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ABSTRACT

The statistical approach to the gust-loads problem is extended
by considering the aerodynamic forces due to the lateral and longitu~
dinal variation of instantaneous gust intensity and using them in dy-
namic analyses of rigid and flexible airplanes free to move vertically,
in pitch, and in roll, based on the assumptions of stationarity of the
process (in the statistical sense) and of linearity of the forces involved.
The effect on the wing stresses of the interaction of longitudinal, ver-
tical and lateral gusts is considered,

The method of analyzing the rigid-body motions is similar to
that used for analyses of the dynamic stability of airplanes, “ iia that
the equations of motion are referred to stability axes and expressed
in terms of conventional stability derivatives, The method of analyz-
ing the dynamic effects of structural flexibility consists of an exten-
sion of a numerical-integration approach to the static aeroelastic
problem and is in a form which offers the possibility of cé.lculating
divergence and flutter speeds with relatively little additional effort.

The mean-square values, correlation functioné and power
spectra of some of the aerodynamic forces required in this type of
‘analysis are calculated for certain special cofrelation functions of
the atmospheric turbulence and certain special lift distributions.

It is shown, for instance, that the mean-square lift is substantially
reduced due to the difference in instantaneous intensity of the turbu-
lent velocity along the span if the span is relatively large compared

to the integral scale of turbulence, but that the mean-square pitching
moment is substantially increased if the tail length.is relatively large.
Also, the wing stresses due to vertical, horizontal and side gusts

are shown to be statistically independent under certain conditions.
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I. INTRODUCTION

The local velocity fluctuations sensed by an airplane flying
through étmospheric turbulence constitute a stochastic or random
process, inasmuch as they are functions of time defined only in a
statistical sense. Consequently the responses of the airplané,
whether they are motions (linear or angular displacements, ve-
locities or accelerations), forces (lift, pitching moment, bending
moment, and so on), stresses, or any other phenomena determined
by the turbulence, can also be known as functions of time in only a
statistical sense.

This paper is concerned with the statistical characteristics
of the responses which have a bearing on the loads and stresses
experienced by the airplane; although other problems, such as those
relating to passenger comfort or to the stability of the airplane as
a gun plétform can be treated in the same manner, they will not Be
considered here.

The first approaches to the gust-loads problem from the
statistical point of view appear to be those of References 1, 2 and
3. (An earlier investigation concerned with the motions of an air-
plane in turbulent air is reported on in Reference 4). The funda-
mentals of these approaches are discussed in some detail in Ref-
erence 1, and reference is made therein to investigations dealing
with the problem of deducing the statistical characteristics of the
output or response of a dynamic system from those of its input in
other fields of engineering and physics. For instance, it is pointed

out that the power spectrum of the output of a linear system is equal
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to the product of the absolute square of the transfer function of the
system and the input spectrum, provided the input is stationary in
a statistical sense and has a zero mean. The mean-square values
of the output and of its time derivatives can then be calculated from
the power spectrum, and the expected number of peaks of the out-
put with a given intensity can be calculated from these mean-square
values if the probability distribution of the process in question is
Gaussian. By an extension of this method the expected number of
loading cycles of various amplitudes and about various means can
be estimated. Thus, if it is known what fraction of its time the
airplane will spend in various atmospheric conditions, what the
spectrum of the turbulence is in each condition, and what the ap-
propriate transfer functions are, the probability of exceeding a
given peak load and the number of loading cycles incurred in a given
number 6f hours can be calculated on the basis of certain assump-
tions.

Following this approach, the mean-square normal acceler-
ation of a rigid airplane free to move in one degree of freedom,
namely vertical motion, is calculated in Reference 2. In addition
to rigidity, the assumption is implied that the airplane is small
enough that at any instant of time all its components experience
the same gust velocity. This means that the span of the airplane
must be small compared to the integral scale of atmospheric tur-
bulence, which on the basis of the available knowledge concerning
the properties of the atmosphere(4) should be in the order of sev-
eral hundred to 1,000 feet; that is, the span of the aifplane must

be less than about 50 feet.
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The purpose of the present paper is to extend this approach
to large flexible airplanes free to move in all directions. As used
in the fo‘llowing, the terms ''small" and '"large' airplane will refer
to airplanes which are very small and not very small, respectively,
compared to the integral scale of turbulence; thus, an airplaiie fly-
ing in a wide variety of atmospheric conditions may be "'small" under
certain conditions and '"large'' under others., Similarly, the terms
"rigid airplane'' and "flexible airplane' will be used in the following
to designate airplanes flying, respectively, at speeds far below
those at which dynamic and aeroelastic effects become impoaztant,
and at speeds at which these effects have to be taken into account;
the same airplane can thus be ''rigid' under some conditions and
"flexible' under others.

Several fundamental assumptions are inherent in the analy-
sis conté,ined in this paper. In the first place, all afmospheric dis-
turbances, motions and structural deformations are assumed to be
sufficiently small that the resulting forces are lineaf:and, hence,
superposable. Also, the turbulent "input" to the airplane is as-
‘sumed to be stationary in a statistical sense, This é.ssumption
may be rephrased as stating that the turbulence in the plane of the
flight path is homogeneous. For the large airplane the additional
assumption is made that the turbulence is axisymmetric with re-
spect to vertical axes, a condition less severe than complete iso-
tropy. The statistical characteristics of the turbulencé are thus
assumed to be invariant under a translation of the space origin with-
in the horizontal plane and under a rotation of the coordinates abﬁut

the vertical. Finally, Taylor's hypothesis to the effect that time
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displacements are equivalent to longitudinal space displacements
will be assumed to be valid.

'i'he aerodynamic forces directly due to atmospheric tur-
bulence, which constitute the input forces for the dynamic system
represented by the airplane, are calculated in Part II of thisfpaper
for the case of the large airplane, that is, for the casé where the
spanwise distribution of the intensity of turbulence has to be taken
into account. In Sections 2 and 6 the required lift-influence func-
tion which defines the contribution of one section of the wing to
the total lift and to the local lift at another point are discussed,
and the assumption is made, on the basis of available knowledge,
that these functions of time and distance along the span can be rep-
resented by products of functions of time and functions of distance
along the span. Using these influence functions the lift and its
pbwer spectrum are calculated fqr two assumed spectra of é,tmos-
pheric turbulence in Sections 3 and 4. (The problem analyzed in
Section 3 has been treated by a slightly different method in Refer-
ence 5.) It is shown that, although the mean-square lift vmay be
. substantially less if the differences in gust intensitiés along the
span are taken into account, the spectrum of the lift (normalized
by the mean-square value) is not affected greatly.

The rolling moment is treated in Section 5. - This moment
exists only by virtue of the fact that local gust intensities are taken
into account, because if the gust intensity is uniform allong the span
no rolling moment is produced, This analysis thus furnishes the

foundation for the application of the statistical approach to the
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analysis of the motions and loads associated with the lateral de-
grees of freedom. The remainder of this Part of the paper is
concernéd with the calculation of mean-square values of various
other moments and of the local lift.

The dynamics of the rigid airplane are considered in j.P'art
III. The dynamic system is now represented by a set of three si-
multaneous ordinary differential equations, rather than one, as
in Reference 2; nonetheless, the problem of calculating the re-
quired transfer functions is still one of simple algebra. The first
two Sections are concerned with the longitudinal motion of small
airplanes. One result shown is that the responses to horizontal
and to vertical gusts are statistically independent if isotropy of
the turbulence is assumed, so that the two contributions to the
spectrum of the response can be added directly. Also, it is shown
that inclusion of longitudinal motion has a negligible effect on the
loads. ._In Sections 3 and 4 the longitudinal and lateral moﬁons of
large airplanes are considered, using the results caléulated for
the aerodynamic forces in Part II, and in Section 5 the manner in
.which the stresses calculated for the longitudinal an;i lateral de-
grees of freedom must be combined is indicated. This Part of
the paper not only serves as a preliminary to the treatment of the
flexible airplane in the later Parts, but also has an intrinsic in-
terest, because it applies directly to those airplanes which fly at
relatively low speeds and do not experience any signifi.cant struc-

tural deformations.
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Part IV is concerned with the small flexible airplane and
thus has direct Iapplication to fighter-type airplanes and guided
missiles operating at relatively high speeds, in addition to serv-
ing as a preliminary to the last Part. For this case the longitu-
dinal and lateral degrees of freedom are still separable, and only
the longitudinal degrees are considered; the lateral degrees can
be analyzed in the same way. Also, for this case only one half |
of the wing need be considered as a result of the symmetry (or
antisymmetry, in the case of the lateral degrees of freedom') of
the problem. The dynamic system is now represented by a par-
tial differential equation, and the calculation of the transfer func-
tions requires the solution of ordinary equations. Once theée
functions are calculated, however, the statistical techniques are
the same as before, as a result of the fact that the lateral varia-
tion in gﬁst intensity is ignored.

‘No work appears to have been published on methods of
analyziﬁg the dynamics of a swept-wing airplane with arbitrary
stiffness and mass distributions. Either modal or numerical-
integration approaches may be used for this problem; although
modal approaches have usually been preferred in the past for
similar problems, it was felt that in view of the highly com-~
plex nature of modern aircraft structures and the advanced type.
of computing machinery required and generally available for
their analysis the numerical-integration approach would be pre-
ferable and has, therefore, been used. This approach has the
added advantage, as pointed out in Section 4, that thé calculated .

results include those usually obtained by a separate analysis of
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s;catic aeroelastic effects and also permit the calculation of flutter
speeds with little additional effort.

F;art V contains the analysis of the large flexible airplane.
The longitudinal and lateral degrees of freedom can still be sepa-
rated, if desired, but inasmuch as the entire wing has to-be é.on-
sidered anyway, very little additional computing time ié required
if they are to be treated simultaneously, and the necessity of com-
bining the results of the two analyses is then obviated. The statis-
tical problem is now that of a system which is characterized by'a
partial differential equation with time and a space coordi_n.atexas
independent variables and which is subjected to a random input
which varies in time and space, so that more is required than the
transfer functions from the gust intensity at one point on the wing
to the stresses at another. The particular statistical problem pre-
" sented by this case is considered in some detail in Section 1, and
it is shown that the required transfer‘ functions are, in a sense,
auto-convolutions of the other transfer functions. Se‘}eral ways
of computing the spectrum of the stresses from these transfer
functions are indicated. In Section 2 the appropriate: transfer func-
tions are then obtained by solving, in effect, the ordinary. differ-
ential equations which describe the wing deformations at any given
frequency using the numerical-integration approach presented in

Part IV.
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II. AERODYNAMIC FORCES RESULTING DIRECTLY FROM
ATMOSPHERIC TURBULENCE

'i‘he motions of a rigid airplane depend on the overall forces
and moments, and the distribution of these forces is required, as
well, in calculations of stresses and in analyzing the motions. of a
flexible airplane. This section is concerned with the calculation
of the integrated and distributed forces and moments due directly
to atmospheric turbulence. The forces and moments caused by
the motions which result from this turbulence can be calculated by

conventional methods and will not be considered here.

1. Definitions of Statistical Parameters

As pointed out in the Introduction, the intensity of the ver-
tical component of turbulence w(t) is a random process, so that the
resulting forces can also be known only in a statistical sense. The
purpose of this part is to calculate certain statistical properties of
these forces, namely their mean-square values, the'n:' corrélation
functions, and their power spectra. Inasmuch as these terms are
.not always defined in the same manner the forms which will be used
in the following are indicated in the succeeding paragrapﬁs.

The mean of a quantity will be considered to be its time
average, designated by a bar placed over the quantity, and defined

as follows:

i

. ¢! |
FIE) = lim 25 ] fe0)dt (2.1.1)

The assumption will always be made that this limit exists and is in-

variant under a translation of the origin of time. Also, this mean
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will always be assumed to be zero. In dealing with processes with
non-zero mean this analysis is thus pertinent only to the modified
process ‘Which consists of the difference of the original process and
its mean value,

Similarly, the mean-square value of a quantity is

. |
£2 =|im 'T[Tfl(t)cit (2.1.2)

T>»o

The correlation function of a quantity f(t) will be defined

as follows:

Ve (o) = F(t) F(t+T) (2.1.3)

so that the mean-square value of a quantity is equal to its correla-

tion function at zero time-displacement, or
Z - 3//1,:(03 (2.1.4)

'_The power spectrum of a quantity will be defined as the Four-

jer transform of the correlation function, in the form

e () = f et Y, (1) dT (2.1.5)

so that, by virtue of the reciprocal properties of Fourier transforms

and of the symmetry of 1/’{' (T),
= Jo P (w) dw (2.1.6)

These definitions are substantially those used in Reference 1.
The fundamental principles involved in statistical analyses of the
type considered herein are expounded there in some detail, and ref-

erences to the literature on the subject are given both there and in
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Reference 2. These fundamentals will therefore not be repeated

here.

~ 2. Lift-Influence-Functions in Unsteady Flow
At any time t the lift on a wing which results directly from

atmospheric disturbances can be expressed for an unswept wing as
® b |
L@t = j OH.‘IS dy, hiti,y) wit-t,,y) o (2.2.1)
: -b

where h(t,y) dy is a lift-influence function which represents the total
lift caused by an impulsive vertical gust of width dy which at time
t = 0 impinges on the wing at station vy.

