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ABSTRACT 

 

Enigmatically shaped laminated carbonate rocks called stromatolites dominated 

shallow marine environments for the first 80% of Earth’s history, and are potentially the 

oldest macrofossils.  While these ancient rocky cones and domes occasionally resemble 

some modern microbial structures, it is unclear whether their formation required 

biological processes or they could have been produced abiotically.  To develop criteria 

for assessing the biogenicity of ancient stromatolites, we precipitated calcium carbonate 

in the laboratory in the presence and absence of modern microorganisms under chemical 

conditions relevant for the early Earth.  Using this novel approach, we disproved the 

paradigm that microbial sulfate reduction, a metabolism important for the formation of 

modern stromatolites, was responsible for the precipitation of their ancient counterparts. 

We also produced the first laboratory evidence that sub-micron and micron-sized pores 

occured in rapidly precipitating carbonate rocks only when microbes were present.  

Applying a set of experimentally established criteria to modern environmental samples 

and ancient stromatolites, we found similar biogenic microporosity in some modern fast- 

precipitating carbonates and in ancient stromatolites. In our abiotic laboratory 

precipitates, we observed calcite grains that resembled putatively biogenic features from 

the rock record called peloids.  We explained their shape and growth pattern by purely 

inorganic parameters, underscoring the need for caution when interpreting seemingly 

biogenic fabrics in the rock record of Earth and other planets.  Finally, we showed that 

active anoxygenic photosynthesis by Rhodopseudomonas palustris could stimulate the 

precipitation of calcite even in solutions that were well-buffered by a high concentration 
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of dissolved inorganic carbon.  Future studies of the relationship between photosynthetic 

biofilms, the environmental parameters such as light and currents, and the morphology of 

carbonate precipitates are key to recognizing potential biosignatures produced by similar 

organisms in the in situ precipitated stromatolites and other microbialites. 
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1. Introduction 
 

Are stromatolites the oldest macrofossils? 

Stromatolites are laminated and lithified carbonate rocks that dominated shallow 

marine environments for the first 80% of Earth’s history.  Because the centimeter and 

decimeter-sized domical and conical shapes of ancient stromatolites are similar to some 

rare modern-day microbially-dominated structures, such as those found in Shark’s Bay, 

Australia and the Bahamas, the term stromatolite is used to refer to both.  Even the oldest 

stromatolites (~ 3.45 billion years) are often interpreted as lithified remnants of the 

microbial mats on early Earth, although there is no robust evidence that microbes shaped 

most ancient stromatolites [1].  The relationship between these mysterious rocks and 

biological processes at the microscale has motivated my graduate work at Caltech. 

Stromatolites grow by the addition of new lamina.  Microbes can contribute to the 

formation of lamina by trapping and binding the sediment, or by influencing calcification.  

For example, the main lamina-forming process in modern stromatolites is trapping and 

binding of the carbonate sediment by cyanobacteria and diatoms [2].  Trapping and 

binding was less common in the oldest stromatolites.  Instead, their accretion was 

dominated by in situ precipitation of carbonates, probably due to the higher saturation 

state of the Precambrian seas with respect to calcium carbonate [3].  Although both in situ 

precipitated and trapped and bound structures can have similar macroscopic domical and 

branched shapes, these shapes could arise even in the absence of biology [4].  

Furthermore, fossil microorganisms clearly indigenous to the accretionary surfaces are 

rare, and organic matter associated with lamina is scarce.  All these factors call for the 
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development of process-oriented models of how microbes determine the shape of rocks 

and what determines the macroscopic shape of microbial communities in the first place. 

I took a novel approach to develop stringent experimental criteria for the 

recognition of microbial biosignatures, and to test specific hypotheses about the role of 

microbial metabolisms in the precipitation of stromatolites.  I grew model microbes with 

ancient metabolisms under controlled chemical conditions thought to be representative of 

the early Earth.  Although reductionist, the strength of this approach is its ability to 

investigate how microbial metabolisms affect carbonate precipitation and morphology in 

a variety of environmental conditions that extend beyond modern environments. 

 

Modern microbes as a probe to the ancient past 

In Chapter 2, we investigated the effect that active and inactive sulfate reducing 

and other heterotrophic bacteria had on the nucleation of calcite under the conditions 

relevant for early Earth.  The precipitation of carbonates in modern marine stromatolites, 

and by analogy, in ancient ones, had been widely attributed to the activity of sulfate 

reducing bacteria [5].  However, the Late Archean and Paleoproterozoic oceans (>1.6 

billion years ago) apparently contained at least 20 times less sulfate, and possibly 10-100 

times more dissolved inorganic carbon relative to modern seawater [6, 7].  By combining 

a chemical modeling study with laboratory experiments, we demonstrated that the 

presence of dead organic matter (dead bacteria) under these chemical conditions would 

have had an equal, if not larger, role in carbonate nucleation than metabolically active 

sulfate reducing bacteria and other heterotrophic microbes [8].  Our study suggested that 

abiotic mechanisms or metabolic processes other than sulfate reduction would have 
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stimulated the very extensive precipitation of carbonate minerals in the early oceans.  The 

calcification within sulfate reducing biofilms was kinetically stimulated relative to the 

outside environment at the microscale, implying that robust morphological indicators of 

bacterial presence in the rock record could be expected at this scale as well [9].  The 

effects of G20 on calcite morphology under the chemical conditions relevant for early 

Earth are described in Chapter 3. 

We underscored the need for caution in interpreting biosignatures by studying 

laboratory precipitates whose shape resembled peloids, calcite grains commonly found in 

the rock record.  The hypotheses about the origin of peloids, typically defined as 

“rounded grains of homogeneous micrite”, fall into two main categories: biological and 

abiotic.  The shape and growth pattern of peloidal calcite in our abiotic experiments could 

be explained purely by the chemical evolution of the solution and physical processes such 

as stirring and gravitational settling [10].  We describe this confirmation of peloids as a 

poor biomarker in Chapter 4. 

Sub-micron and micron-sized micropores have been tentatively interpreted as 

remains of microbial cells in rapidly accreting carbonate cements.  We precipitated 

carbonate crusts in the presence and absence of G20, and produced the first laboratory 

evidence that similar scale microporosity did not occur in the absence of microbes.  

Applying a set of objective criteria established in this experiment to modern and ancient 

environmental samples, we found similar biogenic microporosity in some modern fast- 

precipitating carbonates and in an ancient stromatolite [11].  Microporosity as a 

biomarker is the topic of Chapter 5. 
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The published research from Chapters 2-5 opened many avenues for future work, 

some of which are discussed together with the strengths and weaknesses of our approach 

in Chapter 6.  Chapter 7 proposes a study that would find the molecular basis of the 

morphology of some unique macroscopic microbial aggregates, and model the 

preservation of these aggregates in the rock record by precipitation experiments.  

Appendix A describes some ongoing and future experiments that would address the 

influence of light as a parameter in stromatolite morphogenesis using photosynthetic 

model organisms. 
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2. Microbial nucleation of calcium carbonate in the 

Precambrian 

 

Abstract 

Microbial sulfate reduction is thought to stimulate carbonate precipitation in 

modern stromatolites, yet whether this metabolism was important in shaping Precambrian 

stromatolites is unknown.  Here we use geochemical modeling to suggest that the 

influence of sulfate reduction on the saturation index of calcite (SI) is negligible when 

seawater is in equilibrium with high pCO2, as is thought for the Precambrian.  Our 

laboratory experiments with heterotrophic bacteria in a medium mimicking Precambrian 

seawater chemistry show that even if sulfate reduction does not significantly change the 

SI, the presence of bacteria stimulates calcite precipitation over sterile controls by 

effectively increasing the SI over a pH range from 7.3 to 7.8.  Under our experimental 

conditions, dead cells stimulate in situ carbonate precipitation equally, if not more, than 

active sulfate reducing bacteria.  Heterogeneous nucleation of calcite by microbial cell 

material appears to be the driving mechanism that explains this phenomenon. 

 

Introduction 

Stromatolites are common features in the Precambrian rock record, but whether 

their formation was influenced by microbes to the same extent as in the Recent 

stromatolites is debated.  While the contributions of various microorganisms and/or 
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microbial communities to the deposition of rare modern stromatolites have been 

examined [2, 5, 12], microbial contributions to the deposition of ancient stromatolites are 

often difficult to distinguish against a background of abiotic precipitation and to 

deconvolve mechanistically [1, 3, 4].   

By definition, stromatolites are laminated, lithified accretionary structures that 

grow by the addition of new lamina.  Microbes can contribute to the formation of lamina 

by trapping and binding the sediment, or by influencing calcification.  For example, the 

main lamina-forming process in modern stromatolites is trapping and binding of the 

carbonate sediment by cyanobacteria and diatoms, although micritic carbonates 

precipitate in the layers of sulfate reduction [2, 5].  In contrast, in situ precipitation of 

carbonates dominated in Paleoproterozoic and Mesoproterozoic stromatolites, probably 

due to the higher saturation state of the Precambrian oceans with respect to calcium 

carbonate [13]. 

Sulfate reduction is a metabolism that has been associated with in situ carbonate 

precipitation in modern marine settings [14-18] and has been correlated with the 

formation of the micritic carbonate lamina in modern Bahamian stromatolites [2, 5].  The 

mechanism by which sulfate reduction could induce precipitation of calcium carbonate 

by an increase in alkalinity is often described by the following equations: 

SO4
2− + 2CH2O → HS − + 2HCO3

− + H +  

Ca 2+ + HCO3
− → CaCO3(s) + H +  

However, it is unclear whether this mechanism would drive calcite precipitation 

in oceans that are well buffered by high concentrations of dissolved inorganic carbon 

(DIC), inferred for the early Proterozoic oceans.  Here we consider how sulfate reducing 
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bacteria (SRB) stimulate in situ carbonate precipitation under environmental conditions 

relevant for the Precambrian, through modeling and laboratory studies of Desulfovibrio 

desulfuricans strain G20. 

 

Materials and Methods 

Growth medium and conditions. We used D.desulfuricans strain G20 as a model 

organism.  To test whether the effect of microbes on calcite precipitation was specific to 

SRB, we used a phylogenetically distant Gram-negative bacterium Escherichia coli HB 

101, a facultative anaerobe that colonizes human gut and cannot reduce sulfate.  G20 was 

grown in modified, bicarbonate-buffered Postgate medium on 0.5 mM Na-sulfate and 10 

mM Na-lactate as the electron acceptor and donor, respectively [19].  The basal medium 

contained: 8 mM MgCl2, 20 mM NH4Cl, 0.5 mM KH2PO4, 0.2 g/l yeast extract.  The 

basal medium was boiled under N2, autoclaved and cooled under N2/CO2.  1ml/l SL 12-B 

trace element solution and 1 ml/l Pfennig vitamin solution, 10 mM Na-lactate, 0.5 mM 

Na2SO4, 10 ml/l 2.5% cysteine-HCl, 7.6 ml/l 8% Na2CO3 and 70 ml/l 1 M NaHCO3 were 

added from sterile stock solutions, the pH was adjusted by 10 N NaOH to 7.4 -7.5, and 

the medium was left to equilibrate with an atmosphere of 80% N2, 15% CO2 and 5% H2 

for at least one day.  Finally, the medium was filter-sterilized by a 0.2 µm filter.  

Escherichia coli strain HB101 was grown in the same medium with an additional 2 mM 

Na-fumarate as the electron acceptor.  Both organisms were grown anaerobically under 

an atmosphere of 80% N2, 15% CO2 and 5% H2. 
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Precipitation experiments.  0.5 ml of early stationary phase bacteria (cell density 5 x 107 

cells/ml) was centrifuged to remove the liquid phase.  The bacteria were then inoculated 

into 0.4 ml of the fresh culture medium from 8-well LabTek® (NalgeNunc International) 

chambered coverglass culture dishes with coverslip bottoms.  After inoculation, CaCl2 

was added to sterile controls and cultures to 20 mM final concentration.  Filter-sterilized 

nigericin was added to inhibit the cultures in two wells to the final concentration of 0.04 

mM.  These concentrations of nigericin completely inhibit the growth of G20 (data not 

shown).  The UV treatment consisted of exposing bacteria to UV light on a 

Foto/Convertible™ transilluminator (Fotodyne Incorporated).  Plate counts confirmed 

that the number of viable cells in UV-treated cultures was at least 10-6 times lower than in 

the original stock.  The incubation time was 15 to 20 hours at 25°C (relative comparisons 

were made only between cultures incubated for the same amount of time).  The amount 

of precipitate was determined by taking transmitted light micrographs of at least10 

different fields of view using a Zeiss Axiovert S100 microscope.  We measured the area 

covered by precipitates using MetaMorph® (Universal Imaging CorporationTM).  When 

the crystal sizes varied (such as in the experiment with different initial pH values), their 

volumes were estimated by comparing them to a crystal with a defined unit volume.  The 

relative volume for each experiment was then calculated by averaging the total volume in 

a given field of view for 10 independent fields. 

Geochemical modeling.  Chemical parameters such as supersaturation and concentrations 

of chemical components in the medium were calculated using MINEQL+ (Environmental 

Research Software).  We assumed a closed system (before and after the loss of sulfide).  

The model solution had basal ion concentrations equal to our freshwater culture medium 
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(see above) but with 10 mM CaCl2 and 20 mM Na2SO4 (i.e., closer to their respective 

concentrations in present-day seawater). 

 

Results and Discussion 

Modeled Effect of Sulfate Reduction on Calcite Saturation 

To predict the effects of sulfate reduction on calcite precipitation in media with 

initial concentrations of DIC ranging from the present day (2 mM) to putative 

Precambrian conditions (72 mM), we modeled the saturation index (SI) of calcite before 

and after sulfate reduction (Fig. 1).  SI is defined as log(IAP/Ks), where IAP is the ionic 

product of calcium and carbonate and Ks is the solubility constant of calcite.  An increase 

in the SI after sulfate reduction reflects a higher potential for calcite precipitation.  

Conversely, if the SI decreases after sulfate reduction, calcite will be less likely to 

precipitate.  The change in SI depends on the amount of sulfate reduced, the initial 

concentration of DIC, and the processes that remove sulfide and carbon dioxide from 

solution. 

At relatively low rates of sulfate reduction similar to those measured in modern 

Bahamian stromatolites [20], we estimate that approximately 0.5 mM sulfate could be 

reduced in 24 h in the layer of maximum sulfate reduction.  If all metabolic products 

were to stay in solution over this time period, our model predicts that both the pH and the 

SI will decrease regardless of the initial concentrations of DIC (Fig. 1a).  If we assume 

ten times more sulfate is reduced over the same time period, we expect SI to increase 

only when DIC is low, as is the case for present-day seawater (Fig. 1a).   
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For any concentration of DIC, it is also possible for sulfate reduction to increase 

the SI if we assume that CO2 and H2S leave the solution by outgassing, or if sulfide reacts 

with Fe(III) minerals [18].  If sulfide reacts with Fe(II), however, the pH will decrease 

and reduce the SI: Fe2+ + H 2S → FeS(s) + 2H + .  Because reactions with iron will rapidly 

remove sulfide from solution, for the purpose of our model, we have assumed that all 

sulfide is removed instantaneously through such reactions, enabling us to neglect the 

slower dynamics of outgassing. 

Based on these assumptions, our model predicts that the reduction of 0.5 mM 

sulfate will increase SI at most by 0.3 log units in a poorly buffered aqueous environment 

(2 mM total DIC) when all sulfide is removed.  Even if sulfate reduction were to occur at 

lower concentrations of organic acids, as is likely the case in modern stromatolites [5], 

this would not affect the difference in SI before and after sulfate reduction (data not 

shown).  The greater the amount of reduced sulfate, the greater the increase in SI and the 

potential for calcite precipitation in modern seawater (Fig. 1b).  In well-buffered systems 

that are supersaturated with respect to calcium carbonate, even if all sulfide is lost from 

solution, the increase in SI will be negligible (Fig. 1b).  Because sulfate concentrations in 

the Archean and early Proterozoic are thought to be less than 0.5 mM [21-23], and pCO2 

is considered to have been much higher than today [24], we believe that the modeling 

results shown in Fig. 1b rule out a significant role for sulfate reduction in stimulating 

calcite precipitation at that time. 
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Figure 2-1 A: SI of calcite calculated before (solid line), after reduction of 0.5 mM 

SO4
2 with lactate (dot-dashed line), and after reduction of 5 mM SO4

2- with lactate 

(dashed line) assuming that all sulfide stays in the medium.  SI is calculated for the initial 

dissolved inorganic carbon concentrations of: 2 mM (red), 22 mM (green) and 72 mM 

(blue).  B: The same as above but assuming that all sulfide produced by sulfate reduction 

is removed from the system. 
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Effects of Bacteria on Calcite Precipitation 

Because our geochemical modeling does not predict a significant effect of sulfate 

reduction on SI, we hypothesized that sulfate-reducing bacteria could stimulate calcite 

precipitation by a mechanism other than sulfate reduction.  To test this, we used D. 

desulfuricans G20 as a representative SRB to determine how its presence affected calcite 

precipitation under conditions that mimicked Archean and early Proterozoic seawater 

chemistry.  At the beginning of our precipitation experiments, the culture medium was 

almost 100 times supersaturated with respect to calcite.  Calcite crystals (identified by X-

ray diffraction) precipitated both in the uninoculated (sterile) controls and G20 cultures. 

