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Abstract

Ideally, processes to be controlled would behave in a linear manner so that well-
developed methods of linear control could be applied directly. However, environmen-
tal regulations and increased competition are forcing these processes to operate in
regions where the assumptions of linearity tend to break down. There has been a
great deal of recent academic interest in the control of nonlinear systems, but there
are relatively few applications of these methods in industry. One major reason may
be the lack of tools for developing models suitable for nonlinear control schemes.

A number of tools that can be used in the modeling of nonlinear systems for process
control are presented in this thesis. In the first section, the problem of determining the
proper regression vector size for black-box modeling is examined. The false nearest
neighbors algorithm (FNN) is suggested as a solution for this problem. Extensions,
analysis, and numerous applications of the FNN algorithm are given and the algorithm
is seen to be a useful tool in the identification of nonlinear models.

In the second section of the thesis, the problem of nonlinear model reduction for
systems exhibiting large time-scale separations is examined. A method of determining
the reduced order manifold of slow dynamics is outlined and it is proved that this
algorithm identifies the proper manifold. Some thoughts on how the results of the
algorithm can be used for developing reduced models are presented.

In the third section, the concept of data-based control is introduced. This method
of control attempts to utilize process data directly through local modeling techniques.
Some preliminary work in this area is given for trajectory tracking and computing
controllable sets and data-based control is successfully applied to an experimental
electrical circuit. Finally, some thoughts on possible future work in this field are

presented.
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Chapter 1 Introduction

In order to apply any method of control design more advanced than trial and error,
a suitable mathematical model of the process to be controlled is needed. Preferably,
the model of the process to be used in controller design should be both accurate
and compact. The model needs to accurately describe the dynamics of the system
because the controller will be designed to meet certain performance specifications
using this model as a reference. If the model does not capture the dynamics of the
process correctly, there may be problems when the controller is implemented on the
physical process. While robust control methods can allow controllers to deal with
small amounts of plant/model mismatch, better performance can be achieved if a
more accurate model of the process is developed.

On the other hand, controller design may become difficult or computationally
impossible for mathematical models which are too large or too complicated. This is
especially true for nonlinear systems where controllers are commonly developed using
algebraic manipulations or nonlinear optimizations. Models developed for control
purposes have very different requirements than those used for simulation studies.
Models developed for simulation studies are designed to be highly accurate, often
sacrificing computational simulation speed for dynamic accuracy. Models developed
for control purposes need to be of a size and complexity such that they are useful for
control design algorithms.

Notice that a tradeoff exists between the two requirements of accuracy and com-
pactness. A large model, if designed correctly, will always be as accurate or more
accurate than a smaller model. Models which are best suited for controller design are
known as parsimonious models (Soderstrom and Stoica, 1989). This means that the
model should be the smallest one which accurately describes the dynamic behavior
of the system.

Mathematical models of physical processes are commonly developed in two dif-
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ferent ways: first-principles modeling and black-box identification. First-principles
models are developed by modeling the fundamental physics of the process (conserva-
tion laws, chemistry, etc.) in order to describe the dynamics of the system. In order
to develop first-principle models, an expert’s understanding of the physical behavior
of the process and the fundamental laws needed to model the system is needed. When
properly designed, these models tend to represent the dynamics of a system extremely
well. However, these models can be very large and reducing the model based solely
on the physical understanding of the problem can be difficult or impossible.

On the other hand, black-box models are developed using identification techniques
which don’t require any physical understanding of the process. Instead, experiments
are performed to produce dynamical data for the system of interest. After these
identification experiments, a model is found directly from the experimental data.
The first systematic method of identification for linear time-series was proposed by
Box and Jenkins (1970). Current method of identification for input/output systems
build directly on these methods.

The first step in black-box modeling is determining the model structure to be
used. Once the structure is determined, the parameters associated with that specific
structure are found and a model is developed. By restricting the model structure to
be of a certain size, the best model associated with that structure and complexity can
be found. For this reason, restricting the complexity of black-box models is relatively
easy.

Black-box modeling also has a number of drawbacks. Black-box models have a
limited range of validity. For many systems, it is impossible to describe the dynamics
outside of the limited region where dynamical data from the process is available.
The data may also contain significant amounts of noise which must be accounted for
during the identification process. In addition, little physical insight into the process
dynamics is gained from black-box modeling when compared to building models based
on first-principles. This may be important since a physical understanding of process
dynamics may be helpful in controller design.

The black-box identification of linear models is a well-studied problem, and there
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are a number of good detailed references which provide a systematic framework for
developing linear models (Ljung, 1987; Séderstrom and Stoica, 1989). There are also
a number of computational packages available for performing linear identification
(e.g. Ljung (1986)). Linear identification methods have traditionally worked well in
conjunction with linear control methods. However, there is a drawback to these linear
methods.

While a linear model may be accurate for a certain operating region, the majority
of real world processes exhibit nonlinear dynamics. In the past, processes were able
to operate a small operating region where the system behaves in a linear fashion.
However, increasingly strict environmental regulations and economic pressures are
forcing processes into operating regimes where the assumption of linearity break down
and tools for nonlinear identification and control are needed. While there has been a
great deal of work in the control of nonlinear systems, relatively few applications of
these methods have been published in the literature. One major reason may be the
lack of suitable models for nonlinear control.

A possible solution to two common problems encountered when forming nonlinear
models for control purposes is presented in this thesis. Additionally, a new method
for the control of nonlinear systems which utilizes local modeling is introduced. A

list of the important questions addressed by this thesis follows:

e What is the proper “model order” of a nonlinear black-box model?
When performing system identification, the proper model structure needs to
be determined. Part of determining the proper model structure is determining
the number of terms to be included in the regression vector. Only after the
model structure has been specified can the parameters of the given model be

determined.

In order to be certain that the model is parsimonious, the smallest number of
terms should be included in the regression vector that allow an accurate model
to be developed. The false nearest neighbors (FNN) algorithm will be used as a

tool for determining the proper dimension of a regression vector when forming
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models for process control. The algorithm uses a simple geometric criterion for
determining the proper embedding dimension, and as a result a global model

of the dynamics is not needed for solving this problem.

In this thesis, the FNN algorithm will be applied for the first time in the analysis
of input/output time-series. The FNN algorithm has also been extended for
inferential measurement selection in nonlinear systems. Problems associated
with the analysis of noise corrupted time-series have also been discovered. These
problems are illustrated and an extension to the algorithm is proposed to correct
these problems. Numerous examples are presented in order to show how the

FNN algorithm can play a useful role in nonlinear identification.

How can an accurate, but complex nonlinear model be reduced in a
way such that the “important” dynamics are preserved? While first-
principle models can provide an accurate dynamical descriptions of a process,
often models designed in this manner will have a description which is too large
for nonlinear control design tools to be utilized. For linear systems, a number
of methods exist for performing model reduction. The goal of model reduction
is to form a model which matches dynamics of the complete model as closely

as possible in a smaller description.

For nonlinear systems, little work in the field of model reduction has been
published. A method of model reduction will be proposed for nonlinear systems
which exhibit dynamics on different time-scales. For control purposes, the fast
dynamics of such system may not be important if they are stable. By using
model reduction to “truncate” the fast dynamics, a smaller description of the

dynamics which are important for control purposes can be developed.

In this thesis, a method of identifying the reduced order manifold of slow dy-
namics in the state-space will be presented. The method, which was originally
developed for combustion problems, will be justified rigorously for the first time.
This justification results from a change of coordinates known as Fenichel coor-

dinates. In addition, some new ideas on how the results of this algorithm can
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be used for forming reduced models will be introduced.

e Is it possible to utilize local models to perform “data-based control”?
Traditionally, controllers are designed by using a global model of the process
dynamics. First, an identification experiment is performed where data are col-
lected. With these data, a model of the system is built using the black-box
methods described earlier. Once a model of the system is found, a controller is
built to meet certain performance specifications for that model. The last step

involves the implementation of the controller on the actual process.

However, a new class of “local models” have been successfully applied to chaotic
time-series prediction. This new class of models does not utilize a single global
model. Instead, a number of locally valid models are built using data which
are in the “local neighborhood” of interest. In order to build a model, the
identification data are searched for data which are close to the dynamical region
of interest. After the neighboring data are found, simple models which are valid

only locally can be built and used for prediction.

In this thesis, the first steps in developing a control scheme based on these local
models will be introduced. Instead of a global model, the control scheme relies
upon the identification data and local models to determine the appropriate
control move. In this new framework, an identification experiment would be
performed and the controller would use the identification data directly. Forming
a global nonlinear model from the identification data is not necessary. By
utilizing large amount of identification data rather than a global nonlinear model
which approximates the identification data, it is hoped that better results can
be achieved. Some preliminary studies and thoughts for the future of this area

are presented.

An overview of this thesis
The thesis is organized into 3 major parts. In Chapters 2-5, the problem of model
order determination in nonlinear black-box identification is discussed and the false

nearest neighbors (FNN) algorithm is presented as a solution. Chapter 2 gives an
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introduction to the problem and Chapter 3 reviews the major theoretical work in the
area of time-delay embedding which motivates the FNN algorithm. Problems which
can arise when using the FNN algorithm due to noise corruption are illustrated in
Chapter 4 and a new threshold test is presented to solve these problems. The applica-
tion of the FNN algorithm to the problems of input/output time-series identification
and inferential measurement selection is presented in Chapter 5.

In Chapter 6, the problem of nonlinear model reduction is introduced. Systems
which exhibit time-scale separation are discussed in this section, and singular per-
turbation theory is used to motivate the specific model reduction problem that will
be considered. A method of identifying the reduced dimensional invariant manifold
associated with time-scale separation is presented and it is shown rigorously that this
method identifies the proper manifold. Examples are presented, and some thoughts
on how this method can be used to determine low-order models are given.

Chapters 7-10 introduce the concept of data-based control. An introduction to
some background material which motivates these data-based methods is presented in
Chapter 7. A method of computing controllable sets using a data-based framework
is presented in Chapter 8. A simple algorithm which uses data-based control ideas
is given in Chapter 9, and the algorithm is applied to a number of examples in an
offline manner. An overview of research for the future in data-based control is given
in Chapter 10, along with a sketch of how these methods could be used for control.

Finally, an overall summary and list of suggested future work in the general area

of modeling and identification is presented in Chapter 11.



Part 11

Model order determination for

nonlinear systems



Chapter 2 Introduction

2.1 Motivation

In order to use standard tools for controller design, first a suitable model of the process
needs to be developed. While it is always preferable to use physical knowledge of
the process, in some cases building models from first-principles is not practical. One
reason is that first-principle models of chemical processes can be very large. Complete
models based on physics consisting of hundreds of states are not uncommon for many
chemical processes. For example, the simplest model of a distillation column consists
of a single ODE for each tray. More complex models consist of numerous ODEs per
tray. Since it is not uncommon to have distillation columns with hundreds of trays in
industry, it is easy to see that models of columns developed in this way will have a high
dimension. While models of this size may not be problematic for simulation, current
methods of nonlinear control are not equipped to deal with such large descriptions.
A second reason that physical models may not be sufficient for control purposes is
that there may be effects which are either difficult or impossible to account for in the
physical modeling process. Examples of this for a distillation column example include
unmodeled reactions, incomplete mixing, and unmodeled thermodynamic effects.
For these reasons, in some situations it is necessary to use nonlinear “black box”
identification methods to develop a model of the process dynamics. Recently, there
has been a great deal of work examining the black-box identification of nonlin-
ear systems using input/output data. A good overview of the work in this field
can be found in Sjoberg, Zhang, Ljung, Benveniste, Delyon, Glorennec, Hjalmars-
son and Juditsky (1995). While most of the recent work has focused on utilizing
neural networks, other recently published works have examined nonlinear ARMAX
model structures (Chen and Billings, 1989), radial basis functions, wavelets, hinging

hyperplanes (Beiman, 1993), and multivariate adaptive regression splines (MARS)
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(Friedman, 1991).

The common focus of all these works is determining and approximating the func-
tional relationship between a regression vector and an output vector. In other words,
a set of observed regressors 9 (t) for ¢ = 1... N and observed outputs y(t) related
to that regression vector are given. All these methods attempt to find a functional

relationship

y(t) = Gy (t)] (2.1)

which minimizes some error function E which is often of the form

E =} Errly(i) - Gy(i)]] (2.2)

i=1

where Err is typically some norm operator. Commonly, the regression vector for
single-input/single-output systems consists of delayed versions of the input and out-
put.

Y(t) = [yt —7),y(t —27),...,ylt = Ir),u(t — 7),...,u(t — m7)] (2.3)

While many works focus on ways of parameterizing and determining the optimal
function G, there is relatively little work on determining the proper form of the
regressor 1 for nonlinear systems. Specifically, in nearly all of these studies the
number of delayed terms in the regression vector (I and m) is assumed to be known.
The function G is then estimated using the observed regressors and outputs of the
time-series. If the differences between the values of the approximated function G[v(t)]
and the actual output y(¢) are large, there could be two sources of the error. The
first is an estimated function G which does not do a good job of representing the
relationship between the regressor and the output. The second possibility is the
regressors 1(t) simply do not contain enough information to accurately predict the
future outputs. If the prediction error is large, it is impossible to tell from the output
of these commonly utilized algorithms whether the source of the error is incorrect

functional approximation or a regression vector which does not contain enough terms
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In the identification of linear systems, determining the exact source of the error
is not a problem. Due to the linearity of the system, choosing the regression vector

is the only critical step since the functional relationship is defined by linearity as

y(t) = ay(t —7) + -+ ay(t = Ir) + byu(t — 7) + - - + bpu(t — m7). (2.4)

Since computing the unknown parameters in these linear models involves relatively
little computational time (an ordinary least-squares problem), determining the proper
regression vector involves computing the optimal linear model for various regression
vectors and using some function (such as AIC or F-Test) to determine when the
error no longer significantly decreases with respect to the complexity resulting from
additional terms (Soderstréom and Stoica, 1989).

For linear models, the error associated with a given model will decrease with
an increasing number of parameters. The decrease in error is then weighed against
the complexity associated with a larger model. The Akaike information criterion
(AIC) is a well-known method of model order determination for linear identification

(Soderstrom and Stoica, 1989) defined as

AIC = NlogV(0) + 2p (2.5)

where N is the number of training data, V' (6) is the error associated with a given
model, and p is the number of parameters in the model. The optimal model order is
then determined by minimizing the AIC.

While there has been some work in utilizing these types of information criteria
for nonlinear systems, these types of methods are often infeasible since nonlinear op-
timizations typically require large amounts of computational effort. In addition, it is
very difficult to guarantee that the parameters of the nonlinear model will converge

to an optimal solution. The proper function G from Equation (2.1) needs to deter-

'The MARS modeling scheme is the one exception. The algorithm “trims” away terms in the
regressor which do not significantly reduce the prediction error.
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mined. If G is not of the proper form, it is impossible to determine the minimum
error associated with a given model order. It is also difficult to determine the minimal
error associated with a given model order in the case where computing the parameters
associated with a given structure is a nonconvex problem. In that case, it may be
impossible to ensure that the optimal solution has been found.

For nonlinear systems, it can be argued that it would be preferable to break
the identification process into two distinct parts. First, the proper regression vector
should be determined. The proper regression vector should contain only those terms
needed to accurately predict the output. Once the proper regression vector is deter-
mined, then the functional relationship between the regressor and the output can be
estimated.

While there is extensive work in determining the proper regression vector for lin-
ear systems, relatively little work exists in the field of nonlinear systems. A method
based on geometric ideas for determining the proper dimension for the regression
vector called the false nearest neighbor algorithm (FNN) will be presented here.
This method was first developed for the analysis of self-driven chaotic time-series
(Abarbanel, Brown, Sidorowich and Tsimring, 1993; Abarbanel, 1996), but in this
thesis extensions of these methods for input/output data, inferential systems, and
noise-corrupted time series will be presented.

Another approach to the model order determination problem for nonlinear sys-
tems is the statistical approach of (Poncet and Moschytz, 1994). In this method, an
estimate of the optimal prediction error is found. This is done by forming regression
vectors ¥,(¢) = [y(t — 7),...,y(t — I7)] from the data for a given dimension /. The
optimal prediction for y(¢) from the regressor W;(¢) is given by the conditional expec-
tation go(¥;(¢)) = E(y | ¥; = ¥,(¢)). The lower bound of the prediction error in this
framework is then o7 = Var(Y | ¥;) which is the conditional variance. This variance
can be estimated by the quantity 67(¢) = E[3(y(t) — y(t'))? | [|¥:(t) — ¥,(¢)]] < €.
This is simply the variance of the outputs for regression vectors which are within some
prespecified distance in the regressor space. By analyzing the average of §? over the

regression space, an estimate of o} is found. When 62 () fails to decrease significantly
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as a function of increasing dimension [, the prediction error no longer decreases with
increasing dimension and the proper regression vector is found.

A third method is similar to the AIC, however it is used to identify the proper
dimension of hidden Markov models (HMM) (Finesso, 1990). This is a special type of
model which the output is assumed to be a function of a Markov sequence. However
in order to compute the information criterion off this method, a model of the process
needs to be computed for each dimension of interest. This may be problematic because

of the computational time associated with forming these models.

2.2 Theoretical background

Mathematical models of processes to be control often take the following form

T = f(z,u) (2.6)
y = h(z) (2.7)

where z € R" is the state vector of the system, u is a controlled input, and y is a
measured output. While models arrived at by first-principles can do a good job of
representing the major features of the dynamics of physical systems, the dynamics of
the mathematical model and the actual physical system can be quite different. This
can be the result of unmodeled dynamics and/or errors in the parameters contained
in functions f and h. Since it may not be possible to measure all the states because of
either economic or physical limitations, determining the unknown parameters of the
model (Equation 2.6) can be difficult. In addition, there may be unmodeled dynamics
of the system.

For these reasons, it may be desirable to compute a model of the system dynamics
directly from input/output data of the physical system. In mathematical terms, a

mode] of the form

y(t) =Gyt —7),y(t = 27),...,y(t = lr),u(t — 7),...,u(t — m7)] (2.8)
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should be found where 7 is the sampling time of the system. A few interesting
questions arise naturally from this discussion. Assume the system to be modeled is
known exactly (say it is Equation 2.6) and the controlled input (u) only changes at

the sampling times of the system.
1. Does a representation in the form of Equation 2.8 exist?

2. How many delayed terms (I and m) are needed to represent the input/output

dynamics of Equation 2.6 if the size of the state-space is known (z € R"™)?
3. Can the function G be determined directly from the functions f and A?

If the functions f and h are linear, the answers to these questions are known.
An equivalent representation of the input/output dynamics does exist, and a number
of terms [ = m = n is sufficient to represent the input/output dynamics of the
system described by Equation 2.6. In addition, for linear systems the function G
can be determined exactly from the functions f, h, and the time delay 7 using the
z-transformation (Franklin, Powell and Emami-Naeini, 1986).

When the functions f and h are nonlinear, the answers to these questions are not
as simple. The well-known results for linear systems are based strongly on the linearity
of the system. Specifically, the term G can be calculated because the dynamics are
invariant with regards to the location of the trajectory in the state-space of the system.
For nonlinear systems, computing the function G from f and h is impossible (using
current methods) except in trivial cases. For this reason, different methods must be
utilized. While the methods used to solve these problems will be discussed in detail
in Chapter 3, a short introduction will be given here.

To get some insight into the problem, first the case of autonomous (self-driven)
systems will be examined. The following question was first studied in the analysis of

chaotic time-series. Given the following system

z = f(z) (2.9)
y = h(x) (2.10)
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where x € R", it was shown by Takens that the output at any point in time can
be generically written as a non-linear function of time-delayed versions of that same

output (Takens, 1981). In other words, there exists some G such that

y(t) =Gyt — 1), y(t — 27),...,y(t —I7)]. (2.11)

Additionally, it was shown by Takens that [ > 2n is a sufficient condition for this
relationship to exist. The proof is based on the Whitney embedding theorem of
differential geometry which states that any £ dimensional manifold can be embedded
in the space #%*1 (Guillemin and Pollack, 1974). Takens showed that an embedding
exists between the state-space of the original system and the time-delayed version of
the system. Since an embedding is a nonlinear one-to-one relationship, the original
state-space dynamics also exist in the delayed coordinates. These ideas were later
extended by another set of authors (Sauer, Yorke and Casdagli, 1991) to a slightly
more general result and a separate result relevant to inferential prediction which will
be discussed in Section 5.5.

For input/output systems, a similar result to that of Takens was first suggested
by Casdagli (1992). In this paper, a brief outline of the methods needed to prove
an embedding theorem for nonlinear systems was given. For discrete time systems,
these results were recently formalized by Poncet, Poncet and Moschytz (1995) using
the methods outlined by Casdagli. In this paper, it was shown that n + 1 delayed
versions of the input and output is a sufficient condition to represent the dynamics of
a system with n states under standard assumptions such as state observability. While
a formal proof does not yet exist for continuous time systems, the results should be
similar to the discrete-time result.

While these results are interesting from a mathematical perspective, they are little
help when it comes to identifying the number of delay terms needed to model a system
from input/output data. For reasons of parsimony, it is preferable to determine the
smallest possible number of delay terms needed to represent the dynamics. In most

identification problems, the dimension of the system generating the time-series is
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unknown. In addition even when the dimension of the state-space system is known a
priori, there may exist a smaller representation of the dynamics (since the condition
is sufficient and not necessary). For these reasons, there is a need to determine the
proper “dimensionality” of the system in the time-delay description directly from

input/output data.
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Chapter 3 A review of embedding

theorems for nonlinear dynamical systems

3.1 Introduction

As the study of chaotic systems progressed, scientists wished to perform experiments
to validate numerical simulations which showed the existence of strange attractors
in order to be certain that these phenomena occur in physical systems. However,
one major difficulty encountered when experimental studies were performed is that
it is impossible to accurately measure all the states of the physical system. Many of
the experimental studies designed to validate chaotic simulations were in the field of
fluid mechanics. In order to measure all the states for a system, numerous physical
properties of the fluid at a single point would have to be accurately determined which
is physically impossible. On the other hand, in simulations this is not an issue since
all of the states are computed as a function of time during the simulation process.

In order to solve this problem, experimental researchers needed to find a method
of “recreating” the state-space variables without actually measuring all of the states
of the system. While there was initially some hope that the power spectrum of
the data could be used to confirm the presence of strange attractors (Ruelle and
Takens, 1971), it was soon seen that information from the power spectrum could not
be used to “reconstruct” the strange attractor (Takens, 1981). In order to recreate
the state space a different method which utilized a single output of the experimental
system was needed.

Another possible method of reconstructing the state space dynamics was then
developed by researchers at University of Santa Cruz (Packard, Crutchfield, Farmer
and Shaw, 1980). The idea behind this method was to approximate a number of the

derivatives of a single state by using a finite difference method. The first derivative
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is approximated by

~

dt Ts

Higher order derivatives can be approximated in the same fashion by including more
delayed terms of the same output. Each derivative of higher order would include
another delayed term. From these approximations of the derivatives of a single state,
researchers believed that there might be some connection to the original states defined
by the differential equations producing the behavior.

Instead of approximating the actual derivatives, the group at Santa Cruz used
the delayed terms themselves to form a new set of coordinates to create a new space
where the dynamics take place. This new [-dimensional coordinate system is defined

as

$(t) = [y(®),y(t = 75),...,y(t = (I = 7). (3.2)

The relationship between these “time-delayed” versions of the single output y and
the original state space which defines the dynamics is unknown. However as long
as a relationship exists between these two sets of coordinates which is smooth, it
was hypothesized that structures which appear in the original state space coordinates
would persist in these new coordinates.

Remember that it is possible to predict the future behavior of an autonomous
system by making an accurate measurement on the state of the system when the state
space dynamics are known. If the relationship between the state-space coordinates
and the “time-delay” coordinates is smooth and one-to-one, it should be possible to
predict the future behavior of the system from the time-delay coordinates. This is one
reason why the existence of a smooth mapping between state-space and time-delay
coordinates is so important to researchers.

For linear systems, this relationship between state-space and discrete-time in-

put/output descriptions is well-known. The input/output dynamics of system

z = Az + Bu
y = Cz (3.3)
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where £ € R*, y € R, and u € R can be represented by
y(t) =ary(t — 1) + -+ ay(t —n) + byu(t ~ 1) + - - + byu(t — n) (3.4)

where a; and b; are linear coefficients that are computed from A, B, and C and
the sampling time of the system. The transformation between the continuous-time
and discrete-time dynamics is known as the z-transform in the control literature
(Franklin et al., 1986). The z-transformation relies heavily on the linearity of the
original system. For systems which exhibit nonlinear dynamics, different tools are
needed to prove similar final results. In order to understand these results some basic

knowledge from differential geometry is needed.

3.2 Mathematical background

In this section, some mathematical tools from differential geometry are presented.
These tools are utilized extensively in proving the embedding theorems which will
be presented later. A majority of the background in this section is also given in
Guillemin and Pollack (1974).

A fundamental structure of differential geometry is an object called a manifold.
Manifolds are simply surfaces which locally look “just like a small piece of Euclidean
space” (Guillemin and Pollack, 1974). Common examples of manifolds include the
surface of a sphere or cylinder. An example of a surface which is not a manifold is a
pyramid since the vertices of the pyramid do not look locally like a plane.

In order to formalize the definition of manifolds mathematically, a mapping called

a diffeomorphism is used.

Definition 3.2.1 A smooth map f : X — Y of subsets of two Euclidean subspaces is
a diffeomorphism if it is one-to-one and onto and if the inverse map f~1:Y — X

1 also smooth.

Using the diffeomorphism, the definition of a manifold can be given.
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Definition 3.2.2 If X is a subset of a Euclidean space R", then X is a k-dimensional
manifold if it is locally diffeomorphic to R*.

This means that for all points on X, there exists a diffecomorphism which maps the
local neighborhood of X to an open set Y C R*.

For a smooth map f : X — Y, the derivative mapping at a point z where
y = f(x) is given by df, : T,(X) — T,(Y). The derivative mapping is a mapping
between two tangent spaces (T,(X) and T,,(Y)). If dim X < dimY and the mapping
dfe : T,(X) — T,(Y) is injective, f is said to be an immersion at x. This means
that the matrix df, is full rank when evaluated at . When f is an immersion for all
points, it is simply called an immersion.

However even for cases where f is an immersion, it may not be a diffeomorphism.

Take the mapping which twists a circle into a figure eight given in Figure 3.1. The

Q twist
—

Figure 3.1: An immersion which is not a diffeomorphism

mapping is not a diffeomorphism (and the figure eight is not a manifold) since the
mapping is not one-to-one in the neighborhood where the figure eight intersects itself.
Another problem can arise even when the mapping is one-to-one. Take the mapping

given in Figure 3.2. In this case, the inverse of the mapping is no longer smooth in

R twist

—

Figure 3.2: An immersion which is one-to-one and not a diffeomorphism

the neighborhood where the mapping nearly intersects itself.
A map f : X — Y is called proper if the preimage of all compact sets in YV
is compact in X. A immersion which is both injective and proper is known as an

embedding. When X is a compact manifold, an embedding is simply a one-to-one
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immersion. Using this definition of an embedding, the following theorem can be

stated.

Theorem 3.2.1 (Guillemin and Pollack (1974)) An embedding f : X — Y maps
X diffeomorphically onto a submanifold of Y.

This states that a manifold can be represented by a smooth change of coordinates as
a submanifold in an equal or higher dimension.

In the case of time-delay embeddings, the mapping is defined by delayed versions
of the output. Since it can’t easily be determined if this mapping is an embed-
ding, it would be promising if some results that suggested an embedding between the
state-space and the time-delay coordinates might exist. In this case, the Whitney
embedding theorem is promising since it states that an embedding exists which maps

a manifold into a higher dimensional Euclidean space.

Theorem 3.2.2 (Whitney Theorem (Guillemin and Pollack, 1974)) Every k-

dimensional manifold embeds in R2*+1.

From this, it is clear that it possible to embed any manifold in a Euclidean space of
high enough dimension.

The geometric reasoning behind the Whitney embedding theorem is best explained
in a review by Abarbanel (Abarbanel, 1994). In a space of dimension d, a subspace of
dimension d; and another subspace of dimension ds generally intersect in a subspace
of dimension diptersect = d1 + do — d. If dingersect < 0, then the two subspaces will
not intersect in general. Now assume the two subspaces have the same dimension
as the manifold to be embedded (k). When the manifold is embedded in a space of
dimension d, then the manifold should not intersect itself in general when d > 2k.
If the manifold happens to intersect itself when d > 2k, a small perturbation to the
manifold will get rid of the self-intersection.

An example of this self-intersection can be seen by embedding the one-dimensional
manifold given in Figure 3.3. According to the Whitney embedding theorem, a space

of dimension d > 2 is needed to embed the manifold. In R2, the manifold intersects
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R? R3

Self-intersection

Self-intersection

Small perturbation
No self-intersection

Figure 3.3: Self-intersections for a one-dimensional manifold

itself in a set of dimension 2k — d = 0. Even when the embedding is perturbed,
the self-intersection remains. In R3, in general there will be no self-intersections.

However, when there is a self-intersection it is removed by a small perturbation.

3.3 The original theorems of Takens

The paper of Takens (1981) is the first work which rigorously justified the use of time-
delay coordinates in the analysis of autonomous systems. Specifically, in this work
a sufficient condition is given for representing the dynamics of a state-space system
in time-delay coordinates. This condition states that, for a state-space system of
dimension n, that [ > 2n is a sufficient condition for representing the dynamics of
the system. In order to see how these results are derived, the work of Takens will be
outlined here.

Takens work focuses on dynamical systems with a single observable. The dynamic
system is defined as a diffeomorphism ¢ on a manifold M. The diffeomorphism
¢ : M — M, maps M to itself and defines the evolution of the dynamical system.
The future position of an initial position zy € M at time ¢ is given by ¢;(z). For

discrete-time systems ¢t € A and ¢; = (¢)°. For continuous systems ¢ € R and ¢;(zo)
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is defined by the integral curve through z,. If the dynamical system is described by
a set of ordinary differential equations, the manifold M C R* where n is the number
of states in the description.

