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ABSTRACT

Oﬁ the basis of linearized nonstationary ae-rodynamics and a
normal mode representation of the motion, the aeroelastic transfer
functions of a symmetrically oscillating slender body are derived
from energy principles.

In the present analysis no structural damping or aerodynamic
viscous forces are included, but they are believed not to alter the
principal features of the system significantly.

The aerodynamic fo:z'ce expressions, obtained as a side result,
turn out to be exceedingly simple in the slender body case.

The final eigenfrequency-analysis and the open loop frequency
response of the system chosen in Appendix D indicate that the
aerodynamic coupling is low. The eigenfrequencies therefore are
accurately obtained from the simple decoupled equations. This also
holds for the frequency response in a fairly wide band around each
particular resonance frequency.

The magnitude of the response of the elastic coordinates in
comparison with rigid body responses at resonance frequencies
clearly indicates the importance of elastic effects with respect to

closed loop control problems.
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NOMENCLATURE

Ay Aan = dynamic coefficients

Ao,""An i}
B, "'8Bn

..o

aerodynamic coefficients

= complex amplitude of n'th mode
=  velocity of sound
=  polynomial coefficients

= external force distribution}
reduced potential, Appendix II

= Young's modulus

=  transfer function

= power and control unit transfer function
=  weight of body

= function of X determined from boundary conditions
=  altitude of flight

= imaginary unit

= cross sectional moment of inertia

= mass moment of inertia

=  momentum imparted to fluid

= length of body

= cross-force per unit length

= mass per unit length of body

IgrNUR NI MR QR
!

= total mass of body - equations of motion ;
Mach number, Appendix II

Mnn = generalized selfmass for n'th mode
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index indicating mode of vibration
gravitational acceleration

differential operator in nondimensional time
pressure, Appendix II

n'th "velocity polynomial®

n'th generalized coordinate

n'th generalized force

radius of body cross section

cross sectional area

kinetic energy

physical time

flow velocity

potential energy

transverse disturbance velocity

radial coordinate

longitudinal coordinate

center of gravity coordinate

transverse coordinate

complex amplitude of translatory mode
amplitude of control force, assumed to be real

nondimensional disturbance velocity

nondimensional coordinates

physical frequency of vibration
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vi
nondimensional time

reduced frequency

air density

angular coordinate

complex amplitude of rotary mode
anti-symmetric disturbance potential
nth mode of vibration

determinant

point of application of control force
Dirac delta function

spectral variable of Fourier integral



B 1. INTRODUCTION

It has been found that the interaction between rigid body modes
of vibration and elastic bending modes may play a vital role in the
-guidance and control problem of guided missiles. Neglecting it may
easily léad to serious stability troubles, or at least introduce appreci-
able guidance errors.

| As a first part of a more comprehensive research program
centering around this question, the present investigation was undertaken
in order to derive the fundamental expressions for the aeroelastic
transfer functions of an oscillating slender body, and to make a first
estimate of the elastic effects.

In general, an airframe in free flight, treated as an. aeroelastic
structure, does not lend itself very readily to an exact transfei' function
analysis, because of the involved nature of the aerodynamic éoupling
forces. In the slender body case however, it is shown that the com-
1.Jlet.e, nonstationary, linearized force expressions take on an exceed-
ingly simple form, which is readily applicable to conventional transfer
function techniques. In fact, these forces also can be s'hown to be
derivable from very simple two dimensional momentum considerations,
similar to those employed by R. T. Jones(5) for. the stationafy case,

The investigation is based upon the technique of normal modes
of vibration, which is a particularly convenient method in a case where,
as later shown, the aerodynamic coupling is small and only one or two
modes have to be included simultaneously.

The investigation so far includes no viscous forces, although

these for a slender body in general are of great importance. It is
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believed however, that the general shape of the lift distribution is
fairly well given by the linearized theory, and that the aerodynamic

effects hence will be vacc_urately giw}en by the present method.

