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1
ABSTRACT

In this paper, three prablems that involve the be-
havior of conduction electrons in a magnetic field are con-
sidered: the change of resistance in a magnetic field, the
setting up of a tightly bound electron approximation in a mag-
netic field, and the effect of & magnetic fleld on Floguet's
theorem.

To treat the change of resistance of monovalent
metals in & magnetic field, we use the nearly free electron
approximation., Analytical methods for the evaluation of the
integrals that arise in the usual treatment are developed by
expressing the energy and relaxation time in terms of series
of cubically symmetrical spherical harmonics. Numerical re-
sults of the correct order of magnitude can be obtained for
the Hall coefficient and the coefficients of the change of
resistance. However, contrary to the available observations,
the ratio of the transverse to the longitudinsl change of re-
sistance has a minimum value of about four. The breakdown of
Ohm*s law at high current densities is considered and a qual-
itative, physical dlscussion of the various phenomena is
given.

In an attempt to get wave functions that satisfy
Schr8dinger's equation when the magnetic field is included in
the Hamiltonian, we consider the extension of the tightly
bound electron approximation in which the atomic wave func-
tions are those for atoms in a magnetic fileld. The problem

is set up, the necessary integrals are evealuated, &and the
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problem is reduced to the solution of & set of simultaneous
equations. Various methods of solution are considered in
detall, but the general case proves to be intractable. T/hen
considering boundary conditions, we find that in order to
have cyclic boundary conditions the magnetic field must be
limited to a constant that is inversely proportional to the
square of the pericd of the cycle. ©Some indication of the
propertiss of a general crystal is obtained by determining
the energy levels and the magnetic susceptlibllity of a two by
two square lattice.

4 theorem fundamental to much of the electron
theory of metals is Floquet's theorem, which states that the
wave functions of an electron in a crystal lattice can al-
ways be chosen so that they have the form y{rl=exp(ik-r)ulr)
ﬁhere u(;} has the perlodicity of the lattice. e find that
the usual proof of this theorem breaks down in a magnetic
field and it appears that the ordinary form of the theorem
does not hold there. It would also seem that the important
method invented by’%igner and Seltz, and extended by Slater,
for the treatment of cohesion is not valid in a magnetic

field.
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PREFTACE

In this paper three problems are considered. /hile
no attempt is made to give a systematic treatment of the en-
tire question of the effect of & magnetic field on the conduc-
tion electrons, by the time we have considered the three
problems and some of the related topics that they suggest, we
will have a fairly complete survey of this question.

The two general methods of treating the conduction
electrons in a metal are by the use of the nearly free elec-
tron approximation and by the use of the tightly bound elec—
tron approximation. Neither approximation gives a very good
description of the state of the conduction electrons, since
this state lies in the intermediate region where neither ap-
proximation is really valid. If any problem can be treated
by both approximations, the common features are usually ac~-
cepted as giving a true description of the state. Frequently
only one spproximation is useful and then ome can only regard
the results as giving an indication of the actual state of a
meteal.

We will use the nearly free electron approximation
t0 discuss the Hall effeoct and the change of resistance in a
magnetic field. Here we assume that the electronic states are
the plane waves of free electrons, modified by the pericdic
lattice potential. The effect of electric and magnetic fields
is given by a continuous change of the electrons from state to

state. Interactions with the lattice cause the electrons to



tend toward a state of thermal equilibrium with the lattice.
The balance between these two oppositely directed tendencles
is expressed mathematically by means of Boltzmann's equation
and the use of a relaxsation time. This treatment is particu-
larly adapted to transport problems so that we will use it to
treat the Hall effect and the increase in electrical resist-
ance produced by a magnetic field. ‘“hen comsidering the use
of & relaxation time, it will be pertinent to consider its
use in treating the deviations from Chm's law at high current
densities although no magnetic fleld is inveolved,

e ought to be able to determine the effect of a
magnetic field on the conduction electrons more accurately if
we use weve functions that are solutions of Schrbdinger's
equation when a magnetic field is present than 1f we think of
the magnetic field as & perturbation that shifts the electrom
from one state t0 another where these states are represented
by wave functions that are exact only when there is no mag-
netic field. The tightly bound electron approximation seems
to be the appropriate one to use in finding wave functions
that are valid in a magnetic field since all that we will have
to do 1s use a linear comdlnation of atomic functions that
include the effect of the field. We examine in conslderable
deteil the question of boundery conditioms, and, 1n particu-
lar, that of cyclic boundary conditions. The most useful and
most accurate information given by this treatment 1s %the ener-

gles of the states, and from this we can calculate the magnetic
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susceptibility. In the general case the problem can be re-
duced to the sclution of a difference equation or the reduc~
tion to diagonal form of a matrix. This is carried out for a
two by two lattice end the susceptibility of such a orystal,
or molecule, 1g determined.

When there is no magnetic field, Floguet's theorem
states that the wave functions of an electronm in a crystal
lattice can always be chosen so that they are of the form
Q:(;)aexp{i_lg-g]ug;) where u,{r) has the periodicity of the
lattice, This theorem is &;'fundamental importance through-
out the theory of metals and we would like to use 1t in the
closely bound electron'approximation. However, investigation
shows that the usual proof of the theorem breaks down in a
magnetic field and there are indications that 1f there 1s any
analogue of the theorem thet holds in a magnetic field, its
form is considerably different from the usual form. iihile
investigating the widespread consequences that will follow if
no analogue of Floquet's theorem can be found that holds 1in &
magnetic field, we consider the effect of 2 magnetlc field on
the important method invented by‘wigner and Seitz, and ex~-
tended by Slater, for the investigation of cohesion. e find
that apperently these methods cannot be used in a magnetic
field.

