

time = InitTime;

Ucycle = identity;
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1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - _é—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate{vecs] . Ucycle
, {tt, time +1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
rhozero = Upulse . rhozero . Conjugate[Transpose[Upulse]];
rhozero = Conjugate[vecson] . rhozero . Transpose[vecson] ;

propa = One;

propb = One;
Do [
(t1-1)
time = InitTime + pulseRemainder + —w
delta 2 SW
(t1-1)
phi = —ew TPPIfreq (N2Pi/2);

rho = rhozero propb;
Ucycle = identity;
Do|

1
Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfregdelta (tt - ?) + phi] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pivals deltal] . Conjugate{vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower|[Ucycle, ncycles?];
Ucycle = identity;
Do [

1
Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) + phi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pivals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder?2, 1}] ;
Upulse = Ucycle . Upulse;
Upulse = Conjugate[vecson] . Upulse . Transpose[vecson] ;
rho = Upulse . rho . Conjugate[Transpose[Upulse] ] ;
rho = rho propa;
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datal[[tl] = normApply[Plus, Flatten[rho Idetect]];
Idetect = UtppiRFframe . Idetect . UtppiRFframeadj;
propa = propa propon;

propb = propb propoff;
¢ {1, 1, npts, 1}]
, {k, 20, 20, 4}]
., {3, 20, 20, 4}]
. {i, 20, 20, 4}];

Note that pulse phases (X, Y, X, Y) are determined by the
relative phase of the rf-since wave used to generate them.
However, some backwardsness of Mathematica which we
do not understand requires that if X is zero relative phase

then Y is -7/2 and Y is 7/2. This is the opposite of both the
experiment (in C) and the fortran version of this simulation.

28
t90pulse = ——;
10’

resonant90time = 2—;

107
RFfreq = N[3200000, ndigit];
Larmor = N[3200000, ndigit];
StepsPerCycle = 25;
tONP = 5;
t10fE =217
tlOnZero=0.2;
t2max = 2;
nmax = 120;
npts = 2048;
nt2pts =10;
tcycle = N[120 107°, ndigit];
tWinS = (tcycle/ 24) - t90pulse;
tWinL = (tcycle/ 12) - t90pulse;
SW =1/ tcycle;
UniformOmegaQ = N[0 # 16000, ndigit];
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1
Omegal = N| , ndigit];
4 resonant90time
omega2 ( 200 ) omegal
egal = egal;
g 1400 g
1
delta = N[ , ndigit];
StepsPerCycle RFfreq

datal = Table[N[0, ndigit], {i, npts}];

ncycles = Floor[RFfreqx t90pulse] ;

pulseRemainder = Round[StepsPerCycle (RFfreq t90pulse - ncycles)];

InitTime = Round[StepsPerCycle+ ((((101752605%10*-6) /100) xRFfreq) -
Floor[((101752605%10*-6) /100) »RFfreq])];

Q0CGa g” RR

Cl = N[——-———-—-—— B ndigit] ;
4 mreGaAsh
LuminPolarization=N[1/2];
70
a0 = N[ , ndigit];
1010
565
c2=N| , ndigit];

10010%*° 2 a0
C2cubed = C243;

2 LuminPolarization hyperFineGa71l C2cubed

ksconst = N[ , ndigit];

7
2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs?5 = N[ , ndigit];

bid
Do[
Do[
Do|
rr = N[0.0000001 +ViZ + j2+ k2, ndigit] ; 2=N[C2rr, ndigit];

EEoff = N[ , ndigit|; EEon = EEoff Exp[-22] (22" +2z+1);
(a0 z)?
Cl EEonk NhalfSqrt2 Cl EEon (-3 +1)
von[2, 2] = ——; Von{l, 3] = ;
rr rr
NhalfSqrt2 C1 EEon (Jj +1)
Vonf[2, 3] = ;
rr
ClEEoff k NhalfSqrt2 Cl EEoff (-3 +1i)
Vofff[2, 2} = — ; Voff[[1, 3] = ;
rr rr
NhalfSqrt2 Cl EEoff (j +1i)
Voff[[2, 3] = ;
rr

ks = ksconst Exp[-2 z];
Hevolutnon = (Larmor -ks) Iz +

0+ (Von [2, 2] IySgrdminusIxSqrd + Von[l, 3] IzIxplusIxIz +

UniformOmegaQ
Von[2, 3] IzIyplusIylz+ 2 (TzSgrd - TtotalSqrd/ 3) |;

Hevolutnoff =

Larmor Iz + O (Voff|[2 , 2] TySgrdminusIxSqrd + Voff[[1, 3] IzIxplusIxIz +
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UniformOmegaQ
4

{valson, vecson} = Eigensystem[Hevolutnon]; valson = Re[valson];

{valsoff, vecsoff} = Eigensystem[Hevolutnoff]; valsoff = Re[valsoff];

Voff{[2, 3] IzIypluslylz + (IzSgrd - TtotalSqgrd/ 3)) ;

Uevonl = Transpose[vecson] .
DiagonalMatrix[Exp[-I N2Pi valson tWinL] ] . Conjugate[vecson] ;

UevoffS = Transpose[vecsoff] .
DiagonalMatrix[Exp[-T N2Pi valsoff tWinS]] . Conjugate|vecsoff] ;

UevoffL = Transpose[vecsoff] .
DiagonalMatrix[Exp[-T N2Pi valsoff tWinL]] . Conjugate[vecsoff] ;

UevoffLS = Transpose[vecsoff] .
DiagonalMatrix[Exp[-I N2Pi valsoff tWinL/ 2]] . Conjugate[vecsoff] ;

tlon = Exp[4 z] t1OnZero;
Ts = (t1lOff tlon) / (t1lOff + tlon);
norm =

(87Ts (1 -Exp[-tONP /Ts]) (1 -Exp[-t2max/ tlon]) Exp[-2 z]);
rhonorm
Idetect = Transpose[Iplus];

rhozero = Iz;
time = InitTime;
Ucycle = identity;

1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;
1
Do [Htotal = Hevolutnon + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —é—) ] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals]

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
rhozero = Upulse . rhozero . Conjugate[Transpose[Upulse] ] ;

Uclswl6 = Uevoffls;
time = time + pulseRemainder + Round[ (tWinL / 2) /delta];

Ucycle = identity;
Do [
1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate{vecs] . Ucycle
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, {tt, time +1, time + StepsPerCycle, 1}];
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [
Htotal = Hevolutnoff + 2 Omegal Sin[NZPi RFfreqdelta (tt - 3—) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdeltal] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = UevoffS . Upulse . Uclswlé6;
time = time + pulseRemainder + Round[tWinS /delta] ;

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - ?) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncycles];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -—2—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = UevoffL . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinlL / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfregdelta (tt - —5-) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncycles];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -5—) + Pi] Ix;

{vals, vecs} = Eigensystem{Htotal]; vals = Re[vals];

Ucycle = Transpose([vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate|vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;
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Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS . Upulse . Uclswlé;
time = time + pulseRemainder + Round[tWinS / delta];

Ucycle = identity;
Do [
Htotal = Hevolutnoff + 2 Omegal Sin[NZPi RFfreqdelta (tt - ?) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles] ;
Ucycle = identity;

Do [

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) ~-Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose{vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevonL . Upulse . Uclswlé6;
time = time + pulseRemainder + Round [tWinL / delta];

Ucycle = identity;
po|
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —-2—-) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;
Do|

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E—) ~-Pi/ 2] Ix;

{vals, vecs} = Eigensystem{Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinS / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) + Pi] Ix;
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{vals, vecs} = Eigensystem|[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower|[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - -5—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-T N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;

Uclswlé6 = UevoffL . Upulse . Uclswlé;
time = time + pulseRemainder + Round[tWinL / deltal;

Ucycle = identity;
1
Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?] + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi valsdeltal] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];

Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - -2—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinS / delta];

Ucycle = identity;
Do|
1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do|

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) -Pi/ 2] Ix;
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{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;

Uclswl6 = UevoffL . Upulse . Uclswl6;

time = time + pulseRemainder + Round[tWinL /delta];
Ucycle = identity;

Do [

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - 3-) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];
Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[~I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;

Uclswl6 = UevoffS . Upulse . Uclswlé;

time = time + pulseRemainder + Round [tWinS / delta];

Ucycle = identity;
1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -é—) ] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]l] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles] ;
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
Uclswl6 = UevoffL . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinL /delta];

Ucycle = identity;
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Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower|[Ucycle, ncycles];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - -2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS . Upulse . Uclswl6;
time = time + pulseRemainder + Round [tWinS / delta];

Ucycle = identity;
po|
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}];
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [

Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - -—2—-) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé6 = UevonlL . Upulse . Uclswlé6;
time = time + pulseRemainder + Round [tWinL / delta];

Ucycle = identity;
Do|
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncycles] ;
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Ucycle = identity;
Do [
Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - —2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS . Upulse . Uclswlé6;
time = time + pulseRemainder + Round[tWinS / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncycles];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?] ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = Uevoffl . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinlL / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncycles];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transposevecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = UevoffS . Upulse . Uclswl6;
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time = time + pulseRemainder + Round [tWinS / delta] ;
Ucycle = identity;
Do|

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - —2—) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles] ;
Ucycle = identity;
Do [

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?] +Pi/ 2] Taes

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + pulseRemainder, 1}] 3
Upulse = Ucycle . Upulse;
Uclswl6 = UevoffLS . Upulse . Uclswlé6;
Uclswl6adj = Conjugate[Transpose[Uclswlé6]] ;
rho = rhozero;
Do[
datal[[tl]] = norm Apply[Plus, Flatten[rho Idetect]];
rho = Uclswl6 . rho . Uclswlé6adj;
» {€1, 1, npts, 1}]
, {k, 20, 20, 4} ]
., {3, 20, 20, 4}]
, {i, 20, 20, 4}] ;

Note that pulse phases (X, Y, X, Y) are determined by the
relative phase of the rf-since wave used to generate them.
However, some backwardsness of Mathematica which we
do not understand requires that if X is zero relative phase

t
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then Y is -n/2 and Y is n/2. This is the opposite of both the
experiment (in C) and the fortran version of this simulation.

29
t90pulse = ——;
10’
2885
resonant90time = ;
10°

RFfreq = N[3200000, ndigit];
Larmor = N[3200000, ndigit];
StepsPerCycle = 50;
tONP = 5;
tlOnZero = N[17 /100, ndigit];
t2max = 2;
nmax = 20;
npts = 1024;
nt2pts =10;
tcycle = N[120107%, ndigit];
tOffset = N[150107°, ndigit];
tWinsS = (tcycle/ 24) - t90pulse;
tWinL = (tcycle/ 12) - t90pulse;
tWinSl = tWinS - tOffset;
tWinS2 = tWinS + tOffset;
tWinLl = tWinL - 2 * tOffset;
tWinL2 = tWinL + 2 » tOffset;
SW =1/ tcycle;
UniformOmegaQ = N[0 ¥ 15000] ;

i1

Omegal = N , ndigit|;
9 [ 4 resonant90time ol ]
Om 2 ( e )Om 1

egal = egal;

v 1400 @

1
delta = N|[ ; ndigit] ;
StepsPerCycle RFfreq

datal = Table[N[O, ndigit], {i, npts}];
ncycles = Floor[RFfreq* t90pulse] ;
ncyclesS = Floor[RFfreqg* (t90pulse - 2 »x tOffset) ] ;
ncyclesL = Floor[RFfreqg* (t90pulse + 2 * tOffset) ] ;
pulseRemainder = Round[StepsPerCycle (RFfreq t90pulse - ncycles)];
pulseRemainderS =

Round[StepsPerCycle (RFfreq* (t90pulse - 2 » tOffset) - ncyclesS)];
pulseRemainderL =

Round[StepsPerCycle (RFfreqg#* (t90pulse + 2 * tOffset) - ncyclesL)];
InitTime = Round[StepsPerCycle* ((((101752605%10"-6) /100) »RFfreq) -

Floor[ ((101752605%10%-6) /100) *xRFfreq])];

Q0Ga g” RR

Cl=N|——8MM—
[47reGaAsh

, ndigit];
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LuminPolarization=N[1/2];
70
a0 = N[—, ndigit] ;
10%°
565

10010 2 a0
C2cubed = C243;
2 LuminPolarization hyperFineGa7l1l C2cubed

c2 =N| , ndigit];

ksconst = N[ , ndigit];
T

2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs75 = N[ , ndigit];
Tt

time = InitTime;
Ucycle = identity;

1
Do [Htotal = Larmor Iz + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?J ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Larmor Iz + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re [vais] ;
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
phase = Upulse . Iz . Conjugate[Transpose[Upulse]];
coefflx = Apply[Plus, Flatten[phase Ix]] / rhonorm;
coeffly = Apply[Plus, Flatten[phase Iy]] / rhonorm;
IdetectInit = (IxcoeffIx - Iy coeffly) /Sqrt[coeffIx”2 +coeffIy”2] +
i (Ix coeffly + Iy coefflIx) / Sqrt[coeffIx”2 + coeffIiy*2];
Do [
Do |
Do [
rr = N[0.00000001 + Vi? + 32 +k2 , ndigit]; z = N[C2 rr, ndigit];

EEOff = N[———, ndigit]; EEon = EEoffExp[-2z] (22°+2z+1);
(ab z)?
Cl EEonk NhalfSqrt2Cl EEon (-j + 1)
Von[2, 2] = — ; Von[1, 3] = ;
rr rr
NhalfSqrt2 Cl1 EEon (j + 1)
Von[2, 3] = ;
rr
Cl EEoff k NhalfSqrt2 Cl EEoff (-3 + 1)
Voff[2, 2] = —————; Voff[1, 3] = H
rr rr
NhalfSqrt2 Cl EEoff (j +i)
Voff[[2, 3] = ;
rr
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ks = ksconst Exp[-2 z] ;
Hevolutnon = (Larmor - ks) Iz +

0% (Von[[Z ; 2]] IySqrdminusIxSqrd + Von[[1, 3] IzIxplusIxIz +

UniformOmegaQ
Vonf2, 3] IzIyplusIyIz + n (IzSgrd - TtotalSqrd/ 3) ) ;

Hevolutnoff =
Larmor Iz + 0 (Voff[[Z , 2]] IySqrdminusIxSqrd + Voff[[1, 3] IzIxplusIxIz+

UniformOmegaQ
Voff[[2, 3] IzIyplusIyIlz + 2 (IzSgrd - Itotalsqrd/ 3) ) H
{valson, vecson} = Eigensystem[Hevolutnon]; valson = Re[valson] ;

{valsoff, vecsoff} = Eigensystem[Hevolutnoff]; valsoff = Re[valsoff];

UevonL = Transpose[vecson] .