A. Functional Diagrams

- To clarify the mechanism of flexibility in more detail the follow-

ing functional diagram may be employed.

The aeroelastic body thus transforms the input to a series of
rigid body and elastic outputs, the latter in general beiﬁg unwanted as
superpositions—to controlled variables. As an example, each bending
mode is seen to give an additional feedback in thé highly simﬁlified
acceleration controlled system below in Fig. 2. The s;)rstern transfer

function in this case can easily be shown to be

Fny
1+ FiFy + Fifa, o

Flp) =

An indication of the seriousness of these additional feedbacks



- Fy ~ ¥
ne L | - | [ —
e * Fq —

- Fan = Qp

Fig. 2. Simple CG Acceleration Controlled System

is given by the frequency response of the flexible modes as compared

with rigid body modes.

The aerodynamic coupling between the modes also will be a

subject for investigation in the following.



-4-

II. STATEMENT OF THE PROBLEM

The problem treated in this thesis may be stated as follows:
given an elastic, slender body of revolution of length £ and radius R (x)
in a flow of uniform velocity U , performing a small oscillatory
motion in a symmetry plane, find the equations of motion of the body,
including elastic and nonstationary aerodynamic effects.

The body is treated as a free-free beam, forced Ey aero-
dynamic and external forces, and the coordinate system found con-

venient for the purpose is the one given below(3).

b
r\? RN

e’ —— X poe-m—

Fig. 3. Coordinate System.

The starting equation for the body motion thus is the familiar beam

equation:

'ax*( : 3x=) gzt); = ft)

inder the boundary conditions,

3)(2(0‘) g:ﬁ(@”’ axz(l t) axs([ t) 0
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f(x,{) is composed of aerodynamic and external forces as presented
in Part III.

The effect of rotary inertia as well as structural damping and
shear have been neglected for simplicity, but may be easily included
‘in an extended analysis. ;

The displacement of the body as represented by normal

(1, 2)

can be written

o0
X
J = ‘§,¢n (T) n (t)
Taking the ?’;‘ as generalized coordinates and.writing
AT
fo= e’

for a sinusoidal oscillation, Lagranges equation of motion can be easily

modes

obtained (Part IV), one equation for each coordinate.

For a Body of complex shape the modes may have to be obtained
by numerical or iterative methods, but this, according to Rayleigh's
principle, still gives an accurate representation of the dynamic
propertieé of the body. For the application in Appendix D a constant
cross sectiori approximation is used. This may be fairly reasonable
in many cases.

In the derivation of the aerodynamic forces (Appendix D) non-
stationary linearized slender body theory is employed. Exactly the
same expressions however, are also shown to be derivableb from very
simple momentum considerations. In the aerodyﬁamic analysis a com-
plete nondimensional representation is used, whereas in the final
equations of motionnondimensionality has been retained in1 time only.

The generalized aerodynamic forces are obtained from the principle



of virtual work in Part III.
The resulting linear frequency response equations have then
been converted, without further proof, to transfer functions in non-

dimensional time, by replacing t A with the operator i~y .

°T
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II1. AERODYNAMIC FORCES

Using the results derived in Appendix B in nondimensional form,
it is easy to show that the cross-force per unit length of an oscillating
slender body, in terms of physical space coordinates but nondimensional

time and reduced frequency, may be written as

oo . AT
2 A o .
L=pU Zan["‘e" SG) B, (x) - ;;{S(ﬂl?,(x{” e .
n=g
where
Qo = Yo Rigid body translation
@oz= 6o Rigid body rotation
an Flexible modes
SV
R, A
. X"xo
Ri= 1= A(=F=)
1.12%n _
= - 2A
R‘D y 4 S X/p ¢n)
The external forcing function has been assumed in the form
: AT
2(x-g) Ve
which represents an oscillating, concentrated force at X = g . It can

be thought of, for instance, as produced by the deflection of a control
surface, although nothing has been assumed about its origin in the
present paper. In the same manner, any number of concentrated
aerodynamic forces may be considered. In the numerical application
in Appendix D, the control force has been assumed to be located at fhe

rear end of the body.
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IV. LAGRANGE'S EQUATIONS OF MOTION
As mentioned in Part II, the normal mode representation of the

motion may be written
o0
y= 2 % (59, (1

With the kinetic and potential energies expressed in terms of
the 9“-'5 as generalized coordinates, Lagrange's equations of motion

are then written down.

