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Abstract

Functions v(x,t) satisfying certain partial differential
equations of the form v = F(x,t,v,v*,vkx) in the region Rz 0 <x < 1,
0 <t £ T are studied., The principal results of Part I determine
circumstances in which it can be asserted that v and Yy admit, in R,
bounds which depend only on the bounds for the functions v(x,0),
v(0,t), and v(1,t), and for the derivatives of these functions. The
preofs emplqy certain elementary comparison theorems for solutions of
partial differential inequalities. Some other applications of these
theorems are &lso included in Part I.

In Part IT analogous results are obtained for the system of
first order ordinary differential equations which arises when the
x-derivatives in the partiasl differential equation ares replaced by
divided differences. The bounds obtained in this case hold uniformly

under refinement of the discretization,
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S

INTRODUCTION

1. Partial Differentisl Eouations and Physical Background., Part I

of this thesis concerna some properties of solutions of special

boundary value problems of the following general forms
Problem P: A function v(x,t) 1s to be found such that

(10141) ¥ = Flx,b,vyv' ,v")

in 0<x<1,0<t<T<cw and such that v assumes specified
values on the left boundary line x =0, 0 <t £ T; the right boundary
line x =1, 0t £ T; and the initlal line t =0, 0<x < 1.
Here v = %%, v = %g, o= ifg and F(x,t,2,p,r) is a non-decreasing
function of r, Various condztions of smoothness and boundedness
are impoged on F and on the boundary and initial data. "Solution"
is teken in a strong sense, including, say, the requirement that v,
v! be continmuious in the closure of the region. Although more general
strip regions in the x = t plane and other kinds of boundary conditions
will not be considered in this thesis, the techniques will have
obvious apnlications or adaptations to many such problems.

In general, no amount of smoothness on the part of data
and equation will suffice to guarantee the existence of a smooth solution
for more than a finite range of the "time" t., In the general situation
the maximm for x ¢ [0,1] of |v], or of |v'|, or of |v"] will
approach infinity as t approaches some finite to > 0. The magnitude
of to will deperd on various moduli of smoothness and boundedness of
the initial and boundary data and of the equation. The sclution as
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concaived here will therefore cease to exist for t > to' One of
the first objectives here is the development of a se:ies of results
which suffice to delimit a fairly broad and interesting class of
equations such that a sélution and certain of its derivatives admit
- bounds independent of t. _

Certainly one of the simplest and best understood examples
of a problem Plis the problem of heat conduction in a homogeneous slab
of unit thickneas. In this case F(x,ts%p,r) = ar, where a is a
positive.constant, v 1is the temperature, and the date consists of the
given initial distribution of temperature amnd the temperatures of the
faces of the slab as functions of time. The problems which will be
studled here can be regarded as generslizations of this heat conduction
problem, It is a widely known fact, however, that solutions of linear
differential equations generally, and of the heat equation ¥ = avy"
in particular, fail utterly to illustrate many of the peculiarities
of behavior of solutions of non-linear partial differential equations,
Moreover, many of the analytical techniques, like application of Green's
theorem and fundamental solutions, which permeate studies of the linear
case lose their immediate applicability in the non-linear case, Thus,
in the face of added cumpléxity of behavior, the number of analytical
tools is diminished and recourse must be had to more pedestrian methods
of analysis., One result of these facts is that studies of linear
parabolic problems can concern themselves with more general varieties
of problems than the ones treated hsre; for example, weaker concepts
of "solution" and far less stringent assumptions on the data can be

successfully dealt with, The theory of non-linear problems is presently
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at a fela‘bively primitive stage and must be temporarily content with
more modest aims, |

A problem better than the heat conduction one for purposes
of introducing the equatioms to be studied here 1s one formulated and
studied by Professor J.M. Burgers. Professor Burgers' Interest 1ln the
‘mathematioal structure of hydrodynamical turbulence led him to the
construction éi‘ a number of ingenious "models of turbulence" [1].
Typicalls}, one of these models is a mathematical problem which pre=
serves certain genersl features of the hydrodynamical problem while
remaining sufficiently simple to admit some sort of analytical study;
it need not correspond in the usual sense to any real physical problem,
but is studled formally as a mathematical problem for it suggestiveness
and for possible insight inte the nature of its more complex parent.
By skillful combination of hils physical knowledge and some reletively
simple analytical methods, Professor Burgers has developed this idea
into a powerful heuristic tool,

(ne of Burgers! models 1s the following case of a problem P:

Burgera' Problem:
(1s142) Q0 +un' = au_ +u, u=au(xt), a>0, constant

(1.1.3) u(0,t) & u(1,t) & 03

(1.144)  u(x,0) = U(x).

The equation (1.1,2) ig a model of the Navier-Stokes equations

2
5y :“ . 5‘;1: .1l &
jxj axjj P axk

(1.1_ 5)
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in vhich u, = 'D.k(x1 ,xz,xs,t), k= 1,2,3, are the cartesian components
of the velocity vector, 7 is the viscosity, p 1s the (constant)
density, and p = plx, ,xz,xB,t) is the pressure. The analogy is
obvious'except for the last term on the right; in the model no "pressure®
appears but the artificial term u 18 added. In a sense to be

described presently, this artificial term provides an "energy input"

to the model system and will accordingly be called the "input term™";
similarly, the term aqu" will be called the "viscoaitj term® and

un!  the "non-linear term",

In Burgers' treatment (1.1.2) is coupleﬁ with another equation
for the "main stream veloclty", while u is the superimposed "turbulent
component of velocity"; thus the solution wu(x,t) = 0 is the non=-
turbulent or "laminar® solution. It is then natural to identify
32' f : uz(x,t) dx as the "energy" of turbulence. If (1.1.2) is multiplied
by u and integrated over 0 < x £ 1, the contribution of the non=-
linear term vanishes; after a partial integration one finds formally
without difficulty the "energy" equation:

(1.0.6) +& f1 u?(x,t) dx = = a f1u'2(xt) dx + j1 u?(x,t) dx
M 2 dt ’ ’ ’ ’

o o o

which shows that the visco.sity term provides a dissipative influence

tending to diminish the energy, while the input term provides a driving

influence tending to increase it. Whieh influwence, if either, predom~

inatea? In particular, does the input overwhelm the dissipation so that

the energy increases indefinitely? As it happens it will be easy to

prove that the amswer 1s negative. The fact that this 1s so is strongly
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dependent upon the presence of the non-linearity, for i1f the non-limar
term is dropped the equation

(1.17) u=aou" +u

is obtained, If a 1is small enough, this equation has solutions which
are unbounded and have unbounded energy, yet satisfy the zero boundeary
conditions (1.1.3)%, Nonetheless, {1.1.7) and (1.1.2) together with
conditions (1.1.3) have the game energy equation (1.1.6).

~ The fluid dynamical explanation of the balancing effect of
viscous dissipation is well known. Intuitively speaking, the
"gsteepening" effect of the non-linearity and the dissipative effect of
viscoslty are opposing influences; as the former proceeds, the latter
increases until some sort of steady or quasi-steady equilibrium is _
attained, The ultimate maximum velocity gradient depends on the viscosiﬂy,
and tends to infinity as the viscosity tends to zero¥*, The crucial
point is the existence of this finite maximum for any positive viscosity,
If gradients greater than this maximum occur initislly, the action of
viscosity predominates to diminish them, For small positive viscosity
the regions of 1a£ga velocity gradient are localized in "transition
layers® like slip or boundary layers and, in compressible fluids, shock
layers. Thus houndednegs of the veloclty gradient can be interpreted

as pogitive thickness of the transition layers.
*

If a= wfd, u{x,t) = e("h1)t/# sin x is such a solution.

A%
More precisely, as the "Reynolds number® tends to infinity,
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Applied to Burgers! problem, arguments of this kind suggest
the uniform boundedness of u' and, a fortiori, that of u. To the
fluid dynamicist the correctness of such deductions is intuitively
obviocus and the reasoning behind them sufficient "proof"., For the
question of why slip or shock discontinuities do not appear, he finds
a satisfactory answer in his physical understanding, which is based
on empirical evidence and study of special cases of mathematical
problems. ‘o the mathematician the same question of why has different
meaning; the physical arguments are at beat a heuristic method which
strongly suggests ths truth of certain mathematical theorems. To him
the problem is then to produce tools to prove these theorems and to
generalize them or find their mathematical, rather than physical, rationale,

By injecting this query of why, in the mathematician's sense,
at various points in a discussion of Burgers'! problem, one finds the
genesla of the present investigation. In Part I a class of problems
generalizing Burgers' is introduced; it is proved that so long as a
solution v(x,t) exists, v and +¥' admit a priori bounds independent
of t. As byproducts of the methods of proof some results on the
decay of influence of the initial data and on the variation with t
of the number of crossings of a stationary solution are established.
Applied to Burgera' problem, the last mentioned result implies that
the "turbulent fluctuation" does not increase with time, in the sense
that the mmber of zeros of wu(x,t) in 0 < x <1 does not increase.

The same methods of proof permit the conatruction.and discussion
of some examples of problems P which illustrate some intuitively
plausible possibilities of pathological behavior. In one example, feor
ingtance, suitable choice of initial data insures the boundednessof
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a solution for all +t, while other cholces of initial data suffice to
guarantee that the solution does not remain bounded for more than an
arbitrarily short duration of time, 1In another example, it can he shown
tha£ the soiution v adnits a uniform a priori tound, while v' admits
no such bound,

In an apnendix, some special features of Burgers! problem
are discussed, If a, in (1.1.2), is small enough, Purgers' problem
admits a (finite) multiplicity of solutions independent of time, Some
features bf these solutions are established and some problems connected
with them are discussed, In particular, "transition layers" are
observed in these sclutions and the dependence of the "thickness! of
these layers upon a as «a =» 0 1is examlned and compared with implica-
tions of the theory of Part I.