The single observable is a scalar measurement on the state of the dynamical sys-
tem. The observable is given by y : M — R. Takens then defines the following
problem. If the observable is known as a function of time (¢t — y(¢;(x))) for a dy-
namical system, what can be learned about the original dynamical system? The first

clues to answer this question are stated in Theorem 1 of Takens’ paper.

Theorem 3.3.1 (Takens (1981) Theorem 1) Let M be a compact manifold of di-
mension n. For pairs (¢,y), ¢ : M — M a smooth diffeomorphism andy: M — R a
smooth function, it 1s a generic property that the map ¥4, (x) : M — R defined
by

Vs (@) = [y(2), y(6(2)), - .., y(¢*(2))] (3.5)

s an embedding.

The proof of this theorem relies on the fact the covectors dy,, d(yd)q, . . ., d(y¢*™),
will generically span the tangent bundle T} (M) of the manifold for pairs (4, y) or pairs
(¢,7) which are arbitrarily close to the pair (¢,y). If the covectors span T*(M),
then the mapping ¥, is an immersion. This means that the Jacobian of the
map VY, (z) is full rank for all z € M and ¥, is an injective mapping. From
this it can be shown, in a method similar to that given by Whitney (1936), that
Uip () : M — R*F! (or any generic map from M — R?"*1) is an embedding.

In a similar manner, similar results are found for continuous systems.

Theorem 3.3.2 (Takens (1981) Theorem 2) Let M be a compact manifold of di-
mension n. For pairs (X,y), X a smooth vector field and y a smooth function on M,

it is a generic property that U(x ) : M — R defined by

Vixy () = [y(2), y(1()), ..., y(d2n(2))] (3.6)

s an embedding where ¢, is the flow of X.
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It is also shown in Theorem 3 of Takens (1981) that the map

d2n

Uixy (@) = [y(@), L(y(¢u(2))), - ., 25w (y(é¢(2)))] is an embedding.

Since these mappings are embeddings, this implies that there is a one-to-one
relationship which is an immersion between the original state space dynamics and the
new coordinates (Guillemin and Pollack, 1974). Since the change of coordinates is
smooth and nonlinear, it expected that it should preserve the properties of the original
state space dynamics. Since a given initial condition in the state space uniquely
determines the state trajectory for the future and the map ®(x) defining the time
delay coordinates is an embedding, it is expected that one should be able to predict
the future outputs of the system in the time-delay coordinates. Mathematically this

means that there exists some F such that
y(t+1) = Fly(t),y(t - 1),...,y(t — 2n)]. (3.7)

While this result was not presented explicitly, the implication of Takens (1981) was

clear to researchers in the area.

3.4 Extending the work of Takens for autonomous
systems

The paper of Sauer et al. (1991) extends the results presented by Takens in a number
of important ways. The embedding mapping which was shown to be “generic” in the
paper of Takens is shown to be found with “probability one”, and the manifold M is
replaced by what may possibly be a fractal set. Bounds are also put on the dimension
of the self-intersecting set when the number of time-delay coordinates is too small.
In addition, it is shown that filtered versions of the time-delay coordinates define an
embedding of the state space dynamics.

In the proofs of Takens, the generic condition shows that every function which
forms the time-delay coordinates is either an embedding or is arbitrarily close to an

embedding. It can also be said that the set of functions which are embeddings are
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“dense” in the function space. While this may seem like a very strong condition,
there are examples of sets which which are open and dense but are thin in terms of
probability. In Sauer et al. (1991) Arnold tongues are presented as an example of a
set which is dense, but one for which the probability of landing on the set is small.
When performing experimental studies, one would like to know that a given mea-
surement function will produce an embedding with probability one. For this reason,

a stronger statement of the Whitney embedding theorem is presented.

Theorem 3.4.1 (Whitney embedding prevalence (Sauer et al., 1991)) Let M
be a compact smooth manifold of dimension n contained in R¥. Almost every smooth

map R* — R s an embedding of M.

In addition, the results of the Whitney embedding theorem are extended to sets

which are not manifolds. By defining the box-counting dimension of a set A € R* as

boxdim(A) = lim log N(e) (3.8)

e—0 —loge

where N(¢) is the number of boxes which intersect the set A for a grid of k-dimensional
boxes with size €. Using this definition, a less conservative condition can be found

which guarantees that the mapping is an embedding.

Theorem 3.4.2 (Fractal Whitney embedding prevalence (Sauer et al., 1991))
Let A be a compact subset of R of boz-counting dimension d, and let | be an integer

greater than 2d. For almost every smooth map F : R — R,
1. F is one-to-one on A

2. F 1is an immersion on each compact subset C of a smooth manifold contained

in A.

Since any one-to-one immersion is an embedding, this shows that the mapping from
A to R! is an embedding for [ > 2d.
The previous two extensions to Whitney’s embedding theorem only consider the

case where a number of independent measurements are being made simultaneously
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on a dynamical system. Of more interest to experimental researcher is the case where
time-delay embeddings are utilized, similar to the results of Takens (1981). The

specific time-delay embedding considered in this work is

\II(Xay,T) (l‘) - [y(a:), y(¢_7-($)), vty y(¢—(l~1)7($))] (39)

"

where 7 is called the “delay.” The time-delay embedding theorem is then stated as

follows.

Theorem 3.4.3 (Fractal delay embedding prevalence (Sauer et al., 1991))

Let ¢ be a flow on an open subset U of R*, and let A be a compact subset of U of
boz-counting dimension n. Let | > 2n be an integer, and let 7 > 0. Under certain as-
sumptions concerning the equilibria and periodic orbits, then for almost every smooth

Junction y on U the delay coordinate map ¥ x, »y : U — R is:
1. One-to-one on A.

2. An immersion on each compact subset C' of a smooth manifold contained in A.

These results extend the original results by embedding compact sets of a known
box-counting dimension rather than compact manifolds and by replacing generic with
prevalent. A nearly identical theorem is presented for discrete time systems, and as

a remark the results are extended to systems with multiple outputs.

Remark 3.4.1 (Sauer et al. (1991)) The results presented above are easily ex-
tended to the more general case where the reconstruction map ¥V consists of a mizture

of lagged observations. The more general result states that

V() = [y(), ..., ;00" (@), .., Yg(®), ..., Yg(¢" 7 (z))] (3.10)

satisfies the conclusion of the above theorem as long as ly + ... +1; > 2n and the

conditions on periodic points are satisfied.
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This result is directly applicable to the inferential prediction problem, in which a
primary output variable ? which cannot be measured is to be predicted as a nonlinear
function of a number of secondary output variables y; which can be measured. For a

dynamical system defined by

i = f@)
¥ = g(2) (3.11)
Y = hi(z)
x € R, the mapping
\If(x) = [h'il (.CU), <o 7hi1 (.iL‘)] (3'12)

is an embedding of the state for [ > 2n for almost every set of smooth f and h;
(the inferential measurement functions). Since the mapping is an embedding, the
state is simply a nonlinear transformation of the “secondary coordinates” defined
by [yf,...,¥;]. Since the primary variable 3? is a function of the state, then the
primary variable can be found as a nonlinear function of the variables in the secondary

coordinates or there exists a function G such that

yP(t) = Glyi, (1), . .., y5 (2)]. (3.13)

Since this result depends only on an embedding between the secondary outputs and
the state, f(z) in system (3.11) could be replaced by f(z,u) where v is an external
input to the system and the results detailed above will still hold. While these specific
results concerning inferential prediction for input/output systems are not found in
Sauer et al. (1991), the extension of these results to this specific case is trivial.

In the case [ < 2n for the above time-delay mappings, the mapping may not be
an embedding. However, most of A will be embedded when A is a smooth manifold
and [ > n. In this case, nearly every mapping ¥ will be an embedding outside of
a subset with dimension less than or equal to 2n — [. A similar result is given for

the case where A is a set with a known box-counting dimension. The results follow



28
naturally from the discussion examining how a manifold can have self-intersections
globally when the embedding dimension is too small to meet the conditions defined
by Whitney’s embedding theorem.
It also shown in Sauer et al. (1991) that a map which produces a filtered version
of the time-delay coordinates is also an embedding. Using the map ¥ : R* — R*
defined by

Vg (7) = [y(2),y(6(x)), ..., y(¢“ ()], (3.14)

the filtered delay coordinate mapping is given by F (B, ¢,y) : R* — R! where

FiBgy)(7) = BY4,(2) (3.15)

and B is an [ X w constant matrix. Note that this constant matrix filter is different
than bandpass filters which are also commonly utilized for noise reduction. Under

some modest assumptions, F(p4,)(z) defines an embedding.

Theorem 3.4.4 (Filtered delay embedding prevalence (Sauer et al., 1991))
Let U be an open subset of R*, ¢ be a smooth diffeomorphism on U, and let A be a
compact subset of U, boxdim(A) = d. For a positive integer | > 2d, let B be an | x w
matriz of rank [. Assume ¢ has no periodic points of period less than or equal to w.
Then for almost every smooth function y, the delay coordinate map Fp g,y : U — R
i8¢

1. One-to-one on A.

2. An immersion on each closed subset C of a smooth manifold contained in A.

Filtering of the time-delay coordinates can help to reduce the effect of noise, so this

theorem may be helpful when dealing with data from a physical system.

3.5 Embedding theorems for input /output systems

While the embedding theorems for autonomous systems are interesting for analysis

and future prediction of self-driven systems, most engineering applications of interest
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are systems with inputs as well as outputs. For reasons of control, the availability of
an input is crucial for driving the system such that some desired behavior is produced.

The systems which will be considered here are of the type

y = h(z) (3.16)

with x € R", external input u € R, f : R" xR — R", and h : R® — R. When
modeling the dynamics of this system from discrete measurements on the input and

output, it is natural to consider a model of the form

y@) =Gyt = 71),...,y(t = Ir),u(t — 7),...,u(t — m7)] (3.17)

where the function G is fitted to the data using standard nonlinear modeling methods
as neural networks, radial basis functions, or NARMAX type models. A question
similar to that posed by researchers in the field of experimental chaos arises naturally
from this analysis. If the equations describing the system dynamics (3.16) are known
and the input changes only at the discrete sampling times of the system, how many
delayed version of the output [ and input m are needed to represent the dynamics of
the system?

There have been suggestions for solving this problem for “fading memory” state-
space systems (Boyd and Chua, 1985; Sandberg, 1991), however in this case the

input/output relationship is only approzimated as the nonlinear moving average filter

4(t) = glu(t — 1), u(t — 2),...,u(t —m)]. (3.18)

By increasing the number of delayed input terms m, the error associated with this
approximation can be made arbitrarily small. However, the results of Takens (1981)

led researchers to consider a totally different approach to the problem.
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3.5.1 Casdagli’s initial work

Casdagli (1992) considered this problem following the approach suggested by Takens
by representing the input/output dynamics of the system in the form of Equation
(3.17). While Casdagli simply considers the existence of an embedding between the
state-space of a discrete-time systems and its time-delay coordinates, the extension
of these results to the eqﬁivalence between the input/output relationship between
System (3.16) and (3.17) is trivial for smooth functions f and h. Using this approach,
Casdagli claims for m > 2n and [ > 2n a globally smooth function G exists which
can accurately represent the input/output dynamics for almost all input sequences.
Additionally, if m = [ = n + 1 an almost everywhere smooth function G is able to
represent the input/output dynamics.

These claims were only justified using a heuristic argument by Casdagli, no math-

ematically rigorous treatment was given. Consider the map

Ulz(t —m),u(t—1),...,ut—=m)] = [..,(e(d(z(t — m),u(t —m)),u(t —m+ 1)),
h(¢(z(t — m),u(t — m)), h(z(t —m))]
= [y®),yt—1),...,y(t —m)] (3.19)

where ¢(z(t),u(t)) = z(t+1) is the result of integrating & = f(z,u) for one sampling
period and u is constant between sampling times. In order to represent the dynamics
in the form of Equation (3.17), the map defined by (3.19) will be a diffeomorphism
if m is large enough such that z(¢ — m) can be found from the remaining terms
[u(t —1),...,u(t —m),y(t),...,y(t —m)]. If this can be found, then there exists a
mapping of the form (3.17) since y(¢) can be found from z(¢ —m) and the input terms
[u(t—1),...,u(t —m)].

Casdagli (1992) states that to have a unique solution for z(t — m), in general
m > n. If m = n, the solution of the n components of z(t — m) from the terms
[u(t—1),...,u(t—m),y(t),...,y(t—m)] is equivalent to solving a set of n simultaneous

nonlinear equations. Since a unique n-dimensional solution of n nonlinear equations
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does not exist in general, m = n+1 is needed to break the degeneracy. Therefore for
generic f and h, it is expected that z(t — m) can be found for m = n + 1 unless the
solution lies on a n — 1 “bad” submanifold £*~! C ®”. On this bad submanifold, the
mapping V¥ is not expected to be an embedding due to self-intersection in ®™. The
location of this submanifold of self-intersection will depend on the functions f and h
as well as the input sequence u to the system. When the system is on ©"7!, accurate
prediction of (¢ — m) is impossible due to the self-intersection. If the dimension of
the time-delay vector m is increased by one, the dimension of self-intersection will
decrease by one until m > 2n where no self-intersection is expected in general.

The results above are developed in a manner similar to the autonomous case. The
only difference is that the self-intersection is dependent on a specific input sequence.
One additional problem which arises in the case of input/output dynamics is that
even when m > 2n a certain class of inputs could happen to lie on a “bad” subset
of the input space which would induce a self-intersection of dimension 0 on mapping
(3.19). Casdagli claims that this problem can not be avoided even by increasing the
dimension of the embedding m. A self-intersection set of dimension 0 is expected to
persist for specific input sequences.

These arguments show that the solution of the equations for z(¢ — m) is unique.
To show that the mapping is also smooth requires the implicit function theorem. If
the Jacobian of W is full rank, then the input/output relationship defined by (3.17)
should be smooth. The conditions which make DV full rank are equivalent to lo-
cal observability which will be presented in the next section (Poncet et al., 1995).
Since the solutions are unique and the mapping is smooth, ¥ is expected to be an

embedding.

3.5.2 Formalizing the input/output embedding theorem

Poncet et al. (1995) set out to formalize the ideas presented in Casdagli (1992) for
embeddings of input/output systems. Since the proofs detailed in Poncet et al. (1995)

consider discrete-time state-space systems, the proofs will be presented in their orig-



32
inal form. However, the extension to continuous-time systems should be relatively
straight forward (as it was for autonomous systems).

The starting point is the discrete-time state-space system (f, h)

z(t) = fla(t —1),u(?)]
y(t) = hlz(D)] (3.20)

where once again x € R”, v € R, and f and h are polynomial maps. System (3.20)
will be referred to as the n-dimensional polynomial system (f,h). The question
to be answered is, for an arbitrary polynomial system (f, k) does an input/output

relationship

yt) =gyt —1),...,y(t = 1),u(t),...,u(t = (m—1))] (3.21)

exist? The answer according to Poncet et al. (1995) is that there exist [,m > n+ 1
and g continuously differentiable on a full measure open subset such that (3.21) holds.
In order to prove this theorem, a pair of preliminary lemmas is needed. However,

first some short-hand notation is introduced to simplify the presentation of the proofs.

zo = z(k) (3.22)
vo=y(k) y1=ylk+1) (3.23)
uo = u(k) u; =u(k+1) (3.24)

where £ is an arbitrary time. f(-,u;) of = is denoted as f,,(-) and the output functions

are denoted as
hof,o...0 1=1,2,...
h; & fu Ju (3.25)
h 1=20
Fori=0,1,...,4 the set x; C R¢ is defined as the locus of initial states consistent

with the input/output sequence (yo,y1,u1, - .., Yi, ;) associated with a given initial
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state xy. Mathematically this is
Xi(To, Uy - v, Uy) 2 {z e R4 | A(z) = yo, P () = v1,. .., hi(x) = y3}- (3.26)

Trivially, zo will always be a member of x;(xq, u1,. .., u;).
The generalized observability matrix of a given state zy and input sequence

(u1,...,u;) is defined as the (i + 1) x d Jacobian matrix
Oi_H(.Z'(), U, ... ,Uz') -—'AZ-' [Vh()(.fl’o), ceey Vh,(x())}T (327)

where V is the gradient with respect to z.
The first lemma shows that the initial state can be uniquely determined from an

input/output sequence of appropriate length.

Lemma 3.5.1 (Poncet et al. (1995) Lemma 1) With probability one for any n-

dimensional polynomial system (f,h),

Xn($07 Ury .-y un) = {.’L‘o} (328)

holds for an open set of full measure in the joint space of (Lo, U1, ..., Un)-

The proof of this lemma is based on the fact that det O, is a polynomial in the vari-
ables xg,u1,...,u,_1 and since the zeros of a polynomial form a closed set of zero
measure, O,, should be nonsingular with probability one. Since O, is nonsingular,
according to the Inverse Mapping Theorem there exists a neighborhood of x which
contains no other solution. Therefore, only a countable set of isolated points z should
satisfy x,_1(Zo,uy,...,un—1). This argument is then extended to show that the ad-
ditional dimension needed for x,(xq, u1,...,u,) gets rid of the redundant solutions,
and the lemma is proved.

A remaining question is what happens for input sequences for which this mapping
is expected to have self-intersections? While this case is discussed in Casdagli (1992),

it is not mentioned in Poncet et al. (1995). While the definition of “with probability
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one” may account for the difference in the results, this discrepancy is still a bit
puzzling.
The second lemma builds on the first lemma to show that an embedding exists

between the state space and time delay coordinates.

Lemma 3.5.2 (Poncet et al. (1995) Lemma 2) Let (f,h) be a polynomial sys-
tem. Then with probability one, the map

U (Zo, Uty e ey Un) = (Yoy- -y Uny ULy« - oy Up) (3.29)

is an embedding on the full measure open subset in the joint space of (g, uy, ..., Up).

The mapping is shown to be one-to-one using Lemma 3.5.1. Then the mapping

U is shown to be an immersion by analyzing the Jacobian of W, (zg,uy, ..., u,) 2
(Yoy -« » Yn—1, U1, - - ., Uy) Which is
\\ O, L
DY, = ° = (3.30)
O(zo, ut, - - -, Un) Z 1,

where O,, is defined in (3.27), L is a lower triangular matrix, Z is a matrix of zeros,
and I, is an identity matrix. It can easily be shown that det(D¥,) = det(QO,,), so if
the system is observable then DV, should be full rank. This means that the Jacobian
of DV is also full rank and mapping (3.29) is an immersion. ¥ is then an embedding
since it is one-to-one, an immersion, and proper (due to the polynomial form of f, h).

Since ¥(zg, uy,...,u,) is an embedding, the final result can easily be shown.

Theorem 3.5.1 (Poncet et al. (1995) Proposition 3) With probability one for
any n-dimensional polynomial system (f,h), there exist two positive integers |, m >
n+1 and a function g continuously differentiable on a full measure open subset such

that
y(k)=gly(k - 1),...,y(k—=1),u(k),...,u(k — (m—1))] (3.31)

with I, m, g independent of k.
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In the proof of this theorem, the case | = m = n + 1 is considered. Since
Lemma 3.5.2 shows that mapping ¥ is an embedding, ¥~! exists and is smooth.

Because of this, the map

9 (o5 s Yny Uty ooy Unsr) = ho fy 0.0 fu, 0o PoU  (yg, .o, Un, Uty .., Ung)

(3.32)
exists where U™ (yo, ..., Yn, Uts .. Uns1) = (To,U1,--.,Uny) and P is a projec-
tion operator such that P o U™! = z,. Upon further examination, it is clear that

9oy - -y Yny Uty -« oy Upy1) = hpi1(Tg) = yny1 which is exactly the desired result.

3.6 Conclusions

A review of the work in the field of “time-delay” embeddings has been presented. It
has been shown that a nonlinear time-delay representation exists for generic nonlin-
ear state-space systems. Specifically, a sufficient condition is given for the time-delay
representation to exist. The mathematical background for the methods used in these
works is introduced and some time-delay embedding theorems are presented for au-

tonomous and input/output systems.
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Chapter 4 The false nearest neighbors

algorithm and noise corruption

4.1 Motivation

While initial work with the FNN algorithm was very promising, remarkably little
work has been completed in two specific areas. First, the choice of the threshold R in
the original FNN algorithm was based only on heuristic arguments. Here, theoretical
analysis is presented in order to justify the choice of the threshold used by Abarbanel
et al. (1993) and to analyze what can happen in special limiting cases.

The second area not completely analyzed by Abarbanel et al. (1993) is the set of
problems which can arise when analyzing noise-corrupted data with the FNN algo-
rithm. In the original work, Abarbanel et al. (1993) simply showed that the results
of the FNN algorithm degrade gracefully as noise is added to the time-series data
under consideration. As will be shown later in this chapter, the FNN algorithm can
incorrectly recommend an embedding dimension which is too large when analyzing
noise-corrupted data. Even worse, the cause of the error becomes more pronounced
when more data are presented to the FNN algorithm for analysis. The source of
this problem is easy to isolate using analysis similar to that used to investigate the
choice of the threshold R. Extending this analysis to noise-corrupted data leads nat-
urally to a new threshold test which can deal with noise-corrupted time-series in the
proper manner. Since data from physical processes are always corrupted by noise, it

is important to deal with this problem correctly.
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4.2 The false nearest neighbors algorithm (FNN)

Identification consists of two distinct steps: determining the past terms which are
needed for predicting future outputs and determining the function relating those
past terms to the future terms. While many methods for determining the functional
relationship have been published recently, the majority of these methods do not deal
with the problem of determining the proper regressor vector. Often it is simply
“assumed” that the dynamics can be represented using a particular regression vector
and then the functional relationship between the past and future is approximated.

The false nearest neighbors (FNN) algorithm was originally developed for deter-
mining the smallest dimension regression vector needed to recreate the dynamics of
autonomous chaotic systems (Kennel, Brown and Abarbanel, 1992). The idea behind
the NN algorithm is geometric in nature. If there is enough information in the re-
gression vector to predict the future output, then any two regression vectors which
are close in the regressor space will also have future outputs which are close in some
sense. If there is not enough information from the past in the regressor vector to
recreate the dynamics of the system, then there will be some neighborhoods in the
regressor space with very different future outputs. These trajectories which are close
in the regression space and have vastly different outputs can be thought of as false
neighbors, since they are close in the regression space only because of projection onto
a space with a dimension too small to represent the dynamics of the system. For
noise-free data, there will no longer be any false neighbors when the dimension of the
regression vector is large enough to allow accurate prediction of future outputs.

In order to determine whether neighbors are true or false, a test must be defined
to determine whether the neighbors have future outputs which are “far apart”. In
the original FNN algorithm, a ratio test determines whether the distance between
future outputs is significantly larger than the distance between time-delay regression
vectors which are close in the regressor space. If the distance between future outputs
is “large” when divided by the distance between the two regressors which are “nearest

neighbors” in the regression space, then the neighbors are considered to be false.
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Here is the original FNN algorithm which was defined for autonomous systems.

1. Form the set of regressors

wl(t) = [y(t“’l"),...,y(t— lT)] (41)

and related outputs y(t) from time-series data.

. Identify the closest regressor (in the Euclidean sense) to a given vector in the
regression space. That is, for a given regressor ¢;(k) find another regressor v;(j)

in the data set such that the following distance d is minimized.

d = |[vi(k) = i)l (4.2)

It should be noted that times k£ and j themselves do not need to be close to
one another. In fact, if £ and j are always close to one another the sampling
time 7 may be too small and there may be problems in accurately estimating

the dimension of the regression vector. (Fredkin and Rice, 1995).

. Determine if the following expression is true or false

L y(k) = y(5) |
R — o) = (4.3)

where R is a previously specified threshold value. If expression 4.3 is true, then
the neighbor are recorded as true neighbors. If the expression is false, then the

neighbors are false neighbors.

. Continue the algorithm for all times k in the data set. Calculate the percentage

of points in the data set which have false nearest neighbors.

. Continue the algorithm for increasing dimension / until the percentage of false
nearest neighbors drops to zero (or some acceptably small number). If the

percentage of false neighbors is large, the FNN algorithm suggests that the
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regressor vector must be extended to include more terms in order to accurately

capture the dynamics of the system.

While this single threshold test works quite well in cases where there are “sufficient
data” to fill out the embedding space, when the distance between nearest neighbors
9i(k) — i (5)ll2 is large the distance between outputs | y(k) — y(j) | can be large
and still satisfy the above threshold test (Equation 4.3). If the distance between the
nearest neighbors embedded in the space of outputs and regressors is roughly the same
magnitude as the size of the attractor, then the neighbors should also be considered
false neighbors. For this reason, a second threshold test which only becomes important
in cases of sparse data is also utilized in the original FNN algorithm (Abarbanel
et al., 1993).

The second threshold test is defined as

Ry
2. Aol (4.4)
where
REy = (k) — ()7 + IWa(k) — a2 (45
B = lyn) - 3 (4.6
7= 2 vin) (47)

The recommended threshold of Ay, = 2 is used in all of the examples given here
(Abarbanel et al., 1993). Failing this additional threshold test means that the nearest
neighbors are far apart in the extended space of Ry, and that the neighbors should
be considered false. Since a failure of the above threshold test implies a failure of
the threshold test given in Equation (4.3) when nearest neighbors are close (when
l4i(k) — i(4)]|3 is small), this test is only important when the nearest neighbors are
relatively far apart. While the important portion of this test is the relative size of the
distance between the outputs (y(k) — y(j))? for nearest neighbors and a simpler test

could accomplish the same results, the test is left in the form motivated by (Abarbanel
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et al., 1993).

The FNN algorithm has been used successfully as a tool for modeling many au-
tonomous time-series. Abarbanel (1996) is a good reference to the work of the Insti-
tute of Nonlinear Science (INLS) at UC San Diego in the area of “nonlinear signal
processing” and modeling of chaotic time-series. The researchers at INLS are working
on a number problems associated with chaotic time series including sampling time
determination, model order determination, model building, noise reduction, control
of chaos, and synchronization of chaotic systems.

Abarbanel (1996) applies the FNN algorithm and other tools to computer gener-
ated time series as well as time series recorded from physical systems. Some examples
include the Lorenz attractor, the Henon attractor, the dynamics of a metal cutting
tool, electrical circuits, the dynamics of a laser, the level of the Great Salt Lake,
and fluid turbulence experiments. In these examples the researchers are able to do a
relatively good job of future prediction of short-term dynamics (long term prediction

is impossible for chaotic systems) using FNN and local modeling methods.

4.3 Theoretical choice of FNN threshold and data
requirements

Assume that the minimal representation in the time-delay coordinates is known. Let
d be the smallest integer for which there exists a function G uniquely determining

the output coordinate y(t) for all time-delay vectors

y(t) = Gyt —71),yt —27),...,y(t — dr)] (4.8)
= Gl¢a(t)]. (4.9)

Also assume that the function G is known. How should the threshold R for the
ratio test be chosen when the time-series data are noise free? Assuming the data

are sufficiently “dense” over the region of interest, the following choice of threshold

should be made.



41
Lemma 4.3.1 R = max, ||DG(14(t))||2, where DG(x) is the Jacobian of the function
G at the point x, is the smallest choice of the threshold which will give 0 % FNN at

the proper dimension d for all data sets.

Proof: If sufficient data are available, the nearest neighbor to each point will be in
a region where a local linear approximation to the function G can be made. Using a
linear approximation around the point ¢4(k), the output of the nearest neighbor y(5)

is given by

y(k) = y(3) = DG (ba(k))[¥a(k) = a(5)] + O([ha(k) — $a(5)])- (4.10)

Ignoring the higher order terms, by Cauchy-Schwarz we know

| y(k) —y(i) | < [IDG(Wa(k))|l2llYa(k) = a(d)]l2 (4.11)
| y(k) —y(j) |
Toal) —ail,, = 1PCWalRDl: (4.12)
L y(k) = y())

1va(k) — (])II S mtaX”DG(%(t))Hz V k and nearest neighbor j. (4.13)

For any choice of R smaller than max; ||DG(¥4(t))]|2, the gain of the system may
cause the FNN algorithm to record a false nearest neighbor (see Equation (4.3)) at
the time delay point )4(¢) if the nearest neighbor happens to make the equation
aDG(4(t)) = [¢a(t) — ¥4(j)] true for some o € R. In other words, the equality of
Equation (4.13) will hold when the nearest neighbor to 14(t) happens to lie in the
direction of maximum gain of the Jacobian DG.

Therefore, the lower bound on the choice of the threshold R for the FNN algorithm
is dependent on knowledge of the function which needs to be identified. However,
when an infinite amount of data is available the threshold R can be chosen arbitrarily

large.

Lemma 4.3.2 For an amount of data approaching infinity, any finite threshold value
R will lead to a nonzero percentage of FNN when the embedding dimension is smaller

than d.
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Proof: The function G has a unique output for all inputs only for values of embedding
dimension [ > d. For [ < d, the implied function relating the time-delay coordinates
to the output may have multiple outputs for a given regressor vector. Take a vector
Y1(k) which does not have a unique output and a sequence of points 1;(j;) where
limioothi(7:) = Wi(k) but limy; 00y (i) — y(k) = k # 0. Now using the FNN threshold
test (Equation (4.3)) it is seen that

k) — y(j;

e (414
or that the threshold R must be infinitely large for the threshold inequality (Equation
(4.3)) to be true.