2(21). 3 -,

Kinetic energy :

~ ! -
T=55 [(#,5)mar =5 ZMen §a
n= 2 nzo

where
V4
Mos = fm de = M total mass
o
4
’ 2
Mo, = [(X—Xo) m dx = Im mass moment of inertia
¥ ,
! 2
Mnn =[¢n ma'x generalized s.elfmass for
0 th '

n ~ mode

Potential energy:

Neglecting gravity we have

= 2 2
=1 v
V"TZ /EI{;#’,}?,, o
nx0 g
But from Rayleigh's principle we know that

/' m2
‘dz aEI{%-;) alx

" Mnn
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Hence the potential energy can be written as

V= —;_‘ 2 wa Man 90

n=zg

]

= 0 neglecting gravity

Assuming a sinuoidal time dependence of ?n we have, in terms of

nondimensional time,

AT - .
?m = Yo € Rigid body translation
AT
?oz = B, € Rigid body rotation
AT
?” = @p € Flexible modes
®

Generalized Forces:

By the method of virtual work we have

/4 _
@, 49, = f[L(x,i‘ + Slr~;)}’(r)]47,, &, odx
? o

Go= [Lestig, o + Yer #(p)

Inserting the aerodynamic forces given on page 7 and using

the dummy variable K in the summation gives

v~ oo P
0. =f”zeaxc quf[.}_“_ga)g(x) -2 {S(x) };(x)}]gdx +

k0o o

’ y% ({)ea'Ar
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or, written out explicitly, the expression,

[ 2
P[7 509+ ir S=se)])

2 co\f

O, U e +06, %{f‘l‘o\(%ﬁ?}fﬁ)“ 5;{5(*)(1- 1A L’-‘-}—’-‘—")}}r? @ dx +

_\4’\_.‘

[/

-+ —-[ (3*/1 AP, )Sw= ax,{f(x) 2 w”“@}] )

I (pe e
Equations of motion:
2 o 2y £ 1A o
-{‘T) MA y, -fﬂéfko/[TS&)E&) -;;{S&)E_(\)}]dx =y
- }2) zI,.1 Ao, -pU 2.. j[ SR ) - d%{m) f,{,(x)}]{x-x.)dx = Yig-x)

-ﬁa

o 4 . '
{ 7 M,,,,A G Wn Man T - U S, /[ 2560 R ()~ ;";{m)g(x)}]g, o= Y, (f)

&£=0 ©

Expanding the sum and collecting terms belonging to each

coordinate the equations can be written in the form

Au Yo *+A,2 6, + A, 39, +----0-- Aga®n = Y

Az Yot A226, 1 A3 @t * " " " Azpagn = Y(f"x°)

Ani Yo +Ana 6, +Ansa, *t ------ Annn9n = Y&, _ff)
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where