A characteristic crystal is shown in Fig. 2a.  These experiments consistently showed that 

about 82% more calcite formed in the presence of G20 than in the sterile controls at 

initial pH 7.4 (Table 1). 



 13

 

Table 2-1 DIFFERENCE IN THE VOLUME OF PRECIPITATE 

BETWEEN BACTERIAL CULTURES AND STERILE CONTROLS 

Difference Condition 
  (%) 
Sulfate reducer G20 in “freshwater” medium*

G20 uninhibited  82 ± 17 
G20 inhibited by UV†  138 ±   8 
G20 inhibited by nigericin§ 137 ± 18 
G20 outer membranes 53 ± 15 

Sulfate reducer G20 in "saltwater" medium#,**

G20 uninhibited 41 ± 1 
G20 inhibited by UV† 77 ± 18 

Anaerobically grown E.coli HB101#

HB101 uninhibited 18 ±   11 
HB101 inhibited by UV†  54 ± 19 
Note: Differences shown are averages of at least two independent 
experiments, with volumes determined from at least 10 different fields of 
view. Uninhibited and inhibited cultures were incubated at the same initial 
cell density.  
*Determined at initial pH 7.4 
†UV is ultraviolet light. 
§Nigericin did not stimulate precipitation in the absence of bacteria. 
#Determined at initial pH 7.5. 
**Saltwater medium contained an additional 20 g/L NaCl and 1.4 g/L 
MgCl2
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To determine whether metabolically inactive G20 could enhance carbonate 

precipitation, we inhibited its metabolism chemically (by adding nigericin) and 

physically (by exposing it to ultraviolet (UV) light).  Nigericin has been shown to 

collapse the membrane proton gradient in sulfate-reducing bacteria [25, 26], whereas UV 

light kills cells by damaging DNA and preventing cell division.  We observed 

significantly more precipitate at pH 7.4 relative to sterile controls in metabolically 

inactive cultures (Table 1).  In contrast to our results, Chafetz and Buczynski [ 27] 

observed lithification in modern microbial mats only when living bacteria (presumably 

heterotrophs) were present.  In keeping with our modeling results (Fig. 1), we suggest 

that these differences are due to metabolically induced changes in SI given the lower 

buffering capacity of modern seawater.   

Although we used G20 as our model species, stimulation of calcite precipitation is 

not specific to sulfate reducing bacteria.  Escherichia coli HB101, a bacterium that 

colonizes the human gut, also stimulates precipitation of calcite when growing on 

fumarate instead of sulfate and even more so when inhibited by UV (Table 1).  An 

increase in heterogeneous nucleation in G20 and HB 101 cultures is probably due to the 

binding and accumulation of metal ions by negatively charged carboxylate and 

phosphoryl groups on bacterial surfaces [28, 29].  As shown by Mera et al. [30], cell 

walls of the Gram-positive bacterium Bacillus subtilis bind more metal when the proton 

gradient across the cell membrane is artificially collapsed.  The release of charged 

compounds through compromised cell membranes of the inhibited organisms into the 

extracellular medium could additionally stimulate mineral precipitation. 
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Having experimentally confirmed that bacteria stimulate calcite precipitation by 

mechanisms other than metabolic activity, we sought to determine the range of pH 

conditions over which this stimulation could be measured.  Assuming a constant radius of 

calcite nuclei, the free energy of homogeneous nucleation, ∆G, increases linearly with SI: 

∆G ∝ SI           (1) 

The nucleation rate, J, increases exponentially with the free energy of nucleation: 

J ∝exp(∆G)          (2) 

SI (as defined above) increases linearly with pH.  J will therefore increase 

exponentially with SI and pH [31].  Indeed, the relative difference in the amount of 

precipitate between inhibited cultures of G20 and sterile controls depends on the initial 

pH of the medium and is measurable in the pH range from 7.3 to 7.8 (Fig. 2b). This range 

is consistent with the estimated pH range of the Precambrian oceans [13].  When the 

initial pH of the medium was below 7.2, we did not observe any mineral grains in either 

G20 cultures or controls, even though the medium was more than 30 times supersaturated 

with respect to calcite.  The absence of precipitation at lower pH values is probably due 

to kinetic inhibition of nucleation in our medium.  The critical value of SI needed to start 

mineral precipitation in our experiments is consistent with critical SI values of about 1 

(10-fold supersaturation) that have been observed in modern soda lakes [32].  When the 

initial pH was 8.0, the amount of precipitate in the control medium and G20 cultures was 

the same within the experimental error (Fig. 2b).   
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Figure 2-2 A: Scanning electron micrograph of a representative calcite crystal 

precipitated in G20 cultures at pH 7.5.  The image was obtained on a LEO1550 VP field 

emission scanning electron microscope operating at 10 kV.  Scale bar: 20 µm.  B: 

Relative volume (V) of calcite in nigericin-inhibited G20 cultures (dots) and sterile 

controls (triangles).  Filled boxes: predicted volume, assuming it is proportional to the 

homogeneous nucleation rate that is proportional to SI as calculated by MINEQL+.  

Shaded area shows the range of measurable differences between biologically influenced 

precipitation and sterile controls.  The results shown are averages of two independent 

experiments. 
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A comparison of the theoretical rate of homogeneous calcite nucleation with our 

experimental data suggests that bacteria affect calcite formation mainly kinetically, by 

increasing the rate of heterogeneous nucleation.  In other words, metabolically inactive 

G20 effectively increases the SI by at least 0.3 SI units over sterile controls.  We estimate 

the effective difference in SI by assuming that the measured volume of precipitate is 

linearly proportional to the nucleation rate: V ∝rate  (Fig. 2b).  Because the nucleation 

rate depends exponentially on the SI (Equation 2), the logarithm of the ratio of precipitate 

volumes in G20 cultures and sterile controls defines the effective difference in SI: 

log
rateG 20

ratecontrol

= SIG 20 − SIcontrol .  Although this is only a first-order approximation, the 

effective increase in SI appears to be at least as great as the maximum modeled increase 

in SI due to sulfate reduction under conditions relevant for the Precambrian (Fig. 1). 

 

Summary 

In contrast to field studies of lithification in modern stromatolites, our results 

demonstrate that sulfate reducing bacteria can influence the rates of calcium carbonate 

precipitation by mechanisms that do not require metabolic activity.  Given the proposed 

composition of Archean and early Proterozoic seawater, heterotrophic sulfate reduction 

thus is not likely to have had a significant effect on calcification.  Rather, microbial 

viability may have been a more important parameter in determining the rates of 

heterogeneous calcite nucleation.  Dying cells remaining in the lower portions of 

upwardly moving microbial communities may have been the sites of most rapid 

carbonate nucleation in ancient stromatolites.  In modern environments, microbial cell 
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death may also significantly contribute to lithification, although metabolic effects are 

more likely to dominate. 
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3. Microbial kinetic controls on calcite morphology in 

supersaturated solutions 

 

Abstract 

Recognizing microbial imprints in the morphology of calcium carbonate is 

challenging.  To better define criteria for this purpose, we have analyzed the influence of 

sulfate-reducing bacterium Desulfovibrio desulfuricans strain G20 on the morphology of 

calcite in supersaturated solutions that contain a high level of dissolved inorganic carbon 

(DIC).  G20 does not induce large shifts of pH or alkalinity under these conditions, but its 

uptake of millimolar sulfate and lactate decreases the number of anhedral crystals and 

stimulates growth of subhedral spar crystals relative to the abiotic controls.  In addition, 

organic compounds associated with the basal growth medium, purified exopolymeric 

substances produced by G20 and lypopolysaccharide, stimulate the growth of anhedral 

crystals and crystals with rounded edges at low supersaturation index (SI) of calcite.  The 

effect of organic compounds is reduced at higher SI, where rhombohedral habits 

dominate.  Our results suggest that the local production and uptake of kinetic inhibitors 

within microbial biofilms are important controls on calcite morphology in supersaturated 

solutions. 
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Introduction 

Finding unique microbial morphological biomarkers in the most ubiquitous 

calcium carbonate minerals (calcite and aragonite) is a challenging but essential step 

toward understanding the parallel evolution of life and the environment on Earth [1], and 

beyond [33].  Microbial signatures in these minerals are often only putative because a 

variety of biological and abiotic processes can readily alter the solution chemistry and 

result in similar crystal shapes. 

 In inorganic solutions that contain only calcium and carbonate salts, the amount 

and the morphology of calcium carbonate minerals depend on the supersaturation index 

(SI) of these minerals and their precipitation rate [34-36].  The supersaturation index [SI] 

of a mineral is a measure of how much a solution departs from the thermodynamic 

equilibrium with respect to the precipitation of that mineral [37].  The SI of calcite is 

defined as log(IAP/Ks), where IAP is the ionic product of calcium and carbonate and Ks 

is the solubility constant of calcite (Ks = 10-8.48).  The same analysis applies to other 

polymorphs of calcium carbonate such as aragonite, taking into account their different 

solubility constants (Ks for aragonite is 10 -8.33).  Most natural solutions contain ions such 

as magnesium, sulfate, and phosphate that act as kinetic inhibitors of calcite precipitation 

and alter its morphology [36, 38-40].   

 Multiple microbial mechanisms can influence the amount and shape of calcium 

carbonate minerals in solutions that are not highly supersaturated with respect to calcium 

carbonate (e.g., modern seawater, and the water in marine sediments, caves, and soils).  

Microbes can change the SI of calcium carbonates, take up and secrete various kinetic 

inhibitors, or bind calcium and magnesium ions on their negatively charged outer 
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surfaces [5, 14, 15, 41-48].  In highly supersaturated environments that contain a lot of 

dissolved inorganic carbon (DIC) like soda lakes and hot springs, microbial biofilms can 

leave morphological signatures [32, 49-51], although the amount of precipitated 

carbonate is not predicated upon metabolic shifts of SI [8, 52].  Some of these signatures 

have been confirmed by laboratory experiments [11], but how various microbes interact 

with carbonate minerals in the presence of high DIC deserves more experimental 

attention. 

Investigating the effects of sulfate reduction on calcite precipitation in a medium 

with high initial SI, high DIC, and little sulfate, we noticed that calcite crystals in the 

cultures of metabolically active Desulfovibrio desulfuricans strain G20 had different 

shapes than the crystals in the G20 growth medium without bacteria.  Because carbonate 

rocks from the early Earth apparently precipitated from much more supersaturated 

solutions that contained little sulfate relative to the modern-day oceans [1, 21, 23, 53], 

little sulfate and high DIC in our experimental solutions are relevant not only for modern-

day high-DIC environments but also for the early Earth.  Here we describe some of the 

mechanisms by which G20, its cellular fractions, and its metabolites can alter calcite 

morphology as an initial step in the development of a model system in which to study 

interactions between biofilms and accreting carbonate minerals.  Our objective is to 

understand the relative importance of inorganic versus microbial processes that influence 

the formation of calcite crystal habits in solutions where substantial precipitation occurs 

regardless of microbial activity. 
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Materials and Methods 

Bacterial strain, culture medium and experimental conditions.  D. desulfuricans strain 

G20 was generously provided by Judy Wall (University of Missouri).  All precipitation 

experiments were carried out under an anaerobic atmosphere of 0.8 atm N2, 0.15 atm 

CO2, and 0.05 atm H2 in bicarbonate-buffered anaerobic G20 basal medium at 25°C.  The 

composition of the basal medium is described in Table 1. The SI of our solutions was 

changed either by changing the pH of the medium (thus changing the amount of 

carbonate ion) or by modifying the activity of the calcium ion.  To that end, we either 

established the pH from 6.8 to 8.0 in aliquots of the basal medium by adding 1 N HCl or 

10 N NaOH or added CaCl2 to aliquots of the basal medium to a final concentration from 

5 to 20 mM at a constant pH (7.5).  While these pH values are lower than some estimates 

of the marine pH in the Precambrian (pH > 9) [52], they are consistent with the estimates 

of Grotzinger and Kasting [13], and the high pCO2 inferred by Ohmoto, Watanabe et al. 

[7].  20 mM calcium concentration is high relative to the modern seawater (10 mM), but 

calcium concentrations even higher than 20 mM are consistent with calcium levels 

required to support the calcification of cyanobacterial filaments at various times in the 

Earth’s history [52]. 

The standard G20 growth (and precipitation) medium contained 1 mM sulfate and 

3 or 10 mM lactate (further specified in the text).  Although much higher concentrations 

of sulfate and lactate (~ 20 mM and ~ 50 mM, respectively) are commonly used to grow 

sulfate-reducing bacteria, we used these low concentrations in keeping with the low 

sulfate concentrations inferred for the Precambrian oceans [21, 23], and our previous 

work [8].  Microscopic counts of cells stained by 4',6-Diamidino-2-phenylindole (DAPI) 
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(Sigma-Aldrich) confirmed that biomass doubling could occur even with 1 mM  sulfate 

in the medium. 

To investigate the effect of organic additives in the basal medium on calcite 

morphology, we made a solution that contained all of the inorganic constituents (Table 1) 

but lacked the organic compounds (yeast extract, vitamins, cysteine, and lactate).  We 

conducted precipitation experiments in aliquots of the inorganic basal medium whose 

initial pH varied from 6.4 to 8.2.  This experiment was repeated twice. 

To obtain a dense bacterial inoculum for the precipitation experiments, G20 was 

grown with 3 mM Na-sulfate (growth-limiting concentration) and 10 mM Na-lactate as 

the electron acceptor and donor, respectively.  The UV treatment consisted of exposing 

bacteria to UV light for 5 minutes on a Foto/Convertible™ transilluminator (Fotodyne 

Incorporated).  To assay the metabolic activity of UV-treated cells, we measured lactate 

and acetate concentrations in untreated and UV-treated G20 cultures (with 3 mM initial 

sulfate and 10 mM lactate) by Waters 717plus Autosampler HPLC (high-performance 

liquid chromatograph) with an Aminex® HPX-87H column by BioRad. 
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Table 3-1 The composition of the G20 culture medium during a 20 h precipitation 
experiment 

Component 
 

Initial G20 
growth 

medium 

G20 
medium 

after 20 h 

Comment 

Inorganic  

 pH 7.52 ± 0.01 7.51 ± 0.01  

 Alkalinity 
(meq) 80 ± 1 77 ± 1

Measured by Gran-titration 
using 0.8 M H2SO4 (average of  
three separate tubes). 

 Ca 20.1 ± 0.8 18.9 ± 0.2

Measured by ICP-MS (average 
of three separate tubes).  The 
same decrease in total Ca was 
observed in another 
independent experiment. 

 SI 2.067 2.036

The SI was modeled by 
MINEQL+, assuming an 
equilibrium with 0.15 atm CO2 
and titrating by LiOH to obtain 
the measured pH (the pH of the 
actual medium was adjusted by 
NaOH).  The measured 
changes in pH, Ca, and C-
alkalinity correspond well to the 
expected changes in an open 
system modeled by MINEQL+.  
The pH of the model medium 
was calculated by imposing 
electroneutrality condition. 

 SO4 1 ND 

ND: Known concentrations (in 
mM, unless stated otherwise) 
were added to the basal 
medium and not measured 
afterward. 

 Cl 56.5 ND
Only Cl that was added with 
basal salts, more HCl was 
added to adjust the pH. 

 K 0.5 ND  
 Mg 8 ND  

 Na 98 ND
Only Na that was added with 
basal salts, more NaOH was 
added to adjust the pH. 
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 NH4 0.5 ND  

 PO4 0.05 ND  
 SL12-B 
mineral 
solution (ml/l) 

1 ND http://www.dsmz.de/media/med
028.htm 

Organic 

 acetate 0 ND  

 lactate 10 ND  
 yeast extract 
(g/l) 0.15 ND  

 cysteine-HCl 1.4 ND  

Vitamin 
solution (ml/l) 1 ND

4 mg 4-aminobenzoic acid, 1 
mg D(+)-biotin,  10 mg nicotinic 
acid, 5 mg Ca-D(+)-
pantothenate, 15 mg 
pyridoxamine dihydrochloride, 
10 mg thiaminium dichloride, 
and 5 mg cyanocobalamine per 
100 ml nanopure water 

 
 

Extraction of G20 cellular fractions. We extracted the exopolymeric substances (EPS) 

produced by G20, its outer envelopes, and the lypopolysaccharide (LPS) fraction of the 

outer cell membrane to compare and contrast their in vitro effects on calcite morphology. 