In making this survey of the behavior of conduction
electrons in a magnetic field by considering the change of
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resistance in a magnetic fleld, the setting up of a tightly
bound electron approximation in a magnetic field, and the
effect of & magnetic fleld on Floquet's theorem,it will bve
agssumed that the usual electron theory of metals as given in
any of the standard works on the subject is well known and
need not be repeated.

To Professor VY. V. Houston I wish to express nmy deep
gratitude for his continued interest in the research on which
this paper is based and for his very helpful advice at all’

stages of the worka.



CHANGE OF RESISTANCE IN A MAGNETIC FIELD

§1. Introduction

Change of resistance in a magnetic field cannot be
interpreted in terms of a free electron plcture. But since
such & change is observed in the alkalies, it is of interest
to see if it can be understood as a small departure from the
fres electron situation. Jones and Zener [9]* have given a
theory for this effect that seems to give quite satisfactory
aumerical results in the case of lithium. However, their
approximate method of evaluating the integrals made it neces~-
sary to apply, later, an estimated correctlon factor of about
six. This paper attempts to give a method of evaluating these
integrals, and the corresponding integrals that occur in the
general theory of the Hall effect, that will enable one to get
analytically as good an approximation as 1s desired, provided
the surfaces of constant energy are not too irregular. Also
it is not assumed that the relaxation time is a function of
the energy only. 9$2 gives a summary of the general theory,
in Wilson's [18] notation, and §% gives a physlcal picture of
the situation, in which particular attention is given to the
free electron case. In §4 the energy and the relaxation time
are expressed 1n terms of series of cubically symmetric

spherical harmonics. By a proper cholce of independent
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*Suoh numbers in square brackets refer to the bibllography.



variables, the integrals can all be evaluated 1ln terms of the
coefficlients of the spherical harmonics. If the first two
terms of the series are taken as a satisfactory approximstion,
expressions are obtained for the conductivity, the Hall coef~
ficient, and the two coefficlents, Bt and By, of the change of
resistance‘in & magnetic field. In §5 the conclusions that
may be drawn from these expressions are discussed. It is
found that theory and experiment give radically different
values of Bt/B&. Experimentally this ratio is about'unity,
while no choice of parameters can give & theoretical value
less than 4. The expressions for Bt and Bj show that the
variation of the relaxation time with directlon,. as well as
with energy, is nearly as important in all these cifects as
the fact that the surfaces of constant energy are not spheres.
§6 disousses the breakdown of Ohm's law in high electrostatic
fields in cases where a relaxation time exists and where it is
not necessary to neglect the third power of the relaxation
time compared to the first. The result, in the free electron
c:se, is about one thirtieth as large as Guth and Mayerhofer's
[7) and has the opposite sign. This may indicate that the use
o’ high powers of the relaxation time in §§2-6 is not allow-
ables

§2. General Hesults
We will specify the state of an electron in the

usual manner by the wave vector k whose Cartesian components



are {kj, kg, kz). The energy eigenfunctions of the electrons

when unperturbed by external fields can be taken as
\}j&{;‘") = eXp (i;g.};)uk(_l_‘,),

where uk(;) has the periodicity of the lettice. The number
of electrons per unit velume whose wave vectors lie in the

range (dky, dkg, dkg) is
(1/4n°) £ (k) dky dkpdks.

Wle omit any dependence on T since we are going to be lnterested
only in the case in which the temperature and composition of
the metal are lndependent of T.

* If there exist in the metal an electric field, £,
and & megnetic field, H, then the condition that the distribu-
tion function, f(k), remains constant in time under the influ-
enée of the fields and the collisions of the electrons with

the lattice points is given by Boltzmann's equation,
~ (¢/BI[E + ¥ x E/clegrad.f + (£~ )/i(k) =0, (1)

where ~ &€ is the charge of an electron, ;K'is the velocity
associated with the state kX, and f, is the value of f when
£ = H = 0. Ve have assumed that a relaxation time, v(k}, can
be defined so that we can use this form of Boltzmann's equa~
tion. 4 relaxation time can be used if the temperature is

greater than the Debye charaoteristic temperature, and perhaps



under other oonditicns. Eg. (1) 1s only valid if eHr/2me << 1,
where m is the mass of the electron and ¢ 1s the velocity of
light.

To solve Bq. (1), take the direction of the magnetic

flield as the z axis and substitute for v its value in terms of

&,

¥y = (V/E) grade Elk), (2)

where %(k) is the energy associated with the state k., Let
f = £, = &(k) 9fo/8E. It follaws from (1) thet the equation
that ®(k) is to satisfy l1s

(k) (k) + (e/E)Se grad.y B - (eH/B%c)Ge(k) = O, (3)

where the product of € and & is neglected, and (. is the oper-

ator

_8 3 e 3
dkg ok; dk) okp

(9]

This process 1s equivalent to a development of £ as a power
series in the components of £ and the neglect of all terms
of higher than the first degree. The validity of this de-
velopument is dlscussed on p. A

To solve Eq. (3) we write @(k] as a power serles in

H, and obtain
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(k) = - (8/33%?§}grad‘ E
+ (gﬁjﬁgc)Tﬁ(@§°grad. )
+ (aH/H%)%;;[ﬁ;(x@%rad. B)] + "'3. (é)

This 1s one particular integral of (2) and may or may not be
the solution we desire. The general solution of (3) is ob-

tained by adding to (4) the general solution of

Gx) = v (k) (eB/E% )02 (k)
= {Tsﬂ/ﬁzc){gradokéltg)}o[graﬁ'k E(E)] x _6_3

where &g is & unit vector im the kg direction. Consider the
curve of intersection of any surface of constant energy with
the plane kz = 0. The vector (grad.k E) x 8 will be directed
along this curve. In all cases of interest E(k) is such that
this vector is directed in the clockwise sense of describing
the curve. Since 7{k) is essentially positive, our equation
showe that the component of gr&d.k %1 in the direction of
(grad., E) x 8 is always of the same sign as @,. Hence if
we traverse our curve in the clockwise sense, !@1f will in-
creage unless ®; = O. Therefore the only single~valued solu-
tion of the homogeneous equation is &) = O, Hence {4) is the
desired solution of (3).