2
AM =" {-.-;!') MAZ _AOI /\z ? Bo, l.A
An® ~CoiA* +Dg, tA + Eo,
A03= -F:-m’\z + Glo, i'\ + Hmi

AIn"""*------

Az = ~Aoa A%+ Bo, 24

= vy .
A2z~ '(‘é‘) J,,,Az ~Coy A% +Dgy 24 +E,,

= - 2 .
Az3™ " F, A +G, 20 t H,,,

Azn"“‘°' -----

Az = —Ald‘z + 8B, 2‘4\
Aizz= ’C,;\z#D, tA +F,

- )2 2 .
A3a~ °(;"} Mw A~ + a),zM,,—f;', ,\14» G, 2A +H,

AanT e
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V. RESULTS

The set of N+ nonhomogeneous linear equations in the N+%

@Qn derived in Section IIl may be con-

unknown Yo : eo » ay

veniently written in matrix form
- -l
(A)a=Q

Solving for each particular output by means of Cramer's rule yields

Here A is the determinant of the homogeneous left-hand side and

Aor---

corresponding to each particular coordinate by the right-hand forcing

++ Q" are the determinants obtained by replacing the column

column.
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A. Frequency Response

The above matrix equation completely determines the frequency
response of the systerm. The solutions Yo eo , a',- < Qp thus
are the coupled responses of the generalized coordinates, which are in

general complex functions E,. (i,\) of the reduced frequency. Express-

ing the frequency response in terms of magnitude and phase thus gives

lan] = |Fa(in)] ’ arg dn= arg Fale))

B. Transfer Function

The transfer function in the usual tense in nondimensional time

is obtained by replacing LA by the operator pP= -2— . This is by no

2T
means an essential step in the present investigation, but gives a more

compact notation, and is particularly convenient when dealing with the

system as part of a complete control system.

C. Eigenfrequencies

The eigenfrequencies of the coupled system are given by the

equation
A=0

This in general gives a polynomial of an order in pz equal to the
total number of modes included. Under the assumption of no
gravitation however, one pair of roots will be Pf,z =0 for the
system considered in this thesis. The order of the characteristic

equation thus will be reduced by two.
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An application of the Root Liocus method for determining the

roots of any polynomial is given in Appendix C.

D. Application to a Particular Configuration

The expressions given so far are completely general, containing
any desired number of elastic modes. In applying them to a practical
problem it is found that the elastic modes have very distinct frequency
ranges of importance, and that the aerodynamic coupling in general is
low.

Due to these facts the application given iﬁ Appendix.'D contains
only one elastic mode, the frequency range considered being only
0.01 € X<€1.0. The particular configuration chosen is intended to
resemble a typical high speed missile.

The Bode diagrams of the frequency responses are given in

Figures 9 to 15,
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VI. CONCLUDING REMARKS

The results of this thesis clearly show the importance of the
problem as stated, and the relative ease, with which both structural
features and nonstationary aerodynamics may be incorporated in the
dynamic transfer functions of a slender body.

An examination of the coefficient integrals on pages 12 and 13
indicates, that very roughly one half of the aerodynamic f.orc-e is
contributed by nonstationary effects, the other half being thé quasi-
steady part. A use of quasisteady theory therefore would nof give a
very true picture. The expressions for the complete forces however
are simple enough in the slender body case to be included completely.

From the evaluation of the characteristic équation and the
frequeﬁcy response of the particular configuration in Appendix D the.
following points are evident.

1. The aerodynamic coupling in general is low, the translatory mode
in particular not influencing higher modes, and the eigenfrequencies
of the coupled system are well separated. This however is due to
the body being an inefficient aerodynamic force producer but
possessing fairly efficient structural properties, which may not
always be true in a practical case.

2. The effect of aerodynamic coupling in the case considered is to
slightly increase damping and decrease the frequency of the free
body roots.

3. Under the assumption of low coupling, the eigenfrequencies are

accurately obtained from the "stripped down' equations for each
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particular mode. Correspondingly, for forced motion, the fesponse
of each coordinate is obtained in a fairly wide band around the respec-
tive resonance frequencf from the simple decoupled equations.