DiagonalMatrix[Exp[-I N2Pi valson tWinL]] . Conjugate[vecson] ;
UevoffLl = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL]] . Conjugate[vecsoff] ;
UevoffLl = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinLl]] . Conjugate[vecsoff];
UevoffL2 = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL2]] . Conjugate[vecsoff];
UevoffLS = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL/2]] . Conjugate[vecsoff];
Uevof£fSl = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinS1]] . Conjugate[vecsoff];
UevoffS2 = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinS2]] . Conjugate[vecsoff] ;
tlon = Exp[4 z] tlOnZero;
Ts = (tlOff tlon) / (t1O£ff + tlon) ;
norm =

————— (8 Ts (1 -Exp[-tONP /Ts]) (1 - Exp[-t2max/tlon]) Exp[-2 z]);
rhonorm

Idetect = Transpose[IdetectInit];
rhozero = 1Iz;

time = InitTime;

Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -é—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-IN2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles] ;
Ucycle = identity;

1
Do[Htotal = Hevolutnoff + 2 Omegal Sin [¥2Pi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];
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Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-IN2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
rhozero = Upulse . rhozero . Conjugate[Transpose[Upulse]];

Uclswlé = UevoffLS;
time = time + pulseRemainder + Round|[ (tWinL/ 2) / delta] ;

Ucycle = identity;
po|

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re|[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ~-Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate|vecs] . Ucycle
, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
Uclswlé = UevoffS2 . Upulse . Uclswlé;
time = time + pulseRemainder + Round[tWinS2 / delta] ;

Ucycle = identity;
1
Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —é—J + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesS}];
Ucycle = identity;

1
Do[Htotal = Hevolutnoff + 2 Omegal Sin|[N2Pi RFfreqdelta (tt - ?) +Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemaindersS, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = UevoffL2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round[tWinL2 / delta] ;

Ucycle = identity;
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Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi valsdeltal] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesS];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2——) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemaindersS, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = Uevof£fS2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round[tWinS2 / delta] ;

Ucycle = identity;
Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do|
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -2—) -Pi/2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6é = UevonL . Upulse . Uclswlé;
time = time + pulseRemainder + Round[tWinL /delta]l;

Ucycle = identity;
Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncycles];
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Ucycle = identity;
Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = Uevof£fSl . Upulse . Uclswlé6;
time = time + pulseRemainder + Round[tWinSl / delta];

Ucycle = identity;
Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesL];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) + Pi] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainderl, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = UevoffLl . Upulse . Uclswlé6;
time = time + pulseRemainderL + Round[tWinLl / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E—) + Pi] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesL] ;

Ucycle = identity;

Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) +Pi] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainderl, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = Uevof£fSl . Upulse . Uclswl6;
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time = time + pulseRemainderL + Round[tWinSl / delta];
Ucycle = identity;

po|
Htotal = Hevolutnoff + 2 Omegal Sin[NZPi RFfreqdelta (tt - ;) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, l}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do|
Htotal = Hevolutnoff + 2 Omegal Sin {N2Pi RFfreqdelta (tt - ?) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffL . Upulse . Uclswlé;
time = time + pulseRemainder + Round[tWinL /delta];

Ucycle = identity;
Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

po|
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[~I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = Uevof£fS2 . Upulse . Uclswlé;
time = time + pulseRemainder + Round[tWinS2 / delta];

Ucycle = identity;
Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix

7

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
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DiagonalMatrix[Exp[-I N2Pivalsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesS];
Ucycle = identity;
1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainders, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffL2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round[tWinl2 / delta] ;

Ucycle = identity:;
1
Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] =;

{vals, vecs} = Eigensystem[Htotal]; vals = Re{[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesS];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - -—2—-) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainders, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = Uevof£S2 . Upulse . Uclswlé;
time = time + pulseRemainderS + Round[tWinS2 / delta] ;

Ucycle = identity;
Do [
1
Htotal = Hevolutnoff + 2 Omegal Sin[NZPi RFfreqdelta (tt - ?) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles] ;
Ucycle = identity;
Do [
1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|[vecs] .
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DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
Uclswlé = UevonlL . Upulse . Uclswlé;
time = time + pulseRemainder + Round[tWinL / delta] ;
Ucycle = identity;
Do|

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E—) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;
Do|

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
Uclswl6 = UevoffSl . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinS1 / delta];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) ] Ix;

{vals, vecs} = Eigensystem{Htotal] ; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate|vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesL];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainderl, 1}] ;
Upulse = Ucycle . Upulse;
Uclswl6 = UevofflLl . Upulse . Uclswlé;
time = time + pulseRemainderL + Round[tWinLl / delta] ;
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;
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{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdeltal] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower|[Ucycle, ncyclesl];

Ucycle = identity;

Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—-) ] Ix;
{vals, vecs} = Eigensystem{Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainderl, 1}] ;
Upulse = Ucycle . Upulse;

Uclswl6 = UevoffSl . Upulse . Uclswl6;
time = time + pulseRemainderL + Round[tWinSl / delta];

Ucycle = identity;
Do[

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]l] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do|

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;

Uclswl6 = UevoffLS . Upulse . Uclswl6;
Uclswl6adj = Conjugate[Transpose[Uclswlé6]];

rho = rhozero;

Do|
datal[[tl] = normApply[Plus, Flatten[rho Idetect]];

rho = Uclswlé . rho . Uclswl6adj;
, {t1l, 1, npts, 1}]
, {k, 0,0, 4}]
, {3, 0,0, 4}]
, {i, 0,0, 4}];
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Note that pulse phases (X, Y, X, Y) are determined by the
relative phase of the rf-since wave used to generate them.
However, some backwardsness of Mathematica which we
do not understand requires that if X is zero relative phase

then Y is -n/2 and Y is #/2. This is the opposite of both the
experiment (in C) and the fortran version of this simulation.

29
t90pulse = ——;
10’

289
resonant90time = ——;

10°
RFfregAs75 = 1825000;
RFfreq = 3200000;
StepsPerCycle = 50;
tSpinLock = 1/ GCD [RFfreq, RFfreqAs75] ;
nStepsSpinLock = StepsPerCycle * tSpinLock * RFfreq;
tSpinLock = N[tSpinLock, ndigit];
RFfreqgAs75 = N[RFfregAs75, ndigit];
RFfreq = N[RFfreq, ndigit];
Larmor = N[3200000, ndigit];
tONP =5,
tlOnZero = N[17/100];
t2max = 2;
nmax = 10; (* nmax should be an even number here *)
npts = 2%512;
UniformOmegaQ = N[O] ;
tcycle = N[120107°, ndigit];
tOffset = N[15000 107*!, ndigit];
tWinS = (tcycle/ 24) - t90pulse;
tWinkL = (tcycle/ 12) - t90pulse;
tWinS1 = tWinS - tOffset;
tWinS2 = tWinS + tOffset;
tWinLl = tWinL - 2 » tOffset;
tWinL2 = tWinL + 2 » tOffset;
SW =1/ tcycle;
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1

4 resonant90time
160

1307

, ndigit];

Omegal = N[

OmegaZ2 = ( ) Omegal ;

1
StepsPerCycle RFfreq
datal = Table[N[0, ndigit], {i, npts}];
ncycles = Floor[RFfreq* t90pulse];
ncyclesS = Floor[RFfreqg+* (t90pulse - 2 « tOffset)];
ncyclesL = Floor[RFfregx* (t90pulse + 2 « tOffset)];
pulseRemainder = Round[StepsPerCycle (RFfreq t90pulse - ncycles)];

delta = N[ , ndigit];

pulseRemainderS =

Round [StepsPerCycle (RFfreq+ (t90pulse - 2 x tOffset) - ncyclesS)];
pulseRemainderLl =

Round [StepsPerCycle (RFfreg (t90pulse + 2 x tOffset) - ncyclesl)];

InitTime =
Round[StepsPerCycle» ((RFfreqx34+10"-7) - Floor[RFfreg+34%x10"-7])];
QQGa RR
Cl= N[—qz—, ndigit] ;
4 reGaAsh

LuminPolarization = N[1/2];
ONPInf = 5 (LuminPolarization/2) ;
LatticeInf =N[10*-5];
tElectlLifetime = 104 -13;

70

al = N[———-, ndigit] ;
10%°

565

10010'° 2 a0
C2cubed = C2"3;
2 LuminPolarization hyperFineGa71 C2cubed

c2=N| , ndigit];

ksconst = N[ , ndigit];

b
2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs75 = N| , ndigit];

b
time = InitTime;
Ucycle = identity;

1
Do [Htotal = Larmor Iz + 2 Omegal Sin [NZPi RFfreqdelta (tt - —2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles};
Ucycle = identity;

1
Do [Htotal = Larmor Iz + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
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DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + pulseRemainder, 1}];
Upulse = Ucycle . Upulse;
phase = Upulse . Iz . Conjugate|[Transpose[Upulse]];
coeffIx = Apply[Plus, Flatten[phase Ix]] / rhonorm;
coeffly = Apply[Plus, Flatten[phase Iy]] / rhonorm;
IdetectInit = (Ix coeffIx - Iy coeffly) /Sqrt[coeffIx”2 + coeffliy*2];
Do
Do [
Do [

rr = N[\/iz +3% +k2, ndigit]; z =N[C2 rr, ndigit];

EEoff = N|———, ndigit]; EEon = EEoffExp[-22z] (22°+2z+1);
(a0 z)?
Cl EEonk NhalfSqrt2 Cl EEon (-Jj + 1)
vonf2, 2 = ————; Von[1, 3] = ;
rr rr
NhalfSqrt2 Cl EEon (Jj + i)
Vonl[2, 3] = ;
rr
Cl EEoff k NhalfSqrt2 Cl EEoff (-j+1i)
Voff[[2, 2] = —— ; Voff[1, 3] = ;
rr rr
NhalfSqrt2 Cl EEoff (Jj +1i)
Voff[[2, 3] = ;
rr

ks = ksconst Exp[-2 z];
HgOn = Von[[2, 2] IySqrdminusIxSqgrd+ Vonfl, 3] IzIxplusIxIz +
UniformOmegaQ

Von[[2, 3] IzIyplusIyIz + 2 (IzSgrd - ItotalSqrd/ 3) ;
Hevolutnon = (Larmor - ks) Iz + 0% HgOn;
HQOff = Vof£f[[2, 2] IySqrdminusIxSqrd+ Voff[[1l, 3] IzIxplusIxIz+

UniformOmegaQ

Vofff[2, 3] IzIyplusIyIlz + 2 (IzSqgrd - TtotalSqrd/ 3);

Hevolutnoff = Larmor Iz + 0 « HQOf£f;

{valson, vecson} = Eigensystem[Hevolutnon]; valson = Re[valson];
{valsoff, vecsoff} = Eigensystem[Hevolutnoff]; valsoff = Re[valsoff];
UevonL = Transpose|vecson] .

DiagonalMatrix[Exp[-TI N2Pi valson tWinL] ] . Conjugate[vecson] ;
UevoffL = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL]] . Conjugate[vecsoff];
Uevoffll = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinLl]] . Conjugate[vecsoff]
Uevoffl.2 = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL2]] . Conjugate[vecsoff];
UevoffLS = Transpose{vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL/ 2]] . Conjugate{vecsoff];
UevoffSl = Transpose[vecsoff] .

DiagonalMatrix[Exp[-TI N2Pi valsoff tWinSl]] . Conjugate[vecsoff] ;
UevoffS2 = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinS2]] . Conjugate[vecsoff] ;
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NormHg = (Apply[Plus, Flatten[Abs[HqOn]]]) *2;
tlon = Exp[4 z] tlOnZero;

t10ff = 1/ (NormHg * tElectLifetime) ;

Ts = (tlOffxtlon) / (t10£f£f + tlon);
Polarization =

———— ((1 - Exp[-tONP / Ts]) * (ONPInf « t10ff + LatticeInf tlon));
t10£ff + tlon

Detection = tlon (1 - Exp[-t2max* ((1/ tlon) + (1 /t10££f))]) Exp[-2 z];
norm = 8 PolarizationDetection / rhonorm;

rhozero = Iz;

time = InitTime;

Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi vals delta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - —2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
rho = Upulse . rhozero . Conjugate[Transpose[Upulse] ] ;
Uclswlé6 = UevofflsS;
time = time + pulseRemainder + Round| (tWinL / 2) / delta];
Ucycle = identity;
po|

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - -2—) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles] ;
Ucycle = identity;
Do [

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - —2—) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
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, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;

Uclswl6 = Uevof£fS2 . Upulse . Uclswlé6;

time = time + pulseRemainder + Round[tWinS2 / delta] ;

Ucycle = identity;
1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - —2—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesS];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose{vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemaindersS, 1}] ;
Upulse = Ucycle . Upulse;
Uclswlé6 = UevoffL2 . Upulse . Uclswl6;
time = time + pulseRemaindersS + Round[tWinL2 / delta] ;
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—-) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesS];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - 5—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemaindersS, 1}] ;
Upulse = Ucycle . Upulse;
Uclswlé6 = Uevof£S2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round[tWinS2 / delta] ;
Ucycle = identity;
Do [

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ~-Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
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DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;
Do [

1
Htotal = Hevolutnoff + 2 Omegal Sin|[N2Pi RFfreqdelta (tt - ?] -Pi/2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;

Uclswlé = UevonL . Upulse . Uclswlé;
time = time + pulseRemainder + Round[tWinL / delta] ;

Ucycle = identity;
Do|

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - ?) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose{vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé6 = UevoffSl . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinS1l /delta];

Ucycle = identity;
1
Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - ?) +Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesL];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin|[N2Pi RFfreqdelta (tt - ?) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
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Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainderlL, 1}] ;

Upulse = Ucycle . Upulse;

Uclswl6 = UevoffLl . Upulse . Uclswl6;

time = time + pulseRemainderL + Round[tWinLl / delta] ;

Ucycle = identity;
1
Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - ;) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesLl];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainderl, 1}] ;

Upulse = Ucycle . Upulse;

Uclswlé = Uevof£Sl . Upulse . Uclswl6;

time = time + pulseRemainderL + Round[tWinS1 / deltal;

Ucycle = identity;
Do [

1
Htotal = Hevolutnoff + 2 Omegal Sin|[N2Pi RFfreqdelta (tt - —2-) -Pi/2] 1x;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdeltal] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [

1
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re{vals];

Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffL . Upulse . Uclswlé6;
time = time + pulseRemainder + Round[tWinlL / delta] ;

Ucycle = identity;
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Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles] ;
Ucycle = identity;

Do [

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - ;) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = UevoffS2 . Upulse . Uclswl6;
time = time + pulseRemainder + Round [tWinS2 / deltal ;

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}} ;

Upulse = MatrixPower[Ucycle, ncyclesS] ;

Ucycle = identity;

Do[Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - E—) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals deltal] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemaindersS, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffL2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round[tWinlL2 / delta];

Ucycle = identity;
Do[Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - ?) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesS];
Ucycle = identity;
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Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ;) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainders, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round[tWinS2 / delta];

Ucycle = identity;
Do|
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower|[Ucycle, ncycles];
Ucycle = identity;

Do [
Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - ?) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevonL . Upulse . Uclswlé;
time = time + pulseRemainder + Round[tWinL / delta] ;

Ucycle = identity;
Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-IN2Pi valsdelta]l] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;
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Upulse = Ucycle . Upulse;
Uclswlé = UevoffSl . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinS1 / delta] ;

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - —2—) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesL];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-T N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainderl, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffLl . Upulse . Uclswl6;
time = time + pulseRemainderl + Round{tWinLl / delta] ;

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesL];

Ucycle = identity;

Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainderl, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = Uevof£Sl . Upulse . Uclswl6;
time = time + pulseRemainderl + Round[tWinSl / delta];

Ucycle = identity;
Do|

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
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, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do|
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - —é—-) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = UevoffLS . Upulse . Uclswlé6;
Uclswl6adj = Conjugate[Transpose[Uclswlé6]];

time = InitTime + pulseRemainder;
Ucycle = identity;

Do [Htotal = Hevolutnon +
2 Omega? (Sin[N2Pi RFfreqdelta (time + (tt2-1/2)/5) -Pi/ 2] +

Sin[N2Pi RFfreqgAs75delta (time + (tt2-1/2) /5) -Pi/2]) Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pivalsdelta/5]] . Conjugate{vecs] . Ucycle

, {tt2, 1, StepsPerCycle, 1}];
{vals, vecs} = Eigensystem[Ucycle];

{uvals, uvecs} = Eigensystem[Ucycle];

Idetect = Conjugate[vecs] . IdetectInit . Transpose[vecs];

Do[

Dol
If[(Abs[(2 Pi/5) - Abs[Arg[vals[ii] * Conjugate[vals[]j3l]]1]] <=

2 pPi 19500/ (5 RFfreq))
|| (Abs[ (2 Pi (2 RFfregqAs75 - RFfreq) / (5 RFfreq)) -

Abs[Arg[vals[[ii]] * Conjugate[vals[[33]]1]1]11] <=

2 Pi 19500/ (5 RFfreq))
, Idetect[ii, jj] = Idetect[ii, jj], Idetectfii, jjJ] = N[0, ndigit]];

» {33, 1, 4, 1}1;

, {1i, 1, 4, 1}
Idetect = Transpose[vecs] . Idetect . Conjugate[vecs];

Ucycle = identity;
Do [Htotal = Hevolutnon + 2 Omega?2 (Sin [N2Pi RFfreqdelta (tt - ?) -Pi/ 2] +

1
Sin [N2Pi RFfreqAs75delta (tt - —2—) -Pi/ 2]) Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + nStepsSpinLock, 1}] ;
{vals, vecs} = Eigensystem|[Ucycle];
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Idetect = Conjugate[vecs] . Idetect . Transpose[vécs] 7
Do[
Do[
If[ (Abs[Arg[vals[[ii]] * Conjugate[vals[[jj]]]] <= 2 Pi 20 % tSpinLock)
|| (Abs[(Pi/4) - Abs[Arg[vals[[ii] * Conjugate[vals[33]111] <=
2 Pi 20 » tSpinLock)
, Idetect[ii, jj] = Idetect[ii, jj], Idetect[ii, jj] = N[O, ndigit]];
{33, 1, 4, 1}1;
» {ii, 1, 4, 1}];
Idetect = Transpose[vecs] . Idetect . Conjugate[vecs] ;
Idetect = Transpose[Idetect];
Do|[

datalftl] = datal[[tl]] + norm Apply[Plus, Flatten[rho Idetect]];
rho = Uclswl6 . rho . Uclswl6adj

; {1, 1, npts, 1}]
¢ {ky 18, 18, 2} ]
¢ {9 15, 15, 23]
¢ 14, 185, 15, #1]:

Note that pulse phases (X, Y, X, Y) are determined by the
relative phase of the rf-since wave used to generate them.
However, some backwardsness of Mathematica which we
do not understand requires that if X is zero relative phase

thenY is -n/2 and Y is n/2. This is the opposite of both the
experiment (in C) and the fortran version of this simulation.