To discuss the convergence of the infinite series

{4), we will make the simplest possible assumptions. We will



asgume that the energy is that for the free electron case &nd
that the relaxation time is & spherically symmetric function
of ko It follows that the conditlon that the series converge
1s that £Ht/me<l, Since we have already had to require that
gHv /me<<1l, we can hope for convergence in those cases in which
E and T do not have these simple forms. e can alsoc expect
that only & few terms of the series will be needed to represent
¢ with satisfactory accuracy.

The reason that we can terminate the series in the
components of £ with the linear terms while we must include
at least the quadratic term in the series in H is that the
magnetic force is very much larger than the electrostatic for
electrons whose representative polnts ars at the surface of
the Fermi distribution., If the current density in silver is

2, and if the magnetic field is 1000 gauss, the

10 amp. cm
magnetic force is 108 times as great as the electric force.
We can get expressions for the conductivity, the
Hall occefficient, and the change of resistance in a magnetic
field by substituting the value of & found above in the equa-

tion giving the current density,
I=- (e/ar®) fzkf(_lg_)ﬂ'
= (g/4n"g) j grad . 7(3f,/38)¢av, (5)

where 4V 1s an element of volume in k-space.



To da this we introduce the followlng abbreviations:

- | <tatg/em on/any e,

]

Ip = - | 7(32o/38) (38/0Kp) v,

&

I, = - | ©(32,/08) (aE/oky) 2av,

14 = IEIG"I‘?E’
of, ok ( gz 1))
Ig =71 —2—@a (=& (v 222) Yav
° 98 okz ( ( 3kz) )
( ( ag))®
s-ffség?.(ogxé‘f‘_)) av, (6]
2 ( ( okz) )
ofg 38 _{ L a5 3]
:6 8.fT gi»-é-i-{;'iﬁ g’gia g‘f aklg %dv



The second form of each integral is obtained by integrating
the first form by parts.

For those metals in whioh E{k) and 7(k) are even
functions of kj, of kg, and of kg, we find that if the current
flows in the x-direction only, the electrical conductivity in

the absence of a magnetic field is
o 8 /8
1/p = 0 = Ix/Ex = (e%/m")1;, (7)
the Hall coefficient is
R = @Y/HJk = @V/ngx = - (4“3/02)17/1112, \ (8)

~ and the coefficlents of the change of reslstance in magnetic
fields that are perpemndicular and parallel, respectively, to

the direction of the current are
, 2 4 2 L /ee. 8 ,
By = (p=po)/pH® = (og=0)/oB® = (e/B%c)“I4/I I, (9]

and

By = (p-po)/egE = (0g-0)/cHE = (8/B%)%1 /T,  (10)

By Schwarz's inequality the change of resistance is always an
increase. These formulas are equivalent to those given by
Wilson (18],

Equations (7)-(10) were derived under the implioit
agsunption that E(k) and¥k)bad cubic symmetry. However, if

E and 7 are even functions of kj;, of kg, and of ky, these



equations still hold provided we replace ¢ by Ty the conduo~
tivity in the x-direction, add the equations oy = (ealwha)Iz
and o, = (ealnha)ls, and replace K by Ry, the Hall coefficient

when the current is flowing in the x-direction, eto.

§3. Physical Plcture

A oareful study of the above equations enables one
to get & physical picture of what i1s going on. In the absence
of external forces, the distribution of representative points
in k-space 1= given by the Fermi functionm, fotgjo The density
of distribution depends on the energy only. The applioation
of & force, F, causes the distribution of representativé
points to drift in the dirsction of the force, sincé#}ate of

change of the state of an electron is given by

dk/dt = F/H.

Wwhen we assume the Boltzmann equation in the form
of Bg. (1), we are really assuming that the effect of the
collisions of the electrons with the ions is such that the
actual distribution, f, differs at each point from the normal
distribution, f,, by an amount that is proportional to the
rate at which f would tend to be changed by the drift produced
by the force. %e are not assuming that a representative point
drifts for a certain time or distance, on the average, before

a collision changes its state.
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Cur series solution of Boltzmann's equation is
really a solution by successive spproximations. HRether than
conslider the effect of the drift produced by the external
forces on the final unknown distribution, we first calculate
the chenge in distribution on the assumption thet only the
repregentative polnts of the undisturbed function, f,, drift,
Hence from Eq. {1) we see that in the first approximation we
must add to the equilibrium distridvution function the term

- Tz‘gr&dok foo

We get the second approximation by considering the drift of
those polnts given by the first approximation and obtain

~ tFegrad., [~TE-grad., fol.

Each additional term is found by considering the aotion of
the forces on the representative points given by the previous
term.

Since the forces on conduction electrons due to
nagnetic flelds in metals are, in general, much greater than
those due to electric fields, we include the electric foroes
in the first term only of this series of approximations. V\ie
do not include the masgnetic forces in this first term since
the drift produced by them 1s perpendicular to v = grad.grE/hn
It is, therefore, along the surfaces of constant energy and

produces no change in the undisturbed distribution. The



first approximation gives the ordinary conductivity, the
second gives the Hall effect, and the third gives the change
of resistance ln a magnetic field.