When applying the FNN algorithm to finite time-series where the function G is
unknown a priori, the results of these lemmas do not appear to be helpful. However
further analysis of the results of Lemma 4.3.2 leads us to believe that when there
are more points in a data set, a larger threshold value can be safely used. On the
other hand if the threshold is chosen too large and nearest neighbors are not close in
the time-delay space, outputs may be in completely different regions of the attractor
and still be considered true neighbors by the ratio test. For this reason the choice of
threshold is most important in the analysis of time-series of relatively small size. This
problem should not be encountered when large data sets, where the space is “filled
out” with data, are analyzed.

Another fact to remember when choosing the threshold R is that points which
are false neighbor tend to move very far apart in the output space. This is a conse-
quence of the previously mentioned fact that false neighbor are only close because of
projection. It has been our experience (as well as that of Abarbanel et al. (1993)),
that the percentage of false nearest neighbors tends to be relatively unchanged for
a fairly wide range of R (10 < R < 30) for autonomous time-series. Once R is
large enough to account for the local gain of the system, the false neighbors move
far enough apart to cause the ratio test to fail for even these large values of R. For

input/output time-series, the suggested range of R is 10 < R < 15. Larger values
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are needed for analysis of autonomous, chaotic time-series because of the existence of
positive Lyapunov exponents.

The results of Lemma 4.3.1 provide some guidance for the analysis of finite data
sets where the function G is unknown. For example, the choice of the threshold may
have to be adjusted if the function G is expected to have a large gain. However, for
finite data it has been observed that false neighbors tend to have outputs which are
“very far” apart so a large threshold should still lead to false neighbors for regressors
which don’t contain enough delayed terms. While R cannot be arbitrarily large when
working with finite amounts of data, in practice fairly large values of R (compared to
the gain of G) can be used.

When analyzing a time-series with the FNN algorithm, the amount of data needed
to carry out an accurate analysis also should to be considered. For the ratio test in the
algorithm to correctly interpret the idea of closeness in the output space, the nearest
neighbors must be relatively close in the regression space. If distance between nearest
neighbors is large, then the difference between their outputs can be very large and
the ratio test could still call the two data points true neighbors when the outputs are
totally uncorrelated. For all neighbors to be close, the time-series data should “fill
out” the regression space to be analyzed. To fill an co-norm unit ball of n-dimension
with data such that all individual data points are within an §-sized ball of one another,
approximately 6" points are needed. As the number of dimensions is increased, the
amount of data needed to cover the space increases exponentially. This is a well-known
problem in nonlinear identification known as the curse of dimensionality (Weigend
and Gershenfeld, 1994).

The curse of dimensionality has the following implication for the FNN algorithm.
In order to accurately assess whether regression vectors of up to dimension n are
able to accurately predict future outputs, a time-series of length approximately 10
is needed. It should be noted that for certain systems, such as autonomous chaotic
attractors, the dynamics of the system (and therefore the regression vectors) can lie on
a submanifold of the overall regression space and therefore the space to be filled may

be of smaller dimension than the entire regression space (see (Abarbanel et al., 1993)
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for examples). For some input/output systems examined in this thesis, it is possible
that significant correlations may exist among the terms contained in the regression
vector. However, locally the data can still lie on a manifold with the same dimension
as the dimension of the regression vector. To fill out this manifold, again the amount

of data should increase exponentially with the dimension of the regression vector.

4.4 The effect of noise

Now consider the case where the data to be examined are corrupted with noise.
Assume that for each time ¢, what is observed is y™(t) = y(t)+0 where ¢ is magnitude
bounded (| § |< dy). The time-delay coordinates will also be corrupted with noise,

k) =[y™k—=71), ..., y"™k = 1Ir)] =[ylk — 7) + 61,...,y(k = IT) + &]

Y™ (k) —y™06) | < [ G@(k) — Gi(h)) | +20 (4.15)
< DG (k) l2llvhn (k) — ()2 + 2000 (4.16)
< DG k)17 (k) = 9 (G)l2 + 2V1650) + 2650 (4:17)
< max || DG (Wu(t)) [l (17" (k) = i (5)ll2 + 2V 1600) +

200 (4.18)

Converting the final result into a form similar to the threshold function in (4.3).

2800 (VI max, [| DG (1 (t))||2 + 1)

TR

| y™(k) —y™ () |
or (k) —or (), = e IPG )l +

Note that there are two terms on the right-hand side of the above inequality. The
first term accounts for the maximum possible local gain of the system at ¢;(k), and
the second term is due only to the effects of noise. Also note that the second term
is inversely proportional to the separation of the nearest neighbors in the time-delay
coordinates.

If a ratio test with a threshold independent of the density of the points is used
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to analyze a time-series which contains noise (such as the original FNN test given
in Equation (4.3)), the percentage of false nearest neighbors arising only from noise
should increase proportionally with the density of the points in the regression space.
This effect can be seen by using a time-series from a well-studied example. Here
the FNN algorithm will be used to examine data from integration of the Lorenz

equations.

= o(y—=x)
y = —xz+pr—y (4.20)
z = xy— Pz

c=10 p=45.92 B=4.

A 50,000 point scalar time-series was found by taking the x output from the integra-
tion of the above equations using a sampling time of 0.1. Two noisy data sets were
also developed by adding uniformly distributed noise of maximum absolute value 0.5
and 1.0 respectively to the original time-series (the x variable of the Lorenz signal
has a standard deviation of 12.36).

The FNN algorithm was utilized on each of the 3 data sets using time series
of 3 different lengths (500, 5000, 50000 points). The standard choice of threshold
recommended in (Abarbanel et al., 1993) (R = 17.3) was used. The results of the
algorithm can be seen in Figures 4.1-4.3. When the percentage of FNN drops to 0,
the embedding dimension is large enough to represent the dynamics.

For noise-free data, the percentage of false nearest neighbors for a given dimension
remains nearly constant as the length of the time-series increases. However for data
corrupted with noise, the percentage of false nearest neighbors for a given embedding
dimension increases as the amount of data is increased. For the FNN algorithm work-
ing on noise corrupted data, more data are not necessarily better. This is contrary

to the common belief in identification that more data lead to more accurate results.
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Figure 4.1: FNN plots for noise free Lorenz time-series

Larger time-series lead to “false” false nearest neighbors, neighbors which are a result

of noise corruption rather than an incorrect embedding dimension.

4.5 One possible solution

A possible solution to this problem is to account for noise by using a FNN threshold
which includes both a constant term (as in the original FNN formulation) and another
term to account for noise.

Instead of using Equation (4.3) for the threshold, a logical test for nearest neigh-

bors based on the previous analysis is:

ly(k) —y(G) | o 2eRVI+2e (4.21)

(k) — (Dl = (k) = ()l

By examining Equation (4.21) further, it can be seen that the threshold test has
two distinct limits depending on the size of the term |[¢y(k) — ¢1(j)|l2. When the
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Noise of magnitude .5 present
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Figure 4.2: FNN plots for Lorenz time-series with magnitude 0.5 noise

distance between the nearest neighbors is relatively large, the first term on the right
hand side of the inequality will dominate and this ratio test is equivalent to the original
FNN test. When the distance between nearest neighbors approaches zero, the second
term on the right hand side dominates. In this limit, the new test is equivalent to
asking whether the two observed outputs lie within a certain noise threshold of each
other for identical inputs.

The main problem with this choice of threshold is that there are now 2 variables
which must be tuned, namely R and €. To be sure that no false nearest neighbors are
only the result of noise, one should choose € = d, and R as suggested before. A major
problem with this choice of € is that the new threshold test is conservative. In fact, the
test may predict a dimension too low with this choice of €. For this reason, a choice
of € is around 1/10%" the size of the standard deviation of the noise is recommended
since this choice provides a good tradeoff between discarding false neighbors which

result from noise and not incorrectly counting neighbors in too small of a dimension
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Noise of magnitude 1.0 present
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Figure 4.3: FNN plots for Lorenz time-series with magnitude 1.0 noise

as true neighbors. For time-series where d is unknown, some physical arguments
based on the size of expected measurement noise can be made for determining e.
We have observed that the results of the algorithm are qualitatively unchanged by
the choice of R and € over a fairly large range. Using this modified test for false
nearest neighbors, the problem of an increasing number of false nearest neighbors
with increasing amounts of data will not be encountered in noisy data sets.

As can be seen in the following example, utilizing the new ratio test with even a
small € term can dramatically affect the results of the FNN algorithm. The same noise
corrupted data were examined with the FNN algorithm substituting Equation (4.21)
for the standard threshold inequality Equation (4.3). The thresholds were selected
such that R = 17.3 (as before) and € = 0.05. Figures 4.5 and 4.6 show the results of
the modified algorithm on the noisy data. These figures can be compared to Figures
4.3 and 4.4 respectively, which are the results of the original FNN algorithm.

Notice that e is well below the noise magnitude values of d, (0.5 and 1.0) for
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Figure 4.4: FNN plots for the 3 different Lorenz time-series of length 50,000

the two data sets. However, the modified algorithm has the desired results of distin-
guishing those false nearest neighbors which are the result of noise from those which
are the result of an incorrect embedding dimension. The reason that this value of
e works well may be both because a conservative choice of R is made and the new
FNN threshold is conservative in construction. False nearest neighbors which are the
result of noise in the original algorithm are not counted as false nearest neighbors in
this modified formulation.

For the data set of size 500, the modified algorithm incorrectly predicts an em-
bedding of dimension 2 for the noisy data set. However, for small data sets problems
arising from noise are not encountered when using the original FNN ratio test. For
larger data sets, the problem with increasing data causing false nearest neighbors
from noise is no longer present when using the new ratio test and correct prediction

of the embedding dimension is again possible.



30

Modified FNN, noise of magnitude 1.0 present
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Figure 4.5: FNN plots for Lorenz time-series with magnitude 1.0 noise, modified
algorithm

4.6 Additional examples

In this section, two additional examples are presented to illustrate the advantages of
the proposed threshold test. The first example consists of data from the Mackey-Glass
delay-differential equation, and the second example examines white noise time-series
data. The results given by the new threshold test are compared with the results of

the standard FNN ratio test.

4.6.1 Mackey-Glass delay-differential equation

The Mackey-Glass equation is the delay-differential equation given below.

dz(t)
dt

0.2z(t — A)
1+z(t— A0

(4.22)

= —0.1z(¢) +
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Figure 4.6: FNN plots for modified algorithm (Lorenz time-series, length 50,000)

This delay-differential equation exhibits chaotic behavior over a wide range of delay
parameters A. For this study, a time-series with 50,000 points was created by inte-
grating Equation (4.22) with A = 17. The sampling time used to create the discrete
time-series is 6, as is suggested by a previous study of Casdagli (1989).

In addition to the noise free time-series, a noise corrupted time-series is created
by adding normally distributed noise with a standard deviation of 0.03 to the original
time series. These two time series are then analyzed by the original and modified
FNN algorithms, and the results are presented in Figure 4.7 and Table 4.1. For
both the original and modified FNN algorithm the threshold R = 17.3 is used and
in the modified FNN algorithm the threshold ¢ = 0.001 is used. The results of the
original FNN algorithm seem to suggest that the proper embedding dimension of the
noise free time-series is 4. When the noise corrupted time series is examined by the
original FNN algorithm the proper embedding dimension appears to be 5. Again,
by applying the modified threshold test, the proper embedding dimension (4) of the
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noise corrupted time-series can be recovered assuming one considers 0.05 percent

false nearest neighbors is close enough to zero for the purpose of determining the

embedding dimension.

FNN analysis of Mackey—Glass time series
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Figure 4.7: FNN plots for Mackey-Glass time-series
% FNN Dimension
1 2 3 4 5 6
Noise-free data, original FNN | 99.1178 | 26.8114 | 0.42 0 0 0
Noisy data, original FNN 99.37 75.70 | 12.37 | 0.71 | 0.03 | 0.01
Noisy data, modified FNN 84.36 44.01 | 2.65 |0.05] O 0

Table 4.1: FNN analysis of data from Mackey-Glass equation

What is especially important is that the modified FNN algorithm finds nearly the

same percentage of false nearest neighbors for those embedding dimensions near the

proper embedding dimension. This is important because accurate prediction of the

percentage of false nearest neighbors is crucial when the percentage of false neighbors

is small.
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4.6.2 White noise

In order to confirm that the new FNN threshold test presented here does not give
spurious results, both the original and new FNN threshold tests are applied to a
time-series consisting of white noise. A normally distributed white noise time-series
of length 50,000 was generated by the MATLAB command randn (MathWorks, Inc.,
1992). The variance of the time-series is one and the mean is zero.

Again, both the original FNN algorithm and the modified threshold test were
applied to the time-series with the threshold R = 17.3. For the modified threshold
test, thresholds € = 0.001 and e = 0.005 were used. The results of the FNN analysis
are given in Figure 4.8. It appears that qualitatively the results are identical for the
two different FNN threshold tests. More importantly, none of the tests predict that
the time series is deterministic. However, for dimensions larger than 3 a large number
of the false nearest neighbors come as a result of the R, threshold test (Equation
(4.4)). To be sure the results of the original threshold test (Equation (4.3)) are not
affected by the threshold modification, a second study was conducted excluding the
Ry threshold test (The results of the previous examples (Lorenz, Mackey-Glass) are
not affected by excluding the R;;; threshold test (Equation (4.4)).).

When the R, test is excluded (Figure 4.9), the percentage of false nearest neigh-
bors for embedding dimensions 4 and larger are significantly different than those given
in Figure 4.8. However, the results of FNN with the original (Equation (4.3)) and
modified (Equation (4.21)) threshold tests are nearly identical. The modified FNN
threshold test does not significantly change the percentage of false neighbors given

by the original FNN algorithm.

4.7 Conclusions

The problem of analyzing noisy time-series with the FNN algorithm has been dis-
cussed and illustrated using data from the Lorenz attractor. The problem of false

nearest neighbors which arise from noise rather than incorrect embedding dimension
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Figure 4.8: FNN plots for white noise with all FNN tests

is one which will be encountered when using FNN to analyze time-series from physical
systems. A new ratio test which solves this problem is proposed. However, an easy
method of determining the correct choice of thresholds is a problem which remains to
be solved (as it does with the original FNN algorithm). Some theoretical results and
other guidelines are given to aid the proper choice of the R and e thresholds. The
modified threshold test is then applied to time-series data from the Mackey-Glass

equation and to a white noise time-series and the results are analyzed.
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FNN analysis of white noise, excluding distance test
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Figure 4.9: FNN plots for white noise, excluding R, distance test
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Chapter 5 The false nearest neighbors
algorithm applied to input/output

systems

5.1 Motivation

While the FNN algorithm was originally developed for the analysis of autonomous
chaotic time series, for control purposes there is a need to develop models from in-
put/output time series. Once a suitable accurate model is developed, a controller can
be designed based on the model. In order to use the FNN algorithm for the analysis
of input/output time series, the algorithm needs to be modified to search over both
the number of delayed input and output terms.

The FNN algorithm can also be used in the problem of inferential measurement
selection. In this problem, a single primary output should be predicted from a number
of other secondary outputs. Since a large number of secondary outputs are typically
available, the problem is to determine which set of secondary outputs should be used
for prediction of the primary output. Once again, the FNN algorithm is presented as
a tool for solving this problem.

In this chapter, numerous examples are presented to illustrate how the FNN algo-
rithm can be used successfully as a tool in the nonlinear identification process. The
FNN algorithm is applied to input/output time-series from an electrical leg stimu-
lation experiment, a simulation of a continuous polymerization experiment, and a
simulated pulp digester. The FNN algorithm for inferential measurement selection is
also applied to steady-state data from a binary distillation column simulation. The
results of the FNN algorithm are verified by modeling the nonlinear dynamics of these

systems using the MARS modeling scheme (Friedman, 1991).
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5.2 FNN and input/output dynamics

For determining the proper regressor for input/output dynamics, the only change to
the original FNN algorithm involves the regression vector itself. For input/output
dynamics, the regression vector must contain delayed versions of both the input and

the output.

Yim(k) = [y(k—7),...,ylk =Ilr),u(k —7),...,u(k —m7)]. (5.1)

In order to determine the proper dimension of the regressor, the percentage of
false nearest neighbors must be determined for different numbers of delays in both the

input and output. Here is an outline of the FNN algorithm for input/output data.

1. Identify the nearest neighbor to a given point in the regressor space. For a given

regressor

Vim(k) =[ylk—7),...,ytk=17),ulk —7),...,u(k - mT)] (5.2)

find the nearest neighbor ¢;,,(j) such that the distance d is minimized.
d= “wl,m(k) - wl,m(])HQ (5.3)

2. Determine if the following expression is true or false.

| y(k) —y() |
1Y1m (k) — Yum (52 sk (5.4)

If expression (5.4) is true, then the neighbor are true neighbors. If the expression

is false, then the neighbors are false neighbors.

3. Continue the algorithm for all times & in the data set. Calculate the percentage

of regressors in the data set which have false nearest neighbors.

4. Continue the algorithm for increasing | and m until the percentage of false
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nearest neighbors drops to zero (or some acceptably small number). If the
percentage of false neighbors is large, then the regressor vector must be extended

to include more delayed input and/or output terms.

In general, for state-space systems of identical size, the regression vector for an
input /output system needed to recreate the dynamics will have a dimension two times
larger than the regressor needed for an autonomous system. Because there are two
parameters present in the regression vector, a two dimensional search is needed to
determine the proper number of delayed terms. This makes the FNN algorithm for
input/output time-series slightly more difficult to implement than for autonomous
systems. In addition, because of the larger regressor size, more data are needed by

the FNN algorithm when analyzing problems with input/output dynamics.

5.3 FNN, input/output time-series, and noise cor-
ruption

The original FNN algorithm is not robust to the presence of noise in the time-series.
The problem can be illustrated in the following way. When noise is present in the time-
series, two identical regression vectors which would have identical outputs if no noise
were present in the time-series can have outputs which differ by some finite amount.
Therefore even when the noise corrupted time-series is embedded in a regression space
with the proper dimension, the original FNN ratio test can fail which was shown in
the previous chapter. Here the analysis of the previous chapter will be repeated for
input/output time series.

Assume (as before), that the proper embedding dimension and the function relat-
ing the delayed inputs and outputs to the future output are known. Also assume that
the observed inputs (u®®® = u + %) and outputs (y°* = y + 6Y) contain magnitude
bounded noise (| 6% |< 6%, | §¥ |< 6Y,). The observed regression vectors will also con-
tain noise Y (t) = [y (t—7),...,u®(t—7),...] = [y{t—7)+6Y, ..., u(t—1)+5%,.. ]

in

As before,
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[y (R) 5 G) | S | Cim(K)) = GWoum(5)) | +20%, (5.5)
< 1D W ()l llth,m () = Y ()12 + 26, (5.6)
< DG EDI B2 HF) — wf ()l + 2/10% + mas?)  (5.7)

+26Y,
< max || DG (Wm (0) 2 (1675 (k) — vt ()2 + 2/10%2 + mée.?) (5.8)
+26Y,

This result can be put in a form similar to the FNN threshold test.

obs __ ,0bs( gOQ u 2 D ™
lybb (k) y: (q) | < max | DG(hm(®)]l> + 24/16 +m5oobmaXt I ?(l/fl, )]l + 262,
lfm (k) — ¥ @l — ¢ 4658 (k) — 725 (5)2

(5.9)

Once again, the first term is due to the gain of the noise-free system, and the
second term results from noise contamination. In order to solve this problem, a
new threshold test can be used for time-series where significant noise corruption is

expected. A logical form of this threshold test based on the previous analysis is

— uli y2 u2 y
| y(k) —y(5) | <R 2RA\/1e¥" + me*® + 2¢ (5.10)

T ®) = PimG) 2~ Tom (k) — G

where €* and €¥ are related to the expected magnitude of the noise contained in the
input and output respectively.

Notice that this threshold test has two distinct limits. When the data are “dense”,
the second term on the right hand side dominates. In this limit, the new threshold
test simply determines whether the two neighbors outputs are within some specified
noise-related distance (2Ry/lev® + me*? + 2¢¥) of one another. In the limit where
neighbors are relatively far apart (where problems associated with noise corruption

are not expected), this threshold test reverts back to the original FNN threshold test.



60
While this new threshold test does a better job in dealing with noise corrupted
data, there are more parameters to be determined. The main parameter R should be
chosen as in the original FNN algorithm, and the terms ¥ and €* should be no larger
than the magnitude of the expected noise in the output and input respectively. When
the magnitude of the noise is known, it has been observed that choosing a value of ¢
equal to around 1/ 108 of the standard deviation of the noise leads to good results

when using this modified FNN algorithm.

5.4 Case studies

5.4.1 Electrical leg stimulation

The first example is the identification of the dynamics of a human leg stimulated
by an electrical signal. Jan Schultheiss was involved in research to help paraplegics
walk with the aid of a controlled electrical signal at the Swiss Paraplegic Center
at Balgrist Hospital in Zirich Switzerland (del Re, Kraus, Schultheiss and Gerber,
1994). The data come from an experiment which measures the effect of stimulating
the quadriceps muscle with an electrical signal. The input is the pulse-width of an
electrical stimulation signal to the muscle, and the output is the angle of leg extension
measured at the knee. The final goal of this research project is to design a controller
for helping paraplegics to walk by utilizing controlled electronic stimulation.

The time-series data consists of 654 input/output samples where the pulse-width
of the electronic input which stimulates the leg is scaled to lie between 0 and 1.
The leg angle output is scaled such that the full leg extension (or full quadriceps
contraction) is 1, the knee being at a resting position is 0, and a leg which swings
past its normal resting position on relaxation of the quadriceps causes a negative
output. The sampling time for the system is 100 ms. A plot of the entire time-series
to be analyzed can be seen in Figure 5.1.

The original FNN algorithm with a threshold R = 10 was applied to the entire

time-series. Since the time-series is relatively short, problems associated with noise
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Figure 5.1: Leg stimulation, experimental time-series

corruption are not expected. The results of the FNN algorithm for this data set are
given in Table 5.1. By examining the results, it can be seen that the percentage of
false nearest neighbors drops to a low percentage of 1.1 when the regression function

takes the form

y(t) =Gyt — 1), y(t — 2),u(t — 1), u(t — 2)]. (5.11)

While it is difficult to determine the definitive “proper” form of the regression vector
since there are so little data, it appears that utilizing 2 delayed versions of both the
output and input should lead to accurate prediction. Additionally, a regression vector
with 2 delayed output terms and a single input delay may work reasonably well since
the percentage of FNN is again fairly small. To illustrate the effect of a change in the
threshold value R, the results of the FNN algorithm with R = 15 are presented in
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% FNN Output delays [
Input delays m 0 1 2 3
01 100.0 | 72.2 | 13.5 | 4.2
1) 874 1365 5.5 | 2.6
2 82.2 1278 1.1 |0.3
31 745 | 232 05 0.3

Table 5.1: FNN results for leg stimulation data, R=10

Table 5.2. While the percentage of false nearest neighbors is smaller than in Table 5.1

% FNN Output delays [
Input delays m 0 1 2 3
0] 100.0 | 68.3 | 6.8 | 3.5
1) 872 1238|2314
2] 80.5 | 18.5|0.8 0.3
3| 70.0 | 16.5] 0.5 (0.3

Table 5.2: FNN results for leg stimulation data, R=15

for each entry, qualitatively the results are similar. In this case, the results of the
FNN algorithm are relatively unchanged over a wide range of threshold values R.

In order to verify the results of the FNN algorithm, the nonlinear functional
fitting algorithm MARS (Friedman, 1991) was used to determine the function G for
regressors with the same number of delayed terms analyzed in Tables 5.1 and 5.2. The
first 500 points of the time-series are used to build a model and the MSPE (mean
squared prediction error) is determined by comparing the results of the MARS model
to the last 154 points of the experimental time-series. After the model was found
for a given regression vector, two types of error analysis were performed. The first
determines the one-step ahead prediction error, where the actual past outputs and
inputs are used to predict the next output of the system. The errors of the one-
step ahead analysis are given in Table 5.3. The second analysis involves a simulated
model which utilizes the inputs and only the initial conditions of the experimental

time-series. Obviously, the second method typically has a larger error and the results
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MSPE Output delays [
Input delays m 0 1 2 3
047x1072[53x103] 41x10* |1.9%x107°¢
11 77x1072[41x10°| 27x107% | 1.4 x 107 ¢
21122%x1072[47%x10%]19%x107%[48x10°°
3118x1072[40x10%] 1.6x10°% [6.5x%x 105

Table 5.3: MSPE error for leg stimulation one-step ahead prediction

of this method are given in Table 5.4.

MSPE Output delays /
Input delays m 0 1 2 3
0 47x1072]46x10"2] 45x10°2 |43 x 1072
139%x1072[14%x10%2|55%x10° |81x103
2128x1072[21x102[75x103[20x 1073
3128x1072[23x102[19x10"° [209x 1073

Table 5.4: MSPE error for leg stimulation simulation

In examining these results, it appears that large values of FNN correspond to larger
values of the MSPE (mean square prediction error) for both one-step prediction and
simulation. For the one-step ahead prediction, the MSPE should always decrease
when more terms are used. However, for the simulation results the error is not
guaranteed to decrease since the error resulting from a single step may compound
when previous predicted outputs are used to determine future outputs. For these
results, it appears that the MSPE does not significantly decrease when including more
than two delayed version of both the input and output. To give an idea of the accuracy
of the MARS modeling scheme for the regression vector given in Equation (5.11), the
results of the one-step ahead prediction and simulation are shown in Figures 5.2 and
0.3 respectively.

Without the FNN method, it would be necessary to build many models with
different numbers of delayed terms. After these models were built the results would

have to be analyzed and compared to determine a suitable number of delayed terms.
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Figure 5.2: MARS modeled one-step ahead prediction for leg stimulation

With the FNN method, a suitable number of delayed terms can be determined in a
single step before completing any nonlinear functional modeling. By utilizing the FNN

algorithm, time can be saved when performing the nonlinear identification process.

5.4.2 Continuous polymerization reactor

The following example illustrates identification using data from a model of a con-
tinuous polymerization reactor. The model describes the free-radical polymerization
of methyl methacrylate with azo-bis-isobutyronitrile as an initiator and toluene as a
solvent. For further information on the details of this model and how it is derived see
Doyle, Ogunnaike and Pearson (1995). The reaction takes place in a jacketed CSTR,

and after some simplifying assumptions are made the first-principles model is:
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Figure 5.3: MARS modeled simulation results for leg stimulation
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The dimensionless state variable x; refers to the monomer concentration, z, to the

initiator concentration, and z4/x3 is the number-average molecular weight (and also

the output y). The input u is the dimensionless volumetric flow rate of the initiator.
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Since a model of the system is known, large amounts of data can be collected for
analysis. For this example, a time-series of length 50,000 is generated by forcing the
system with a uniformly distributed random input over the range 0.007 to 0.015 which
is passed through a zero order hold with a sampling time of 0.2. By driving the system
with this input signal, an output which is roughly in the range of 26,000 to 34,000 is
produced which is the desired operating range of the system (Ogunnaike, 1995).

The time-series, with sampling time 0.2, is then normalized so that both the input
and output signal have zero mean and a standard deviation of 1. The original FNN

algorithm is then applied to the data, and the results are given in Table 5.5. By

% FNN Output delays [
Input delays m 0 1 2 3
0| 100.0 | 99.8 | 94.1 | 68.1
1 99.7 1624 0.1 | 0.0
21| 66.6 | 0.0 | 0.0 | 0.0
3 0.1 0.0 | 0.0 | 0.0

Table 5.5: FNN results for noise free polymerization data

examining the results, it appears that a model of the form
y(t) = Gly(t — 0.2), u(t — 0.2), u(t — 0.4)] (5.17)

should give an accurate estimate of future outputs.

Using MARS, a model of the dynamics is built using 2,000 training points. The
results of one-step ahead modeling and the pure simulation are both nearly identical to
the actual output of the system. For prediction of one hundred points not contained
in the training set, the MSPE of the scaled data is 7.7 x 107 for the simulated
output and 3.3 x 107° for the one-step ahead predicted output (see Figure 5.4). For
comparative purposes, a MARS model excluding the term y(¢t—0.2) was built and the
MSPE error for the one-step ahead prediction is 1.4 x 1072, The difference between
the actual and predicted outputs is visible, and is illustrated in Figure 5.5.

To simulate a more realistic identification problem, normally distributed noise
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Figure 5.4: Results of MARS modeling for polymerization example (I = 1,m = 2)

with a standard deviation of 0.1 was added to the output of the time-series. The
original FNN algorithm was applied again to this noise corrupted time-series and the
results are presented in Table 5.6. Notice that the percentage of FNN is no longer
zero for 1 output and 2 input delays. The modified algorithm was then applied to the
data with € = 0.01 and €* = 0. The results of the modified algorithm are presented
in Table 5.7. While the term €? is much smaller than the size of the noise, the results
of the algorithm still agree qualitatively with the results of the noise-free analysis. To
show the sensitivity of the algorithm to the choice of the parameters, the results of
the FNN algorithm with €V = 0.02 are shown in Table 5.8.

One question which arises naturally from this analysis, is why is such a small re-

gression vector is able to represent the dynamics of this system. Since the system has
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Figure 5.5: Results of MARS modeling for polymerization example (I = 0, m = 2)

four states, a sufficient (but not necessary) condition for representing the dynamics is
a regression vector which includes 4 delayed versions of the input and output. In this
case, the reason is that the system has two states which are nearly unobservable which
leads naturally to a smaller description when analyzing the input/output dynamics.
By linearizing the system about the operating point and performing a balanced re-
alization, it is observed that two of the Hankel singular values are more than 2000
times larger than the remaining singular values. This means that the input/output
dynamics of the system can be represented well by a reduced system with only two
states (Zhou, Doyle and Glover, 1996). While this method is only valid for analysis
of linear systems, it is not unexpected that the reduced characteristics of the system

should carry over to the nonlinear system making the smaller dynamical description
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% FNN Output delays [
Input delays m 0 1 2 3
0 100.0 | 99.8 | 94.2 | 67.5
11997 | 714 3.8 | 0.1
2 734 | 44| 01 | 0.0
31 24 | 01| 00| 0.0

Table 5.6: Original FNN algorithm results for noise corrupted polymerization data

% FNN Output delays [
Input delays m 0 1 2 3
0 || 100.0 | 85.9 | 75.8 | 48.5
14 975 | 21.7] 0.0 | 0.0
2| 67.0 | 0.1 | 0.0 | 0.0
31 19 | 00| 00| 0.0

Table 5.7: Modified FNN algorithm results for noise corrupted polymerization data,
e =0.1

predicted by the FNN algorithm feasible.