The influence functions required in Equation (2.2.1) are dif-
ficult to calculate directly; methods for obtaining lift distribufion's
on wings of finite span in unsteady flow usually require numerical
' so’lutions’ which do not lend themselves readily to thé analysis of angle
of attack distributions represented by delta functions. Hmﬁever, by
virtue of the reciprocity theorems of linearized 1iftiﬁg surface theory
(Reference 6, for instance) the lift influence function for a twisted
wing in indicial motion is equal to the lift distribution on that wing
during indicial motion with unit angle of attack in the reverse direc-
tion. Furthermore, the lift distribution in indicial motion with unit
angle of attack tends, for the few cases for which calculations have
been made, to be substantially invariant in timé except for over-
all magnitude. For instance, the calculations of Reference 7 indi-
cate that the lift distribution of an oscillating rectangular or el-
liptic wing in incompressible flow is substantially independent of

frequency, so that in indicial motion it is substantially independent

of time.
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The lift influence function can then be written as

|
h(t,y) = ¢ h) gy (2.2.2)

where h(t) describes the variation of the over-all magnitude of the
lift in time pursuant to entry into a sharp-edged gust and mé.y be
written as h(t) = CLu(t)q S/U and where 6‘ (v) defines the steady-

state lift distribution for uniform angle of attack, namely

I =

so that

Plo-

fly) dy = b

I

(2.2.3)

plc

3. The Mean-Square Lift and its Spectral Resolution for
the Unswept Wing

The correlation function of the lift can be expressed by vir-

tue of Equatmn (2 2. 1), as

¥ ()= Lf fj (t,,3) Dty yp) Wit~ h,y)w(tn-’thyz)oly‘dyzg\t,:l;c3 )

where the averaged product on the right side fepresents a velocity
correlation function. These functions depend in general on both

space and time displacements. However, if Taylor's hypothesis
(which according to the best available knowledge appears to be valid
for flying speeds greater than about 00 feet per second) is made, the
time displacements are equivalent to longitudinal space displacements.
The veloc'ity correlation functions are then functions only of longitu-
dinal and lateral space displacements. Thus, for instance for homo-

geneous turbulence
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*w (§+Ut"ﬂ - w(x+Ut,y)w(x+§fU(’l‘*l),}/*"()

(2.3
so that b b
- 2 i'
%(o= L, [ M9 ) oy (U0, 3,03 dy, et
- -’33 : (2.3

If the assumption implicit in Equation (2. 2.2) is now made,

the preceding equation can be written as

Y () = j j () hlta) Yoy (VT +11-ts) dtidty

.2)

.3)

dte (2.3.4)
where
(302 |
Ywe (U'C) = B2 Jy '_[_l; ‘/rw (U'C, Vz‘.‘l‘)'z‘(y.)a‘(yz)dy‘ dyz
2 2
(2. 3. 5)
=2, [ "1 () Yy (V5,0) dy
where, in turn, P(Yl) is the auto-convolution of §*(y} , namely
. |
iy = [P " e dy (2.3.6)

If, in addition to Taylor's hypothesis and the assumption of
homogeneity the turbulence is assumed to be axisymmetric with

respect to vertical axes,

“Vw (U'C) rl) = WW (Vv U’-zl-}-yz?.) 0)

In the following the right sides of this equation will be designated

simply by ‘skw(vuzt"‘k \'f') to shorten the notation. Hence,

¥, (0, (GFctiqz) (2>

7)
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b
Yo 001 = 2, [ 100}y, (V7P dy (2.3.9)

The quantity

—

wet = Y, (0)

b (2.3.9)
_ -2_.- . -
= T2 L Cln) Yy (1) dy
may be considered to be an averaged mean-square vertical com-
ponent of turbulence; V'We{U‘c) is then the corresponding correla-
tion function, and the Fourier transform of the lafter,
@ W)
= L v
P ™) = 2 Le Yo (V) d(UT) (2.3.10)
is the corresponding power spectrum.
The power spectrum of the lift is then
(w) = [H@)|" ¢, (o) (2.3.11)
Py We

where

H(w) = ‘[Q'e““’t h(t) dt

- 00

is a transfer function of the wing relating the averaged amplitude of
the vertical-velocity fluctuations to the amplitude of the resulting
lift, or
= C R S/uU
H (w) Ly ¢ ) oS/
where
Rz 2&
2V
The mean square of the lift can then be obtained by integrating
its spectrum, as indicated in Equation (2.1. 6).

The problem of calculating the mean-square lift and its power
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spectrum thus resolves itself into two separate problems, namely
the one of calculating the appropriate function H(w) and the one

of calcuiating the power spectrum of the averaged turbulence. Only
the second of these problems will be considered here; the firét is

a largély unsolved p;'oblem in unsteady lifting-surface theory and

is beyond the scope of this analysis. For the present pui'p,ose guf -
fice it to point out that this transfer function rei)resents the ratié

of the lift amplitude to the gust amplitude for flight through sinu-
soidal gusts. For incompressible flow it can be expressed approxi-

mately in terms of the Sears function ¢(h) by

G ® = Cp ¢ (w) o (2.3.12)

where CLu is the steady-state lift-curve slope, and the required
mean-square value of the Sears function can be approximated by
the expression given in Reference 1,

|
| +2mh

\ ¢(“3|2 ¥ (2.3.13)

The following discussion will therefore be concerned with"the calcu-
}ation of the power spectrum of the averaged turbulence.

Equation (2.3.11) has the same form as the corresponding
equation for the case where spanwise averaging of the effects of
turbulence is not taken into account (see Reference 1), eXéept thét
in that case bgawe(w) is replaced by @, (w). Thus the spectrum
of the averaged turbulence must approach that of the unaveraged tur-
bulence when the span approaches zero, é,s may be.seeh to be the
case from Equation (2. 3. 5) and the definitions of 3‘(9) and ‘F( 7). |

For non-vanishing span the desired correlation function can
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be obtained from Equation (2. 3. 8). The resulting function depends
not only on UT but on the span, the spanwise lift distribution Tly) .
and on fhe unaveraged or point correlation function for the vertical
component of turbulence. In the following, both elliptic and rec--
tangular lift distributions will be considered, for which, reslpec-
tively, ‘f(y) =| and ‘r(y) ::%;_ l/ | - ..5.2}1 ; also, respectively,

F(qg)= b-y

and

r(n) = 5%-1 (b+q)[{|+ (.g_)z} E() =2 -% K.(eB]

the functions K(®) and E(G) being complete elliptic intégré.ié of
the first and second kind, respectively, of modulus 8= (5‘7)/(5*?).
Also, two analytic expressions for the point correlation .
function will be considered, these correlation functions and their
associated spectra being defined in terms of the integral scale of

turbulence

~ -]
L = fo ¥, (r) dr (2.3.14)

as foliows:

Case 1 (see Reference 1)

—

_ el
}Vu(f) = ut e T

zpw(y-) z \T/-E(" z-l%)eﬂf

P“ (w) =

(e

P () = —

t
U 1+ k'2 (2.3.15)
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Case 2
R A
- 2z e 4 T?
K ()= v
-xrt
g (r)= wi(|-TZ)e *T
w ' 4 T
: N 2
| Wil -k
(w) = 2. 4 ™
fu * U °
. __.N _h‘
-1 wzlL R'* E
?w(w)~F U »(\-1-2.—-)3 |
where —_
. |- wL
ko= 5= = sk
S = ._E'_..
/2
For isotropic turbulence u? = w?

is not necessary to the following.

, but this condition

(2.3.16)

(2.3.17)

For Case 1 the mean-square averaged vertical component of

turbulence as obtained from Equation (2.3.9) for rectangular loading

is

-B

(2.3.18)

" where B= b/t . This relation is shown in Figure 1. Also shown

in Figure 1 are the results obtained by numerical integration for

elliptic loading. - Similarly, for Case 2 and rectangular loading

a———

we? Berf(Vip)-x(1— €

- ﬂﬂz)

wZ

FZ.

This relation is also shown in Figure 1. It may be noted that as

P

Wez'

w

the ratio

B >w

(2.3.19)

becomes asymptotic to l/ﬂ“ in both cases.

For Case 1 and rectangular loading the function Wwé (ut)

is given by incomplete modified Bessel functions, namely,



Z(E-F—e‘m—iﬂ_\/‘_{z (2.3.20)

where

This function %We (Ut) is shown in Figure 2, as are the results
obtained numerically for elliptic loading for one span ratio (8= 0. 5).
For the limiting case F—»% the incomplete Bessel functions be-
come complete Bessel functions, so that

lim w = /oK‘(p) - p% Ko (p)

p_,w We

where Kl and Ko are modified Bessel functions of the second kind,
For Case 2 the correlation function for the averaged turbulence with

rectangular loading is

T

__/@2 T,z
’Wwe (U-C) - 2 €T R l_e * 4_/0 .
W {—‘q’a [z B ert (% q) ﬂe (2.3.21)

For Case 1 and rectangular loading the power spectrum of

the averaged turbulence is

y =B 2w T3k M | K, (8 V) - i Kfpre)

Sowe —E—T) /__)L(H_h.lB

+(1-30%)§ 2 - 2B N1k K, (B1TrE) AR (pmﬁ)}]

where

fio (®) = § K, () da
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This function wae (w) is shown in Figure 3, as are the results
obtained by numerical integration for elliptic loading. For the

limiting case of /B-N” and rectangular loading

lim Rl I

bwelw) _ T 3wr%
pre T wer U (xR

Similarly, for Case 2 and rectangular loading
T a2

~ halld

w 7 e
1 (GE LRS-
As a result of these calculations it appears that the effect of
span on the correlation function and spectrum of the avefag;;l tur -~
bulence is relatively small, provided both are normalized with the
averaged mean-square turbulent velocity; in the case of the spec-
trum.the effect is smallest in the range of reduced frequency
from 2 to 4, which contains a large share of the turbulent energy.
(If the power spectrum were not normalized the averaging effect
of the span would tend to reduce the intensity of the spectrum at
all frequencies, but the high frequencies would be attenuated much
more than thé low ones, as may be expected.) On the other hand,
‘the effect of span on the mean-square turbulent velocity is quite
large, and the magnitqde of this effect depends on the shape of the
point correlation function and spectrum. The difference in the re-
sults obtained with elliptic and rectangular lift distfibution is rela-
tively small., Consequently, in the following calculations rectan-
gular loadings will be considered because they are much more
convenient to use.

The power spectrum of the lift is then the product of the

(2.3.22)
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power spectrum ?we(w) and the absolute square of the transfer
-function H(w) , as indicated in Equation (2.3.11). Inasmuch as
this lift lis not an end in itself but only one of the parameters that
enter into the calculations of the motion of the airplane its m‘ean—v
square intensity is éf little practical significance; its spectrﬁ.m'is
the quantity needed in further calculations. However, ‘if the mean-
square intensity is wanted for any reason it can be obtained by
integrating the spectrum. Thus, for instance, using the approxi-
mate expression for | ¢(\’<)‘L given by Equation (2.3.13) and the

spectrum (‘-”) of Equation (2. 3.15) the mean-square lift:is.
W q . q

€. qS &HSS' T I.s—l]
g ___. ~logs z
( (HS'Z)‘( gs) - I+ (2.3.23)
where
“" _l:‘—— = ._S__
SET T W

In view of the observation that much of the turbulent energy is con-
tained in a region for which the span has a very smali effect on
the properly normalized spectrum, Egquation (2. 3. 23) is valid ap-

_proximately for non-vanishing span, provided: wez is used instead

- of w? ,

4. The Mean-Square Lift of the Swept Wing

For the yawed or sideslipping unswept vﬁng Equations (2. 3.4)
and (2.3.11) for the lift correlation function and spectrum are still
valid if an appropriate lift influence function is used and if the cor-

relation function for the averaged turbulence is defined by
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2 cos?A (beosh

b2 f‘ q) IVW (ﬂt 1~7f0n.}\.) +|2 )0’7

Yoe (ut) =

where now r'{vl) pertains to a lift-distribution function X‘(y)which

is appropriate for yawed motion and is defined for
—hcos./\. y < l;_a,,_l\_

The mean-square averaged intensity of the vertical component of

turbulence is then
bcosA

wet = 2otk | ) K () dy

and by a change of variable to q' =" /COS.A. this mean-sguare
intensity may be seen to be unaffected by the yawing process (al-
though its spectral resolution changes in the process).

For the swept wing both Y,-Y, and Iy,_] —)_y.i occur in
the integral, so that the reduction of the double integral for "yfwe [U I)
to a single integral (see Equation (2. 3. 5) ') cannot be effected so

simply. The double integral for the swept wing is

%, (0= [ j £ £05) Vo (VU + (=19 tamd] " (-3 dy, by,

-b .b
22 : (2.4.1)

From this integral and using rectangular lift distributions
and the point correlation function of Case 1 the mean-square of the
averaged turbulence as well as the corresponding correlation func-
tion and power spectrum have been calculated by numerical inte-
gration for various sweep angles A, maintaining the ratio ﬂ/cos.A.
at 0.5. (The decision to hold /5/ cos A rather than /3 constant

was reached as a result of the foregoing analysis of the yawed
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unswept wing, which indicated that the effects of sweep should be
minimized in this manner.) The results for ;e_i are shown in
Figure 1, and the effect of sweep on ;;7' may be seen to be quite
small for this comparison. The calculated correlation functions
and spectra are not shown because they agreed with those for A = 0

within better than 1 percent for most values of VUt and k', respec-

tively.

5, The Mean-Square Rolling Moment

In the preceding section it has been shown that the averag-
ing effect of the span tends, essentially, only to reduce the mean-
square intensity of the turbulence; it does not introduce any new
considerations. If the analysis is extended to the rolling moment,
however, a new phenomenon appears, because a wing which is so
small rélative to the scale of turbulence that at any instant all of
its points experience the same turbulent velocity experiences no
rolling moment as the result of the direct action of turbulence.
(although it may experience a rolling moment indirectly as a result

of the rolling and yawing motion caused by the lateral component

of the turbulence). On the other hand, on a large wing the differ-
ent intensities of the turbulence at different points on the 'span give
rise directly to a net rolling moment, which then results in roll-
ing motion. In this section the mean-square value of this moment
is calculated.

At any instant t the rolling momeht L (Y} can be written in
the same form as the lift L(t) in Equation (2.2.1); fhe lift-influence

function h(td) is, however, according to the previously mentioned
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reciprocity theorem, the lift distribution for an indicial roll with
unit helix angle at the wing tip. If the assumption of invariance of
this distribution in time is made, as for the symmetric case, then

the lift-influence function can now be written as

h (t,y) =4 Wi TY) (2.5.1)

where hl (t) = Cl (t) q Sb /U , and where the steady-state lift dis-
P

tribution ’K‘(y) = -—C— now pertains to a linear antisymmetric
c
angle of attack, Hence
% 2
2
Jb )y dy = b (2.5.2)
2

The correlation function for the moment can then be written

as

Y () - fwr W () B ) Yo (VTetote)) d,dty

o -0 - (2.5.3)

Fu, 1) f fly. V1) o (Ve, 9,-9.) dy, ey,

bbb

2 2

b (2.5.4)
- %t () ¥, (Vz,v) dy

where, in turn

() = r —7‘('(3) {'(1op) dy | (2.5. 5)
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If w"”e (U'C) is evaluated from Equation (2. 5.4) and its Fourier
transform ?INE (w) obtained, the spectrum of the mean-square

" rolling moment is

P, w) = (E‘g_‘z_ii)?' \ ¢(h)[?’ P w ()

(2.5. 6)

and the mean-square value of the rolling moment can be obtained
from the integral of this spectrum.