Let us consider our pleture of the free electron
case. Ve may assume complete degeneracy since Sommerfeld and
Frank [15] have shown that the departure from complete de-
generacy gives only about one-ten-thousandth of the observed
change of resistance in a magnetic field. Therefore when no
external field is applied, the density of representative points
is uniform inside a oértain sphere and zeroc outside. 'hen an
external field is applied, the change in the distribution func-
tion is given by a surface density of representative polnts on
this sphere. Ve show this in Fig. 1 by taklng & cross section
in k-space through the plane kz = O. The circle represents
the interaction of the sphere with this plane and the width of
the surrounding band indicates the surface density of represen-~

tative points. Black indicates a positive and white & negative

Fre: 1. The free electron case. Since the charge of the
electron is taken to be negative, the representatfve points
drift in a direction opposite to that of the electric field.



surface density. TFor the case 1n which the electric field is in
the x direction and the magnetic field is in the z direction,
Fig. 1 (a) shows the effect of the electric field on the undis=~
turbed distribution. Fig. 1 (b) gives the second approximation
and shows the effect produced by the action of the magnetic |
field on the surface density of representative points shown in
(a)e Fig. 1 (c) gives the third‘appfoximatian and shows the
effect produced by the magnetic fileld on the points that meke
up the second approximation. The actual diétribution, shown
in (d), is obtained by superposing these three terms.

It is evident that if the electric field 1s in the
x direction, then the current is not. But all the effects are
defined for the case in which the current 1s in the same
direction, with and without the magnetic field., Hence the Hall
effect arises from the fact that to eliminate the current indi-
cated in (b) we will need to apply an electric field in the
negative y direction. Fig. 1 (o) would seem to indicate that
the current is less when we have a magnetic field, that is,
that the magnetic fleld increases the resistance. But 1f we
consider the Hall effect of the electric field introdﬁceﬁ to
suppress the y component of the current, we see that if we
have spherical symmetry, this effect completely cancels out
and there is no change of resistance.

If the magnetic field is parallel to the current,
the application of an electric field ylelds, if we have
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spherical symmetry, a first approximation that has cylindricel
symmetry about an axis parallel to the magnetic fleld. There-
fore the magnetio field produces no change in the distribution
function and hence no change of reslistance,

If we do not have spherical symmetry, we must re—
member that the velocity is in a direction perpendicular to the
surfaces of constant energy. The interaction of effects 1s
very complicated, but, by a sufficient extension of this kind
of argument, it can be seen in a qualitativé way that the ef=
fect of all departures from spherical symmetry is a tendency
to increase the resistance in & magnetic fleld., If the de-
partures are gmall, the Hall effect is not greatly changed.

If the departures from spherical symmetry are large,
then by proper choice of the shapes of the surfaces of con-
stant energy it is easy to explain the fact that the Hall co-
efficlent 1s positive in some metals. TFor example, Fig. 2
shows how the anomclous Hall effect arises in the case of a
cubic Brillouin zone that is so nearly filled that only
spherical segments are left unoccupled in the corners. Fig. 2
{(a) is a cross section at the surface of the Brillouln zone.
The quadrants separate the occupied and unoccupled regions
of k-space, and the arrows indicate the velooclty in coordinate
space of electrons whose representative points are at the
indicated positions on the boundary of the distribution.

Fig. 2 (b), like Fig. 1 (a), shows the effect of the electric
field on the undisturbed distribution. Fig. 2 (c), like
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Fig. 1 (b), gives the second approximation and shows the ef=-
fect produced by the action of the magnetic field on the
surfece density of representative polnts shown in Fig. 2 (b).

Since the current due to the representative points of the

ARV N

-

™
/

a
N
N

Fig. &. Anomolous Hall effect

second approximation in Fige 8 is in the opposite direction
to the ocurrent due to the representative polnts of the second
approximation in Fig. 1, the coefficient of the Hall effect
will have the opposite sign.
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§4. Calculations

Equations (9) and (10) give us analytical expres-~
sions for the change of resistance in a magnetic field in
terms of certaln integrals., Tor completely free electrons
I4=15=0 if we assume complete degeneracy in evaluating the
integrals; hence we get no change of resistance for free
electrons. Sommerfeld and Frank [15] showed that if we take
account of the departure of the electrons from complete de~-
generacy, we get a change of resistance but that it is about
10,000 times too small and has the wrong temperature depend-
ence. 4 first order change of resistance is only obtained if
either v 1s not a function of E only or the surfaces of con~
stant energy are not spheres. To be consistent one should
not treat these conditions as independent since one would ex-
pect that whenever the energy surfaces are not spheres, T
would depend on the direction of motion. One would also ex~
pect that the change of resistance produced by the fact that
T does not depend on E alone would be of the same order of
magnitude as that produced by the fact that the surfaces of
constant energy are not splLares.

Jones and Zener [ﬁ] have evaluated these integrals
'fér the case of lithium by «n approximste method that made it
necessary to apply, later, an estimated correction factor of
about six. Blochinzev and Nordheim [4] considered divalent

- metals and used a model in which the conduction was due to
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both the electrons and the holes. If the energy surfaces in
the uprer zone were taken to be ellipsoids with axes whose
lengths are properly chosen, results of the correct order of
magnitude could be obtained. In both papers it was assumed
that the relaxation time was a function of the energy omnly.

We will attempt to develop a method of evaluating
these lntegrels in cases where the surfaces of constant
energy are not too irregulaer that will include the corrections
that Jones and Zener had to estimate Qnd that will not re~
quire the relaxation time to be a function of the energy only.

In the case of the monovalent metals we expect that
the surface of the Fermi distribution will lie entirely within
the first Brillouiln zone and will be nesrly sphericsel. By
expressing the depemdent variables in terms of spherical har-
monics, we can evaluate the integrals of §2 and get simple
expressions for the various cocefficients.

Our integrals are all of the form

1= j (8f /0E)F(k)av,

where dV = k% sin edkdedp 1s an element of volume in k-space.
If we use as our independent variabvles E, @ and ¢, this be-
gomes

an . m oo

of (3]
I= f J S —2 F(x)k? sin @ (%E) dEdedn.
o Jo Jo 9E ( E)g,m
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Vie can do this since E ig a monotonic funotion of k in the
cases in which we are interested. Near the surface of the
Fermi distribution all the factors in the integrand vary slow-
ly compared to 0f,/0E, while elsewhere dfo/di is practically

Zero. Hence

7 it ' '
I=- r j %F(g)kz] sin 9dedo, (11)
O o T, e
L=4

L]

where E, is the energy at the surface of the Fermi distribu~
tion.