5.4.3 Simulated pulp digester

The third example consists of simulation data which come from a fundamental model
of a pulp digester. The data were provided to us in a dimensionless form by Ferhan
Kayihan and Marc Gelormino of Weyerhaeuser Corporate Research and Development
in order to test our identification methods. The data consist of 2 inputs and 2 outputs.
The time series also includes the effect of random unknown external disturbances to
the simulated system. Since the values of these disturbances were not given to us,
these disturbances can be thought of as unmeasured inputs to the system. For the
generated data, the inputs and disturbances change only at the sampling times of
the system. The sampling time was chosen by the researchers at Weyerhaeuser to
correspond roughly to the dominant time constant of the system. The time series
consists of 417 observed sampling periods.

While the FNN algorithm and analysis presented previously only consider single
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% FNN Output delays {
Input delays m 0 1 2 3
0| 100.0 | 72.8 | 58.9 | 33.1
191 954 | 3.8 | 0.0 | 0.0
21 605 0.0 00| 0.0
3 14 0.0 | 0.0 | 0.0

Table 5.8: Modified FNN algorithm results for noise corrupted polymerization data,
ey =102

input/single output systems (SISO), it is straight-forward to extend the FNN algo-
rithm to account for systems with multiple inputs and a single output (MISO). For a
system with two inputs the regression vector must be extended, such that both inputs

are included. The new prediction equation takes the following form

y(t) =Gyt —71), ...,y —=Ir),u1(t —=7), ... ,us(t —ma7), us(t — 7), ..., ug(t — my7))

(5.18)
where [, m;, and ms are the number of delays which need to be determined by the
FNN algorithm. By extending the regressor vector i of the FNN algorithm to include
the additional input term, the FNN algorithm can be used to search for the smallest
number of delays in the output and both input dimensions needed to recreate the
dynamics of the system. Since the output of the system is not affected by stochastic
noise, the original FNN algorithm is applied to these data.

For systems with multiple outputs, each individual output can be analyzed sep-
arately with the FNN algorithm. It is possible that different outputs of the same
system may need different numbers of delayed terms to represent the dynamics. An
example of this is presented in some of the original work on the application of FNN to
autonomous chaotic systems (Abarbanel, 1996). In this reference, it is shown that two
different outputs of the same underlying chaotic system require a different number of
delayed terms to predict the respective outputs.

For the first output, it was determined (using the average mutual information

(Abarbanel et al., 1993)) that there is a time delay of approximately three sampling
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times before either of the two inputs affect the first output. This issue was examined
since the researchers at Weyerhaeuser informed us that there may be significant time
delays associated with this process. Instead of using the standard regression vector,

the following regression vector which accounts for the time delay is used.

wl,ml,ﬂw (t) - [y(t—T)a R ?y(t_lT)vul(t_'?’T)’ ceey Ut (t~(2+ml)7)au2(t—‘37—)a .. .,Ug(t"'(2+m2)7')]
(5.19)

While the FNN algorithm could be used to determine that this time delay exists
if sufficient data were available, since the amount of data is quite limited this type
of preliminary analysis is necessary for accurate prediction of the proper regression
vector. The results of the FNN analysis for a threshold R = 10 are given in Table 5.9.

From the FNN algorithm, it appears that the proper regression vector has | = 0,

my = 2, and my = 1 or a representation of the form

y(t) = Glua(t — 3),us(t — 4), ua(t — 3)] (5.20)

should be able to recreate the observed dynamics. To verify the results of the FNN
algorithm a MARS model was built using the first 372 points in the time series. The
results of the modeling were then verified using the last 43 points of the time series
data. The results of the modeling using simulation from initial condition can be found
in Figure 5.6. This model appears to be fairly accurate, especially considering that
there are unmeasured disturbances to the system.

The results of FNN analysis for output 2 can be found in Table 5.10. For this
output, there is no significant time delay between the input and output and it a model

of the form

y(t) = Gly(t — 1), ur(t — 7),u1(t — 27), ue(t — 7)] (5.21)

can be used to model the dynamics of the system. The results of MARS modeling

for a simulation from initial conditions can be found in Figure 5.7.
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Figure 5.6: Results of MARS simulation for pulp digester output 1

5.5 FNN for inferential measurement selection

In many processes in the chemical industry, it is infeasible (for economic or physical
reasons) to physically measure the output to be controlled. However in some of these
cases, this output may be able to be determined or “inferred” from other outputs
of the system. One example is composition control of a distillation column. The
goal of control is often to hold the composition of the product streams constant, but
composition analysis introduces a significant measurement delay into the system and
the equipment is expensive and difficult to maintain (Mejdell and Skogestad, 1991).
Since temperature measurements can be easily made along the column, the output

compositions can be estimated using a number of temperature measurements along

the column.
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Figure 5.7: Results of MARS simulation for pulp digester output 2

Since the temperature can be measured anywhere along the length of the column,
the question of where the temperature should be measured for accurate estimation
of the composition remains. For linear systems, this problem has been examined
using a number of different methods including PLS (Mejdell and Skogestad, 1991), u-
analysis (Lee and Morari, 1991), singular value analysis (Moore, Hackney and Canter,
1987), Brosilow’s selection scheme (Joseph and Brosilow, 1978), and measurement
selection based on Kalman filters (Harris, MacGregor and Wright, 1980). While all
these methods determine the optimal measurement location in some sense, they are
all based on utilization of a linear estimator. To our knowledge, the problem of

determining suitable measurement locations for nonlinear inferential prediction has

not been studied.



74
5.5.1 Applying the FNN algorithm

The FNN algorithm for inferential measurement selection is very similar to the original
algorithm. However, in this case the regression vector consists of secondary outputs
rather than delayed versions of the input and output. In addition, there is no easy
way to determine a method for adding terms to the regressor as in the input/output
case. In fact, to be sure the optimal measurement set is chosen all combinations of
measurements in each dimension must be evaluated.

Here is an outline of the FNN algorithm for inferential measurement selection:

1. Identify the closest point to a given vector in the regression space of secondary

variables. For the regressor at time &

Qi ir (B) = [0, (R), - .., i, (K)] (5.22)
find the regressor €2;, _; (j) in the data set such that the distance
d =, i (k) = Qi (9] (5.23)
is minimized.
2. Determine if the neighbors are true or false using the following expression

| 4P (k) — ") |
1% F) = QO = (5.24)

A modified version of the threshold test which accounts for noise can be used

as well.

3. Repeat the algorithm for all times & in the data set and compute the percentage

of false nearest neighbors.

4. Compute the percentage of false neighbors for all combinations of secondary

measurements in the dimension I[.
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5. If the percentage of false nearest neighbors is large for all combinations of mea-
surements in the given regression dimension /, increase the number of secondary

measurements in the regressor vector.

For systems which require even a moderately sized regression vector, computing
the percentage of false nearest neighbors for all combinations of secondary outputs
may be too time consuming. If the computational time is too large, the heuristic
method of computing the number of false nearest neighbors for a given number of
measurements, adding the single measurement which reduces the percentage of false
neighbors in that dimension, and using this set of measurements to start the search

in the next dimension may have to be used.

5.5.2 Example

For this example, inferential measurement selection will be performed for a binary
distillation column. The column example here is Column A taken from another study
on distillation dynamics (Skogestad and Morari, 1988). The Antoine equation is used
to determine the temperature of the mixture on each tray and uniformly distributed
noise with magnitude 0.1 C was added to the temperatures of each tray. Due to
the choice of the Antoine parameters, the mixture has constant relative volatility and
constant molar flows are also assumed. The specific parameters used to generate data
for this example are given in Table 5.11.

The sample data consists of 500 randomly determined steady-states with varying
feed composition z;, distillate composition y4, and bottoms composition z. For each
steady-state the output composition and temperature along each tray of the column
is recorded. The range of variation in these variables is similar to that used by
Mejdell and Skogestad (1991). The feed composition varies from .4 to .6, the distillate
composition from .970 to .997, and the bottoms composition from .003 to .03. For all
linear analysis, both the temperature and composition were scaled logarithmically as
is suggested in (Mejdell and Skogestad, 1991) to improve prediction. For nonlinear

analysis, no scaling is performed.
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The goal of the analysis, is to determine the “optimal” two tray locations to make
temperature measurements for predicting the distillate composition y4. By examining
all combinations of two measurements, the FNN algorithm determines that the small-
est number of false neighbors occurs when using trays 10 and 21. For comparison,
a linearly based PLS measurement selection method (Mejdell and Skogestad, 1991)
suggests using tray 2 and 21.

To compare the measurement selection methods, two different models were built
to determine the distillate output from temperature measurements. One model was
built using the MARS (nonlinear) modeling scheme, and the second model was built
using a linear least-squares estimate. The results of the modeling for the two measure-
ment prediction sets are given in Table 5.12. The FNN based measurement selection
scheme seems to reduce the amount of error for a nonlinear estimation scheme while
the PLS (linearly) based selection scheme reduces the error of linear estimation. In
addition, the modeling error was determined for all combinations of two tray based
measurements using the MARS scheme and a minimum error of 1.40 x 10~7 was found
for trays 9 and 22. This is quite close to the amount of error found when using the

trays suggested by the FNN analysis.

5.6 Conclusions

By determining the smallest regression vector dimension which allows accurate pre-
diction of the output, the FNN algorithm should reduce the overall computational
effort needed to perform nonlinear identification. Instead of repeating a large number
of identification experiments with different sized regression vectors, FNN can deter-
mine the proper embedding dimension using relatively little computation time. After
the proper dimension is determined, only a single nonlinear function need to be es-
timated. For these reasons, an FNN assisted identification scheme should save time
when solving difficult nonlinear identification problems since the proper number of
delayed terms can be determined without fitting any specific models to the system.

To illustrate this fact, the FNN algorithm was applied to a 2000 point data set from
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the polymerization example. The FNN algorithm was able to examine 16 different
regression vectors (all combinations of 0 to 3 delayed inputs and outputs) in 8 seconds
on a Sun SPARCstation 20. For comparison, the same data were modeled using the
MARS modeling scheme. With MARS it took 10 seconds to determine the proper
nonlinear model for a single regression vector and MARS is one of the faster methods
of nonlinear modeling. To analyze a data set consisting of 50000 points, the FNN
algorithm took 6.5 minutes to analyze the same set of 16 regression vectors.

The FNN algorithm appears to a useful tool for determining the proper embedding
dimension for both input/output dynamics and inferential prediction. A number
of examples illustrate the success of the FNN in determining the proper regression
vector for accurate prediction. While the FNN algorithm is successful in determining
the embedding dimension, it does not give any clues about the proper functional
relationship between the regression vector and the output. While this might appear
to be a drawback, the main advantage of FNN is that the process of determining
the proper regressor is not dependent on a single model structure. This is especially
important in nonlinear systems since a single model structure may not do a good job
representing all possible relationships between regressors and outputs. Since FNN is
not dependent on any single model structure, it can work in conjunction with any
nonlinear functional modeling scheme and be a useful tool in the overall nonlinear

identification process.
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Output delays [ | Input delays m; | Input delays my | % FNN
0 0 0 100.00
0 0 1 94.63
0 0 2 47.32
0 1 0 96.34
0 1 1 35.85
0 1 2 3.66
0 2 0 35.37
0 2 1 0
0 2 2 0
1 0 0 93.66
1 0 1 39.02
1 0 2 3.66
1 1 0 36.10
1 1 1 0.98
1 1 2 0
1 2 0 4.39
1 2 1 0
1 2 2 0
2 0 0 50.00
2 0 1 4.39
2 0 2 0
2 1 0 4.39
2 1 1 0
2 1 2 0
2 2 0 0
2 2 1 0
2 2 2 0

Table 5.9: FNN algorithm results for pulp digester, output 1




79

Output delays ! | Input delays m; | Input delays my | % FNN
0 0 0 100.00
0 0 1 95.12
0 0 2 30.73
0 1 0 97.07
0 1 1 32.44
0 1 2 1.46
0 2 0 44.88
0 2 1 1.71
0 2 2 0
1 0 0 95.85
1 0 1 37.07
1 0 2 3.17
1 1 0 48.29
1 1 1 2.44
1 1 2 0
1 2 0 6.34
1 2 1 0
1 2 2 0
2 0 0 48.78
2 0 1 3.17
2 0 2 0
2 1 0 8.29
2 1 1 0
2 1 2 0
2 2 0 0.73
2 2 1 0
2 2 2 0

Table 5.10: FNN algorithm results for pulp digester, output 2

Zf (0% Ntmys Nf D/F L/F
0.5]1.5 40 21 5| 2.706
Antoine Parameters
Comp # | T,(K) A B C
1 341.9 | 15.83660 | 2697.55 | -48.78
2 355.4 | 15.43113 | 2697.55 | -48.78

Table 5.11: Distillation column example
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Prediction Scheme
Tray # Linear MARS

10,21 (FNN scheme) | 9.26 x 10 | 1.57 x 10~

2,21 (PLS scheme) | 5.09 x 107 | 2.79 x 10~°

Table 5.12: MSPE for different prediction schemes, distillation column
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Part 111

Nonlinear model reduction
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Chapter 6 Model reduction of nonlinear

systems

6.1 Introduction

While significant theoretical advances have been made recently in the control of non-
linear systems, for these methods to be successfully applied to physical systems an
accurate low-dimensional dynamical description is needed. When the system models
are of high dimension, controller synthesis using methods based on differential geom-
etry becomes unwieldy due to algebraic manipulations needed for controller design. If
model predictive control methods are being used, computational requirements may be
large for system descriptions of even moderate dimension. For reasons which will be
illustrated in the next paragraph, these concerns are especially important for chemical
processes due to the way models are developed for these systems.

Dynamical descriptions of many chemical processes are derived from first-principle
models of the physics and chemistry of the system. These dynamic models are de-
veloped by writing detailed descriptions of the reaction kinetics, thermodynamics,
heat transfer, material and mass balances. Models developed in this way are sur-
prisingly accurate but are typically of fairly high order and complexity. At the same
time, these models generally exhibit behavior on widely differing time scales. If one
is uninterested with behavior occurring on fast time scales, it is natural to consider
a model reduction scheme which discards this portion of the dynamics of the model.
Heuristically, models can be simplified by making pseudo steady-state or equilibrium
assumptions. However, these assumptions are not mathematically rigorous. For this
reason, assumption made in this way may not always be accurate.

Ideally, low-dimensional models should be developed from the complete first-

principle models in some sort of optimal fashion. For linear systems, a number of
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techniques for model reduction exist. One commonly used method is balanced trun-
cation, which was introduced in Moore (1981). In balanced truncation, first a bal-
anced realization of the system is developed and then the smaller singular values of
the balanced realization are discarded. In this way, an upper bound can be defined

on the norm of the difference between the actual system and the reduced model

1G(s) = Gr(s)lloo (6.1)

where G(s) is the original model and G,(s) is the reduced model. A similar method
can be used for frequency weighted balanced model reduction (Enns, 1984). The
method of H., balancing has also been extended to model reduction of nonlinear
systems (Scherpen, 1996). The second common method of model reduction for linear
systems involves minimizing the Hankel norm between the original system and the
reduced model (Zhou et al., 1996).

In this work, systems which exhibit large time scale separations will be examined.
For systems with stable dynamics and large time scale separations, the dynamics will
converge very quickly to a reduced-order invariant manifold in the state-space. Once
on this manifold the system will remain there and only the slower dynamics of the
system take place. Since the majority of the system dynamics take place on this
manifold, it seems natural that any model reduction scheme should find the location
of this reduced manifold. On this manifold there are no fast dynamics, and this
manifold will be called the slow manifold.

For linear systems, the process of discarding the fast modes of the system is done
by performing a modal decomposition and truncating the fast modes of the system

(Brogan, 1991). For the system

it = Ax+ Bu
y = Czx+Du (6.2)

where the eigenvalues of A are negative real and not repeated, this is done by finding
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the transformation which puts the A matrix into the Jordan form T7'AT = A.
Because of our assumptions on A, the matrix A will be diagonal and it is assumed
that the eigenvalues in A are ordered with increasing magnitude. Transforming system

(6.2) into a system with the new state-space coordinates Z = T~ 'z, the result is

r = AZ+ Bru

y = Crz+ Du (6.3)

where By = T7'B and Cr = CT. In this new set of coordinates, the “modes” of the
system are decoupled because the matrix A is diagonal.
Now suppose that some of the eigenvalues have very large magnitude. Then the
matrix A could be decoupled such that
A O
A= (6.4)
0 A
where A; contains eigenvalues which have small magnitude and A, contains eigenval-

ues which have large magnitude. The full system can then be written as

T Ap O z
1 _ 1 1 + Bru
To 0 AQ To
Ty
Yy = CT + Du. (65)
)

Since the states contained in Z5 decay very quickly due to the fact that the eigenvalues
in A have a large magnitude when compared to A;, a good approximation of this

system is given by

.i—'l = A1f1 ‘f‘Bf;wU

Yy = ;wii'l + Du (66)
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where Bj. and CF are truncated so that they are of the appropriate dimension.

For a nonlinear system this type of modal decomposition will not work globally.
This is because the transformation which “decouples” the modes is nonlinear. De-
termining this decomposition from the original equations is not an easy problem in
general. For this reason, a computational method for determining this transforma-
tion will be utilized here. The first problem which will be tackled is how the “space”
where the slow dynamics take place can be identified.

The algorithm of Maas and Pope (Maas and Pope, 1992) will be presented as
a method for identification of invariant reduced-order manifolds for stable systems
which exhibit the time-scale separation property. While this method has been pub-
lished previously in the literature, theoretical justification for the algorithm was not
presented in the original work. Here, it will be shown rigorously that the method
correctly identifies the slow manifold. Before the theoretical results are presented, a
brief background on the behavior of singularly perturbed systems will be presented.
This method will be applied to two different examples, a distillation column and a
two-phase chemical reactor. For each of these examples, the resulting reduced-order
description will be compared to other standard methods of producing reduced or-
der models. In addition, some ideas on how this method can be used to produce

reduced-order models will be discussed.

6.1.1 Singular perturbation theory

Systems of ordinary differential equations (ODEs) which exhibit dynamic behavior
evolving over vastly different time scales can be represented by singularly perturbed
systems. The standard form of the singular perturbation model consists of a state-
space model in which the derivatives of a number of the states are multiplied by a

small parameter e.

T - f(xaya€>
eff = g(z,y,€) (6.7)
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where ' = 4 2z € R, y € R™, and € € R. When e is small, this system of ODEs will
exhibit a certain characteristic two-time-scale behavior. When ¢ — 0, System (6.7)

becomes

g = f(x7y70)
0 = g(z,y,0). (6.8)

In this limit, g(z,y,0) = 0 defines an invariant region upon which the dynamics
' = f(z,y,0) take place. Outside of this region, the dynamics are not defined since
the condition g(z,y,0) = 0 does not hold.

By scaling time such that 7e = ¢, system (6.7) becomes

i = ef(z,y,€

y = glz,y,¢ (6.9)

where "= & For € # 0, system (6.9) is equivalent to system (6.7). However, the

behavior is quite different when € — 0. In this limit, system (6.9) becomes

z = 0

y = g(z,v,0). (6.10)

Notice that for system (6.10) x is constant and only the value of y changes with time.

Because of the scaling of time with €, system (6.7) is called the slow system and
system (6.9) is called the fast system. When € = 0 the set in the state space for
which slow dynamics are defined, g(x,y,0) = 0, is the set of critical points for the
fast system. In the two limiting cases, analysis of the dynamics is simplified by the
fact that the state-space dynamics are limited to a manifold which is smaller than
the original state-space. For process control, the more compelling limiting case is
the slow system. Since the system trajectories quickly converge to the reduced order

manifold defined by g(z, y,0) = 0 when the fast dynamics are stable, control may not
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be needed for the fast dynamics. In order to improve performance in the region of
slow dynamics, only a description of these slow dynamics may be needed.

Unfortunately, many physical systems which exhibit behavior consistent with
singularly perturbed systems do not take the standard form of System (6.7) after
first-principles modeling. In order to convert these systems into the standard form,
transformations based on the physical insight into the specific system can be used
(Khalil, 1996). Often these transformations are not obvious, as choosing a suitable
“small” parameter can be difficult. Converting a system into the “optimal” form such
that the slow and fast dynamics are completely decoupled may not even be possible
using physical insight. Fortunately, the optimal slow manifold can be identified from
the complete description of the system dynamics using a computational algorithm.
The algorithm detailed in the next section will illustrate a method of identifying this

manifold of slow dynamics.

6.2 The Maas and Pope algorithm

The algorithm described in the paper of Maas and Pope (1992) was developed to ex-
amine problems associated with combustion. The algorithm computes discrete points
located on the slow manifold from a dynamical description of a system which consists
of ODEs which exhibit time scale separation. The motivation for this algorithm is
the fact that simulations of complete models of detailed combustion kinetics can take
hundreds of hours of supercomputer time. By identifying the manifold of slow dynam-
ics, it is hoped that methods can be developed for producing a reduced model of the
system in order to decrease the computational time needed for accurate simulations.

For the purpose of describing the Maas and Pope algorithm assume the following

system, which exhibits time scale separation, is given
z=F(z) (6.11)

with z € R". From this description, an n, < n dimensional manifold where the slow
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dynamics exist is to be found. The dynamics of the overall system from arbitrary
initial conditions should decay very quickly onto this n,-dimensional invariant slow
manifold. While the original algorithm does not develop a reduced model of the
dynamics on the slow manifold, it does identify individual points on the slow manifold.
The idea behind the algorithm presented in the paper of Maas and Pope is based
mainly on local arguments, and a rigorous justification of the algorithm is not pre-
sented in the original paper. In the paper it is stated that “While the development is
mathematical, no attempt at rigor is made” and the analysis of the algorithm is given
only for linearized dynamics. The algorithm makes use of the eigenvalue decomposi-
tion of the Jacobian of the system dynamics. Take the Jacobian of F' evaluated at z

defined as
_OF

It is stated that the eigenvalues of .J identify the time scales associated with movement
in the state-space. In addition the eigenvectors associated with these eigenvalues
describe the “characteristic directions” associated with these time scales.

The goal of the Maas and Pope (1992) algorithm is to identify the set in the state-
space where the projection of the dynamics onto the directions consisting of only fast
linearized dynamics is zero. On this surface, the dynamics of the fastest time scales
should be at equilibrium. The manifold is found in the following manner. Suppose

the basis of eigenvectors of the Jacobian at a point z is given by

V)= v vy - v, |» (6.13)

where the eigenvectors are sorted such that the absolute value of the real part of the
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corresponding eigenvalues is decreasing. The inverse of this matrix is

Vi(z) = : . (6.14)

The inverse also defines the coordinate transformation from the original coordinates
to a basis consisting of the eigenvectors. On the low dimensional manifold of slow

dynamics the following relationship holds

W(z)F(z) =0 (6.15)
where
- O —
— Oy, _
W(z) = o . (6.16)
- B, -

Note that W is a function of z, and the Jacobian of F' (specifically its eigenvalue-
eigenvector decomposition) must be evaluated at each point of interest. The matrix
W projects the dynamics onto the eigenvectors corresponding to the n — n, smallest
eigenvalues.

For a linear system, the matrix V! would be constant. The matrix W would
also be constant and would be the matrix which transforms the original coordinates
to To, the states which decay quickly. The quantity WF = 0 is then equivalent to
AoZe = 0.

Since the eigenvectors are not orthogonal, the matrix W (z) may be ill-conditioned
and the inversion may be problematic numerically. The solution to the above prob-
lem is better behaved computationally if the Schur basis is used to define the spaces
referring to the slow and fast eigenvalues. The Schur basis is orthogonal, and the

computations associated with it are better behaved numerically. The Schur decom-
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position is defined as follows (Horn and Johnson, 1985)
J=QNQ7, (6.17)

where () is an orthonormal matrix and N is a triangular matrix which is sorted such
that the eigenvalues appearing along the diagonal are sorted in order of descending

magnitude of the real part. If @) is

Q= q @ - ¢ (6.18)

the slow manifold is defined by points z such that

T
an +1

TF(z)=| q"r:” F(2) = 0. (6.19)

— qz; —

In the original work, both Newton’s method and continuation methods are sug-
gested for finding the manifold where Q7 (2)F(z) = 0. Since any fixed point z; will
be on the manifold, as F'(zf) = 0 for a fixed point by definition, a fixed point can
be identified and used as a starting point for the algorithm. In order to make the
equations consistent, n, additional parametric equations must be defined. An exam-

ple would be fixing n, of the variables to some given values by solving the extended

( 1(2)F () ) L 6.20)

set of equations

P(z,7)
where

P(z,7) = zp,

(1

— T3 izl,...,nr (621)

where 7 is a vector of fixed parameters. The solution of Equation (6.20) for z give a



91
single point on the slow manifold. By solving this equation repeatedly with different
values of the parameter vector 7, numerous points on the manifold can be computed
which are arbitrarily close together by the choice of parameters 7.

For reasons of computational speed, in this work a nonlinear optimization is used
to identify the slow manifold. An interface has been written to the program NPSOL
(Gill, Murray, Saunders and Wright, 1994) such that the following problem is solved

min [|Q7 (2)F(2)|l» (6.22)

zERD

with n, of the states of the system fixed
Zn, =T 1=1,...,n,. (6.23)

Note that 7; behave like constraints on some of the state variables to make the mini-
mization solution unique. The choice of n; determines how the slow manifold should
be parameterized. If the objective function is equal to zero after the minimization
at a single point z, the condition for identifying the slow manifold has been met.
By repeating the algorithm for different values of the vector 7, a number of different

points on the manifold can be calculated be repeating the process.

6.3 Validating the algorithm

In this section, a justification for the slow manifold identification algorithm of Maas
and Pope will be given for a system of ODEs in the standard singular perturbation
form. For the limiting case where the time separation between the slow and fast
dynamics is infinite (e — 0) the proof is fairly straight-forward. In the case where € is
small but finite, the problem is more difficult and results from singular perturbation
theory known as Fenichel fibering are used to derive the Fenichel normal form. Once
this normal form is derived, it is can be shown that the Maas and Pope algorithm
identifies the proper slow manifold. While only the standard form of singularly per-

turbed systems is considered here, it is expected that the results should extend to
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any singularly perturbed system since a coordinate transformation exists for trans-
forming any singularly perturbed system into the standard form (Fenichel, 1983). It
should be noted that much of the background information in this section (especially
for the finite time scale separation results) comes from the papers of Jones (1994) and
Fenichel (1979). For the results here, it will be assumed that the dynamics appear
in the standard form for singularly perturbed systems. When the dynamics are not
in this form originally, there always exists a nonlinear change of coordinates to put
them in this form (Fenichel, 1979). For this reason, working with the special form
should not be problematic.

When ¢ — 0 there is an infinite time scale separation between the fast and slow
dynamics. In this case the set of critical points of (6.10) is defined by g(z,y,0) = 0.
This is the set where the slow dynamics defined by (6.8) exist. The manifold where
g(x,y,0) = 0 is defined by a set of m equations in R*™. This manifold is expected to
be | dimensional (at least locally) by the preimage theorem of differential geometry
and it is possible that the manifold has a boundary. In this paper, this manifold will
be called My = {(z,y) : g(z,y,0) = 0} where the subscript refers to the fact that
e=0.

Before presenting the formal validation of the algorithm, a list of assumptions
will be presented. The first assumption is on the smoothness of the functions f and
g. This assumption ensures that the transformation to the Fenichel Normal Form is

smooth.

Assumption 6.3.1 The functions f and g are assumed to be C® on the set U x I,

U € R4™ and the interval I contains 0.

The second assumption concerns the dynamics on the manifold M,. Since the
manifold is a set of critical points, directions normal to M, should correspond to
eigenvalues which are nonzero and eigenvalues tangent to Mj should be identically

Zero.

Definition 6.3.1 The manifold Mg is normally hyperbolic if the linearization of
(6.10) has ezactly | eigenvalues on the imaginary azis Re(\) = 0 for all (z,y) € M.
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Assumption 6.3.2 The manifold Mg is normally hyperbolic.

Since the linearization of Equation (6.9) for € = 0 is

5o\ _ (c@uo d@pa (o
8y a(z.y€) i(z,y,0) ) \ by
0 0 5
- . (6.24)

2 (2,9,0) $(z,5,0) | \ oy

M, is normally hyperbolic whenever 2 (:c y,0) is nonsingular for (z,y) € M,.
Since My may have boundary, the manifold cannot be invariant in general since
trajectories can escape the manifold at the boundary. However, it can be shown that

M will be locally invariant.

Definition 6.3.2 A set M is locally invariant under the set of differential equations
(6.9) if it has a neighborhood N such that no trajectory can leave M without leaving

N.

Note that the only difference between local invariance and invariance is at the bound-
aries of the set M.

In order to simplify the notation, it will be assumed that the manifold M, can be
represented as the graph of a function h. Since the matrix g—g(:p, y,0) is nonsingular
on the manifold due to the assumption of normal hyperbolicity, it is locally invertible
for any (z,y) € M,. By the Implicit Function Theorem, y can always found as a
function of z locally. Assuming that a solution can be made globally, then M, can

be represented by a graph of a function A°.