This calculation has not been performed herein; on the basis
of the calculations described in the preceding sections the spectrum

?(We (w) is likely to be similar to sﬁw (w) if normalized with

the quantity W‘e z » which is calculated in the next paragraph; if
this assumption is valid, the mean-square rolling moment is-given
by Equation (2. 3.23), with CLM replaced by ClPL , and VZ re-
placed by \A—Z:z' .

i

The quantity We’ is defined as

—

v 2 '
We = VWe (O)
For a linear lift distribution (which corresponds to rectangu-

lar loading in the symmetrical case) and the point correlation func-

tion of Case 1,

(2.5.7)

the second of these expressions being obtained by developing the ex-
ponential term in power of 8 . These expressions indicate that as

the span tends to zero so does the mean-square rolling moment.
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6. Generalized Aerodynamic Influence Functions in Un-
steady Flow

The aerodynamic influence functions used in the preceding
sections define the contribution of a given station of a wing to the
total Hft and rolling moment. In the analysis of a flexible wing,
and even in the calculation of certain properties of a rigid wing,
genefalized aerodynamic influence functions which define the con-
tribution of one station on the wing to the lift at another and thus
represent Green's function for the unsteady aerodynamic problem,
are required. No work appears to have been done on such func-
tions. For steady flow, apart from some calculations curreﬁ%iy
in progress for supersonic speeds, which are based on a s‘ubdi-
vision of a given wing into a number of squares, the only avaiiable
results appear to be those given in References 8 and 9. The anal-
ysis in this section will therefore be based on Referencé 8 and
consists in a generalization of the method presented therein to
unsteady flow,

This method constitutes an attempt to predict the 1ift dis-
tribution on the basis of knowledge concerning a few definite angle -
of-attack distribution and may therefore be termed a function-
interpolational method. For the present purpose a lift distribu-
tion will be found which for any angle-of-attack distribution has
the correct lift and rolling moment and which for angles of attack
varying linearly over the span reduces to the correci distribﬁtions
as well,

Let 1o (y) and Ygq (y) be the dimensionless lift distribu-

tions g% for uniform angle of attack of the given wing in direct
M
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and reverse steady flow, respectively. A lift distribution which
for any angle-of-attack distribution Ot(y) meets the foregoing con-

ditions is then the following (8)

=<y, +K (%) -3) g5 ) ©(2.6.1)
where
L%
x =+ L Ta () «(y) dy (2.6.2)
"2
C b
K= ct" i » (2.6.3)
« AfF ety ytdy

(Values of K may be obtained from Reference 8,)

That the lift distribution given by Equation (2. 6.1) does in-
deed satisfy these conditions may be seen with the aid of the relé-
tions (which follow from elementary definitions and from the afore-

mentioned reciprocity theorem)
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By substituting the value for ® from Equation (2.6.2) in
Equation (2. 6. 1) the following expression is obtained for x(y) :

' b,
7(9)2H: [£2,00) ~Kta ) + K 8y} g ()] () dn
" (2. 6. 4)

The expression in the brackets under the integral of this equation

will be designated by §(¥,1) , so that

T = [ 1,00 - Kya( + K (y-n)] 1 (0)

This function is the desired generalized aerodynamic influence func-

tion. Thus,

a*(y)=—,';f

Nlo'

(y,p) & (q) dy  (2.6.5)

la"

The preceding analyms can be applied to the oscillatory case
at a given reduced frequency k as well as to the steady case. If now,
as before, the assumption of invariance of distributions (properly
normalized) with time or frequency is made, then X‘D':(y), a’a {y),
and K are independent of frequency, so that Equation (2. 6.5) can be

written as
(yik) = Cu (R) Co ¥ (y)
— b
2 CglR)ce (2 5 o () o - (2.6.6)
2t [F RO wondy

Z |
where f(y,q) , defined as before, is independent of k. By applying

a Fourier transformation to both sides of this equation the following
relation is then obtained for flight through continuously varying tur-
bulence (Cf. Equation (2.2.1), as modified by the assumption stated

in Equation (2. 2.2) ):
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Ly,ty = [ byt §2 L g () wlt-ton) dy (2.6.7)

pisT 6o

where (.(y,t) is the lift per unit span at station v and time t, and
where the function h(t) is now h(t)= CLdﬂ‘)O}' <.

The correlation function for this lift can thus be written as
ﬂ

(c) [ 1) hit,) dt dt, hz” T Fl )Y, (UEetot), g, - -n,) dn, dp,

00

f nit) hit) Yo (U(tft.‘*z)) dt, dt, (2. 6. 8)

-0

where the function

b b
| 172 ~
Yo, (V99 = 5o ] F FomI PO B (VT o) dndy,
-b V4
2 Z
represents an effective correlation function, which when transformed

to the equivalent power spectrum c,ow (w) can be used to obtain the
£ . .
power spectrum for I.(y, t) and hence its mean-square value. Thus,

¢ @ .k
ﬁy (w) = (—i%ti) | ¢ () P, (9 . (2.6.9)

~The remainder of this section will be concerned Witlil the calculation
of §0W£(w) .
In order to anticipate future needs, the function waé (Ut)
will be defined in a somewhat more general form than in the pre-

ceding paragraph, namely

Yo, (UT) = fj £ (%00 1 (2,15) %w(UL Te-t) dnidn,  (2.6.10)

1 2.

If the assumption is now made that '(R(y) and XD(y) are the same,

they can both be identified with a function ¥ (y) used in Equation (2. 2. 3),
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so that

Tl = [ g (y) + e E(yn)] rin)

(2.6.11)
and Equation (2. 6.10) becomes

Yo (V) = [ (K%, (ue) + K- ) { Vg (VT 30) + P (VT 12 )}

| + K2y, (Vg y-y ‘Xy(y.) 2(1,) (2.6.12)

where }/fWe (Ut) is the correlation function calculated previously for

the averaged vertical component of turbulence, and where

b
N l Y
2
Similarly, then,
P, (@) = [(-)% By () + K=K | Pue (019 + € (2]}
' 2.6.14
12 g, (@, vu-9)[f(y) £ (32) (2.6 1%
where _gowe(w,y) is the Fourier transform of V;;,e (U, y) .. For Case
1 and rectangular loading A
~ ~ ' \2 . ' 2 '-
Pue @9 = 5 W [T A", () - (0]

W] 4 )

where
/Bl:: (% —y*) W
'z (A 9" i+

This function is shown in Figure 4 for several values of /8

and X

b/2°
For Case 2 and rectangular loading



?we(w,y);—.%l_r-b “—I—L [i(ﬁ y* er*F( —-y*)+( £ ey* e.-f( }

T ©
2 ot 4
+ﬂ,h {erf(z/ﬁf))rerf ] (2.6.15)
Also, .
Lt iT U5z d(vd
R (w0, y)~;—Le Yoo (U Ty )d”‘ (2.6.16)

and is, for Case 1 and rectangular loading:

~ ' .2 |
Sp‘“(w’y):FrL“ [ “zﬂ'zK SATWE ""‘1_;“1 Ko(y*a l+k")],

I+ k'™
(2.6.17)
and for Case 2 and rectangular loading:
|Z
T o E oyt 22
?w(w,‘j)’—“T—r—Jw‘e “ {\-—L{y* +%:h‘] | (2.6.18)

.It may be noted that the spectrum @, (wyY) Agiven by
Equations (2. 6. 16), (2.6.17) and (2. 6.18) reduces to tﬁe ordinary
point power spectrum ¢, (w) when y appr_oache_s 0. (See Equa-

tions (2.1.5), (2.3.15) and (2.3.16)). Also, in ordér to obtain the
more restricted form of $0w£ (w) used in Equation (2. 6. 9) from
the more general one given in Equation (2. 6. 14) it is necessary

only to set y =y, =y in the latter.

7. Mean-Square Bending and Pitching Moments
When the variation of the gust intensity along the span is taken
into account the mean-square lift L%  is not an adequate index of

the stresses in the wing, nor is the mean-square lift distribution
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?{(_;) . Instead, the mean-square bending and twisting moments,
as well as the mean-square vertical shear, must be calculated di-
rectly.

Each of these quantities can be expressed in terms of a
certain influence function, in a manner analogous to that-ernpioyed
for the lift and rolling moment. However, although thé reciprocity
theorem can still be used to relate these influence functions to
certain lift distributions, the required lift distributions cé,nnot be
obtained so readily. Therefore, in this Section the alternative
approach is adopted of constructing these influence funct_ibnswﬁrom
the generalized lift influence functions (Green's functions) consid-
ered in the previous Section.

The bending moment at any station Y, OS y& % , andat

any time t can be obtained from the lift distribution considered in

the preceding Section, as

nio

(y'-v) l(y'){:)dy'

wio”

—_— K

00 B, .
(s dy' [ hit) at.ﬁ, Ty pwlt-ty) dy
‘o b ' _

2

g () wlt-t, ) Sy

8 ~

i

f hit) dt, f

X1l T

(2.7.1)

where the new influence function for the bending moment is

b
gln) = fy?‘ (y'-y) £ (y'sy) dy'
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so that, upon introducing the previously used function for F(y,n)

00 b
Mo t)= | hit)dt, [* {014 Tly)+ ¢ SCysnlpop wt-ti,p)dy

3 (2.7. 2)

where b
.
Tlyd= 3 17 G-net) dy
n-Yy >0
Sly,p) = { ’
0 , n<0

so that, specifically for the root bendmg moment

TO) = 5%y y(y)

>0
S(on) = io , Zso

Hence, the correlation functlon for the root bending moment is

¥, = b‘*f 5" h(t) hits) dt, dtzf f“ [(-9)* T*(y) + () T(0){S (,9.)
‘i.

+5(°»W2)}*K S(0,49.) (o, 'h)](('?' L00) Yo (OCaetta), e ") dq'd"'zl 3)

The power spectrum of the root bending moment can thus be obtained,
following the approach used in the preceding sections, by evaluating
the inner pair of integrals, taking the Fourier transform of the re-

sult with respect to T , and multiplying the power spectrum obtained

=) | ¢(r)\%

By constructing suitable influence functions the power spec-

in this manner by (

trum of the torque and the vertical shear at any station can be ob-

tained in a similar manner.
For a swept wing the variation of the gust intensity along the

span results in a pitching moment which must be taken into account
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in calculations of the dynamic response of the airplane to continuous
turbulence. This pitching moment can be obtained in substantially
the same manner as the bending moment. Thus, if 37 is the station

of the mean aerodynamlc chord

M(t) = tan A ( § (y-m)uy,t) dy

- m)\y h(t.)dt, g ¢ () wlt-tig)dy

~-00

‘alr pl

(2.7.4)

where
b
2

) =H y -1 ¥ (y,n) dy

Iﬂ"

so that, with the prekusly used approximation to the Green's func-

tion

g = [-W{T -2 T + K (7- 1] gy

The correlation function, spectrum and mean-square value of the
pitching moment can then be obtained in the manner used in the pre-

ceding sections.

8. Wing-Tail Correlation

The tail strikes a given gust some time after the wing does;
as a result, a pitching moment arises which does not exist in steady
or quasi-steady motion. This pitching moment can, for the purpose
of the present paper, be analyzed either in terms of the correlation
between the gusts at the wing and those at the tail or, by including
a time-lag term in the indicial-response function of the tail, in

terms of the correlation between the wing and tail response functions.
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The somewhat artificial case of a small wing and tail sepa-
rated by a relatively large distance will be analyzed first., Only
the distribution of turbulence along a line (the flight path) rather
than in a portion of a plane will be needed. The pitching moment
due to the vertical component of atmospheric turbulence can then

be writteg as o
M{t) = | hlt) w(Ut-th)dt, + J by tb) wik+ ViE-t) dt,
~ - (2.8.1)

where X; is the tail length, and where h,,(t) and ht(t) are
the pitching-moment responses to indicial gusts hitting the wing
and tail, respectively,A at t = 0; both may include unsteady-lift ef-
fects, and, if downwash-effects are to be considered, hw(t)should
include the contribution to the pitching moment of the tail lift
caused by the downwash at the tail associated with the lift on the
wing which results from the indicial gust. |
_The spectrum of this moment can then be written é.s

B @)= [1H,, 1) + Wytwl]? -2 a{(c— &' Tt ) H ) Ht(“’)}] Pw (@)
| ' (2.8.2)

where the symbols R, and * designate, respectively, the real part
and complex conjugate of a complex number. Obviously, when X¢
approaches 0 the second term in the bracket in this equation van-
ishes, so that the first term represents the peifect-correlation
effect, and the second represents the correction for imperfect cor-
relation,

In order to furnish an estimate of the magnitude of the ef-

fects under consideration some calculations have’been made on the
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basis of the assumption that

Hw (w) T Ht(w)

which implies that the attenuation with frequency of the contribu-
tions of the wing and tail lifts, respectively, to the pitching ma-
ment is the same. The ratioM is -1 for neutral stability, and
M > -1 for stable flight; positive values of M represent aerodynamic -
center locations (tail off) behind the center of gravity and z;.re not
likely to be incurred with normal configurations and flight condi-
tions.

For this case

P @ = LHEGN ] (10p)2 - 2 (1- cos W) @, g

and -

——

__M = (1p)” t2pu (2
(Mz)tail alone

E/ : (2.8.3)

The function f‘ has been calculated for several Valués of its argu-
ments using Equations (2.3.13) and (2.3.15) and is shown in Figure
. 5, as is the ratio of the mean-square moments on the left side of
Equation {2. 8. 3'). The effect of imperfect correlation may be seen
to be very large as the condition of neutral stability is approached;
the entire pitching moment is then the result of instantaneous dif-
ferences in gust intensities at the wing and tail.