The partial derivatives that we find im our iﬁts-
grands can be changed to the new variables by means of the

following formulas from the calculus:
Ekq = {k sin® ¢ cos P - kg sin © cos @ cos ¢

+ ko, sin o) (kky sin @),

Ekg = (k sin® @ sin ¢ - kg sln @ cos @ sin o

i

k, cos ¢) (kg sin 9)‘1,

Bkz = (k cos & + kg sin 9)(kkE)-1’

vwhere Kk, means the partial of Z with respect to ki, keeping
kg and kg constant; while kg means the partial of k with re~
spect to E, keeping @ and o constant.
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Now the lattices of all the monovalent metals have
subic symmetry. Consequently when we expand k(E, &, ) and
T(E, 8, o) in series of surface harmonics, we need include
only those surface harmonics that have cubic symmetry. -The

first twe such surface harmonics are
Y =1

and ¥,¢ = Pyi{cos &) + cos 4@P44(ccs 8)/168;
the next is of the sixth degree. Pnn is Ferrers' associated
Legendre function. Neglecting terms of the sixth degree and

higher in our expansion, we write

k = ag{B) + «3(E)Y,°,
(12)
T = 14(E) +'t1(E)Y4°.
Let us now transform the integrals of Eqs. {8) by

the use of Zgs. (11) and (12). If we expand
[ag(E) + al(E)Y4c]n, Lag'(E) + al'(E)Y4°]n, and
[vo(E) + ?l(E)ch]n by the binomial expansicn, all the inte-
grations can actually be carried out by means of formulas

given by Gaunt [6]. If we write

dao(E)
a = aglBe), a' = e _ t =T (Ey),
1 daq(E)

»

A= lBolaolioly B = 5 —gp— |
t ]

T = 14(B,)/7o(E0)»
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and neglect the cubes of 4, B and T compared to unity, we
get

I) = I, = Iy = (4n/3)(t/a")a®{1 + (4/21)

x [ 2148 + 2a(1-B)-B(1-8)1),

(4ﬁ/3)2(4/7‘?) (t/at )éaz

4
19
L]

X {59753 + 46A(T-B) + 37(T~B)2§,

(4n/5)(80/251)(t/a*)3§3A + T~B}2, (13)

$-4
o
#

(41/3)(t/a')®

.
o
L}

x {1 + (4/231) [2220A% + 6004(T-B)

- 33B(T-B) + 532(T~B)2J§,

i
H

g = (4n/8)(v/a')%
x {1+ (4/21) [50a2 + 224(T-B)
- 2B(T-B) + (T-B)zjg.
Sﬁbsti”cution of these values in Igs. (7)-(0) gives

o = (4e%/30%)(t/a")a®{1 + 4/21)

(14)
x (2142 + zA{T-B}~B(T—B)2J§



R = - (5n2/c£a5)§l + {4/21)

(15
x [=124% + 1BA(T-B) + (m)zli, )
B, = (4/77)(2n0/cza®)?
(16)
x {597;12 + 46a(T-B) + 57(T-B)2§,
B, = {80/231)(31!26/0&?)2%53 + T~B}2 . (17)

We have eliminated t from the expresslons for By and By by
introducing ¢ from Ig. (14). Ve are to regard ¢ as belng de-

termined by experiment.

§6. Discussion of Results

In the evaluation of these integrals we have made
three approximastions. In the integration over E we have, as
usual, assumed complete degeneracy. This should not lntroduce
any appreciable error since attempts to explain the change of
resistance on & free electron model by using the second ap-
proximation in the integration lead to a result that is too
small by a factor of about 10%. vie have stopped at the second
term in our expansions in surface harmonics and at the square
térms in our binomiel expansions of k, k' and v. If it seemed
desirable, more terms could be included in each expansion, but
it does not seem likely that the general results would be
changed much. Moreover, these approximations seem to corre-

spond, more or less, to those made by Jones and Zener.
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The range of validity of our theory is limited by
the condition eHr/2mo<<l, If we introduce the expression
given by Wilson (18], p. 161, for the conductivity, o=ne®t/m,
we find that we must require that oH<<nt¢/m. n is the number
of electrons per unit volume. Using the numerical values for
sllver at ordinary temperatures we find that H=105 gauss is
about the upper limit of validity of our theorv. Since be
is proportional to (aH)Z, it is evident that we do not ngies~
sarlily improve the accuracy with which we measure By and By ir
we make our measurenments at very low temperatures where a
given field produces a much greater change in resistance than
at high temperatures; we may only go outside the range of
validity of our theory. It is also more difficult to define
a relaxation time at low temperatures. _It would seem that
the best procedure, from the point of view of this theory, is
to work at as high field strengths as are available and at
temperatures that sre high enough so that the theory is valld.

Reasonable values of the parameters, based on Jones
and Zener's work on lithium, give the correct orders of mag-
nitude when inserted in the expressions (14)-(17). The con=
sideration of the departures from spherical symmetry have &
négligible influence on ¢ and R, but provide the essential
part of By and Bj.