Assumption 6.3.3 M, can be represented as a graph My = {(z,y) : y = h%(z)}

for some compact domain z € K where K C R

As y can be found from z locally, the main assumption needed here is that the function

h%(z) can be pieced together globally from the local descriptions.
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6.3.1 Infinite time scale separation

For the limiting case ¢ — 0, the representation of the dynamics with the fast time
scaling (6.9) will be utilized. For this set of equations, the dynamics can be linearized

about a point (z, h°(x)) € My. The linearization takes the form

o _ 3L (z, h°(z),0) 6%5(:1:, h%(z),0) §z
%y 32, h(2),0)  S(z,h(2),0) ) \ dy
0 0 0x
= , (6.25)
0 32(z,h%(z),0) Sy

as gg(x, h%(z),0) = 0 on My by the definition of A%(z) and € = 0.
The eigenvalues of the Jacobian given in (6.25) can be decomposed into two dis-

tinct groups. The first group of eigenvalues is identically zero and the set of eigenvec-

. . . €1 €9 €
tors associated with these eigenvalues can be defined as ; sy
0 0 0

where the orthonormal vectors e; form a basis of the space R!. Since the matrix
g%(x, h°(z),0) is nonsingular, the eigenvalues of this matrix are bounded away from

zero. The invariant eigenvector space associated with these nonzero eigenvalues is
) 0 0 0 )
spanned by the orthonormal basis vectors , sy which
él éQ ém

span the invariant space which can be defined as £. These basis vectors should span
the same invariant space as the rows of Q7.

On the invariant manifold M, it can be shown that the projection of the original
dynamics onto the space £ is identically zero. In mathematical terms, this projection

onto the invariant space associated with the nonzero eigenvalues is given by

&
& €f(z,0,0)

=0 (6.26)
g(z, h°(x),0)

S O O O
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as g(x, h°(z),0) = 0 by the definition of h°(x). Therefore, on My, Q¥ F(zy, 1) from
Equation (6.19) is zero and the conditions specified in the Maas and Pope (1992)
algorithm are satisfied.
For points (2o, yo) not on My, it should be shown that the quantity QT F(xq, yo)
is not zero. If it is possible for this quantity to be zero for (xq, yo) & My, the manifold
could be identified incorrectly. The linearization of (6.9) about (zg,yo) & My takes

the following form when ¢ = 0
o _ fgﬁ(% Y, €) f%ﬁ(w, Y, €) o
5?/ g%(xo,yo,(:') g‘%(xf)uy())e) 5?/
0 0 ox
— | s s (6.27)
52(%0,%0,0)  5%(20,%0,0) Sy

As long as %(wo, Yo, 0) is nonsingular, this matrix has exactly [ eigenvalues which

are zero and the invariant space associated with the these eigenvalues is spanned by

e e e
the basis vectors {( ! ) , ( 2 ) ey ( : )} The orthogonal complement to
0 0 0

this space (that space which refers to nonzero eigenvalues) will be spanned by the

0 0 0
basis vectors , s . Off the manifold, it can be shown
é1 és ém

that the expression Q¥ F(zg, y5) from Equation (6.19) is non-zero. This is because for

(20, yo) & Mo, g(xo,v0,0) # 0 by definition. Since this is true

( ef (o, %0, 0) ) £0 (6.28)
g(an Yo, 0)

< () o ()
>
VN

6.3.2 Finite time-scale separation

In the case where the time-scale separation between the variables is finite, the pa-

rameter € takes a small, non-zero value. In this case, the slow manifold will no longer
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be Mj. In addition, since ¢ is finite the Jacobian no longer has the special form of
Equation (6.25) which makes the analysis easy. However when e is sufficiently small,
a manifold of slow dynamics which is close to M still exists. It is shown by Fenichel

(1979) that there exists a manifold which is called M..

Theorem 6.3.1 (Fenichel’s Invariant Manifold Theorem) If ¢ > 0 and suffi-
ciently small, there ezists a manifold M, which lies within O(e) of My and is diffeo-
morphic to My. In addition, M. is invariant to the flow of (6.9).

Now in the fast scaling, the manifold M, will not need to be a manifold of stationary
points as was the case for M. Figure 6.1 illustrates the behavior of trajectories in

the neighborhood of the slow manifold in these two different cases.

M M

Figure 6.1: Behavior of trajectories in the neighborhood near the slow manifold for

M() and Me.

Since the slow manifold is M., it should be shown that the algorithm proposed
by Mass and Pope identifies M, from the equations given in (6.9). As the manifold
M, is diffeomorphic to My, it is expected that properties which hold for M, should
also hold for M,. In order to show this rigorously, the Fenichel Normal Form will be
derived (Jones, 1994) which converts equations from the general form of (6.9) to one
in which the variables are “decoupled” in some sense. Working with the coordinates
in the Fenichel Normal Form, it can be shown that the algorithm of Maas and Pope
properly identifies the slow manifold.

First, it will be assumed without loss of generality that h°(z) = 0 for all points
r € K. The set K is simply the compact domain where (z, h%(x)) € M. If h%(z) # 0

in the original coordinates, the change of coordinates from y to § = y — h%(z) gives
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the desired property. Using this assumption, Equation (6.9) can be converted to the

following form on M,

T = ef(z,y,€)
y = Lx)y+G(z,v,€) (6.29)

where L(z) = —g—%(a:, h%(z),€) and |G(z,y,€)| < v(Jy| + |¢|) since G is higher order in
y and €.
Using linear algebra, a transformation can be found such that y is transformed

into coordinates (a, b)

& = ef(z,y¢)
a = A(z)a+ Gi(z,a,b,€) (6.30)
b = B(z)b+ Gy(x,a,b,e)

where the eigenvalues of A(z) are strictly positive and the eigenvalues of B(z) are
strictly negative. This is true since the eigenvalues of L(z) are bounded away from
zero by the hyperbolic manifold assumption. It will also be assumed that a € R™e
and b € R™ where mg, + my, = m.

When € = 0, each point (z,h%(z)) € M, has a stable and unstable manifold
associated with it. The mj-dimensional stable manifold W*(M,) is defined by the
condition a = 0, while the m,-dimensional unstable manifold W*(M,) is defined by
b= 0. When ¢ > 0, it turns out that these stable and unstable manifolds persist and
are simply perturbations of the manifolds W*(M;) and W*(M,).

Theorem 6.3.2 (Fenichel Invariant Manifold Theorem 2) If ¢ > 0 and suffi-
ciently small, there exist manifolds W*(M,) and W*(M,) which are O(e) perturba-
tions and are diffeomorphic to W*(M,) and W*(M,).

In order to prove this theorem, graphs which define W*(M,) and W*(M,) will

be shown to exist.
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Theorem 6.3.3 (Jones Invariant Manifold Graph Theorem) If e > 0 is suffi-

ciently small, for some A > 0

1. there is a function a = hs(z,b,€) defined for ¢ € K and |b| < A such that the
graph
WM. = {(z,a,b) : a = hs(x,b,€)} (6.31)

is locally invariant under the dynamics defined by (6.50).

2. there is a function b = h,(z,a,¢€) defined for x € K and |a| < A such that the
graph
WM = {(z,a,b) : b= hy,(z,a,€)} (6.32)

is locally invariant under the dynamics defined by (6.30).

A proof of this theorem is found in (Jones, 1994).
Since a graph exists which defines the manifolds W*(M,) and W*(M.), the coor-
dinates can be transformed to simplify the dynamics. In the first step, the coordinates

are transformed to

ry = I
a; = a— hg(z,b,€) (6.33)
bl - b

which causes the manifold W*(M,) to be defined by a; = 0. The coordinates are

then transformed again to

Ty = I
o = (634)

by = by — hy(z1,a1 + hs(z1,b1,€),€)

and now the surface by = 0 defines the manifold W*(M,).
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Since the stable and unstable manifolds are invariant under the dynamics defined
by (6.30), the surfaces as = 0 and by = 0 must be invariant. This means that as = 0
implies @o = 0 and by, = 0 implies by = 0 which means that the equations describing

the dynamics in these coordinates take the form

Ty = €Fy(xa,a9,bs,€)
(Zg = A(l‘g,ag,bg,é)GQ (635)
52 = F(332,a2,b2,€)b2

locally, where Fy(xo, as, by, €) = f(z,a — hy(x,b,€),b — hy(z,a,€)) and A(xo, a, b, €)
and T'(x9, ag, b, €) are matrices. Additionally, System (6.35) should be equivalent to
(6.30) when € = 0. For this reason A(x2,0,0,0) = A(z) and I'(z,,0,0,0) = B(z).

With this transformation, the coordinates defining the stable and unstable mani-
fold of a given point vy € M, have been “straightened.” In order to decouple the slow
directions, theory which is known as Fenichel Fibering is needed. Since it has been
shown that the manifolds W$(M,) and W*¥(M,) are persistent when the parameter
¢ is finite, the next question is whether the manifolds associated with a single point
vg € My also perturb in a similar fashion when € is small. Since individual points
ve € M, are no longer fixed points, it is not clear that these structures should remain
after the perturbation.

It turns out that these structures will still remain, although the dynamic nature

of the system in this region is quite different than in the case € = 0.

Theorem 6.3.4 (Fenichel Invariant Manifold Theorem 3) For allv. € M, there

exist manifolds

W (ve) © W*(M.) (6.36)

and

W(ve) C WM. (6.37)

of appropriate dimension which are O(e) perturbations and are diffeomorphic to W*(vy)

and W*(vo) respectively. In addition, these manifolds are invariant as long as the tra-
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jectory does not escape the local neighborhood of interest.

A sketch of the stable manifolds W#(vy) and W#(v,) is given in Figure 6.2.
W (o) W (ve)

o) Ve

MO Me
Figure 6.2: A sketch of W*(vg) and W*(v).

Once again this theorem is shown by determining a graph function which describes

the manifold associated with a single given point on M..

Theorem 6.3.5 (Jones (1994)) If e > 0 is sufficiently small, then

1. in ay = 0 (which is C W*(M,)) there ezists, for each v, = (&,€) € M., a
function x = h¥(b) defined for |b| < A such that the graphs

We(ve) = {(z,0,b,¢) : x = h’(b)} (6.38)

form a locally invariant famaily.

2. in by = 0 (which is C W*(M,)) there exists, for each v, = (&,€) € M., a
function x = h¥(a) defined for |a] < A such that the graphs

W*(ve) = {(z,a,0,¢) : x = hy(a)} (6.39)

form a locally invariant family.

These graphs, h?(b) and h%(a), define the stable and unstable manifolds associated
with a given point v, € M,. In fact, the graphs define mappings from (v.,b) to
(h?(b),b) or from (v, a) to (h!(a),a) respectively. By taking the inverse of these



101
mapping the base point of the fibers which are on M, can be found. This inverse
mapping takes a fiber in W*(M,) or W*(M,) to its base on M..
These inverses can be defined as 7~ : (z,b,¢) - & € M, and 7 : (z,a,¢) —
Z € M. By using these inverses as a coordinate transformation, the fibers inside
We(M,) and W*(M,) can also be straightened. This is done first by straightening

the stable manifold

3 = T (Zg,b,€)
az = ds (640)
by = by

and then by straightening the fibers of the unstable manifold

Ty = 7T+($3,a3,€)
as = Qg (641)
b4 - b3.

By making these transformation, the slow flow becomes decoupled from the flow
on the manifolds W*(M,) and W*(M,). If either ¢ = 0 or b = 0 then what was
f(z,a,b,¢) is only a function of z and € in these new coordinates. For this reason,

the new form of the equations in these transformed coordinates is given by

ty = e{h(zy,€) + H(zy4,04,b4,€)}
ag = A(x4,0a4,bs,€)a4 (6.42)

by = ['(z4, a4, bs, €)by

where H (x4, a4,by,€) is a bilinear function of ay and by. This change of coordinates
will be valid only in a local neighborhood of the manifold, which can be defined as

the set D = {(24,a4,bs,€) : |as] < A, |by] <A z4 € K € € [0, €]}
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Since this change of coordinates is smooth, the algorithm of Maas and Pope can be
validated in these coordinates. By linearizing the dynamics about a point (x4, 0, 0),

za € K, the above equations take the form

: oh
dx = 6_8;(:5’\4’ €)
ba = A(zrm,0,0,€)da (6.43)

ob = T(zum,0,0,€)db.

The Jacobian of this linearization is

eg%(xM,e) 0 0

Jo = 0 A(zu4,0,0,€) 0 (6.44)
0 0 F(x/\/la 07 Oa E)

and the eigenvalues of J, lie in two distinct groups. The first group of eigenvalues
consists of m eigenvalues which have a real part with absolute value of magnitude

O(e). The eigenvectors associated with these eigenvalues are contained in the space

€1 €2 €
spanned by the vectors ol,l o1l,..,1 0 where the vectors e; form
0 0 0

a basis of the space ®'. Those eigenvalues which have real part which is bounded

away from the origin have eigenvectors contained in the space spanned by the vectors
0 0 0 0

ér |seoo| Em [l O ]-s] O
0 0 él émb
The dynamics of system (6.42) evaluated for (zp4,0,0) € M, are described by

T = eh(zpm,€)
@ =0 (6.45)
b = 0.
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Once again it is easily seen that the projection of the dynamics onto the space of the

fast eigenvalues is identically zero on the manifold.

0 & o
0 eh(zpm, €)
e
ma 0 =0. (6.46)
0 0 ¢f
. 0
0 0 ¢,

Since the projection of the dynamics onto the eigenvectors associated with the fast
direction is identically zero, the Maas and Pope algorithm should again give the
proper result when on the manifold M..

To show that the projection of the dynamics onto the eigenspace associated with
the fast eigenvalues is non-zero for a point w & M., a special case will be considered.
Assume that the fast dynamics of the system are stable. In this case the dynamics in

the set D near M, are

Ty = e€h(zg,€)

64 = F($4,b4,6)b4 (647)

and the Jacobian of the dynamics linearized about the point w = (z, b) is

e%(x, €) 0
J=| 7 N (6.48)
%Z(‘,E) b,€) m(ﬂ?,b, 6)b+r(x7 b, 6)

The eigenspace associated with eigenvalues which have O(e) real part is spanned by

[ €] .
the vectors ' ey where the vectors e; form a basis of the space
0 0
R! and the eigenspace associated with eigenvalues with are O(1) is spanned by the
0 0
orthogonal vectors e, where the vectors é; form a basis of ™.

~

€1 emb
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The projection of the dynamics onto the space associated with fast eigenvalues is

given by
0 &
eh(z, €)
£0. (6.49)
I'(z,b,€)b
0 el

This projection is non-zero because b # 0 (by definition of the (z,5) ¢ M,) and by
the fact that I' is nonsingular (normally hyperbolic manifold assumption). It can
also easily be shown that the when the fast dynamics are strictly unstable that the
projection of the dynamics onto the space associated with the fast eigenvalues is
nonzero using the same method.

In the case where there are both stable and unstable fast dynamics, it is expected
that the results are similar. Showing this rigorously is a bit messy, since the additional
terms associated with the bilinear term H make the Jacobian non-diagonal for points

not on M.,.

6.4 Example: Binary distillation

Distillation is used widely throughout the chemical and petroleum industries for sep-
aration. There has been a great deal of work directed at understanding the dynamics
and improving control of distillation processes because of its importance in these
industries. Modeling of the process in a tray-by-tray fashion is straight-forward by
considering component balances. In the simplest case of a binary mixture with 100%

tray efficiency, constant molar flow, and constant molar holdups tray ¢ is modeled as
szz = LCE,'_1 + Vyi+1 - L.’I}Z - Vyz (650)

where z; is the liquid composition on tray 4, y; is the vapor composition on tray i, L
is the liquid molar flow rate, V is the vapor flow rate, and M; is the molar holdup

of tray 7. By assuming the vapor liquid equilibrium is governed by constant relative
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volatility («), y; is given by

ax;
1+ (Oz - 1)171) )

yi = k(z:) = ( (6.51)

These set of differential algebraic equations can be easily integrated, and early com-
putational studies of the transient behavior of distillation columns are presented by
Rosenbrock (1957).

While these detailed models have been available for a long time, there have been
numerous attempts to quantify the dynamics behavior of these differential algebraic
equations and to develop a reduced-order model which accurately describes the dy-
namics. It has been well-known for a long time that the dynamics of a distillation
column are dominated by a single large time constant which can be estimated by
considering the column as a giant “mixing tank” (Davidson, 1956; Moczek, Otto and
Williams, 1965; Wahl and Harriot, 1970; Skogestad and Morari, 1987). Later, the
MIMO dynamics of the linearized input/output system were studied and a second
smaller time constant was discovered which has important implications for control
purposes (Skogestad and Morari, 1988). Input directionality is important when de-
termining this second time constant, and these ideas are extended in the work of
Sagfors and Waller (1995). Other recent approaches to this problem utilize nonlinear
methods. Nonlinear wave theory is utilized in the work of Hwang (1991) and Hwang
(1995). A singular perturbation theory approach, which will be described later in this
section, is applied by Lévine and Rouchon (1991).

The example which will be studied is a binary distillation column with 40 ideal
trays, a reboiler, and a total condenser. Constant molar overflow and constant rel-
ative volatility (o = 1.5) are assumed. The feed is liquid with a light component
composition zf = 0.5. The liquid molar holdup of each tray is assumed to be equal
and is defined as M; = M = 0.5. The distillate flow rate is D/F = 0.5 and the liquid
reflux flow rate is L/F = 2.702 at the operating point of interest. The composition
of the distillate output for these operating point is z4 = x; = 0.99. This column is

identical to Column A from Skogestad and Morari (1988).
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In order to study the transient dynamics around the operating point, the system
is initialized at another steady-state where L/F = 9.0 and D/F = 0.2. Since the
reflux is higher at this operating point, the distillate has a higher purity (z, = 0.999).
At time ¢ = 0, the flows of the distillate and liquid reflux are changed to those of the
operating point of interest (L/F = 2.702, D/F = 0.5). From the simulation results
of the dynamic transition to the steady-state, the behavior seems to be show evidence
of a time-scale separation. The response of the distillate, after the first 50 minute

transient period, appears to be an output from a first order system (Figure 6.3). To

Distillate response
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Figure 6.3: Time response of the distillate composition for L/F : 9.0 — 2.702,
D/F :02—0.5att=0.

further illustrate the dynamics of the simulated system, a snapshot of the composition
profile along the length of the column is given in Figure 6.4. The composition profile is
given at times [0, 50, 100, 200, 300, 400, 500, 600]. As time progresses, the composition
moves from the initial high purity profile to lower purity.

Since the output seems to suggest that the system exhibits behavior consistent
with a one-dimensional slow manifold, three methods will be presented for identifying
the one-dimensional “slow” manifold and the results will be compared withe the
simulation results. In the first method, modal decomposition will be applied to a

linearized model of the column dynamics. A linear model of the system can be built
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Snapshots of composition profile
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Figure 6.4: Snapshots of the column composition profile at times

[0, 50, 100, 200, 300, 400, 500, 600].

at the operating point of Column A (L/F = 2.702, D/F = 0.5)

z = Ax+ Bu
y = [1,0,...,0]z (6.52)

where the C' matrix takes this special form since the output is the distillate, z;. The
variable z, u, and y of this system are deviation variables about the steady-state. By
performing a modal decomposition and reducing the system such that only a single

mode is kept, the following model is found:

.’fl = /\11?1 -+ B}U
Yy = [17 07 e 70}t1j—71 (653)
where A; is the eigenvalue of smallest magnitude and T = [t1, %9, - -, t41] IS & matrix

consisting of the eigenvectors ¢; of A sorted such that ¢; is the eigenvector associ-
ated with the eigenvalue A; (for ideal binary distillation, all the eigenvalues of A are
negative real and distinct). In the neighborhood of the operating point, System 6.53

should be a good approximation to the dynamics of the full system since \; is more
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than an order of magnitude smaller than the other eigenvalues.

From the above reduced model,
Yy =1tuZ: (6.54)

where t;; is the first component of the eigenvector associated with the dominant
eigenvalue. By assuming the remaining modes are at equilibrium (Zo = -+ = Ty =

0), the original state x can be found by the transformation
1, = x. (6.55)

Using Equations (6.54) and (6.55), the state profile from the one-dimensional reduced

model can be found from the output y.

z =24, (6.56)
1381

This method is used to determine the linear approximation of the one-dimensional

slow manifold of the distillation system. As can be seen in Figure 6.5, this approx-
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Figure 6.5: The linear approximation to the one-dimensional slow manifold

imation does a good job of finding the low-dimensional manifold when the column

profile is close to the steady-state. This is expected, since a linear approximation is
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valid in a small neighborhood of the steady-state. However, for short times after the
step change this method is unable to capture the features of the composition profile.
This is due to the fact that the modal decomposition method only utilizes a single
linear model.

In an attempt to find a better approximation of the slow manifold, nonlinear
methods will be used. The second method which will be described here involve trans-
forming the original equations describing the distillation column into the standard
form for singularly perturbed systems (System 6.7). This physically motivated trans-
formation is given in Lévine and Rouchon (1991) and will be used here to compute
the slow manifold associated with this assumption.

The dynamic description of a section of N trays of a distillation column with no

feed is

Mz, = Lzg+Vy, — Lz, — Vi

M(I.)j_l = LlEj_Q + Vy] - L.’L‘j~1 - Vyj_l
M.ij = L.‘L‘j-l + Vyj+1 - Lllfj - Vyj

M.i‘j+1 = LSIIJ‘ ~+ Vyj+2 et LLL‘J'.H — Vyj+1

Miy = Lry_1+Vyyy —Lay —Vyn.

To put the original system equations in the standard form of singularly perturbed
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systems, the following change of coordinates is made (Lévine and Rouchon, 1991)

Tj-1 3{{-1 = Zj-1
N
Lj = | 2¥ =35 %/N (6.57)
o
Zj+1 Tjr1 = Tj+1
z [ =
N ) Iny = IN

where the section has a total of NV trays.
By defining the holdup of the entire section as M = NM, this transformation

results in the following description

—Mi{ = Lo+ Vyl - Lzl — vyl

- 1
Mil | = Lal_,+Vk(z® - ¥ Saly - Lal_ — vyl
i#]
Mi* = Lzy+ Vynsy — Lflz’{v - Vy{

1 L1
]_V‘anf'ﬂ = L(z* - =Y a])+ Vyaf+2 - L$£+1 - VnyH
i#]
ey i 1 i
-]\-/,-MmN = Lxy_; +Vyny — Loy — Vyy

Note that these equations are in the standard form for a singularly perturbed system
if the factor & is considered as the small parameter (e in the previous notation).
If it is assumed that the holdup of the entire column is large compared to the

holdup on a single tray (% — 0), the description of the slow system is given by

0 = on—l-Vyg—Lx{—Vy{
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0 = Lol ,+Vy —Lal_, — vyl ,
Mz* = Lxo+ Vyyir — szfv — Vy{

0 = Lz* + Vy]f+2 ~ L:E;“ - Vy}-:rl

0 = Laf 4+ Vyns — Laf, — vy,

The “reduced” description of the dynamics of the system involve a single ODE with
N —1 algebraic constraints.

In order to compute the slow manifold for Column A, a term to account for
the external feed Fzp needs to be added to the right hand side of the equation
describing the feed tray. By defining the transformation such that z; is the feed tray,
only the dynamic equation for z* will include terms because of the feed. There are
also some slight modifications to the above equations because the first equation now
describes the condenser and the last equation describes the reboiler. Applying the
transformation to the equations describing Column A, the set of algebraic constraints

describing the slow manifold are:
0 = Vny — Vx{

0 = Laf +Vy{ - Lzl - Vyf

0 = L:z;f_g +Vy® — foml — VyJ’-c_1

0 = (L+F)z"+ Vygf+2 —(L+ F)x§+1 - Vygf+1

0 = (L+ F)x}fv—z + Vyf; —(L+ F)"E{le - Vyjfv—l
0 = (L+F)ly ,—(L+F-V)zl - vyl

The N — 1 algebraic constraints defined above involve N variables, so it is expected

that the surface in the state-space which satisfies these algebraic conditions is a one-
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manifold.

By specifying the distillate composition z;, the remaining tray compositions can
be found by solving the above equations. Using the distillate composition from the
simulation at the times corresponding to the snapshots, the slow manifold at this
time can be found. The results of computing the slow manifold using this method are
given in Figure 6.6. It appears that this assumption captures the main characteristics

of the profile.
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Figure 6.6: The compartment approximation to the one-dimensional slow manifold

While the approximation of Lévine and Rouchon (1991) appears to capture the
main characteristics of the slow manifold, it is likely that this transformation is not the
optimal one for determining the slow manifold. The computational algorithm of Maas
and Pope (1992) is the third method which is applied to this example. The algorithm
described in Section 6.2 is used to determine the slow manifold where z;, the distillate
composition, is used as a fixed parameter. Computation of a single column profile
on the slow manifold with a specified distillate composition takes approximately 10
minutes on a Sun SPARCstation20. The results are given in Figure 6.7. It appears
that this computational algorithm of Maas and Pope (1992) does the best job of
capturing the slow manifold of the three methods presented.

In order to compare these methods, the norm of the difference between the sim-

ulation results and the profile given by the different methods of computing the slow
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Figure 6.7: The results of the computational methods for identifying the one-
dimensional slow manifold

manifold was found. These results are presented in Figure 6.8. From this comparison,

it appears that the computational algorithm does the best job of determining the slow

manifold.
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Figure 6.8: The norm of the error associated with each approximation method as a
function of time
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6.5 Forming reduced-order models

The computational algorithm outlined previously is only able to identify individual
points on the manifold of slow dynamics. While this description of the manifold
may provide some insight into the dynamics of the system, it would be preferable
to develop a reduced model of the slow dynamics. With this reduced dynamical
description, it may be possible to design an effective controller for the process using
the reduced description.

Roussel and Fraser (1991) approached the problem of model reduction for systems
exhibiting time-scale separations in a different manner than the method considered
here. Their algorithm for model reduction computes a reduced model of the dynamics
by performing certain algebraic manipulations on the full set of ODEs. Assume that
the following ODEs, which are identical to Equation (6.11), describe the dynamics of

the system.

2 = F(2)
21 Fl (zly 22, 7Zn)
22 _ F2(zl7227"‘7zn) (6 58)
Zn Fn(z17227"')zn)

It is also assumed by Roussel and Fraser (1991)that the system exhibits relaxation
behavior that cascades through a hierarchy of smooth manifolds ¥ such that R =
Xn D Xpo1D...D X, where ¥; is an i-dimensional invariant manifold.

Since X, is an n — 1 dimensional manifold in the state-space R”, it is expected
that a single nonlinear equation is able to describe this manifold in the state-space.
In general, the constraint describing this manifold can be written by representing a

single variable, z,, as a nonlinear function of the remaining variables

Zn = 221, 225« oy Zne1). (6.59)
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By differentiating (6.59) with respect to time

Zy = %Zl + + an z
" 82’1 o 8zn_1 el
Folz1, 29,00y 2) = %Fl(zl Cey 2 )—t—...—[——éj)—zidi’n_l(z]L ..y 2n) (6.60)
i 2 ¥ azl ? &N aanl k) bRk 13

is found.

Equation (6.60) can be rearranged such that z, appears on the left hand side and
partial derivatives of z, appear on the right hand side. After the rearrangement, the
following iterative scheme is defined
a9z o7

*n “n_) (6.61)

i+1 Zn1
.y R BN
’ ) 821, 7azn_1

2 (21,0 ey 2n-1) = h(z1, ..

Roussel and Fraser (1991) claim that it is expected that Equation (6.61) has a sta-
ble fixed point z;(z1, ..., 2,—1) that attracts all smooth starting functions which are
sufficiently close to X, _; for stable dynamical systems (6.58).

The solution, 2%(21,. .., z,—1), describing the surface ¥,_; can then be substituted
into the original equations to arrive at a reduced description of the dynamics on the

invariant manifold X,,_4.

21 Fl(Zl,Zg,...,Z;;(Zl,...,zn_l))
29 B Foy(z1,20,. .., 25(215 - - -5 Zn1)) (6.62)
Zn—l Fn_l(zl,zQ,...,z;;(zl,...,zn_l))
F{(Zl,ZQ,...,Zn_l)
Fl(z1,29,...,2,—
- 221 B )| (6.63)
F;L‘—l(zlaz%'“)zn—l)

By repeating the process on the reduced system, the dimension of the description can
be reduced by one with each iteration. While the algorithm of Roussel and Fraser

(1991) is appealing because the final result is a reduced model of the system, the
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symbolic manipulations make this algorithm computationally intensive for systems of
even moderate complexity and dimension n.
The Maas and Pope (1992) algorithm identifies the reduced manifold, so it should
be possible to fit the equations that describe the manifold from the results of the
algorithm. The output of the algorithm is a number of points on the n,-dimensional

slow manifold

(2’1,227---7271)1

2152200y 2

(21,22 )2 (6.64)
(21,252,... >Zn)M-

The points on the slow manifold should satisfy n — n, nonlinear constraints.
These nonlinear constraints can be estimated from the data by performing n —n,

black-box identifications. The results of the black-box regressions can be defined as

an+1 = Gl(zl,...,zm)
Znotz = Galz1,...,2n,)
(6.65)
Zn = Gpon, (2155 2n,)-

Once again these equations defining the constraints can be substituted into the orig-

inal equations

2 = Fi(z,...,%0,.,G1(2),...,Gpon,(2))
2 = Fy(z1,...,20,,G1(2),...,Gnon, (2))

(6.66)
Zn, = Fo(21,...,20,,G1(2),...,Gnon,(2))

r

where z = [21, ..., 2,,]. By making this substitution, a reduced model of the dynamics
is formed.

While this reduced model will not have any fast dynamics if the functions G; are
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able to represent the slow manifold exactly, this black-box approximation may not
exactly describe the manifold. If there is any mismatch between the manifold and
the functions G;, there may be mismatch between the slow dynamics of the original
model and this reduced model and there may also be a mismatch at steady-state.