In general, however, the tail length and the span are of th.e
same order of magnitude, so that an analysis of the effect of im-

perfect correlation between the wing and tail must take into account
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the averaging effect of the wing span. The pitching moment at any

instant is then

oo h
M@®) = -L hy (t) c\t’.‘I: £y) w (UH‘-%.), y,) dy, dt,

z
g | by (b)) w(ule-t) +xe, 0) dt, :
T : (2.8.4)
Hence, the power spectrum of this moment is
Pl = [hotal®e, @ v [Hyw|*p, )
+ 2 8[e T Hew) Hy, @) B (w0
' (2.8.5)

where ?we(w) is the averaged spectrum of Figure 3 or Equation
(2.3.22), and ‘Pwe (w,O) is the spectrum of Figure 4 or Equation
(2.6.15) for y = 0. (It should be noted that ht(t) is the respons.e

to an indicial response which strikes the tail at t = 0 ; if it were

the indicial response to a gust which strikes the wing at t = 0 the

factor € ot Equation (2. 8. 5) would not be required. )
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III. DYNAMICS OF THE RIGID AIRPLANE

In this Part the motions of an airplane subjected to atmos-
pheric disturbances will be considered. The assumption will be
made that these motions are small enough to permit the use of lin-
ear approximations to the resulting aerodynamic forces and t;)
permit the linear superposition of these forces. The longitudinal
degrees of freedom (pitch, vertical and horizontal motion) and
the lateral degrees of freedom (yaw, sideslip and roll) can there-
fore be considered separately.

The airplane will be considered to be in steady level flight
prior to disturbance. The motions studied will be the disturbances
from their mean values; for instaﬁce, the flight-path angle 6 con-
sidered here will be the difference between the disturbed and the
initial value of the flight-path angle. Hence, the motions and forces
ca.lculated by the method indicated here must be added to their mean

values to obtain the total motions and forces.

1. The Equations of Longitudinal Motion

The equations of motion of an airplane can be.expressed in
coordinates referred to body-centered axes or in coordinates re-
ferred to space-centered axes. (10) Body-centered axes have the
advantage that the aerodynamic forces related to them can be mea-
sured more easily. For that reason they are almost universally
used in analyses of airplane stability and are usually referred to
as stability axes. In view of the very close relation of such an

analysis to the problem considered here these axes will be used

here, but for the flexible airplane space-centered axes will he us ed.
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because .they are slightly more convenient for that purpose.

It has been pointed out previously that the mean-square value
of the oufput of a linear system subjected to a random input can be
o.btain'ed from the integral of the power spectrum of the input multi-
plied by the absolute square of the transfer function of the syétem,
the transfer function being the response of tile system to sinusoidal

oscillations of unit amplitude. Thus, for instance,
—-i P 2
- w .
z- = fo Y ()| @, () dw (3.1.1)

where H:(w) is the transfer function from the vertical}-gust,«.velo-
city (input) to the normal acceleration (output) of the airplane. For
the purpose of a statistical analysis the airplane is thus character-
ized by its transfer functions, and the desired solution of the équa-
tions of motion thus consists in the required transfer functions.
Hence, in this Section attention will be confined to oa.scillator.y mo-
tions. |

For this case the linearized equations of longifudinal motion

can be written as follows (see Equations II1-193 of Reference 10, for

instance:
-z 2y iU (% Z, Z{"
K w = Xu g up b = (R X X lw
~iwMy -Mw My —wP-iwMy]| 6 Mw Mu

(3.1.2)
In these equations the stability derivatives are defined in
terms of conventional aerodynamic coefficients as follows, with
the numerical values being those of the example used’ in Reference

10:



S
Zo == X2 (C+Cp) = -1.430
- 2qS
Zu_ - = ‘;"ﬂ’o— (CLu‘ch) = -0.0955
- S -
R ':TJ (CL-Cp,) = 0.0016

Y TyU M = 00235
Mg, = Sl C
w Zly U v my = - 0.00143
- 2q 5S¢
M, = -
T (Cny +Cm)= 0
Mq = g4 S¢
% 4= = -[.920

(Other parameters of the example that will be needed are W = 3(¢, 500
pounds, U = 660 fps, c = 10 feet, and altitude 20, 000 feet.)

In analyses of the stability of a rigid airplane the quasi-steady
approximation to unsteady-lift effects is usually made:(which, in ef-
fect, retains terms up to 1:2 of an expansion of the unsteady forces
according to powers of t and is thus equivalent -.to conéidering the
forces corresponding to a steady attitude, plus those corr'esponding
to constant disturbance velocities, plus those corresponding to con-
stant accelerations). This approximation is justified because the
motions of concern are sufficiently slow. For the same reason this
approximation can also be made in analyzing the response of an air-
plane to atmospheric turbulence.

However, in this problem another type of unst.eady—li.ft effect

occurs, namely that related to the forces directly attributable to
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the turbulence. This effect has been discussed in the preceding Sec-
tion and is here taken into account by multiplying the quasi-steady
values of the forces due to gusts on the right side of Equation (3.1.3)
by the attenuation function ¢{k). This implies the assumption that
the airplane is small relative to the scale of turbulence, inas‘lmuch
as no averaging effects have been taken into account; these effects
will be discussed presently.‘ Also, this attenuation function is strictly
applica;ble only to the normal forces. The unsteady effects on the
drag are not known because of the relatively complicated nature of
the mechanism which gives rise to drag. If, however, the assump-
tion is made that upon entry into a sharp-edged gust the drag rises
linearly and attains its steady-state value in the time requiréd to
travel N chord lengths, the drag equivalent of ‘ ¢(h)i 2 is the ex-

pression
| - cos ZNR
2 N2R?
which, for N equal to about 5 or 6, agrees fairly well with l ¢{h)lz

in the region of interest (k<<1). The unsteady moment is also dif-
ficult to predict because of the paucity of knowledge concerning un-
\steady downwash effects for wings of finite span. However, inasmuch
as the wing lift contributes part of the moment and, through the mecha-
nism of downwash, determines the moment contributed by the tail to
a large extent, the use of the lift attenuation function for the moment
appears reasonable, and the use of the same function for the lift,
drag and moment facilitates the analysis.

In Equation (3. 1. 2) the unknown quantities wy and 4, are

the normal and axial components of the disturbance velocities of
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the airplane relative to the free stream. They are related to the
coordinates z and x referred to space-fixed axes (or, rather, axes
translatiﬁg at a velocity equal to the mean velocity of the airplane)
as follows:

i = -WP + U0

k= -up (3.1.3)
Hence, by means of Equation (3.1.3), Equation {3.1. 2) can be ex-
pressed in terms of z and x. These quantities and their time de-
rivatives have a more direct bearing on the loads experienced by
the airplane and the degree of passenger discomfort, ahd, conse-
quently, will be the ones considered in the following.

In studies of the longitudinal stability of airplanes Equation
(3.1.2) is rarely solved in the form given here. It is usually re-
duced to ’two equations with two unknowns, either uP and 0 (the
' phugoid case) or W, and @ (the short-period case), the short-period
case being usually the one of primary interest. The part of the
turbulent energy contained in the frequency range nea..r the- phugoid
frequency is so small that the phugoid case has no significance for
the analysis of loads and motions resulting from atm:ospheric turbu-
lence. Hence, the short-period case, which ignores the phugoid
oscillations, furnishes an excellent approximation to the longitu-
dinal motions of an airplane in turbulent air. Another two-degree-
of-freedom case, namely the one involving W, énd uWp , however,
is useful in certain studies of the effects related to the interaction
of horizontal and vertical components of turbulence.

Both of these two-degree cases can be reduced to the single-

degree-of-freedom case involving only z (or Wp }. For airplanes



-41-
which have a large moment of inertia in pitch this simple case fur-
nishes a good approximation. It has been studied in Reference 2,
using su‘bstantially the same approximations to the unsteady-llift |
effects as the ones made here, except tor the fact that in Reference
2 appérent—mass effects were rincluded. (These effects are ﬂot,in-
cluded in the stability derivatives used in Equation (3. 1.2) because
they are usually small (less than 1%/0 of the mass of the airplane)
and are different for each degree of freedom. Howe\fer, if desired,
the apparent mass pertaining to a given degree of ,freedom can
easily be added to the airplane mass in calculating the stability
derivatives.) In the following, attention will be confined to the
short-period case, although the analysis is equally applicablé to
the other case and easily extended to the case of three degr’éés of

'free&om.

 2. Solution of the Equations of Longitudinal Motion
If the degree of freedom pertaining to x (or up ) is ignored,

the solution of Equation (3.1.2) can be written as
{Z} - [HI) W@ (w T
8 HY(w)  Hy ()|« oo e

where the transfer function H:, (w) is defined by
w
Hz (w) = $(k)

W
-Az W+ By iw+ C7

~-Agw? 4+ Byiw + Co

(3.2.2)

where, in turn, the coefficients are defined by
A=
Bo"_‘. - (ZW “'Mq« "'UMW)
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W [
z - -Zw

B = Zuw (UMy +My)
Cy = ‘U(M.wzw"MwZ'w)

w .
The transfer function He ((-U) can be defined similarly in terms

of the coefficients,

Ae

i

Mw +2', My

)
]
'

~(MwZw -MwZ'W)

C. = O

In these equations a distinétion has been made between the values of
Zw,L w, My and M which occur on the right side of Equationvh(3."1. 2)
and are here designated by a prime mark, and those on the left side
of thé,t equation; the reason for this distinction will be discﬁssed in
a later Section.r Furthermore, the coefficients A: 3 B: R C: s A; ,
B; r,dvui. C; are the same as the coefficients A\:, B‘: s '-,, coy €X-
cept that Zw, L'w , M, and M, are replaced by Zu.Z'W ', My,
and M'M . A
With Athése transfer functions the mean-square values of Z

‘and 6 can be calculated from the spectra of w and « usiﬁg Equa-
tion (3.1.1), provided that the simultaneous action of w and w is
taken into account. In order to anélyze this effect the ‘ve’rtical ac~
celeration Z will be considered, but the analysis wjilll be applicable
to 9 or any other characteristic of the airplane Wh1Ch responds to
W and w . Furthermore, the transfer functions need not be those

considered in Equation (3.2.1), but can be those calculated for the

 three-degree-of-freedom system or for a flexible airplane.
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For the present purpose the indicial-response functions,
which are the Fourier transforms of the transfer functions, such

as
0o

w | wt | w
hy (8) = 7 [ &K () dw
- (3.2.3)

are more convenient. In terms of these indicial-response functions

2t | W) wiet) dt, + ["hs ) wle-t) ot (3. 2.4)

Then, if w(t) and u(t) are stationary in a statistical sense, the cor-
relation function for z(t] can be written as

Py (0= [ [ W) R Kbt BRI (i)
+ hy ()b () g, (T rEot)+hs () by (t)y (o t,—iz)]glt,d\tz (3. 2. 5)

where qu (I) is a cross-correlation of w and u defined by
%‘wulz) = w(t) ult+z)

Now, if the turbulence is isotropic, two mutually pei‘pendic_u—
lar velocity components are statistically independent, and their cor-
relation is zero. Therefore the two terms in Equation (3. 2.5) in-

‘Volving )&Wu“’—) vanish, and the power spectrum of Z is
1 2 .
) = | W )|* @, + [ @ ¢, () (3.2. 6)

so that, generally speaking, the power spectrum of a response which
depends on both the horizontal and the vertical component of turbu-
lence is simply the sum of the power spectra of the two contributions,
provided the turbulence is isotropic. (This statement is true, even

if the distribution of the gusts over the span is taken into account.)
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For the short- period two-degree-of-freedom case, then

= [ |pte]? AL w2 Rz CY - 577 + i
w4 (26 -BP)w® 4+ (4

% ZAw—w’(zAc—B)ca
+ (r) 2 z -z ez z__ @ (wdw
fo l¢ ' w4 - (2. CO’BOZ)UJZ —+ (‘02 ru .

P (W) dw

(3.2.7)
where the second integral is usually negligible compared to the first
and will be disregarded in the following. Using Equations (2,3.13)
and (2.3, 15) the first integral has been evaluated {by using the tech-
nique of partial fractions for the integrand) for the example of Ref-
erence 10, and the results are shown in Figure 6, as are the results
calculated similarly for the three-degree-of-freedom ca"se,v the
other tﬁo-degree—of-freedom case, (horizontal and vertical motion,
and referred to in the Figure as the zero-pitch case), and the single-
degree-pf—freedom case (vertical motion).

The preceding treatment of the short-period case has the
advantage of using readily available information conc erniﬁg th.e
characteristics of any given airplane. For the purpoée of trend
studies a dimensionless form of the transfer functions ié .prefer-

. able. . Equation (3.2.7) can be written in dimensionless form as

_(Uz‘ )2. wi 4 ‘¢‘ )IZ hq‘*4(u“|1")1hz fﬂ(h)dh'

=gzl Tt Az (RF-vRE4 () Twr (3.2. 8)
and similarly 4 )
" K Usay (R gp!
1\2 2 R I T
(g /2. U?- [(u =) +ho] }'IM‘“ R 2(h-vh R k,‘ﬂ’)l T wi (3.2.9)

where K is the mass parameter

§m

K= 2 (3.2.10)
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v is the dimensionless damping coefficient

v = S loge 2

——————

20 TI/Z.

TI/?_ is the time to damp to one-half amplitude, which is givehby
‘-% = -—;: (Zy+Mq +UMg)
and ho is the dimensionless frequency of the short-period oscilla-
tions,
o 5
with

et

W, = VMQ:ZW —UMw"'i (Zw"'qu"’UMv.V)z

It may be noted that for this two-degree-of-freedom case
the dimensionless mean-square responses are functions of only
two additional parameters, which are dimensionless forms of the
outstanding characteristics of the short-period case (the short-
period frequency and the time to damp to one-half amplitude), be-
(2)

yond those encountered in the single-degree-of-freedom case

namely the mass parameter K and the scale parameter

~

s= L

/2
which relates the dimensionless frequencies k and k' by

k! = sk

3. Special Problems Related to the Longitudinal Motion
of Large Airplanes

In the preceding Sections the airplane has tacitly been as~-
sumed to be small in the sense of this paper, inasmuch as the

lateral variation of the intensity of turbulence has not been taken
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‘into account. In this Section this restriction is removed by intro-

- ducing the aerodynamic forces calculated in the first Part of this
pvaper into the dynamic analysis of the preceding Sections. The
arguments advanced in the precedmg Section for ignoring horlzon-
tal gusts and horizontal motions are equally valid for the large air-
plane; therefore these gusts and motions will not be considered

-here.