Since t and T always enter in the combinations t/a‘
and (T-B), we get nothing by putting in a relaxation tinme
that varies with direction theat we could not obtailn by:suit-
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able cholce of the shape of the surfaces of constant energy.
However, the extra parsmeters would give & means of getting
better agreement between theory and experiment if the shape
of the energy surfaces were given by other considerations,

If we consider the value of Bt/B& given by Eqé. (16)
and (17), we find that this ratio cannot be less than the
value, 4.08, obtained when 4/(T-B) = 1/6, and that if &/(7T-B)
does not lie between =0.07 and 5.5, By/By will be larger than
9. This disagrees with Jones and Zemer's theoretical results
and with the experimentel results; in each the ratios are ap-
proximetely one. There seem to he two ways of explaining this.
One can say that the experimental results are not to be trusted,
or one can say that some point has been overlooked in the de-

velopment of the theory of magnetic effects in metals,

§6. Breakdown of Ohm's Law

although we have treated the relaxation time in the
customary manner, 1t may be that here is the source of our
difficulties. In our expansion, we have included terms in <
and 15. Now iilson [18] proves on page 208 that a relaxation
time can be defined at absolute temperatures, T, that are
large compared to the Debye characteristic temperature, €,
provided one neglects terms of order (8/T)® compared to the
leading term. He also finds that the relaxation time is of

the forn

1 = C'kEQ/T (18)
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where C' is a constant. Hence if Wilson's derivatlon glves

the upper limit of valldity of the concept of relaxation time,
we must neglect 15 compared to T and therefore cannot deal

with the change of resistance by this method. However, '/ilson's
treatment gives directly only sufficient conditions and it may
be that they are not necessary.

Since direct treatment of thls problem seems diffi-
cult, we will try to learn something of the range of powers of
< over which the concept of relaxation time is valid by con-
sidering another problem in which both T and 7% enter. In
order to caloulate theoretically the current density at which
Ohm's law commences to break down, one must go farther than
the first approximation to the dependence of the current on
the electric field. Guth and Mayerhafer [7] bave proved that
in the Lorentz model of metallic conduction with its fixed
metal ions the fundamental equation is not soluble 1in the
second approximation. The reason that the integral equatlion
for the second approximation bas no solutions whatever is
that the exchange of energy between the electrons and the
lattice is omltted in the Lorentz model and, in the second
epproximation, & stationary state does not exist. By using
the fundamental equations of the wave-mechanical theory of
conductivity, Guth and Mayerhofer are able to go to higher
approximations. They find that a current density of 10°
amp./cmz causes & one per cent deviation from Ohm's law, the

conductivity decreasing with increasing flelds



If, rather than making Lorentz's detalled assump-
tions, one assumes only that a relaxation time exists, the
problem is much simplified. Boltzmann's equation, (1), be-
comes et (5)82/6&:14'1'[1"-:8@] = 0 if the electric field is
directed in the x-direction and has the magnitude £ and if
the magnetic fleld is zero. Let us expand f 1n a power series
in 8n, as we considered doing in the development of equation
(3). ihen we put f =x§o fni{“;‘;n in Boltzmann's equation and
equate to zero the cocefficient of g2, we find that
£.(k) = [(e/E)v(k)a/8k I°fo(k). Since we will take fo(k), the
distribution function when there is nc field, to be the Fermi
distrivution, we may regard f{k) as being completely deter-
mined. Ve will ignore for the present the possible non-
convergence of the series.

The current is in the same directlion as the field

and from {2) and (5) is

T = - (e/ank) f (98 (k) /ak; e (k)av=(e/4n%E) T (/D)€ 1

n=g

where Iy = = I (8E/3k, ) [v (k)o/aky 1™ f£o(k)av

n~1
= (-1)8 j (8t /3Ky Jt [(8/aky )t 1" (8E/dky )av.
The integral I, has been transformed by means of n-l integra~

tions by parts. If T is a constant, I, = O unless n = 1, and

consequently Ohm's law is exact. But 1f we consider the free
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electron case in which E = szz/zm, which is the case con-
sidered by Guth and Mayerh&fer, and if we determine v from
(18) so that v = Oka, we find that I, is zero 1f n 1s even
but not if n 18 odd. It can be seen readily enough by carry-
out the repeated differentiation and keeping only the highest
power of k that (afo/akl)1[(a/akl)f]ar(aﬂ/akl) is greater than
(3F o/ Bk )cET* L (5% 2m) 6010014+ 0o (4x+2)k K~ O, By using (11)
we find that f (3 o/8ky )k k4T 3V = - (4w/5)(szO/E) 2r3,
Therefore Ipy.y is greater than
(4r7/3)6°10+140 « o (4r+2)CET* L (2um /)3T, From tnis it is
evident that our series for J diverges. Further caloulation

shows that the first four noé:?ero terms of this serles are

4me B2 { (eme E.) (2me B _)°
S e e i

ud )

{2me B (ome ® )7 )
3880 e 727 veo
(-———3-9} + 57, 394 C'C E.._....s_ﬁ 2) + )

We can use the relation J = o8 to give C in terms of u, the
conductivity for small fields. Substituting this value of

C back in the series gives

.2 18 4
P S 5 .5 2880 5 { ™E° )% 4
I =02+ 8 3 %4m£ Eoz) ') 3 7 0 €4m£ EQE% o)
{ 2 )6 |
+ 57 * 57, 394 0’7 { ﬁzn. : 87 4+ 00 (19)

{ 4rme ang



If the second term 1s one per cent of the first,
the third and fourth terms are negligible. If, in this case,
we regard the series as an asymptotic expansion or 1f we as-
sume that our treatment gives the first two terms of the
series acourately enough for our purpose but that the diverg-
ing terms should be cmitted, we can readily calculate the
field strength at which deviations from Ohm's law become
noticeable. ‘e take the same values of the constants as do
Guth and Mayerh&fer, Ej = 5.5 e.v. and ¢ = 6 x 1017 €eSele,
and the same criterion for an observable deviation from Ohm's
law, that the second térm.in the serles be one one hundredth
of the first term. Guth and Mayerh8fer find that such an ef-
fect appears when £ = 5 e.ssue and J = 10° amp./cmz, the con-
ductivity decreasing. Our method leads to the conclusion that
a deviation is first noticeable when £ = 160 e.s.u. and
7 =32 x 10%° amp./cm., the conductivity increasing with the
field., Neither result 1s contradicted by experiment since,
as shown by Barlow [2], all that experiment yields ls that
there is no apparent deviation from Ohm's law for curreni
densities up %o 8 x 108 amp./onf.