Possibly the best approach to determining a reduced model of the slow dynamics
would be to use the Maas and Pope (1992) algorithm to determine an initial approx-
imation of the slow manifold. This initial approximation could then be used in the
algorithm of Roussel and Fraser (1991), and the slow manifold would converge after
iterations to the actual manifold. To reduce the computational requirements of the
algorithm of Roussel and Fraser (1991), a numerical approximation of these functions
could be used. There is some initial work in this direction, but the results are not yet

published (Davis, 1997).

6.6 Example: Two-phase CSTR

In this example, the dynamics of a two-phase chemical reactor will be studied. The
reactor has a pure gas feed, A, and a pure liquid feed, B, which react to form C

(A+B — C). An illustration of the system is given in Figure 6.9. While components

/ N\ > 7
Fao \ “

_.___>
G .G
ng,No
Ny N¢
\/L/\‘/—-
L L L
Fro 4, B, ¢
--..__»

K_// > F

Figure 6.9: Gas-liquid phase chemical reactor

A and C exist in both the liquid and gas phase, component B remains purely in the

liquid phase. The effect of mass transfer between the gas and liquid phase is also
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considered in the model. The equations describing the reactor are as follows:

dn§

—= = Fyg— Ny — F

pn A0 A GYA

dn§

—¢ = _N¢-F

dt c GYc

dnk

——d-t— = NA—kOACBVL’FLIIIA (667)

d L

*%B— = Fpo— kCsCBVy — Frzp
L

EZ—C%C— = Ng+ kCusCgVy — Frac

where

n; Number of moles of component 7 in liquid (superscript L) or gas (superscript G)

phase
z; Mole fraction of liquid component 2
1; Mole fraction of gas component %
Vi, = (n§ +nk +nk)/p Liquid volume
C; = n¥/V;, Concentration in the liquid phase
N; = kp(x% — z4) Mass transfer from the gas to liquid phase of component i

v; = Pyi/ P

P = (n§ +n8)RT/(V — V) Reactor pressure
k = koe~Pa/ET Reaction rate constant

with the parameters and variables at steady-state given in Tables 6.1 and 6.2.
Figures 6.10 and 6.11 give simulation results of the full dynamical system from ar-

bitrary initial conditions ([n§, n&, nk, nk, nk] = [3000, 1000, 3300, 10500, 1500]). Two

time-scales appear to be present in the simulation results. An initial fast transient,

and a slower time constant associated with the long time dynamics.
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Variable | Description Steady-state value
ng Molar gas holdup of A (mol) 3552
ng Molar gas holdup of C (mol) 1238
nk Molar liquid holdup of A (mol) 3061
nk Molar liquid holdup of B (mol) 10630
nk Molar liquid holdup of C (mol) 1310

Table 6.1: Reactor variables at steady-state

Parameter | Description Value
Fao Inlet vapor flowrate (mol/s) 175
Fgo Inlet liquid flowrate (mol/s) 250
Fg Outlet gas flowrate (mol/s) 92.2
Fr, Outlet liquid flowrate (mol/s) 284.2

R Gas constant (J/mol K) 8.314
E, Activation Energy (J/mol) 110000
ko Preexponential reaction factor (m3/mol s) 101

p Molar liquid phase density (mol/m?) 15000

% Reactor volume (m?) 1.8

T Reactor temperature (K) 341.5
kL Mass transfer coeflicient (mol/s) 2500
P Saturation vapor pressure for A at T (Pa) | 51.11 x 108
psat Saturation vapor pressure for C at T (Pa) | 56.49 x 108

Table 6.2: Reactor parameters

In Figure 6.11 the first 200 seconds of the simulation are plotted, and the effect
of the time-scale separation can be clearly seen. Some very fast dynamics occur in
the first 20 seconds. The behavior appears to be consistent with the mass-transfer
of the system, since the liquid and gas holdups of components A and C adjust very
quickly. After this initial transient, the behavior is consistent with a time-scale of
approximately 100 seconds. Most likely, this behavior is associated with the chemical
reaction.

One possible way to reduce this model is to use a physical understanding of the
process as motivation. By assuming that the mass transfer dynamics are much faster
than the other dynamics of the system. This means that the mass transfer term
reaches steady-state much faster than the rest of the system. Therefore, in order

to reduce the equations, it is assumed that N4 = NC = 0. This is equivalent to
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Figure 6.10: Simulation of the full set of equations for the CSTR (Top graph: n§ -
solid line, n& - dashed line. Bottom graph: ng - solid line, n% - dashed line.).

making the mass transfer dynamics reach equilibrium infinitely fast and provides two
algebraic constraints that describe the slow manifold.

By transforming to a new set of variables which describe the overall holdup of
each of the individual components in the reactor ([na = n§ +n%, nk, nc = n& +nk)),
the fast mass transfer dynamics (N4 and N¢) no longer appear. The new set of
differential algebraic equations describing the reduced dynamics for the physically

based model reduction scheme become

%"3 = Fao— Fgya — kCaCpVy — Fraa

‘%LB_ — Fpo— kCuCgVi — Frap

-CZL—: = kCyCBVy — Frze — Foyc (6.68)
(@5 —%4) = 0 |

(@5 — dc) = 0.
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Figure 6.11: Simulation of the full set of equations for the CSTR for the first 200
seconds.

It is possible to convert back to the original set of coordinates by utilizing the algebraic
constraints for calculation.

Figures 6.12 and 6.13 give the results of simulation based on System (6.68). The
initial conditions for this simulation are such that [na, nk, np] match the initial con-
ditions of the full system. The concentration differences n§ — nf and ng — nk are
then adjusted until (% — £4) = 0 and (&% — &¢) = 0. This is the projection of the
dynamics onto the slow manifold that results from the physically motivated model
reduction scheme.

In Figure 6.13 the fast dynamics do not appear. The reason is that the mass
transfer terms N4 and N¢ do not appear in the differential equations. Notice that the
long term dynamics are reproduced quite well using this approximation. However, the
simulated solution of this set of equations requires a combined differential algebraic

equation solver. In addition, this model can only be used with control design schemes

which are specifically developed for differential algebraic systems.
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Figure 6.12: Simulation results for the physically motivated model reduction.

The computational algorithm of Maas and Pope was then used to identify the

3-dimensional manifold of slow dynamics. The variables [n&, nk] are solved for as a

function of the remaining variables [n§, nk, nk] over an equally spaced grid of 8,000
points for molar holdups less than 300 mol from the steady-state using the Maas
and Pope algorithm. Computationally this takes approximately 15 minutes on a Sun
SPARCstation 20. After this is completed, the variables [n&, nk] are estimated as a

function of the other variables using a quadratic polynomial. The fitted functions are

ng = Hl(nﬁangané)
ng = Hy(nf,ng,ng). (6.69)

Substituting these fitted functions into the original equations, reduced equations
are as follows:

e
dnj

= Fy9— Ny—F,
p A0 A alYa
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Figure 6.13: Simulation results for the physically motivated model reduction in the
first 200 seconds.

dnk

*-C—ﬁ— - FBO—k‘CACBVL—-FLQCB

dnk

—d-t—— = NC"I‘]CCACBVL——FLxc (670)
ng = Hl(ngan%anlé)

ng = Hy(ng,nk,ng).

Note that for this set of equations, the reduced form is much more natural. By
substituting the expressions Hi(n§,n%,n&) and Ha(n§,nk,ng) for n§ and n%, the
system can easily be simulated as a set of only 3 differential equations. This is much
different than the system which results from the physically motivated model reduction
where a differential algebraic solver is needed for simulation.

The results of the simulation of System (6.70) are given in Figures 6.14 and 6.15.
In this simulations, the initial values of [nG,nk, nk] are specified to be identical to

those values used in the simulation of the full system. The initial values of [n§, n4]
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are determined from the constraints H;(n§,nk,nk) and Hy(n§, nk, nk). Note that
this choice of initial conditions for the reduced system is not necessarily the optimal
choice. It is simply an arbitrary projection of the initial conditions onto the slow
manifold.
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Figure 6.14: Simulation results for the reduced model generated by black-box fitting
of the results of the Maas and Pope algorithm

The simulations using this model no longer exhibit the fast dynamics of the full
set of equation. In addition, it appears that the computed initial conditions for
[n&, nk] are similar to the full simulation result after the mass transfer reaches steady-
state (around 20 seconds). Dynamically, the results appear quite similar to the full
simulation results if the initial transient is ignored. However, since the fit to the slow
manifold is only approximate there is some error associated with the final steady-state
of the reduced model. The error has a major impact on the steady-state behavior
since the term N4 is not exactly cancelled out by the function H; and H,. However,
the results of this model reduction are a set of 3 differential equations which can

be utilized easily by a nonlinear control scheme. Finally, Figure 6.16 compares the
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Figure 6.15: Simulation results for the reduced model generated by black-box fitting
of the results of the Maas and Pope algorithm for the first 200 seconds.

results of the three different models for the molar holdup of component A.

This example was selected because the results of the physically motivated based
model reduction work quite well. The physically reduced model gives a benchmark
that the results of the Maas and Pope based model reduction scheme can be tested
against. However, for many systems which exhibit time-scale separations these types
of accurate assumptions will be difficult or impossible to identify. The computational
algorithm provides a way to accurately identify the manifold of slow dynamics in a

systematic way.

6.7 Conclusions

The algorithm of Maas and Pope (1992) has been examined as a tool for nonlinear
model reduction of systems which exhibit behavior with time-scale separations. First,

it was shown that the algorithm identified the proper reduced manifold of slow dy-
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Figure 6.16: Comparison of the three different models for the first 200 seconds.

namics for systems with infinite and finite time-scale separations. The slow manifold
of a simulated binary distillation column was found using the algorithm and the re-
sults were compared with previously utilized methods of linear model reduction and
physically based nonlinear model reduction. The Maas and Pope algorithm appears
to do the best job representing the slow manifold of the system.

Some thoughts on how the results of the algorithm could be used for model reduc-
tion were then presented and this method of model reduction was used on a model
of a two-phase chemical reactor. The results were compared with the results of a
standard physically based model reduction and the results of the full simulations. In
this example, the slow dynamics of the system were reproduced quite well by the
Maas and Pope algorithm and black-box modeling. However, the mismatch between
the final steady-state of the reduced and full model illustrates the need for more
work in this area. Possible subjects include determining the optimal projection for

initial conditions in the state-space onto the slow manifold and determining more
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computationally efficient ways of developing reduced models.
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Part IV

Data-based control methods
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Chapter 7 An introduction to data-based

control methods

7.1 Motivation

Historically, new developments in control applications and theory have been closely
tied to advances in computational processing power. Before the development of pro-
cessors of reasonable size and price, the state of the art in process control involved pro-
portional, integral, and derivative control of single-input/single-output loops. Pneu-
matics were used for the implementation of these control laws. In order to determine
appropriate tuning parameters for these controllers, online “trial and error” tun-
ing methods were used extensively. The Ziegler-Nichols tuning method (Ziegler and
Nichols, 1942) provides a starting point for this type of controller tuning. In order to
use the Ziegler-Nichols method, a few simple closed-loop experiments are performed
to determine the steady-state gain and critical frequency of the system to be con-
trolled. From these two quantities, suggested values of the proportional, integral, and
derivative gains are given by simple formulas. More complicated pencil and paper
methods were also available for determining controllers for processes which could be
represented by simple descriptions. However, a simple model of the process first had
to be developed and few rigorous methods were available to ensure robustness of the
controller.

In the late 60’s and early 70’s, the first small and relatively affordable processors
became available. Computational power suddenly became available for solving rea-
sonably sized numerical problems offline. Along with this advance in computational
power came major advances in the control of state-space systems. Since controller
design involving these models require fairly complicated matrix computations, ad-

vances in offline computational power made these methods feasible. The state-space
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methodology also made it possible to deal with multiple-input/multiple-output sys-
tems in a systematic manner. Simple online processors were available for the actual
controller implementation and theory of the control of sampled-data systems was
developed in order to account for problems which may arise due to digital implemen-
tation of the controller. Soon after, the theory of optimal control and robust control
advanced significantly as a result of the increasing amounts of offline computational
power available to control engineers.

In the 80’s, processors had became so fast and inexpensive that fairly powerful
personal computers became widely available to the general public. With the speed
of these new processors, suddenly it became possible to perform significant computa-
tions online while the process was running. For the first time, control engineers could
take advantage of a control method which could harness this processing power for
computing the control law online. Before this time, controllers relied on fixed mathe-
matical formulas for determining the controlled input. By performing an optimization
problem at each sampling time of the system rather than using a fixed control law, it
was hoped that better performance could be achieved. One specific implementation
of this methodology is currently used widely throughout industry and is known as
Dynamic Matrix Control (DMC) (Cutler and Ramaker, 1980). Academic research in
this area has focused on the problem of Model Predictive Control (MPC) (Morari and
Lee, 1997). Because of the feasibility of online computations, the theory of adaptive
control also experienced interest. A class of these adaptive controllers perform online
identification and adapt their control law to changing system conditions.

There have also been significant advances in the storage of computer data. Now
it is relatively affordable to store massive amounts of data in an easily accessible
format. For this reason, it is possible to collect massive amounts of data for relatively
little cost. In order to get a competitive edge, companies have started to gather
and store many different types of information. However, once the data are collected
the companies have one major question. “How can the data be used?”. In the
area of marketing, companies are using new techniques known as “data mining” to

search large data sets and identify trends among customers, products, and markets
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(Strassel, 1997). With these techniques, useful bits of information that could easily
be overlooked are identified from large amounts of data. In fact, it is even reported
that data mining tools helped to make key adjustments in Orlando’s game plan in the
NBA playoffs after losing two straight games to the Miami Heat (Koprowski, 1997).
Orlando went on to win the series.

In the field of process engineering and control, industry has developed large,
archival data bases from operating processes. However, there is little understand-
ing of how this data can be used for modeling, control, and process monitoring. At
a number of recent conferences industry has called on academia to develop tools
which would allow them to effectively utilize this data in process control and en-
gineering (Trainham, 1996; Harg, 1997). It appears that gathering and collecting
large amounts of data are no longer problematic, but gaining useful information from
this data remains elusive. However, data-based control methods would allow these

massive amounts of data to be used directly in control.

7.2 Local modeling

As discussed in Section 2.1, in order to form a black box models of process dynamics
proper regression vector and functional relationship between regression vectors and
future outputs needs to be determined. For a set of observed regressors (t) and

observed outputs y(¢), a function G is to be found

y(t) = Glo(1)] (7.1)

such that the choice of G minimizes the error associated with the approximation.
While there are many methods available for forming the function G (examples are
mentioned in Section 2.1), the one method which is most successful for time-series
prediction of chaotic systems is “local modeling” (Abarbanel, 1996).

The idea of local modeling in the context of chaotic prediction is first discussed

by Farmer and Sidorowich (1987). Instead of determining a single global function G
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relating regressors to future outputs (Figure 7.1), it is suggested that a number of
local predictions can be made using only regressors which are nearby when forming the

prediction model (Figure 7.2). This way, a number of functions which approximate

y = Gy

o Y

Figure 7.1: Standard global models approximate a single function which is valid for
the entire region

v

Figure 7.2: Local modeling relies on a number of models which are only valid locally

G in a small region can be utilized. To predict y(t), a collection of regressor vectors
¥(t;) is found such that ||(¢) — 9¥(t;)]] is small in some sense. Two methods are
commonly used in order to determine whether regressors 1 (t;) are local. Either a
specific number of the closest vectors or all vectors which are within a certain small
distance of ¢(t) are kept.

The simplest approach to local modeling is known as the zeroth-order approxi-
mation. In this method, the single regressor ¢ (¢*) which is closest to the regressor of
interest is found. The predicted future output for ¢ (t) is the future output associated
with the nearest neighbor y(¢*). This method will be highly sensitive to noise, so

often a more sophisticated approach known as a first-order approximation is used. In



133
this approach, many local regressors are found and a linear least-squares problem is
solved to determine the predicted output. For nearest neighbors ¥(t1),...,¥(t,), 8

is found by solving the following least-squares problem

Ya(t1) Ya(t1)
ya(t2) Ya(ta)

Yd (tn) wd (tn)

where 1)y and yq refer to deviation variables about the mean of the regressors and
outputs in the local neighborhood. The predicted output associated with ¢ (t) for the

first-order approximation is given by

Ja = a(t)0. (7.3)

It is also possible to use higher order polynomials (Casdagli, 1989) and weighted
regressions (Sauer, 1993) with local modeling schemes.

The process of finding neighbors for a regressor in a data base of N points will
require N computational steps if the data are searched in the most straight-forward
manner. However, if the data are presorted into a decision tree only log N steps are
needed to find the neighbors of the single regressor (Friedman, Bentley and Finkel,
1977). Since the neighbors will have to be found every time a prediction is made, a fair
amount of computational power is needed for making predictions. This is different
from the majority of modeling schemes where significant computational power is
needed in order to build the model, but making predictions based on the identified
model only involves evaluating a known function.

Some results have been given for bounding the error involved with predictions from
local modeling schemes. It has been suggested by Farmer and Sidorowich (1987) that
the error associated with prediction using this method is limited only by noise when
the typical spacing between data points is ~ N~/ where N is the number of data

points and D is the regressor dimension. When there are less data available, the
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error for local linear predictors is of O(N~2/P) (Casdagli, 1989). In the prediction of
chaotic time-series with large amounts of data, it was observed in a study by Casdagli
(1989) that local predictors do a better job than a number of other standard modeling
tools (radial basis functions, neural networks, and global polynomials).

A major drawback to local modeling is that in order to build a model, neighboring
data points are needed. If data are too sparse, it is impossible to use local modeling
schemes. Since local models rely on the training data to build a model, large amounts
of data need to be stored and retained in order to make predictions. This is unlike
traditional modeling schemes where the training data can be discarded after the model
is built.

If a significant amount of noise contaminates the training data, local modeling
may be inaccurate. Since local modeling only uses a small number of neighboring
regressors in order to build a model, the effect of noise can be more significant than
for global modeling schemes where large amounts of data tend to be “averaged” when
building the model. For performing local modeling on training sets with significant
noise corruption, the data may need to be pretreated by some noise reduction scheme.
Grassberger, Hegger, Kantz, Schaffrath and Schreiber (1993) give a comparison of a
number of methods of noise reduction for nonlinear systems.

There is one other possible drawback to using local modeling. When local model-
ing schemes are used for prediction, little to no physical insight can be gained about
the system dynamics. However, this is also a problem for many other traditional
nonlinear modeling schemes. It is not easy to gain physical insight into the dynamics
of a process when modeling with other popular methods including neural networks

and radial basis functions.

7.3 Extending previous control ideas

The idea of using numerous models for control of nonlinear system is not new. The
idea of using a “stored response modeling” technique was suggested for controlling

nonlinear systems by Eichler and Mansour (1979). In this method, a locally valid
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linear model is developed at a number of discrete grid points in the state-space.
These linear models are developed offline using methods similar to the first-order
local modeling scheme detailed above. Once the linear models are developed for all
grid points, a locally valid solution of the Riccati equation can be found which is the
optimal solution for a quadratic performance measure locally. These solutions can
be stored for all the grid points and recalled for control of the system. The grid of
control solutions in the state-space is called the “Riccati feedback table”. When this
controller is implemented on the system, the appropriate control move can be found
by interpolating the feedbacks given in the Riccati feedback table for the appropriate
location in the state-space. The results of this method for a few small nonlinear
examples are suboptimal, but comparable to those of a globally optimal nonlinear
controller.

Another approach to solving the problem is to approximate the nonlinear system
as a piecewise linear system. By using piecewise linear systems to approximate non-
linear systems, it is hoped that some of the tools from linear systems can be modified
and utilized for control. An introduction to how a piecewise linear approach might
be applied to control of nonlinear systems is given by (Sontag, 1981). Another way
to apply methods of linear control to a nonlinear system is to use a “gain scheduled”
controller (Shamma and Athans, 1990).

The data-based control ideas which are suggested in the following sections will
require both the ability perform online computations and the ability to quickly access
large amounts of presorted data. The computational power should not be a problem
since Dynamic Matrix Controllers which perform online optimizations for computing
future control moves at each sampling time are used widely throughout the chemical
processing and petroleum industries (Morari and Lee, 1997). For systems with large
sampling times, performing the relatively simple online computations which would be
associated with data-based control seem achievable.

The ideas in the following sections are only the first steps in examining how data-
based control could be utilized. Obviously, there is a significant amount of work which

would need to be completed before this methodology could be successfully applied
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to industrial problems. Some thoughts on how this can be accomplished and work
for the future is detailed in Chapter 10. However, as will be shown in Chapter 9,
preliminary results are quite promising.

In the next chapter, a method of computing controllable sets from a data-based
methodology is given. A time n controllable set of a given point is defined as the
region which can driven to the desired point in n steps by the appropriate control
actions. The method used to compute these controllable sets does not require a
mathematical description of the system dynamics. In the method presented here the
controllable sets are determined directly from identification data of the system.

In Chapter 9, a method of computing an input trajectory that tracks specified ref-
erence output trajectory is presented. Once again the trajectory is computed directly
from identification data from the system. In the examples presented in this section,
the data-based trajectory planning method is implemented in an offline manner and
applied to a pair of computational problems and an experimental nonlinear circuit.

A method of control similar to data-based trajectory planning was developed by
Schaal and Atkeson (1994). In this article, a “memory-based learning” technique is
used to teach a robot how to juggle a devil stick. The controller for the robot “learns”
how to perform this repeatitive task by using local modeling techniques. Data are
collected from the experiment online and these data are then used by the control
algorithm online. It appears that the “memory-based learning” technique can be

applied fairly succesfully to this problem in an online fashion.
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Chapter 8 Computing controllable sets

Abstract

An algorithm is presented which determines the controllable sets of a system directly
from time series data. By determining these controllable sets, it is shown that a
minimum time trajectory steering control problem is solved. A global model of the
dynamics is not needed for computation since the algorithm exploits local properties
of the data. Two algorithms are presented. The more simplistic algorithm relies on
a sorting algorithm, while the second algorithm uses local linear models and a con-
tinuation scheme to solve problems associated with noise corruption and continuity.
Theoretical properties of controllable sets are also analyzed, and a simple example is

presented.

8.1 Introduction

In chemical process control, many systems to be controlled are highly nonlinear (due
to thermodynamics, reaction kinetics, heat transfer, or other reasons). When de-
signing controllers for nonlinear systems, two methods are commonly used. The first
method consists of designing a controller based on a first-principles state-space model.
One disadvantage of this method is that determining the parameters of the state-space
model can be difficult. In addition, when there is plant-model mismatch it is difficult
to determine whether the mismatch is a result of improper parameters or unmodeled
dynamics.

The second method of control design commonly used consists of two stages. An in-
put/output model of the dynamics is developed first, and then a controller is designed
for that model. A major problem with this method is that no universal nonlinear
model structure has been discovered that works well for the identification of all nonlin-

ear systems. Certain identification methods (neural networks, radial basis functions,
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MARS), which tend to be more accurate for identification purposes, result in mod-
els which can be difficult to utilize for analysis and control purposes. Other methods
(such as polynomial functions), which give results in a form that can be easily utilized
by existing control design methods, tend not to represent the dynamics of nonlinear
systems accurately.

A method which could perform control analysis and design directly on the data
would allow the control engineer to completely bypass the difficult modeling and
identification stage of nonlinear control. In addition, by performing analysis directly
on the data rather than the identified model (which is only an approximation of the
identification data) more accurate results might be found. What is outlined here is
a method to determine the set of points in the time delay coordinates which can be
controlled to a reference point in a given number of sampling times directly from
time-series data. The exact control moves needed to drive the system to the reference
point is also found as a byproduct of this analysis.

One drawback of any data-based analysis scheme is that large amounts of data are
needed to arrive at accurate results. As a result, massive amounts of computer storage
and high computation speeds might be needed. However with lowering prices of
computer storage and recent advances in computational speeds, data-based methods
of control could become quite attractive in the near future for analysis and control of

nonlinear systems.

8.2 Time delay coordinates

A geometric theorem of Takens (Takens, 1981) states that nonlinear autonomous

state-space systems of the form

x(t) = flx(t)] xe® (8.1)
y(t) = h[x(t)] yeR (8:2)
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can be equivalently represented by utilizing what are known as “time-delay coordi-
nates”. For the system defined by Equations 8.1 and 8.2, the time-delay description
is

y(t) =Gyt —71),...,y(t —I1)] (8.3)

where 7 is some constant sampling time and G is some nonlinear relation which
cannot be directly determined from f and h in general. However, there is a relation
between the dimension of the state-space and the number of terms needed on the right
hand side of Equation 8.3 to recreate the state-space dynamics. According to Takens,
[ > 2n is a sufficient condition for the two dynamical descriptions to be equivalent.
This relation is examined and the results are extended for autonomous systems in
(Sauer et al., 1991).

Soon after the paper of Sauer ef al., it was hypothesized that a similar relation

could be found for single-input single-output systems of the form

x(t) = [flx(),u®)] (8.4)
y(t) = h[x()] (8.5)

where the input u changes only at sampling times of the system (Casdagli, 1992). The
description in time-delay coordinates should contain delayed versions of the input as

well as the output.

This result was formalized recently for systems with a discrete time state-space de-
scription (Poncet et al., 1995).

The existence of this relationship alone is not useful for analysis or identification
of state-space dynamics from time-series data where the dimension of the state vector
is unknown. In this case, the number of time-delay coordinates needed to represent

the dynamics of the system is unknown a priori. For this reason, algorithms have
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been developed to determine the minimum number of time-delay coordinates needed
to recreate the dynamic behavior using input/output time-series data (Poncet and
Moschytz, 1994; Rhodes and Morari, 1995). These algorithms do not build global
models to determine the underlying “dimension” of the data. Instead, local properties
of the data are exploited to determine the minimum number of delays needed to
reproduce the dynamics. Once the number of delayed terms (I and m) needed to
represent the dynamics has been determined, identification and analysis can take
place in the time-delay coordinates rather than the original state-space coordinates

since the two spaces are diffeomorphic.

8.3 Controllable sets

Slight modifications to Equation 8.6 can be made to convert the time-delay description
into one which resembles a state-space description where the idea of controllable sets

is more intuitive. Let

Z(t) - [y(t)’ tee 7y(t - (l - 1)T)> (87)
u(t—1),...,ult — (m—-1D71)]".

A function F' can then be formed, using function G from Equation 8.6

Flz(t —7),u(t — 7)] = [Glz(t — 7),u(t — 7)], (8.8)
y(t—1),...,yt— (- 1)71),

u(t —7), ..., u(t — (m—1)7)"
such that

z(t) = Flz(t—71),u(t —71)] (8.9)
y(t) = [1,0,...,0]z(1). (8.10)
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Using this new state-space description of the dynamics, the following definition can

be made.

Definition 8.3.1 The time n controllable set of a point z, C,(z) € RH™7L, is the
set of points for which there exists an input sequence that drives the system to z inn

sampling times.

What can be said about these controllable sets? First, some characterization can

be made concerning the geometry of a controllable set.

Theorem 8.3.1 C;(z.) is the projection of an i-dimensional manifold onto the time-

delay state-space.

Proof: If z € C;(z.), 3 an input sequence {u, ..., u;} such that
F[F|...Flz,u1],...],u;] = Zws by definition. The left hand side of this equation can
be represented as a single function of all its variables, or H[z,uy, .. ., U;] = Z.s where
H : REm=1+i _, gl+m-1) By the preimage theorem (Guillemin and Pollack, 1974),
if Zyef is a regular value of H (which is generically true) then the preimage H !(zf) is
a submanifold of R+ with dimension 7. However, the controllable set consists
only of points in the state-space RU+™=1. Therefore, the controllable set is the
projection of the manifold H!(z.¢) onto its first [ + m — 1 components.

Say the system is to be controlled to a steady state (z* = F[z%,u*]). The

following statement can be made concerning the controllable sets of a steady state.
Theorem 8.3.2 C;(z%) C C;(z%) for all i < j

Proof: Let z € C;. z can be controlled to the steady state z* in ¢ control moves
by definition. After those ¢ control moves, the controlled input can then be chosen to
be u® for the last j — i control moves. Since z* = F[z* u*|, the system remains at
state z* after a total of j control moves. Thus z € C;.

This result has implications for control purposes. A simple control algorithm to
drive a system from any state z to a steady state z* can be designed based on an
algorithm which determines controllable sets and the related inputs needed to drive

the system to that steady state.
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Algorithm 8.3.1 Simple control algorithm
1. 1=1
2. Calculate C;(z%®).
3. Is z € C;i(z**) ? If not, i=i+1 and return to step 2. Else, go to step 4.

4. Apply the needed i control moves to drive the system from z to z%.

Thanks to Theorem 8.3.2, it can easily be shown that this control algorithm
determines the control moves needed to drive any point z to a desired steady state
in the least time (provided it is possible to drive z to the steady state).

Another simple result is helpful in computing controllable sets of time greater

than 1.
Theorem 8.3.3 C;i1[Zvet] = C1[Ci(Zret))

Proof: If a point z is able to be driven to the desired reference point z.s in
i + 1 steps, then by definition it must be possible to drive z into C;(zf) (the time 4
controllable set) in a single step by definition.

As a result, it is possible to compute controllable sets of any given time recursively

using the following algorithm.

Algorithm 8.3.2 Computing controllable sets of z.
1. i=0. Let Cy = Zypes.
2. Civ1 = C[Cy).
3. 1=1+1. Repeat step 2.

To compute controllable sets of any time, only a single algorithm to compute time
1 controllable sets must be developed. Two versions of this algorithm are presented

in the following section.
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8.4 Computing controllable sets

Now that some results concerning controllable sets have been presented, algorithms
which compute controllable sets are developed. If the underlying function describing
the dynamics is known, computation of the controllable sets is straightforward. Here
it is assumed that the algorithm can only access time-series data. Two methods of
computing controllable sets will be presented in this section. The first method is a
simple box and sort algorithm, while the second method utilizes a local modeling

scheme and the continuation program AUTO.