For the single-degree-of-freedom case involving only ver-

tical motion the required modification is very simple. For this

case the transfer function is

V z!
Hy () = ~ $(r) ‘w—wa s

where Z\, , attenuated by &(k), is the stability derivative for ver-
tical gusts and, hence, represents the lift per unit gust intensity.
Therefore, using the result for the lift calculated in 'Sectii_an 3 of

Part II of this paper, the mean-square normal acceleration becomes

=L‘¢(r«)l?-' ‘Z'%‘%f?we‘w)d“’ O @aa)

‘where _tfwe(w) is defined by Equation (2.3.10). This expression
" differs from the result obtained in Reference 2 only bjr the fact that
wa(W) is here replaced by Poe (w) . If the difference in the shape

of these spectra is ignored, Equation (3 3. 2) can be written as

ey,
——

» z Z. |
52 = W;ve_i Y ¢(R“2 "‘Z"—Z'—z: ?w(‘”) dw

where the integral represents the mean-square normal acceleration

of a small airplane and can be obtained directly from Reference 2;

[P

2
the ratio _V;’:e_.. can, for the two types of point correlation functions

weé
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considered here, be obtained from Figure 1. |
For the two-degree-of-freedom (short-period) case the
analysié is somewhat more complicated. As indicated in Equa- '

tion (3.2.1), the transfer function for 2 is now

w23 S wwl w2 )

- “,‘)2‘*80"‘“ + G

S Em—T

Ly -w?+ Biw+Co

[TyM, g0

(3.3.3)

(The following analysis can be applied equally well to e b*fi‘ﬁs’ing
H\g (w) » as defined for Equation (3.2.1), instead of H'zv(w) . ‘)

If the expressions inside the brackets of Equation (3;3.3)
are designated, respectively, by H, (wW) and Hz(w), and their Fourier
transforms by hl (t) and hz[‘t) » then, as a result of the definitions
of L, and M, |

3(8) = | bt Lttt + [ by () M(t-t) ot, (3.3.4)
00 ) ‘

where L(t)and M(t)are the instantaneous lift and pitching moment
~'due to the vertical component of atmospheric 'turbulence, which

have been obtained in Part II of this paper. The calcurlation' of s (w)
or of :Z thus requires not only the spectra of L and'M, the cal-
culation of which has been discussed, but also of the cross-spectrum

of L and M, which has to be calculated directly from Equations

(2. 2. 1) and (2. 8.4). The result is
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L (w) = z 2
PZ w) l H| (w) I l H (w)’ ?We (w)

X ,
t |H, (w)] [\Hw“”’lz‘fwe (w) + |H, (w)lzsﬂw (w)

2R T W] 0]
P2 R H ) H¥ @ H @) Ha* ()] gy, @
+ R i H, (w) Hz*(w) H (w) Hy * (w) e %)‘xt} fzﬁfe(w’o’]

(3.3.5)

where the first two terms represent the contributions of the spec-
tra of L and M, respectively (see Equations (2.3.11) and (&i;.B..S) ),
and the third represents the contribution of the‘ cross-~spectrum of
L and M. For the present purpose the functions H(w), Hw'(w) " and

H‘t{w) can be expressed as

H(w)= m (-Z) ¢(h)
M ()= m ax (Zw) $(K

Hy (w) = {Iy_y M, - max (-Z_w)] g(R)

where Ax isi the distance from the aerodynamic center (tail off') to

" the airplane center of gravity. This definitioﬁ of the contributions
df the wing and tail to the pitching moment is based on the .consid-—
eration that the direct contribution of the wing can be ‘estimated'
quite accurately, and that the total pitching momen;c is likely to be
known from experiments, so that the contribution of the tail (which
includes the effect of the wing lift on the downwash at the tail) can
be determined as the difference of the two. The functions ’PWE(w) and

?we(w, 0) have been defined in Part II of this paper. In view of the
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fact that the function ¢(k) contained in some of the terms of Equa-
tion (3. 3. 5) always appears in terms multiplied by others which
contaiﬁ ¢* (k) only the absolute square of this funcﬁon is required,

as before.

4, Special Problems Related to the Lateral Motion of
Large Airplanes '

The equations of motion in the lateral degrees of freedom
(roll, vaw, sideslip) have the same form and can be solved in the

same way as those for the longitudinal motion. (See pages 53 to

67 of Reference 10.) Again it is convenient to cast the proﬁlem in
the form used in a stability analysis in order to take advan't.ag'ei of
the results of such an analysis. For a small airplane it is neces-
sarfr only to replace the terms due to rudder deflectiovri,by.-cor-

J‘:evsrpondring terms involving side gusts, namely
* RY; v : ; "

(in the notation of Reference 10), and to disregard tl;e terms cor~
responding ‘to> aileron deflection; in the lateral degrees of freedom
the small airplane thus reacts laterally only to side gusts; On the
other hand, the large airplane also reacts in the lateral dégrees of
freedom to vertical gusts through the rolling moment calculated in
Section 5 of Part II of the present paper. If this ro’lling moment
is to be included, it replaces the term L{A A . -

Instead of treating all three degrees of freedom involved in this
motion, in stability analyses two one-»degree—of—-ffeedom cases -
are often considered, namely the one of sideslip alone, with angle

of yaw equal and opposite to angle of sideslip (the dutch-roll cavse'),
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 and the one of rolling alone. The dutch-roll case may be used for
gust-loads purposes in connection with yawing and sideslipping mo-
tion due tb lateral gusts, provided the phase of the mbtion is not
important. (As may be noted from the preceding sections, th’ev phase
of a transfer function ‘is important only in terms involving cross-
spectra.) However, it does not appear to be as satisfactofy an ap-
proximation as those for longitudinal motion; it c‘an probably be
improved by including rolling motion while still maintaining the
fixed relation between sideslip and yaw.

For rolling motions due to rolling moments, the.siﬁglggdﬁ-
gree case of rolling alone appears to furnish a very goéd approxi—
mation; although the rolling motion causes yawing and sideslipping
motions these motions do not appear to reflect on the rolling motion.
Thus the rolling motion which results from the rolling momént to
which 1arée airplanes are subjected in turbulent air cé.n be calculated
without regard to the other lateral degrees of freedom. 'Si:rtlce, 'furth..
ermore, within the assumption of small motions the stfressgs associ-
ated with these other lateral degrees of freedom do not generally
contribute appreciably to those associated with fh,e lbﬁgitudinal de-
grees of freedom in the parts of the structure for which the latter
are critical, such as the wing (although they may be criticai for of.her
parts of the structure, such as the vertical tail), these degrees will
be ignored in the treatment of the large flexible é,irplane in Part V.
However, if chordwise bending effects are important, as they may
be in some cases at speeds close to the flutter speed, these other

lateral degrees of freedom may have to be included in the analysis.
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For the large airplane, which responds in the lateral degrees
of freedom both to vertical gusts and to side gusts, the superposition
of the reéulting responses, such as stresses, may be effected in the
way indicated for the interaction of horizontal and vertical gusts. If
the turbulence is isotropic, the vertical and lateral gusts are statis-
tically independent, so that the spectrum of a given response is equal
to the sum of the spectrum of that part of the given response which
is due to vertical gusts and the spectrum of that part of the response

which is due to lateral gusts.

5. Combination of the Results Obtained from Analyses of
the Longitudinal and Lateral Degrees of Freedom

The instantaneous wing stresses depend both on the motions
in the longitudinal degrees of freedom (primarily vertical motion
-and pitch) and on those in the lateral degrees of freedom‘(prin‘larﬂy
rolling). The purpose of this section is to indicate how the stresses
associated with vertical motion and pitch can be combined with
those associated with rolling due to vertical gusts, pafticularly in
the case of a 1arge rigid airplane. (A small airplane, flexible or
rigid, does not roll as a result of the action of ';rertical gusts, and
for the large flexible airplane it is more convenient to consider roll-
ing motion simultaneously with the others, so that the superposition
is effected automatically in the process of obtaining fhe required
transfer functions.) For all airplanes the effect of side gusts can
then be taken into account, if isotropy is assumed, by adding the

stress spectra directly.
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The stress at some point of the wing structure cén, for some

instant of time, be written as
| - o\ .. d v d -
o()= (—s;_-) Z(t) + (..a%)e(t) + (-59;) p(t) - (3.5.1)

where the partial derivatives represent the stresses per unit z;cc»ele-
ration. These stress derivatives include the‘effect of the instan’caneous
air-loads causing the accelerations and of the inia,rt’ia‘-loadsv which re-
sult from them. The stresses due to e will hot be considered any
further because the type of problem involved in combining them with
the stresses due to 2z is one of using the proper cross-cbriel&tﬁqns,
and has been considered previously, énd the type of pfoble,m of com-
bining them with the stresses due to p is the same as that of com-
bining stresses due to z and due to p , which is considered in the
following.

Novw, as in the preceding Section, z(t') and p('t) can. bev ex‘-‘
pressed 'i'nrterms of the instantaneous lift and rolling moxﬁe}xt due di;
rectly to atmospheric turbulence by means of indicialy-.‘requnse func-
tions. Thus, =

®
)= [ h(t) L (t-t)dt,
o (3. 5.2)

plt) = [Thy ()L (-t dt,
o
(In the equation for Z(t) the contribution of the pitching moment has
been ignored, not because it is insignificant but Because it can easily
be included using the principles outlined in the preceding Sections
and because it will not affect the conclusioh arrived at in this Section.)
The lift and rolling moment can, in turn, be e:%pressed in |

terms of lift influence functions [ (y) and “(y) which are éymmetric
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and antlsymmetrlc, respectwely, as in Part 1I, vielding
L) = f h(t)dt, L j 2y) wlt-tisy) dy
2 - (3.5.3)
L )= f b t)dt, £ j {yw (E-ti,y) dy
Subst1tut10n of Equatl%ns (3.5.3) into (3. 5.2) and thence into
(3.5.1) permits the calculation of a correlation function for ¢(%).
This correlation function involves the auto -icorrelations of L(t)
and L‘(t), and also the cross-correlation of L(ﬂ aﬂd Ll(t) This

cross-correlation can be written as

1 ‘ [ .
[ [ heaneadtdt [ [ rongty) o cotity, vov) dydy,
- 00 - 00 -b . b ' '
21
But by vifi:ue» of the fact that )Vw is symmetric with respect to
| Y2 -y'! and by virtue of the symmetry properties of a‘(y) and X'(y)
‘the inner double integral vanishes. Hence the cross-correlation of

the lift and rolling moment is zero, and

| lpv(w) = (%%)zlH,(w)‘le(w)Izgow@(w)

A CA MG

(3.5.4)
 where ‘fwe (0) is the power spectrum obtained as part of the calcu-
lation of the lift inkpart 11, and golwe(w) is a spectrum obtained in
a similar manner for the rolling moment, using z‘(—y)' instead of
X(y) . Therefore, the power spectrum of the stress due to vertical
gusts is simply the sum of the power spectra of that p’art of the stress
which results from the lift or normal acceleration due to those gusts
and of that part of the stress which results from the rolling moment

or rolling acceleration due to those gusts.
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Iv. DYNAMICS OF THE SMALL FLEXIBLE AIRPLANE

The purpose of this Part is to outline a method of obtaining
fransfer' functions relating the stresses at various points of a small
flexible airplane to the vertical gusts which cause them., Thev method
consists of an extension of the numerical-integration method of aero-
elastic analysis described in Reference 11 to sinusoidal motions of
the airplane. This extension takes into account the facts fha.t the
aerodynamic forces now have out-of-phase as well as in-phase parts,
and that the structural deformations can no longer be characterized
by angle-of-attack changes but that vertical deflections n.l:usgzpow be
calculated separately. Also, the '"rigid-body" degreés of freedom
of vertical and pitching motion of the airi)lane as a whole an& struc-
tural deformations of the tail aré now taken into account.

The fesult is a set of linear algebraic equations for the air-
© plane moﬁons and deformations in terms of the applied aevrodynamic
forces due directly to gusts. The desired transfer functions can then
be obtained from solutions of these equations at various frequencies,
and the mean-square stresses are given by the integral of the pro-
duct of the absolute square of these transfer functions and of the point
- power spectrum of the vertical component of turbulehce. '

Although only longitudinal motions are considered here; the
lateral motions caused by side gusts acting on the vertical tail cé,n

be analyzed in the same manner.

1. The Loads Applied to the Wing
The loads applied to the wing stem from three sources, namely

the aerodynamic loads due directly to the action of the gusts, the
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aerodynamic loads due to the motions of the airplane, and the inertia
loads.
| The lift and pitching moment (about the elastic axis) per unit
span on a two-dimensional airfoil undergoing sinusoidal anglve-of-

attack changes and vertlcal motions in incompressible flow are(lz)

= 2 e[ CR)f (1 zeyi) LEAR] iR _ o kt)x +.z.‘zsz]

(4.1.1)
mq = 2Mgc[ClR]e, {(i+2e,ik)o -ik o}

{e"':h (-—-—+e3)h"}«. eghzz., ] |

The terms multiplied by C(k) are referred to as the c:rf:-ulat‘k}c‘;‘ry
terms because they are calculated from the bound and shéd. vorticity,
and the others as the potential terms. The potential terms are in the
nature of additional-apparent-mass effects, and all those v:‘zh.ich in-

volve kz.are usually treated together with the inertia férces rather
than thé aerodynamic forces. For compressible ﬂo\:ﬁ, deever-, the
forces are calculated in a different manner, and the division of the
forces into circulatory and potential parts has then liftle meaning.
Therefore, 1n order to facilitate the extension of this analysis to

‘compressible flow, this distinction will not be made in the following.