If Purgers! problem is modified by deleting the input term
from eQuation (1.1.2), & nev model of turbulence is obtained. This
model can be called "decey of turbulence in a box", since the obvious
medification of the energy discussion above meskes it intuitively plausible
that absence of the input term will result in uniform approach to the
only "rest" solution, u = 0, DBurgers has also studied this problem
and varistionsof it obtained by using non~constant boundary date to
provide energy input., It was observed independently by J.D. Cole [2]

and E. Hopf [3] that theequation involved,

(1.1.8) 4 + ua' = qu",

can be reduced to the linear heat equation by a suitable non-linear

transformation of the dependent variable, Cole used this fact to study
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problems for (1.1.8) from the point of view of the fluid dynamicist;

and Hoér used it to construct an extensive and rigorous discussion of

the initial value problem on the iInfinite line, including study of the

1limit of the solution as a + 0 and of a generalized notion of solution
Although Burgers' problem is substantially simplified by

putting (1.1.8) in place of (1.1+2), the two problems have a structural

similarity important to notice here. The problem

(1.1,9) 1 +un' = qu® + ku k = constant
(14143)  u(0yt) #u(l,t) =0

(1e144) u(x,0) = U(x)

is Burgers! if k= 1 and the simpler one if k=0, If v=Ikx -1

is introduced in place of u, this becomes

(1.110) v = av" + (v = kx) v

(1.1.11)  w{0,t) 2 05 vw{i,t) = k.

(1.1.12)  v{x,0) = v(x) (where V(x) = kx = U(x)).

Equation (1.1.10) belongs to that class of equations (1.1,1) for which
F satisfies

(141413)  F(x,t42,0,0) 2 0

1

FeC for 0x<1,0<t <o, =w<gz,p,r <+ and

(101214) 4 F(x,43,007) 2 a > O
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For any F +the following decomposition is possible (cf. Hopf [4])

(147415)  F{Xytsz,pyT) = Al{X,t2,py7) + B(xstsz,p) + C(x,t,2),
where

A(Xs%524p,0) B O

B(x,t,2,0) = O,
and, in fact, is accomplished by defining

A(xyt,2,p,T) = F(Xst,2ypsr) = F(x,t,2,p,0)
B(x,t,2z,p) = F(x,t,2,0,0) = F(x,t,8,0,0)

C(x,t,z) = F(x,t,z,O,D).

If F satisfies (1.1.14), then (1.1.15) can be put in the

form
(1~1~16) F(x,t,z,p,r) = a(x,t,z,p,r)r + b(x:t’Z:P)P + c(xit’z)
whare

(1.1 .17) a(x,‘b,z,p,r) ?. a > 0,

In accord with the statement of problem P, it must be assumed that
F(x,ts2,p,r), and thérefore a(xst2,pyr)r, 18 a non~decreasing function
of r. Of course, this will follow from (1.1.17) if a is independent
of r.

If, in addition, P satisfiea (1.1.13), c(x,t,z) = O,

Motivation is thereby provided for the following generalization of

problem (1.1.,10 - 12)z



(1s1418) v = afx,b,v,v' ,v")¥" + b(x,t,v,v')v'
(1.1.19)  v(0,t) = B(t);  v(1,t) = ¥(t)
(121420)  v{x,0) = V(x)s

Problems of this type will be studled in Part I,

With suitable differentiability assumptions, the introductilon
of V(xyt) = w(x,t) = (1 = x) F(t) = xw{t) in place of v will
reduce the boundary values (1.1.19) to zero, the new equation being of
type {1+1.1) with F given by (1.1.16) (i.e., not satisfying (1.1.13)).
As a consequence, there will be occasion to consider this more general
equation,

Finally, it is noteworthy that 4the methods used here have
application to maﬁy interesting examples of equations excluded from
consideration here by the assumptions on the function a. The

equation v = (v")3 is a simple 1llustration,

2, Ordinary Differential Equetions. If a mmmerical approximation to
the solution of a problem like Burgers' is needed, the most common
procedure 1s to construct an approximating discrete problem by sub-
stituting sultable divided differences for the derivatives, The differ-
ential problem is thereby replaced by an algebraic one, which can, as
a rule, be solved numerically by iterative algebraic methods. Under
favorable circumsiances the solution of the difference problem will
yield a good approximationto the solution of the differential problem.
This approach seems natural if one has & machine--like a

modern digital computer-e-adapted to the rapid performance of algebraic



operations. However, the existence of machines—=1like differential
analyzers or analog computers—adapted to dealing directly with
ordinafy differential equations suggests the idea of carrying the dis-
cretiztion process only so far as 1s necessary to replace the partial
differential equation by a system of ordinary equations, For a problem
like Burgers' there are two possible cholces: If "time" t 1s discre-
tized, the problem can be reduced tc a series of two point boundary
value problems for second order ordinary differential equations; if
“gpace” i is discretized, an initial value problem for a system of
first order ordinary differential equations is obtained., Part II

of this thesis is concerned with some aspects of problems of the latter
kind,*

/

Specifically, in Part II attention is focussed on

Problem Q: To find vk(t), k = 1,25.049n=1 satisfying

. 2, .
(2.11) v, = a(k/n,t,vk)n (Vi1 = 29 * vk-d)

+ b(k/n’t’vk) 'g’(vk*.‘ - vk..*) k= 1,2’000’11-1

(24142) vc(t) & g(t); vn(t) g v(t)

* 1t may be mentioned that the former approach has been employed by

. Rothe [5], not for numerical purposes but as a theoretical toolj
by passage to the limit of refinement of the discretization, he
obtained a local existence theorem for a certain resiricted subclass
of problema P, The initial value problem on the infinite line for
a similar class of equations has been studied through difference
equations (i.e., both variables discretized) in a recent comprehensive
paper by F, John [6]. The method studied here has been mentioned

in connection with numerical methods but does not seem to have been
mach used as a theoretical method. Some related problems ireated

in the Russian literature [7] have not so far been assessed by the
writer.




(2.1 03) vk(o) = V(k/n) 'k = 1'929»0.-'0”"1!

where f, ¥, V are given data functions, as in (1.1.19 = 20),
a(x,t,3) 2 a > 0 and b(x,t,2) are given coefficient functions,
and n > 2 1is a positive integer. Problem Q arises by an obvious
'approximation to (1.1.18 = 20) where, however, dependence of ihe
coefficients on v' and v" is excluded.

Briefly, the program of Part II is the investigation for
problem Q of analogues of some results obtained in Part I for partial
differential equations., For example, questions of uniform boundedness
of Ivk! and % 1¥ya1 = ¥,.1] @are studied, There is, however, &
basic distinction between the meaning of ™umiform" as used in Part I
and as used here. In Pert Iawmiform bound for |v| or |v']| is
a bound independent of t+ and x. A uniform bound for lvkl or
% ¥4y = v, |» however, is a bound independent of t, k, and of m.
Bounds of the latter sort are clearly a prerequisite for discussion
of the limiting procedure involved in indefinite refinement.of the
discretization, It is interesting that the analysis shows in a
particularly clear light the necessity of having n large in order
that the behavior of the solution of a problem @ should parallel, even
qualitatively, the behavior of the solution of the analogous partial
differential problem, It will be seen in one instamce that n large
is both necessary and sufficient for uniform boundedness of Ivkl.

The more restricted nature of the results in the discretized
case than in the continuous case appears already in the exclusion of

the divided differsnces from the functions & and b in (2.1.1). The



degree to which such restirictlons are essentlal and not due to weakness
of the proofs is not MWﬁ. Roughly spsaking, the source of difficulty
is the following simple fact: If the meximm of v(x,E) is attained
at an interior point X of [0,1], then +v'(X,%) = 0; if, however,
the maximm of Vi for k¥ = 0y144e.9n 13 attained at ko’ 0< ko < n,
it cannot be inferred that -;-n(vk - vk_1) vanishes, or even that

it is small,
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PART I: CONTINUQUS CASE

30 Bounds LO; v{x,t).
3.1, XNotation: For 0 < T < w,

s [(x,t)][t =0, 0<x<1; or x=0,1, and 0<t < T]
R= [(x,t)|/0<x<1 and 0<t<7T]
S =T +R.

ilthough it is not indicated explicitly, T, S, and R always depend

on the choice of T,

3.2, Heuristic for Boundedness. 1Let v(x,t) satisfy v = ay" + bw!
where 2 > 0 and a, b may depend on Xyt,v,v',v", If max v(x,t)
for x e [0,1] is assumed at interior point x, then v'(x,%) = O,
v(x,8) < 0 and ¥(X,%) < 0; if assumed at an endpoint, then

v(x,8) <max v on T. Similarly, minv is assumed on I’ or at
point where v > 0. This suggests that the meximum and minimum of
v(x,t) are assumed on T'. To precise this the following lemma proved
by Westphal {8] will be useful.

3¢3. Lemma 3.3.1: Let F(x,t,z,p,r) be a non-decreasing function
of r for any fixed values of other arguments., lLet v(x,t), w{(x,t)
be two functlions such that

(1) vow are (jointly) contimuous in §

(11) v,v',v",w,w',w" exist in R



(111) v < F(Xyt,v,v' ,")
;1 > F(XQt’W’wt ,W")
(iv) v<w on T,

Then v<w in 8.

Proof: let g*w-ve Then g>0 on I, If g>0 in 8§,

nothing to prove. Otherwise the subset of S for which g < 0 1is

closed, so compact and there exists a point (X,E) such that 0<x <1,
g{x,¥) = 0 and g(x,t) >0 for 0<%t <%, Examining differences

one sees that g(x,%) < 0, g'(X,%) =0, g"(x,%) > 0. By the inequalities

(411) evaluated at x,%

é > F(E’%.’W’W' suM) - FGE:E!V’V’ 2 7")

= F(;,E,u,u' ,g“ + V") - F(;,E,V,V' QV") Z ]

contradicting g < 0 at x,%.

Remark 1

-

In (iii) it clearly suffices that the strict inequality

holds in at least one of the two inequalities for each (x,t).

Remark 3,3,2: The rectangular strip region can be replaced by a
region x, (t) < x < xz(t) where x1(t) < xz(t) are continuous functions
for O i t _<_ Te

3¢4Q gcundedness Theorems,
Theorem 3.4.1: let v £ C(8) A D2(R) satisfy

(30!&01) ; = a(x,t,v,V’ ,vﬂ)vﬂ + b(x,t,v-,v‘ )V‘ in R



where

(3.4.2) a(x,t,2,p,r)r 1is a non-decreasing function of r,

Then

nin v < min v £ max v < max v,
r S S r

This theorem will be obtained as a case of the following one.