8.4.1 Box and search method

The idea behind the box and search method is to search the time-series data for
states which have reached the desired steady state in a single time step previously.
If the controllable sets of many different points are to be computed, the data can
be presorted into small boxes using the scheme of Grassberger for computational
efficiency (Grassberger, 1990). The result of the box and search method is a set of

discrete points, each of which lies very close to the actual controllable set.

Algorithm 8.4.1 Box and search algorithm

1. Presort time-series data in the state-space into e-sized boxes to minimize the
search time for points (Grassberger, 1990). € should be small to improve accu-

racy, but the choice of € will be dependent on the amount of data available.

2. Find the set of points S, in the data set which reached z..¢ (or reached a size €
boz around Z.s) in one time step previously by searching the data. These points
form the set C1(zwt). By storing the input needed to drive each z € S, 10 Zret,

a control algorithm for points in Cy is defined.

3. For the set Cs, repeat the algorithm to find all points z that reached zs (or
reached a size € box around z.s) in two time steps. Continue to determine all

desired control sets.
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It was mentioned previously that controllable sets of time greater than 1 could
be computed recursively using an algorithm for time 1 controllable sets. However
when using the box and search algorithm, it is much easier to compute C; for ¢ > 1
directly rather than recursively because of the presorting scheme. The method of
direct computation also has less error, since the error involved in € box sorting will
propagate during recursive application of the C; box and search algorithm.

The box and search algorithm to find C; should give an idea of the basic structure
of the controllable sets. However, since the time-series data available to the algorithm
is of finite length, the computed sets C; will consist of discrete points. It would be

preferable to find a continuous set of points which describe C;.

8.4.2 Local modeling

The set of points z € C;(zrr) meet the following condition for some input w by

definition.

Flz,u] — 2w =0 (8.11)

Notice that when calculating z(t+1) = F[z(t), u(t)], all the components of z(t+1)
excluding the first are taken directly from component of the vector [z(¢), u(¢)]. The
first term of z(¢ + 1) is y(¢ + 1), which can be found using Equation 8.6. Therefore
to estimate F'[z(t), u(t)], only an approximation of G from Equation 8.6 is needed.

Calculating the set of points z which satisfy Equation 8.11 is relatively simple
when F is known, however here it is assumed that only time-series data are available.
To estimate the behavior of a function at a single point or in a small region around
that point, local modeling can be used (Abarbanel et al., 1993). In local modeling, a
model is built using only data which are “close” to the point where the dynamics are
to be modeled. The implicit assumption of all local methods is that the dynamics are
locally continuous.

The simplest local modeling scheme is known as the method of analogs (Lorenz,
1969). When using this method to estimate the function F|[z,u], the data point in

the identification data set [z(tnn), u(tqn)] which minimizes ||[z, u] — [2(tpn), u(tan)]|| is
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found. The method of analogs predicts the value of the first component of F[z, u]
to be y(tun +1) = [1,0,...,0]F[2(tum), u(tn)], the “closest” example of the desired
behavior. While this method does a good job of illustrating the idea of local modeling,
it is highly sensitive to noise and may not be accurate when ||[z, u] — [2(an), U(tm)]||
is relatively large.

Another method of local modeling involves building a linear map. Only data points
which are “close” are considered when computing the parameters of the local linear
model. Using this method, the parameters are found by solving the least-squares

problem

Yt+1 = [ZtUt]6 (812)

for 0, where Z;, U;, and Y1 are matrices consisting of rows z(¢), u(¢), and y(t + 1)
respectively for times where the data are close in the sense of ||[z,u] — [z(t), u(¢)]].
Two different methods are traditionally used to determine which data will form the
matrices Z;, Uy, and Yy.;. One method suggests that all points where |||z, u] —
[Z(tan), u(tan)]|| < & should be used, where ¢ is an adjustable parameter. The second
method states that data in the identification set should be sorted by distance ||[z, u] —
[Z(tun), u(tan)]|| and a certain number of the nearest neighbors are used.

For reasons of continuity, neither of these methods are ideal for use in the algorithm
about to be presented. Instead, a modified version of the first method is utilized.
Instead of solving a simple least-squares problem to form the local model, a weighted
least-squares problem is solved. The weighting used takes the form of a radial basis
function (d? + ¢?)7° where d = ||[z,u] — [2(tun), u(tan)]|| and ¢ and b are positive
adjustable parameters. Using this weighting, points close to the reference point are
weighted more in the computation of the parameters. The weight is calculated for
each neighboring point, and a diagonal matrix of the weights W is formed. The

parameters are then found by solving the following least-squares problem for 6.

WYt—H - W[ZtUt]H (813)

This process is repeated for each point [z, u] where a local description of the dynamics
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is desired.

8.4.3 Using AUTO to determine controllable sets

Now that the local modeling scheme has been detailed, a method for calculating the
controllable set C;(2z.er) utilizing this local scheme is presented. The method should
find all values of the vector [z(¢), u(t)] in the range of the identification data such that
Zret = F[2(t), u(t)]. Because of the form of F', delayed outputs y(t —7),...,y(t— (I -
1)7) and inputs u(t — 27),...,u(t — (m — 1)7) of z(¢) are fixed by the corresponding
components of z.

Let the function H be defined as below.
H[Zret, 2(t), u(t)] = Flz(t), u(t)] — Zres- (8.14)

When H = 0, the point [z(t), u(¢)] is in the time 1 controllable set. The only free
variables in Equation 8.14 are y(¢ — (I — 1)7) and u(t — (m — 1)7), with the rest of the
vector components fixed by the structure of F'. Thanks to this special structure, the
problem of finding the controllable set becomes a search over two free parameters to

find where the first component of H is zero. This is equivalent to solving,

[—1,0,...,0]Zwt + Gly(?),...,y(t — (I = 1)7) (8.15)
u(t),...,ut—(m=17)] = 0

the first component of H found from Equation 8.6. Rearranging the variables of

Equation 8.14, the problem to be solved is
[1,0,...,0]H (Vixed, Viree) = H' = 0 (8.16)

where H' is a nonlinear function, veyeq consists of the fixed parameters and Ve =
[yt — (I = 1)7),u(t — (m — 1)7)] contains free parameters. This is an algebraic

continuation problem, a problem which AUTO (a standard program for analysis of
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nonlinear dynamical equations) solves (Doedel, 1986).

A companion program for AUTO was written to presort the data (for determining
nearest neighbors) and build local models for the local evaluation of Equation 8.14.
Continuation is used to determine the entire controllable set from an initial point
contained in the set. The algorithm for determining controllable sets using AUTO

takes the following form.

Algorithm 8.4.2 AUTO continuation based algorithm

1. Find an initial point contained in the controllable set. This is best done using
the previously defined box and search algorithm with very small €. Since the

initial point is in the controllable set, H' = 0 when evaluated at this point.

2. AUTO makes small steps in the free parameters such that dH'/dvge = 0.
The function H' is evaluated using the weighted local modeling scheme outlined
previously. AUTO checks to ensure that H'(Vexed, Viree) = 0 for points along
the continuation. In this way, all points z € C1(zwt) and related inputs u which

drive the system to z..s are determined.

3. To find Cy (for example), the set of state which can be driven to a grid of distinct

points in Cy is computed using the same algorithm.

8.5 Example

A simple example is presented to show the results of the two algorithms. A random
white noise input was used to drive the following discrete time system, and the time-

series data were stored.

10y(t) = y(t—1)+4y(t—1)> (8.17)

F3ult — 1) — u(t — 2)

The two algorithms were then applied to the 100,000 point data set to determine the
time 1 controllable sets for the steady state point z*° = [y(t), u(t — 1)] = (0,0).
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Since the system is described in the discrete domain, C;(z%) can be computed
directly from Equation 8.17. The results of the box and search algorithm with € = 0.01
are presented in Figure 8.1. The theoretical time 1 controllable set is given by the
solid line, with the individual points referring to the results of the box and search

algorithm.

Using box and search scheme
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Figure 8.1: Results of box and search algorithm

The results of the AUTO based scheme for computing controllable sets are pre-
sented in Figure 8.2. The controllable set found by this algorithm is illustrated by
the circles on the figure. Notice that the AUTO continuation scheme gives results
which are indistinguishable from the theoretical result. However, the algorithm is not
able to continue beyond the end point given since the data in that region becomes
sparse and the algorithm has convergence problems. It also might be the case that
the adjustable parameters of the local modeling scheme are not optimally selected
for this system. Further experience with this algorithm is needed for determining the

optimal parameters and the data requirements.
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Using AUTO continuation scheme
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Figure 8.2: Results of AUTO continuation algorithm
8.6 Conclusions

A method to determine controllable sets has been illustrated. A possible advantage
of this method is that local properties of data are used rather than a specific model
structure. Since the algorithm can only work in the range of identification data, it is
also well suited for estimation of controllable sets for systems with constrained inputs.

While the box and search algorithm is easy to implement for any system, the
AUTO based continuation scheme has a number of tunable parameters which can be
difficult to choose. AUTO normally evaluates nonlinear equations directly when car-
rying out analysis. For this reason, it can be very sensitive to small errors and tuning
of the parameters in the local modeling scheme is very important for convergence.
More experience with the algorithm is needed, and it may be necessary to formulate
a new algorithm designed specifically for determining controllable sets using these
same methods.

The control method outlined here is very simple, however it is only a first step
towards control in what could be described as a data-based MPC scheme. In data-
based MPC, building a model would not be necessary as the algorithm would have
access to large amounts of data for making control decisions. While a data-based

controller would possibly require massive amounts of storage, it might be the case
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that searching the data is more efficient computationally than carrying out a non-
linear optimization problem at each sampling time. While these thoughts are quite
interesting, more research in this area needs to be completed before any substantial

claims can be made.
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Chapter 9 Data-based control trajectory

planning for nonlinear systems

Abstract
An open-loop trajectory planning algorithm is presented for computing an input
sequence which drives an input-output system such that a reference trajectory is
tracked. The algorithm utilizes only input-output data from the system to determine
the proper control sequence and does not require a mathematical or identified de-
scription of the system dynamics. From the input-output data, the controlled input
trajectory is calculated in a “one-step ahead” fashion using local modeling. Since the
algorithm is calculated in this fashion, the output trajectories to be tracked can be
nonperiodic. The algorithm is applied to a driven Lorenz system and an experimental
electrical circuit and the results are analyzed. Issues of stability associated with the
implementation of this open loop scheme are also examined using an analytic example
of a driven Henon map, problems associated with inverse controllers are illustrated,

and solutions to these problems are proposed.

9.1 Introduction

Numerous methods for the control of nonlinear systems have been developed recently.
In the control community, some of the more popular methods include geometric con-
trol methods based on methods from differential geometry (see (Isidori, 1989) for an
introduction), nonlinear model predictive control (Meadows and Rawlings, 1997), and
control based on neural networks (Su and McAvoy, 1997). In order to use these meth-
ods for control it is necessary to have an accurate description of the system dynamics.
This model can be the result of physical knowledge of the system dynamics or the

result of system identification. While these methods are popular in the literature of
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the control community, different methods of control have been pursued for the control
of chaotic systems.

Recently published methods of control for chaotic systems also build controllers
based on knowledge of the system dynamics. However, most of these methods rely
on knowledge of the underlying dynamics of the undriven, autonomous system (Ott,
Grebogi and Yorke, 1990; Peng, Petrov and Showalter, 1992; Pyragas, 1992). The
chaotic system is then stabilized around an unstable periodic orbit or fixed point
using proportional linear feedback control. In the method of Ott, Grebogi, and Yorke
(OGY) (Ott et al., 1990) and a number of later modifications, a scalar controlled input
is changed at discrete times such that a periodic orbit or fixed point of the system
becomes stable. The implementation of the OGY algorithm requires knowledge of
the linearized dynamics of the periodic orbit to be stabilized (a fixed point on the
Poincaré section) and the linearized dynamics which result from small perturbations
to the controlled input about some nominal value. This information can be found
by linearizing the uncontrolled system dynamics and making small perturbations in
the controlled input. Since the goal trajectory in the state space coincides with an
existing unstable trajectory of the uncontrolled system, stabilization is achieved by
infinitesimal perturbations of the input.

Other feedback methods (occasional proportional feedback control(Peng et al.,
1992), continuous control(Pyragas, 1992)) also stabilize existing trajectories of the
unforced system by making small perturbations in the controlled input. While these
methods (with finite driving forces) in principle can be used to drive a system towards
an orbit which is not a solution of the unperturbed system, they do not provide an
algorithm for finding a driving signal necessary for producing and stabilization of a
pre-defined orbit.

Another class of chaotic control schemes attempts to drive a system such that an
arbitrary goal trajectory is tracked. To this end, open-loop (“entrainment”) control
schemes have been suggested (Hiibler, 1989; Jackson, 1990; Breeden, 1994; Mettin,
Hubler, Scheeline and Lauterborn, 1995; Ho, Chern and Wang, 1994; Chen, 1996).

Originally, entrainment control was utilized on known dynamical systems where the
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controlled inputs directly affect each state variable of the system(Hiibler, 1989). Later
this method was generalized for reconstructed dynamical systems(Breeden, 1994) and
an arbitrary combination of inputs. However, once again it was assumed that the in-
puts are able to entirely specify the state of the dynamical system(Mettin et al., 1995).
Clearly, the number of controlled inputs cannot be less than the state dimension of the
underlying dynamical system when using this control scheme. Additionally, the sta-
bility of this open-loop control scheme cannot be guaranteed unless certain conditions
are fulfilled. In particular, goal trajectories must be contained within “convergent”
regions(Jackson, 1990; Mettin et al., 1995) of the state-space. A major problem with
this method of control is that the problem definition is somewhat artificial. In most
physical systems “full state control” (control which directly affects all the states) is
not possible since some of the states of the system may not be directly affected by
the input.

In the present study, the entrainment control approach will be modified and ex-
tended in the following ways. First, it is assumed that the state-space system to be
controlled is single input/single output and the equations describing the state-space
dynamics are unknown. Since only a single input to the system is assumed, “full-
state control” is impossible. By choosing the proper input trajectory, the output of
the system should track a desired output trajectory. Finally, as the system to be
controlled is assumed to be unknown, the proper input will be found using only an
input/output time-series from the system. This approach will be particularly useful
for chaotic systems, where it can be difficult to determine a state-space model which
accurately describes the global behavior of the system using standard methods of
identification. |

Since the method described below utilizes time-series data from the system to
compute the proper controlled input, this approach is called data-based control tra-
jectory planning. In order to accomplish this task, input/output identification data
which characterizes the dynamics of the driven nonlinear system are needed. The
identification data consist of a time-series collected from the driven system with ran-

dom variations in the driving input. The set of goal trajectories which can be tracked
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by this control scheme should consist of the set of all trajectories which are possible
for the driven system, which is larger than the set of trajectories of the undriven
system. In this chapter, input trajectories will be calculated off-line in an open-loop
fashion. However, this same method could be used for closed-loop control with only
minor modifications which will also be described.

Since the trajectory to be tracked may be unstable, it is possible that the computed
open-loop control trajectory may not stabilize the system. This is because it is difficult
to exactly cancel the instability present in the trajectory of the open-loop system. In
this case, additional closed-loop feedback control may be necessary to stabilize the
system. It is also possible that the “inverse” mapping which produces the open-loop
control law may be unstable. This would lead us to believe that the dynamic system
contains non-minimum phase behavior, and the system may exhibit problems very
similar to internal instability problems which can be found in linear systems when
inverse controllers are used (Morari and Zafiriou, 1989). Both of these problems will

be illustrated and examined in more detail in the examples.

9.2 Method

Consider the following nonlinear dynamical system

y = h(x). (9.1)

where x € R? is a d-dimensional vector of state variables, u is a scalar controlled
input, and h : ®? — R is a measurement function. The goal of the trajectory
planning algorithm is to find a time-series uq(¢) which generates a specified output
series yo(t) when applied to the system.

In control theory, a system is called “output controllable” when it is possible to
use a controlled input to produce any desired output (Balasubramanian, 1989). While

theorems exist which allow us to determine the controllability of nonlinear systems
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(Isidori, 1989), these theorems are dependent on a state-space model of the system.
In situations where no state-space model (9.1) exists and only an input/output time-
series is available, determining whether a system is globally controllable is a problem
which has not been solved to the authors’ knowledge. However, preliminary results in
this area do exist. In the previous chapter, a computational algorithm for computing
controllable sets directly from time-series data is outlined. In this work, it is simply
assumed that the goal trajectories can be produced by an input trajectory in the
examples.

In recent papers (Casdagli, 1992; Poncet et al., 1995), the Takens embedding
theorem is extended to deal with input/output systems. Specifically, for system (9.1)
future outputs can be generically represented as a function of time-delayed versions of
the input and output (assuming the input remains constant between sampling times)

as follows:

y(t) =Ply(t = T),y(t —2T), ...yt = IT),u(t = T),...,u(t — mT)] (9.2)

where T is an appropriate time delay (in theory, the choice of T is arbitrary), and
ILLm>d+1.

While this model is guaranteed to exist, for most physical systems only identifi-
cation is available and the exact form of the state-space dynamics (9.1) is unknown
a priori. Additionally since {,m > d + 1 is only a sufficient (and not a necessary)
condition for a model of the form (9.2) to exist, there may be [ and m smaller than
d + 1 such that (9.2) exists. For these reasons, a way of determining the small-
est values of [ and m from input/output time-series data has been developed using
an extended version of the false nearest neighbors (FNN) algorithm (Rhodes and
Morari, 1995). Once the proper number of embedded terms on the right hand side
of (9.2) has been determined, the function P can be described locally for predictive
purposes using nonlinear modeling techniques based on local polynomial predictors
(Casdagli, 1992; Hunter, 1992; Abarbanel et al., 1993). Given a known input series,
the system output could be predicted by repeated “one-step ahead” prediction.
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For purposes of open loop trajectory planning, the input sequence wu(t) should
be determined as a function of a desired output sequence y(¢). Using the Implicit

Function Theorem, the equation (9.2) can be locally inverted as

u(t) = Qy(t+T),y(t),yt—-T),y(t-2T),...,y(t—(1-1)T),u(t-=T), ..., u(t—(m—1)T)].

(9.3)
Given the y terms (the values of the goal trajectory), this equation represents an
m-dimensional non-autonomous mapping for the desired control u. Just as in case
of modeling the output dynamics (9.2), this inverse map can be recovered from the
data by using local polynomial models in the space of delayed versions of y and u.
Once this map is determined locally, it can be used to calculate the “one-step ahead”
control move u(t) that will give the desired reference output y(¢t + T).

Two problems may be encountered utilizing this local inversion process. First, it
is possible that the control needed to produce the desired output is not contained
in the data set. In this case, further identification with an input signal which has
either a larger magnitude range or a wider frequency range may be needed. Second,
the mapping @ from (9.3) is not guaranteed to be unique. For non-unique inverse
mappings only the data corresponding to one branch of the inverse map can be used
for inverse modeling purposes (see Figure 9.1). If the data from both branches are
used for building a model, the model will “average” the data from the two branches
and the resulting computed future control move u will lie somewhere between the
two branches. In this case, the computed control move will not produce the desired

action.

9.3 Computational algorithm

The goal of the computational algorithm presented here is to determine an input
trajectory which will produce a desired output trajectory when applied to the system.
It will be shown that the proper input trajectory can be computed directly in an

open loop fashion from an input/output time-series of the system. Traditionally two
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Neighborhood corresponding

=
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Figure 9.1: Example of a non-unique inverse mapping for the input u. Only a set
of points which are close with regards to the input u can be used here for the local
linear approximation.

distinct steps are completed for controller design. First, input/output identification
data is analyzed and a model of the dynamics is formed. Then a controller is designed
using the identified model and the controller is implemented on the actual system.
Here, a controller will be designed which determines the input control trajectory
directly from input/output time-series data of the system. This method of control is
more computationally intensive than open loop control schemes which utilize fixed
control laws, however it may give better results for systems with complicated dynamics
where accurate identification is difficult.

While the computational algorithm does not need a global description of the
dynamics, the number of delayed terms needed to recreate the dynamics (I and m) is
needed. From this information, a local model of the dynamics in the neighborhood
around the desired trajectory is built utilizing time-series data from the training set.
By using data which are “near” to the desired dynamics (in the sense of distance in the
regression space defined by the right hand side of (9.3)), a locally valid linear model
of the dynamics is identified and the proper control move is computed. Once the
proper control move is calculated, the process is repeated. This method is different

from the OGY method (Ott et al., 1990) since a local linear model is formed for each
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sampling time of the system. In the OGY method, the control move is implemented
periodically and the trajectories to be tracked must also be periodic. The method
proposed here is not limited to tracking periodic signals.
Here is an outline of the computational algorithm for open-loop control trajectory

planning.

1. The data set is presorted using the method of Grassberger (Grassberger, 1990)
in order to reduce the search time needed by the algorithm. The training
data are sorted into a two dimensional grid to save time when searching for
neighbors within distance & of a given point in the space ®*™. The data are

presorted into two dimensional bins in the regression space of the mapping in

9.3) ([yE+7T),y(t),...,yt— (1 =DT),ult=T),...,ult — (m—1)T)]).

2. For the first step, the inverse mapping is initialized with an input sequence.
Since the desired output trajectory yo(t) is known, the delay coordinate vector
zo(t) = [o(t+T),50(8), .- -, 9o(t — (1 = 1)T), uo(t = T), ..., uo(t — (m —1)T)] is
needed to determine the first control move, where ug(t—T), ..., ug(t—(m—1)T)
are the initialized input terms. After the first step, the vector zg is formed from

the goal output trajectory and past inputs computed by the algorithm.

3. The training time-series is searched for points such that ||z;y5in (k) — 20(t)]|ec <
d, where z{,,:, (k) consists of the time-delay embedded data from the training
set. This search is facilitated by the fact that the data are presorted. Points from
the time-series which are neighbors are then arranged into a matrix containing
the time delay embedded terms zt,,;, (NN) and a vector of inputs u¢ i, (NN)

in the following manner,
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Z(NNY) | [ y(NN +T) y(NNp) -+ u(NN; — (m — 1)T)
X — z(NNy) _ y(NNy +7T) y(NNy) .-+ u(NNy— (m—1)T)
| 2(NNp) | | y(NNp +T) y(NNp) -+ u(NN, — (m —1)T) |
_ _ (9.4)
u= U(N.NZ) (9.5)
| u(NN,) |

where z and v are deviation variables about the point zy which we are interested
in.
To solve for the unknown parameters in the linear model, a weighted least-

squares problem is solved. Specifically, the least-squares problem

WX0 = Wu (9.6)

is solved for # where W is a diagonal matrix of weights (the weightings consist
of a radial-basis function which penalizes distance from z,). The desired input

move ug(t) is then calculated from the following equation

Uo(t) = 209. (97)

Note that this is a local linear approximation to equation (9.3).

4. tisincreased and the previous two steps are repeated. By repeating this process,

the proper input trajectory is determined one step at a time.

Since the algorithm builds a description of the dynamics locally about the trajectory
to be tracked, a global description of the dynamics is not required.

While the algorithm above describes open-loop calculation of the control law,
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closed loop control could be performed by modifying the delay coordinate vector z,.

For closed loop operation, zg would take the form
zo = [yo(t + 1), ym(t), ..., ypa(t — (I = 1)T), uo(t = T),...,up(t — (m - 1)T)] (9.8)

where the y), terms are the measured outputs from the system. With this change,
the control law could be calculated online in a “one step ahead” manner. The only
limitation to this closed-loop method is that the sampling time must be larger than
the computation time needed to determine the next control move wug(¢).

Currently, the algorithm does not account for the possibility that the inverse
mapping (9.3) may not be unique. Another problem which could be encountered is
an unstable inverse mapping (9.3). This instability may result in an input which
becomes unbounded. If the dynamics of the system do not exactly cancel this input,
the output behavior will not track the desired trajectory. However, as we will see in
the next section, it is possible that inverse mappings which are unstable may lead to |
acceptable results for open-loop control purposes. In addition, the training set must
cover the entire range of inputs needed for the proper control trajectory. There is
currently no way to determine the proper range of inputs a priori. If the range of
inputs is not large enough, there will be no “near neighbors” to the vector zy and a

local linear model cannot be built.

9.4 Applying the computational algorithm

In this section, the computational algorithm will be applied to two examples. The
first example is the simulated driven Lorenz equations. The second example describes
the application of the computational algorithm to an experimental electronic circuit

which exhibits chaotic dynamics.



161

9.4.1 Driven Lorenz model

In this section, the computational algorithm is applied to the following driven Lorenz

system,

z = oly—ux),
gy = —zz+rr—y+e(u(t) —y),
Z2 = zy— bz (9.9)

The parameter values r = 45.62,b = 4, 0 = 16.0, which correspond to chaotic
behavior of the undriven system, are used. System (9.9) has a controlled input u(t)
which appears only in the equation for . The output of the system is z(t), and
we would like to drive the system such that a desired periodic trajectory zo(t) is
produced. For large values of ¢, it is expected from studies on synchronization that
open-loop implementation of the computed control trajectory will be stable (Kocarev
and Parlitz, 1996).

A control signal which causes the output to track the desired trajectory will be
constructed from identification data using the methods illustrated previously. First,
the Lorenz system is subjected to driving by a random input signal u,.,iy, (t) obtained
by passing white noise through a low-pass filter (the cutoff frequency of the filter is
taken to approximately correspond to the frequency range of intrinsic oscillations of
2(1)). Utpain(t) and zipqi, (t) are recorded using a sampling time of 0.02 and the time-
series is of length 50,000. The time delay T is found using average mutual information
analysis (see(Abarbanel et al., 1993)) of the input/output data, and the appropriate
embedding dimensions | = 2, m = 2 are calculated by applying the input/output
false nearest neighbors algorithm to the data. The identification data are used by the
trajectory planning algorithm to form local inverse maps of form (9.3). A threshold
distance of § = 1.0 is used to determine if points from the time-series are considered
as neighbors for the local modeling.

The data-based entrainment algorithm is used to calculate the input for driving
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the system such that the output trajectory z¢(¢) = 20sin(.523t) + 5 is produced. The
value of the parameter ¢ = 20.0 (9.9) is used in this example, and the results are

presented in Figure 9.2. In Figure 9.2a,b parts of training sets i (1) and g pqi, ()

Input for training data
T T .

20 40 60 80 100 120 140 160 180 200

QOutput for training data
T T T

20 40 60 80 100 120 140 160 180 200
Computed input signal

20 40 60 80 100 120 140 160 180 200

Desired and actual output
T T T

20 40 60 80 100 120 140 160 180 200

Figure 9.2: Data-based trajectory planning for Lorenz system (9.9) with ¢ = 20.0.
The goal trajectory of the output variable, z¢(t) = 20sin(.523t) + 5. Inverted map
was reconstructed from test driving the Lorenz system by randomized input. A
time-series of length 50000 was used, and the parameters of the model were chosen:
l =2,m = 2. q,b - simultaneous time-series of the input u(t) and output z(¢) from
the training time-series; ¢ - control sequence calculated using data-based trajectory
planning; d - output signal resulting from the computed input signal.

are shown. Since the output trajectory to be tracked is periodic, the trajectory
planning algorithm is run until the input signal converges to a periodic signal (the
initial transient is discarded). Figure 9.2c shows the control signal u; (¢) obtained after
the output of the data based trajectory planning algorithm converges to a periodic
signal. Figure 9.2d shows the desired output behavior z¢(¢) (dotted line) and the
output ;1 (t) produced by the Lorenz system (9.9) when driven by the control signal
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u1(t) (solid line).

A possible reason that tracking is poor near the “top” of the sine wave is that
the local linear mapping for the input is unstable for portions of the trajectory. It
is expected that the data based scheme will compute the exact inverse of the Lorenz
system; however, if this inversion is not exact the system will not track the desired
output exactly. A plot of the output and the location of the single pole of the local

inverse mapping as a function of time are given in Figure 9.3. Any time the pole

Desired and actual output

-20 I 1 1 1 L 1 1 L !
0 20 40 60 80 100 120 140 160 180 200

Pole of inverse function

0 i 1 L ] | 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Figure 9.3: Illustration of instability of the inverse mapping. The pole of the local
linear inverse is plotted as a function of time.

is greater than 1, the inverse mapping is unstable. Notice that fairly long term
instability of the inverse mapping appears to correspond to poor tracking of the
desired output (seen from time 60 to 70). However, the other region of instability
where the unstable pole is quite large (near time 100) does not seem to affect tracking
of the output possibly because the cancelation of the systems dynamics is nearly exact
in this region of the dynamics.

Figure 9.4a,b show input and output time-series for tracking of a more complicated
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signal z5(¢) = 10sin(¢)+10cos(0.5t)+5. Again, reasonably good reconstruction of the

Computed input signal

50 100 150 200 250 300

Desired and actual output

1 1 1 1
50 100 150 200 250 300

Figure 9.4: Output tracking for goal dynamics consisting of two periodic components.

desired output trajectory is achieved using only this open-loop trajectory planning
technique. In Figure 9.5 the previous experiment is repeated for ¢ = 5.0 in system
(9.9). Here, the computed control sequence us(t) does not accurately track the desired
output trajectory. Since the system does not converge to the desired periodic output
trajectory, it appears that the linearized dynamics around the desired trajectory may
be unstable for this system. A possible remedy for this situation is to use a closed-loop
feedback stabilization technique (possibly the OGY method) in a periodic manner to

stabilize the dynamics about the desired trajectory.