 To precipitate EPS, we grew 1 liter of G20 with 20 mM Na-sulfate and 50 mM 

Na-lactate to a cell density of 1.5 x 108 cells/ml.  The early stationary culture was then 

spun at 10,000 g at 4°C, the supernatants were mixed with 3 volumes of cold isopropanol 

(4°C) and left to precipitate for 3 days at 4°C [54].  Precipitated EPS were dialyzed for 48 

hours with nanopure water in a SpectraPor dialysis membrane with MS3500 molecular 

cutoff (Spectrum Laboratories, Inc.).  Dialyzed EPS were lyophilized and stored at –

80°C. 
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To isolate the outer membranes from cultures in early stationary phase (1.5 x 108 

cells/ml), we centrifuged 1 l of cells in 0.05 M HEPES (pH 7.5) at 10,000 g at 4°C for 30 

minutes.  Cell suspension (3 g/10 ml of 0.05 M HEPES) was then incubated on ice for 2 

hours and centrifuged at 5,000 g and 4°C for 30 minutes [55].  G20 was resuspended in 

10 ml of 0.05 M HEPES with added 50 µg/ml DNAse (Roche), 1mM MgCl2, and 10 

µg/ml RNAse (Roche).  The cell suspension was kept on ice and sonicated for 5 minutes 

in 30 s pulses.  The unbroken cells were separated from the lysate by centrifugation at 

7,000 g at 4°C for 20 minutes.  The cytoplasmic extract was then separated from the cell 

membranes by ultracentrifugation at 45,000 rpm (SW60 swinging bucket rotor on a 

Beckman Ultracentrifuge) at 4°C [56] and the membranes were stored at –20°C.  LPS 

was extracted from DNAse-, RNAse-, and lysozyme-treated (Sigma) membrane fractions 

according to Gerhardt et al. [56], lyophilized, and stored at –20°C.  The absence of RNA 

and DNA in the membrane fractions was assayed by measuring the absorbance at 260 

and 280 nm during successive rinses of the membrane fractions in nanopure water on a 

Beckman DU7400 spectrophotometer. 

The protein content of lyophilized EPS was assayed by the Bio-Rad Protein Assay 

based on the method by Bradford [57].  The amount of neutral carbohydrates in EPS was 

measured by the H2SO4 - phenol method using glucose as standard [56].  The amount of 

uronic acids was determined with m-hydroxydiphenyl in H2SO4/sodium tetraborate 

solution using D-glucuronic acid as the standard [58].  Nucleic acid content in EPS was 

assayed qualitatively by staining the EPS extract with ethidium bromide in a 2% agarose 

gel. 
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Precipitation experiments.  To study the influence of G20 metabolism on calcite 

morphology, 0.5 ml of untreated or UV-treated late exponential phase bacteria (cell 

density 5 x 107 cells/ml) were centrifuged to remove the liquid phase.  Washed bacteria 

(either untreated or UV-treated) were resuspended in the fresh culture medium (1 ml 

original culture per 0.8 ml fresh medium) and transferred into 8-well LabTek® 

(NalgeNunc International) culture dishes with coverslip bottom (0.4 ml/well).  The same 

amount of sterile medium without bacteria was added to separate wells as a control.  In 

the experiments without bacteria, we added various chemicals or cellular fractions to the 

sterile medium in the same culture dishes.  Finally, CaCl2 was added to each well 

containing the precipitation medium (with or without cells) to a 20 mM final 

concentration.  The growth of calcite crystals was investigated after 20 hours by 

transmitted-light microscopy.  All precipitation experiments were performed at least 

twice under each described condition.  The calcium concentration was measured by 

inductively coupled plasma mass spectrometry (ICP-MS) in dilute filtered samples (100 

�l medium/10 ml 1% HNO3) in triplicates. 

Transmitted-light, confocal, and scanning electron microscopy. 

 The morphology of precipitates was examined by taking transmitted-light 

micrographs from at least 10 different fields of view using a Zeiss Axiovert S100 

microscope.  The crystals were point-counted to obtain percentages of specific 

morphologies.  The crystals with intermediate morphologies were assigned to both end-

member morphological classes.  All percentages were estimated from at least two 

independent experiments. 
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Fluorescence confocal microscopy of G20 biofilms was performed on an inverted 

Zeiss Pascal LSM (laser scanning microscope).  The biofilm samples were prepared for 

imaging as follows: biofilms were grown in the growth medium for 20 h in 8-well 

LabTek® (NalgeNunc International) culture dishes with coverslip bottom, the medium 

was then replaced by 0.5 M HEPES buffer, 2 µl dye (Live Dead® BacLightTM by 

Molecular Probes) per 0.5 ml buffer, and the biofilms were incubated in the dark for 15 

minutes before imaging.  The fluorescence of the samples was excited at 488 nm.   

EPS and bacteria were stained by the method of Allison and Sutherland [59]. 

C-coated precipitates were imaged by a LEO1550 VP field emission scanning 

electron microscope operating at 2 kV at a 5 mm working distance. 

Mineral analysis.  The crystal structure of the precipitates was determined by X-ray 

diffraction using a Scintag diffractometer with Cu K� (�= 1.5405 Å).  The crystals were 

washed with 10% bleach and rinsed in nanopure water before analysis.  The crystallinity 

of samples was determined by looking at the full width of the 104 Bragg calcite peak at 

half maximum (FWHM) [60]. 

Chemical Modeling.  Supersaturation index (SI) and calcium and carbonate activity 

coefficients in the growth medium (see above) were calculated using MINEQL+ 

(Environmental Research Software), assuming an open system in equilibrium with 0.15 

atm CO2.  The appropriate pH value was established by numerical titration by LiOH or 

HCl.  The composition of the modeled medium (Table 1, but without trace metals, 

vitamins, yeast extract, and cysteine) was adjusted according to the laboratory 

experiments (sulfate or lactate concentrations, etc.).  The calcite saturation constant used 

by the program is Ks = 10-8.48 and the software calculated the ionic strength of the 



 29

medium from the supplied concentrations of the ions in the medium, adjusting the 

equilibrium constants accordingly. 

 

Results and Discussion 

Calcite Morphology in the Presence of Bacteria 

X-ray diffraction analyses of the powdered samples confirmed that calcite 

constituted at least 95% of the calcium carbonate precipitate in G20 basal medium under 

all tested conditions.  Comparing active G20 and sterile controls (without any bacteria) in 

two independent experiments, we found that 18 ± 2% of the total crystals in G20 cultures 

were truncated rhombohedra with stepped faces as opposed to 3 ± 1% in sterile controls 

(Fig. 1A; also see Fig. 2J for an SEM of a representative crystal).  Under the transmitted 

light, the edges of the {04.1} rhombohedra in G20 cultures also appeared more rounded 

relative to the corresponding crystals in sterile controls (Fig. 1A, B, circled).  Sterile 

controls, in turn, contained a higher percentage of anhedral crystals or complex twin 

aggregates of crystals with stabilized {10.0} faces (Fig. 1B and Fig. 2E-G).   

To test whether the observed changes were induced by G20’s active metabolism, 

we incubated UV-inhibited G20 at the same cell density as the living G20 and compared 

the shapes of calcite at the end of the precipitation experiment.  The UV-treated cells 

consumed only 0.79 ± 0.03 mM lactate in 20 h.  Because the reduction of 1 mole of 

sulfate is coupled with the oxidation of 2 moles of lactate, it follows that the UV-treated 

cells consumed less than 0.5 mM of the available sulfate during the experiment.  Lactate 

and acetate concentrations in the untreated G20 cultures, on the other hand, indicated that 

all available sulfate was consumed in 20 h.  Thus, the UV treatment significantly 
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decreased the ability of G20 to carry out dissimilatory sulfate reduction. Plate counts 

confirmed that the number of viable cells in UV-treated cultures was at least 106 times 

lower than in the original stock, i.e., there were fewer than 103 viable cells per culture 

well in UV-treated cultures.  Given that G20 cell density increases about 10 times in 20 h 

(the duration of the precipitation experiment), and that morphological influence of G20 is 

discernible only at cell densities higher than 107 cells/ml, even if growth occurs in the 

UV-treated cultures, the effects of less than 104 cells/ml during the experiment would not 

be noticeable.  Indeed, we found that the precipitate formed in the presence of UV-

inactivated bacteria was similar to that in the sterile controls (Fig. 1C). 
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Figure 3-1  Calcite morphology in the presence of metabolically active G20 differs 

from that in sterile and UV-inhibited controls.  The arrows in all images indicate typical 

rhombohedral crystals and twins.  The circles in all images indicate spar crystals with 

{04.1} faces.  A) Sterile control without any cells.  The twins appear to have grown by 

reflection on {10.4} plane (arrow), and the rhombohedral spar crystals have sharp edges 

(circle).  B) Active G20.  Many {04.1} rhombohedra (arrow) have stepped faces, and all 

crystals have more rounded edges (circle).  C) Twin and spar crystals in UV-inhibited 

G20 cultures are similar to the crystals in sterile controls A).  The dark gray aggregates in 

the background of Parts B and C are bacteria.  The scale bar in all images is 200 µm. 
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Figure 3-2 Scanning electron micrographs (SEMs) of representative calcite crystals 

precipitated in the presence of organic compounds in the order of increasing SI.  A) 

Cauliflower-like hemispherical precipitate at low SI (0.5 ≤ SI ≤ 1) formed by aggregates 

of bladed calcite with uneven edges (rectangle shows the area of the close-up in 2B) and 

stepped curved planes.  B) Close-up of Fig. 2A.  Bladed calcite crystallites with irregular 

edges stabilized by organic molecules at low SI.  The crystallites are oriented in the same 

direction only locally but do not aggregate into a recognizable crystal face (arrows).  The 

small, elongated features are G20 cells.  The scale bar is 5 µm.  C) Double hemispherical 

precipitate at 0.5 ≤ SI ≤ 1.  The arrows indicate curved planes (see a close-up in Part D).  

D) Curved, stepped planes are also stabilized by organic additives in the basal medium at 
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low SI.  The scale bar is 3 µm.   E) About 10% of the crystals at low SI had stabilized 

{10.0} faces.  F) Twin (most likely on {01.2}) with stabilized {10.0} faces and negative 

faces (arrow) that forms at 1 ≤ SI ≤ 1.5.  G) Twin (probably on {10.4}) of rhombohedral 

crystals, 1 ≤ SI ≤ 1.5.  H) Truncated spar crystal with stabilized {04.1} faces, 1.2 ≤ SI.  I) 

Elongated rhombohedron with stepped growth along {10.0}, 1.5 ≤ SI ≤ 2.0.  J) Truncated 

spar crystals with stabilized and stepped {04.1} faces form almost 50% of the precipitate 

at 2.0 ≤ SI.  K) Rhombohedral habits with a smaller aspect ratio than in Part I form at 2.0 

≤ SI.  L) Truncated rhombohedral habit with stabilized {10.0} faces.  The scale bar in all 

images except for Parts B and D is 10 µm. 

To understand how active G20 induced these changes in calcite morphology, we 

wanted

Effects of Supersaturation, Sulfate, and Lactate on Calcite Morphology 

ology. Calcite morphology in G20 growth medium 

 to establish whether we could induce comparable changes by varying some basic 

chemical parameters in the growth medium (SI and the presence of organic molecules 

and major metabolites). 

 

in the Presence of Bacteria 

SI As a Control on Calcite Morph

is strongly affected by SI.  Figure 2 captures the most representative crystal shapes 

precipitated in the G20 basal medium, although we observed a small number of crystals 

with intermediate morphologies as well.  Overall, as SI increased, the total number of 

crystals increased and their grain size decreased because of an increase in the number of 

crystal nuclei.  Distinctly anhedral large crystals formed at the lowest pH values (0.5 ≤ SI 
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≤ 1) (Fig. 2A-D).  They were roughly hemispherical (because of growth on a flat glass 

surface), created by stepped aggregates of bladed crystals with irregular edges (Fig. 2A, 

B) and curved stepped surfaces (Fig. 2C, D).  At low to intermediate SI (1 ≤ SI ≤ 1.5), 

less than 10% of the crystals were distinctly anhedral.  Instead, we found stabilized 

{10.0} faces (Fig. 2E-G), negative faces (Fig. 2F), and twinned aggregates (Fig. 2F, G).  

About 20% of the total crystals in this SI range were rhombohedra, either truncated, with 

stabilized {04.1} faces  (Fig. 2H), or elongated, with recognizable {10.0} faces (Fig. 2I).  

Truncated rhombohedral grains with prominently stepped {04.1} faces (Fig. 2J) or with 

{10.0} faces (Fig. 2K,L) dominated at even higher initial SI (SI ≥ 2.0).  At highest SI (SI 

≥ 2.5), most precipitate consisted of intergrown aggregates of {10.0} and {04.1} 

rhombohedral grains.  We observed this morphological trend both when we varied the 

total calcium concentration at a constant pH of 7.5, and when we varied the pH at a 

constant calcium concentration of 20 mM.  Figure 3 shows the stability diagram for the 

three major morphological classes (in the presence of G20). 
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Figure 3-3 Cumulative stability diagram of characteristic calcite habits observed in 

the basal medium (in the presence of organic compounds, lactate, sulfate, and G20).  For 

any SI the total percentages of crystals add up to 100%, and the lines delineate the 

fraction of this total that belongs to any particular crystal habit. The relative percentages 

of crystals habits were obtained by counting the crystals from ten independent fields of 

view at each SI in two independent experiments.  The average percentages of the three 

major classes measured in two independent experiments are plotted as symbols: anhedral 

crystals (solid circles), rhombohedral crystals with prominent {10.0} faces (hollow 

rectangles), and truncated rhombohedral crystals with prominent {04.1} faces (solid 

triangles).  The error bars show the data range.  The solid lines drawn through the points 

mark the regions of stability of each major class.  As the SI increases, the anhedral habits 

give way to rhombohedra and truncated rhombohedra. The arrow shows the observed 

difference in {04.1} stepped crystals between the sterile controls and G20 cultures at SI = 
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1.9 (sterile controls have ~ 14% fewer stepped crystals), and the dashed line shows where 

we would expect the same percentage in G20 cultures (corresponding to SI = 0.9). 

 
Metabolic Uptake of Sulfate and Lactate as a Control on Calcite Morphology. The 

most commonly described mechanisms by which microbes stimulate calcium carbonate 

precipitation are the change of local pH (i.e., by photosynthetic uptake of carbon dioxide 

or by degradation of amino acids) and an increase in the amount of dissolved carbonate 

ions.  However, in the well-buffered cultures of actively metabolizing G20, pH did not 

increase and DIC increased by only 2 ± 1 meq/L (measured in the absence of calcium) in 

the background of carbonate alkalinity of ~ 80 meq/L, as could be predicted for G20 

cultures limited by 1 mM available sulfate.  Consequently, G20 could not increase the SI 

by more than 0.1 SI units (modeled by MINEQL+ using the parameters in Table 1 and 

changing the total DIC by 2 mM, total sulfate by 1 mM, and total lactate by 2 mM).  A 

much larger increase in SI (about 1 unit) is required to increase the percentage of {04.1} 

crystals by 14% (Fig. 3), implying that the metabolically induced increase of the 

alkalinity and the pH could not account for the observed differences in the shape of 

calcite crystals between G20 cultures and sterile controls.  We therefore decided to test 

whether calcite morphology in the culture medium would change depending on the 

presence or absence of sulfate and lactate, substrates that are removed in active cultures 

of G20, but whose concentrations remain constant in sterile controls. 

The presence of 2 mM sulfate in the medium without bacteria at SI = 1.2 

increased the percentage of anhedral aggregates of bladed calcite (Fig. 2A - D) by about 

50% relative to the medium without sulfate (two independent experiments).  The addition 

of 3 mM lactate to the basal medium (SI = 1.5) without bacteria reduced the number of 
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truncated rhombohedral aggregates with stepped {04.1} faces and spars (Fig. 2H, J) by 

about 10% each, and increased the number of aggregates twinned on {01.2} and {10.4} 

(Fig. 2F, G) by about 20% (two independent experiments).  The presence of 2 mM sulfate 

and 5 mM lactate in the medium reduced the crystallinity of calcite by 0.03 ± 0.01 °2θ.  

Lower crystallinity of the crystals grown with sulfate and lactate indicates either the 

presence of smaller crystallites or the presence of more crystal defects in the XRD 

sample.  Even higher amounts of sulfate and lactate that are used in standard media for 

sulfate reducers (20 mM and 10 mM, respectively) reduced the total number of calcite 

crystals by as much as 50% (two independent experiments) and stimulated the growth of 

only hemispherical precipitates (Fig. 2A, D). The growth of calcite in the presence of 

sulfate and lactate at a given pH therefore resembled the growth of calcite in the absence 

of these ions, but at a lower initial pH. 

Negatively charged ions like sulfate and lactate can affect calcite morphology by 

lowering the SI as they complex calcium ions and lower the pool of free calcium ions 

available for calcite precipitation [37].  Alternatively, they can be incorporated into the 

crystal lattice of growing calcite crystals, kinetically inhibit crystal nucleation, the growth 

of specific faces [61], or increase the number of defects in the crystal lattice.  To 

distinguish between complexation and kinetic inhibition, we modeled the concentration 

of free calcium ions after complexation by sulfate and lactate in our medium by 

MINEQL+ (assuming the medium composition as described in Table 1 and varying the 

amount of Na-sulfate and Na-lactate).  According to the model, the addition of 3 mM Na-

lactate or 2 mM Na-sulfate would reduce the available calcium in the basal medium by 

less than 0.3 mM.  Because we had to decrease the initial concentration of calcium in our 
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actual solution by much more (4 mM) to reproduce the same morphological changes, we 

conclude that complexation of the calcium ion by 3 mM lactate or by 2 mM sulfate 

cannot fully account for the observed changes in the calcite crystal habit.  More likely, 

sulfate and lactate in G20 growth medium inhibit calcite growth kinetically.  The 

observed changes of calcite morphology in active G20 cultures are thus consistent with 

the uptake of sulfate and lactate as kinetic inhibitors.  