Since Guth and Mayerhdfer's treatment is entirely
different from ours, it would be very dlfficult to say
whether the discrepancy between their results and ours is
due to the fact that they find the deviation due to one

cause while we consider another, in which case their result
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is the only one of practical significance; or whether there
is some flaw in one of the derivations. It 1s evident on
physical grounds that our method will give & conductivity
that increases with the field so that we have not made g
mistake in sign. One sees this by noting that the relazation
time, the average time between collisions if we use a crude
interpretation, increases with the velocity. Hence, in addl-
tion to the current due to the change of the velocity of the
electrons in the electric field, there tends tec be additional
current due to the fact that electrons that are going 1n the
direction in which the field urges them travel farther between
collisions than electrons going in the opposite direction.
This occurs because electrons in the first class are speeded
up by the field and hence get longer mean free times while
electrons in the second class are slowed down and hence get
shorter mean free times., This gives a second order increase
in the conductivity.

Yhile this discussion has not setiled the question
as to whether or not it is proper to include 75 in an ex-
pression that inocludes ©, it certalnly has not allayed our
suspicions that such a procedure may not yield valid re-

sultse
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THE TIGHTLY BOUND ELECTRON APPROZIMATION

47, Introduction

In considering the change of resistance in a magnetic
field, we treated the magnetic field as a perturbation that
causeé the electrons to change from state to state, the states
being those found when there was no field. /e found that al-
though magnetic effects cancel out 1ln the first approximation
when we nonsider all the slectron states, magnetic forces were
large and would greatly affect the states of the lndividual
electrons. Hence 1f we could work with states that were exact
in a magnetic fileld, we should expect to get a more satisfac-
tory treatment of the effect of a magnetic field on conduction
electrons, This can best be done if we work with the tightly
bound electron approximation invented by Bloch [3]. All that
need be done to adapt this treatment to & magnetic field is to
use, in the linear combination of wave functions of isolated
atoms, wave functions for atoms in a magnetic fleld in place
of the usual wave functions. Most of the changes that result
from this are due to the necessity of making a gauge trans-
formation when an atom is translated in a uniform magnetic
field, As a simple, satisfasctory example, we work out in §8
the general theory of this problem for 8 two-dimensional lat-
tice with square cells. The necessary integrals are evaluated

and the problem is reduced to the solution of & set of



slmultaneous equations. The case in which the magnetic fleld
is zero is solved in §¢ by inspection, by means of matrix
manipulation, and by converting the problem into a difference
equation. In §10 the way in which all these methods of solu~
tion break down when 2 magnetic field is present is con-
sldered. In these last two sections we study various bound-
ary conditlons and find that cyclic boundary conditions are
possible in a magnetic field only if the field strength is
restricted to certain discrete values. In an attempt to
learn something of the properties that & solution of the gen=
eral problem would have, we solve completely in §11 the
problem that arises from & two by two lattice and calculate
the magnetio susceptibility of such a crystal, or molecule.
de find that the susceptibllity is of the right order of mag-
nitude, but that its sign and exact size depend in a very
sensitive manner on the value of the lattice constant. Fur-
ther consideration of the tightly bound electron approximation
leads us to our final problem,jeffect of a magnetic field on

the validity of Floquet's theorem.

§8. General Theory
The cause of most of the difficulties that arise in
this problem is the fact that if an atom is displaced from
one position to an other, its wave functlon is not obteined
by & translation of coordinates dbut by such & trenslation plus

& gauge transformation. We will always deal with a2 uniform
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magnetic field in the z-directlion whose vector potential is
A = (-Hy/2, Hx/2,0). The Hamiltonian for an electron in this
magnetic field and an electrostatic field in whioh the poten=-
tial energy of the electron is V has the form

. 2 .
Yop = & (B2 + CRx & v &) + & BB, (20)

We have neglected spin. If ¥(x,¥,2) is an elgenfunction of
the equation CHBP-E}ﬁ = 0 when the potential energy is
T(x,¥,2), then

Y (x=f ,y=1, 2= ) exp[ieB/2¢H) (xn~¥E) ] (21)

is an eigenfunction when the potential energy is V{x-f,y-n,z~[);
i.e., the atom has been translated a distance ({,n,{). Both
gigzenfunctions have the eigenvalue E. These statements ars
readily verified by direct substitution in Sohr&dinger's egqua-
tion.

In this discussion of the effect on the wave func-
tion of placing an atom at various points in a uniform mag-
netic field, we have considered only exact solutions of
Schrddinger's equation. However, one does not usually work
with exact solutions when a magnetic fleld is present, since
then they are difficult to find and too complicated to manipu-
late. Instead, when dealing with an atom at the origin, one

writes
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@fop“ﬂ"V(X;Y;Z)=W"+(l/2m}(83/30)2(x2+y2)+v(x,y,z)
and scolves the equation
(wﬂ.,:(;_,EO )wo = 0, . (28)

Since the omitted term, (l/ﬁm)(sﬂ/zc)z(x2+y2}w°, is small for
an atom at the origin, this is a satisfactory approximaﬁion.
The corresponding approximation to the wave function for an
electron in an atom at ah={ahj,ahp,ahz) 1s taken by analogy
with (281) to be

yp{z)=y°(z-an) exp[ (1eHa/2ch) (xhg-yhy )] - {23)

where T 1s the radiue vector from the origin. That the ap-
proximation is the same for all atoms may be seen by introduc-
ing relative coordinates gﬁf;ragf(x23g§,§§) = {x~ah1,y~ah2,z~ah3),
One finds that

[A1+7(zy) E°}¢£(;}={Um)(ea/zolztxﬁwﬁ)wg(z). {24)

In considering the changes produced in the tight
binding approximation by & magnetic field in the z-direction,
all essentiel features will be evident if we conslder a two-
dimensional squaere lattlce in the xy-plane. The transition
to the general three-dimensional lattice is Just the same as
in the case in which there is no field. We will suppose that
the atoms are located at the points ah, where a is the lattice

constant and the components of 1 are the integers, (hy,hs,0).