9.4.2 Electronic circuit

In this section, the computational algorithm described in Sec.9.3 will be applied to
control the dynamics of a nonlinear electronic circuit in a physical experiment. In the

experiment, a low frequency (about 300 Hz) nonlinear circuit whose diagram is shown
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Computed input signal
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Desired and actual output
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Figure 9.5: Tracking of the output signal of Figure 9.4, for system (9.9) with ¢ = 5.0.
In this case, open-loop control cannot successfully track the output signal.

in Figure 9.6 is used. The circuit consists of a nonlinear converter, linear feedback,
and an input block. The nonlinear converter is implemented using OP amplifier
UlA and the multiplier U2. The shape of the nonlinear function F'(w) generated
by the converter was measured experimentally (see Figure 9.7a). The linear feedback
contains three integrators (U3A, U3B, and U3C) and summers (U3D and U1B) which
create three-dimensional phase space (z, y, z) of the nonlinear circuit. The input block
is built using OP amplifiers U4A and U4B. This section takes signals z(¢) and the
external input u(t) to form the output e(x(t) — u(t)) which is applied to terminal A
of the switch SW1. The value of the parameter € is determined by the resistor .,

When the switch SW1 is in position B, the circuit operates without external
inputs (w(t) = z(t)) and generates chaotic oscillations. The projection of this chaotic
attractor onto the plane (z(t), y(t)) is given in Figure 9.7b. When switch SW1 is in
position A, the circuit is affected by the external input u(¢). In position A, the input

to the nonlinear converter is w(t) = z(t) — e(x(¢t) — u(t)). In this experiment, ¢ = 0.8
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Figure 9.6: The diagram of the nonlinear circuit used in the experimental studies.

is used.

A band-limited random training signal wu;,,in(t) is generated using a sampling
rate of 1000 samples per second and this input is applied to the circuit. The input
Utrain(t) and output —y;,q:n () of the system are recorded. This input-output time-
series (30000 points) is used by the algorithm proposed before to construct the input
u(t) which will cause the nonlinear circuit to track a desired output trajectory —yo(t).
A portion of the training time series is given in Figure 9.8. When the time series is
analyzed by the input-output false nearest neighbors algorithm, it is found that the
proper number of embedding terms is [ = 3, m = 2.

The trajectory to be tracked for this example given in Figure 9.9 is non-periodic.
The goal output trajectory consists of a sine wave with varying amplitude (time
50-400 and 900-1100), a constant value (400-700), and a piecewise linear signal
(700-900). When this goal trajectory and the training set are input to the trajectory
planning algorithm using a neighbor threshold distance § = 0.25, the result is the

input sequence shown in Figure 9.10. Computing the entire input sequence (including
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Figure 9.7: (a)-the shape of the nonlinear converter. (b)-the projection of the chaotic
attractor measured from the circuit with the sampling rate 1000 sample/sec (SW1
in the position B)
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Figure 9.8: Portion of the training time-series for the nonlinear circuit.
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Figure 9.9: The desired goal trajectory for the nonlinear circuit.
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Computed input trajectory
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Figure 9.10: The computed input from the trajectory planning algorithm.

the sorting of the training data which is only necessary one time) takes less than 1
minute on a Sun SPARCstation 20. When this input sequence is used to drive the
circuit, the measured output of the circuit tracks the goal trajectory quite well (see
Figure 9.11). The major differences between the goal trajectory and system outputs
occur during the transition which starts and ends the piecewise linear signal at times
700 and 850. Since closed loop control is not implemented in this example, the poor
tracking at these times is not corrected online.

This example shows that this trajectory planning method can accurately track sig-
nals which are non-periodic. The input signal is computed without any mathematical
or identified description of the system dynamics. In addition, the output trajectory
is not an existing trajectory of the chaotic attractor. This clearly demonstrates the
difference between this proposed method and other methods of chaos control based

on stabilization of periodic orbits of a nonlinear system.
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Resulting output trajectory
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Figure 9.11: A comparison of the goal trajectory and the output of the circuit when
the computed input from the trajectory planning algorithm is applied.
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9.5 Inverse modeling and control of the Henon

map

Issues of stability related to inverse modeling are better illustrated by examining a
simple analytical example with discrete-time dynamics. Analytical inversion of the
model system for control is a well-known method in the literature, so the main purpose
of this section is to emphasize problems which could be encountered when using the
data-based trajectory planning algorithm (which performs a local computed inversion
of the system) and demonstrate methods for overcoming these problems. Consider

the following driven Henon map

Tpt1 = l_afxi+yn+un

Yn+1 = bz, + cuy, (910)

where z, is an observable output, and u, is a controlled input. An exact “recon-

structed” dynamical system in the embedding space {x,,u,} takes the form
Tpi1=1— axi + b2y + Uy + ClUp_1. (9.11)

Suppose we would like to generate a period-2 output sequence {z1,xs, 21, L2, ...}
with prescribed values z; and z,. Then we need to find a periodic sequence of inputs
{uy, uo, uy, ug, ...} such that zo = 1, Togs1 = 2. By algebraic manipulation, the

solution is
U2 = (1 - 02)~1[ZE2,1 -1+ aa:ig — bQTg,l - C(LCLQ — 1 CL.Z%,I — bl'l,z)]. (912)

Suppose we use the inputs u; 2 from (9.12) and input them to the system in an
open-loop fashion. With this choice of u; 5 the periodic orbit of interest is a fixed

point of the map

Y2m+2 = PQ(YQm, Uam+1, U2m, Uzm—l) = P(P(Yn, U2m,, Uzm—l), Uom+1, Uzm) (9~13)



Figure 9.12: Region of stability of the open-loop control of Henon map (9.10) in the
plane of parameters xy, z2 of the goal trajectory for a = 1.4,b = 0.3. (unshaded).

with Ugma1 = U1, Ugm = U2, Yy = {Zn,ZTn—1}. This solution can either be stable
or unstable depending on the eigenvalues of the Jacobian of the system (9.13), or
equivalently (9.11), calculated over a periodic orbit,
DP, — —2ax, b —2ax9 b . (9.14)
1 0 1 0
The region of stability on the plane (z1,z2) is defined by two sets of hyperbolas
(Figure 9.12). Inside this region the map will be stable and the periodic control
sequence (9.12) can be used in open-loop fashion. This region of stability is equivalent
to the convergent regions of Ref.(Jackson, 1990). Outside the stability region, an
additional closed-loop stabilization technique is needed.
A modification of the pole placement method can be used to stabilize this system
(see, e.g. (Hong, Jie, Wang and Wang, 1996)). In addition to the two components of
vector Y, an additional linear equation for us,, is added so the system to be analyzed

(9.13) becomes:

Y2m+2 =P (Y2m> Uam+1,; U2m, U2m—1)
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Uom42 = U1 + K- ng +g (’ngm — U,l). (915)

The control coefficients (K = (k1, ks) and g) can be calculated by specifying the
eigenvalues of the Jacobian of this system(Hong et al., 1996). In this example, all
three eigenvalues are placed at zero.

In Figure 9.13, two examples of controlling a period-2 orbit in the driven Henon
map are shown. Figure 9.13a demonstrates the application of analytic open-loop
control for the periodic trajectory z; = 0.3,z = 0.2. The eigenvalues of the open-
loop system about the desired trajectory are .978 and .092, so the open-loop system
is stable. Figure 9.13b shows that open-loop control fails for the period 2 signal z; =
0.3, 29 = 0.7. The eigenvalues of the open-loop system are 2.206 and .041, so the open-
loop system is unstable and will not produce the desired output trajectory. However,
by using pole placement feedback (closed-loop) control the desired trajectory can be
stabilized as seen in Figure 9.13c.

In the previous examples, initial conditions in the neighborhood of the trajectory
to be tracked were utilized. Under this assumption, the presented linear stability
analysis should be valid. If the Henon map is driven under open loop control from
arbitrary initial conditions, the system could settle on an undesired orbit as happen
in Figure 9.13b where the map settles on a period-7 orbit. Simply waiting to start
the control trajectory when the system comes close to the desired orbit may not be
feasible, since the desired trajectory may not belong to the attractor of the undriven
system. For these reasons, special care must be taken when bringing the system from
arbitrary initial conditions to a desired trajectory.

The system could be brought from arbitrary initial conditions to the desired tra-
jectory by computing the controllable sets of a point on the trajectory. The time
n controllable set of a reference point in the embedded space consist of the set of
points which can be controlled to that reference using exactly n input moves (Rhodes
and Morari, 1996). By finding the smallest time controllable set of a point on the
reference trajectory, the inputs needed to drive the system to a point on the reference

trajectory in the shortest time are found.
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Figure 9.13: a - successful open-loop control of a period-2 orbit of the Henon map
with 2, = 0.3, 25 = 0.2; b for ; = 0.3, 29 = 0.7 - open loop control fails. ¢ successful
closed loop control for z; = 0.3, x5 = 0.7 with feedback corrections calculated by the
pole placement method using (9.15) to stabilize the goal orbit.
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This analytic example was presented in some detail in order to illustrate problems
which may be encountered when the data-based trajectory planning algorithm is
applied. First, the inverse mapping reconstructed from the training data may prove
unstable, and then some other method may be needed to determine the proper input
trajectory in an open-loop fashion. Second, the open loop implementation of the
computed control sequence may be unstable. In this case, some form of closed loop
tracking of the original control sequence will be required. The work on combining the

closed loop stabilization with data-based trajectory planning is in progress.

9.6 Conclusions

In this chapter an algorithm was presented which computes a control trajectory which
will drive a nonlinear system such that a specified output trajectory is produced. This
output trajectory does not need to coincide with a trajectory of the undriven system,
and the algorithm which was presented for computing the trajectory relies only on
time-series data. The main difference between our approach and other previous pub-
lished “entrainment control” methods is that no a priori knowledge of the system is
assumed. In addition, it is not assumed that the inputs directly affect all states of
the system. We are interested in tracking a goal trajectory specified only in terms
of a (scalar) output signal. Accordingly, instead of a full state control (which is rare
in most physical systems of interest), it is assumed that only a single input to the
system is available. When determining the proper input trajectory, a locally valid
inverse model is constructed utilizing time-series data from a training set. The inverse
model (9.3) is then used to determining the proper input trajectory in an open-loop
one-step-ahead fashion.

Work for the future includes closed-loop implementation of the data-based control
algorithm, application of the algorithm to nonlinear systems which don’t exhibit

chaos, and extension of these data-based control schemes for robustness.
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Chapter 10 Work for the future in

data-based control methods

10.1 Introduction

As the work detailed in this section of this thesis introduces the concept of data-based
control, some thoughts and suggestions for future work in this field along with some
ideas on how data-based control could be used in industry will be outlined. While
the examples of Chapter 9 showed how data-based control methods could be used in
an offline fashion, the ultimate goal of this research direction is to apply data-based
control methods in an online fashion. In order to implement a data-based control
scheme, two distinct computational pieces are needed. The first piece of the overall
control scheme would use local models and a simple control strategy to track a known
trajectory. This piece would be similar to the data-based trajectory tracking control
scheme detailed in Chapter 9.

The second piece of the overall control scheme is a long-term trajectory compu-
tation scheme that would compute the trajectory to be tracked by the previously
mentioned control method. The planned trajectory could be computed in a way that
it satisfies conditions of optimality or feasibility if constraints happen to be present.
This trajectory would also be determined using local models, and the method of com-
puting controllable sets presented in Chapter 8 provides some ideas on how this could
be achieved.

After these pieces are developed, it is possible that the overall process performing
data-based control would be much simpler than the traditional control design process.

The controller design process for traditional controllers involves the following steps:

1. Perform an identification experiment.
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2. Form a model based on data from the identification experiment on the process.
3. Design a controller using the model as a reference.
4. Implement the controller on the process.

For systems exhibiting nonlinear behavior, it can be quite difficult to develop a
parsimonious model of the dynamics. The process of identifying a model involves
“compressing the data” in an attempt to capture the most important features of the
data. While this is important for forming a model of reasonable size and may discard
some of the noise associated with the data, it is always possible that valuable infor-
mation is lost when forming a mathematical model of the dynamics in this manner.
In addition, the field of nonlinear identification is not yet mature. Because there is no
single accepted method of systematically identifying a model of a system, the process
of identification for nonlinear models is an art as well as a science.

On the other hand, the process of developing data-based controllers could be much

simpler.
1. Perform an identification experiment.
2. Implement data-based control using identification data as a reference.

One advantage of this method is that the difficult problem of identifying a nonlinear
model could be skipped. Additionally, by allowing the control algorithm to utilize the
data directly for control it may be possible to achieve better performance since more
information about the process dynamics is available. However, data-based control
also has some drawbacks. The question of computational time needed for online
data-based controllers has not yet been addressed. Also, noise corruption and outliers
could be problematic if not properly accounted for in the control scheme.

Since data-based schemes do not utilize a global model of the process, time-delay
coordinates take the place of the state-space coordinates of the traditional approach.

By assuming the discrete-time dynamics of the system can be represented in the
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following form:
y(t) =Gyt —7),...,y{t =), u(t —7),...,u(t — m7)] (10.1)
the time-delay coordinates of the system are defined as

z(t) = [y(t),yt —7),...,yt = (= )7),ult —7),...,u(t — m7)]. (10.2)

As in Chapter 8, the dynamics of in the time-delay coordinates are governed by the

relationship

z(t + 1) = Flz(t), u(t)] (10.3)

where F is defined in 8.10. Here it is shown that z(¢-+1) can be computed from z(t) and
the control move u(t). The trajectory tracking problem involves computing the input
u(t) needed to track a given reference trajectory z.s(t). The trajectory computation
problem involves finding a trajectory z(¢) which meets certain conditions (endpoint

constraints, the ability to satisfy constraints on u and y, optimality, etc.).

10.2 Using local models for trajectory tracking

It was shown in Chapter 9 that data-based methods can be used to calculate a control
trajectory that tracks a desired output trajectory in an offline fashion. However,
because of external disturbances and possible model/plant mismatch, it would be
preferable to implement data-based trajectory tracking in an online fashion. In order
to perform data-based tracking online, it is necessary to search the data for nearest
neighbors, build a local model, and use this model to determine the next control move
during each sampling time of the system. While this seems like quite an ambitious
task, it should be possible since the data can be presorted and only relatively simple
computations are needed for the control computations.

The first step in testing this online implementation of the data-based tracking

scheme would be to implement the method presented in Chapter 9 as an online
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controller for a simulated system. To perform this study, computer code would have
to be written to link the program that computes the data-based control moves to a
simulation of the process. Since the data-based control method involves a number
of data searches, MATLAB may not be the best choice for these implementing the
control algorithm. In my experience, MATLAB is somewhat slow in performing
searches and this is one reason why the code for the offline data-based control planning
example problems is written in FORTRAN. The implementation is relatively fast;
as an example, the computation of the control trajectory for the electrical circuit
experiment takes less than 1 minute on a Sun SPARCstation 20. This time includes
the presorting algorithm and the computation of the control trajectory which consists
of 1100 samples. In practice, the data could be stored in a presorted manner and
sorting would need to be performed only one time for each data set.

If the results of these trials are successful, the next step would involve testing the
method on an experimental system. Trials on an experimental system would involve
writing software that could operate in real time. These trials would be important,
since they would indicate the computational time needed to compute a single control
move using the data-based control algorithm along with a real-time control processing
system. In addition, in these trials the suitability of using this method in conjunc-
tion with data from physical processes could be further tested. Realistic problems
associated with noise corruption and data outliers would be encountered and possible
solutions to these problems could be tested. It is expected that systems which might
be suitable for data-based control would have a fairly large sampling time, and this
should be taken into account when choosing a trial process for this experimental work.
The work of Schaal and Atkeson (1994) in “memory-based learning” control leads us
to believe that real time application of these control schemes should be successful.

Some theoretical issues also should be examined for the proposed trajectory track-
ing algorithm. The first problem to be addressed is the question of stability. As was
shown in Chapter 9, the data-based controller in its present formulation may cause
the system to become unstable if the process exhibits nonminimum-phase behavior.

This is a major drawback, especially since a model of the process dynamics does not
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need to be explicitly derived before applying the control scheme. However, it might
be possible to modify the control objective slightly such that the closed-loop behavior
of the system is stable.
Some hints in this direction are given in a recent paper of Tan and Cauwenberghe
(1996). In this paper a stable one-step-ahead control scheme is built which uses
neural network models. It is assumed that the neural network model of the dynamics

is accurate, and the following cost function is considered:
J = [ret(t + 1) = ym(t + D + a]Au(?))? (10.4)

where « is an adjustable parameter, Au(t) = u(t) — u(t — 1), yrer(t + 1) is the tra-
jectory to be tracked, and y,,(t + 1) is the prediction of the neural model. This is
different than the objective considered in the previously presented method for com-
puting controllable sets which only considers the error associated with the control
move.

It is then shown in Tan and Cauwenberghe (1996) that the control move can
be computed by using a gradient descent method, and that the algorithm converges
using this method. While the discussion is specific to neural network models in the
method of computing the gradient, the same quantities could be computed from
local models. Stability is then shown for the one-step-ahead control scheme using
a standard Lyapunov function. While the results given in Tan and Cauwenberghe
(1996) are specific to neural networks, it is likely that the results could be modified
and extended to systems described by local models under the proper assumptions.

Another area of theoretical research to be examined for control trajectory tracking
algorithms is the problem of robustness. The problem of robustness is a bit different
than the situation considered in other control methods. Traditionally, a major source
of plant/model mismatch arises from attempting to describe a nonlinear system by
a linear model. Attempting to represent a system by a simplified model is another
source of plant/model mismatch. However, these issues may not be problematic for

local models unless the process dynamics happen to change from those encountered
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during the identification experiment. When using local models it is hoped that enough
data are available to fill out the space such that local linear approximations are
valid. For data-based control problems, the major reason to consider robustness is
the presence of noise and outliers in the data.

Since a data-based control scheme uses local models, only a small portion of the
data is used when forming any single local model. The presence of noise or outliers
in this small data set could cause large errors in the prediction. Probably the most
effective way to deal with this problem would be some type of preconditioning of the
data. Outliers could be removed from the data and the noise could be reduced using
nonlinear methods which involving projections (Grassberger et al., 1993). This should
be the most efficient way of dealing with the problem of “robustness”. Making changes
in the control algorithm for robustness would likely involve some type of worst-case
analysis, and would probably add significantly to the computational time needed by

the controller for computations.

10.3 Trajectory computation

The trajectory computation portion of the data-based controller would compute the
reference trajectory needed by the tracking scheme outlined in the previous section. In
the data-based methodology, the reference trajectory is computed using identification
data from the system as a reference. As will be shown, the trajectory could be
computed such that it will meet certain optimality conditions or such that it is a
feasible trajectory in the presence of constraints.

There are two problems which can be defined for trajectory generation. The first
problem, which was discussed in Chapter 8, is determining the trajectory which ends
at a given reference location in the time-delay coordinates. In order to compute this
trajectory, the method of computing controllable sets which was presented in Chapter
8 can be used. Say it is desired that the system should be driven to z..s in the time-
delay coordinates. The set of trajectories which are driven to z.f in n sampling

times is defined as the time n-controllable set of z.f, C,(Zwer). The trajectory that
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produces the desired output z.s is also computed by the algorithm which determines
the controllable sets. The set of trajectories associated with that controllable set can
be defined as ¢ (z.f) where j = 1,...,p and p is the number of trajectories found by
the algorithm (the number of trajectories will depend on the step size used by the
algorithm).

The controllable sets are computed in a recursive fashion, which makes the prob-
lem a good candidate for harnessing the power of parallel processing. The controllable
set Cpr1(Zrer) is found by computing the time 1 controllable set of a grid of points
contained in C,,(zy¢). Using code which is able to harness the power of parallel proces-
sors, the computational time associated with computing the controllable sets could be
dramatically reduced when compared to the current implementation. Computational
time would be a major concern if the controllable sets were to be calculated online.

A possible extension of the method of computing controllable sets involves con-
sidering an objective function. Assume that the the system is currently located at z,
in the time-delay coordinates. Then the set of trajectories such that z is driven to
Zrer 15 defined by C;(Zref) = [Zg,U1,...,u;| for i = n,..., 00 where n is the smallest
time controllable set which contains z.s and 7 is the index for trajectories of a given
time. Note that the point zy; might also be located in any controllable sets with a time
greater than n. In addition, there may be numerous trajectories associated with z,
in a given controllable set. With these trajectories which all have z.s as an endpoint,
how should the trajectory to be implemented be chosen?

It is possible to search these trajectories can such that some condition is optimized.
The time n controllable set trajectory of z..; associated with zy as the initial condition
is the trajectory which reaches z. in least time. Another method would be to search

the trajectories in the controllable set such that an objective of the form

T, (z0) = ; eI (k) Qe (k) + kz:j Ru2(i) (10.5)

is minimized where () and R are weights, € = z — 2,¢f, and r is the maximum horizon

of interest which will be searched.
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Since controllable sets are computed in a recursive fashion, it is possible to effi-
ciently compute the objectives associated with the trajectories. Trajectories in the
time n + 1 controllable set are computed directly from a grid of points contained in
the time n controllable set, so only the last term in the objective function would need
to be added to the time n objective function. Further computational improvements
could be gained by searching for the smallest objective in the following manner. By
sorting the objective functions associated with trajectories in the time ¢ controllable
set, only those trajectories with small objective functions would have the associated
¢ + 1 controllable set trajectory computed. In this way, those trajectories with large
objective functions could be discarded and the entire controllable set would not need
to be computed.

Another feature of the data-based method of computing controllable sets is that
input and output constraints can be easily met. The continuation for computing
the controllable set involves solving the a nonlinear equation in terms of [y(t — (I —
1)7),u(t — (m — 1)7)] (see Section 8.4.3). By only searching the region in the space
of [y(t — (I = 1)7),u(t — (m — 1)7)] which satisfy the constraints, only feasible tra-
jectories will be found. Another approach for systems with inputs constraint is to
gather identification data from an experiment where the input constraints are en-
forced. Since local model require nearby data, only feasible trajectories can be found
by the algorithm.

The second problem which could be considered in trajectory computation is the
problem of computing reachable sets. The time n reachable set of a reference z. is
defined as the set of points in the time delay coordinates which can be reached by
making n control moves. This is essentially the dual to the previously considered
problem, and many of the same continuation methods could be used for computa-
tion of these reachable sets. This algorithm might be useful for determining feasible
trajectories for optimizing certain quantities of the process. One example of where
reachable sets could be used is in the control of batch processes. The output tra-
jectory which optimizes some final conditions relating to the final product could be

identified in this manner. Once again, the system constraints can be easily enforced.
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10.4 Other possible extensions

The previously described schemes rely exclusively on open-loop identification data
for control computation. However, the conditions under which processes are operated
may change with time. These new conditions may bring about new process dynamics
which don’t match the dynamics of the identification experiment. If the data-based
control scheme relies on the old identification data to control this system, there may
be major problems of model/plant mismatch.

However, as the process is running it is also producing dynamic data. For this
reason, it might be feasible to collect data from the process online and continuously
update the database which the local models rely upon for prediction. The one prob-
lem with this idea is that closed-loop identification can be much more difficult than
open-loop identification because of the small amount of signal present in closed-loop
data (Sdderstrom and Stoica, 1989). However, this type of approach would be very
appealing to industry since the down-time associated with data-producing identifi-
cation experiments needed by the data-based control scheme would be dramatically
reduced. In addition, the data-based control scheme may be able to “adapt” to
changing process conditions by continually updating the reference data.

Another field in which the data-based approach could be applied is process mon-
itoring. Since the dynamics of the system can be represented by Equation (10.1),
the exists a surface (1-dimensional manifold) in the space [y(t),y(t — 7),...,y(t —
Ir),u(t—7),...,u(t—m7)] on which the dynamics should lie. If the dynamics should
happen to change as a result of some disturbance to the process conditions, the
function G may no longer describe the system dynamics. In this case, the data
from the new perturbed process dynamics no longer lie on the surface defined by
y(t),y(t—71),...,y(t —1I7),u(t — 7),...,u(t — m7)] from the identification data. By
analyzing the distance of the process data from this surface in an online fashion,
abrupt changes in the process dynamics could be detected.

To gain an insight as to how these process monitoring methods would work, lit-

erature in the field of nonlinear noise reduction would provide some insight. In noise
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reduction, the surface [y(t), y(t —7),...,y(t = I7),u(t = 7),...,u(t — m7)] is used as
a reference. Outliers are then projected onto this surface using local linear projection
methods (Kostelich and Yorke, 1988). In process monitoring, a different problem
would be analyzed, but the insight needed to solve the problem is similar. The clas-
sification of outliers would need to be made online, and if outliers are detected some

type of classification system for the faults would be needed.

10.5 Conclusions

Some possible future work in the field of data-based control was presented in this
chapter. While there is still a great deal of work to be completed in this area before
any industrial application of these methods is possible, the underlying motivation is
quite strong. Data are now widely available in industry, and should be put to better
use for control purpose. With advances in computational speed and storage capacity,
researching new ways to use this data for control purposes is necessary. Continually,
new classes of control methods are be developed such that better performance is
achieved and the control design and maintenance process is simplified. Possibly data-
based control methods can play an important role in the future in the push for better,

more efficient means of control.
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Part V

Summary and suggestions for

future work
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Chapter 11 Summary and suggestions

for future work

11.1 Summary of contributions

In the first portion of this thesis, the problem of forming models suitable for process
control is examined. These models are needed so that newly developed methods
of nonlinear control can be applied to industrial problems. The methods presented
here are specifically designed to work with nonlinearities, as a majority of real world
processes to be controlled exhibit nonlinear dynamics. Problems in the fields of
black-box and first-principles modeling are addressed. Three distinct problems are
examined in the thesis.

First, the false nearest neighbors algorithm is presented as a method for determin-
ing the proper regression vector size for nonlinear black-box modeling. The algorithm
is computationally efficient, and relies on a geometric criterion for determining the
proper regression vector. Because a global model of the dynamics is not needed, this
method can be used in conjunction with any functional modeling scheme. Problems
specific to input/output systems and noise corrupted time-series are analyzed for the
first time and a new threshold test is proposed in order to correct problems associated
with noise corruption. In addition, a review of time-delay embedding theorems for
autonomous and input/output system is given.

The problem of nonlinear model reduction is considered next. This subject is
important since models that are derived from first-principles are commonly of high
order. At the same time, these high-order models can exhibit behavior consistent with
low-order systems. In order to be useful for nonlinear control design algorithms, these
models need to be reduced in some way. The specific problem of model reduction

for singularly perturbed systems is examined in this thesis. The algorithm of Maas
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and Pope (1992) is presented as a method of computing the reduced-order manifold
of slow dynamics, and it is proven rigorously for the first time that this algorithm
correctly identifies this manifold. A new method of model reduction that uses the
results of the Maas and Pope (1992) algorithm is then introduced.

In the last portion of the thesis, the concept of data-based control is introduced.
The idea behind this concept is to use a new breed of models known as local models
which utilize large amounts of data. With recent advances in computer storage and
speed, industry is able to collect large amounts of process data. The challenge is
to determine how that data can be used effectively. The data-based control ideas
presented here attempt to use the data directly in the control process. Methods of
trajectory tracking and computing controllable sets are presented, and some thoughts
on possible future research in this field are presented. However, there is still a great
deal of work to be done in this area before these methods can be successfully applied

to industrial problems.

11.2 Future work

There are still a number of open research problems in the area of process modeling
and identification for control purposes. An overview of the work for the future in the
area of data-based control was presented in Chapter 10, so those points will not be

repeated here. Some other subjects requiring future work include:

Computationally efficient and accurate nonlinear model reduction The
method of model reduction presented in Chapter 6 is a fairly computationally
efficient method; however, it is not completely accurate method for forming
reduced models as was shown in the two-phase CSTR example. On the other
hand, the method of Roussel and Fraser (1991) is very accurate since the algo-
rithm converges to the proper reduced system. The problem with this method
is the large computational effort required for performing the necessary symbolic
manipulations. In order to combine the best qualities of these two algorithms

the following approach is suggested.
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1. Use the algorithm of Maas and Pope (1992) to compute an initial guess

for the slow manifold.

2. Approximate the algorithm of Roussel and Fraser (1991) by representing
the slow manifold using a numerical approximation rather than a symbolic
description. In this way, the method could be made more computationally

appealing
As mentioned before, there is some current work in this direction (Davis, 1997).

Identifying functional relationships While the problem of determining the proper
model order for nonlinear black-box models was addressed in Chapters 2-5, the
problem of determining the functional relationship between the regression vec-
tor (past) and the output (future) was not addressed. Mathematically, the

function G in the relationship

y(t) = Glp(t)] (11.1)

should be estimated from identification data of the system.

There have been numerous papers on this topic using a variety of approaches
to solve this problem including neural networks, splines, recursive partitioning,
radial basis functions, and other methods; however, none of these methods
take the approach of constructing an optimal set of orthogonal basis functions
which best approximate the mapping G. This would be the best approach to
solving the problem, and some ideas on how an optimal orthogonal basis might
be constructed are presented in Mao and Billings (1996). This is the most

appealing way to solve the problem.

Building models that include uncertainty descriptions All models will have
some amount of uncertainty associated with them depending on both the model
structure used and the quality and quantity of the data available for forming
the identified model. The amount of uncertainty associated with the model

may also be dependent on the location of the regression vector. A model which
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included some type of bounds on the uncertainty associated with the model

may be very useful for developing robust controllers.

Understanding results of existing nonlinear identification methods Many
methods of nonlinear identification result in models which are difficult or impos-
sible to interpret after they are constructed. While these models may reproduce
the dynamical behavior of the process extremely well, it would be preferable to
gain insight into the process dynamics as a byproduct of modeling the system.
This insight can be helpful when designing controllers, so performing these stud-
ies should prove valuable. New methods of nonlinear identification should also

be developed such that insight is gained during the modeling process.

The MARS identification scheme (Friedman, 1991) is one example of a model-
ing scheme that gives some understanding of the dynamics during the modeling
phase. As the model is developed, the basis functions and variables utilized by
these basis functions are given to the user. In addition, the predictive capability
of each of the variables contained in the regression vector is given and unneces-
sary portions of the model are “trimmed” away in the final stage to reduce the
complexity of the model. These are the types of features which can be helpful

when attempting to understand the system dynamics.
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