 
Hemispherical Crystal Habits Stabilized by Organic Compounds at Low SI. The 

prevalence of anhedral, hemispherical crystal habits at the lowest SI (Fig. 2A-D) 

contrasts with many reports of calcite precipitation in inorganic solutions that find or 

predict spars at low SI, and curved faces and spherical habits at high SI [35, 36, 62].  We 

hypothesized that the hemispherical habits at low SI developed under the influence of 

organic additives (0.05% by weight) in the basal medium.  Indeed, when all the organic 

compounds were omitted from the basal medium (see Methods section), we did not 

observe hemispherical aggregates of bladed calcite (Fig. 4A-D).  While inorganically 

precipitated calcite at high SI formed rounded aggregates (at 50-µm scale), the 

crystallites that formed them were recognizably rhombohedral (Fig. 4C, D).  Relatively 

low amounts (0.05 wt%) of organic compounds in solution can thus stabilize crystal 

habits that would not be expected in the absence of organics. 
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Figure 3-4 SEMs of calcite crystals precipitated in the presence and absence of 

organics in the basal medium.  A) Inorganically precipitated calcite crystal at low SI in 

the absence of organic molecules.  The scale bar is 10 µm.  B) Rhombohedral calcite twin 

precipitated in the absence of organic additives in the basal medium at intermediate SI.  

The scale bar is 20 µm.  C) Framboidal calcite aggregate precipitated at high SI.  The 

scale bar is 20 µm.  D) Rhombohedral calcite crystals within the aggregate from C).  The 

scale bar is 5 µm. 

 

Other studies have reported the formation of hemispherical and spherical calcite 

crystals in the presence of organic molecules and microbes [41, 43, 63].  Most of these 

studies found that calcite rhombohedra precipitated in their abiotic control solutions 

containing only inorganic calcium and carbonate salts (e.g., CaCl2 and Na2CO3).  Our 

inorganic control medium is a more realistic simulation of natural conditions because it 

contains magnesium, phosphate, sulfate, and trace metals that coexist in many natural 

waters, and are necessary for microbial growth.  Although many of these inorganic ions 

are known to influence the growth and morphology of calcite [36, 39, 40, 64, 65], we did 

not monitor their concentrations in G20 basal medium after the precipitation experiment 

(Table 1).  Therefore, we cannot discount the possibility that the uptake of trace amounts 

of inorganic inhibitors (e.g., phosphate) [40] may additionally contribute to the observed 

differences in calcite morphology between active cultures and controls (Fig. 1). 

 Our study supports the results of Braisant, Cailleau et al. [43] who found that the 

presence of less than 0.1% organic compounds in solution lead to the formation of 

spherical calcite habits.  At a higher initial SI in G20 basal medium with the same organic 
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content, the organic influence diminishes, and these habits (Fig. 2A-D) are replaced by 

rhombohedral calcite habits that are less suggestively biogenic (Fig. 2E-L, Fig. 4A-D).  

Abundant calcite spheres and dumbbells in natural environments may therefore indicate 

conditions of relatively low SI in the presence of organic compounds (e.g., EPS or 

lactate). 

However, calcite spherules and other anhedral precipitates may also form under 

abiotic conditions.  Fernández-Díaz et al. [36] described an abiotic crystallization series 

of calcium carbonate in a gel and found Mg-calcite spheroids, dumbbells, and other 

anhedral precipitates at extremely high SI (~ 10 times higher than the highest SI in our 

medium).  Tracy et al. (1998) reported the formation of spherulites in solutions that 

contained high concentrations of both magnesium and sulfate.  The distinction between 

biogenic and abiotic spherulites may be possible if the abiotic ones form only in the 

presence of high sulfate and/or magnesium, and incorporate more magnesium or sulfate 

than the spherulites within biofilms.  A comparative study of the bulk content and the 

zoning of trace sulfate, magnesium, and organic compounds in inorganically and 

biologically formed spherulites could help determine whether similar natural precipitates 

are biogenic or not.  Biologically influenced end members could be distinguishable from 

the abiotic precipitates if they contain very low amounts of Mg and SO4. 

 

Effects of G20 Cellular Fractions and Biofilms on Calcite Morphology  

Calcite crystals grown in the presence of G20 had more rounded edges than their 

counterparts in the sterile controls or UV-inhibited cultures (Fig. 1A-C).  Because none 

of the previously examined parameters (SI, sulfate, lactate) could fully account for this 
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observation, it seemed likely that some kinetic inhibitors associated with metabolically 

active G20 cells and biofilms could explain this observation.  In pursuit of these 

inhibitors, we compared the potential effects of specific compounds and cellular fractions 

of G20 that are in contact with the growing crystals in active cultures.  G20 colonizes the 

growing calcite crystals (Fig. 5A) and secretes exopolymeric substances (EPS) (Fig. 5B) 

that are a complex mixture of proteins, nucleic acids, uronic acids, and other 

polysaccharides (e.g., Beech, Gaylarde et al. 1991).  The outer part of G20’s outer 

membrane (G20 is a Gram-negative bacterium) contains lypopolysaccharide (LPS) [66].  

Lypopolysachharide consists of a hydrophobic lipid A, the core polysaccharide, and the 

O-antigen.  The latter two components are rich in carboxyl and phosphoryl residues [66]. 

 

Figure 3-5 G20 forms thin biofilms and secretes exopolymeric substances (EPS) in 

calcite-precipitating cultures.  A) Confocal micrograph showing the attachment of 

fluorescently stained G20 to calcite crystals (dark dumbbell shapes marked by white 

arrows).  G20 prefers the calcite crystals to the surrounding glass surface.  The scale bar 

is 20 µm.  B) EPS (carbohydrates) were detected only in the centers of denser 
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microcolonies.  EPS is the dark gray substance (black arrow).  C) Duplicate controls slide 

with G20 biofilms grown and stained with a general bacterial stain as in Part B.  EPS on 

this slide were not precipitated before staining.  The scale bar in Parts B and C is 10 µm. 

 

Both purified LPS and EPS rounded the edges of calcite crystals in vitro (Fig. 6), 

when added to the solution at a mass concentration that was approximately two orders of 

magnitude greater than in G20 cultures.  We did not observe a similar effect in the 

presence of the outer membranes (not shown).  The crystallites formed in the presence of 

EPS and LPS were also smaller and more numerous than the ones in control solutions 

without EPS and LPS added (Fig. 6), suggesting a role for these compounds in the 

nucleation of calcite (Bosak and Newman 2003).   

 

Figure 3-6 EPS and LPS of G20 can change calcite morphology.  A) A typical field 

of view from the control medium without lypopolysaccharide (LPS) in a precipitation 
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experiment concurrent with Part B.  B) A typical field of view in the presence of G20 

LPS.  The crystals are more rounded, less visibly striated, more numerous and smaller 

relative to Part A.  C) A typical field of view from the control medium without 

exopolymeric substances (EPS) in a precipitate experiment concurrent with Part D.  D) A 

representative field of view in the presence of G20 EPS (0.125 mg dry EPS/ml medium).  

As in Part B, EPS stimulated the growth of rounded crystals that were less elongated 

along the c axis, more numerous and smaller relative to Part C.  The scale bar in all 

images is 200 µm. 

 

The difference in bacterial attachment and the secretion of EPS between live and 

UV-inhibited cultures may provide a clue about the differences between the calcite 

shapes in these cultures.  Active G20 can attach to the growing mineral surface and 

locally expose crystals to high concentrations of LPS (Fig. 5A).  In contrast, dead G20 

and purified outer membranes sediment at the bottom of the culture wells to an average 

height less than 3 µm and can stick only to the lowermost surface of the growing calcite 

crystals (> 10 µm high).  Moreover, given that we washed both the uninhibited and the 

UV-inhibited cells before the precipitation experiment to remove EPS, rounded crystal 

edges in metabolically active cultures appear to result mainly from the secretion of new 

EPS (Fig. 5B).   Similarly low amount of organics can be expected to affect calcite 

morphology in natural microbial biofilms.  Namely, the secretion of small amounts of 

kinetic inhibitors (e.g., EPS, LPS) very close to the growing crystal could suffice to 

change the crystal habit, even when the concentrations of dissolved organics in the bulk 

solution is low. 
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Rounding of calcite edges due to the development of high-index faces has been 

observed in some studies of the effects of carboxylic acids, amino acids, and proteins on 

calcite morphology [42, 63, 67, 68].  Chemical analysis (two independent experiments) 

showed that EPS from G20 cultures contained 3 ± 1 µg/mg EPS more protein than the 

background sterile medium.  Qualitative gel assay confirmed that EPS from G20 cultures 

also contained more nucleic acids (data not shown), 0.10 ± 0.01 µg/mg EPS more uronic 

acids, and 9 ± 6 µg/mg EPS less carbohydrates than the background medium.  These 

chemical differences are consistent with the hypothesis that negatively charged moieties 

of G20 EPS (as found in protein, DNA, RNA, and uronic acids) bind calcium or even 

incorporate into the growing crystals, inhibiting the growth or twinning along some 

crystal plains.  A higher carbohydrate content (neutral sugars) in the sterile medium may 

be due to the unmetabolized components of the yeast extract and suggests that the net 

observed differences between active cultures and controls may be partially due to the 

metabolic alteration of complex organic additives (yeast extract and vitamins) by G20.  

Unfortunately, rounded edges and curved surfaces of rhombohedral calcite alone are not 

a good biomarker, inasmuch as similar features have been reported in presumably 

inorganic solutions at extreme supersaturation values [35]. 

 

Conclusions 

In summary, calcite crystals that precipitated in metabolically active cultures of 

D. desulfuricans G20 were morphologically distinct from the precipitates in sterile 

controls and UV-inhibited cultures.  Biological mechanisms that provide consistent 

explanations of these differences are: microbial removal of kinetically inhibiting 
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metabolites (sulfate, lactate and, likely, minor inorganic and organic nutrients), the 

concurrent secretion of EPS, and the interactions between the growing crystals and the 

LPS of actively colonizing bacteria.  On the other hand, both our calculations and our 

measurements show that microbially induced shifts in the SI were much less important, 

because the medium is well buffered by high DIC.  This is consistent with the model of 

Arp et al. (2001) where calcification within biofilms in the presence of comparably high 

DIC occurs within the EPS, instead of being induced by photosynthetic changes of SI on 

the sheaths of photosynthetic bacteria.  Because calcification within biofilms can be 

kinetically stimulated or inhibited relative to the outside environment at the microscale, it 

is important that the search for robust morphological indicators of bacterial presence be 

performed at this scale [11]. 

Overall, although we could expect rapid nucleation of many small crystal grains 

(whitings), due to the high SI of our medium, we found that fewer large crystals grew 

instead.  This appears to be caused by the presence of many kinetic inhibitors in the 

solution.  Our results show that microbes can exert kinetic control not only by the 

secretion of exopolymeric substances [32, 43] but also by the active uptake (or release) of 

primary organic and inorganic metabolites.  Extending these observations to the field, we 

infer that microbial production or removal of kinetic inhibitors may have controlled 

calcification within biofilms in highly supersaturated environments, both ancient 

(Precambrian oceans) and modern (soda lakes and travertine deposits). 
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4. A laboratory model of abiotic peloid formation 

 

Abstract 

Peloids are rounded grains of micritic calcite whose origin has been attributed to 

various biological and abiotic mechanisms.  To constrain abiotic parameters that favor 

the formation of peloids, we precipitated calcite crusts in the absence of microorganisms. 

Clotted opaque fabrics that formed during the initial stages of the experiment consisted of 

~10 µm peloids, while compact clear sparitic crusts precipitated in subsequent stages.  

The increasing supersaturation of the solution in time is responsible for this 

morphological succession.  Initially, peloids form by the radial growth of spar crystals 

around a small number of nuclei.  As the supersaturation increases, more spar crystals 

nucleate and aggregate non-radially into compact crusts.   Rounded clotted precipitates 

are a consequence of the growth in suspension and geopetal settling, and isopachous 

crusts grow in the absence of these processes.  Although peloids are commonly assumed 

to have a microbial origin, our results show that very similar morphologies can be created 

by purely abiotic mechanisms.  Thus, the biological origin of rounded micritic calcite 

grains in the rock record must be verified against the abiotic null-hypothesis in each 

specific case. 

 

Introduction 

A good biomarker is a crystal and rock morphology is difficult or impossible to 

produce abiotically.  It is thus particularly challenging to recognize morphological 
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biosignatures in common sedimentary carbonates (e.g., calcite or aragonite) because the 

morphology of these minerals can be controlled by a daunting number of inorganic and 

microbial processes.  Peloids, defined as 10-60 �m in diameter “more or less rounded 

grains of homogeneous micrite” [69], are an example of calcite grains whose origin has 

been explained by a diversity of biotic and abiotic hypotheses. 

Peloids are a ubiquitous facies in both modern and ancient carbonate rocks.   They 

can be found in open marine spaces, encrusting sponges [70], forming laterally extensive 

layers in Triassic, Jurassic and Permian reefs [71-74], mud mounds [75], fast-

precipitating Neoproterozoic deposits (A. Maloof, personal communication) and 

Proterozoic stromatolites [76, 77].  However, peloids are often confined to more 

restricted spaces such as skeletal cavities in marine environments [71, 72, 78, 79]. Peloids 

can also be found in terrestrial environments like caves [80] and travertines [81]. 

Sundry abiotic processes can contribute to the creation of rounded carbonate 

grains in these diverse chemical, ecological and physical settings.  Peloids have been 

interpreted as detrital grains [82], an intermediate stage of development of 

microcrystalline calcite cement [83] or as the product of repeated nucleation of dentate 

rims around submicrocrystalline centers of growth [84].  Arguments in favor of a 

biogenic origin of peloids are based on the occasional association of peloids, spherulites 

and peloidal crusts with organic matter or putative microbial remnants [70, 74, 81, 85, 

86].  Some biological mechanisms that have been used to explain the origin of rounded 

calcite grains are: the calcification of algal filaments and coralline algae, fecal pellets (see 

Ref. [79] for a discussion of these mechanisms), the stimulation of calcium carbonate 
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nucleation within acidic mucoproteins [86] or around unspecified bacterial clumps [81, 

87, 88], and nucleation around cyanobacterial cells [74, 85, 89].   

The goal of this study was to test whether purely abiotic processes can lead to the 

formation of a morphologically distinct type of marine peloids: one containing a 

submicrocrystalline center commonly surrounded by a well-developed euhedral rim of 

sparry, dentate calcite [79].  Extending our previous studies of the microbial influence on 

the nucleation and morphology of calcite from single crystals in batch culture to calcite 

crusts in continuous culture, we found clotted layers composed of peloidal grains in the 

crusts [8, 9].  Here, we relate these abiotically precipitated fabrics to the chemical and 

physical parameters in our solutions and discuss what these laboratory results imply for 

the recognition of similar precipitates in the rock record. 

 

Materials and methods 

Precipitation reactor. To maintain a constant supply of calcium and bicarbonate ions, 

calcite crusts were grown at 25°C and at pH 7.5 (checked by pH paper) in a medium 

described by Bosak & Newman [8] in a 420 ml working volume disk reactor (Biosurface 

Technologies Corp.). The reactor was regularly checked for contaminants both visually 

(by monitoring the turbidity or fluorescently staining and imaging the outflow) and by 

plating the outflow.  Two fresh sterile media were added in equal proportions to the 

reactor through air-tight Tygon® tubing:  one from a sterile reservoir containing 40 mM 

CaCl2 (pH 7.2, 1 atm N2 gas phase), the other from a sterile reservoir containing 140 mM 

NaHCO3 (pH 8.2, 0.15 atm CO2 and 0.85 atm N2 gas phase).  A peristaltic pump 

regulated the rate of inflow (~80 ml/hr of the combined medium through the reactor).  
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The medium was stirred by a magnetic stir bar.  The headspaces of the reservoirs and the 

flow-through reactor were flushed with a 0.85 atm: 0.15 atm N2/CO2 gas mix (mixed by a 

FM-1050 Matheson Tri-Gas® flowmeter).  A maximum of twenty-four 1-cm diameter 

polycarbonate and glass chips provided removable surfaces for the growth of the crusts.  

The chips were taken out from the reactor daily over the course of four days. 

Aragonite precipitates.  Aragonite seeds were precipitated under sterile conditions in the 

modified ATCC2056 seawater (SW) medium that contained 10 mM CaCl2 (final 

concentration in the reactor), 50 mM MgCl2 and 400 mM NaCl, 125 ml/l of marine 

seawater mix (7 g/l MgSO4 x 7H2O, 3.24 g/l Na2SO4, 1.2 g/l KCl, 0.1 g/l Na2CO3, 0.1 g/l 

NaBr, 80 mg/l KBr, 72 mg/l SrCl2 x 6H2O, 52 mg/l H3BO3, 8.1 mg/l Na2HPO4, 2.4 mg/l 

NaF, 0.4 mg/l Na-silicate, 50 �g/l KI) and 10 ml/l SL-10B trace metal solution.  Crystals 

were collected in a sterile fashion after 12 hours of continuous precipitation, pulverized 

mechanically, and used as nuclei for the subsequent precipitation experiment in the SW 

medium at different initial pH (7.2, 7.5, 7.8 and 8.0).  The nuclei were incubated in sterile 

SW medium in 8-well LabTek® (NalgeNunc International) culture dishes with coverslip 

bottom in the anaerobic chamber (0.15 atm CO2, 0.05 atm H2 and 0.80 atm N2) for 8 

days. 