No attempt has been made in this thesis to make any general
statements about the behavior of the system as part of a closed loop
control system, this question being too sensitive to individual control
system characteristics. From the response calculatio_ns‘ in Appendix
D, however, it is evident that the local 1“ bending velocities and
accelerations are dominatiﬁg over other modes at bending 're.sonance
frequency. An angular velocity - or tra.nslatory acceleraticn feedback
without consideration of bending, would therefore most certainly give
rise to control troubles. In the numerical example given in Appendix
D, the j’é bending acceleration at the CG is of the order thirty times
translatory acceleration, which however (to a certain extent) also
depends upon the neglected structural damping. |

In accordance with the above results the closed loop analysis
of the flexible, slender body system most probably would be put on a
modal analysic basis, containing simple decoupled or partly coupled
modes in each frequency range. This will be the subject for>an

extended investigation.
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APPENDIX A

Normal Modes Representation of a Free-Free Beam

The technique of expressing the deflection of a vibrating beam,

governed by the equations

>y
ox? ( fr 5= X2 t)

g-;—z(qf)= $3Mat)= 33let) - Zot) -0

in a series of orthogonal eigen functions is well known and will not be
(1)

treated here in any detail

Thus the solution of the beam equation will be written directly

,,t:, 8 (§) 7. (t)

The first two modes represent rigid body translation and
rotation, the higher modes representing bending deflections,

In the present numerical example a beam of constant cross
sectional properties has been used for convenience, the modes and
frequencies of this being available in tabulated form(z).

The first two bending modes and corresponding frequencies are

given in Fig. 7.
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APPENDIX B

‘Nonstationary Slender Body Lift

Nondimensional Representation

Y
r 4 9
"Z‘/ o S®=TR
7 u
e N
Xo
1

Fig. 4. Coordinate System and Nondimensional Body Dimensions.

Dimensionless Quantities Physical Quantities
x dxax
] 4=y
7 Lr=r
Sw) 2’69 = S (%)
wd w=24
A= 72 = 7

For simplicity, the bars are omitted during the following derivation
of the lift forces.

Nonstationary, Linear Wave Equation

(1-M)ex + e + T+ 1 05y = M ($rr *290e)
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We are here considering only the antisymmetric part of the

disturbance potential, because we are interested in the cross-force only.

Boundary Conditions

U, ()= - -% (;g—:g)r=a

body surface is impermeable.

Body Motion as Represented by Normal Modes

y = Z_a,,.¢n (x) e“\r
ﬂ:o

Ay~ Yo Rigid body translation
dox™ 6o Rigid body rotation
dn Flexible modes

Goi= 1
¢oz=' (X‘XQ)

@n

The transverse physical velocity is then
u Y Yy y oY
L ——— -—
flat*uﬁ_x"u('g'i 37
This is equal to the Y -component of the inflow which is accordingly

-Uv. 0= U (4L —g‘%) cos 1

or in normal modes

_ ar by Y 1 .
V.(x)= - 2 n -4 4
() € cos éaa {—-5-;"- %)
1AT" hag
‘Vc_(x) = - cos?¥ 2.9, P, (x)

n<o
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Poo"-"""A

where

RB2= 1- 12 (x-xo)

. hd - -

Pn= ‘?'&,-IA¢

From the boundary conditions it is seen, that v, (x) depends
upon 1’ only as cosV . Hence, assuming that

IAT + (kx

\f(x,r',‘l},?) = Ule f(x,r) cos V'
and calling

B"‘W 1

o = AM ko= DM
£ = 11-m* ’ B8 ) 1-M3
the wave equation transforms into the following equation for the reduced
poténtial,
2 1 1 AMD
(1'”)ka “frr*rfr""r'if=- 1-m= f

This can be solved for both supersonic and subsonic flow by Fourier
transform methods giving identical results. We recapitulate the first

case

J

M> 1 Fler) = [€ flor) ds
o

Then,

Fret F R+ (8% -«'-8) F=o
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The general solution of this can be expressed in terms of Hankel

functions of order 1 as follows:

F= CH (e /B3 - )oc, H(r T )

Considering only out going waves, and retaining the leading term only,
or observing that any integral close to ¢ = © must have this form,

one arrives at the expression

F(%,r)= G() L cos ¥ + O(rlnr)cos ¥
and hence
f (x,r)= g(x)—!r-.- cos P+ O(rin r)cos A
The complete potential close to Y =@ then will be

AT rikXx (

?: Ute q(x)—ﬁ—* O(rinr)]ces??