The aerodynamic forces will therefore be written as

lo= Z_n’qc[E,(R)O( * E;.("‘);ci/‘z]

= 27qc®[G R + CuR) T, |

so that for incompressible flow

CoR = (1+2eik) C(R)+ B e k2

(4.1.2)

1

G = -kCR+ b
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~~

C3(R) = (11 2eik)e, C(R) - ik + 25 +ey?
‘(;(h) = -ihe C(R) - S2R?

In order to calculate the lift at a given point of a wing of firﬁte
span an appropriate Green's function is required. An appfoxi;ndtion
to this function is given in Section 6 of Part II of this paper based on
a reciprocity theorem of linearized lifting surface theorly; as used
for the computations of that section this function implies the assump-
tions that the spanwise dlstrlbutlon of the lift for osc1llat10ns of the
wing as a whole is substantially invariant with frequency and that this
distribution is the same in direct as in reverse flow, Neither oi
these assumptions is essential to the analysis but both, and p}articu—
larly fhe first, simplify it considerably. With these asrs.umiatio»ns
» thg desired lift distribution is then given by expressions of thé form
of Equations (2. 6.6) and (2. 6. 11). | | ‘

For the present purpoée, however, a set of aerodynamic in-
fluence coefficients is required, rather than influenceﬂfunctions. |
Such a set of Ebefﬁcien’cs, Based on the same ideas, can be obtained

i‘eadily by the techniques used in References 8 and 9. The result

rmay be expressed as follows:
- Za §C , =~ z ; '
{1}.= G [Cm[a]{ef + c,_m)[a]im}} (4.1.4)
where the aerodynamic influence-coefficient matrix [Q] is defined by

[a] = G-x) Ty O I Y] + K 1x]
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where, in turn, i‘} is a unit column matrix, and I_I_\ is a row of
integrating coefficients suitable for integrating a continuous function
for a range of its argument from 0 to 1. Thus, for instance, if h
equidistant points on the semispa‘n are considered, and n is odd, then

according to Simpson's rule
LTl= 5l 4,2, 4,8

Very little information is available concerning fhe spanwise
distributions of the pitching moment on wings of finite span in unsteady
flow. By means of the reciprocity theorems an appropriate ‘Gre‘en's
function could be estimated if the lift distribution for wings with para-
bolic camber were known; however, such lift distributions do not ap-
pear to have been calculated for wings of finite span in unstéédy flow.
In fact, relatively little is known about moment distributions eveﬁ in
steady flow. HoWever, the available information indicatés that vthe
1oéal center of pressure does not appear to be very s‘enéitive to the
lift distiibution(8). Hence, it will be assumed that this is ‘also‘ true
in unsteady flow at a given frequency, and that, fu’rthe:r‘rno,re, these
centers of pressure are given by two-dimensional theory. | With this

assumption the moment can be written as

{ml, = c Eq (Tl alied + Gy <] [a] ) o (615

The lift anci moment distribution due to the gust can be calcu-
lated in a similar manner. In the following, the magnitude of the gust
intensity will be considered to be unity, and the longitudinal reference
f)oint will be the intersection of the elastic axis and the wing root, so

that the instantaneous gust intensity at any station vy is
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W = exp { -iR = '“/z tcm.A.} (4.1.6)

and, with this function w,

(1, = L=t [ g1
CycadlR) (4.1.7)
I}y = ~tec8 - Ve o] [Q]{w}

where ¢(k) is the Sears function, as before.

Finally, the inertia loads are

li=-mz+rmecx

k>
1

= - (rz + (ezc\‘)ﬁ& + %ezCi

or

il}‘ /;(% R?-Im ezclid 3 zy_ R*Im] {23
fm};: > (a ¥ () Hmli‘*} P(E o R e, gz} (41 8)
Z\Z

The loads applied to the wing can thus be written, in summary, as

[2¢,C(RIQ] ! C, Efﬁz){@] 1(= [ c, T
{;}zq + "‘111% - {}*"r “L%ﬁﬁ)m ™

o

—_ - ——— - — - - -
-——._.._....-.—..._-._— -— - - -

I P'c):l‘“ ez‘ *EEY J." +(P;€V]Im1 |

2. The Loads Applied to the Tail

The loads applied to the tail are similar in nature to those
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applied to the wing, with the exception of the fact that the tail experi-
ences additional loads as a result of the downwash produced by the
1ift on the wing. Again, little is known about the downwash in unsteady
flow, and even in steady flow downwash cannot be predicted é,ccurately
because of boundary\-layer effects on the fuselage and the wing root.
Consequently, even in steady-flow analyses experime‘nvtal‘ results are
usually relied upon.

In the following, the assumption will therefore be made that
for steady-flow experimental results are available, in the form of
the downwash derivative. %& + In order to obtain the atténu@tion of
this value with frequency the results of the analysis of Reference .13
will be used. These results indicate that the ti,me-variatio‘n"of[the
tail 1lift ‘due to the downwash caused by the wing lift which results
frofn a unit jump in the wing angle of attack can be approximated by
an immeaiate jump in the tail lift of -0, 16 of the steédy'—staté value
and another jump to the steady-state value after the time :trequi.red‘to
travel the distance from the 45-percent-chord point ‘cﬁ the wing to
the quarter-chbrd point of the tail plus another eighth Chéfd l‘ength.
Hence, for sinusoidal angle-of-attack changes;the tail lift due to
, downwash is ;h(x't . c,.)
Lt&;-C..dt%St = [-oletiee™ @ 5 Tl uzg, CSLEY

(4.2.1)

where x) is the distance from the intersection of the elastic axis
and the wing root (assumed for this purpose to be at the 45 percent
point on the root chord) and the aerodynamic center of the tail. This

approximation is valid only for k < 0.35,(13); this range is adequate
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for the present purpose, however.
Similarly, the downwash associated with the wing lift due to

sinusoidal gusts gives rise to a tail lift which, within this approxima-

tion, is ‘
. C ), k(% Lt ~0.6ikRSr
Ly = - Tl Y% ¢ cone+rtiee Bz Ee T RE W
Eg (§] éo( ) YO

(4. 2. 2)

(The additional lag represents the time required to travel the 0.6 root
semi-chords from the 45-percent chord point of the root, which is

the reference point for the gusts, to the 3/4-chord point.;)f the wing
root, which is assumed to be the point governing the lift at the wing

(13)

root, inasmuch as it is the centroid of the chordwise pressure in-

fluence function. )
The other aerodynamic forces are those due to the motions
of the airplane, those due the tail deformations, and those due directly

to the g_usts. On the basis of the as sumptions made in the preceding

section these forces are

r—
ﬁ
1

=G, % S [ E5 () o, + Ce(R)Ez—;i]
+ Oy v S [ G ax + T2 L (4.2.3)

L - clut Ye s‘t (Ct' ‘!k,i__;fé_.
tg = —g  P(FRe "

where
-~ - . X't+9.t '. ot
Co(w = (1r2h 12 c(ay 44 k- GRrE e
Co(R)= -1k C(%g) + 4 Stp2

{
2T
G ()= (1 +2ik Saelt) C(LR) + & LR - ()R
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and %, and 2, are the angle of attack and vertical displacement of
the airplane at the wing root.

The inertia load on the tail is

. Ltn‘ = - Mt (Z'O "'Ai "'X't &O)

m o R »
P& (2, +oz ~X'¢ %) . '
:‘],_(—) , . (4.2.5)
Here the center of gravity of the tail has been assumed to coincide with
‘its aerodynamic center; in order to remove this assumption it is neces-
sary only to add or subtract the distance between the two to x'g; in

the preceding equation.

- The normal forces onthe tail can then be summarized é,s follows:

Le = 9[Fi(k) 2 + P (R ot + Fy (k) ac(]

(4. 2. 6)
+ o[ F(RYaz +Fg (k) w] |

where

F,(h)= ZCL«t % %‘-[EJI&)ﬂh?T (0,]6+|]69 h(-:/_ i%))]-r my R?

e

FalR)= Cuy B, €00 - (1020, W) 3 (onbnntee™ R 8] - mest_ g
§ 4 ! - Bl
Fg(h L “St Gy (k)
B (R)= 2¢, %t 8¢ ¢ . g
4 b, ¢ = Colh) + %(%3 }
(k)= S ‘h St [9‘("& k& . "'h(%’;t-*’ii’-) R(2 0o
) 'w(‘o.“ﬂ.lge F c)e 72 ‘_']

and
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i
w, = e -ik 2t
(4.2.7)
The pitching m(oments corresponding to these normal forces

can be obtained in the manner employed for the wing. However, in-
asmuch as the tail chord is usually small compared to the fu;elage
length, the travel of the tail center of pressure is small Compared
to the length x; . Hence, the center of pressure will be aésumed

to remain at the aerodynamic center of the tail, and the pitching mo-

ments are then (-X{) times the corresponding forces, so that

; N IN

My = -4 Xe[FlR) 20 ok + NS 4RO B2+ Rw]  (a.2.8)

3. The Wing and Tail Deformations

The Wing deformations may be calculated either from struc-
tural influence coefficients or from the bending and toif‘,SiOI:’l stiffnesses
of the wing used in conjunction with simple beam theéi'y. Thé latter
approach will bé followed here, based on the method of Re.fervence 11.

The bending and torsion moments on thé-wing: structure may
- be obtained by integrating the applied loads. If numericalv‘methods
are employed té perform these integrations the results may be written

as follows:

Mg | [ % [m):-sink b (11 ] (1

= T | | (4.3;1)

and, similarly, the deformations are
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%~

{z*z°} r(i‘:%s’x)z[ﬂ"]t'fili Lol Mg
kot il

( )mum ez 1[1[] ::ik ]I.]IEI J\L AR | l.
L(")Scosa\. [I ]IE? [I[]E—SML -i) [I"]ti'_j_’_cjr_fl[ll { }

(4.3.2)

where the integrating matrices(n) perform the following operations

[1]{6} & [ ¢e)de
[L]{£} % [, J, fe)dorap

[T]{¢] & j:He')ae
RalGEy j:'ue") 46" 4"

These integrating matrices may be based on the trape__:zoidal rule,
Simpson's rule, or any other numerical method; the intervalé chosen
for & (05 6O < \) need not be of constant width, except if a spe-
cific rule demands a uniform spacing.

The structutral deformations of the wing may then be written

in terms of the applied loads as

R AR L.

where the sub-matrices (@, @, @, @, @, and @designate,
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respectively, the four quadrants and two halves of the matrices, ob-
tained by post-multiplying the square matrix of Equation (4. 3. 2) by
the squaz;e and the rectangular matrix of Equation (4.1.9), respec-
tively.

For the purpose of the present analysis, which is conéérned
primarily with the wing stresées, the tail deformationsvwill be .
treated by including only the vertical displacement and angle-of -attack
change of the tail as a wyhole due to the tail load. These quantities
may be obtained from a static test which consists in applying a con-
centrated normal load at the aerodynamic center of the taii atid mea-
suring these deformations. They may also be obtained from a vibra-
tion test in which the deflection curve of the rear part of the fuselage
in the lowest vertical-bending mode is measured; in this case theide—
sired spring constants can be deduced from the frequgnéy relation of
‘a simple mass oscillator in terms of the measured frequéncy and of
the mass of the empennage (including the part of the f’u-s:elaygeb which
may be considered to move with the empennage). In tﬁe absehce of
such tests theseiconstants may be calculated in an analogoﬁs manner.

The tail deformations may then be written as

Ad = - K| Lt
(4.3.4)
AZ = Kl Lt
so that, also
dz= - 35 A«  (4.3.5)

Inasmuch as these deformations are not independent of each other,
only one need be retained in the analysis. In the following, AZ

will be eliminated by means of Equation (4.3.5), and AQ® can then
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be obtained in a form similar to that used for the wing deformations
in Equation (4. 3. 3), namely, \
Ac=-q K [F(R)zq +F(R)oty + (&(h)‘_ u\'_:_‘ F:,,(M)M‘ + F5 (k) wy ]
‘ (4.3.6)

4, The Equations of Motion

Equations (4.3.3) and (4.3.6) are equations of motion inav.smuch
as they describe balances of aerodynamic structural and_iﬁef%iarforces.
In fact, if the airplane fuselage were immobile ( ,=Z,=0), they would
be sufficient to calculate all unknown quantities. However, if the fuse-
lage is free to move two additional equations are required to Oi)tain
the two additional unknown quantities ™oy and Z, . These additional
éqﬁations are those expressing the dynamic equilibrium of -thé forces

on the fﬁ;selage,, namely

L

wtly ~mg (B -ax&g) =0 | (44

My ~%bt - (FF * X mpsky + ax me 2,20 (4.4.2)

where the wing lift and pitching moment can be expressed in terms
of the 1lift and moment distributions . and M as

Lo = 2L, Lojlim} (4.4.3)

{
m

My = [-z(g)ltanunl,zgmji }
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or,

Lw =Wl®]{z} t L @l{w}

‘MW=H®J {;} + 4l (3] {w} | (474.4)

where L@J, l@_l,l@L and l_ _\ are the rows obtaiiied by
postmultiplying the rows of Equation (4. 4. 3) By the squa‘reia.nd rec-
tangular matrices of Equation (4.1.9). In Equation (4.4.1) the fuse-
lage lift and moment has been neglected; it can easily be ei:pr’essed
- in terms of ®, and Z, and included, if desired. -
The equations for the tail deforfnation Ao and thoée fpr the
over-all normal force and pitching moment can be combined with
Equation (4. 3. 3) as follows: For the sake of definiteness it Will‘be’
assumed that n stations on the wing are considered, including the
one at the root, so that there are 2n+l unknown quantities, and that
in the colﬁmn matrices defining applied loads, deformations, and so
on, the Values at the root of the wing are written at the top éo thé.t,
in the following .