 

Imaging 

SEM imaging.  Chips with calcite crusts were fixed in Karnovsky fixative [90] after 

collection and then rinsed three times in cacodylate buffer (0.2 M, pH 7.5).  The samples 

were postfixed with 1% OsO4 in water for 5 hours followed by several rinses in 

cacodylate buffer, dehydrated in a graded series of ethanol (30, 50, 70, 90 and 100%) and 
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progressively infiltrated with LR-White resin for six hour prior to polymerization at 65°C 

for 24h.  After the polymerization, a transverse section of the crust was polished [91] and 

carbon coated.  The samples were viewed either on an XL 30 ESEM-FEG Philips 

scanning electron microscope (SEM) operating in high vacuum using the backscattered 

electron detection imaging system at 15 kV and a working distance of 10 mm, or on a 

LEO 1550 VP SEM operating at 15 kV and a working distance of 10 mm.  The elemental 

composition was determined by EDS using a LEO 1550 VP SEM operating at 15 kV and 

at a working distance of 13 mm.  Aragonite clots were imaged unembedded and 

unpolished. 

Transmitted light microscopy.  Images of 30 µm thin sections of the calcite crusts were 

taken with a Zeiss Axioplan microscope.  Aragonite peloids were imaged through the 

coverslip bottom of the culture dishes by an inverted Zeiss Axiovert S100 microscope. 

Mineral analysis. The crystal structure of the precipitates from the reactor 

experiments (calcite and aragonite) was determined by X-ray diffraction using a Scintag 

diffractometer at Cu Kα (λ=1.5405 Å).  The crystals were washed with 10% bleach and 

rinsed in doubly distilled water before analysis.  When only little sample could be 

retrieved (from LabTek® NalgeNunc International culture dishes with aragonite nuclei), 

we could not obtain the X-ray diffraction spectrum. Instead, we analyzed these 

precipitates by Fourier transform infrared spectrometry (FTIR) on a SensIR Technologies 

DuraScopeTM.  Aragonite was distinguished from calcite by its peak at 1082 cm-1 and the 

peak at 852 cm-1 [92]. 
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Results 

Rounded peloidal precipitates similar to those described by Aissaoui [93] formed 

in the initial, clotted stage of abiotic calcite crust precipitation.  Later precipitates 

consisted of dentate spar crystals that aggregated into compact crusts (Fig. 1A, B).  The 

peloids were round, 10 �m ± 3 �m in diameter (N=87).  Their submicrocrystalline 

centers consisted of radially growing acicular crystals less than 1 �m thick.  

Microcrystalline rims of dentate spar crystals grew radially around the centers (Fig. 1C, 

D).  The centers appeared dark under the backscattered SEM, suggesting a higher 

abundance of lighter elements relative to the rims (Fig. 1D).  Indeed, EDS analysis 

showed that the P content was higher in the centers (0.69 ± 0.36 wt%, N=13) than the 

rims (0.12 ± 0.09 wt%, N=13) and later stage compact crusts (P below detection limit). 

The opaque appearance of peloids under the transmitted light (Fig. 1E, F) was mainly a 

consequence of the small crystal grain size relative to the thickness of the thin-section (30 

µm).  The later compact crusts of large dentate spar crystals were clear under the 

transmitted light (Fig. 1B, E, F). 
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Figure 4-1 Experimentally precipitated calcite crusts in the absence of bacteria.  A.  A 

backscattered SEM of one-day-old crusts with peloids on the bottom and the later non-

radial crystal aggregates (above the dashed line).  The dark area is resin.  The scale bar is 

20 µm.  B. A backscattered SEM of four-day-old crusts with the peloid layer on the 

bottom and the later compact crusts (above the dashed line).  The dark area is resin.  The 

scale bar is 100 µm.  C.  A SEM showing the internal fabrics of an unpolished peloid: a 

round core composed of thin radially arranged crystals and a rim made of coarser dentate 

spar crystals.  The scale bar is 10 µm.  D.  A backscattered SEM of peloids shows the 
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radial arrangement of the spar crystals around a common center.  The scale bar is 5 µm. 

E.  Opaque layer of peloids (below the dashed line) rimmed by large later crystals 

(transmitted-light image of a thin section of the four-day old crust).  Individual peloids 

can be seen at the bottom of the section (arrows).  The scale bar is 50 µm.  F.  Polarized-

light image of the same field of view as in E.  The scale bar is 50 µm. 

 

Supersaturation 

Given that peloids in our experiments precipitated in the absence of bacteria, we 

sought to determine which abiotic mechanisms were responsible for the precipitation of 

rounded centers of peloids, spar rims, and the later large spar crystals.  Many studies of 

calcite morphology in abiotic solutions [34, 36, 94] report that the calcite saturation index 

(SI) exerts a major control over calcite morphology.  The SI of calcite (or aragonite) in a 

solution depends logarithmically on the calcium ion concentration, [Ca2+], the carbonate 

ion concentration, [CO3
2-] and the solubility constant of calcite (aragonite), Ks:  

 

SI = log [Ca2+][CO3
2−]

Ks

    (1) 

 

 

Consistent with the previous studies, the changes in SI in our precipitation medium result 

in a predictable trend of calcite morphologies when tested in the absence of flow (batch 

conditions) [9].  Furthermore, the habits developed in the batch SI sequence have their 

counterparts in the habits of calcite crystals that grew in the continuous-flow reactors 
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(Fig. 2A).  Namely, the cores of peloids (Fig. 1C) are similar to the hemispherical 

crystals composed of bladed crystallites that form at the lowest SI under batch conditions 

(0.5 ≤ SI ≤ 1) (Fig. 2A).   Peloidal rims (Fig. 1C) are, in turn, similar to the radially 

aggregating spar crystals that grow at a relatively low SI (1 ≤ SI ≤ 1.5) in the absence of 

flow (Fig. 2A).  The non-radial aggregates of spar crystals in the clear crusts resemble 

spar crystals observed at even higher SI in the batch experiments (1.5 ≤ SI ≤ 2.0) (Fig. 

2A). 

Given that the concentration of calcium in the reactor gradually increases in the 

beginning of the experiment (see Methods), the observed morphological trends in calcite 

crusts can similarly be attributed to the increasing SI in the flow-reactor.  The temporal 

change in the calcium concentration in the reactor can be described by  

 

d[Ca2+ ]reactor

dt
=

f ([Ca2+]in − [Ca2+
out ])

Vreactor

− R    (2) 

 

where f is the flow rate, [Ca2+] is the calcium concentration, t is the time, V is the volume 

of the reactor (420 ml), and R is the rate at which CaCO3 precipitates in the reactor.  

Because [Ca2+]out is equal to [Ca2+]reactor,  solving the equation (1) for [Ca2+]reactor gives 

 

[Ca2+]reactor(t) = ([Ca2+]in −
VreactorR

f
)(1− exp(− ft

Vreactor

))    (3) 

 

When the flow starts, the calcium concentration in the reactor increases (Fig. 2B) to an 

equilibrium value that depends on the precipitation rate, the flow rate, the dimensions of 
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the reactor and the rate of supply of the calcium ions (Fig. 2B and Eq. 3).  The modeled 

increase in SI is consistent with the appearance of various crystal habits in the crusts over 

time.  The spherical aggregates of submicrocrystalline calcite that form the cores of 

peloids precipitate at the lowest SI (and calcium concentrations below about 10 mM).  

Small dentate spar crystals, such as those found at the rims of the earliest, smallest 

peloids, do not precipitate in batch experiments unless at least 10 mM [Ca2+] is present.  

More than 15 mM [Ca2+] is required for the precipitation of larger spar crystals (as found 

in the rims of later peloids) and non-radial spar aggregates.  Equation 3 predicts that 10-

15 mM [Ca2+] in the reactor would be reached in about 10-15 hours (assuming that 

calcium ions are removed from the reactor by the precipitation of calcite at a uniform rate 

from 0 mM/hr to 1 mM/hr, Fig. 2B).  When [Ca2+] in the reactor exceeds this limit, non-

radial spar aggregates can precipitate; they form the upper part of 1-day old crusts and all 

subsequent precipitates.  This model prediction is consistent with our experimental 

observations: peloids are present only in the lower half of our 1-day precipitates and do 

not occur in the later (upper) stages (Fig. 1A, 1B). 
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Figure 4-2 A.  Representative calcite crystal morphologies as a function of the initial 

supersaturation index (SI) in the batch precipitation experiments.  The vertical arrow 

indicates the increasing initial SI (established either by changing the pH, or the calcium 

ion concentration).  All crystals are shown to scale (indicated by the 200 µm scale bar). 

B.  Calcium concentration in the continuous-flow precipitation experiment as a function 

of time based on Eq. 3 assuming four different precipitation rates within the reservoir (0 

mM/hr: , 0.1 mM/hr: , 1 mM/hr: , 2 mM/hr: ).  The dashed line shows the time 

when the calcium concentration rises to values at which non-radially aggregating spar 

crystals precipitate instead of radial aggregates.  This estimate assumes that the 

precipitation rate is 1 mM/hr ( ) and that the minimum calcium ion concentration 

needed for the formation of large spar crystals and non-radial spar aggregates at pH 7.5 is 

12 mM (as determined in the previous batch experiments).  Slower precipitation rates 

correspond to shorter times before non-peloidal precipitates are observed and faster 

precipitation rates correspond to longer times than 10-15 hours, respectively. 
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To demonstrate that rounded calcium carbonate grains can form in solutions more 

analogous to seawater that have few or no organic additives such as yeast extract or 

lactate, we conducted a precipitation experiment in sterile artificial seawater medium 

without organic constituents.  This time, opaque 46 µm ± 36 µm mean diameter (N=35) 

rounded clusters of acicular crystals aggregated into clotted crusts (Fig. 3A, B).  XRD 

analysis confirmed that they consisted of aragonite.  These clotted precipitates appear 

identical to the aragonite clots that grew in seawater in laboratory experiments described 

by Taylor & Illing [95].  Rounded aragonite grains are also common in reef settings and 

geochemically distinguishable from calcite peloids [79, 95].  To test whether their 

morphology also depends on SI, we used small (< 20 �m) aragonite grains as the nuclei 

for further crystal growth in the seawater medium at different initial SI under batch 

conditions.  Large transparent rims surrounded the opaque aragonite seeds at initial pH 

7.2-7.5 (Fig. 3C).   An increased SI facilitated the nucleation of many shorter acicular 

crystals that encrusted the seeds in a less orderly manner, creating the opaque rounded 

and clotted aggregates at initial pH 7.8-8.0 (Fig. 3D).  Additionally, the absence of nuclei 

in the same solution resulted in very few (~20 per entire well) clear rounded grains 

without opaque centers at low initial pH (not shown) and clear subhedral grains (about 10 

in the same field of view as in Fig. 3C or 3D) at high initial pH.  Similar subhedral clear 

grains were abundant at high initial pH even in the presence of seed crystals (Fig. 3D). 
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Figure 4-3 Aragonite precipitates and their fabrics as a function of the initial pH.  A.  

A rounded opaque cluster of acicular aragonite crystals (transmitted light, a larger than 

average aggregate is shown to illustrate the clotted fabrics).  The scale bar is 50 µm.  B.  

Aragonite needles that constitute the opaque aggregates (SEM image).  The scale bar is 2 

µm.  C.  Transparent aragonite rims around the opaque aragonite seeds at pH 7.2 under 

transmitted light.  The scale bar is 200 µm.  D.  Opaque clotted aggregates precipitated 

around the opaque aragonite seeds at pH 8.0.  Subhedral spar crystals are also present.  

The scale bar is 200 µm. 

 

Stirring and Settling 

Peloids that grow suspended in the stirred reactor are spherical, whereas the 

grains grown under batch conditions (i.e., not suspended) are hemispherical, with a flat 

bottom due to growth on a flat glass slide (Fig. 2A, 4A). 
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Settling also has a role in creating morphological differences between the 

downward-growing calcite crusts on the bottom surfaces of the chips and the upward-

growing peloidal crusts on the top surfaces of the chips.  In contrast to the clotted fabrics 

of the upward-growing crusts, the downward-growing crusts were clear, uniformly thick 

(isopachous) aggregates of spar crystals (Fig. 4B, C).  Thus, geopetal settling and rapid in 

situ cementation produce clotted and non-isopachous fabrics, while only the latter 

mechanism is responsible for the isopachous compact crusts on the vertical and the 

bottom sides of the chips. 

 

Figure 4-4 The importance of stirring and gravitational settling for the formation of 

spherical habits.  A.  A backscattered scanning electron micrograph of a hemispherical 
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calcite crystal precipitated in G20 growth medium in a batch experiment (as opposed to 

the crusts formed in flow-through reactors).  The arrow points to the submicrocrystalline 

core.  The scale bar is 10 µm.  B. Four-day old isopachous calcite crusts on the bottom 

surface of the chips.  The arrow marks the upward direction.  The scale bar is 100 µm.  C. 

Polarized-light image of the same field of view as in F. 

 

Discussion 

How to infer the extent of abiotic vs. biological contributions to the formation of 

calcium carbonate structures such as peloids at various times throughout Earth’s history 

has been an open and intriguing question in sedimentary geology.  At the heart of this 

problem lies the fact that microbes can stimulate all abiotic aspects of mineral nucleation 

and precipitation.  Good abiotic models are therefore a prerequisite for the recognition of 

putative biological contributions to the generation of peloids and other carbonates.  

Towards this end we have generated calcite peloids in the complete absence of microbes 

and have developed an abiotic model that can explain their shape.   In the following 

discussion, we relate this model to some natural physical, chemical and biological 

processes that generate calcium carbonates, and discuss the caveats it raises regarding the 

commonly assumed microbial role in peloid formation. 

Stirring is a simple, but important physical process required for the formation of 

rounded peloids in our solutions.  Our observations support Lighty [78], who attributed 

the spherical shape of peloids within coral skeletal cavities in a reef to the growth of 

peloids in prolonged suspension.  Similarly, peloids have to remain suspended in solution 
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during the growth of spar rims if these uniform rims are to form by slow growth around 

the initial submicrocrystalline nuclei [84]. 

Chemically, the generation of rounded calcite grains in our medium was greatly 

influenced by SI.  In nature, changes in the SI of calcite can occur by various 

mechanisms: mixing of waters rich in calcium with waters that contain a high 

concentration of dissolved inorganic carbon (DIC) [96], wave agitation [95], degassing of 

CO2, evaporation, tidal forcing, flow through cavities in reefs, or changes in temperature.  

SI is not the only possible parameter that can affect peloid formation.  Various kinetic 

inhibitors (e.g., magnesium, phosphate, sulfate) can additionally influence the 

morphology of calcite by incorporating into the growing crystal lattice and 

thermodynamically stabilizing various crystal faces, increasing the number of defects, or 

changing the solubility of the mineral [36, 38-40].  The addition or removal of various 

kinetic inhibitors may exert a greater control on calcite morphology than the changes of 

SI in solutions that are buffered by a high concentration of DIC [9].  Nevertheless, the SI 

controls the number of nuclei around which peloids can precipitate [8] and the shape of 

clotted precipitates (Fig. 2A, Fig. 3C,D). 

Our medium was designed to mimic modern-day travertines, soda lakes and the 

Precambrian oceans rather than modern-day marine settings and therefore contains a high 

concentration of DIC.  Its SI is much higher than that of the modern seawater, and is thus 

responsible for the easy nucleation and precipitation of calcite.  Because an even greater 

abundance of nuclei (at higher, final SI in our medium) results in the formation of non-

radially aggregating calcite crystals, we infer that both laboratory-made and natural 

calcite peloids reflect the limited availability of nuclei or templating surfaces.  The 



 62

formation of a limited number of calcite nuclei and the subsequent precipitation of spar 

rims is consistent with the proposed mechanism of abiotic peloid formation by repeated 

nucleation [84].  The dentate rims of these peloids are attributed to the slow precipitation 

around the initial nuclei (possibly at a lower SI). 

Facilitated nucleation and precipitation of calcite may similarly explain an 

increased abundance of peloids at various times of the Earth’s history relative to the 

present time.   Namely, while modern peloidal crusts are associated with mucoid surfaces 

and microcavities, some ancient peloidal layers occur in considerably more extensive 

settings and under a wider range of environmental conditions than today.  For example, 

peloids were a common facies in carbonate reefs before the advent of skeletal organisms 

[76, 77] and Neoproterozoic cap carbonate deposits (A. Maloof, pers. communication).  

In addition, some peloids in end-Permian and Upper Jurassic reefs can be linked to the 

presence of coccoidal microbes (presumably cyanobacteria) [72, 74, 85, 89].  Because 

their modern marine encrusted cyanobacterial analogs are relatively rare, this suggests 

that these peloids formed under different environmental conditions [97].  A different 

seawater chemistry [89, 98, 99], removal of kinetic inhibitors [9] and/or increased 

temperatures [97] are just some of the potential explanations for the more widespread 

occurrence of peloids in the past. 

Microbes can significantly stimulate abiotic nucleation and precipitation of 

carbonate minerals by inducing all of the chemical and physical conditions listed above: 

they can change the pH or the alkalinity of the solution, take up and secrete various 

kinetic inhibitors or bind calcium and magnesium ions on their negatively charged outer 

surfaces [8, 9, 14, 41-48].  Organic compounds with acidic moieties that are common in 
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biofilms can also stabilize different calcium-carbonate polymorphs [43, 100].  