(*# nmax should be an even
number here x)

29
t90pulse = ——;

107
29

resonant90time = ——;

107’

RFfregAs75 = 1800000;

RFfreq = 3200000;

StepsPerCycle = 25;

tSpinLock = 1 / GCD [RFfreq, RFfreqgAs75] ;
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nStepsSpinLock = StepsPerCycle * tSpinLock » RFfreq;
tSpinLock = N[tSpinLock, ndigit];

RFfreqgAs75 = N[RFfregAs75, ndigit] ;

RFfreq = N[RFfreq, ndigit];

Larmor = N[3200000, ndigit];

tONP = 5;

t1l0nZero = N[28 /100] ;

t2max = 2;

nmax = 10; (* nmax should be an even number here =*)
npts = 512;

UniformOmegaQ = N[0] ;

teycle = N[120 107%, ndigit] ;

tOffset = N[150 107, ndigit];

tWins = (tcycle/ 24) - t90pulse;

tWinL = (tcycle/ 12) - t90pulse;

tWinSl = tWinsS - tOffset;

tWinS2 = tWinS + tOffset;

tWinLl = tWinlL - 2 * tOffset;

tWinL2 = tWinL + 2 » tOffset;

SW =1/ tcycle;

1
Omegal = N ndigit]|;
g [ 4 resonant90time ' g ]
Om 2 ( 160 )Om 1
egaz = egal;
g 1307 g
1
delta = N[ . ndigit] ;
StepsPerCycle RFfreq

datal = Table[N[0, ndigit], {i, npts}];

ncycles = Floor[RFfreq+ t90pulse] ;

ncyclesS = Floor[RFfreqgx (t90pulse - 2 x tOffset) ]

ncyclesL = Floor[RFfreqgx (t90pulse + 2 « tOffset) ] ;

pulseRemainder = Round[StepsPerCycle (RFfreq t90pulse - ncycles)];

pulseRemainderS =

Round [StepsPerCycle (RFfreqg* (t90pulse - 2 » tOffset) - ncyclesS)];
pulseRemainderLl =

Round[StepsPerCycle (RFfreq+ (t90pulse + 2 x tOffset) - ncyclesl)];
InitTime =

Round[StepsPerCycle* ((RFfreq+ 34 %107 -7) - Floor[RFfreq*#34+«10~-7])1];
Cl= N[M, ndigit];

4 reGaAsh

LuminPolarization = N[1/8];
ONPInf = 5 (LuminPolarization/2) ;
LatticeInf = N[10*-5];
tElectLifetime = 500%104-12;

100 o
a0l = N[-:LOT, ndlgz.t] ;

Printed by Mathematica for Students



Chapter 3 - Appendix 1 Rhodnr32 2-printout.nb

565

10010'° 2 a0
C2cubed = C2°3;
2 LuminPolarization hyperFineGa7l C2cubed

Cc2 = N[ , ndigit] ;

ksconst = N[ P ndigit];

n

2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs75 = N[ , ndigit];

7t
time = InitTime;
Ucycle = identity;

1
Do [Htotal = Larmor Iz + 2 Omegal Sin [N2Pi RFfregdelta (tt - ;) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower|[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Larmor Iz + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
phase = Upulse . Iz . Conjugate[Transpose[Upulse] ] ;
coeffIx = Apply[Plus, Flatten[phase Ix]] / rhonorm;
coeffly = Apply[Plus, Flatten{phase Iy]] / rhonorm;
IdetectInit = (Ix coeffIx - Iy coeffly) /Sqrt[coeffIx"2 + coeffIy”*2];
Do|
Do|
Do [

rr = N[V iz + 32 + k2, ndigit] ; z=N[C2rr, ndigit];

EEoff = N| , ndigit]; EEon = EEoff Exp[-2z] (22°+2z+1);
(a0 z)?
Cl EEonk NhalfSqrt2 Cl EEon (~j +1)
von[[2, 2] = — ; Von[1, 3] = ;
rr rr
NhalfSqrt2 C1l EEon (j + 1)
Von[2, 3] = ;
rr
C1 EEoff k NhalfSqrt2 C1 EEoff (-j + 1)
Voff[[2, 2] = — ; Voff[1, 3] = ;
rr rr
NhalfSqrt2 Cl EEoff (j +1i)
Vofff2, 3] = ;
rr

ks = ksconstExp[-2 z] ;
HgOn = Von[[2, 2] IySqgrdminusIxSqrd+ Von[l, 3] IzIxplusIxIz +
UniformOmega

Von[2, 3] IzIypluslyIz + 2 (IzSgrd - ItotalsSqrd/ 3);
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Hevolutnon = (Larmor - ks) Iz + HgOn;
HgOff = Vof£f[[2, 2] IySqrdminusIxSqrd+ Voff[[1l, 3] IzIxplusIxIz +

UniformOmegaQ
Voff[[2, 3] IzIypluslIylz+ 2 (IzSgrd - ItotalSqgrd/ 3);

Hevolutnoff = Larmor Iz + HQOff;
{valson, vecson} = Eigensystem[Hevolutnon]; valson = Re[valson] ;
{valsoff, vecsoff} = Eigensystem[Hevolutnoff]; valsoff = Re[valsoff];
UevonL = Transpose|vecson] .

DiagonalMatrix[Exp[-I N2Pi valson tWinL]] . Conjugate[vecson];
UevoffL = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL]] . Conjugate[vecsoff];
UevoffLl = Transpose|[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinLl]] . Conjugate[vecsoff];
UevoffL2 = Transpose[vecsoff] .

DiagonalMatrix[Exp[-1I N2Pi valsoff tWinL2]] . Conjugate[vecsoff] ;
UevoffLS = Transpose|vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL/ 2]] . Conjugate[vecsoff];
UevoffSl = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinS1l]] . Conjugate[vecsoff];
UevoffS2 = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinS2]] . Conjugate[vecsoff];
NormHq = (Apply[Plus, Flatten[Abs[HqOn]]]) *2;
tlon = Exp[4 z] tlOnZero;
t10£ff = 1 / (NormHqg » tElectLifetime) ;
Ts = (t1lOff+tlon) / (t1O0ff + tlon);
Polarization =

_ ((1-Exp[-tONP/Ts]) * (ONPInf x t10£ff + LatticeInf  tlon)) ;
+10ff + tlon

Detection = tlon (1 - Exp[-t2max {((1/tlon) + (1/t1l0£ff))]) Exp[-2 z];
norm = 8 PolarizationDetection / rhonorm;

rhozero = Iz;

time = InitTime;

Ucycle = identity;

1
Do [Htotal =z Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - 5—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
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, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
rho = Upulse . rhozero . Conjugate[Transpose[Upulse]];

Uclswlé = UevoffLS;
time = time + pulseRemainder + Round[ (tWinL/ 2) / delta];

Ucycle = identity;
Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2-) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pivalsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles] ;
Ucycle = identity;

Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = Uevof£fS2 . Upulse . Uclswlé;
time = time + pulseRemainder + Round[tWinS2 / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi REFfreqdelta (tt - ?) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pivalsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower|[Ucycle, ncyclesS];

Ucycle = identity;

Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -2—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemaindersS, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = UevoffL2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round[tWinL2 / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregqdelta (tt - ?) + Pi] Ix;
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{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesS];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainders, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = Uevof£fS2 . Upulse . Uclswlé;
time = time + pulseRemaindersS + Round[tWinS2 / delta] ;

Ucycle = identity;

Do [
1

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —5-) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

po|

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) -Pi/ 2] Ix;

{vals, vecs)} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé6 = UevonL . Upulse . Uclswl6;
time = time + pulseRemainder + Round [tWinL / delta];

Ucycle = identity;
Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];

Ucycle = identity;
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Do[
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - ?) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = UevoffSl . Upulse . Uclswl6;
time = time + pulseRemainder + Round [tWinS1l / deltal;

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - -E—) + Pi] Ix;
{vals, vecs} = Eigensystem{Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, l}] ;

Upulse = MatrixPower[Ucycle, ncyclesL];

Ucycle = identity;

Do[Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - ?) + Pi] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainderL, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffLl . Upulse . Uclswl6;
time = time + pulseRemainderL + Round[tWinLl / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - —2—) + Pi] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesL];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfregdelta (tt - ?) + Pi] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals]’

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainderL, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = Uevof£fSl . Upulse . Uclswl6;
time = time + pulseRemainderL + Round[tWinS1l / delta] ;
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Ucycle = identity;
Do|

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -é-) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffL . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinL / delta];

Ucycle = identity;
Do [

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - —2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pivals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-IN2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS2 . Upulse . Uclswl§;
time = time + pulseRemainder + Round [tWinS2 / delta] ;

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E—) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate{vecs] . Ucycle
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, {tt, time + 1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesS];

Ucycle = identity;

Do[Htotal = Hevolutnoff + 2 Omegal Sin|[N2Pi RFfreqdelta (tt - ?) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainders, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6é = UevofflL2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round[tWinL2 / delta] ;

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E—) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pivalsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesS];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) ] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemaindersS, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round[tWinS2 / delta] ;

Ucycle = identity;
Do [

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2-—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pivalsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
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, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevonL . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinL / delta];

Ucycle = identity;
Do [

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - —2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [

Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - ?) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffSl . Upulse . Uclswl6;
time = time + pulseRemainder + Round[tWinSl /delta];

Ucycle = identity;
Do[Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - ?) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals]

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesL] ;

Ucycle = identity;

Do[Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - —2—) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pivalsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainderL, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé = UevoffLl . Upulse . Uclswlé6;
time = time + pulseRemainderL + Round[tWinLl / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
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Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesl];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - -2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose{vecs] .
DiagonalMatrix{Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainderL, 1}] ;
Upulse = Ucycle . Upulse;

Uclswl6 = UevoffSl . Upulse . Uclswl6;
time = time + pulseRemainderL + Round[tWinSl /delta];

Ucycle = identity;
Do [

Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - -2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem{Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

Do [
Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?] +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6é = UevoffLS . Upulse . Uclswl6;
Uclswl6adj = Conjugate[Transpose[Uclswlé]];
time = InitTime + pulseRemainder;

Ucycle = identity;

Do[Htotal = Hevolutnon +
2 Omega2 (Sin[N2Pi RFfreqdelta (time + (tt2-1/2) /5) -Pi/2] +

Sin[N2Pi RFfreqAs75delta (time+ (tt2-1/2) /5) -Pi/2]) Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta/5]] . Conjugate[vecs] . Ucycle

, {tt2, 1, StepsPerCycle, 1}];

{vals, vecs} = Eigensystem[Ucycle];

{uvals, uvecs} = Eigensystem|[Ucycle];
Idetect = Conjugate[vecs] . IdetectInit . Transpose[vecs];
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Do[
Do[
If[(Abs[(2 Pi/5) - Abs[Arg[vals[ii]] * Conjugate[vals[jj]111] <=

2 Pi 195000/ (5 RFfreq))
|| (Abs[(2 Pi (2 RFfreqAs75 - RFfreq) / (5 RFfreq)) -

Abs[Arg[vals[ii]] * Conjugate[vals[jj]1]1]] <=

2 Pi 195000/ (5 RFfreq))
, Idetect[[ii, j3] = Idetect[ii, 73], Idetect[ii, j3] = N[O, ndigit]];

{33, 1, 4, 1}1;
»{ii, 1, 4, 1}];
Idetect = Transpose[vecs] . Idetect . Conjugate[vecs] ;

Ucycle = identity;
Do[Htotal = Hevolutnon + 2 Omega2 (Sin [N2Pi RFfreqdelta [tt - ?) -Pi/ 2] +

1
Sin[N2Pi RFfreqAs75delta (tt - —2-) -Pi/ 2]] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals] ;

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + nStepsSpinLock, 1}] 2

{vals, vecs} = Eigensystem[Ucycle] ;
Idetect = Conjugate[vecs] . Idetect . Transpose[vecs] ;

Do[
Do[
If[ (Abs[Arg[vals[[ii]] * Conjugate[vals[[jj]]1]] <=2 Pi 20 » tSpinLock)
|| (Abs[ (Pi/ 4) - Abs[Arg[vals[ii]] * Conjugate[vals[jjll]1]11] <=

2 Pi 20 * tSpinLock)
, Idetect[ii, jj] = Idetect[ii, jj]], Idetect[ii, jj]l = N[O, ndigit]];

{33, 1, 4, 1}1;
, {11, 1, 4, 1}1;
Idetect = Transpose[vecs] . Idetect . Conjugate[vecs];
Idetect = Transpose[Idetect];
Do[
datal[[tl] = datal[[tl] + norm Apply[Plus, Flatten[rho Idetect]];

rho = Uclswl6 . rho . Uclswl6adj

; {€1, 1, npts, 1}]
s §Bz Ly Vnmax? - i? - 32, 2}]
7 {j, 1, nn|ax2—i2,2}]
, {i, -nmax, nmax, 2}];
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Note that pulse phases (X, Y, X, Y) are determined by the
relative phase of the rf-since wave used to generate them.
However, some backwardsness of Mathematica which we
do not understand requires that if X is zero relative phase

then Y is -n/2 and Y is n/2. This is the opposite of both the
- experiment (in C) and the fortran version of this simulation.

29
t90pulse = ——;
107
29
resonant90time = ——;
10’

RFfreqgAs75 = 1800000;

RFfreq = 3200000;

StepsPerCycle = 25;

tSpinLock = 1 / GCD[RFfreq, RFfregAs75] ;
nStepsSpinLock = StepsPerCycle * tSpinLock * RFfreq;
tSpinLock = N[tSpinLock, ndigit];
RFfreqgAs75 = N[RFfregAs75, ndigit];
RFfreq = N[RFfreq, ndigit];

Larmor = N[3200000, ndigit];

tONP = 5;

tlOnZero = N[28 /100] ;

t2max = 2;

nmax = 58;

npts = 512;

UniformOmegaQ = N[0] ;

teycle = N[120 107°, ndigit];
tOffset = N[150 107, ndigit];

tWinS = (tcycle/ 24) - t90pulse;
tWinL = (tcycle/ 12) - t90pulse;
tWinS1 = tWinS - tOffset;

tWinS2 = tWinS + tOffset;

tWinLl = tWinL - 2 » tOffset;
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tWinL2 = tWinL + 2 * tOffset;
SW =1/ tcycle;
1

Omegal = N , ndigit];
d [ 4 resonant90time g ]
Om 2 ( 160 )Om 1
ega’l = egal;
g 1307 g
1
delta = N[ ; ndigit] ;
StepsPerCycle RFfreq

datal = Table[N[0, ndigit], {i, npts}];
ncycles = Floor[RFfreqx* t90pulse] ;
ncyclesS = Floor[RFfreg+ (t90pulse - 2 » tOffset) ] ;
ncyclesl = Floor[RFfregx (t90pulse + 2 » tOffset) ]
pulseRemainder = Round[StepsPerCycle (RFfreq t90pulse - ncycles)];
pulseRemainderS =

Round[StepsPerCycle (RFfreqg* (t90pulse - 2 » tOffset) - ncyclesS)];
pulseRemainderl =

Round{StepsPerCycle (RFfreqg+ (t30pulse + 2 » tOffset) - ncyclesL)];
InitTime = Round[StepsPerCycle* ( (RFfreq* 34x10%-7) ~ Floor[RFfreq+ 34 x10" -
Q0Ga g RR
4 neGaAsh
LuminPolarization = N[1/8];
ONPInf = 5 (LuminPolarization/2) ;
LatticeInf = N[10*-5];
tElectLifetime = 500+ 104 -12;

100

a0 = N[J.OTI ndigit] ;

c1=N| , ndigit];

565

10010* 2 a0
C2cubed = C2°3;
2 LuminPolarizationhyperFineGa71l C2cubed

c2 = N| , ndigit];

ksconst = N[ ’ ndigit];

7T

2 LuminPolarization hyperFineAs75 C2cubed

ksconstAs75 = N[ , ndigit];

7T
time = InitTime;

Ucycle = identity;
1
Do [Htotal = Larmor Iz + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Larmor Iz + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
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Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
phase = Upulse . Iz . Conjugate[Transpose[Upulse]];
coeffIx = Apply[Plus, Flatten[phase Ix]] / rhonorm;
coeffly = Apply[Plus, Flatten[phase Iy]] / rhonorm;
IdetectInit = (Ix coeffIx - Iy coeffly) /Sqrt[coeffIx*2 + coeffiy*2];
Do[
Do[
Do[
If[(Abs[i] +Abs[j] +Abs[k] != 0) && (2*xFloor[(i+J+k) /2] ==(i+3+k)),

{rr =N[Vi?+3%+k?, ndigit]; z =N[C2 rr, ndigit];

EEoff = N[ , ndigit] ; EEon = EEoff Exp[-2z] (22°+2z+1);
(a0 z)?
Cl EEonk
vonf[2, 2] = ——m8—;
rr
NhalfSqrt2 C1 EEon (-3 + i) NhalfSqrt2 C1 EEon (J +
Von[l, 3] = ; Von[2, 3] =
rr rr
Cl EEoff k NhalfSqrt2 C1l EEoff (-j + i)
Voff[[2, 2] = — ; Voff[[1, 3] = ;
rr rr
NhalfSqrt2 Cl EEoff (j + i)
Voff[f2, 3] = ;
rr

ks = ksconst Exp[-2 z] ;
HgOn = Von[2, 2] IySqrdminusIxSgrd+ Von[l, 3] IzIxplusIxIz +

UniformOmegaQ
Vonl[2, 3] IzIyplusIyIz + 2 (IzSgrd - ItotalSqrd/ 3);

Hevolutnon = (Larmor - ks) Iz + HgOn;
HQOff = Voff[[2, 2]] IySqrdminusIxSqgrd+ Voff[[1l, 3] TzIxplusIxIz +
UniformOmegaQ

Voff[[2, 3] IzIyplusIyIz + 2 (IzSqrd - ItotalSqrd/ 3);

Hevolutnoff = Larmor Iz + HqQOff;
{valson, vecson} = Eigensystem[Hevolutnon]; valson = Re[valson};
{valsoff, vecsoff} = Eigensystem[Hevolutnoff]; valsoff = Re[valsoff];
UevonL = Transpose[vecson] .