ﬂ(x) can be determined from the boundary conditions -
TAT+iKx 94 :
'v',.n(x) = e [9,, (x)—r.; +O(in r)]cos ¥
AT
= an By(x) e " cos VP
for each mode. Therefore, retaining leading terms,
~ tkx 1
anFa(x)= e 9() 1

adding over the modes and inserting in the expression for ? gives

¢=- (%) S(x) Zan’j,(x)e'u?c::s (e
a=0
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This expression contains Munk's formula for the potential. It is observed,

that under the assumptions made, 'f is independent of M and A
T
except for the factor @
Pressure

2
P'P°=-£lg-(3a% ox ( ))

Due to symmetry in the present case, the last term gives no contribu-

tion.

AT
P-Po= f——-—Zan[u\S(x) (x)-a;'{S(X) (x)}je cos ¥

Integrating around the circumference finally gives the cross-force

per unit length

L= f”? Z";n[f‘»\ $G) P(x)- %{f(x)e(‘)]]eb\t

nzo

Comparison with Simple Momentum Theory

It will now be shown that the above lift expression also may be

derived from very simple momentum considerations.

uv1

Fig. 5. Flow in a Cross Sectional Plane.
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Consider a cross section of the body. The momentum imparted

to the fiuid is

T =-eUL’ S(x) v(x)

2
where [f S(x) is the additional apparent mass. The cross force

per unit length will be given by the time derivative of the momentum

L=- -D—'Z‘ f”[ Dt{S(‘)v,x))

It is observed, that the derivative to be taken here is the total derivative,

which is the sum of the local and convective derivatives.

DD{‘:") = g —L—Ha':_” + e grad(Sv)

The nondimensional local velocity 4+ then will be expressed in terms

of normal modes as

Inserting these expressions in the expression for L gives

= el Zdn[ ELLG VY R~ ﬁ{S(k)Bk)}]el'AT
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or
-~

_ 2, e . _a 1AT
L= eU?5a,[irSCBM)- 5 [{Sc B} €

H=o

But this is exactly the expression derived from linear theory on page 25.
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APPENDIX C

Factorization of Polynomials by Means of the Root Liocus Method

The Root Locus Method furnishes a convenient way of factoring

any polynomials with complex or real root . Given
n
Cnp -rCn 1P .'...--. .,P*Co"o

Grouping the first three terms together gives
cnpn Z(P 4 ._....-LP.'. J_Z_ 4...-C,P+ Co =0
The bracket is a quadratic and can be factored énalytically

Cn P P-UNp8) Gy P+ CP¥Co = O

Again grouping the two first terms together gives

Co-3 F’”‘5 cn_3 P(P X)/p-d’z "1]"" GP1G=

The bracket now can be factored by tracing the root locus in the complex
plane in accordance with the usual root locus technique(é) and thus

determining the roots ﬂ of the bracket expression. It gives

¢ P (PRNp-rfp-Ys---- Cp+Co= 0

Continuing in the same way, each step adds one zero to the factored

expression, until the final result is

€a (p-c.)p-a)(p-as)- - -----)(p-2tn) = 0

It may be pointed out that by analythical computation of all characteristic
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quantities of the locus — cross over points, asymptotes, etc. the
accuracy of the method can be substantially improved.
In the present application, the characteristic quartic of the

system of equations required the plotting of two locii, which are shown

in Fig. 8.
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APPENDIX D

- Applicatibn of the Theory to a Particular Configuration

- ax, . sz
i hl ! 1

Fig. 6. Schematic Missile Configuration

Geometry
£=75m _ ‘
axg* 1 m Rimex=0.5 m
Xog= 3.5m : o
Salx)= 0.196 (£-x)* Si(x)=0.588(1-x)*+ 0.19¢
Sa(x)=-0.392 (0-X) $1 ()= - 1.176 (1-x)
| Mass Properties
G = 3000 kg M = 305 kglm"s’
m= 40 kg nms? Im~ 1400 k9 sm
W,= 3149 s’