Additionally, the biofilm matrix can facilitate growth of spherical precipitates even when 

stirring is negligible by trapping the settling precipitates.  As a result, many peloids have 

been spatially correlated with microbial biofilms [89], organic matrices [86], or single 

cells [74]. 

Arguments for a microbial role in the precipitation of some marine peloids and 

peloids in modern travertines are typically based on the following observations: the 

opaque appearance of travertine peloids under transmitted light, the occasional presence 

of micropores in the centers of travertine peloids, and the presence of putative microbial 

remains in the centers of marine peloids [81].  Our experiments show that peloids and 

other rounded grains with opaque centers can form in the complete absence of microbes 

(Fig. 1, Fig. 3C) and that microbes can become entombed in calcite even when they do 

not significantly stimulate its nucleation, leaving abundant micropores [11].  Moreover, 

microbes and their biopolymers have been reported to stimulate the dissolution [101] or 

inhibit the precipitation of calcium carbonate [32].  Therefore, independent experiments 

are required to confirm whether microbes contributed to the precipitation of peloids or 

merely colonized them.  For example, elemental and isotopic differences between peloids 

and adjacent cements or a consistent association of fossilized cells with the centers of 

peloids might be persuasive evidence in favor of a microbial role in peloid formation.  If 

such data are not available, our results suggest that abiotic mechanisms should be the 

null-hypothesis. 
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Conclusions 

Our studies demonstrate that peloids can be created by purely abiotic 

mechanisms, suggesting that similar processes are likely to be important in nature.  The 

internal fabrics of individual peloids (submicrocrystalline centers and dentate spar rims) 

can be explained by the changes in the calcite SI in the fluids from which peloids 

precipitate.  Radiating crystal rims around submicrocrystalline nuclei imply that the 

number of nuclei controls peloid formation because random, non-radial sparitic 

aggregates form when nucleation is not inhibited.  Microbial processes have the potential 

to stimulate or inhibit all stages of peloid formation.  Therefore, microbial colonization of 

peloids in most cases cannot be used to infer a biological origin of these grains.  Because 

multiple mechanisms can be simultaneously involved in the formation of similar fabrics, 

peloids are a poor indicator of environmental conditions and biological processes.
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5. Micrometer-scale porosity as a biosignature in 

carbonate crusts 

Abstract 

We formed calcite crusts in the presence and absence of the heterotrophic 

bacterium Desulfovibrio desulfuricans strain G20 to investigate microbial morphological 

signatures in fast-accreting carbonate precipitates. Submicrometer- to micrometer-sized 

pores (micropores) were present and ubiquitous in the G20 crusts but absent in abiotically 

precipitated crusts. Bacterial micropores resemble inclusions under transmitted light but 

have distinct size, biological shapes and patterns (swirling or dendritic), and are 

distributed differently from common fluid inclusions. We observed similar porosity in 

both modern and ancient carbonate crusts of putative biotic origin. Our experiments 

support the microbial origin of micropores and help define specific criteria whereby to 

recognize these features as biosignatures in the rock record. 

 

Introduction 

Microfossil-like structures of uncertain origin (e.g., putative Archean 

microfossils, “nanobacteria” in terrestrial and meteoritic samples) often provoke intense 

scientific debate because of their potential implications for the evolution of both 

terrestrial and extraterrestrial life [33, 102-104].  It is therefore important to resolve how 

and why such structures form, whether they are biogenic at all, and whether similar 

structures can form abiotically. 
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Micropores (sensu Ref. [105]) constitute one such ambiguous biomarker. 

Micrometer-sized micropores have been most thoroughly described in the context of fast-

accreting hot-spring travertines [105], but abundant pores whose sizes and shapes 

resemble microbial cells can be found in SEM (scanning electron microscopy) images 

from diverse environments such as beachrock and other modern and ancient marine 

cements [106, 107].  Evidence for the biological origin of micropores has so far been 

based on the comparison of their size and shape to both putative and well-preserved 

microorganisms found around dendritic micritic aggregates or “bacterial shrubs” in 

travertine hot springs [88, 105, 108, 109]. However, although a link between microbes 

and micropores has been suggested, it has not been experimentally demonstrated. 

Furthermore, even if a priori we were to accept micropores as a biomarker, it is 

important to understand what microbial processes and precipitation rates lead to their 

formation and how they can be distinguished from abiotically occurring porosity and/or 

fluid inclusions [110]. 

To help interpret micropores and experimentally develop criteria for the 

recognition of micropores as a biosignature, we precipitated carbonate crusts in the 

presence and absence of Desulfovibrio desulfuricans strain G20 in a medium highly 

supersaturated with respect to calcium carbonate [9]. We compared our laboratory 

findings to micropores in a modern and an ancient carbonate crust. 

 

Materials and methods 

Biofilm reactor. To maintain a constant supply of nutrients, calcium, and 

bicarbonate ions, G20 biofilms were grown at room temperature in a stirred-disk reactor 
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having a 250 mL working volume (Biosurface Technologies Corp.). Biofilms were 

established by growing G20 in the absence of calcium in a medium described by Bosak 

and Newman [8] for two days before the flow was started. An identical but uninoculated 

reactor was set up in parallel as a sterile control. The headspaces of the reservoirs and the 

biofilm reactors were flushed with an 85:15 N2/CO2 gas mix to keep them anaerobic. 

Twenty-four 1 cm diameter polycarbonate and glass disks provided removable surfaces 

for biofilm and crust samples. Three disks were taken out from both the sterile and the 

inoculated reactor daily over the course of four days. We performed two separate 

precipitation experiments to verify their reproducibility. 

Backscattered SEM imaging. The disks with carbonate crusts were fixed in 

Karnovsky fixative after collection [90]. The remains of the fixative were removed with 

several rinses with cacodylate buffer (0.2 M, pH 7.5). The samples were postfixed with 

1% OsO4 in water for 6 h, rinsed several times in cacodylate buffer, dehydrated in a 

graded series of ethanol (30%, 50%, 70%, 90%, and 100%) and progressively infiltrated 

with LR-White resin for 6 h prior to polymerization at 65 °C for 24 h. After the 

polymerization, a transverse section of the crust was polished [91] and carbon coated.  

The samples were viewed on an XL 30 ESEM-FEG Philips operating in high vacuum 

using the backscattered-electron–detection imaging system at 15 kV at a working 

distance of 10 mm. The petrographic thin sections of natural samples (discussed below) 

were polished, carbon coated, and imaged by a LEO 1550 VP SEM equipped with an 

energy-dispersive X-ray spectrophotometer (EDS) using the backscattered-electron 

detector operating at 15 kV and a working distance of 10 mm. We measured the amount 

of precipitate on the chips (approximated by the surface area covered by the crusts in 10 
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successive SEM images of a random vertical cross section of the samples) by MetaMorph 

imaging software.  Although MetaMorph cannot measure the porosity of the samples 

directly, it easily distinguishes between calcite crusts and cavities or bacterial aggregates. 

Thus the apparent thickness measured by MetaMorph can be used as a proxy for the total 

amount of precipitate. 

Epifluorescence and transmitted-light imaging. Fixed carbonate crusts precipitated in 

our laboratory experiments were cut by a sterile razor, stained by FM® 1-43 fluorescent 

membrane stain, and imaged by a Zeiss Axioplan microscope. Petrographic thin sections 

were examined with a Zeiss Axioplan polarizing microscope and imaged with a Zeiss 

MRm 12-bit digital imaging system. 

 

Results 

Microfabrics of Laboratory Precipitates in the Presence and Absence of 

Bacteria 

Under our experimental conditions, calcite readily precipitates from the solution 

even in the absence of bacteria [8, 9].  Given that ~100 µm thick crusts accreted both in 

G20 and sterile reactors in 4 days, we found that the most obvious morphological 

difference between the biotic and the abiotic samples was the presence of abundant 

micropores in the G20 crusts (Fig. 1 and Fig. 2). 

The porosity produced by biological mechanisms can be attributed to the presence 

of cells and easily distinguished from the abiotically formed porosity (Fig. 1). 

Submicrometer- to micrometer-sized micropores (width = 0.3 ± 0.1 µm, median = 0.3 
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µm, length = 0.7 ± 0.3 µm, median = 0.6 µm, number N = 114) extend three-

dimensionally from the dense G20 cell aggregates into the surrounding crystals (Fig. 1A).  

The rounded edges of the pores, their identical size to that of G20 cells (width = 0.3 ± 0.1 

µm, median = 0.3 µm, length = 0.7 ± 0.4 µm, median = 0.6 µm, N = 93), the ~10 µm 

long or wide dendritic and swirling aggregates, and the occasional presence of cells 

within the pores indicate that these features are sections through the casts of G20 cells 

(Fig. 1A).  Conversely, rare,  < 1 µm thick pores in the sterile calcite crusts are present 

only at the boundaries between crystals, mainly as < 0.2 µm thick lines (Fig. 1B).  These 

pores have geometric edges outlined by the faces of adjacent crystals and do not form 

dendritic or swirling patterns (Fig. 1B). 

Figure 5-1 Calcite crusts precipitated in laboratory.  Unless otherwise stated, scale 

bars in all images represent 10 µm. A: Backscattered SEM image of a dense cluster of 
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G20 cells in a cavity of a old crust. Inset: An enlarged view of G20 cells (asterisk) and 

micropores (arrows) in calcite precipitate; scale bar represents 5 µm. Cells have an 

enhanced contrast, having been postfixed with OsO4. B: Backscattered SEM image of a 

crust precipitated in absence of bacteria. Arrow indicates abiotic micrometer-scale pores. 

C: Transmitted-light plan view of a crust formed in presence of G20. Round black 

features are pores (e.g., in black square). Focusing up and down on different depths 

within same sample shows that pores are present at multiple levels within crusts. D: 

Fluorescent-stained G20 cells in same field of view as in C (white square). As in C, 

square shows only some of cells; more are detected by focusing up and down. 

 
The biologically produced pores in the SEM images are consistent with the 

distribution of G20 cells as shown by confocal microscopy: G20 cells are present in 

sparse monolayers rather than as continuous biofilms, whereas dense cell aggregates are 

present only in the cavities and depressions within the crusts (Figs. 2 and 3).  The cells 

are much more abundant in the cavities probably because other areas fill in quickly with 

calcite that precludes the continued growth of bacteria.  Consequently, pores are abundant 

around cavities but barely noticeable within sparsely colonized spar crystals. 

Micropores can also be detected by transmitted-light microscopy (Fig. 1C). To 

confirm the correlation between the G20 cells and the micropores, we stained the cell 

membranes and observed collocalized G20 cells and pores (Fig. 1D).  Neither pores nor 

stained cells are observed in the abiotic crust samples. 
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Figure 5-2 Backscattered SEM images of 4-day-old crusts (vertical cross section) 

precipitated in laboratory. Scale bar represents 50 µm. A: Crusts precipitated in presence 

of G20.  Black rectangle shows a region with abundant micropores. B: Crusts precipitated 

in absence of bacteria. 



 72

 

Figure 5-3 Confocal image of sparse G20 cells on top of 3-day-old crusts. Scale bar 

represents 30 µm.  Confocal images of G20 cells (white) are combined with transmitted-

light image of crust. Central part is plan view (x-y plane), and side images are vertical 

cross sections through crust (light gray line is x-z plane and dark gray line is y-z plane). 

Confocal images of fluorescent-stained cells were taken by a Zeiss 510 LSM at 

Biological Imaging Center of Beckman Institute at California Institute of Technology. 

 

Micropores in a Modern Alkaline Environment 

To see whether our laboratory experiments were applicable to the field, we 

searched for micropores in carbonate crusts precipitated in the waters flowing through 

ultramafic rocks near Cazadero, California, USA, pH ≥ 11 (Fig. 4A, [111]). The high pH 

at the site (pH > 11) likely precludes the growth of abundant microorganisms because 
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only a few extremophiles have such high-pH growth optima [112]. Although the growth 

rates of the carbonates remain to be determined, the fact that the crusts are commonly 

destroyed during the winter rainy season and rebuilt during the remaining months 

suggests extraordinarily fast carbonate precipitation. 

We focused our attention on two main types of precipitates that alternate within 

the Cazadero crusts: very thinly laminated layers that show no signs of microbial 

presence (lamina are generally thinner than 1 µm) and larger, ray-like crystals associated 

with a green endolithic community (Fig. 4A, [111]).  In cross-polarized light, the finely 

laminated sections are composed of submicrometer-scale, acicular, radiating crystals, 

whereas the larger, ray-like layers form large, optically continuous crystals.  The absence 

of pores within the thinly laminated layers (Fig. 4B) is consistent with the established 

absence of microbes [111], whereas some micrometer-scale pores on the edges and 

between the crystals in the larger, ray-like fans are most likely due to the green endolithic 

layer (Fig. 4C).  Overall, the presence or absence of microporosity in different parts of 

the Cazadero carbonates is consistent with the presence or absence of microbes as 

suggested by our lab experiments. 
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Figure 5-4 Micropores from carbonate crusts formed in a serpentine-forming 

environment (Cazadero, Northern California). A: Crust sample with coin for scale. White 

square—typical finely laminated fans; black square—typical ray-crystal crusts. B: Detail 

of a laminated carbonate fan. Crystals are very well preserved, clear, and compositionally 

banded into darker and lighter horizontal layers. Dark particles are debris that was 

incorporated into growing crystals. C: Detail of boundary between two ray-like crystals. 

Micrometer-scale pores (~1.5 µm diameter) are abundant at crystal surfaces close to 

boundary (arrows). Scale bars in B and C represent 10 µm. 

 

Micropores in an Ancient Stromatolite 

Having analyzed laboratory and modern natural precipitates, we sought to 

determine whether similar features could be found in significantly older rocks where 
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reprecipitation and recrystallization may alter the original carbonate fabrics. A columnar 

stromatolite composed of calcium carbonate (ca. 544 Ma in age) was chosen from the 

Precambrian-Cambrian transition near Mount Dunfee, Esmeralda County, Nevada. 

Although composed of calcium carbonate, the Mount Dunfee stromatolite formed in a 

predominantly siliciclastic paleoenvironment, suggesting that in situ precipitation of 

carbonate grains was stimulated biologically instead of being abiotic (e.g., [1]). The 

stromatolite laminae and cements display dull to moderate luminescence under 

cathodoluminescent examination.  Therefore, we suspect that the sample has undergone 

some postdepositional recrystallization typical of rocks of this antiquity, and the results 

presented here should be treated with a degree of caution. Despite moderate diagenetic 

alteration, we found rounded (~ 0.5 to 1 µm in diameter), micrometer-scale pores in the 

carbonate crystals that define lamina within the Mount Dunfee stromatolite (Fig. 5A and 

5B).  Although we could not detect dendritic patterns, the abundance of intraparticle 

micropores within large calcium carbonate crystals and the absence of zonation are 

consistent with a biogenic origin.  It is important to note that carbonate cements in 

adjacent sandstone that precipitated later in the paragenetic sequence revealed far fewer 

inclusions of this kind, further supporting interpretation of the micropores as biogenic 

(Fig. 6). We view the presence of the micropores as corroborating evidence, but not 

proof, that microbes were present during the construction of the stromatolite. 
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Figure 5-5 Micropores in a small bioherm of carbonate stromatolites in shale matrix 

(Deep Spring Formation, Mount Dunfee, Esmeralda County, Nevada). Scale bars 

represent 10 µm. A: Backscattered SEM image of a polished thin section of a 

stromatolite; 0.5–0.8 µm diameter pores are abundant in carbonate crystals (light areas) 

and absent from Si-Al–rich areas (dark grains), identified by EDS (energy-dispersive 

spectrometry). B: Transmitted-light image of same field of view as in A. Pores visible are 

not limited to crystal surface because light-microscopy samples a much larger depth than 

SEM. 
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Figure 5-6 Transmitted-light image of pore-filling carbonate cement within a cavity 

of Mount Dunfee stromatolite sample (at approximately the same scale as Fig. 5-5).  

There are inclusions, but they are generally large and shaped like mineral grains. 

Prominent lineations oriented across thin section are calcite cleavage planes. Scale bar 

represents 20 µm. 

 

Discussion 

Abiotic and Microbial Processes That Create Porosity in Carbonate 

Rocks 

Abiotic processes that interfere with crystal growth can create primary 

microporosity [113] that might be confused with biogenic microporosity.  However, 

primary porosity and, particularly, secondary porosity (due to postdepositional 
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dissolution, dolomitization, brecciation, or fracturing) commonly produce 

crystallographically controlled zoned pores associated with intergranular spaces, 

fractures, and rhombic dolomite crystals [113, 114]. Similarly, primary abiotic porosity in 

our experimentally produced samples consists of recognizable polygonal interparticle 

spaces (Fig. 1B). In contrast, micropores experimentally produced by G20 are present 

throughout crystals.  These micropores mirror the shape and size of G20 cells, form 

swirling or dendritic patterns that can be related to the spatial arrangement of cells 

attached to the growing crystal surfaces, and are not distinctly zoned. 