DiagonalMatrix[Exp[-I N2Pi valson tWinL]] . Conjugate[vecson];
Uevoffl = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL]] . Conjugate[vecsoff] ;
UevoffLl = Transpose[vecsoff] .

DiagonalMatrix[Exp[~I N2Pi valsoff tWinLl]] . Conjugate[vecsoff] ;
UevofflL2 = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL2]] . Conjugate[vecsoff] ;
UevoffLS = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinL/2]] . Conjugate[vecsoff];
UevoffSl = Transpose[vecsoff] .

DiagonalMatrix[Exp[-I N2Pi valsoff tWinsSl]] . Conjugate[vecsoff];
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UevoffS2 = Transpose{vecsoff] .
DiagonalMatrix[Exp[-I N2Pi valsoff tWinS2]] . Conjugate[vecsoff];
NormHg = (Apply[Plus, Flatten[Abs[HqOn]]]) ~2;
tlon = Exp[4 z] t1lOnZero;
t10ff = 1/ (NormHg * tElectLifetime) ;
Ts = (t1lOff xtlon) / (t1O0ff + tlon);
Polarization =

—————o ({1 - Exp[-tONP / Ts]) » (ONPInf x t10£ff + LatticeInf » tlon)) ;
t10£ff + tlon

Detection = tlon (1 - Exp[-t2max+ ((1/ tlon) + (1/t10ff))]) Exp[-2 z];
norm = 8 PolarizationDetection / rhonorm;

rhozero = 1z;

time = InitTime;

Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower [Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
rho = Upulse . rhozero . Conjugate[Transpose[Upulse]];
Uclswlé6 = UevoffLs;
time = time + pulseRemainder + Round| (tWinL / 2) / delta];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfregdelta (tt - ?) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re{vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-T N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - E—) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle
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, {tt, time + 1, time + pulseRemainder, l}] ;

Upulse = Ucycle . Upulse;

Uclswlé = Uevof£S2 . Upulse . Uclswlé6;

time = time + pulseRemainder + Round[tWinS2 / delta];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - ?) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals]; <
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesS];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals],
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + pulseRemainders, 1}] ;
Upulse = Ucycle . Upulse;
Uclswl6é = UevoffL2 . Upulse . Uclswl6;
time = time + pulseRemaindersS + Round [tWinL2 / delta];

Ucycle = identity;
1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - E—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesS];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) + Pi] Ix;

{vals, vecs} = Eigensystem{Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemaindersS, 1}] ;
Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS2 . Upulse . Uclswlé6;
time = time + pulseRemainderS + Round[tWinS2 /delta]
Ucycle = identity;

' 1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ;) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-IN2Pi valsdelta]] . Conjugate[vecs] . Ucycle
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, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower [Ucycle, ncycles];
Ucycle = identity;
1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose{vecs] .
DiagonalMatrix[Exp[-TI N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé6 = UevonL . Upulse . Uclswlé6;
time = time + pulseRemainder + Round[tWinL / delta] ;

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [NZPi RFfreqdelta (tt - -2—) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transposelvecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N’2Pi RFfreqdelta (tt - —é—) -Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose{vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
Uclswl6 = UevoffSl . Upulse. Uclswlé;
time = time + pulseRemainder + Round[tWinS1 / delta] ;
Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) + Pi] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesL];
Ucycle = identity;
Do[Htotal = Hevolutnoff + 2 Omegal Sin|[N2Pi RFfreqdelta (tt - -2—) + pi] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
Ucycle

DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate|[vecs] .
, {tt, time +1, time + pulseRemainderL, 1}] ;

Upulse = Ucycle . Upulse;
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Uclswlé6 = UevoffLl . Upulse . Uclswlé;
time = time + pulseRemainderL + Round [tWinLl / delta}l;

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -é—) + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncyclesL];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - —-2—] + Pi] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals] ;

Ucycle = Transpose|vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainderl, 1}] ;

Upulse = Ucycle . Upulse;
Uclswlé6 = UevoffSl . Upulse . Uclswlé6;
time = time + pulseRemainderL + Round[tWinS1 / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfregdelta (tt - —2—) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}];

Upulse = MatrixPower[Ucycle, ncycles];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -—2—-) -Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffL . Upulse . Uclswlé6;
time = time + pulseRemainder + Round[tWinL / delta] ;

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re{vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncycles];

Printed by Mathematica for Students



Chapter 3 - Appendix 1 Rhodnr32 2-printout.nb 76

Ucycle = identity;
1
Do[Htotal = Hevolutnoff + 2 Omegal Sin|[N2Pi RFfreqdelta (tt - ?) +Pi/2] 1x;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS2 . Upulse . Uclswlé6;
time = time + pulseRemainder + Round[tWinS2 / delta] ;
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - —2-) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose|vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesS];
Ucycle = identity;

1
Do [I—Itotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose{vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainders, 1}] ;
Upulse = Ucycle . Upulse;
Uclswlé = UevoffL2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round[tWinlL2 / delta];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - —2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesS];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ;) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + pulseRemaindersS, 1}] ;
Upulse = Ucycle . Upulse;
Uclswl6 = UevoffS2 . Upulse . Uclswl6;
time = time + pulseRemainderS + Round [tWinS2 / delta];
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Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdeltal] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncycles];

Ucycle = identity;

Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal] ; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;

Uclswlé6 = UevonL . Upulse . Uclswlé6;
time = time + pulseRemainder + Round[tWinL / delta] ;

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - -2—) +Pi/ 2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose|[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + StepsPerCycle, 1}] ;

Upulse = MatrixPower[Ucycle, ncycles];

Ucycle = identity;

Do[Htotal = Hevolutnoff + 2 Omegal $in|[N2Pi RFfreqdelta (tt - —2—) +Pi/2] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainder, 1}] ;

Upulse = Ucycle . Upulse;
Uclswl6 = UevoffSl . Upulse . Uclswlé6;
time = time + pulseRemainder + Round[tWinS1 / delta];

Ucycle = identity;
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesl] ;
Ucycle = identity;

Printed by Mathematica for Studenis



Chapter 3 - Appendix 1 Rhodnr32 2-printout.nb 78

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - ?) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time +1, time + pulseRemainderl, 1}] ;
Upulse = Ucycle . Upulse;
Uclswlé = UevoffLl . Upulse . Uclswl6;
time = time + pulseRemainderL + Round[tWinLl / delta];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - —é—-) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncyclesL];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - -2—) ] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainderl, 1}] ;
Upulse = Ucycle . Upulse;
Uclswl6 = UevoffSl . Upulse . Uclswl6;
time = time + pulseRemainderl + Round[tWinS1 / delta] ;
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqdelta (tt - E—) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle
, {tt, time + 1, time + StepsPerCycle, 1}] ;
Upulse = MatrixPower[Ucycle, ncycles];
Ucycle = identity;

1
Do [Htotal = Hevolutnoff + 2 Omegal Sin [N2Pi RFfreqgdelta (tt - ?) +Pi/ 2] Ix;

{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];
Ucycle = Transposevecs] .
DiagonalMatrix[Exp[-I N2Pi vals delta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + pulseRemainder, 1}] ;
Upulse = Ucycle . Upulse;
Uclswl6 = UevoffLS . Upulse . Uclswlé6;
Uclswl6ad]j = Conjugate{Transpose[Uclswl6]];
time = InitTime + pulseRemainder;
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Ucycle = identity;
Do[Htotal =
Hevolutnon + 2 Omega?2 (Sin[N2Pi RFfregdelta (time + (tt2-1/2) /5) -Pi/
Sin[N2Pi RFfreqAs75delta (time + (tt2-1/2) /5) -Pi/2]) Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-TI N2Pi valsdelta/5]] . Conjugate[vecs] . Ucycle

, {tt2, 1, StepsPerCycle, 1}];

{vals, vecs} = Eigensystem[Ucycle] ;

{uvals, uvecs} = Eigensystem[Ucycle];
Idetect = Conjugate[vecs] . IdetectInit . Transpose|vecs] ;

Do|
Do[
If[(Abs[(2Pi/5) - Abs[Arg[vals[ii] * Conjugate[vals[[jjl]]1]1] <=
2 Pi 195000/ (5 RFfreq))
|| (Abs[ (2 Pi (2 RFfreqAs75 - RFfreq) / (5 RFfreq)) -
Abs[Arg[vals[[ii]] * Conjugate[vals[[jjll1]]] <=2 Pi 195000/ (5 RFfreq
, Idetectf[ii, jj] = Idetect[ii, jj], Idetect[[ii, jj] = N[O, ndigit]];
{33, 1, 4, 1}]:

, {1, 1, 4, 1}];
Idetect = Transpose[vecs] . Idetect . Conjugate[vecs];

Ucycle = identity;
Do [Htotal = Hevolutnon + 2 OmegaZ2 (Sin [N2Pi RFfreqdelta (tt - ?) -Pi/ 2] +

1
Sin|[N2Pi RFfreqAs75delta (tt - -2—) -Pi/2] ) Ix;
{vals, vecs} = Eigensystem[Htotal]; vals = Re[vals];

Ucycle = Transpose[vecs] .
DiagonalMatrix[Exp[-I N2Pi valsdelta]] . Conjugate[vecs] . Ucycle

, {tt, time + 1, time + nStepsSpinLock, l}] ;
{vals, vecs} = Eigensystem|[Ucycle] ;
TIdetect = Conjugate[vecs] . Idetect . Transpose[vecs] ;
Do]|
Do[
If[(Abs[Arg[valsf[ii]] * Conjugate[vals[[jj]]1]] <= 2 Pi 20 x tSpinLock)

Il (Abs[ (Pi/4) -
Abs[Arg[vals[[ii]] * Conjugate[vals[[jj]1]1]1]1] <= 2 Pi 20 » tSpinLock)

, Idetect[ii, jj] = Idetect[ii, jj]], Idetectf[ii, Fj}] = N[O, ndigit]];

{33, 1, 4, 1}1;

, {ii, 1, 4, 1}];
Idetect = Transpose[vecs] . Idetect . Conjugate[vecs];
Idetect = Transpose[Idetect] ;

Dol
datal[[tl]] = datal[t1l]] + norm Apply[Plus, Flatten[rho Idetect]];

rho = Uclswlé6 . rho . Uclswl6ad]j
. {t1, 1, npts, 1}1}]
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., {k, 0, Vomax® -i2 - 32, 1}]
, {j, 0, Vnmax2 - i2, 1}]

, {i, -nmax, nmax, 1}];
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Appendix B — Mathematica Code for the Calculation of Spin
Diffusion via a One Dimensional Radial Integration of the Spin-

Three-Halves Spin Diffusion Equations



Appendix B

= Calculate Signal for 250ms, 1s, 3s and 5s of ONP in
the Direction
of Horizontal and Diagonal Nearest Neighbors

ndigit = 16;
6626

1000 1034
gammaGa7l = N[12984000, ndigit];

58 1031
10

h = N[ , ndigit] ;

electronDensityOnGa’7l = N[ ’ ndigit] ;

hyperFineGa7l =
N[ (2 (4 7t) 9274 2 gammaGa71 electronDensityOnGa71) /
(3107 (1000 10%%) 2), ndigit];
160219 ] )

100000 10*°
112

(1000 10%4) (100 100)
131 88541878 ]

10 10000000 102
285101° 2 (65 10%°)
+

qa=N[

]:

00Ga = N[

eGaAs = N[

RR:N[ 100];
100 108 10
2
c1=N[£QGaq_RR],.
4 meGaAsh

tIzWindow = N[2 % (120 -16=* (32/10)) /24, ndigit];
DutyCycle = 2 + tIzWindow/ 120;

100
a0 = N[ , ndigit];
565 )
LatticeSpacingGadAs = N[ ’ nd:x.git] ;
100101° /2

scale=1;
Ar = N[LatticeSpacingGaAs » scale, ndigit];
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izResl = a0 / Axr;
izRes = a0 / Ax;

_ 396 |2 973 1 )2

Wisotropic = N[ ( ) , ndigit] ;

1000 10 scale

396 2 1903 1 )2
Wisotropic = N[ ( ) ' ndigit] ;

1000 10 scale

396 \? 1 )2
Wisotropic = N[ 473 (—) ’ ndigit] ;

1000 scale

396 \2 1 2
Wisotropic = N[ 230 (—-———-——-—) ' ndigit] ;

1000 scale

W = Wisotropic;

zMaxTarget = 6;

zmax = Ceiling[zMaxTarget + izRes] / izRes;
izMin = 2;

t2 =2;

250
1000
tonp2 = N[1, ndigit];
tonp3 = N[3, ndigit];
tonp4 = N[5, ndigit];

tonpl = N[ , ndigit];

200
Tlat0 = N| , ndigit];
1000
40
tmin = N[——— , ndigit] ;
1000000
1
tRes = ;
tmin

tnptsl = tonpl * tRes + 1;

tnpts2 = tonp2 * tRes + 1;

tnpts3 = tonp3*tRes +1;

tnpts4

znpts = Round[zmax * izRes + 1} ;

ElectronPolarization = N[30/100}];
565

10010%°2 a0

tonp4 x tRes + 1;

c2 = N| , ndigit];
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2c23
twoC2cubedoverPi = ;
T

KSconst =
ElectronPolarization hyperFineGa7l twoC2cubedoverPi;

1 + ElectronPolarization
alpha = ( ) ;

1 - ElectronPolarization
(#* alpha = nplus/nminus *)
norml = 1 +alpha+ alpha2 + alpha3;

alpha3
ONPinfplus3half = ——;
norml
alpha?
ONPinfpluslhalf = ——;
norml
alphal
ONPinfminuslhalf = — o
norml
1
ONPinfminus3half = ——;
norml

1
ONPinfPz = ONPinfplus3half + — ONPinfpluslhalf -
3

1
—3—- ONPinfminuslhalf - ONPinfminus3half;

ONPinfPq = ONPinfplus3half - ONPinfpluslhalf -
ONPinfminuslhalf + ONPinfminus3half;

1
ONPinfPo = -; ONPinfplus3half - ONPinfpluslhalf +

1
ONPinfminuslhalf - — ONPinfminus3half;
3

PolarizePzWorkingA =

Table[N[0, ndigit], {iz, znpts}, {i, 2}];
PolarizePzWorkingB =

Table[N[O0, ndigit], {iz, znpts}, {1, 2}];
PolarizePgWorkingA =

Table[N[0, ndigit], {iz, znpts}, {i, 2}];
PolarizePgWorkingB =

Table[N[0, ndigit], {iz, znpts}, {i, 2}];
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PolarizePoWorkingA =
Table[N[0, ndigit], {iz, znpts}, {i, 2}];
PolarizePoWorkingB =
Table[N[0, ndigit], {iz, znpts}, {i, 2}];
Do [
z=N[(iz-1) /izRes, ndigit];

PolarizePzWorkingAf[[iz, 1]] = z;
PolarizePgWorkingA[[iz, 1]] = z;
PolarizePoWorkingA[[iz, 1]] = z;
PolarizePzWorkingB[[iz, 1]] = z;
PolarizePqWorkingB[[iz, 1]] = z;
PolarizePoWorkingB[[iz, 1]] = z;

, {iz, 1, znpts}];
Do[
Ga7l = Table[N[0, ndigit], {iz, znpts}]:
t=N[(tt-1) / tRes, ndigit];
Do[
z=N[(iz-1) /izRes, ndigit];
thetaONP = ArcTan|

_ 2
3 et (Exp[ 2z] (2z2+2z+1) )/(3200000)];
(a0 z)?