( Z:root )

I‘tip >

(2 -
:d “.root

oy
L aw®

The first ana (hﬂ)th equations of the system defiﬁed by
Equation (4. 3. 3) express only the trivial fact that the structural de-
formation at the wing root is zero. They will be replaced by Equa-
tions (4.4.4) and (4. 3.6), which will be joined to the system, ‘yieklding

the combined equation of motion
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-4 ‘ ' ' 1
T O @il (@i
o 185 iofl @ ©
-1 9004 ' : ! | S
e o | _--"“'f"'""“:']‘}s& L 0 id(4.4.5)

The square matrix on the right side of this equation will be designated
by [A] » the rectangular matrix by [B] » and the quasi-unit ma-
trix on the left side of the equation by [I'] , so that the equation can

also be written as
[01- e la1]{2} = LaDf}

The rrAlatrrices @
O

latter, which are all zero, are replaced as follows:

 (4.4.6)

to (8 are the same as the matrices

/ @ of Equation (4. 3.3), except that the first rpws of the

First row of: | Replaced by: With the following quantity

added to the leading element:

0 First half of [@] F(R) + %w(,gf'i)z R%
Q) Second half of | (D] Fz (R) - :‘(fa ;Szx R%

' AR
©) First half of | (@] | -x¢ F, (k) - J_;‘f(%t;z_— R?

21z .
@ Second half of l_@J -x¢ R (R) + m;p(:-é?;;(ax)") k*
FAXS

® L®] o
© L®] 0
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Also, the elements of the last rows and columns of the matrices [A]

and [B] are zero, except for the following:

Az = R0 -5 B)
Avanet = =%t ('F3 (r) ~ %F}—(R))

Agiyt = G FUR)

"

Azt nat = K F2(R)
o
At znt = =0 (R0~ 2 F ()

, Bl,ml N F5 (k) h
v Bm-l,vn\ = k% Fs (R)
Bonint = ~HiFs(R)

5. Solution of the Equations of Motion

For the purpose of calculating the desired transfer functions
Equation (4. 4. 6) may be solved directly for a given Vélue of gqas a
‘set of linear algebraic equations with coefficients given byv the matrix

(r]-9 [A] and with "knowns" given by the column matrix 9 [8] iv‘:”t}

(where [A],y[ 8] and {:’,t‘ are functions of k), The result is a col-
umn matrix of the unknown amplitudes of the motions of the airplane.
If this column is calculated for several values of k in the range of
interest, these amplitudes, considered as functions ‘of4 k, are trans-
fer functions from the gust to fhe motions.

This column matrix can be substituted in Equation (4.1.9) and
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the resulting column matrix i,'Ln} substituted in Equation (4.3.1),
yielding a column matrix of bending and twisting moments which
vaitgain, considered as a function of k, represents traﬁsfer functions
fron'l the gust to these moments. A set of transfer functions for the

vertical shear could be calculated similarly, from the relatio'n ‘

(v} = [ cnicen}{s}

The stress at any point of the structure can be az%surhed to be
given by a linear superposition of the bending moment, twisting
moment and vertical shear at the given station if elementary beam
‘theory is used. If due to the interaction of beﬁding and tdrsi;;
~ stresses or due to shear lag elementary theory cannot be u,sé_d, ‘tbh‘e
stress at a given point can be expressed as a linear superposition
of moments and shears at other stations as well as the given sta-
tion. In either case, the transfer function for the given stress is
then givén by the same linear superposition of the trans‘fer'-func-tions
for the corresponding moments and shears.

It may be noted that at zero frequency solution ‘of Equation
(4.4.6) yieldsk the static aeroelastic deformations and thus permits
the calculation of the changes in the lift distribuﬁon and the rshift of
‘the aerodynamic center as a result of static aeroelastic action.
Also, inasmuch as Equation (4.4.6) coinpletely describes the dynamic
behavior of the airplane, it is possible to calculate ffom it fhe speeds
at which aeroelastic instability phenomena occur, although such cal-
culations are beyond the scope of this paper. Suffice it to point out
that for such a calculation the body degrees of freedom must bei

eliminated first, as a result of the way in which the problem has
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been set up. This elimination can be effected readily by considering

th
the first and (n+1) " rows of [A] but with A, A 17 A,

 and Ami el replaced by 0. If these rows are premultiplied by
?
- [Au Al,m! ]-.‘
AM‘U Anfl, n+t
. : )
and used as the first and (Vl+l) h rows of a matrix which is other-

. wise a unit matrix, and if this resulting matrix is referred to as [l"l s

then Equation (4.4.6) can be written for homogeneous case as

[0 -w[A]U"]]ZgZ}_: o} : | (451

The products Li'][\“] and (A][l"] will now have two null rows
~ and columns each, which correspond to Z, and %y . If thésé’ rows
and columns are deleted and Z, and % are deleted in .{E(dg , the
remaining matrices are non-singular, so that they can be inverted

"and Equation (4.4.7) can be written as
[[El - % [D(R\]]ﬁ‘dk = io} |  (4.5.2)

where [E] is the identity matrix, and

o] = [0T01]" [aite]

>whAere the tilde designates the fact that the null rows and colﬁmns
have been deleted.. |

Equation (4. 5.2) is in the canonical for the célculation of
eigenvalues. If k is set equal to zero and the eigenx}alues of [D(k)]
are calculated by iteration, expansion of the determinant, or any
other suitable method, the lowest real and positive one represents

the value of the dynamic pressure at divergence. Usually for swept
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wings the value lowest in absolute magnitude is negative and is there-
fore of no practical significance, although it is often used as an iﬁdex
of the aéroelastic behavior of the airplane.

This calculation can be repeated for various positive values
of k, calculating the first few eigenvalues for each. The res:ults,
which will generally be complex, can be plotted against k., When
any of the eigenvalues becomes purely real, it represerts a dynamic
pressure at flutter, and the corresponding value of k ‘represents
the reduced frequency at flutter, (This statement is true only if
the structural damping is zero; such damping effects can -ea§ﬁi"1y be
included, but the details of this process are beyond the scope of

this paper. )
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V. DYNAMICS OF THE LARGE FLEXIBLE AIRPLANE

For the large flexible airplane the dynamic and the statistical
problerﬁs are interlinked, in the sense that the information required
for a statistical analysis is more than the response of the airplane
to sinusoidal gusts which are ﬁniférm along the span. The ﬁ.rst Sec-
tion of this part of the paper is concerned with the natﬁre of the re-
~quired transfer functions, and the second Section is concerned with
the extension required for the method outlined in Part IV to make it

applicable to the calculation of these transfer functions.

1. Extension of the Statistical Approach

The mean-square stress at a given point on the wing of a large
flexible airplane due to flight through turbulent air can be caléuléted
in severgl ways. Perhaps the most direct of these consists in writing

 the stress in terms of a suitable indicial-response influence function

as:
ot) = H he (tay)w (t-t,,y) dydt, C sy
aad -b .
Z
.80 that b b '

(5.1, 2)

%—(ﬂ J J {J h¢ (t.,y.)h (tz,y,_)y (Tt b, v - -y.) dy, dy, dt, dt, A

and the only problems are the calculation of this inﬂuencé function
and the evaluation of the quadruple integral, which cannot be effected
so readily as before, because h;.’ (t,y) cannot be separated into a func-
tion of time and a function of distance along the span in this case.
One way of evaluating the integral, similar to the method used

previously, is to calculate the Fourier transform of wu.(t) yleldmg

Pel) = [ (w,5) gy (w,5) ds BN CARY
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. . . . w '
where ¢, (w,y) is defined in Equation (2, 6.16), Hg (w, y)  is the
Fourier transform of h}" (t,y) and & (w, s) an auto-convolution

of this transform, namely,
~-s

ae (w, 5) J[H((w y) Hd’ (w,y+s)1- Hc(w -y) Hq‘ (‘” "(Y*S))] ) (5. 1. 4)
so that, finally, 0'" can be calculated frcm

T |, Pt dw o (5.LB)

An alternative method of evaluating the quadruple integral
in Equation (5.1, 2) is based on the fact that a convolution represents
a Fourier transform of the product of the Fourier transform of the
functions invelved. This procedure requires the double Fourier
transform of the correlation function of the vertical componerit of

atmospheric turbulence, namely

Spw()“;h wlff “ r‘*‘l’ﬂv/ (r,r)drde " - (5.1.6)

so that, also

F P -i(Antar)
(F,T' ! ' 2_2.
Vo (r, 1) ofJ;f

P (A,,m da,da, (5.1.7)

©

" Now if, as assumed herein, the turbulence is axisyrﬁmeti'ic,

Yo lrt) = Yo (V6767 0) = %, (0,175 = Y, (roved) (5.1.8)
then it follows that

Pudda)= By (RZ2E,0) = @, (0,0FAF) = Vw(m) | (5.1.9)
with

?w(?t\, 3 —‘ﬁ f"Io('\") ¥, () dr | (5.1.10)
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For the correlation functions and spectra of Cases 1 and 2
considered previously (Equations (2.3.15) and (2.3.16)) this spec-

trum is, respectively

P (A)

and

[1}
|+
—

Pw (N) = T

It may be noted that h: (t,y) is a Green's function for
the partial differential equation which relates the stress as a func-
tion of space and time coordinates to the applied loads, which are
also functions of space and time coordinates. Similarly, qu:'(w,y)
is the Green's function for the ‘ordinary diffel;ential equation which
relates the stress amplitude as a function of the space coordinate y
to the amplitude of the applied sinusoidal loads; the quantity w may
be considered to enter the problem as a parameter rather than as
an independent variable. At the same time, H;-' (w,y) mavy also be
regarded as a transfer function from the sinusoidal applied loads
at a given station y on the wing to the stress ¢ . Hence, for the
. large airplane, that is, for the system represented :by a partial
differential équation, the spectrum of the output can be expressed
in terms of auto-convolutions of the transfer\ function or the Green's
functions for the sinusoidal case, rather than in terms of transfer
functions directly, as for the small airplane, \;Jhose motions can be
represented by an ordinary differential equation.

Now, substituting Egquation (5.1.10) into Equation (5. 1.2),
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b b
- t = i(ALEetta)eag (g, 9)
walf) - U hU.,a N (toy) b (b, )e " Bl A dy dy,
712
. 00 po A,
0[] e MR Guad ] a re) dada,
Joo e
©(5.1.11)
whefe the function
~ o i (AUt +2a.y)
w =1 {MN
HY Onha) = [ L Wy dt
- -b
‘ (5.1.12)

represents the Fourier transform (with respect to y) of the function

Huv‘v (W).‘J\ , that is

—idy W | :
Al) l-‘ A.U d . '
i (,4) = jbe F O 9 dy. T e

Nl

Hence,

PG(“’\ fJJ o -iAVt .cut ,

‘ULI“'F(-S:a)llsow(n/vsw‘#)d%

(A, ;) da da, dt

(5.1.14)

The function Hdv:, (w,y) represents the transfer‘function
from gusts of width O\y acting at station y to the given stfess. Using
the approach outlined in the next Section this fuﬁction can be calculated
either directly or indirectly, by first calculating the transfer func-
tion from that gust to the lift distribution and then the transfer function

from the lift distribution to the stress. For the indirect method

b W |
He (@.9) =_S; He (wyn) Hy (@) ¥ Oy} dy o (5.1.15)
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‘where the function H‘i’(w) ?(bz,y) is the Green's function for the
‘ aerodyngmic problem involving sinusoidal gusts considered in Sec-
tion 6 of Part II; the symbols n and y in ? ('q,y) are interchanged,
howex}er, so that the function now defines the contribution of a gust
af station y to the lift at station n - The transfer function, Ha(: (w, n)
relafes the stress at the given point to a unit concentrated normal
far};e acting at station n .

Using this indirect method, the mean-square stress at a
given point can also be calculated by starting with the power spec-
trum for the lift distribution calculated in Section 6 of Part 1. For

this approach r(t) may be written as

© &
a(t)= { [*heltny) Llt-t,y) dy dt,

‘—0"-'2
B S

(5.1.16)

so that
. o b
1

o= [1]

Rt

[

b S
J: h:’ (t')y*)hdl'(tZ,Yz)% (t 1't"""l) Yy Yz) dy.dyz dt, dt,

and
b b
22 1 l* : :
. Pd.(w)= H@ (w) yl) Hq‘ (wiﬁ) Y’l(w’ Y, yl) dy,dyl : (5. 1. 17)
+ .
where

Vi(t,%;yz): L(t, y) L(tT, %)

(See Equations (2.6.7), {2.6.8), (2.6.10), and (2.6.12)), so that the

Fourier transform of this correlation function is

Sol (w, y'»Y‘L) = I H‘{(W)‘l ‘fwe‘“’) | ‘ ’ ' (5' 1.18)
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(See Equations (2.6.9) and (2.6.14)). Hence, finally,

b

%(w) I”z(‘*’) )‘j Ha(wv He (w VL)Y’W (w) dy,dy,  (5.1.19)
-b b
i 7.

—

whence 0% can again be obtained by integration over w .
If ?welw) is‘given by Equation (2. 6. 14), the double inte-

gral can be expressed in terms of single integrals as follows:
e lw) = [uy @t [( -t | G)|* Purp () + 2K (=K B{Gw) 6'tu)}

b
Wt (w,s) G'(w,s)ds .
+ fo Pu(15) ] (5.1.20)

where

b
G (w)= [T Hg (w,y) p(y)dy

G'(w)= Jry
'(y“(w,s)

g-(w,y) P we (w,9) gl dy

Sb_ [a{Huwy)}a{Ha(w,ws\}
- "'9 Hq(w,yS}MHq-(w, y1s\}]‘{($)’((‘l*’) 47
Equations (5.1.3), (5.1.13) and (5. 1. 20) thus represent three

N PO it

methods of obtaining the power spectrum of the given stress. One
requires a trénsfer function directly from the local gust intensities
to the stress, an auto-convolution of this tranéfer function, and a
sbectrum of turbulence defined by Equation (2. 6.16); the second re-
quires a two-dimensional spectrum of the turbulence defined by
Equation (5.1.6) and a Fourier transform of the aforementioned
transform in a direction perpendicular to the plane of symmetry;
the third utilizes the spectra of the variously weighted averages of

the vertical component of turbulence calculated in Part II, as well
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as a transfer function from the local lifts to the given stress, for
which an auto-convolution has to be calculated. Which of these
functions is used depends to some extent on the information avail-

able, but is largely a matter of individual preference.