G20 cells appear to create micropores by preventing calcite precipitation in their 

immediate neighborhood (which is also consistent with the absence of crystals within the 

dense G20 aggregates in Fig. 1A) and not by metabolic stimulation of calcium carbonate 

precipitation (as in, e.g., [115, 116]). Because G20 micropores form as the crystals 

precipitate, they cannot be attributed to postdepositional endolithic activity 

(e.g.,[117];[111];[101]). Endolithic bacterial borings are concentrated around the crystal 

edges, form tubular networks, often appear to follow a specific crystallographic direction 

([117], [118]; Fig. 9B of Vogel et al. [101]), and are thus morphologically distinct from 

G20 micropores. These findings reiterate an important but often neglected point: 

microbial morphological signatures such as fossilized cells or micropores in carbonate 

rocks tell us only that cells or biofilms existed on the growing surfaces and do not imply 

that a particular active metabolism or behavior was responsible for the formation of the 

same rocks [1]. 
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Possible Relationships Between Crystal Growth Rates and Biological 

Microporosity 

We suspect that the formation and preservation of micropores depend on a 

delicate interplay between the rate of carbonate precipitation and biofilm formation. The 

densest micropores are present around large cellular aggregates in the cavities within the 

crusts, but few pores are found associated with sparse G20 monolayers (Figs. 2 and 3).  

Therefore, if crystal growth matches or exceeds the pace of recolonization by the biofilm, 

many crystals could remain uncolonized and devoid of micropores (Fig. 1A, Ref. [88]).  

However, the existing micropores are not filled in because the cells start decaying after 

being rapidly and completely embedded in crystals (i.e., inaccessible to the calcium- and 

carbonate-bearing fluid). A compact, fast-accreting matrix such as travertine [51, 119] is 

therefore more likely to preserve recognizably biogenic pores against cementation than a 

slowly accreting carbonate deposit in modern marine settings [120]. Consequently, an 

abundance of micropores in single crystals within ancient putative microbialites would be 

consistent with fast crystal-growth rates. These hypotheses can be tested in laboratory 

studies of the interactions of a variety of microorganisms with crystals and crusts 

growing at different rates. 

 

Conclusions 

Our experimental work demonstrates that micrometer-scale porosity can indicate 

microbial presence in carbonate structures. Such a biomarker should be particularly 

useful in environments where life is sparse and other biomarkers (e.g., isotopic, organic 
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remnants) are not abundant. Morphological criteria by which to recognize biogenic 

micropores in recent and well-preserved samples include the following: (1) the sizes and 

shapes of micropores mirror the sizes and shapes of microbes present during accretion of 

the carbonate matrix; (2) micropores form around larger cavities where dense microbial 

aggregates can develop; (3) the micropores are distributed throughout the crystals instead 

of being zoned and limited to the crystal edges; (4) the micropores show a similarity to 

“inclusions” under transmitted light.  Together, these criteria suggest that “inclusions” 

with similar shape, size, and distribution in many petrographic thin sections may be 

biogenic. Accordingly, a systematic examination of previously ignored micropores in 

stromatolites and other presumed microbialites may inform our search for evidence of 

early life on Earth. 
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6. Conclusions and Implications 

Can laboratory experiments such as the ones described in the previous chapters 

help us hear what the old rocks say to us?   What caveats should we be aware of before 

we use the results of the reductionist approach to interpret structures that may reflect a 

wide range of physical, biological and chemical parameters?  The ability to manipulate 

simplified systems enabled us to challenge a commonly held assumption about the 

importance of a particular metabolism, sulfate reduction, in the formation of calcium 

carbonate minerals in the ancient oceans.  The controlled simultaneous precipitation of 

carbonate crusts in the presence and absence of microbes was key to distinguishing 

between abiotic and biologically-produced morphological signatures, as exemplified by 

micropores and peloids.  The simplified systems thus enabled us to chemically simulate 

environments that may not be found on modern Earth, or may not allow controlled 

manipulation. 

  Previous chapters describe the fundaments of an experimental system where 

chemical and biological parameters can be monitored and changed.  Future iterations of 

these systems should involve the ability to continuously monitor chemical conditions.  

pH and the partial pressure of CO2 are examples of chemical parameters that should be 

constantly monitored or easily maintained or changed.  So far, we performed most of our 

experiments under a very high partial pressure of CO2, in solutions with high 

concentration of DIC (> 50 mM), and at fairly high precipitation rates.  These conditions 

resulted in the growth of large calcite crystals on the scale of tens to a hundred 

micrometers, as opposed to < 10 µm crystals precipitated when the DIC content was low 

(~ 8 mM).   Consequently, we predict that there will be significant textural differences 
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between these carbonate crusts and long-term carbonate precipitates formed at lower 

partial pressure of CO2, an overall smaller DIC content, and lower precipitation rates that 

would simulate progressively younger oceans. 

Our observations in the long-term precipitation experiments suggest that, even 

when microbes are not crucial for mineral precipitation, their morphological imprint will 

depend on the shape and size of their cells and the ability to colonize the accreting 

carbonate structures.  Because our approach is limited to few cultivable model organisms 

with representative metabolisms in place of hundreds or thousands of species and 

chemical microniches that coexist within natural sediments, our model systems inevitably 

fail to reproduce the morphological and physiological diversity of the natural microbial 

communities.  Even so, we have barely begun to explore the morphological signatures of 

cultivable species by comparing and contrasting the morphological imprints of various 

microbes in the sedimentary textures.  The laboratory-based approach enables us to 

examine the morphological input of often-overlooked organisms such as anoxygenic 

phototrophs that do not dominate modern natural stromatolites, but may have dominated 

very ancient sediments before the evolution of oxygenic photosynthesis.  The initial steps 

in this direction are described in Appendix 1. 

Ultimately, the laboratory-based approach is meant to complement the 

observations from the natural environment and inspire new experiments with natural 

systems.  For example, our experiments show that bacteria kinetically stimulate calcium 

carbonate precipitation even under the conditions where the equilibrium models of 

mineral precipitation do not predict a significant stimulation.  Follow-up laboratory 

experiments can point to the kinetic inhibitors and active metabolic processes that could 
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be expected to stimulate or inhibit mineral precipitation in natural environments. For 

example, it is still unclear why the micritic carbonate layers appear primarily in 

association with the sulfate-reducing layers of some modern stromatolites [5], instead of 

being associated with the layers of anoxygenic or oxygenic phototrophs, organisms that 

can induce much larger shifts in the SI of modern seawater.  The ongoing comprehensive 

tracking of the processes within various metabolic niches, analyses of the organic and 

inorganic kinetic inhibitors and studies that link mineral precipitation to the metabolic 

processes and specific physiologies could design experiments to answer similar 

remaining questions inspired by laboratory observations [2, 5, 44, 120-122].  Laboratory 

studies of the behavior and mineral-precipitating capability of real complex communities 

in response to the varying concentrations of sulfate, DIC, calcium, nitrogen, phosphorus 

and other parameters constitute another approach that would bring the laboratory models 

closer to nature.  Among other information, these experiments and systems could 

determine the isotopic composition of carbon in the organic matter and the concurrent 

precipitates under variable conditions representative of the evolving ancient oceans and 

compare it to the isotopic signatures in ancient stromatolites. 

This by no means exhausts the list of experiments that test the relationship 

between microbial metabolisms, physiologies, lithification and the ultimate morphology 

of stromatolites and other microbial carbonates.  Although realistic models of the 

microbial responses require bringing the laboratory closer to natural systems, studies of 

some macroscopic microbial behaviors with analogs in the rock record require a 

reductionist approach.  Chapter 7 is an example of a proposed study that would link the 
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unique multicellular macroscopic behavior of some cyanobacteria to its molecular basis, 

and to the rock record. 
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7. Future work 

By simulating the early oceans, growing microbial biofilms and forming baby 

microbialites in the laboratory, I investigated chemical and physical conditions that lead 

to the preservation of microbial signatures in rocks.  Beside the question of how and 

when communities lithify, an equally fundamental problem that needs to be addressed 

before we can use morphology as a biomarker is what determines the shape and the fairly 

regular spacing between modern cyanobacterially-dominated aggregates (Fig. 1).  In my 

postdoctoral research, I hope to focus on genes that control the macroscopic shape and 

scales of cyanobacterial aggregates (biofilms) and test how these aggregates respond to 

environmental stimuli such as light or nutrients. 

 

Figure 7-1 Some features in the rock record may reflect genetically encoded 

macroscopic behavior of microbial cells.  Genes determine the cyanobacterial response to 

environmental stimuli such as light and nutrients (left) and regulate the microbial cell 

cycle.  Cm-scale conical aggregates by Phormidium tenui in microbial mats [123] may 

form by chemotactic or phototactic responses to either environmental stimuli or as a 

manifestation of multicellular development cycle (middle). 1.6 billion years old, cm-scale 

conical stromatolites may preserve this behavior (right). 
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Ancient stromatolites by and large formed in shallow marine settings. The early 

rise of photosynthesis and the still uncontested molecular biomarkers imply that 

cyanobacteria and their anoxygenic ancestors dominated shallow coastal environments 

where stromatolites are found.  Moreover, modern benthic cyanobacteria have been long 

known to aggregate into millimeter- to almost decimeter-sized cones, tufts, bulbs and 

spherical structures whose scales and shapes resemble some ancient stromatolites (Fig. 1) 

[123, 124].  All these arguments support a role for ancient photosynthetic organisms in 

the formation of stromatolites, but it is unclear whether different shapes of stromatolites 

reflect the colonization by different (cyano)bacterial species, microbial metabolisms, 

lithification processes, the precipitation rates of calcium carbonate, or local currents and 

waves. 

How genetically identical cells form complex spatial patterns, what processes set 

the scale of these patterns and how the patterning is regulated at the molecular level is a 

question that unites geology and developmental biology [125].  Even seemingly simple 

systems can develop complex patterns, as shown by the studies of chemotactic response 

of E. coli [126-128].  By studying pattern formation in more geologically relevant model 

organisms, I hope to explore the differences determined by the cell size and shape (long 

filaments as opposed to small rods), type of motility (cyanobacterial gliding as opposed 

to the swimming of E. coli) and environmental controls that fuel the metabolism (light as 

opposed to organic compounds).  The small pinnacles formed by Phormidium tenui (Fig. 

1) may reflect a unique confluence of phototaxis, tangling of the filaments, and diffusion 

of a cell-density dependent chemical attractant.  A knowledge of parameters and genes 

that lead to specific size cones or the spacing between the cones will help us understand 
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what makes similar shapes in rocks uniquely biogenic.  Given that many cyanobacteria 

undergo morphological differentiation into vegetative cells and N-fixing heterocysts 

[129-131], an even more intriguing question arises by looking at the coniform and other 

morphologically complex structures formed by cyanobacteria.  Could these three-

dimensional structures reflect a genetically encoded developmental program?  Complex 

social behavior that results in morphologically differentiated multicellular aggregates is 

certainly not without precedents in the prokaryotic world [132]. 

The field of multicellular microbial aggregates has experienced tremendous 

progress in the past decade, and, not surprisingly, medically important heterotrophic 

organisms often took the spotlight of this research [133-135].   These organisms and 

biofilms, however, may not be good model organisms for the ancient coastal biofilms. By 

using mutants of genetically tractable cyanobacteria (e.g., Synechococcus PC6803 or 

Anabaena variabilis ATCC 29413) to study pattern formation by cyanobacterial colonies 

and biofilms, I hope to bring attention to the morphologically important peculiarities of 

cyanobacterial biofilms.  Some obviously relevant mutants to explore are those that 

involve motility, photosynthesis and phototactic response [136-138]. The importance of 

cell-density dependent signals [139, 140] and cellular differentiation in the spatial 

organization and behavior of photosynthetic biofilms is an equally intriguing question to 

investigate [141]. 

A major obstacle in the studies of cyanobacterial genetics has been the lack of 

reliable methods by which to transform cyanobacterial cells. Most attempts of 

transformation have, however, targeted the free-living marine cyanobacteria. By learning 

the genetic techniques in genetically tractable cyanobacteria, I would like to develop a 
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genetic system for a morphologically distinct cyanobacterium (e.g,. a Phormidium spp.).  

Using both biochemical and genetic tools, I hope to probe complex cyanobacterial 

structures for signs of morphological differentiation (e.g., [142]). 

An important goal of this research is to bring the organisms and genes back to the 

context of their physical, chemical and ecological environment (in mixed model 

communities) and evaluate the effect of interesting controllable phenotypes in 

precipitation and fossilization experiments. Some examples of more geologically oriented 

and inspired questions that can be answered in model systems are: How mutants with a 

changed sensitivity to light or motility recolonize the growing precipitates relative to wild 

type cells, how the environmental chemical cues and conditions relevant for the early 

oceans (low phosphate and nitrate) trigger the multicellular organization and affect the 

mineral formation within model communities. 
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Appendix 1. Stimulation of calcite precipitation by 

anoxygenic photosynthesis in a high-DIC medium 

 

Introduction 

Two main observations are used as the arguments in favor of cyanobacteria as the 

primary architects of both ancient and modern stromatolites.  First, ancient stromatolites 

were most common in shallow marine settings, nowadays inhabited by light-dependent 

carbonate secreting organisms such as corals, foraminifera, or, more rarely, by 

stromatolite-building cyanobacterial communities.  Second, old stromatolites are 

occasionally similar to some modern cyanobacterial aggregates at a cm-to-dm scale.   

A more careful consideration of microbial diversity and the rock record suggests 

that processes and organisms that build modern stromatolites may not be an adequate 

analogue for the ancient structures.  For example, the oldest stromatolites (3.45 billion 

years old) appear before the first putative biomarkers for cyanobacteria, and certainly 

before the rise of atmospheric oxygen.  It is thus possible and likely that organisms 

performing anoxygenic photosynthesis built stromatolites even before oxygenic 

photosynthesis appeared on Earth [143].  As for the morphological similarity between 

modern cyanobacterial structures and some ancient stromatolites (e.g., [123, 124]), there 

are no mechanistic models that explain how either these organic or fossilized conical 

shapes are built, and whether they could be only built by photosynthetic organisms.  

Lastly, even the coarse lamina of modern stromatolites built by cyanobacterial trapping 

and binding of the sediment are in replaced by fine lamina formed by in situ precipitated 
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carbonate minerals as we go further back into the rock record.  The change in the 

mechanism by which stromatolites accreted is consistent with a higher supersaturation 

state of the oceans with respect to calcium carbonate. Modern highly supersaturated 

environments analogous to the Precambrian marine settings are mainly oxic, and 

dominated by cyanobacteria whose role in the precipitation of calcium carbonate 

minerals and the formation of modern stromatolites received considerable attention [49, 

115, 120, 144].  The contribution of potentially more relevant anoxygenic photosynthetic 

bacteria to the formation of ancient stromatolites is, however, poorly understood. 

 Anoxygenic photosynthetic bacteria use various inorganic and organic 

compounds as electron donors to inorganic carbon, many of which, such as iron(II), 

reduced sulfur compounds, and molecular hydrogen, could have been present on an 

anoxic early Earth before the rise of oxygen.  Eq. 1 and Eq. 2 describe photosynthetic 

growth with molecular hydrogen as an electron donor: 

2H2 → 4H + + 4e−          (3) 

HCO3
− + 4e− + 5H + → CH2O + 2H2O       (4) 

The photosynthetic uptake of inorganic carbon increases the concentration of carbonate 

ion (Eq. 3). 

2HCO3 ↔ CO3
2− + CO2 + H2O        (3) 

The increase in carbonate concentrations drives the precipitation of calcium carbonate 

(Eq. 4) because it increases the saturation index (SI) of calcite (Eq. 5). 

Ca2+ + CO3
2− → CaCO3         (4) 

SI = log [Ca2+][CO3
2−]

KS

         (5) 
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where Ks is the solubility constant of calcite.   

The increase in the concentration of carbonate ion and local pH changes induced 

by oxygenic phototrophs in modern freshwater and some marine settings can 

significantly stimulate the precipitation of calcium carbonate, because these environments 

are poorly buffered by DIC [145].  In contrast, the increase in the concentration of 

carbonate ion associated with photosynthesis is not predicted to have a large effect in the 

environments with a high concentration of DIC due to the large pool of inorganic carbon, 

and the strong pH buffering [52].  The growth of anoxygenic phototrophs on hydrogen as 

described by Eq. 1 and Eq. 2 results in the same net production of carbonate ions as 

oxygenic photosynthesis, and would be predicted to have the same net effect on the 

precipitation of calcium carbonate.  Here we investigate the influence of anoxygenic 

photosynthesis on in situ calcite precipitation in solutions that contain a high 

concentration of dissolved inorganic carbon (DIC) in a modeling and experimental study 

of Rhodopseudomonas palustris strain GCA009. 

 

Materials and Methods 

Growth Medium And Conditions. We used R. palustris strain GCA009 (from C. 