Theorem 3.4.,2: Let v £ C(S)n DZ(R) satisfy

(30403) :7 = F(x,t,v,v‘ ,V”) in R
vhere F 1s non-decreasing function of r. If f,g are functions

defined on 0 < x <1 such that

(1) £.g € 6([0,11) n D°((0,1))
(11) Flx,t,f,f',f") < 0; F(x,t,g,‘g' s€") >0 in R

(i11) F(x,t,2,f',f") and F(x,t,z,8',g") are non-increasing

functions of 2z for (x,t) £ R. [cf. Remark 3.4.2]

(iv) g<v<f on T, (This means g(x) < v(x,t) < £(x)
for x=0 or x=1, 0Lt<T; and for t =0,
0<x<1,)

Then g<v<f in 8.

Proofs let £ > 0, w(x,t) = g(x) - ¢ -ct, Then w<v on T
and W < 0 2 F(X,6,8,8"»8") < F(x,tsg=c=€t,g' 4g8") = Fxyt w0 ,u")e
By Lemma 3.3.1, w<v in S, letting £-0, g<v in S. In

the same way, v < f.



Remark 3.4.13 If F(x,t,2,0,0) # 0 the conditicns of Theorem 3.4.2

are fulfilled if f,g are the constant functions f = max v, g = min v.

T r
This proves Theorem 3.4.1.

Remark 2: Condition (11i) of Theorem 3.4.2 can be replaced by
the demand that F satisfy a certain Lipschitz condition with respect
to z. This will be discussed later; cf. Thecrem 7.3.1.

Remark 3,4,3: A stronger "maximum principle! than Theorem 3.4.7

can e proved under suitable circumstances; cf. Nirenberg [9].

4. Asymptotic Boundsg for y(x,t)}. This sectlon contains a result
reflecting the decay of influence of initial data observed in certain

problems P.

Theorem 4,1,1: Iet v £ C(S)n DZ(R) satisfy in R the equation
(3.441), with condition (3.4.2), for every T > O, Assume, in addition,

that there exists a constant a sueh that
(4.7.7) a(x,ty2,p,r) 2a>0,

for 0<x<1; 01t €®; = < z,pyr < + o3 and there exists a

function A(%) ¢ ¢’ (=o< & < +») such that for fixed B, > 0
-4t
suP!b(XQt:Zs $e )l < ﬂ{f ) < o,

the supremum being taken over 0<x <15 0<t <5 |z| < B,
0< § =1, Suppose also that the values of v on I' are bounded
independently on T for all T > Q.
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Then, given € > 0 and T, > Oy there 1s a T, 2 To

such that
inf v(x,t) = € < v(x,t) < sup v(x,t) +¢
x=0,1 x=0,1
2T 2T

holds for 0<x< 1, + 2 Tqa

Proof: No loss of generality goes with the assumption T_ = O. Define

K= sup v(x,t) and wix,t) = £(x) e‘“‘t + K

x*0,1

>0
vhere [ d1s a function andm < 1 a constant to be specified later.
The upper bound of the theorem follows from Lemma 3.3,1 if positive
£ ¢ C%([0,7]) and M > O can be found so that £(x) *+ K > v(x,0)

and slso so that
W > a(Xyta v, vt v + b, t,vew! Ju!

in R for all T > 0, This is equivalent to
(4.1 02) 0> a(x,‘t,v,v' ,V")f“ + b(x’t,v’f' e-nt)f' + Y\fo

By assumption, there is a B  independent of T such that vl < B,
on ' for every T > O, By Theorem 3.4.1, the same bound holds in 8,
Thus Db(x,t,v,f! e-“t’) < f3(£'). Suppose now that for x ¢ [0,1], f
satisfies

(4e1.3) afr + B(£1) + »f =0

{4o14) f£m <03 £1>0,
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Then £ also satlsfies (4.1.2)s Let X' be & constant such that
K+ X' > wax [0, max v(x,0)]s If £(0) = XK', then f' > 0 implies
f(x}) + K > £(0) + § =K' + K> v(x,0), Let X" >0 and let f be
the soiution of (4.1.3) satisfying the initial conditions £(0) = X',
£1(0) = K"; this f depends on the parameter W\ , [he proof will be
complete 1f it 1s shown that, for some positive M , the solution exists
over [0,1] and satisfies inequalities (4.1.4). +Lhis can be done by
a continuity argument, which follows,

.Consider first the case M = 0; then f satisfying
af" + B (£Y)f =0, £(0) =K', £'(C) = K" > 0 exists for some interval
I: 0£x<x <o snd is unique by = classical theorem., For x e I,
£1(x) > 0 since f1(X) = 0 would imply that f(x) and g(x) = £(x)
are two solutions which satisfy the same initial conditions at X and thus
f(x) = £(X) by the uniqueress theorem; since f'(0) > 0, this cannot
be. Because A (f') > 0 by (4.1.1), the equation then yields f¥ < 0
in I and therefore 0 < £1(K) < X" and X' < f(x) < K' + K"x in I,
By the classical extension theorem, X, = o may be assumed, (The
same result can be obtained, incidentally, by using an explicit
representation of the sclution, cf. 5.2.)

Congider now the general casej a classical theorem guarantees
the continuous dependence of f,f',f", and the maximal interval of
existence on the parameter M . It is readily inferred that My > o
exists such that f exists in [0,1] and satisfies (4.1.4) for
0<n < M,

The proof for the lower bound of the theorem is obtained from

the above applied to =-v,



5. Bounds for ¥'(x,t).
5.1, Some Heuristic: To study the boundedness of +v', a first crude
attempt might consist in differentiating the differentlal equation with
respect t¢ x +to find an equation for w & v! of the form
W * G{Xytyvew,wt,wh) and then to try to develop scme kind of maximum
principle applicable to w. Even granted success this far, however,
the proé'ram stumbles over the difficulty that the given data provides
no a priori information sbout the values of w on the boundaries
x=0 and x =1,

In the treatment of the next section following, the boundedness

of v! 1is studied via that of the difference quotlent

V{yeh) = vix,t
(5141 L=y

The formsl proof, however, starts from a poimt of view somewhat different
from the one originally used. Because the latter presents some interest-
ing aspects of its own, it seems worthwhile to sketch here the ldeas
involved in order to provide motivation for the later, more .formal.
approach,

Tt is proposed to show that the quotient (S.i.l) is bounded
above independently of t _i‘br X7 € [0s1]s Tt is assumed that +
sa.tisfiesv an equation of foﬁ v=av" +by! with a>a>0 and
that a bound independent of t is already nown for |v|, so that
the mumerator of {5.1,1) is bounded independently of t. The maximum
of (.5.1 1) for a11 x,y £ [0,1], at a fixed t, is always assumed for
%X = ¥y, by the mean value theorem, and 1s therefore equal to the
maximum of +v'(x,t) for x & [0,1].
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Tnstead of (5.1.1) consider the modified quotient

Ev(rat) = vlxst))
(5.1.2) Y ;-xvx‘t. Oix<y51’

vwhere g(z) is a function to be determined subject to the conditionms
g € ¢2([0,B]), where B > sup(v(y,t) = v(x,t)), g(0) =0, g'(0) =1,
and g"(z) > 0 for 3z e (0,B). (It may be assumed that g(z) 2 0
for z € 0, since only upper bound is under scrutiny.) Iet o(%)
denote the supremum of (5.1.2) for indicated range of x,y. It is
plausible to assume now that for suitable g, the supremum is attained,
gay for x = ;c', y= ; with x < ;. Roughly speaking, introduction
of g glves a greater weight to a steep “chord" than to an equelly
steep "tangent¥,

Operating formally with the (not necessarily valid) assumption
that ©(t) haa a derivative, one finds

(5.1.3) eu>=ﬂﬁ§M1;l@ﬁnteﬁﬁ)-ﬂiﬂl

-x
' ~ -

(5.1.4)  o(t) = y:—&—-_ = [tewn» V') |gag = (87" * 2v') | oz Lo
In (5.1.4), and henceforth in 5.1, when g' is written, the value at
v(y,t) - v{x,t) is meant; similarly for g and g".

Now {5.1.2) as a function of y (or of x) alone has &
maximm at y =y (or x = x). If both X and y are interior
points, the usual necessary conditicns of calculus yield

C(8.1.5) v (X,t) = v (Tt =§
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(5.1.6)  vn{F,t) < - B 62, —vi(Et) < - E5 &,
g’

€ being evaluated at t.

For simplicity here it will be assumed that the coefficient
function b does not involve ¥' or t so that |b(x,v)| is
‘bounded independently of t by a constant /3 o+ Using, then,
(5.1.5 = 6) in (5.1.4) one finds

(541.7) -65:-33—; [-2:&32502*2/30-9;]=__ © .2 ﬂo-zu-—g%e].
y-x g' g y- g'

LR

In similar fashion, if one of ;,; is an endpoint,

(5.1.8) é<s—2— p&E. 5 . .Kg),
y-x g'
where D is a constant bounding |v(0,t)| and |v(1,t)] independently
of % (addit;lonal assumption on datal),
If both ¥,x are endpoints, then X = 0, y = 1, and
& = g(v(15t) = v(0,t)) < g(B), s0 that if © > g(B) this case does
not occur,

Combining these results gives: If ¢ is any pogitive number

eud if

(5.1.9) e>gm) ma [EE+F -wE51c-c<0
, .

then

(5.1.10) @ < - e6.
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If the cholce g(z) = = (1/¢c) log (1 - cz), ¢ > 0, is made,
then g"/g'2 = ¢ and g satisfies the conditions imposed provided
¢ < 1/B. Inequalities (5.1,9) ave then certainly satisfied if o is
large enough, and (5,1,10) implies that @ must be rapidly decreasing,
Specifically, 1f @ > g(B), © > g'(B), and @> (D + ¢+ /3 )/ca,

then (5.1.9), (5.1.10) hold and it follows that © < 9(0) e, Thus:
(5.1.11)  6(t) < max [g(B); &' (B); (D + &+ A)/ca; 8(0) &™1,

For the g chosen, Bg'(B) > g(B). Also, since g(z)/z is an

increasing function,

<

(5.1.12)  8(0) = K_(IEL.Q)_.:.ZS&.QD. wi%ﬁl 3
v(y,0) - v(x,0) y -

Lk

whers J is an upper bound for v'{x,0) (assumption on datal).