ONPeff = Cos[thetaONP]?;
PolarizePzWorkingA[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
(ONPinfPz x ONPeff - PolarizePzWorkingAf[[iz, 2]]) *

- Exp[-4 z] * ONPeff ]

tRes
1-Exp
[ [ TlatO

PolarizePzWorkingA[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
(ONPinfPqg *» ONPeff - PolarizePgWorkingA[[iz, 2]]) *

- —1_ & Exp[-4 z] xONPeff ]

1 -
[ Exp[ TlatO
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PolarizePzWorkingA[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
(ONPinfPo * ONPeff - PolarizePoWorkingA[[iz, 2]]) *

1
- ThRes * Exp[-4 z] » ONPeff

1- Exp[
TlatO

, {1z, izMin, znpts}] ;

PolarizePzWorkingB = PolarizePzWorkingA;

PolarizePgWorkingB = PolarizePgWorkingd;

PolarizePoWorkingB = PolarizePoWorkingA;

Z =1izMin / izRes;

zz = (izMin + 1) / izRes;

- 2
Qsz=mc1[Exp[ 2z] (2z +22+1)]

r

(a0 z)?
Qszz = V12 c1 (EXP[‘Z zz] (2zz2+2zz+1) ] ;
(a0 zz)2

theta = ArcTan|[ (1239) / (\/ (KSconst Exp[-2 % z])? + Qsz?

'\/ (KSconst Exp[-2 * zz] )2 + Qszz? ) ] ;

eff = Sin[theta] 2;
PolarizePzWorkingB[[izMin, 2]] =
PolarizePzWorkingAf[ [izMin, 2]] +
W eff
tRes
PolarizePzWorkingA[[izMin, 2]]) +
2 (PolarizePgWorkingA[[izMin+1, 2]] *
PolarizePzWorkingA[[izMin, 2]] -
PolarizePgWorkingA[[izMin, 2]] *
PolarizePzWorkingA[[izMin+1, 2]]));
PolarizePgWorkingB([[izMin, 2]] =
PolarizePgWorkingA[[izMin, 2]] +
Wxeff

(5 ( PolarizePzWorkingA[[izMin+1, 2]] -

(—15 PolarizePgWorkingA[[izMin, 2]] +
tRes
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6 PolarizePgWorkingA[[izMin, 2]] *
PolarizePgWorkingA[[izMin+ 1, 2]] -

27
— (PolarizePoWorkingA[[izMin, 2]] -
5
2 PolarizePzWorkingA[[izMin, 2]]) *
PolarizePzWorkingA[[izMin +1, 2]] ) ;

PolarizePoWorkingB[[izMin, 2]] =
PolarizePoWorkingA[[izMin, 2]] +
Wxeff
tRes
12 PolarizePoWorkingA[ [izMin, 2]] *
PolarizePqWorkingA[[izMin+1, 2]] +
6 PolarizePqWorkingA[[izMin, 2]] *
PolarizePzWorkingA[[izMin + 1, 2]]);

(-30 PolarizePoWorkingA[[izMin, 2]] +

z = znpts / izRes;
zz = (znpts +1) /izRes;

- 2

Qsz:'\/1_2-C1[Exp[ 2z] (2z +2z+1)]
(a0 z)?

Exp[-2 zz] (2222+22z+1)]

(a0 zz)2

r

I4

Qszz =V12 C1 (

theta = ArcTan| (1239) / (\/ (KSconst Exp[-2*z])? + Qsz? -

'\/ (KSconst Exp[-2 % zz] )2 +Qszz? )] ;

eff = Sin[theta]?;
PolarizePzWorkingB[ [znpts, 2]] =
PolarizePzWorkingAf [znpts, 2]] +
Wxeff
tRes
PolarizePzWorkingA[[znpts, 2]]) +
2 (PolarizePgWorkingA[[znpts-1, 2]] »
PolarizePzWorkingA[ [znpts, 2]] -
PolarizePqgqWorkingA[ [znpts, 2]] *

(5 (PolarizePzWorkingA[[znpts-1, 2]] -
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PolarizePzWorkingA[[znpts -1, 2]])):
PolarizePgWorkingB[ [znpts, 2]] =
PolarizePgWorkingA[ [znpts, 2]] +
Wxeff

(—15 PolarizePgWorkingA[ [znpts, 2]] +
tRes

6 PolarizePqWorkingA[ [znpts, 2]] *
PolarizePgWorkingA[[znpts-1, 2]] -

27
——E_;-— (PolarizePoWorkingA|[ [znpts, 2]] -
2 PolarizePzWorkingA[[znpts, 2]]) *
PolarizePzWorkingA[[znpts -1, 2]] ) ;

PolarizePoWorkingB[ [znpts, 2]] =
PolarizePoWorkingA[ [znpts, 2]] +
Wxeff
tRes
12 PolarizePoWorkingA[[znpts, 2]] *
PolarizePgWorkingA[[znpts -1, 2]] +
6 PolarizePqWorkingA[ [znpts, 2]] *
PolarizePzWorkingA[[znpts -1, 2]1]);

(-30 PolarizePoWorkingA[ [znpts, 2]] +

Do[
zZ =1z / izRes;

zz = (iz+1) /izRes;

_ 2
osz = Tz cl[Exp[ 2z] (2z +2z+1)];
(a0 z)?
_ 2
Qszz:‘\/-i—Z‘Cl(Exp[ 2zz] (2 zz +222+1)];
(a0 zz)?

theta =

ArcTan| (1239) / (\/ (KSconst Exp[-2xz])? + Qsz? -

v ((KSconst Exp[-2 * zz] )2 + Qszz?) )] ;

eff = Sin[theta]?;
PolarizePzWorkingB[[iz, 2]] =
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PolarizePzWorkingA[[iz, 2]] +
Wxeff
tRes
PolarizePzWorkingAf[[iz -1, 2]] -
2 PolarizePzWorkingA[[iz, 2]]) +
2 (PolarizePgWorkingA[[iz +1, 2]] »
PolarizePzWorkingA[[iz, 2]] -
PolarizePgWorkingA[[iz, 2]] *
PolarizePzWorkingA[[iz +1, 2]]) +
2 (PolarizePgWorkingA[[iz -1, 2]] *
PolarizePzWorkingA[[iz, 2]] -
PolarizePgWorkingA[[iz, 2]] *
PolarizePzWorkingA[[iz -1, 2]]));
PolarizePgWorkingB[ [iz, 2]] =
PolarizePgqWorkingA[[iz, 2]] +
Wxeff
tRes
6 PolarizePgWorkingA[[iz, 2]]
(PolarizePgWorkingA[[iz +1, 2]] +
PolarizePgWorkingA[[iz -1, 2]]) -

(5 ( PolarizePzWorkingA[[iz+1, 2]] +

(—30 PolarizePgWorkingA[[iz, 2]] +

27
—5— (PolarizePoWorkingA[[iz, 2]] -

2 PolarizePzWorkingA[[iz, 2]]) *
( PolarizePzWorkingA[[iz +1, 2]] +

PolarizePzWorkingA[[iz -1, 2]] )) ;

PolarizePoWorkingB[[iz, 2]] =
PolarizePoWorkingA[[iz, 2]] +
Wxeff
tRes
12 PolarizePoWorkingA[[iz, 2]]
( PolarizePgWorkingA[[iz +1, 2]] +
PolarizePgWorkingA[[iz -1, 2]]) +
6 PolarizePgWorkingA[[iz, 2]]
( PolarizePzWorkingA[[iz +1, 2]] +

(-60 PolarizePoWorkingA[[iz, 2]] +
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PolarizePzWorkingA[[iz -1, 2]]))
, {iz, izMin + 1, znpts - 1}];
PolarizePzWorkingA = PolarizePzWorkingB;
PolarizePgWorkingA = PolarizePgWorkingB;
PolarizePoWorkingA = PolarizePoWorkingB
, {tt, 1, toptsl}];
PolarizePzl = PolarizePzWorkingA;
PolarizePql = PolarizePqWorkingA;
PolarizePol = PolarizePoWorkingA;
Do[
Ga7l = Table[N[0, ndigit], {iz, znpts}];
t=N[(tt-1) / tRes, ndigit];
Do [
z=N[(iz -1) /izRes, ndigit];
thetaONP = ArcTan|
iz c1 [EXP[-Z z] (2z2+22z+1) ] / (3200000)] ;
(a0 z)?
ONPeff = Cos[thetaONP]?;
PolarizePzWorkingA[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
(ONPinfPz » ONPeff - PolarizePzWorkingA[[iz, 2]]) *

S *Exp[—4z]*ONPeffJ

tRes

1-Exp| T1ato

PolarizePzWorkingA[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
(ONPinfPqg * ONPeff - PolarizePqWorkingAf[[iz, 2]]) *

- -1 _ % Exp[-4 z] * ONPeff ]

tRes

[1 - Exp| T1at0

PolarizePzWorkingA[[iz, 2]] =

PolarizePzWorkingA[[iz, 2]] +
(ONPinfPo * ONPeff - PolarizePoWorkingA[[iz, 2]]) *
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—'t—R;? * Exp[—4 Z] * ONPeff
1-Exp[

TlatO

;, {iz, izMin, znpts}];
PolarizePzWorkingB = PolarizePzWorkingA;
PolarizePgWorkingB = PolarizePgWorkingA;
PolarizePoWorkingB = PolarizePoWorkingA;
z = izMin / izRes;

zz = (izMin + 1) / izRes;

_ 2
o5z = r——-—lzcl(Exp[ 2z] (2z +22+1));
(a0 z)?

— -2 2222 +2 1
oszz = V12 C1 (Exp[ zz] (2zz° +2zz+1) );
(a0 zz)2

theta = ArcTan| (1239) / (\/ (KSconst Exp[-2 *z])? +Qsz? -

\/ (KSconst Exp[-2 * zz] )2 + Qszz? )] ;

eff = Sin[theta]?;
PolarizePzWorkingB[[izMin, 2]] =
PolarizePzWorkingA[[izMin, 2]] +
Wxeff
tRes
PolarizePzWorkingA[[izMin, 2]]) +
2 (PolarizePgWorkingA[[izMin+ 1, 2]] %
PolarizePzWorkingA[[izMin, 2]] -
PolarizePgWorkingA[[izMin, 2]] *
PolarizePzWorkingA[[izMin + 1, 2]])):
PolarizePgWorkingB[[izMin, 2]] =
PolarizePgWorkingA[[izMin, 2]] +
Wxeff
tRes
6 PolarizePqWorkingA[[izMin, 2]] *
PolarizePqWorkingA[[izMin+ 1, 2]] -

(5 ( PolarizePzWorkingA[[izMin+1, 2]] -

(—15 PolarizePgWorkingA[[izMin, 2]] +
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27
-——5—— (PolarizePoWorkingA[ [izMin, 2]] ~

2 PolarizePzWorkingA[[i1zMin, 2]]) *
PolarizePzWorkingA[[izMin+ 1, 2]] ) ;

PolarizePoWorkingB[ [izMin, 2]] =
PolarizePoWorkingA[[izMin, 2]] +
Wxeff
tRes
12 PolarizePoWorkingA[ [izMin, 2]] *
PolarizePqWorkingA[[izMin +1, 2]] +
6 PolarizePqWorkingA[[izMin, 2]] *
PolarizePzWorkingA[[izMin+1, 2]1]);

(-30 PolarizePoWorkingA[[izMin, 2]] +

z = znpts / izRes;
zz = (znpts +1) / izRes;

_ 2
Qsz:'\/ECI(Exp[ 2z] (2= +22+1)J
(a0 z)?2
Exp[-2 zz] (2 zzz+22z+1))

(a0 zz)?2

I

r

Qszz = V12 C1 (

theta = ArcTan[ (1239) / (\/ (KSconst Exp[-2 % z] )2 +Qsz? -

'\/ (KSconstExp[-2 % zz] )2 +Qszz? ) ] ;

eff = Sin[theta] 2;
PolarizePzWorkingB[ [znpts, 2]] =
PolarizePzWorkingA[ [znpts, 2]] +
Wxeff

tRes

(5 (PolarizePzWorkingA[[znpts -1, 2]] -

PolarizePzWorkingA[[znpts, 2]]) +
2 (PolarizePqWorkingA[[znpts-1, 2]] *
PolarizePzWorkingA[ [znpts, 2]] -
PolarizePgWorkingAf [znpts, 2]] *
PolarizePzWorkingA[[znpts -1, 2]])):
PolarizePgWorkingB[[znpts, 2]] =
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PolarizePgWorkingA[ [znpts, 2]] +
Wxeff
tRes
6 PolarizePgWorkingA[ [znpts, 2]] *
PolarizePqWorkingA[ [znpts -1, 2]] -

(— 15 PolarizePgqWorkingA[ [znpts, 2]] +

27
? (PolarizePoWorkingA[ [znpts, 2]] -
2 PolarizePzWorkingA[ [znpts, 2]]) *
PolarizePzWorkingA[[znpts -1, 2] ]) ;

PolarizePoWorkingB[ [znpts, 2]] =
PolarizePoWorkingA[ [znpts, 2]] +

Wxeff
——————— (-30 PolarizePoWorkingA][ [znpts, 2]] +

tRes
12 PolarizePoWorkingA[ [znpts, 2]] *

PolarizePgWorkingA[[znpts -1, 2]] +
6 PolarizePgWorkingA[ [znpts, 2]] *
PolarizePzWorkingA[[znpts -1, 2]1]);
Do [
z =iz /izRes;

zz = (iz +1) / izRes;

_ 2
Osz = 15 Cl(Exp[ 2z] (22 +22+1)J;
(a0 z)?
_ 2
Qszz:‘\/—ECI(Exp[ 2zz] (2 zz +2zz+1)];
(a0 zz)?

theta =

ArcTan|[ (1239) / (\/ (KSconst Exp[-2 +z])? + Qsz? -

Y ((KSconst Exp[-2 * zz])? + Qszz?) )] ;

eff = Sin[theta]?;
PolarizePzWorkingB[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
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Wxeff
tRes
PolarizePzWorkingA{[iz -1, 2]] -
2 PolarizePzWorkingA[[iz, 2]]) +
2 (PolarizePgWorkingA[[iz+1, 2]] *
PolarizePzWorkingA[[iz, 2]] -
PolarizePgWorkingA[[iz, 2]] *
PolarizePzWorkingA[[iz +1, 2]]) +
2 (PolarizePqWorkingA[[iz -1, 2]] »
PolarizePzWorkingA[[iz, 2]] -
PolarizePgWorkingA[[iz, 2]] *
PolarizePzWorkingA[[iz -1, 2]]));
PolarizePgWorkingB{[ [iz, 2]] =
PolarizePgWorkingA[[iz, 2]] +
Wxeff
tRes
6 PolarizePqWorkingA[[iz, 2]]
(PolarizePgWorkingA[[iz +1, 2]] +
PolarizePgWorkingA[[iz -1, 2]]) -

27
—g— (PolarizePoWorkingA[[iz, 2]] -

(5 ( PolarizePzWorkingA[[iz +1, 2]] +

(—30 PolarizePgWorkingA[[iz, 2]] +

2 PolarizePzWorkingA[[iz, 2]]) *
( PolarizePzWorkingA[[iz +1, 2]] +

PolarizePzWorkingA[[iz -1, 2]] )) ;

PolarizePoWorkingB[[iz, 2]] =
PolarizePoWorkingA[[iz, 2]] +
Wxeff
tRes
12 PolarizePoWorkingA[[iz, 2]]
( PolarizePgWorkingA[[iz +1, 2]] +
PolarizePgWorkingA[[iz -1, 2]]) +
6 PolarizePgWorkingA[[iz, 2]]
( PolarizePzWorkingA[[iz +1, 2]] +
PolarizePzWorkingA[[iz -1, 2]]))

(-60 PolarizePoWorkingA[[iz, 2]] +
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, {iz, izMin + 1, znpts - 1}] ;
PolarizePzWorkingA = PolarizePzWorkingB;
PolarizePgWorkingA = PolarizePgWorkingB;
PolarizePoWorkingA = PolarizePoWorkingB
, {tt, tnptsl +1, tnptsZ}] ;
PolarizePz2 = PolarizePzWorkingA;
PolarizePq2 = PolarizePqWorkingA;
PolarizePo2 = PolarizePoWorkingA;
Do [
Ga7l = Table[N][0, ndigit], {iz, znpts}]:
t=N[(tt-1) / tRes, ndigit];
Do [
zZz=N[(iz-1) /izRes, ndigit];
thetaONP = ArcTan|
Viz el [EXP[—Z z] (2z2+2z+1) ) / (3200000)] ;
(a0 z)?
ONPeff = Cos[thetaONP]?;
PolarizePzWorkingA[[iz, 2]] =
PolarizePzWorkingAf[iz, 2]] +
(ONPinfPz * ONPeff - PolarizePzWorkingA[[iz, 2]]) *