Harwood’s lab) as a model organism.  GCA009 was grown in modified, bicarbonate-

buffered photosynthetic medium, using an incandescent light bulb (75 W) as a light 

source.  The basal medium contained: 0.3 g/L (NH4)2SO4, 0.1 mM KH2PO4, 0.9 g/l KCl, 

0.4 g/l MgCl2, 0.1 mM Na2S2O3, 1 ml/L of 1g/L PABA, 1 ml/l concentrated base.  The 

concentrated base contains 20 g/L nitriloacetic acid, 28.9 g/L anhydrous MgSO4, 6.67 g/L 

CaCl2 • 2H2O, 18.5 mg/L (NH4)6Mo7O24 • 4H2O, 198 mg/L FeSO4  • 7H2O and 100 ml/L 
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of Metal 44 solution.  Metal 44 solution contains 2.5 g EDTA, 10.95 g ZnSO4  • 7H2O, 5 

g FeSO4  • 7H2O, 1.54 g MnSO4  • H2O, 392 mg CuSO4  • 5H2O, 250 mg Co(NO3)2  • 

6H2O, and 177 mg Na2B4O7  • 10H2O per 800 ml.  The medium was boiled under 

nitrogen, cooled under a mixed atmosphere of 80% N2 and 20% CO2, amended with 40 

ml of 1M NaHCO3 from sterile stock solution and left to equilibrate with an atmosphere 

of 80% N2, 15% CO2 and 5% H2 (adding to 1 atmosphere total) for at least one day.   The 

pH was adjusted by 10 N NaOH to 7.4 -7.5, and the medium was filter-sterilized by a 0.2 

µm filter and stored in the anaerobic glove box for at least a week before it was used in 

the experiments.  All the glassware used in the experiments was stored in the anaerobic 

glove box for at least a week before it was used in experiments.  Different light intensities 

were obtained by moving the cultures toward or away from the light (making sure that 

the temperature was constant).  The light intensities were measured by a dual-range 

lightmeter Traceable® by Control Company, Friendswood, Texas.  The growth rate at 280 

lux was measured by daily cell counts of DAPI-stained cells from triplicate tubes.  The 

growth rate at 580 lux was not measured, but we noted that the same optical densities at 

this light intensity were reached in considerably shorter time. 

Precipitation experiments.  Mid-exponential phase cells (cell density 1 x 108 cells/ml) 

grown photosynthetically on hydrogen were centrifuged anaerobically to remove the 

liquid phase.  The bacteria were inoculated into 2.5 ml of the fresh culture medium in 

triplicate sterile screw-capped glass tubes to a cell density of 1.4 x 108 and 1.4 x 109 

cells/ml (the latter corresponding to the early stationary phase cell density).  To 

distinguish between the influence of actively photosynthesizing cells and the influence of 

inactive cellular material on calcite precipitation, we inoculated triplicate glass tubes to a 
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cell density of 1 x 108 cells/ml and wrapped them completely in aluminum foil.  We 

added 2.5 ml of sterile culture medium to three glass tubes as sterile controls.  After 

inoculation, CaCl2 was added to sterile controls and cultures to 12 mM final 

concentration from a sterile 1M stock solution.  The glass tubes were incubated at 25°C 

and at the light intensity of 280 and 570 lux, respectively.  We determined the amount of 

precipitate by taking 120 �l samples every two days, filtering them anaerobically, adding 

100 �l of the filtrate to 10 ml of 1% HNO3 and measuring the calcium concentration by 

inductively coupled plasma mass spectrometry (ICP-MS) at the Analytical Facility at 

Caltech.  The alkalinity of the experimental solutions was determined by Gran-titration of 

10-ml aliquots using 0.8 M H2SO4.  Visual observations of the crystals in the 8-well 

LabTek® (NalgeNunc International) chambered culture dishes with coverslip bottoms 

confirmed that the decreasing calcium concentrations could be attributed to the 

precipitation of calcite crystals.  The crystals in each well were point-counted 

microscopically after four days.  The crystal structure of the precipitates was determined 

by X-ray diffraction using a Scintag diffractometer with Cu K� (�= 1.5405 Å). 

Precipitation in the reactors. Two identical 9 cm diameter, ~ 40 ml working volume 

sterile glass reactors containing sterile plastic chips were preincubated for a week in the 

anaerobic glove box under an atmosphere of 82.5 % N2, 15% CO2 and 2.5% H2.  The 

reactors were inoculated with 5 ml of a mid-exponential culture of GCA009 into 30 ml of 

the medium of the same composition as described above.  One reactor was set to receive 

580 lux, while the other was shaded down to 290 lux and the GCA009 biofilms were 

allowed to establish themselves for a week.  Two batches of the basal medium were made 

with the same composition of basal ions as described above.  One batch contained 20 mM 
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of CaCl2 from the 1 M anaerobic stock solution, but was not amended with NaHCO3 

from, while the other one was amended with 80 mM of sterile NaHCO3 from 1 M 

anaerobic stock solution and no calcium.  The solution containing CaCl2 was flushed with 

pure N2 and  the bicarbonate containing solutions was flushed with a gas mix containing 

80 % N2 and 20% CO2 for three days. The pH of the two solutions was then adjusted to 

7.4 and 7.8, respectively and they were filter-sterilized.  After one week of GCA009 

biofilm growth, the medium in the two reactors was removed completely and replaced by 

the 1:1 mixture of the Ca-containing and bicarbonate-containing media.  The plastic chips 

covered by biofilms and precipitates were removed weekly from both reactors and fixed 

in Karnovsky fixative after collection [90].  The cell density in each reactor was 

measured either by measuring the optical density at 470 nm by a spectrophotometer in 

aliquots of the cultures from the reactors, or by direct microscopic counts of DAPI-

stained cells.  15 ml aliquots of the culture medium from both reactors were used to 

determine the alkalinity of the solutions before each medium exchange by Gran-titration.  

The alkalinity of the replacement solution was determined each week in a 1:1 mixture of 

the Ca-containing and bicarbonate-containing  media. 

Geochemical modeling.  Chemical parameters such as supersaturation and concentrations 

of chemical components in the medium were calculated using MINEQL+ (Environmental 

Research Software).  We assumed a closed system and modeled the photosynthetic 

uptake of CO2 as the parallel uptake of total DIC and protons.  The model solution had 

basal ion concentrations equal to our freshwater culture medium (see above) and with 10 

mM CaCl2.  The pH of the model medium was adjusted by the addition of LiOH or 

HNO3.  Table 1 summarizes the composition of the medium as used in the modeling 
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studies. The calcite saturation constant used by the program is Ks = 10-8.48 and the 

software calculated the ionic strength of the medium from the supplied concentrations of 

the ions in the medium, adjusting the equilibrium constants accordingly.  The differential 

equation describing how the total carbon concentration depends on diffusion and 

microbial carbon fixation was numerically solved for different geometries using Partial 

Differential Equation Toolbox in Matlab (The MathWorks). 

 

Results 

Investigating the role of modern stromatolite-builders in solutions relevant for the 

Precambrian oceans, we established that calcite precipitation in high-DIC solutions was 

not driven by the metabolic activity of sulfate reducing bacteria, but was more consistent 

with the stimulation of calcite nucleation on microbial surfaces and extracellular 

components [8].  Chemical modeling indicated that hydrogen-based photosynthesis has 

the potential to stimulate the precipitation of calcite by taking up carbon dioxide even in 

high-DIC solutions (Figure 1).  We assumed the uptake rates of 1 mM and 5 mM of CO2 

per day (within the biofilm), consistent with the estimates of carbon fixation from 

modern-day hypersaline microbial mats1 [146] and lower than the > 10 mM of fixed 

C/day measured in pure cultures of photosynthetically grown Rhodobacter sphaeroides 

and  Rhodospirillum rubrum [147] and DIC-enriched modern microbial mats [148].  

Photosynthetically induced increase in the SI of calcite and the local decrease in DIC will 

depend not only on the biological rates of carbon fixation, but also on the actual physical 

 
1 The measured photosynthetic CO2 uptake rate was ~ 100 nm C/cm2/hr.  Assuming a ~ 1 
– 10 mm thick biofilm, this translates to a fixation rate of 1 – 10 mmoles C/L/day. 
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setting (Fig. 1B).  Generally, photosynthesis is more likely to stimulate calcite 

precipitation when the rates of carbon fixation are high, and the solution is not being 

reequilibrated with an external source of DIC by mixing (Fig. 1). 

 

Figure A1- 1 The effect of photosynthetic rate of carbon uptake on the SI of calcite and 

the total concentration of DIC in the solution.  A.   The increase in SI due to the uptake of 

1 mM  (blue rectangles) and 5 mM (pink squares) of DIC in a closed system at different 

initial pH values  (x-axis).  The solution before the carbon uptake is equilibrated with 

0.15 atm CO2 and its DIC content increases with an increasing pH.  An increasing DIC 

content increases the buffering and reduces the SI increase at higher initial pH.  B.  The 

concentration of total inorganic carbon (CT) after 25 hours of photosynthetic carbon 

uptake in a 2-D diffusion model.  We assumed a photosynthetic uptake rate q of 1 mM 

C/day (“1”) and 5 mM C/day (“5”), starting with a solution in equilibrium with an infinite 

reservoir of CO2 and initial alkalinity of 45 meq/L, and using D = 2x10-5 cm2/s as the 

molecular diffusion coefficient of CO2 [149].  The results are shown for two different 

geometries of the system: 1 cm tall x 8 cm long containers and 8 cm tall x 1 cm wide 

containers.  In both cases CO2 enters the solution from above (indicated by an arrow) and 
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the condition of no flux through the container walls is imposed on the remaining sides of 

the containers. 

 Although photosynthetic stimulation of calcite precipitation is not considered 

important in high-DIC shallow solutions [52], our initial visual observations revealed that 

the presence of GCA009 in the culture medium with an alkalinity of 51.9 ± 0.2 mM 

increased the number of calcite crystals by at least 5 times relative to sterile controls.  

The number of crystals also depended on the initial cell density of GCA009 (Figure 2).   
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Figure A1- 2 The average number of crystals (y-axis) observed after four days in the 

cultures of GCA009 inoculated at different initial cell densities (x-axis).  The number of 

crystals per field of view is the average from twenty fields of view from two independent 

wells in 8-well culture dishes.  The highest initial cell density (109 cells/ml) corresponds 
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to the early stationary phase culture, while all the lower cell densities correspond to 

exponential phase cultures. 

 
 Not only nucleation, but also the total amount of precipitate appeared to be 

stimulated in the GCA009 cultures.  We confirmed this by measuring the decrease in the 

total amount of calcium in the actively photosynthesizing cultures and sterile controls by 

ICP-MS (Fig. 3).  Our previous work showed that inactive sulfate reducers and their cell 

membranes could stimulate calcite precipitation to an equal, if not larger, extent as 

metabolically active cells.  To test whether GCA009 cells similarly acted as mere 

particles that stimulated calcite nucleation, or they metabolically stimulated the 

precipitation, we incubated them at two different cell densities, at two different light 

intensities (and, consequently, growth rates) and in the presence and absence of light 

(Fig. 3).  The decrease in the amount of total calcium in the solution was visually 

correlated with the appearance of crystals in the bacterial cultures.  The presence of 

GCA009 cells stimulated the precipitation relative to sterile controls, regardless of 

whether the cells were photosynthesizing or not (Fig. 3).  Metabolic activity still played a 

role, because the precipitation started earlier in dense active cultures (regardless of the 

light intensity), and appeared to proceed faster than the precipitation in the dark cultures 

(Fig. 3).  The crystals in the active cultures were larger and appeared less acicular than 

the crystals that grew in the dark cultures (Fig. 4).   
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Figure A1-3  Decrease in the total concentration of calcium in GCA009 growth 

medium.  Yellow triangles: 109 cells/ml initial cell density, incubated at 580 lux.  Blue 

circles: 108 cells/ml initial cell density incubated at 580 lux.  Red squares: 109 cells/ml 

initial cell density incubated at 280 lux.  Green triangles: 108 cells/ml initial cell density 

cultures wrapped in Al-foil incubated at the same distance from the light source as the 

yellow triangles and blue circles. Blue rectangles: sterile controls incubated in light at 

580 lux.  The calcium concentration was measured in triplicate samples from independent 

tubes.  
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Figure A1- 3 Transmitted-light micrographs of calcite crystals from the cultures of 

GCA009.  The scale bar in both parts is 200 µm.  A. Calcite crystals that grew in the 

presence of photosynthetically active GCA009 cells (culture bottles exposed to light).  B.  

Calcite crystals that grew in the presence of photosynthetically inactive GCA009 cells 

(culture bottles wrapped in aluminum foil).   

  Photosynthetically active GCA009 stimulated calcite precipitation in high-DIC 

solutions.  This finding is in contrast to our previous experiments, where the activity of 

sulfate reducers was not required for the precipitation of calcite in high-DIC and low-

sulfate solutions, and some accepted models for high-DIC settings [52].  Although the 

photosynthetic stimulation of calcite precipitation is not inconsistent with our modeling 

results (Fig. 1), the mechanisms responsible for this effect remain elusive.  Namely, an 

increase in the SI of at least 0.4 log units is required for calcite to precipitate in the sterile 

culture medium (i.e., in the absence of cells).  In a system that is not in contact with a 

CO2-rich atmosphere, this increase in the SI would be accompanied by a pH increase of 

more than 0.5 units.  However, active GCA009 stimulated calcite precipitation in loosely 
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capped tubes or wells were exposed to a large reservoir of CO2, and shaken vigorously at 

least once daily.  GCA009 cells stimulated the precipitation of calcite even in shallow 

cultures continuously stirred by a magnetic stir bar, opposite to the predictions shown in 

Fig.1.  Moreover, the pH in photosynthesizing cultures never increased by more than 0.02 

pH units (measured in the absence of calcium).  The absence of measurable pH and SI 

changes in the bulk medium raises two potential explanations of why GCA009 stimulates 

calcite precipitation.  Firstly, the pH and the SI might increase only locally, within ~ 30 

µ� ����� biofilms formed by ���� (Fig. 5).  We hope to address this hypothesis 

by measuring the pH within active GCA009 biofilms using microelectrodes.  Secondly, 

metabolically active cells can stimulate precipitation kinetically, by secreting 

extracellular compounds into the medium, or by taking up metabolites that kinetically 

inhibit calcite nucleation and precipitation (ammonia, phosphate, trace metals).  Both 

hypotheses are consistent with the previously observed changes of calcite morphology in 

sulfate reducing cultures that could be explained by the uptake of nutrients and the 

secretion of extracellular compounds within biofilms [9].  Similar processes at the 

horizontal and vertical scale of single cells and biofilms are often overlooked when 

measuring and modeling the properties of the bulk system (in our case, the culture 

medium in the entire tube). 

The increase in SI due to active photosynthesis is observed to lead to the 

formation of encrusted microbial cells only in low-DIC settings [52, 145].  Instead of 

being associated with microbial cells, calcium carbonate minerals in high-DIC settings 

are thought to be distributed randomly in the extracellular matrix [32].  Indeed, we found 

that the formation of large calcite crystals within either heterotrophic or phototrophic 
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cultures in high-DIC solutions did not seem related to the metabolically-induced changes 

in the saturation index (SI), and that the shape of the crystals did not reflect the shape of 

bacterial cells [8, 9].  However, the metabolically active photosynthetic cells significantly 

stimulated calcite precipitation even in the high-DIC background (Fig. 3).  The absence 

of mineralized cells in high-DIC solutions may thus not be due to the inability of cells to 

photosynthetically induce mineral nucleation and precipitation in high-DIC settings [52].  

More likely, the absence of mineralized cells is due to the large crystal size of the 

precipitates in our solutions (and in high-DIC solutions in nature, e.g., [119]).  Regardless 

of whether the crystal nuclei form on microbial cells or in the extracellular matrix, they 

grow into 10-100 µm large crystals that override the shape of the micron-sized single 

cells.  Therefore, the absence of mineralized cells may be a mere consequence of the 

formation of large crystals around a limited number of nuclei in a large pool of carbonate 

ions. 
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Figure A1- 4 Confocal image of a mid-exponential culture of GCA009, scale bar is 30 

µm.  The fluorescently stained cells (green) form �µm wide microcolonies and about 30 

µm thick biofilms.  The middle part of the image is the x-y plane at 10 µm from the 

bottom of the biofilm.  The red line and the red sidebox show the y-z section through this 

plane, and the green line and the green sidebox show the x-z section through the plane of 

the biofilm. 

The stimulation of calcite precipitation by active GCA009 biofilms can be used to 

address a simple hypothesis: whether different amounts of calcite crystals (Fig. 3) and 

their different sizes and morphologies (Fig. 4) caused by the temporal variations in the 

biomass and the cell activity could give rise to laminated structures.  The lamination of 

many ancient stromatolites is commonly interpreted using models based on the behavior 
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of modern freshwater and marine cyanobacteria [150].  Most of these models require the 

presence of calcium carbonate-encrusted or sediment-trapping large (tens of �m long) 

filamentous phototactic cyanobacteria, but it is unclear whether these organisms are 

required to produce lamination in sedimentary structures.  By exploring the textures 

created by much smaller, non-filamentous GCA009 cells we hope to add a previously 

uninvestigated class of organisms to the parameter space of microbial morphological 

influences.  By manipulating the cell density (Fig. 2) and the photosynthetic activity of 

GCA009 (Fig. 3) in calcite-precipitating cultures of GCA009, we hope to link biological 

processes to the amount of precipitate (Fig. 3) and the textures (Fig. 4) in the accreting 

Ca-carbonate crusts.  The morphological imprints of GCA009 biofilms (Fig. 6) in long-

term laboratory precipitates can be then compared and contrasted to the existing 

putatively cyanobacterial textures in the rock record. 
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Figure A1- 5 Confocal images of fluorescently GCA009 cells (green) that grew on the 

calcite crystals (red) in semi-continuous cultures.  The scale bar in both images is 30 µm.  

The central part of both images is the x-y section through the sample, and the side boxes 

are the y-z and the x-z sections, respectively.  A. One-week old 30 µm thick sample.  B.  

Two-week old 50 µm thick sample.  The interior of this sample appears darker because of 

the thicker layer of precipitate that cannot be penetrated by the fluorescent light. 
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