As a consequence (5.1.11) may be replaced by:

(D+e+n)
a3 o) s me Uy Tt B gy

From (5.1.13) bounds of two kinds can be deduced. If t 1a large
enough the last term in brackets is inferior to the first two and
may be dropped. Of the first two terms, one is an increasing and
the other a decreasing function of c¢, the two coinciding at a unique

™ with 0<c”<d, By giving ¢ the value ¢ the inequality is

optimized; in this way it is found that:

| g D*re* A,
(5.1.14)  v'(x,t) < 6(%) < min max [ 758 e

B(u+D+c~rﬁo)

- *

a
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This bound does not depend on J (on initial data) but holds only for
t > to vwhere to may depend on J3 i.e., it 18 an asymptotic bound,
A bound good for % > 0 can be obtained in similar fashion by retaining
the lest term in brackets in (5.1.13).
The inequality © < X implies that

Vyst) = v(x,t) < g [K(y =x)] for Ogx<y<?,

where g"1 is the function inverse to g. In 5.2 the difference
u{x,y,t) . v(yyt) - v(x,t) will be studied as a function of x,y,t
defined over a cylinder, 0 < x <y <1, 0<%t < T, with triangular
base, By finding a differential equation satisfied by u(x,y,t) and
applying the natural extension to a cylinder of Lemma (3.3.1), it will
be shown that there exists a function f sueh that f£(0) = O,

£1(0) <o and u(x,y,t) < f(y-x) for 0<y=-x<c and

0L x<Ly<1; 1..y, in a neighborhood of the diagonal face of the

eylinder. Then the constant £'(0) appears as the bound for v'(x,t).

5.2+ DBoundedness Theorems for y'(x,t}.

Theorem 5.2.1: let v & G (8) DZ(R) satisfy equation (3.4.1) in R
for some T > O, The coefficient a 13 assumed to satisfy conditions
(3.442) and (4.1.1). Assume alsoc the existence of a positive, even

function B(p) ¢ 01 (= < p < +x) such that for fixed B, >0

(5.2.1)  sup|v(x,t,3,0)] < B(p),

the supremun being taken over 0<x <1, 0<t <w, |z] < B, and

such that



- 25 =

(5+2.2) fw,f% is divergent.

Then |v'| eadmits, in S, a bound which depends only on the
constant a, the function @ , and the maxima of |v| on I, |v] on

the boundary lines, and Jv'] on the initial line,

Proof: The proof has two parts. In the first the asserted bound is
established for the boundary values of |v'|; actually, only the

upper bound for v'.(o,t) is considered because the lower bound and
the bounds for +v'(1,t) can be deduced from it by simple change of
variables, In the second part the bound is established for interior

points,

First Part: Let u(x,t) = v(x,t) - v(0,t)s Then u satisfies the
differential equation

(5.2.3) 1 = a(x,t,v,v sa"ut + bx,t,v,u' Ju! - v(0,t),

and therefore the inequality
(5.2.4) 1 < a(x,t,v,v'utjut + b(x,tyvautju? +>

where D is the maximm of |v| on the boundary lines. Let B denocte
mex |vi on T and J, max |v'| on initial line. The trivial case
B =0 1s excluded here.

Clearly, [u| vanishes on the left boundary, |u| < 2B on
right boundary, and |u(x,0)| < min{2B; Jx] on initial line,

Now let w(x,t) = £f{x) + ¢ + et. If £ oan be chosen such

that u<w on I and such that
(5.2.5)  w > a(x,t,vyv yut)w + bx,b,vew! Ju! + D in R, all £ > 0O,

then u<w in S by lemma 3,3.1, and, letting e - 0, u(x,t) < £(x).
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If, in addition, f£(0) = 0 and f£!'(0) < =, then u'{0,t) < £'(0) <
will yield the desired bound, A slightly modified procedure, to be
used here, also suffices; in the modification of Remark 3.3.2, lLemma
3.3.1 1s applied to the rectengle 0<x <X, 0<%t < 7T, instead of
to 8, wvhere 0< X< 1.

The inequality (5.2.5) is equivalent to
(542.6) £ > a(x,t,v,v! £ + bx,t,v,f' ) + D,

It suffices, then, to find X in (0,1) and f ¢ 02(0 <x < X)
satisfying in (0,X)

(542.7) af" + B(£')' +D=0

(5.2.8) f(x) > max[min(2B; Jx); EXE x]

(5‘209) f(O) = 03 o (X) > 0; fﬂ(X) < Q,

The solution of (5.2.7) satisfying f£(0) = 0; £1(0) = 8, > 0 can be

expressed parametricsally as follows

]
Lo}
a
(5.2.10) f(x(s)) = “/s_ D+ 3 A(z)
sO
(5.2.11)  x(s) = a fs D+ :ﬁ(zi

and for 0 <s <8  ‘this defines f£(x) satisfying (5.2.9) over the

Interval
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s
"o
= d
(5.2.12) =x(s ) =0<x <.x(0) a ‘/; ———L--S'D Tza0a) <%

where x(0) =@ only if D = 0 (constant boundary data). In fact
£f1(x(s)) =s and f"(x(s)) = = [D + 8/3(s)]/a. Now for any choice of
8, >0 and of X, 0<X < min{1; x(0)], the f constructed satisfies
(5..2.7) and (5.2.9). It remains to show that proper choice of s
and X will insure that (5.2.8) holds,

Define now

8
o
= dz , 2B
(542413) X =min [Gj; D+zp(25 3733 11,

for eny s, > 0. Then 0<X< 1 except in the (excluded) trivial
case B = 0, Because of the concavity of f(x) over 0 £x<X,

it is clear that
(5.2.14) £(X) > 2B

is both necessary and sufficient for (5.2.8). The First Part of the
prbof will be completed when it is proved that condition (5.2.2)

entails
(542.15) £(X) » = a8 8 @,

80 that (5.2.14) is assured for sufficlently large 8, <

To prove (5.2.15) define a function v(so) > 0 by the

requirement 8
X =g /° da
m(s,) R0
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It is clear from (5.2.13) and positivity of integrand that this is a
valid definition. If

(542.16) | jw ;ﬁé%a

is convergent, then w(s o) 1s bounded as s, = = (because the con=
trary would imply X - 0 as s, =« vhile (5.2,13) shows that X
is strictly positive and does not decrease as % increases). Condition

(5.2.2) then implies
-]
)
d
o

On the other hand, (5.2.16) divergent implies v(so) >« ag 8 ww
(because boundedness of v(so) would imply X -+ as s o = ™ ocontrary

to X < 1). In this case the second mean value theorem yields

SO sO
f(X)suAs)szﬂ(Zaas[;(s)n*:ﬁ(z =8 X%
Ls] (o]

where 1r(s°) <s< 8o+ Hence £(X) > w(so)x; for large enough s _,

o
however, X equals one of the positive constants 2B/J or 1 and

therefore f(X) »~ as 8, > P

It willl be assumed that s o is chosen large enough to insure

(5.2014)0

Second Part: Let u(x,y,t) = v(y,t) = v(x,t) for (x,y,t) in the
cylinder S with base A0<x<y <1 and extent 0<t < T,
Similarly for R* and I, Subscripts will be used for partial

derivatives o S U , U, 1 ete,
erivativeg of u, a x* Yy? Yyy?
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Then u satlisfies the differential equation

(5.2.17)  uy = a(y,b,9(y58),7 (758) 57" (35t )0,
+ a(x,t,v(xst) v (x48) v (x,t) )uxx

*
*+ o(F,t,v(y,t)u Jus + b(x,t,v(t),-u Ju, 1a R,
which will be abbreviated

»
(5.2.18) u, =G (x,y,t,u,ux,uy,un,uyy).

On the boundary faces of S* the following 1s known about u
(502-19) U(X,X,'b) 50

u(0,y,t) < min[f(y); 2B}, £ as chosen in First Part above;

(5.2.20)
u(x,1,t) < min[f(1 - x); 2B].

The remainder of the proof consists in showing the existerce
of an £ with £7(0) =0, £7(0) <w, such that u(x,y,t)
< f*(y -x) +ec+ct forall €>0 and for (x,y,t) in a cylinder
adjacent to the diagonal face 0<x=*y <1, 0<t <T; say the
cylinder S specified by 0< x <y <1,y -x<X,and 0<t < T,
The first step 1s to establish an easy extenaion of lemma 3.3.1 to the
effect that

(5.2.21) u, < F(x,t,u,gﬂmy,uxx,uyy)

(502| 22) "rlt > F(x,t,w,wx,wy,uﬁ,wyy)
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in R** and u<wvw on 1"** jmplies u <w in S** provided F

is a non-decreasing function of each of its last two arguments. Since
the result, the conditions of validity, and proof are direct parallels
of these of Lemma 3.3.1, a formel statement is omitted here. Ietting
G" of (5.2.18) play the role of F in (5.2.21 = 22), one finds easily
as in the First Part that w(x,yst) = £ (y = x) + ¢ + et will

satisfy (5.2.22) if £ satisfies
(5.2.23) of M+ A(£) £ <0, £120 £M"<0 in [0,X]

From (5.2.18 = 19) one sees that u < w on the boundary

R
faces of S if

%* * *
(5.2.24) X =X and f(y-x)2f(y=-x) for 0Sy-x<X.

Because of (5.2.8), (5.2.24) also implies u < w on the base of S**.