* EXp[-4 z] * ONPeff ]

1
- tRes

1 -Exp
( [ TlatO

PolarizePzWorkingA[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
(ONPinfPqg * ONPeff - PolarizePgWorkingA[[iz, 2]]) *

- —1_ % Exp[-4 z] » ONPeff J

tRes

[1 - Exp| Tlato

PolarizePzWorkingA[[iz, 2]] =

PolarizePzWorkingA[[iz, 2]] +
(ONPinfPo x* ONPeff - PolarizePoWorkingA[[iz, 2]]) *

Printed by Mathematica for Students



Appendix B

1
-—EE;; * Exp[—4 Z] * ONPeff
1 —Exp[

TlatO

, {iz, izMin, znpts}] ;
PolarizePzWorkingB = PolarizePzWorkingA;
PolarizePgWorkingB = PolarizePgWorkingA;
PolarizePoWorkingB = PolarizePoWorkingA;
z = izMin / izRes;

zz = (izMin + 1) / izRes;

_ 2
osz = TZCl[Exp[zz] (2 =z +2z+1));
(a0 z)?2

-2 2zz%+2
Qszzz'\/-EC1(Exp[ zz] (2 zz°“+22zz+1) ];
(a0 zz)?

theta = ArcTan|[ (1239) / (\/ (KSconst Exp[-2 +z])? + Qsz? -

\/ (KSconst Exp[-2 # zz])? + Qszz? ) ] ;

eff = Sin[thetal?;
PolarizePzWorkingB[[izMin, 2]] =
PolarizePzWorkingA[[izMin, 2]] +
Wxeff
tRes
PolarizePzWorkingA[[izMin, 2]]) +
2 (PolarizePgWorkingA[[izMin+1, 2]] *
PolarizePzWorkingA[[izMin, 2]] -
PolarizePgWorkingA[[izMin, 2]] *
PolarizePzWorkingA[[izMin+1, 2]]));
PolarizePgWorkingB[[izMin, 2]] =
PolarizePgWorkingA[[izMin, 2]] +
Wxeff
tRes
6 PolarizePgWorkingA[[izMin, 2]] *
PolarizePgWorkingA[[izMin+1, 2]] -

(5 ( PolarizePzWorkingA[[izMin +1, 2]] -

(— 15 PolarizePgqWorkingA[[izMin, 2]] +
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27
—— (PolarizePoWorkingA[ [izMin, 2]] -

5
2 PolarizePzWorkingA[[izMin, 2]]) *

PolarizePzWorkingA[[izMin+1, 2] ]) ;

PolarizePoWorkingB[[izMin, 2]] =
PolarizePoWorkingA[[izMin, 2]] +
Wxeff
tRes
12 PolarizePoWorkingA[ [izMin, 2]] *
PolarizePqWorkingA[[izMin+1, 2]] +
6 PolarizePgWorkingA[[izMin, 2]] *
PolarizePzWorkingA[[izMin +1, 2]1]);

(-30 PolarizePoWorkingA[[izMin, 2]] +

z = znpts / izRes;
zz = (znpts +1) /izRes;

_ 2
Qsz:’JECl[Exp[ 2z] (2z +2z+1)]
(a0 z)?
Exp[-2 zz] (2222+22z+1))

r

r

Qszz = V12 C1 (

(a0 zz)?2

theta = ArcTan[ (1239) / (\/ (KSconst Exp[-2 +z])2 + Qsz2 -

\/ (KSconst Exp[-2 x zz] )2 +Qszz? ) ] ;

eff = Sin[theta]?;
PolarizePzWorkingB[ [znpts, 2]] =
PolarizePzWorkingA[ [znpts, 2]] +
Wxeff

tRes

(5 (PolarizePzWorkingA[[znpts -1, 2]] -

PolarizePzWorkingA[[znpts, 2]]) +
2 (PolarizePgWorkingA|[[znpts -1, 2]] *
PolarizePzWorkingA[ [znpts, 2]] -
PolarizePgWorkingA[ [znpts, 2]] *
PolarizePzWorkingA[[znpts -1, 2]]));
PolarizePgWorkingB[ [znpts, 2]] =
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PolarizePqWorkingA[ [znpts, 2]] +
Wxeff
tRes
6 PolarizePgWorkingA[ [znpts, 2]] *
PolarizePgWorkingA[[znpts -1, 2]] -

(—15 PolarizePgWorkingA[[znpts, 2]] +

27
—5—— (PolarizePoWorkingA[ [znpts, 2]] -
2 PolarizePzWorkingA[ [znpts, 2]]) *
PolarizePzWorkingA[[znpts -1, 2]] ) ;

PolarizePoWorkingB[ [znpts, 2]] =
PolarizePoWorkingA[ [znpts, 2]] +

Wxeff
———— (-30 PolarizePoWorkingA[ [znpts, 2]] +

tRes
12 PolarizePoWorkingA[ [znpts, 2]] *

PolarizePgWorkingA[ [znpts -1, 2]] +
6 PolarizePgWorkingA[ [znpts, 2]] *
PolarizePzWorkingA[[znpts -1, 2]1):;
Do [
z =iz /izRes;

zzZ = (iz +1) / izRes;

_ 2
Qsz:@Cl(Exp[ 2z] (2= +2z+1)]

4

(a0 z)?
_ 2
Qszz:ﬂCl(Exp[ 2zz] (2zz°+2zz+1) );
(a0 zz)?2

theta =

ArcTan[(1239) / ('\/ (KSconst Exp[-2 % z])? + Qsz? -

vV ((KSconst Exp[-2 # zz])? +QSZZZ))] ;

eff = Sin[theta]?;
PolarizePzWorkingB[ [iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
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W eff
tRes
PolarizePzWorkingA[[iz -1, 2]] -
2 PolarizePzWorkingA[[iz, 2]]) +
2 (PolarizePgWorkingA[[iz +1, 2]] *
PolarizePzWorkingA[[iz, 2]] -
PolarizePgWorkingA[[iz, 2]] *
PolarizePzWorkingA[[iz +1, 2]]) +
2 (PolarizePgWorkingA[[iz -1, 2]] *
PolarizePzWorkingA[[iz, 2]] -

(5 ( PolarizePzWorkingA[[iz+1, 2]] +

PolarizePgWorkingA[[iz, 2]] *
PolarizePzWorkingA[[iz -1, 2]])):
PolarizePgWorkingB[ [iz, 2]] =
PolarizePgWorkingA[[iz, 2]] +
Wxeff

(—30 PolarizePgWorkingA[[iz, 2]] +
tRes

6 PolarizePgWorkingA[[iz, 2]]
(PolarizePgWorkingA[[iz +1, 2]] +
PolarizePgWorkingA[[iz -1, 2]]) -

27
—5— (PolarizePoWorkingAf[[iz, 2]] -

2 PolarizePzWorkingA[[iz, 2]]) *
( PolarizePzWorkingA[[iz +1, 2]] +

PolarizePzWorkingA[[iz -1, 2]] )) ;

PolarizePoWorkingB[ [iz, 2]] =
PolarizePoWorkingA[[iz, 2]] +

Wxeff
—— (-60 PolarizePoWorkingA[[iz, 2]] +
tRes

12 PolarizePoWorkingA[ [iz, 2]]
( PolarizePgWorkingA[[iz +1, 2]] +
PolarizePgWorkingA[[iz -1, 2]]) +
6 PolarizePgWorkingA[[iz, 2]]
( PolarizePzWorkingA[[iz +1, 2]] +
PolarizePzWorkingA[[iz -1, 2]]))
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, {iz, izMin + 1, znpts - 1}] ;
PolarizePzWorkingA = PolarizePzWorkingB;
PolarizePgWorkingA = PolarizePgWorkingB;
PolarizePoWorkingA = PolarizePoWorkingB
, {tt, tnpts2+1, tnpts3}];
PolarizePz3 = PolarizePzWorkingd;
PolarizePg3 = PolarizePgWorkingA;
PolarizePo3 = PolarizePoWorkingA;
Do [
Ga7l1l = Table[N[0, ndigit], {iz, znpts}];
t=N[(tt-1) / tRes, ndigit];
Do [
z=N[(iz-1) /izRes, ndigit];
thetaONP = ArcTan|

_ 2
13 c1 (EXP[ 22]( (02 z)2+2z+1) )/(3200000)];
a0z

ONPeff = Cos [thetaONP]?;
PolarizePzWorkingA[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
(ONPinfPz x ONPeff - PolarizePzWorkingA[ [iz, 2]]) *

tRes

I s Exp[-4 z] * ONPeff ]

[1 - Exp| T1at0

PolarizePzWorkingA[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
(ONPinfPq x* ONPeff - PolarizePgWorkingA[ [iz, 2]]) *

l _ &« Exp[-4 z] » ONPeff J

tRes

t- Exp[ TlatO

PolarizePzWorkingA[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
(ONPinfPo x ONPeff - PolarizePoWorkingA[[iz, 2]]) *
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1
tRes

- * Exp[-4 z] » ONPeff
1 —Exp[

TlatO

, {iz, izMin, znpts}];
PolarizePzWorkingB = PolarizePzWorkingA;
PolarizePgWorkingB = PolarizePgWorkingA;
PolarizePoWorkingB = PolarizePoWorkingA;
z = izMin / izRes;

zZ = (izMin + 1) / izRes;

_ 2
osz = r—12Cl(Exp[22] (2 z +22+1));
(a0 z)?

E -2 2222 +2 1
oszz = 13 c1 ( xp[-2 zz] (22zz°+22zz+1) ];
(a0 zz)?2

theta = ArcTan[ (1239) / (\/ (KSconst Exp[-2 +z])? +Qsz? -

'\/ (KSconst Exp[-2 » zz] )2 +Qszz? )] ;

eff = Sin[theta]?;
PolarizePzWorkingB[[izMin, 2]] =
PolarizePzWorkingA[[izMin, 2]] +
Wxeff

tRes

(5 ( PolarizePzWorkingA[[izMin+1, 2]] -

PolarizePzWorkingA[[izMin, 2]]) +
2 (PolarizePgWorkingA[[izMin+1, 2]] *
PolarizePzWorkingA[ [izMin, 2]] -
PolarizePgWorkingA[[izMin, 2]] *
PolarizePzWorkingA[[izMin +1, 2]]));
PolarizePgWorkingB[ [izMin, 2]] =
PolarizePqWorkingA[ [izMin, 2]] +
Wxeff
tRes
6 PolarizePgWorkingA[[izMin, 2]] *
PolarizePgWorkingA[[izMin +1, 2]] -

(—15 PolarizePgWorkingA{[izMin, 2]] +
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27
—— (PolarizePoWorkingA[[izMin, 2]] -
5
2 PolarizePzWorkingA[[izMin, 2]]) *
PolarizePzWorkingA[[izMin + 1, 2] ]) ;

PolarizePoWorkingB[[izMin, 2]] =
PolarizePoWorkingA[ [izMin, 2]] +
Wxeff
tRes
12 PolarizePoWorkingA[ [izMin, 2]] %
PolarizePqWorkingA[[izMin+ 1, 2]] +
6 PolarizePgqWorkingA[[izMin, 2]] *
PolarizePzWorkingA[[izMin+1, 2]]);

(-30 PolarizePoWorkingA[[izMin, 2]] +

z = znpts / izRes;
zz = (znpts +1) / izRes;

_ 2
o5z = T2 Cl(Exp[ 2z] (22 +22+1)];
(a0 z)?2
Exp[-2 zz] (2222+2zz+1))

(a0 zz)?2

.

r

Qszz = V12 C1 (

theta = ArcTan[ (1239) / (\/ (KSconst Exp[-2*z])2 + Qsz? -

'\/ (KSconst Exp[-2 % zz] )2 + Qszz? ) ] ;

eff = Sin[theta] 2;
PolarizePzWorkingB[ [znpts, 2]] =
PolarizePzWorkingA[ [znpts, 2]] +
Wxeff

(5 (PolarizePzWorkingA[[znpts -1, 2]] -
tRes

PolarizePzWorkingA[[znpts, 2]]) +
2 (PolarizePgWorkingA[[znpts -1, 2]] *
PolarizePzWorkingA[ [znpts, 2]] -
PolarizePqWorkingA[[znpts, 2]] *
PolarizePzWorkingA[[znpts -1, 2]]))
PolarizePqWorkingB[ [znpts, 2]] =
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PolarizePgWorkingA[ [znpts, 2]] +
Waxeff
tRes
. 6 PolarizePgWorkingA[ [znpts, 2]] *
PolarizePgWorkingA[[znpts -1, 2]] -

(—15 PolarizePqWorkingA[ [znpts, 2]] +

27
? (PolarizePoWorkingA[ [znpts, 2]] -
2 PolarizePzWorkingA[ [znpts, 2]]) *
PolarizePzWorkingA[ [znpts -1, 2]] ) ;

PolarizePoWorkingB[ [znpts, 2]] =
PolarizePoWorkingA[ [znpts, 2]] +

Wxreff
————— (-30 PolarizePoWorkingA[ [znpts, 2]] +

tRes
12 PolarizePoWorkingA[ [znpts, 2]] +

PolarizePgWorkingA[[znpts -1, 2]] +
6 PolarizePgqWorkingA[ [znpts, 2]] *
PolarizePzWorkingA[[znpts-1, 2]]);
Do[
z =1z /izRes;

zz = (iz +1) / izRes;

_ 2
o0sz = Tz Cl(Exp[ 2z] (2= +2z+1));
(a0 z)?
_ 2
Qszz:'\/—iECI(Exp[ 2zz] (2 zz +222+1)];
(aOzz)2

theta =

ArcTan| (1239) / (\/ (KSconst Exp[-2 % z])? + Qsz? -

'\/((KSconstExp[—Z *22])2 +Qszzz)) ] :

eff = Sin[theta]?;
PolarizePzWorkingB[[iz, 2]] =
PolarizePzWorkingA[[iz, 2]] +
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Wxeff
tRes

(5 ( PolarizePzWorkingA[[iz +1, 2]] +

PolarizePzWorkingA[[iz -1, 2]] -
2 PolarizePzWorkingA[[iz, 2]]) +
2 (PolarizePqWorkingA[[iz+1, 2]] *
PolarizePzWorkingA[[iz, 2]] -
PolarizePgWorkingA[[iz, 2]] *
PolarizePzWorkingA[[iz+1, 2]]) +
2 (PolarizePgWorkingA[[iz -1, 2]] *
PolarizePzWorkingA[[iz, 2]] -
PolarizePgWorkingA[ [iz, 2]] *
PolarizePzWorkingA[[iz -1, 2]1]))~
PolarizePgWorkingB[ [iz, 2]] =
PolarizePgWorkingA[ [iz, 2]] +
Wxeff
tRes
6 PolarizePgWorkingA[[iz, 2]]
(PolarizePgWorkingA[[iz +1, 2]] +
PolarizePgWorkingA[[iz -1, 2]]) -

(-30 PolarizePgWorkingA[[iz, 2]] +

27
-5— (PolarizePoWorkingA[[iz, 2]] -

2 PolarizePzWorkingA[[iz, 2]]) *
( PolarizePzWorkingA[[iz +1, 2]] +

PolarizePzWorkingA[[iz -1, 2]] )) ;

PolarizePoWorkingB[[iz, 2]] =
PolarizePoWorkingA[[iz, 2]] +
Wxeff
tRes
12 PolarizePoWorkingA[[iz, 2]]
( PolarizePgWorkingA[[iz +1, 2]] +
PolarizePgWorkingA[[iz -1, 2]]) +
6 PolarizePgWorkingA[[iz, 2]]
( PolarizePzWorkingA[[iz +1, 2]] +
PolarizePzWorkingA[[iz -1, 2]]))

(-60 PolarizePoWorkingA{[[iz, 2]] +

Printed by Mathematica for Students



Appendix B

, {iz, izMin + 1, znpts - 1}] ;
PolarizePzWorkingA = PolarizePzWorkingB;
PolarizePgWorkingA = PolarizePgWorkingB;
PolarizePoWorkingA = PolarizePoWorkingB
, {tt, tnpts3 +1, tnpts4}] ;
PolarizePz4 = PolarizePzWorkingA;
PolarizePqg4 = PolarizePgWorkingA;
PolarizePo4 = PolarizePoWorkingA;

ListPlot[PolarizePzl, PlotJoined -> True,
PlotRange -> All]

1 2 3 4 5 [

- Graphics =
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ListPlot[PolarizePz2, PlotJoined -> True,
PlotRange -> All]

1 2 3 4 5 6

- Graphics =

ListPlot[PolarizePz3, PlotJoined -> True,
PlotRange -> All]

1 2 3 4 5 6

- Graphics =
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ListPlot[PolarizePz4, PlotJoined -> True,
PlotRange -> All]

1 2 3 4 5 6

- Graphics =

ListPlot[PolarizePql, PlotJoined -> True,
PlotRange -> All]

0.0035
0.003
0.0025
0.002
0.0015
0.001

0.0005

1 2 3 4 5 6

- Graphics =

Printed by Mathematica for Students

26



Appendix B 27

ListPlot[PolarizePqg2, PlotJoined -> True,
PlotRange -> All]

1 2 3 4 5 6
- Graphics -

ListPlot[PolarizePqg3, PlotJoined -> True,
PlotRange -> All]

0.075

0.025

1 2 3 4 5 6

= Graphics -
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0.125

0.075

0.025

ListPlot[PolarizePqg4, PlotJoined -> True,
PlotRange -> All]

0.00003

0.00002

0.00001

1 2 3 4 5 6
- Graphics =

ListPlot[PolarizePol, PlotJoined -> True,
PlotRange -> All]

1 2 3 4 5 6

- Graphics =
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ListPlot[PolarizePo2, PlotJoined -> True,
PlotRange -> All]

0.004

0.003

0.002

0.001

1 2 3 4 5 6
- Graphics =

ListPlot[PolarizePo3, PlotJoined -» True,
PlotRange -> All]

0.015

0.0125

0.0075
0.005

0.0025

1 2 3 4 5 6

- Graphics -
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ListPlot[PolarizePo4, PlotJoined -> True,
PlotRange -> All]

0.015

0.0125

0.0075
0.005

0.0025

1 2 3 4 5 6

- Graphics -

Set u=Exp[-2*r/al0] --> r=(-a0/2) Logl[u] --> r"2 = (a0"2)
(Log[ul"2)/4
and dr=(~-a0/2) (1/u) du. Furthermore, when r=0, u=1l, and

when r=o, u=0.