Mu= 270 k9 m's?
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Flight Reference Conditions

h= 10000 m

= 0037/ kgs'm*

az= 295 m/s

U= 590 m/s (Mach numberZ)

In the present case only the fundamental elastic mode has been

considered.

The constants in the equations of motion, computed from the

integrals on pages 12 and 13 are

Aoz= ~174

Coz= 7950

For = - 672

A,=0
C=-672
= 350

Bo,= 7350
Do, = -~ 7600 Eor= -/0/00
Go/= 3320 Ho:1 = /2400
Bos” 2330 . Eog = 17500
Ddz = 16 980 » :
Goa2=-16300 Hoy = ~%0500
By = 7950 A
D,z -4670 E4=-14650
Ge= #4320 He= 8750
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Inserting these constants in the equations of motion, and changing the
scale of Y, , 90 , and @, by a factor of 103, which is the same as
measuring ¥, and &, in mm and @y in rad xlO_3 yields

the following set of equations
(1985p%1.35p)y0 —(0.17'+760p+10.10)8, * (3.32p4 12.40)0, =Y

~(-17p+ 2.33 p) y+ (8660 p%+ 16,98 # 1756)6,-(Q.672p +16.30p +405)a.= ~375Y

195 pyo ~(0.672p%+ 4,67p 11465) G+ (16705 4433 p 1 274 75)0,~ .Y

Frequency Range of Interest

The range A = 0,01l to 1.0, which is well below the natural
frequency of the angular motion and well above the first bending
frequency, has been considered. This immediately makes the off

diagonal pz terms and the lower two PYg terms negligible.

Natural Frequencies
The characteristic equation in the present case reduces to the

following quartic

273000 p* + 1443 p3+ 45300 p + 111, 4p +79.3 =0

Factorization by the method given in Appendix 1II gives the roots
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P2=0
Ps4y= -—0'00,24_1-0'042 l' Rigid body rotation
Pss= ~-0.0014 I 0,405»{ First bending moder

The locii employed are g:iven in Fig. 8.

Frequency Response

The responses of Y, , 6, and @, to a unit simusoidal

force are given by the equations below

, .3_. 3.75(/0./.‘7,63‘,\) . 2(12'4‘3‘23 {A) , -;’ ‘7 -
© | 125-8604% /.98 A 274.5-/670A%+ 43277 -18 8541 1350A

___ 375(2745 - 76704%+4.32/ ) -2 (4050 + 16.371)
o . 7 [} 1 L}
(175-86604%+ 16.95 11 )(174.5-16704% 4,320 )~ (405+ 16.37A ) (14.65+4,47:1 )

 2(175-8660A% +16.981)) - 3.75(74.6 +4.671)
© (17.5-8660X°+1499i)) (27451470 A%+ 4.32)-(40.5+18.3iAN 14,654 447.4) )
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The above eéﬁaticnéi for 60 and @,  are obtained by solving
~ for 60 and @, | si’rntiltaneously but disregarding the negligible
influence of Yo ®©n these.

It is found that the mutual coupling between ao and @, is
negligible in a wide frequency band around the particular i'esdnance
frequéncy. ,Furthér aﬁré_y from this it is important, but the magnitude
of the response itself is very small. In accordance with this, the
equation for Y, contains only the simple *decoupled” responses
of aa and ¢, , which is found to be a good approxima:tibn indeed.

By multiplying the responses with i,\ and (z. ,\) 2
the velocity-and acceleration responses are obtained.

The Bode diagrams'ofjthe above frequency responses are given

in Figs. 9 to 16.
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