Now chooge X = X, £ = f. Since f seatisfies (5.2.7 - 9)
and D> 0, f a fortiori satisfies (5.2.23) and (5.2.24). ‘In this
way it is found finally that u(x,y,t) < f(y = x) for 0<y -x < X.
Application to the function -u yields =-u(x,y,t) < f(y - x) and
therefore |u{x,y,t)| < f(y = x), and the asserted bound of the theorem
follows. The function (p) 4is assumed even so that the assumptions
are Inveriant when u is replaced by =-u., If theeveness is dropped,
it is necessary to assume that the integral of (5.2.2) diverges at

- a8 well as + oo,

Remark 5.,2.1: An example to be discussed later shows, in a sense, the

necessity of a growth restriction like (5.2.2); cf. Example 8,2.1.
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Remark 5,2,2: If v(x,t) 1is a function such that the assumptions
of Theorem 5.,2.1 hold for every T > 0 and if the suprema of the
maxima Dy B, and J for all T > O are finite, then the theorem
assures the existence of a bound for |v'| which is independent of
T. In certain problems P not satisfying hypotheses of Theorem 5.2.1,
the existence of such a bound mey be contingent upon the magnitudes
of D, By and .J and not merely on their boundedness independent
of T, [cfe Example 8,1.1]

Remark 5.,2,3: Some smoothness assumptions on v embodied in

ve 01_(8) N DE(R) are redundant, Exemination of the proof shows

that in order to get as far as the concluasion [v(y,t) = v(x,t)]| < £(y - x)
smoothness assumptions are needed for three purposes: (i) application

of Lemma 3.,3,1 and its analogue for a cylinder; (ii) reduction to

gero boundary values, ef. (5.2.3); (1ii) to obtain |u(x,0)|

2 |y(x,0) = v(0,0)}} < Jx. The following weaker assumptions suffice:

For {i): v eC(8); v, v', v' exist in R. For (ii): v(0,t), v(1,t)
eD(0<t<T) and |v(O,t)|, |¥(1,t)] bounded by D. For (iii)s

v(x,0) absolutely continuous amd [v'(x,0)| <J for 0<x<1,

From |v(y,t) = v(xyt)] < £(y = x) one then concludes for
0<t<T that |v'(x,t)] < £(0) for 0 <x <1 and that the
one~glded upper and lower partial derivates with respect to x are
bounded above and below for x = 0 and x = 1, If the partial

derivative v'(x,t) exists in S, it follows that |v'| < £'(0) in S,
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Remark 5,2.4: Theorem 5.2.1 has been formulated for equation (3.4.1),
because Theorem 3.4.7 glves prior assurance that the bound for |vi

in S depends only on its bounds on T, The proof then shows that

the bound for |v'| depends on the bound for |v| in 8, This remark
leads to the more general formulation following,

Theorem 5.2,2: Suppose the hypotheses of Theorem 5,2.1 modified by

replacing equation (3.4.1) by the equation
“(542e25) v = a(Xytav,v! ,¥v")¥" + b(x,t,v, v )Vt + e(x,t,v)

vhere the supremum of |c(x,t,z)] for 0<x<1,0<t <ew, |3] <B
is finite for each B > O,

Then the conclusion remains true if dependence on _max|v]

on I 1is replaced by dependence on max [v| on 8.

Proof: Presence of c¢ in (5.2.25) is accounted for, in proof of
Theorem 5.2.1, by replacing the D in (5.2.4) by a larger constant

depending on max|v|  on S as well as on max|i| on x = 0 and 1,

Remark 5,2,5:¢ Roughly speaking, Theorem 5,2,2 shows that for v
satisfying (5.2.25) and ancillary conditions, "shocks" do not form;
i.6s, |v'| can become infinite only if |v| does. Thecrem 5.2.2
provides the hest mathematical rationale attained here for the physical

statement "viscosity prevents shocks" [ef. Introduction].
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6, Agymptotic Bounds for ¥'(x,t).
In certain cases asymptotic bounds for +v' can be obtained

in mach the same way that they were obtained for v in 4. The
technigue will be sketched here, omitiing a fcrma]_. statement and most
details. The assumptions are those of Theorem 5.2.1 for gvery (instead
of some) T > O and with the additional restriction that the function
((p) of (5.2.1) may be assumed constant (B will denote the constant).
Theorem 3.4.1 yields existence of B independent of T such .that
lv] <B in S for T > 0 and hence [b(x,t,v,v')]{ <A in s, all
T > 0,

Proceeding as in proof of Theorem 5.2.1, u is introduced
and inequality (5.2.4) found., Instead of a comparison function

w(x,t) = £(x) + £ + £t, however, one of form
(6.1.1)  w(xt) = £(x) e Y + g(x) + & + et

is sought, where f,g, and M > O are to be determined such that

u<w on I' and w is to satisfy in R an inequality for which
(6.1.2) (afn + 3£ + nf) e t+(ag“+pg‘ +D) <0, 0<x<1

is sufficient provided f£(0) = g(0) = 0 and f,g are increasing and
concave on unit interval, (It is not necessary to restrict to an
interval 0 < x < X <1 in this case,) Now let g(x) be the solution
of ag" +A3g' +D =0 such that g(0) = O, g'(0)=g'°>0 and
f(x) the solution of af" + 3 f1 + nf =0 such that £(0) = 0,

f1(0) = M 0> 0. An easy argument of the kind used before shows that
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g', sufficiently large insures g (x) 20, g"(x) <0 for 0<x <1
and g(1) > 2B .where B' is a bound for |v] on the boundary lines
(but not necessarily on the initial line, so B' < B), lLet g'y be
chogsen as small as is consistent with thgse conditions; then g o
depends on a, B(viap ), and D, but not on J. Provided amly that
f(x) > 0 +this choice of g(x) guarantees u < w on the boundary lines
(tut not necessarily on the initial line). Another argument of the
kind used before shows that if W d1s taken sufficiently small but
positive and if £ o is taken sufficiently large then the conditions
£1{x) ;>_'O, f* <0 and f(x)} + g(x) > min{Jx; 2B] are satisfied for
0 £x <1, Making appropriate choices of f’o and \ , one finds
u(x,t) < £(x) oM, g(x) and v'(x,0) < £ et . g',e Thus
g', appears as an asymptotic bound for v'(x,0). The other bounds
at the endpoints and interior points are treated in analogous fashion
by modifying proof of Theorem 5.2.1 in the way indicated here.,

It is not clear at the present writing whether the restriction
to 3 (p) = constant is essentisl for this result.

7. On Unigueness,

7.1. Modification of Westphal's Lemma,
Lemms 7,1,1: Replace the three strict inequalities im the statement

of Lemma 3.3.1 by non=strict inequalities of same sense and add the
assumption that w(x,t) and F satisfy the following condition.
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(7.1.1) TFor any K > O there exists an M independent of (x,t) in

R such that
[F(xyt,w + 2w sW") = F(x,t,w,0' ,ut) [< M|z}

in R whenever lz] < X,
Then the lemma remains true.

Proof: Define u(x,t) = w(x,t) + A+ et where A>0 and €>0

ere to be determined, Then v <u on I' and 4 =w + ¢, The inequality

(7.1.2) > F(x,b,u,utyu”) # F(x,t,w + A + £b,w! ,u")

Uy
holds for O0<x< 1, 0<t < to_g T provided

(7.1.3)  F(xybyw + A+ £t,wl,uwh) = F(x,t,w,w',w") < ¢

for same range of x and t,

In condition (7.1.1) let M be fixed by aome choice of K.
Then for (7.1.3) it is sufficient that A + et < X and M(A* et) < e,
It is asserted now that suitable choice of A >0 and £ > 0 will
guarantee these inequalities for 0<t <t  for any 1t < %4. For
let positive h <1 =Mt o te chosen and put A = %_c.. Then

M(A+¢et) Sech+Met, <c¢, all e>0,aﬂdﬂ*“‘(§)(h”)<%<x’

all e« 3.1..21(.
Hence (7.1.2) holds for any ty <£If and all sufficiently

small £, Application of Lemma 3.3.1 gives w(x,t) < u(x,t)
=u(x,t) + [B+4]c for 0<x<1, 05t 2%, Ietting c =0,
v(x,t) < wx,t). Since t, was arbitrary in (0s3)» this holds for

Gf_xf1,0f_t§£‘i.
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By application of the above proof to the strip 0<x <1
-;Zf_tg‘r, one finds v_<_\é for 0<x=<1, Ogtgﬁ. By stepwise

iteration it 1s proved after a finite number of steps that v <w in S,

Example 7.1.1: F(x,t,2,p,r) = /2 /2 (1 - X)VB;

v(x,t) = x (1 - x)(%)a; w(x,t) 2 0. Then v<w on I any T> 0,

and ;7 = F(x,t,\f”d' ,W")’ but v R is false,

7.2, Unigueness Theorem.
Theorem 7,2.,1: let T > 0 be fixed and let v satisfy:

(1) v e ¢(S); v,v',v" exist in R,
(11) v',v" bounded in R.
(111) v = F(x,t,v,v',v") in R,
where (iv) F(x,t,z,p,r) 1is a non-decreasing function of r for
any fixed values of other arguments: 0 < x < 13
0 <t S Tj =0 < 2,pyr < + 00,
(v) F{(x,t,2,p,r) satisfies a Lipschitz condition, with
regpect to the variable 3z, of the following form:

For any fixed constants B, B o’ B,» B all > 0, there

2’
exiats an M such that

B“P”F(xﬁtyz + z%,p,r) = F(x,t,2,D,7) VIZ*” <M,
the supremum being taken over 0<x<1, 0<%t < T,
|z*| < B, |z| < B, lp] 2 B;5 Ir] <B,, a*Fo0.

Then if u also satisfies the conditions (i) = (iii) and u =v on

'y, uw=v on 8,
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Proof: Because of (i), (ii), (v), both the pairs (v,F) and (u,F)
satisfy the condition expressed in (7.1.1) for the pair (w,F). Lemma
7.1.1 then implies both u<v on 8 and v<u on S, 80 u=v

on S,

Remark 7,2.,13 Theorem 7.2.1 removes .certain obscurities in a unique-
ness theorem proved by Westphal [8, Satz 2]. His "Lipschitz condition®
gseems to mean (‘7.1_.1) and is therefore a condition on the solution as
well as on the function F., Westphal proves his Satz 2 directly from
his lemma (Lemma 3.3.1) without introducing the modified Lemma 7.1.1.

More general conditions for uniqueness are also discussed in [8].

7.3+ Crogsings of Stationary Solutioms.
Theorem 7,3,1: Theorem 3.4.2 remains true if its condition (iii) is

replaced by
(1i1)' The pairs (f,F) and (g,F) satisfy the conditiomn

expressed by (6.1.1) for (w,F).