~tonpl * Exp[-4 * z]
TlatO

Plot| (1—Exp[ ]) , {z, 0, zmax},

PlotRange -> All]

1 2 3 4 5 6

- Graphics =
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Plot| (1 - Exp|

-tonp2 * Exp[-4 * 2]

]), {z, 0, zmax},

- Graphics =

Plot| (1 - Exp|

TlatO
PlotRange -> All]
1
0.8
0.6
0.4
0.2
1 2 3 4 5 6

-tonp3 * Exp[-4+z]

]), {z, 0, zmax},
TlatO

PlotRange -> All]

1 2

- Graphics -
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32

~tonp4d * Exp[-4 * z]

Plot[(l—Exp[ ]) ; {z, 0, zmax},

TlatO
PlotRange -> All]
1
0.8
0.6
0.4
0.2
1 2 3 4 5 [

-« Graphics =

If we set u=Exp[-(r/a0)"2] --> r*2=(-al0"2)Logl[u] --> r =
Sgrt| (-a0"2)Loglu] ]

and dr = -(a0/2) (1/u)/Sgrt[-Log[u]l]. Furthermore, when
r=0, u=1, and when r=o, u=0.

uSignall = Table[N[0], {iu, 2+ znpts -1}, {i, 2}];
uSignal2 = Table[N[0], {iu, 2+ znpts -1}, {i, 2}];
uSignal3 = Table[N[0], {iu, 2*znpts -1}, {i, 2}]:
uSignal4 = Table[N[0], {iu, 2 *znpts -1}, {i, 2}];
Do [

z =N[iz / izResl];

u=-Exp[-2%x2z];

uSignall[[iz, 1]] =u;

uSignal2[[iz, 1]] =u;

uSignal3[[iz, 1]] = u;

uSignald[[iz, 1]] = u;

, {iz, 1, znpts-1}];
Do[

z=N[(iz-1) /izResl];

u=Exp[-2*%z];
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uSignall[[2 * znpts -iz, 1]] =u;
uSignal2[[2 * znpts -iz, 1]] =u;
uSignal3[[2 * znpts -iz, 1]] = u;
uSignal4[[2 x» znpts - iz, 1]] =u;
uSignall[[2 %* znpts - iz, 2]] =
Re[PolarizePzl[[iz, 2]]] *

, TlatO
Log[u] * —— 1—Exp[ ——

u
uSignal2[[2 x znpts - iz, 2]] =
Re[PolarizePz2[[iz, 2]]] *

, TlatO

Log[u]“* —— |1 —Exp[
u? TlatO
uSignal3[[2 * znpts -iz, 2]] =
Re[PolarizePz3[[iz, 2]]] *

Log[u] “ TlatO

u
uSignal4d[[2 % znpts - iz, 2]] =
Re[PolarizePz4[[iz, 2]]] *
Log[u]2 *

u

, {iz, znpts, 1, -1}]

Printed by Mathematica for Students
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T1at0 (1—E [iz__’fi])
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Areal =N[0];
Area?2 = N[0];
Area3 =N[0];
Aread = N[0];
Do|
Areal = Areal + (uSignallfiz, 2] + uSignallfliz +1, 2]) *
(uSignallfiz +1, 1]] - uSignallfiz, 1)
Area2 = Area2 + (uSignal2[iz, 2] + uSignal2ffiz + 1, 2]) *
(uSignal2fliz +1, 1] —~uSignal2fiz, 1]):
Area3 = Areal3 + (uSignal3fiz, 2] + uSignal3fiz +1, 2]) *
(uSignal3[liz +1, 1] - uSignal3fiz, 1]):
Aread = Aread + (uSignaldf[iz, 2]} + uSignaldffiz +1, 2]) *
(uSignaldffiz+1, 1] - uSignal4fiz, 1]);
, {iz, 1, Length[uSignall] -1}];

Printed by Mathematica for Students
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plotl = ListPlot[Re[uSignall], PlotRange -> All,
PlotJoined -> True, DisplayFunction -> Identity];
plot2 = ListPlot[Re[uSignal2], PlotRange -> All,
PlotJoined -> True, DisplayFunction -> Identity];
plot3 = ListPlot[Re[uSignal3], PlotRange -> All,
PlotJoined -> True, DisplayFunction -> Identity];
plotd4 = ListPlot[Re[uSignal4], PlotRange -> All,
PlotJoined -> True, DisplayFunction -> Identity];

plotll = Plot[Log[u]® 1 - Exp|

—tonpl*uz]
TlatO

TlatO -t2 % u?
- -E [_.____

]|, {u, 0, 1},
TlatO

u?

PlotPoints-a>znpts,DisplayFunction-a>Identity];

> -tonp2 * u?
plotlZ::Plot[Log[u] 1-Exp[ ]

TlatO
-t2 % u?

TlatO

Tlat0O

(1—Exp[

PlotPoints-¢>znpts,DisplayFunction-¢>Identity];

]], {u, 0, 1},

u?

—tomp3*u2]]

plotl3 = Plot[Log[u]® 1 - Exp|
TlatO

TlatO -t2 %xu
w2 Tlato

PlotPoints-¢>znpts,DisplayFunction-¢>Identity];

5 -tonp4 * u? TlatO
plot14==Plot[Log[u] 1-Exp[ ]

TlatO u?
-£2 % u?

[1 R Srrwe:

]J , {fu, 0, 1}, PlotPoints -> znpts,

DisplayFunction—>-Identity];
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Show|[plotl, plot2, plot3,
plot4, DisplayFunction -> $DisplayFunction,
PlotRange -> {{0, 1}, All}]

8

= Graphics =

Max [Transpose[uSignall] [[2]] /
Max[Transpose[uSignal4] [2]]
Max [Transpose[uSignal2] [2]] /
Max[Transpose[uSignaléd] [[2] ]
Max [Transpose[uSignal3][2]] /
Max [Transpose[uSignald] [2]]
Max [Transpose[uSignal4] [2]] /
Max [Transpose[uSignal4][2]]

0.0190525
0.10472

0.516737
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Areal / Area4d
Area2 / Aread
Area3 / Aread
Aread / Aread

0.0610652
0.266193
0.747857

1.
100 .
a0 = N[IOW’ ndlglt],
565

LatticeSpacingGaAs = N| ————,
| 10010'° v/2

ndigit];

scale = 1;

Ar = N[LatticeSpacingGaAs = scale, ndigit];
izResl = a0/ Ar;

izRes = a0 /Ar;

2973 0 1 2 o
10 (scale) ’ndlglt]’

396 2 1903( 1 )27 ndigit]

Wisotropic = N

scale
2 2

scale) ’ ndigit];
2 1 2
) . ndigit];

Wisotropic = N

I
Wisotropic = N
I
I

Wisotropic = N
' scale

W = Wisotropic;

zMaxTarget = 6;

zmax = Ceiling[zMaxTarget «izRes] /1zRes;
1zMin = 2;

12 =2;

250
tonpl = N[ 1000

tonp2 = N[l, ndlglt],
tonp3 = N[3, ndigit];
tonp4 = N[5, ndigit];

ndi git’] ;
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- 200
T1at0 = N| , ndigit|;
1000
tmin = N[——-—-——, ndigit];
1000000 :
tRes = 1, ;
tmin

tnpts] = tonpl «tRes + 1;

tnpts2 = tonp2 xtRes + 1;

tnpts3 = tonp3 xtRes + 1;

tnpts4 = tonp4 «tRes + 1;

znpts = Round[zmax «izRes + 1];
ElectronPolarization = N[30/100];

565
C2 = N|——— ndigit|;
[ 10010'°2 a0 git
2023
twoC2cubedoverPi = :
Vs

KSconst = ElectronPolarization hyperFineGa71 twoC2cubedoverPi;

aloha (1+ElectronPolarization) (+ alpha = nplus/nminus #)
— ’ % = UsS =k
p 1 — ElectronPolarization P p
norml = 1 + alpha + alpha® + alpha®;
Ipha’
ONPinfplus3half = P22 _.
norml
Ipha®
ONPinfplusthalf = 2222
norml
Ipha!
ONPinfminusthalf = apha ;
norm1}
ONPinfminus3half = ! :
norml

ONPinfPz = ONPinfplus3half +
1 1
3 ONPinfpluslhalf — 3 ONPinfminuslhalf — ONPinfminus3half;

ONPinfPq =
ONPinfplus3half — ONPinfpluslhalf — ONPinfminuslhalf + ONPinfminus3half;

1
ONPinfPo = 3 ONPinfplus3half — ONPinfpluslhalf + ONPinfminuslhalf —

—;— ONPinfminus3half;
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Show[plotl, plot2, plot3,
plot4, DisplayFunction -> $DisplayFunction,
PlotRange -> {{0, 1}, All}]

- Graphics =~

Max [Transpose[uSignall] [2]] /
Max[Transpose[uSignald] [[2]]
Max [Transpose[uSignal2][[2]] /
Max [Transpose[uSignal4] [2]]
Max[Transpose[uSignal3] [2]] /
Max [Transpose[uSignal4][[2]]
Max[Transpose[uSignalé4][[2]] /
Max [Transpose[uSignal4d] [2]]

0.0314094
0.134967

0.537933
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Areal / Areald
Area2 / Area4d
Area3 / Area4d
Area4 / Area4d

0.0689294
0.266988
0.711371

1.
Real CLSW-16 Experiment - Max. Value

{{0.24, 0.048111}, {1.032, 0.22117}, {3.024, 0.60195},
{4.824, 1}}

Real CLSW-16 Experiment - Intergral

{{0.24, 0.11671}, {1.032, 0.36044}, {3.024, 0.76886},
{4.824, 1}}

ONP Curve

{{0.24, 0.12800}, {1.032, 0.40290}, {3.024, 0.79147},
{4.824, 1}}
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Show[plotll, plotl2, plotl3,
plotl4, DisplayFunction -> $DisplayFunction,
PlotRange -> {{0, 1}, Al1l}]

- Graphics -

zfill = 4;
nzfill = zfill +izRes - 1;
uuSignall =
Table[N[O], {iu, Length[uSignall] + nzfill}, {i, 2}];
uuSignal2 =
Table[N[0], {iu, Length[uSignall] +nzfill}, {i, 2}];
uuSignal3 =
Table[N[0], {iu, Length[uSignall] +nzfill}, {i, 2}];
uuSignal4 =
Table[N[0], {iu, Length[uSignall] + nzfill}, {i, 2}];
countl = N[0];
Dof
uuSignall[[iz]] =
uSignall[[Length[uSignall] - countl]];
uuSignal2[[iz]] =
uSignal2| [Length[uSignall] - countl]];
uuSignal3[[iz]] =
uSignal3|[[Length[uSignall] - countl]];
uuSignald[[iz]] =
uSignal4[[Length[uSignall] - countl]];
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countl = countl +1;
, {1z, Length[uuSignall],
Length[uuSignall] - (2 *nzfill +1), -2}];
Do|
uuSignall{[iz]] =
(uuSignall[[iz -1]] +uuSignall[[iz+1]])/2;
uuSignal2[[iz]] =
(auSignal2[[iz -1]] + uuSignal2[[iz+1]])/2;
uuSignal3[[iz]] =
(uuSignal3[[iz -1]] +uuSignal3[[iz+1]]) /2;
uuSignal4d[[iz]] =
(uuSignal4[[iz -1]] +uuSignal4[[iz+1]])/2;
, {iz, Length[uuSignall] -1,
Length[uuSignall] - 2 *nzfill, -2}];
Do[
uuSignall[[iz]] = uSignall[[iz]];
uwuSignal2[[iz]] = uSignal2([iz]];
uuSignal3{[iz]] = uSignal3[[iz]]:
uuSignal4[[iz]] = uSignald[[iz]];
; {iz, 1, Length[uuSignall] - 2 *+nzfill}];

z3fill = z£fill -1;
nz3fill = z3fill*2+izRes-1;
u3Signall =

Table[N[0], {iu, Length[uuSignall] + nz3fill}, {i, 2}];
u3Signal2 =

Table[N[O0], {iu, Length[uuSignall] + nz3fill}, {i, 2}];
u3Signal3 =

Table[N[0], {iu, Length[uuSignall] +nz3fill}, {i, 2}];
u3Signal4 =

Table[N[0], {iu, Length[uuSignall] + nz3fill}, {i, 2}];
countl = N[0] ;
Do|

u3Signall[iz]] =

uuSignall[ [Length[uuSignall] - countl]];
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u3Signal2[[iz]] =
uuSignal2| [Length[uuSignall] - countl]];
u3Signal3[[iz]] =
uuSignal3|[ [Length[uuSignall] - countl]];
u3Signal4d[[iz]] =
uuSignal4 | [Length[uuSignall] - countl]];
countl = countl + 1;
; {1z, Length[u3Signall],
Length[u3Signall] - (2 +nz3fill+1), -2}];
Do{
u3Signall[{iz]]
(u3signallf[iz
u3Signal2[[iz]]
(u3Signal2[[iz
u3Signal3[[iz]]
(u3Signal3[[iz
u3Signal4d[[iz]]
(u3Signal4[[iz -1]] +u3Signal4[[iz+1]])/2;
, {iz, Length[u3Signall] -1,
Length[u3Signall] - 2 *nz3fill, -2}];
Do|
u3Signall[[iz]] = uuSignall[[iz]];
u3Signal2[[iz]] = uuSignal2[[iz]];
u3Signal3[[iz]] = uuSignal3[[iz]];
u3Signal4[[iz]] = uuSignal4d[[iz]];
, {iz, 1, Length[u3Signall] -2 *nz3fill}];

1]] +u3Signall[[iz+1]])/2;

1]1] +u3Signal2[[iz+1]])/2;

1]] +u3Signal3[[iz +1]]) / 2;

z4£fill = z3fil1-1;
nz4fill = z4fill x4 +izRes-1;
u4Signall =

Table[N[O0], {iu, Length[u3Signall] + nz4fill}, {i, 2}];
uédSignal2 =

Table[N[0], {iu, Length[u3Signall] +nz4fill}, {i, 2}];
ud4Signal3 =

Table[N[0], {iu, Length[u3Signall] + nz4fill}, {i, 2}];
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u4Signald =

Table[N[0], {iu, Length[u3Signall] + nz4fill}, {i, 2}];

countl = N[0];
Do[
udSignall[[iz]] =
u3Signall[[Length[u3Signall] - countl]];
u4sSignal2[[iz]] =
u3Signal2[ [Length[u3Signall] - countl]];
udSignal3[[iz]] =
u3Signal3[[Length[u3Signall] - countl]];
u4Signal4d[[iz]] =
u3Signal4[[Length[u3Signall] - countl]];
countl = countl +1;
; {iz, Length[u4Signall],
Length[u4Signall] - (2*nz4fill+1), -2}];
Do|
udSignallffiz]] =
(u4sSignall[[iz - 1]] +udSignall[[iz+1]])/2;
u4Signal2[[iz]]
(u4Signal2[[iz
u4Signal3[[iz]]
(ud4Signal3{{iz
udSignald[[iz]] =
(u4signal4[[iz - 1]] +u4dSignald[[iz+1]])/2;
, {iz, Length[u4Signall] -1,
Length[u4Signall] - 2 *xnz4fill, -2}];
Do|[
u4Signall[[iz]] =u3Signall[[iz]];
udSignal2[[iz]] = u3Signal2[[iz]];
u4Signal3[[iz]] =u3Signal3[[iz]];
udSignal4[[iz]] = u3Signald|[[iz]];
, {iz, 1, Length[u4d4Signall] - 2 *xnz4fill}];