2. Calculation of the Required Transfer Functibné

Depending on which of the methods outlined in the preceding
Section is used one of two types of transfer fﬁnctions is réq’uired‘-—-
either the one from local gusts to the stress of interest, or from
~ the local lift to that stress. Both of these functions diffe';; in.gev-
eral respects from those considered in Part IV. |

Unlike the case of the small flexible airplane, it is now neces -
sary to consider the entire wing rather than one semispan, so that
the various ti'ansfer functions are now.asymmetri,c. With the num-
~ ber of th'e' degrees of freedom considered in the analjsis thus doub-
led; it becomes preferable to include one additional dégreé of free-
dom, namely roll, rather than to perform two separéfe' analyses
for symmetric and antisymmetric motions with, respectively, one
and two less degrees of freedom, and then to combine the results.
~Also, for either type of transfer function the structural deforma-
tions of the wing under concentrated loads as well as unde:.; distributed
loads will be required, so that the numerical-integration schemes
used in Part IV have to be modified to some extént.v

Before discussing the modifications required to extend the
approach of Part IV to the large airplane it might be pointed out that
chordwise deformations will be ignored here, as they were in Part

IV. In both instances they can readily be included by a stfaightforward
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extension of the approach used here if it is felt that they may be sig-
~nificant in any given case. If they are included, however, yawing
and possibly also sideslipping motions can no longer be ignored, be-
cause they give rise to large forces in the chordwise direction. In
that case again, it is' preferable to include these two‘additionjalr
degrees of freedom and to treat all longitudinal and lateral degrees
. of freedom simultaneously rather than to rﬁake two separate analy-
ses, which would virtﬁally duplicate each other, for the loﬁgitudinal
and lateral functions, and then to combine the results. |

The‘ structural deformation due té concentrated loads'can
be obtained in several ways. If measured influence coefficients
are used, they pertain precisely to such loads and, in fact,' ﬁ;uét
be modified before they can be used for distributed loads,l(n) so
that it is necessary only to use the unmodified coefficiénts.

¥ thé deformations are to be calculated in a maﬁne_r similar
to that employed in Part IV, the integrating matrices must bev’re-

placed as follows:

éz- [Il ‘3]’ '%_ [T1, where f; =1, j> >
R RN
.and 20, j<i\

U%)ZUI] by %_ [i], where ']‘I',J -.VJ Vi, >
The factor of 1/2 for iﬁ constitutes an approxima}fén'\x:};mh im-
plies fairing through a discontinuity. |
If this approximation is to be avoided, the deflections due toA
unit concentrated loads (the structural influence céefficien,ts) can be
calculated directly from simple beam theory, in which case the lim-

its of integration take care of the discontinuisites. Thus, for instance,

for an unswept wing, the normal deflection and twist at .y; due to a
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unit concentrated load and torque, respectively, at y; are

Z-ij:j\ﬂ JiZd 4o ¢ . <y
OQEI()V.‘/) Ji =Y,

A t
j\oaj‘i LY Ay dy o (yi - yj)L

i

0 EI(\;)

S yy-
l:‘-'( 7 ) ,y‘ y,\

_ Mo
=, Gl N vty

- fo:'J G‘I(y) Yo iy
The concentrated loads under consideration arise as follows:
For the transfer functions relating local lifts to the desired stress,
the local lifts may be considered to be concentrated loads of unit
magnitude, associated with concentrated torques of magnitude €,¢c .

Equation (4. 4. 6) can then be written as (see also Equation (4.3.3)):
' k z - ! le | ' o | ;
[ L]~ 9 [A]] [gu] = [R] [’té(c'l'[wl] | (5.2.1)

where [wl is a diagonal matrix of the valueé of w define‘d by Equa-
tion (4. 1. 6), and where the nﬁatrix [F\'] represents either the four
influence-coefficient matrices for z and a due to concentrated loads
and torques; 61' the square matrix of Equation (4. 3. 2) with modified
‘integrating matrices, as discussed in the preceding paragraphs.

It may be noted that Equation (5.2.1) now representé not one
set of simultaneous equations but several, all havinvg the same coeffi-
cieﬁts, but with different sets of knowns (as defined by the columns
of the matrix on the right side) and, hence, different sets of un-
knowns (the columns of the matrix [AZZ“] ). This is due to the fa‘u::t~

that the functions under consideration are, in effect, the responses

of the airplane as a whole to sinusoidally varying concentrated loads,
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and these functions are different for each location of the applied
load.

Once this equation has been modified to take into account the
over-all body motior}s and tail deflections (as explained in Part IV‘)
aé well as the rolling motions (as explained in the followi-ngy) "it can
be solved to yield the unknown values of [5&] . From these values
and the bending and twisting moments, as well as the vertical shears,
can be calculated and added to those due to the concentrated loads.
When combined linearly as required for the desired stress these
moments and shear yield the desired transfer function H} (wyy) .

Or else, if the transfer function from the local gusts to the
desired stress is to be determined, the response of the airpiané
to the lift“di,stribution induced by a sinusoidal gust of width dy acf—
ing at station y must be calculated. This lift distributibn is the Green's
function éonsidered previously. If it is represented by fhg relation
H\: (w) ’g‘ (y,n) , with ?(V,Vl) defined by the app;‘bximatidn given
in Equation (2. 6. 11), the concentrated loads arise frc::nﬁ the delta
function in that expression. The right side of Equatipn (5.'2. 1) be-

.comes in that case

(-K) Hy (W) [R _[_%f.‘!)_ﬁ.’.‘,'l.’_]__,}[w + ¢bKH (@)[R] [Q’(y)l[wl
i ¢ [ ][IQ.CI[X(U)X(?)] 1 ¥ t [ .]’_e\cl[x(g)nwl

where [R] represents the square matrix of Equatibn (4.3.2), and
[R‘] the one discussed in connection with Equation (5. 2. 1) Again,
several sets of simultaneous equations are implied. Their s‘olution
(after modification for over-all motions and tail deflections) yields
values of z and a from which the transfer functions H:(w, y) can be

calculated.
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The extension of the method of Part IV to the calculation of
the deformations on both wings is straightforward; essentially,
distribuied lifts and torques now have to be calculated for both
wings and integrated with matrices which can be assembled from-
those used for one \x;ing alone. No new problems arise in this
process, so that it need not be discussed further.

The inclusion of rolling motion, however, is not so trivial.
One way of doing so consists in replacing all values of z in Equa-
tion (4. 4. 5) or its equivalent by z + @_y and then reducing the
columns involving this quantity by the relation (which as s"um@s that
the new unknown quantity, the roll angle (® , is listed at the end

of the column)

) L ‘ Vv [ )
ey | Ty F1 2
I U A N I

_____ =1 1 ' y
« ? :"“L. ', ﬁ Y%

o ) | 1 v Le |

(5.7.2)
An additional equation must then be joined to the set, which

- is given by the equation of equilibrium in roll

b‘ ,‘ . - A
fz Uy ydy -L,0-Mp ®=0 | (5. 2. 3)
Y -

z

where Ixx is the inertia in roll of the fuselagé and empennage

alone, iﬁasmuch as the inertia effects of the wing ére included in
L(y) . and MDt is the coefficient of damping in roll for the empen-

nage. For most cases both of these contributions can be neglected,

yielding simply, in matrix notation,
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LI[J{L} = 0

where |I}is now a matrix which serves to perform the integration
indicated in Equation (5. 2.3). This condition can then be adjoined
to the other equations in the same manner as the other equatidns
descriptive of over-all motions were included in Part IV.

The result, again, is a set of simultaneous equations for
Z,4,4¢ and ® from the solution of which the desired transfer
functions can be obtained as outlined in the preceding paragraphs.
Also, as in Part IV, once the unknowns Z,, Xo and ® are élimi-
nated from the set,the divergence and flutter speeds can be calcu-
lated by conventional matrix operations; these speeds will then
pertain to an airplane free to move vertically as well as in pitch
and roll and, hence, will include divergence and flutter speeds in

antisymmetric as well as symmetric modes.
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Vi, CONCLUDING REMARKS

The statistical approach to the problem of calculating the
dynamic response and the stresses in an airplane subjected to at-
mospheric turbulence has been extended in several respects, re-
taining basically only the assumptions of linearity, that is, of
small motions and deformations, as well as homogeneity and axi-
symmetry of the turbulence.

The first problem considered was that of the effect of span-
wise variation of the instantaneous turbulent velocities on the lift
and moments due to turbulence. It has been shown that the mean-
square lift is reduced considérably if the span of the airplane is
relatively large compared to the integral scale of turbulence. The
spectrum of this lift, particularly that part which contains most
of the energy, is affected relatively little by these variations if
the decrease in the mean~-square intensity is taken into account.
The mean-square lift is not very sensitive to the spanwise distri-
bution of the lift, but varies considerably for various shapes of the
correlation function of atmospheric turbulence. The effect of sweep
on the mean-square lift and its spectrum is very small for wings
with the same value of b /T cosA .

If the variation of the instantaneous velocities is taken into
account, the instantaneous rolling moment to which the airplane
is subjected can be calculated. The mean-square rolling moment
is shown to be proportional to the ratio of the wing span to the in-
tegral scale of turbulence for small values of that ratio. Similarly,

the mean-square values and the power spectra of the local lift,
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the bending moments and the pitching moment can be calculated
from expressions given herein.

For some of these forces the required aerodynamic in-
formation cannot be calculated by existing methods, so that cer-
tain approximations, based on experience with steady aerodynamic
forces and available knowledge concerning unsteady forces had to
be made for the aerodynamic influence functions in unsteady flow.

The next problem considered was the dynamic response of
a rigid airplane to random turbulence. This problem had previously
been treated for the case of an airplane free to move only in the
degree of freedom of vertical motion and small enough so that vari-
ation of the turbulent velocities along the span could be neglected.
In the present paper the response of an airplane in three longitu-
dinal degrees of freedom was considered; calculations were made
which suggest that the inclusion of deviations from the mean hori-
zontal motion is superfluous in gust-loads calculations. For the
remaining two longitudinal degrees of freedom, the mean-square
normal and angular acceleration have been shown to be functions
of only two parameters other than the mass ratio and scale param-
eter of the single-degree-of-freedom case, namely dimensionless
forms of the short-period frequency and of the time to damp to one-
half amplitude. It has also been shown how the resulis obtained in
connection with the first problem can be used to extend this dynamic
analysis to the case where variation of the turbulent velocity along
the span have to be taken into account.

The last problem treated was the dynamic response of a

flexible airplane, including vertical motion, pitch and, when
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necessary {as is the case when spanwise variations in gust intensity
are taken into account), roll. Horizontal and lateral motions were
disregarded because they do not generally affect the wing stresses
due to vertical gusts. A method which represents an extension to
the dynamic case of a numerical-integration approach to the static
aeroelastic problem has been outlined for the analysis of the prob-
lem at hand. Again, the modifications required in the statistical
approach to treat this problem when spanwise variations of the gust
intensity are to be considered have been discussed, as have been
some of the modifications of the method of dynamic analysis re-
quired in that case. This method has been shown to be in a form
which permits the calculation of divergence and flutter speeds with
relatively small additional effort.

Although most of this analysis has been confined to the ver-
tical component of turbulence, it has been shown that the simul-
taneous action of longitudinal, vertical and lateral gus_ts on the wing
stresses (with due allowance for the fact that vertical gusts affect
both the longitudinal and the lateral motions of the airplane) can be
taken into account by simply adding the power spectra of the various
contributions, provided the turbulence is isotropic as well as axi-
symmetric; the cross-correlations or spectra have been shown to
vanish either by the symmetry or antisymmetry of the influence
functions involved, or as a result of the statistical independence of
mutually perpendicular velocity componeznts.

The approach presented herein thus furnishes a foundation
for the prediction of the statistical properties of the stress exper-

ience of a given airplane once the appropriate statistical character-

istics of the atmosphere have been determined,
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APPENDIX - LIST OF SYMBOLS

~ span

chord, parallel to plane of symmetry
average chord, S/b

lift coefficient, L /qgS

lift-curve slope

rolling-moment coefficient, L'/qSb

coefficient of damping in roll, defined as positive for
positive damping

section lift coefficient at station y, l/qc
Theodorsen function

distance from section aerodynamic center to shear center,
fraction of chord

distance from shear center to section center of gravity,
fraction of chord

distance from shear center to the mid-chord position,

fraction of chord

- distance from shear center to the three-quarter chord

position, fraction of chord

acceleration of gravity

influence function for bending moment

indicial or response function

response to sinusoidal oscillation, Fourier transform of h(t)
mass moment of inertia about x axis

mass moment of inertia about y axis

wc

f )
reduced frequency 70

'~ dimensionless frequency, sk

lift

distributed lift per unit distance along the span
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rolling moment

integral scale of turbulence

pitching moment

bending moment

twisting moment

mass (of airplane, unless designated otherwise by subscripts)
distributed mass, per unit distance along the span

distributed twisting moment (about axes perpendicular to the
plane of symmetry) per unit distance along the span

dynamic pressure
radius of gyration about center of gravity
wing area

scale parameter,

e

[

time

mean flying speed

longitudinal component of gust velocity
horizontal component of disturbed motion -
lateral component of gust velocity

weight of airplane

vertical component of gust velocity
vertical component of disturbed motion
coordinate along mean flight path

distance from intersection of elastic axis and root chord to
airplane center of gravity

tail length, distance from airplane center of gravity to aero-
dynamic center of tail

modified tail length, distance from intersection of elastic
axis and root chord to aerodynamic center of tail

coordinate perpendicular to plane of symmetry
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z coordinate in plane of symmetry perpendicular to mean
flight path or vertical deflection

a inclination of chord to x axis
y(y) dimensionless lift distribution, %‘_C?-_
V(Y»l] ) dimensionless lift-influence (Green\:s) function
n variable of integration corresponding to y
] angle of attack (in Part IIT)
A angle of sweepback
w frequency of oscillation
1? correlation function
4 power spectrum
¢k} Sears function
T time displacement, argument of correlation function
Subscripts:
| f _ - fuselage
r root
t - tail
w wing

Matrix Notation

[ ] square or rectangular matrix
I 1 diagonal matrix
l, J row matrix

i } column matrix
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