Proof: Put € = 0 in proof of Theorem 3.,4.2 and use Lemma 7,1,1

inatead of Lemma 3,3.1,

Theorem 7,3.2: let v e C(S)n DZ(R) satisfy v = F(x,t,v,v',v")
in R, F being non-decreasing in last argument., Iet h(x) be a
stationary solution of the same equation, h £ C({0,1]) Dz((0,1)),
and such that the pair (h,F) satisfies the condition expressed by
(7.1.1) for the pair (w,F). let x (t), xz(t) be two continuous
1, v(x,(t),t) & h(x,(t)),

and 'v(xz(t),t) 8 h(x,(t)) for 0<t <t <T. Then v(x,0) 2 h(x)

functions such that 0 < x, (t) < xz(t)

tA
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[or v(x,0) < h(x)] for x (0) <x =< x2(0) implies v(x,t) > h(x)

[or wv(x,t) < h(x)] for x1(t) <x< xz(t), 0Ot st

Proof: For the speclal case x1(t) s 0, xz('l'.) & 1, the proof is
immediate from Theorem 7.3.1. The proof for general case follows in

the same way from Remark 3.3.2.

Example 7,3,1: Applied to Burgers' Problem (1.1.2 - 4) with h(x) s 0,
Theorem 7.3.2 impliss that the number of zeros of wu{x,t) does not
increase ﬁith ts For if x = x, (t)y x = xz('b) are two curves in 8
on which u vanishes and if u(x,0) > 0 [or u(x,0) < 0] for

x, (0) £x < xz(o), then u 1is non-negative [non-positive] between

the curves so long as they do not nerge; i.e., no new zero appears.

4

ample 7.3,2t ILet a > 0 be a constant. The equation ¥ = qv" + v
has two stationary solutions vanishing on the boundary lines x = Q,
x=1, One is v = 0 and the other, sey vo(x), is a concave function,
If v(x,t) 1is a (non-stationary) solution in R such that |
v(0,t} = v(1,t) = 0 then Theorem 7.3.1 shows that O < v(x,t) < vo(x)

holds for 0 <t < T if it holds for t = O,

8. Two Examples.

8.1, Example 8,1.1: Let v e C(S)n D(R) satisfy
(8.1.1) v = qv" + v* a > 0, constant
(B.1.2) +v(0,t) = v(1,t) 2 0

(8.1.3)  w(x,0) = v(x)
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for some T > 0, where V ¢ 62([0,1])'. In contrast to Example 7.3.2
it will be shown here that, given a sufficilently small £ > O, there
exists a cholce of V £ C° such that T < ¢ is necessary. Specifically

a function u(x,t) will be constructed such that

-(8.1 od) 2 < auh + uL
(8.1.5) u{0,t) =u(l,t) 20
(8.1.6) u(%, £) »o as  t e,

2

If VeC* is chosen so V(x) > u(x,0), Lemma 7,1,1 will then imply

that v{x,t) > u(x,t) so that v cannot remein bounded up to t = c.

1
e -1

fz, £(0) = -f; Define

u = f1/2[P]f- Then (8.1.5 = 6) are obvious and (8,1.4) is equivalent

For brevity write p = 4x(1 - x) and f = £(t) =

i.e. f 1is the function determined by f?

1o

@.1.7) 272 232 4 £laa(1 - 20)2 + p° log lp]
- 3 5% + 2ap * 4a1 =~ 232 0.

The function in the first square brackets of (8.1.7) is positive except
at x = Jé-, where it vanisheé, The function (polynomial) in the secord
square brackets 1s strictly positive., Hence, if f is sufficlently
large, the gum of the last two terms 1s positive except in a small
neighborhoed of x = %. In fact, it is readily verified that the sum
 of these two terms is positive when [x - -12-} > 1/[2/Ff ] and bounded
below by a constant if |x = 5| < 1/[2/F ). The first term of

(8.1.7)is non-negative; within the interval |x = 32-! < 1/12 /%]
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it tends to infinity as f - « sgince in this interwval
Eﬁpngﬁpx | afﬂ“_%%;ﬂﬁeé»w

b —t
2/

3

x=

V] B

ag f -» oo,

Thus (8.1.7) and (8.1.4) hold if ¢ 1s sufficiently small, since
£(8) 2 £(0) =1 .

8.2, Example 8.2,1: 1let v e C (S) D2(R) satisfy

(8.2.1) v = qvn + (v)° a = constant

(8.2.2) w(0,t) m0; +v(1,t) =1

(842.3) v(x,0) = x

It will be proved here that if n is a real number, n > 2, and if

0<n<cn-1, whers 0<5=2:'12<1, then a positive k éanbe

found such that

(8.2.4) v (0,8) > £ oX(1-EN

for 0<%t <T. Since the right member of (8.2.4) tends to infinity
ag t » w, this means that no bound independent of T can exist for
|v']. on the other hand the bounds O < v(x,t) €1 can be asserted,
independent of T, by Theorem 3.4.1; cf. Remark 5.2.5. It should be
noted that for n > 2 the growth condition (5.2.1 = 2) of Theorem

5.2.1 1a not satisfied by (8.2.1).
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The proof conslsts of applying Lemma 7.1.1 to prove that

v(x,t) > w(x,t), where
(8.2.5) w(x,t) = e EKE[(1 + o*¥ x)® - 1],

That this function satisfies w(0,t) = 0, w(1,t) <1, and w(x,0) < x
for 0 €£x<1, 0t 13 easily verified. It remains to show that a
sufficiently small choice of k > 0 will insure that

(8.206) ;J 5 awh + (W‘ )n

For brevity write m = e*° so @ =kn and m > 1. Then

w=n o{(1 +mx)® = 1] and (8.2.6) is equivalent to

(8.2.7) =ew SV A[(1 + m) - 1] + 1 E[e(1 + mx)"" mx

< ar”C gle = DA + )2+ (e T+ m)T 7,

It suffices to have (8,2.7) with the first term on the left deleted.

Multiplying by mo (1 + mx)*~C ome finds

-2

n™ me(1 + mx) € aefe - 1) + £° pt1-n)em=2 (1

+ mx) (n=1)e-n+2

or
(8.2.8) m™ x(1 +mx) < a(e = 1) + e

since (1 -=n)e +n - 2 = 0, by definition of &, Because
x(1 + mx) < 2m, 1t suffices for (8.2.8) that 2k < -a + £° ; hence

k= %(cnd - a) > 0 is a suitable choice of k.
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PART II., THE DISCRETE CASE

9. Existence and Boundness for Solutions of Problem Q.
9.1, JLocal Existence.
Theorem 9.1,1: Let n be an integer, n > 2. If
| (1) a(x,t,2), b(Xsts2z) are (jointly) contimuous functions
of t+ and z for t ¢ (0, »], 2z €& (=x, +x), and each
fixed x £ (0,1)3
(11) #(t), w(t) e c({0,=]);
(341) V(x) is defined for x & (0,1);
(iv) a(X,ty2), b(X,t,z) satisfy a local Lipschitz condition
with respect to 1z, each fixed x £ (0,1).
Then there exist T > 0 and vk('b) £ 01([0,‘1']), kK = 14250449 n = 1, such

that the v, satisfy (2.1.1 - 3) for t ¢ [0,T]e The v, are unique;

~

l.e., if Vs

T (t) = v (t) for te [0, min(T,T)].

satisfy (2.1.1 = 3) for ¢ ¢ [0,77], T > O, then

Proof:s The conditions (1) - (iii) suffice for application of the
claasical existence theorem of Peano; Xamke [10,P,126]. Condition (iv)
implies that the right members of (2.1.1) satisfy a Lipechitz condition

sufficient for uniqueness; [10 , p,141].

9.2, Boundedness and Globsl Existence.
Theorem 9,2.1: In addition to (1) - (iii) of Theorem 9.1.1 assume that
(1) v(x) is bounded, x £ (0,1);

(i1) alx,t,2) 2a >0, x € (0,1), t ¢ [0Oy], 2 € (=0, + )3



(11i) v{x,t,z) 1s such that

I'S(z1 1z,) = sup Jo(xstyz) | < o
0<x<1
Osten

IA

%o}
1 ™~
(iv) n > 5 'b(b1 - €y b2 + so), where ¢ > O eand by, bz
are the infemum and supremum over I' of the function
defined on T by @(t), ¥(t), V(x); (I is defined

(v) v (8) £ € ([0,7]), k = 1,2,000y 0 = 1, satisfy (2.1.1 - 3),

t e [O,T]o
Then
(9.2.1) b, < min vk(t) < max vk(t) < by 0<t<T,
Ogk<n Osk<n

Proof: Put M(t) = max vk(t) and suppose, contrary to the asserted
O<k<n
upper bound, that M(t ) > b, for some t_ ¢ {0,7]. Choose e > 0

sufficiently small to insure M(to) >b, +¢ and ¢ >¢&. Then

2

¥ = inf[t|M(t) 2 b, + €] exists. Since M(0) <b,, 0< T < T,

2

Because M(t) dis contiruous, M(T) = b, + €. In the remainder of this
proof, let k be the (fixed) greatest integer such that vk(f) = M(E);

clearly, O<k<n and w'rk(f) 2 O By choice of k, v, = b, *+ &,

2
Ve " gy 20 ard vy -V, <0 at t =1, Moreover,

Io(Es £ v @D = [bEs T by + )] < By = g0 b, + )

< 2an by 2na(-§, E! Vk({))'
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k = k -
Using the abbreviations a, = a(Z, t, vk(’r:)) and b= b(3, T, vk('t)),
this may be written as 2na, * b > 0. At t= T the equation (2.1.1)

gives, after a slight rearrangement,
. n n
v, = 2(2akn + bk)(vkﬂ - vk) - 2(2akn - ‘bk)(vk - vk__1) <0

contradicting %k(g) > 0. Thus M(t) < by 02 t < T, and proof for

upper bound is complete., The same proof shows that max (-vk(t)) < b1 .