1]] +udSignal2[[iz+1]])/2;

1]] +udSignal3[[iz +1]]) /2;

z5fill = z4fill -1;
nzbfill = z5fill *8xizRes - 1;
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ub5Signall =
Table[N[0], {iu, Length[u4Signall] + nz5fill}, {i, 2}]:
ub5Signal2 =
Table[N[0], {iu, Length[u4Signall] + nz5fill}, {i, 2}]-
u5Signal3 =
Table[N[0], {iu, Length[u4Signall] + nz5fill}, {i, 2}];
u5Signald =
Table[N[0], {iu, Length[u4Signall] + nz5£fill}, {i, 2}];
countl = N[0] ;
Dol
ubSignall[[iz]] =
udSignall[[Length[u4Signall] - countl]];
uS5Signal2[[iz]] =
udSignal2 | [Length[ud4Signall] - countl]];
ubSignal3[[iz]] =
u4dSignal3[L.ength[u4Signall] - countl]];
ubSignal4[[iz]] =
u4Signal4d [ [Length[u4Signall] - countl}];
countl = countl + 1;
, {iz, Length[u5Signall],
Length[u5Signall] - (2 *nz5fill+1), -2}];
Dol
ubSignall[[iz]] =
(u5Signall[[iz
ub5Signal2[[iz]] =
(ubSignal2[[iz - 1]] +u5Signal2[[iz+1]])/2;
ub5Signal3[[iz]]
(u5Signal3[[iz - 1]] +ub5Signal3[[iz+1]1]) /2;
u5Signal4[[iz]] =
(u5Signal4[[iz - 1]] + uS5Signal4d[[iz+1]])/2;
, {iz, Length[u5Signall] -1,
Length[u5Signall] - 2 #*nz5fill, -2}];
Do[
u5Signall[[iz]] = ud4Signall|[iz]]:
ubSignal2[[iz]] = ud4Signal2|[iz]];

1]] +ub5Signall[[iz+1]])/2;
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ubSignal3[[iz]] = ud4Signal3[[iz]];
ubSignald4[[iz]] = u4Signaléd[[iz]];
, {iz, 1, Length[u5Signall] - 2 *nz5£il11}];

ListPlot[Re[uSignall], PlotJoined -> True,
PlotRange -> All]
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ListPlot[u5Signall, PlotJoined -> True, PlotRange -> Al1l]
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Length[ub5Signall]

759
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SW = N[KSconst * DutyCycle] ;
unpts = Length[u5Signall];
tSignall = Table[N[0], {tt, unpts}, {i, 2}]:;
tSignal2 = Table[N[O0], {tt, unpts}, {i, 2}]:
tSignal3 = Table[N[0], {tt, unpts}, {i, 2}];
tSignal4 = Table[N[0], {tt, unpts}, {i, 2}];
Do[
t= (itt-1) / SW;
tSignall[[itt, 1]]
tSignal2[[itt, 1]]
tSignal3[[itt, 1]]
tSignal4d[[itt, 1]]
upast = u5Signall[1, 1]1];
u = ub5Signall[[1, 1]]-;
Do[
unext = u5Signall[[iz +1 - Floor[iz /unpts], 1]];
w= (SW/2) xu;
wdiff = (SW/2) * Abs [unext - upast] / 2;

r

I

t
t;
t
t

-
14

ftw =

Exp[2riwt];
Var
tSignall|[itt, 2]] =
tSignall[[itt, 2]] + wdiff x ftw+ub5Signall[[iz, 2]];
tSignal2[[itt, 2]] =
tSignal2[[itt, 2]] + wdiff » ftw+u5Signal2[[iz, 2]];
tSignal3[[itt, 2]] =
tSignal3[[itt, 2]] + wdiff » ftw*ubSignal3[[iz, 2]};
tSignald[[itt, 2]] =
tSignald[[itt, 2]] + wdiff » ftw+ubSignal4d[[iz, 2]];
upast = u;
u = unext;
, {1z, 1, unpts}];
, {itt, 1, unpts}];
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ListPlot[Re[tSignall], PlotJoined -> True,
PlotRange -> All]
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- Graphics =

ScalarCoupling = N[60 *DutyCycle];
A = Table[0, {i, 13}, {3, 82}];
Inten = Table|
(2 -1i) (ScalarCoupling* (j-41)/2), {1, 2}, {3, 82}]:
All, 41 =1;

1
Do[{a[i, 31 = 7 ®Li-1,3-30+

Afi-1, j-1]+A[i-1, j+1]+A[i-1, 3+3])},
{i, 2, 13, 1}, {3, 4, 78, 1}];
Do[{Inten[[2, j] = Inten[2, j] +
Af[i, j] Binomial[12, i - 1] 0.604%3-1 0.396%"1},

{3, 80}, {i, 13}]~;
Clear|[A]
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1239

+* DutyCycle

39.4644

ttSignall = Table[N[0], {tt, Length[tSignall]}, {i, 2}]:
ttSignal2 = Table[N[0], {tt, Length{tSignall]}, {1, 2}];
ttSignal3 = Table[N[0], {tt, Length[tSignall]}, {i, 2}]:
ttSignal4 = Table[N[0], {tt, Length[tSignall]}, {i, 2}];
linewidth = N[40];
ttSignall[[1, 1]]
ttSignal2[[1, 1]]
ttSignal3[[1, 1]]
ttSignal4d[[1, 1]]
ttSignall[[1, 2]]
ttSignal2[[1, 2]]
ttSignal3[[1, 2]]
ttSignal4[[1, 2]]
Do |
t=(i-1)/SwW;
1b = Exp[- (i linewidth t)2/ (4 Log[2])]:

suml = N[0} ;

Do|

suml = suml + Intenf[2, i Exp[I *2 % Pi * Inten[[1l, i] t],
{1, 5, 77, 1}]1;

ttSignall[[i, 1]] = tSignall[[i, 1]];

ttSignal2[[i, 1]] = tSignal2[[i, 1]]-;

ttSignal3[[i, 1]] = tSignal3[[i, 1]]:;

ttSignald[[i, 1]] = tSignal4[[i, 1]]:;

ttSignall[[i, 2]] = suml *1b* tSignall[[i, 2]];
ttSignal2[[i, 2]] = suml * lb* tSignal2[[i, 2]];
ttSignal3[[i, 2]] = suml # 1b* tSignal3[[i, 2]];
ttSignald4[[i, 2]] = suml * 1b* tSignal4[[i, 2]];

, {i, 2, Length[tSignall]}];

tSignallf[1, 1]];
tSignal2{[1, 1]]:
tSignal3[[1, 1]]:
tSignal4d[[1, 11];
tSignall[[1, 2]]1/2;
tSignal2[[1, 2]]/2;
tSignal3[[1, 2]]/2;
tSignal4d[[1, 2]]/2;
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ttSignall = Table[N[0], {tt, Length[tSignalll}, {i, 2}];
ttSignal2 = Table[N[0], {tt, Length[tSignalll}, {i, 2}];
ttSignal3 = Table[N[0], {tt, Length[tSignall]}, {i, 2}];
ttSignal4 = Table[N[0], {tt, Length[tSignalll}, {i, 2}];
linewidth = N[40] ;
ttSignall[[1, 1]]
ttSignal2[[1, 1]]
ttSignal3[[1, 1]]
ttSignal4[[1, 1]]
ttSignall[[1, 2]]
ttSignal2[[1, 2]]
ttSignal3[[1, 2]]
ttSignal4d[[1, 2]]
Do[

t=(i-1) /SW;

1b = Exp[-7 1linewidth t];

suml = N[0] ;

Do[

suml = suml + Inten[2, i]] Exp[I *2 * Pi » Inten[1, i] t],
{1, 5, 77, 1}1:

ttSignall[[i, 1]] = tSignall[[i, 1]];

ttSignal2[[i, 1]] = tSignal2[[i, 1]1];

ttSignal3[[i, 1]] = tSignal3[[i, 11];

ttSignal4[i, 1]] = tSignal4([[i, 11];

ttSignall[[i, 2]] = suml * 1b* tSignall[[i, 2]]-

ttSignal2[{i, 2]] = suml * lb* tSignal2[[i, 2]];

ttSignal3[[i, 2]] = suml * 1b* tSignal3[[i, 2]];

ttSignal4[[i, 2]] = suml * 1b » tSignald[[1i, 2]];

, {1, 2, Length[tSignall]l}]:

tSignall([1, 1]]-
tsignal2[[1, 1]1]-
tSignal3[[1, 11];
tSignal4[[1, 1]];
tSignall[[1, 2]1]1/2;
tSignal2[[1, 2]]/2;
tSignal3[[1, 2]]1/2;
tSignal4[[1, 2]]/2;
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ListPlot[Re[ttSignall], PlotJoined -> True,
PlotRange -> All]
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wDatal = Table[N[0], {tt, Length[ttSignalll}, {i, 2}];
wData2 = Table[N[0], {tt, Length[ttSignalll}, {i, 2}]:
wData3 = Table[N[0], {tt, Length[ttSignalll}, {i, 2}];
wDatad = Table[N[0], {tt, Length[ttSignall]l}, {i, 2}]:
Do[

SW
W= > (iw-1 - (Length[ttSignall] -1)/2) /

(Length[ttSignall] -1) /2;
wDatal[[iw, 1]] = w;
whata2[[iw, 1]]
whata3[[iw, 1]]
wDatad[[iw, 1]] =w;
Do[

t= (iz - 1) / SW;

w;

w;

ftw=

Exp[-2miwt];
V2r

whatal[ [iw, 2]] =

w
* ttSignall[[iz, 2]];
SW

wDatal[[iw, 2]] +

wData2[[iw, 2]] =

w
* ttSignal2[[iz, 2]];
SW

wData2[[iw, 2]] +

whata3[[iw, 2]] =

w
* ttSignal3[[iz, 2]];

wData3[[iw, 2]] +

SW
wDatad[[iw, 2]] =
ftw
wDatad[[iw, 2]] + — * ttSignal4d[[iz, 2]];
SW

, {iz, 1, Length[ttSignall]}]
, {iw, 1, Length[ttSignall] }];
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Areal = N[O0];
Area2 = N[0];
Area3 = N[O0];
Aread =N[0];
Do[
Areal = Areal + Re[ (wDatal[[iz, 2] + wDatal[[iz +1, 2])
(wDatal[[iz +1, 1]] - wDatalf[liz, 1])1]-
Area2 = Area? + Re[ (wData2[[iz, 2] + wData2f[iz +1, 2]) *
(wData2f[iz + 1, 1] - wbData2fiz, 1])1]1;
Area3 = Area3 + Re[ (wData3[[iz, 2] + wData3f[iz +1, 2]) *
(wData3[[iz +1, 1] - wData3[[iz, 1])]-
Aread = Aread + Re[ (wData4[iz, 2] + wDatadf[iz +1, 2]) *
(wDatad[[iz + 1, 1] - wData4[[iz, 1])]:
, {iz, 1, Length[wDatal] -1}];

Areal / Aread
Area2 / Areald
Area3 / Aread
Aread / Aread

0.0689294
0.266988
0.711371

1.
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Max[Re [Transpose[wDatal] [2]]] /
Max[Re[Transpose{wData4] [2]]]
Max[Re[Transpose[wData2][2]]]] /
Max[Re[Transpose[wData4] [2] ]]
Max [Re[Transpose[wData3][2]]] /
Max [Re[Transpose[wData4d] [2]]]
Max[Re[Transpose[wData4] [2]]] /
Max [Re[Transpose[wData4] [2]]]

0.0390355
0.165313
0.601229

1.

Max[Re[Transpose[wData4] [2]]]

0.271592

whatad[[497]

{55.8662, 0.271592+ 0.0845847 1}

55.8662108762756037" +1676.43

1732.3

wwDatal = wDatal;

wwData2 = whData?2;

wwData3 = wData3;

wwData4 = wData4;

Do [
wwDatal[[iw, 1]] = ~wwDatal[[iw, 1]] +1732.3;
wwData2[[iw, 1]] = -wwData2[[iw, 1]] +1732.3;
wwData3[[iw, 1]] = -wwData3[[iw, 1]] +1732.3;
wwData4d[[iw, 1]] = -~wwData4[[iw, 1]] +1732.3;

, {iw, 1, Length[wDatall}}];
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ListPlot[Re[wwData4], PlotJoined -> True,
PlotRange -> All]

1000 1500 2000 2500

- Graphics -
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0.69%0.35

0.2415
SetDirectory["C:\My Documents\Caltech\Thesis\math"];

unit =
OpenWrite["KSspindiff3halfs-LineAvrgIsotrpc3 230W100A2
O0Oms30percent_tonp250ms.out"];

Do[
Write[unit,Re[wwDatal[[i]]1]
,{1i,1,Length[wwDatall]}]

Close["KSspindiff3halfs-LineAvrgIsotrpc3 230W100A200ms
30percent_ tonp250ms.out"];

unit =
OpenWrite["KSspindiff3halfs-LineAvrgIsotrpc3 230W100A2
OOms30percent tonpls.out"];

Dol
Write[unit,Re{wwData2[[i]]]]
,{1,1,Length[wwData2] }]

Close["KSspindiff3halfs-LineAvrgIsotrpc3 230W100A200ms
30percent_tonpls.out"];

unit =
OpenWrite["KSspindiff3halfs-LineAvrgIsotrpc3 230W100A2
OOms30percent tonp3s.out"];

Do|
Write[unit,Re[wwData3[[i]]1]
,{1i,1,Length[wwData3]}]

Close["KSspindiff3halfs-LineAvrgIsotrpc3 230W100A200ms
30percent_tonp3s.out"];

unit =
OpenWrite["KSspindiff3halfs-LineAvrgIsotrpc3 230W100A2
OOms30percent tonp5s.out”"];
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Dol
Write[unit,Re[wwDatad4[[i]]]]
,{i,1,Length[wwData4]}]

Close["KSspindiff3halfs-LineAvrglsotrpc3 230W100A200ms
30percent_ tonp5s.out"];
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plotl = ListPlot[Re[wDatal], PlotRange -> Al1l,
PlotJoined -» True, DisplayFunction -> Identity]:
plot2 = ListPlot[Re[wData2], PlotRange -> All,
PlotJoined -> True, DisplayFunction -> Identity];
plot3 = ListPlot[Re[wData3], PlotRange -> All,
PlotJoined -> True, DisplayFunction -> Identity];
plot4d = ListPlot[Re[wData4], PlotRange -> All,
PlotJoined -> True, DisplayFunction -> Identity];

5 - tonpl # u?
plotll = Plot|[Log[u]? |1 - Exp| |
TlatoO
TlatO -t2 %u?
- _E [_———-—.—] 14 {ul OI 1}’
u? TlatO

PlotPoints-¢>znpts,DisplayFunction-¢>Identity];

-tonp2 * u?
plotl2 = Plot[Log[u]? (1 - Exp| P ]]

TlatO
TlatO -t2 % u?
—  |1-=E [————

||+ {u, 0, 1},
TlatO

u2

PlotPoints -> znpts, DisplayFunction -> Identity] ;

5 -tonp3 * u?
plotl3 = Plot|[Log[u]® |1 - Exp| ]
TlatO
TlatO -t2 % u?
—_ -E [

—_—] 7 {ur Ol 1}1
TlatO

u2

PlotPoints -> znpts, DisplayFunction -> Identity] ;

5 -tonp4 % u? TlatO
plot14:=Plot[Log[u] 1-Exp[ ]

Tlat0 u2
-t2 % u?
TlatO

[l—Exp[

DisplayFunction-»»Identity];

]], {u, 0, 1}, PlotPoints -> znpts,
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Show[plotl, plot2, plot3, plot4,
DisplayFunction -> $DisplayFunction] ;

-1000 -500 500 1000

Areal / Area4
Area?2 / Aread
Area3 / Aread
Aread / Area4

0.0689294
0.266988
0.711371

1.
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Max [Re[Transpose[wDatal] [2]]] /
Max[Re[Transpose[wData4] [2]]]
Max [Re[Transpose[wData2][[2]]1] /
Max[Re[Transpose[wData4] [2] 1]
Max[Re[Transpose[wData3][2]]] /
Max [Re[Transpose[wData4] [2]]]
Max[Re[Transpose[wData4][2]]] /
Max [Re[Transpose [wData4d] [[2]]]

0.0390355
0.165313
0.601229

1.

Show[plotll, plotl2, plotl3,
plotl4, DisplayFunction -> $DisplayFunction,
PlotRange -> {{0, 1}, All}]

= Graphics =
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