: 0<k<n

vhich is the lower bound. '
ample G.,2.,1t lLet n = 2, a(x,t,z) = —i%" b(xyt,z) = 2 - x,

(t) 0, W(t) =1, V(x) such that 0<V(x) <1, V(3) =1. Then

b A1l conditions

1/2%

o 1 1
1 " O, b2 = 1, The only equation l1s V"3V 7
other than (iv) are satisfied. The sclution v, (t) = 32-(1 +e ) does

not satisfy the conclusion of Theorem 9.2.1 for any t > Q.

Remark 9,2.1: Theorem 9.2.1 does not assert that the maximm of

vk(t) for 0<k<n, 0<t<T is actually attained on T, i.e.,

at one of the points ¢+ =0, x = i—t, k*=1,25e0e9 =1 or at a point
on one of the side boundary lines x=Qor 1, 0<%t <T. For any
fixed n, however, a solution is not affected by changing the values of
V(x) at points x # 5, k= 1,2,000s n = 1. By sultable change of this
kind it can be assured that the value b, is assumed elther on the side
boundaries or at one of the points x = X, k = 1,2,..., n = 1, and 1t
follows that the meximum of vk(t) is assumed on T. The advantage of
the formulation here is that b1 ’ b2 do not depend on n so that

{9.2.1) holds uniformly for all n sufficiently large.
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Theorem 942.2: To (1) - (ii1i) of Theorem 9.7.1 and (i) - (iii) of
Theorem 9.2.1 add the assumptions that |@(t)| and |¥(t)| are uniformly

bounded for t ¢ [0,#) and that (iv) of Theorem 9.2.1 holds for every

T > Q.
Define

(9.2.2) B, = inf b3 B, ® sup b,.
Voo ! 2 mo

Then there exist vk(t) £ 01([0,00]), kK =1,2,000y n =1, satisfying

(2,141 = 3); any such v, satisfy
(9.2.3) B 2 vk(t) < B, k = Oylyeaey n3 t & [040).

Proof: By Theorem 9.1.1 a sclution exists for 0 < t £T>0, In
conjunction with the & priori bounds of Theorem 9.2,1, a classical
extension theorem [ 10, p.135] shows that this solution can be extended

to 0t <,

10. Bounds for First Differences; Preliminary Lemmas.

10.1. Implicit Assumptions and Notations. In the remainder of Part II
it is assumed without i‘urther explicit mention that the hypotheses of
Theorem 9.2.2 are fulfilled., It is assumed further that ﬁ(t) and

¥(t) exist and are uniformly bounded for t ¢ [0Oy®), The function

V(x) 1s extended to the closed interval by defining Vv(0) = #(0),

V(1) = w(0), and the extended function is assumed to satisfy J < «, where

v(y) = V!’x!' .

(10.1 01) J = sup ¥ - x

Ogrey<]




The constants D, B, 4 are defined by

D = max[ sup |#|; sup |¥]];
ot ogt

B = 32 - B.’, cf. (9.203);

A G(B.!, B,)» cf. Theorem 9.2.1 (i),

Thus ]vj(t) - vi(t)l < B and |b(x,t,vk(t))| <A <2wm, 0<t <o,
0<1,J,k<n. The trivial case B = 0 ia excluded.
A function g and its inverse f are defined by

1

1 1
g(z) = < log 5 ~®<x<o;

f(x)'%(?oe.cx), - < X< +oo,

where 0 < ¢ < %. Both £ and g are increasing, f is concave,
g convex, and f£'(0) = g*'(0) =1, £(0) = g(0) = 0.
The following notation is used

Hij(t) 'Tg-i g(vj('t) - vi(t)), 0<1<j<n, 0<t <

fi(t) = max Hij(t), 0<t <o,
O<i<j<n

For T ¢ [0y®)y, r and & denote any peir of integers (depending

on %t and not necessarily unique) such that Hrs(f) = f(E),

10.2; Three Emaﬂ.
Lemma 10,2.,1: If H(T) is sufficiently large so that both

1
1 « ¢B

(10,2.1) H{E) > g(B) = % log
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and

(10.2.2) [RBSE) 45 - 20n temn 9—}’-@] < 0,
H(E)

then

(10.2.3) : B 21 (%) [93—(—)-+ﬂ - 2on tamh -‘%ﬂ].

Proof: It is clear that (10.2.1 = 2) are satisfied if H(E) is
large encugh, since tanhz-» 1 as 3z - «; and the agsumptions insure
that 2an >f3 . To prove (10.2.3) consider the four cases implicit

in0£r<8$no

Cage 11 0 =r <g=n, Hrs(t) = 0 g(vn(g) - VQ(*:)) < g(B).

ne-90

Hence (10.2.1) excludes this case.

Cage 2: 0 <r <s < n. For brevity the argument t is understood

but not written in what follows; also, a, 1s written for a(-g, 'E,vk(f))

k

and similarly for bk‘ The functions f and ' will occur with

three arguments and corresponding abbreviations are introduced:

= o&EEHD] o0 =R E D)

£ = f[.ﬂ_:f_:.lﬁ({)]; = f{é_:..i‘...?_l #(5)].

>

o n
With these conventions, H=H, =—7"7 g(v, - v,) and

Ve~V " f(-g-:-; H, ) = £ (gince f(g(z)) = 8). Noting that

g' (V -V)" g (f) 8-5.-,-, one finds



=8 .1
(10.244) H  =7T7 70

The differential equation gives, at t = T,

b = E - B - -
(10.42.5) v, 2(211&s + bs)(vsﬂ vs) + 2(2nas. bs)(vs‘__1 vs),
provided 8 < n, and

« _n n
(10.2.6) --171_"-2(2m1r + br)(v e vrﬂ) + 2(2nar - br)(vr - vr_1)

provided 0O < r,

_ . n
By the meximal nature of H, — 77775 g(*urs_‘..l -vr)gﬁ

and ——B— g(vs__1 - vr) < H, ylelding v

S-I'-‘l -vrsf-} a'm

g+

v -vrf_f_.

s=1
Hemce v .4 =7V, = (vs_H - vr) - (vs - vr) <f -f.

Similarly v, -v _, = (vg - v.) - (vo_q = v)2f-£.

Using these and 2na, * b 2 2na -4 >0 in {10.2.5),
* n n
(100207) vs 5 2(2nas + bs)(f+ - f-) + 2(2nas - bs)(f_ - f),
provided s < n. Applying the same method to (10.2.6) glves
. n n,
(10.2.8) v < 7(2ma + v )(f_ - ) +F(2na, -1 )(f, - 1)

provided O < r,
In the case (II) under consideration O <r < s <n, so

both (10.,2.7 - 8) hold., Adding and using (10.2.4)

o

I
H <
rs = 8 -7

5 [n%(a_ +a ), 22+ £) + Bb, - D )(E, - £)].



Because f 1is concave and increasing, f =-2f +f < 0 and

f, - £_> 0; hence

*

: 1 2
B S oo« 5 [20n(f, = 2f +£) +na(g, = £)]

or
: 2 f,=-f f, =28+ ¢
....ﬂ— . + - - + -
(10.2.9) B 2gar £ (s 2an f, = f_ I
A straightforward calculation reveals that
f,-2f+1¢ 3
- cH
(1 002.10) £+ "y f- B - tanh 2n
£ =-f ~ ~ 2H
S = .2 e , 28 ___rs
(10.2.11) ry =3 sinh = 2 3 s *
If (10.2.1 = 2) hold, /3 = 2an ’c.anh%-:li < _D.g_':(l_B_). < 0O
H
Thus (10.2.9) implies
s cl
H <28 _[f# -2 tanh 3]

and, & fortiori,(10.2.3).

Case IIIt O <r < s =n. Putting w’rs =¥ 4n (10,2.4) and using

{10.2.8) one finds

- f : f, -2+ 2f

n . + - w l + an
[n(f,,-f_j*z’a*“,n T, -1

+* -

1.

H <

By (10.2.,10 = 11), the definition of D, and relation -}—,- = gl (vB - vr).
< g'(B),

2 f -1 -~
o LD S 25 RERR IV S &H
Hrsf-n-r £ ( +2ﬁ antanhzn],

261§



2 f, -7

S - S = D' (B} - o
(10.2.12) H, S 70 SF [ﬁ *+{# - 2an tanh 3= 1.

Then {10.2.1 = 2), {10.2.11), and (10.2.12) imply (10.2.3),

Case TV: O =r < 8 < n, This case 1s treated in substantially the

same way as Case III, using \'rr "= ,5 and (10.2.7).

lemma 10,2.2: Iet Ym(t) e D([0y40])y each M £ &, where A is a
finite index set., Put Y(t) = max Ym(t). Suppose A(t) £ G([0,°])
mecA

is a non-decreasing function such that: Y(%) > A(Y) implies

% () <0, each m such that T (5) = ¥(E). Then ¥(t) < mex(¥(0);A(t)],

Proof: Since A is finite Y(t) is contimious. For £ > O define
W (t) = max[¥(0); A(t)] +c + et If Y(t) <W_(t), all € > O, nothing
to prove., In the contrary case, an £ can be chosen so that

T = inf[t]Y(t) > W (t)] exists. Then T > 0, since Y(0) < w_(0);

and Y(E) = W_(E), by contimity of ¥(%) and W_(t). ILet ‘3 be

an index such that Y (%) = ¥(¥). 1If 0<t < ¥, then ¥_(t) < ¥(t)

m m
< wc(t); and

)y - (&) >%_(F) -w_(t
Yﬁ() Ya()>€() t.‘()

= max{7(0); A(Y)] + € + €t - max[Y(0); £(t)] =€ - 2t
_>_ ?:(E - t)o
Dividing by (% = t),

Y_(£) - ¥_(t)
S > €,

£t-1
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which implies T.l_(’%) > e, But Y(¥) = ws(i) > A(T) and the hypothesis

. m

asserts Y _(t) < 0. The contradiction proves Y(t) < ws(t), 0t <o,
m

any £ > Q. letting & - 0 proves the lemma,

lemma 10,2,3: If n > -%-; (B +D) +€, £>0, then for % £ [04w)

(10.2.13)  fi(t) < maxle(B); ' (8); 22 tamn™ (3£ + £); f() ¢

oofs Apply Lemma 10.2.2 to the collection of functions Hij(t) 32:1&’0’

2act

0<1i<j<n,with ¥(t) = H(t) e and

2aet n+ﬂ £,

(10.2.14)  A(t) = e * s

max[g(B); g' (B), 2 tanh” (
To apply Lemma 10,2,2 it must be shown that
(10.2.15) H(E) e
implies

4 2act -
(10.2.16) == {Hrs(t)e ]<o, t=%,

Once this has been done, lLemma 10.2.2 states that i eza&t

«2act

< max{H(0);4(%)]
and multiplication by e yields (10.2.13).
Now (10.2.14 = 15) imply

f(t) > g(B); H(t) 2 g'(B); tanh ‘ﬂ‘”znt ?-""""‘Dz:nﬁ *

=3 [

The first insures (10.2.1); the second and third give

-'i'(é-)lm - 20n tann SIEL < _ 2,
H

By Lemma 10.2.1, H__(E) < = 2ac H_ (%), which is equivalent to
(1042416).



11. Bounds for First Differences.

Theorem 11,1,1: If n>%; (D +3 ), then

Vj (t) - Vi(t)

D +1
T-1 )

2an

(11.141) =n < max{1;B;J] + 2Bn tazh™ (=
for t ¢ [0,0), 0<1<j<m

Proof: Since ,g'_&g_s)__ is increasing for |z] < B,

v, =¥ . v, -V
(11.1.2) n-‘i—j-:—%- -Hij 'g_(jv?:_;;

< max[0;f] * lrﬁﬁﬂ 22y < mex[0,].

Using (11.1.2), the inequality (11.1,1) will be obtaired
from (10.2.13) by suitable choice of c. It is easily seen that
g(B) < Bg'(B) ana fi(0) e~R0C" <J Kgl < Jg' (B); cf. (10.1.1),
(11.1.2)s For sufficiently small e > 0, (10.2.13) implies

D6, g

f(t) < max[Bg' (B); g'(B); Jg' (B), 2 tamn™ 2en  n

(11.1.3)  f(t) < max(Re(Balad) 20, =1 D20, &y

1 = ¢B 2an n

Of the two expressions within the square brackets, the first isan
inereasing function of ¢ tending to infinity as ¢ -» % - and the
second 13 a decreasing function tending to infinity as ¢ -» 0 +. The
two are equal at a unique c*; the choice ¢ = c* minimizes the right

member of (11.1,3) and therefore optimizes the estimate.



A simple computation shows

11.1.4)  H(t) < mex[13Bad] max{13;B;J] + 2Bn tanh™! (—D-:-é- + &,
T 1.8 T 2an 1

Letting € - 0 completes the proof,

Corollary 11,1,1: For t > O,

- V=V
lim max n igmx[?;B;J] +§-£-D—§£l .

nwo 0<i<i<n J =
V=V
Theorem 11,1,2 ¢ In Theorem 11.,1.1 and Corollary 11.,1,1, n T1
v, -V
may be replaced by 1|

Proof : The maximum differences of v T - V)

by the right member of (11.,1.1), since the constants involved do not

are againbounded
change under v, V, B, ¥ wys Vs ~fy = ¥,

12. Asymptotic Bounds for First Differsnces.

1 1o 2
Theorem 12,1,1: If € > O, n>2a(D +4 ) *e,t23=1g 3
and t > 0, then

vi(‘b) - 'V;St)

7-1 DL L5,

£ B + 2Bn tauh™" (T‘;—' -

(12.1.1) n

Proof: As in Theorems (11,1.1 = 2), it is a question of proving that
the right member of (12.1.1) dominates H(t). Sinece f(0) < J 5{3@- ’
the last member in the square brackets in (10.2.13) is dominated by

the first for large +t; specifically
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fi(o) e™2%t < 3 5-]%-5)- o720t ¢ gy  ir et <y,

e v

i.00y if t 2 -2—2 l;og %. With this restriction on t the last
member may be dropped from (10.2,13); treating the remaining members

a8 in the proof of Theorem 11.1., it is found that

H(t) < max(E2AlLiB, 28 gy R2E L 5y,

1 = cB 2(1!'1
< B + 2Bn tamn” (B Lh .5,

Qorollery 12.1,0: If £> 0, %250 log3, ad 320, then

— V, -V
lim  max n—g—:—i—j‘ 5B(1+25)+&:ﬂ.

no  0<i<j<n

13. Another Method.
No strong discrete analogue of lLemma 3.3.1 is available as

yet. As a post mortem, this section is devoted to a weak anhlogue.
Although it was recognized too late for inclusion of details in this
thesis, this weaker lemma seems sufficient for proving the bounds of
Part II in a way that closely parallels that used in Part I for partial

differentlal problems,

Lemma 13.1,1: Let Ak(t)’ Bk(t)m Ck(t)’ k= 1,245009n =1, be
defined for + e (0,T], T > O, and satisfy

(13.1.1) &, (t) > [B (8], t e (01), ke 1, n=1].
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let vk(t) and uk(t) € C([0sT]) n D((047])s k = 031540esne If for
ke [1y,n=1] and %t € (0,T]

Ve S A (Vg =20 Y ) BV, ) O

{13.1.2)

We 2 A (g = 20t ) Y Bl = )+ 0y
and if

"o(t) < "o(t)i vn(t) < Wn(bt)v te [O:T]
(13.1,.3)
then

(1341.4) vk(‘h) < wk(t), x e [0, n], %t e [0,7],

Proof: Put g *w -v. If (13.1.4) holds, nothing to prove,
Otherwise T = inf(t| min g (t) < 0] exists. In the remainder of
this proof Xk means g‘(ﬁiﬁglreatest integer such that gk(f) = Olg.fn gi(’t.').
By (13.1.3) and eontinuity of & £e(0,7], ke {1, n =17, and
gk(’f) = 0. Since g, is differentizble at T amd gk(t) > 0,

+ ¢ [0,%), ék(f) < 0. The maximel cholce of k insures o (t) > o,

From (13.1 02) one finds
B 2 A (8hq — 26 * Bq) * Byl - g y)e
At t =% g = 0s & 4 205 84y >0y A *B >0, and therefore

g2 (e * By Bieyy * (A ) By &y g > O

a contradietion.
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Remark 13,1,1: If for each k £ [1, n - 1] and t ¢ (0,T] at least
oneof the inequalities (13.,1.2) is strict, then (13.1.1) can be replaced

by A 2 in], k¢ [1,.n - 1], % ¢ (0,7); for then the last
inequality of the proof reads

g > (A *B) gy * (4 - B) g 4 20

In typical application to Probleam Q, Ak'z n2n >0 and ]Bk] S.n@ ’
so that (13.1.1) would hold for all large n,.



APPENDIX: NOTE ON BURGERS' PROBLEM

When a > 0 1is sufficlently small, the problem (1.1.2 - 3)
has a finite collection, E(a), of non-zero stationary solutions, which
can be studied by the Poincaré~Bendixson method (cf. Burgers [11]).

Define

M{a) = max max fat (x) ],

u(x)eE(a) xc[0,1]

Let r{c) <0, R(e) > C be the roots of

(A1) ¢ =38 + log(l + s8) =0, 05 ¢ <o

and put

/R(c) ds
(he2) f£(c) =
r{c) (1 +8) Jc =35 +log(l +s)

From Burgers' analysis it follows that

M(a} = R{c(a))
if c(a) 1is determined by
fz(c(ﬂg)) =2,

%

It will be shown below that

(4.3) £(e) 2 Jo as ¢ - ®,
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It then follows that c(a) = ':,2'1'; as a - 0, and, from (A.1), that

(Ae4) M(a) = 'él; ag a -~ 0,

If, on the other hand, the method of 6. of thils thesis is
‘applied to Burgers' Problem in the formulation (1.1.10 = 12) (with k = 1),

it is readily found that

(1.5) g =1 (1=

is an asymptotic (as t +«) bound for |v'(x,t)|. [In fact, in
the notation of 6., D=0, B* =1, 5 =1; g(x) satsfies g" + g' = 0,
g(0) = 0, g'(0) = g!» g! being taken large enough so g(1) 2 1.]
Observing that u'(x,t) =1 = v'(x,t) and, from (A.5), that g = %
as a - O, the following statement can be made:

If u(x,t) 1s a solution of (1.1.2 - 4), 0 < t, then the

theory of 6. provides a bound, say m(a), such that
fut(x,t)| < m(a), 21l sufficiently large ¢t

and

n(a) = as a -+ O.

a

In comparison, the value M(a) is known to be attained for (stationary)
solutions and M(a) = -é!;. This shows that the bound of the theory is

sharp in the sense of its asymptotic dependence on a as a - O,
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*

Proof of (4,3): Split the integral (A.2) into the sum of an integral
over [r(c),0] and one over [O,R(c)]. Introduce & new variable t

by 8 = r{ct) in the first and by s = R(ect)} in the second. This

yields

LA y dt
(4.6) .f(c) = ﬁ- L [R(ctj - r(c'ﬂ] ﬁ 0 < g <00

Then (A.3)} is equivalent to

1 1
1 1 dat d
(A7) 1lin f [ - ] —& . ] —& L,
cme Jo R(et) Tr(et) T A o V-1t
Choose a, 0 < a < 1, and split the integral on the left of (4.7)

into four integrals, as follows:

1

1. = b _dt s I = 1 at
; :
1 A r(ct) I 2 o R(et) o

(e e @
-1 dt 1 at
1= Mot) — 3 L~ R(et) ,—= °
o J1 =1 o V-1
To prove I1 »2 ag ¢ »« it is enough to show that

1
lin (1, - —& _y =

c-xc0 c-o. V=1
or
1 1 at
1im [1 &t __ . o,



Since r(c) is decreasing and tends to =1 as ¢ = «,

1 1
| 1 at 1 dt
0 - 1 + —— - 1 b emtm— e e——— 1, 0
< La [ T(C)] F"“"“""1 s -<- [ r(c1-a) ] | fo '.,....1 -.__t

ag C >,

In the same way

1
Rie'™@) Jo /T -1%

-0

because R{c) increases to infinity.

Similarly, 2[3, I4 -» 0 as ¢ -» o, For example, introducing

8 = tc as & new varlable in I,,

4

From R(s) ® s as s +o it follows that the righthand member of

this inequality is asymptotically equivalent to 0-dlxs ,,

c
ag ¢ >,
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