The wave function of a single electron in the lattice is then

written
" Q
¥iz) = icm!(y ~ (25)

where WE{E) is defined by (23). The sum 1s over all the atoms
of the lattice.
We find the constants, ¢y, and an approximation to

the energy, E, from the equations

o* - '

YL is the potential energy of an electron in the lattice,
including the self-consistent field if possible, and
dv=dxdydz is the element of volume in coordinate space. £
and g will be taken, like h, to be vectors with integral
components. .

Let ?g‘be the potential of an isolated atom at ah,
or, in general, any potential that approximates closely to
V1, in the neighborhood of the atom at ah and for which (22)
can be solved. Let us define V' as V;- Vh. This enables us

h
to use (25) and (24) to transform (26) to

O H 2 Cinm
ick j. q;ﬁ (B ~E+vp m (a ) (x E)]ﬂrgd’f 0.

This is of the form

%§§,2P2>= 0 : (27)



where ég’h is the above integral. If we neglect possible com~
plications at the edge of the crystal, Vﬁ will depend only on

Iy. Therefore the integral is of the form ag,p = f@gfftgh)wgar.

By using (23) this becomes

42(xy(85-Dp) =¥y (81-h1)] &

hgop = ¢ 2 €052 [40Tn e gon (2, 40z )¢

= ¢iBleihg=gphy) Alg=h)

where B = £Ha®/2¢H, and (27) becomes

4

o12(81828281) 4 (gnie, = o, (28)

(=

Qur attempts to solve (28) will be more understand-
able if we flrst find the numerical value of the integral for
A(h). It can be evaluated more easily if we break it into

parts, writing

Alh) = [E°-EJo(n)+V(n)+R(n) (29)

and
‘ o* -1 B(xhg-yhy)
4(n) = | ¥© (z~ably®(z)e ~ & dt

-i %&xh2~yb1)
v(h) = f¢°*(_z;~ag)vgcg)q;°(g)e ar {20)

2 -1 B(xhg-yhy)
R(p) = 3 (& j\x};"*(z-a}_l,)(xz'*ya)ﬂf"(g)e R A



Each of these integrals contains the product ¥°*(r-ah)y°(x)
and will therefore approach zero rapidly as h increases in
length. In fact, the tight binding approximation is only
appropriate when we can neglect all integrals unless h is
elther & zero or a unit veetor; i.e., unless one component
of i 1s zero and the other is elther zero or one. e will
further simplify the problem by considering only s states
so that ¢°(x) will be spherically symmetrical. It follows
that, if i1 and ] denote the usual unlt vectors,
Lf{i)=L(=-i)=0{j)=c(~J)=cy, £(0)=Ly, and for all other values
of h, &4(h)=0., Similar equations hold for R(h) and V(g}.
Since our atomic wave functions are normalized, Lg=1, leav-
ing only the five integrals &4, Ry, Ry, Vg, and V; to be
evaluated.

To get an idea as tc the numerical values of these
integrals, we must decide on the function V(r) to be teken
as the potential of an isolated atom in the solution of (22)
and on the function Vg(z) to be substituted in the integral
for ¥(h). It will bé-éuffiﬁient for our purposes to teke
V=~£z/r; i.e., the potential of a hydrogen atom. The wave
functions will be the hydrogen wave functions and we.will
take {° to be the wave function for the ls state so that

-T/a ‘
3© = (1// na l)e / °, & = B8/me? = .527 x 1078 ¢m.,

%0 = - 33/330 = - 2.18 x 10711 ergs. e will assume that



h
Coulonb pbtentials of all the atoms of the lattice except the

V! = (BV ]-Vy, thus implying that V! is the sum of the

4 ‘gg =

atom at ah. ‘“hen we substitute this in Vo» the only terms
that contribute anything will be those due to the four near-
est atoms, and when we substitute in V, = V(i), the only
term that contributes appreciably 1s that due to the atom at

al. Hence

Vo = 4 J §O*(z) =62/ [z, WO (z)r
V1= fﬂ"’*(zi}(“ﬁz/izi 1)4°(z)expliBy/aler  (31)

where r refers to the radius vector drawn from the origin,
_x;;__ to that drawn from the atom to the right of the origin,
and (;_:1 | is the magnitude of the vector Ij

- To evaluate these integrals we use confocal elliptiec

coordinates as given by Pauling and ¥ilson [11], p. 444. Ve

let x = a(gn*1/2), vy = &/ ¢8~1 ¥ 12 sing, ena

zZ = - % /‘{,2-1 /l~n2 cosg. It follows that r + (;_;_1 = af,

lzy|= gi-n), and & = (%)3(g2_n2)aadnd¢. In terms of these

variables we find that

' 3
Ly = fﬂ’o*(ii)ﬂfg(}‘_)eiBY/ad‘t = .T-’.;, (_é};) j Rt "1:3:.‘ +r)/ao (iBy/a 4
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o0 1 T
-1 3 ! -ai/a 2.2 2 2
= (%) j\l jll j: e ° °[l-%‘B (£2=1)(1-1°) J(£2-1% ) apandt

2 =P
B%e
(c+6 + ....15 i2)

+

*ﬂ
{ + +1) -
3 ¢ 30 ¢

where p = a/aoa In expanding eiBy/a

in & power series, terms
involving odd powers of y were cmitted since they would not
survive integration over § and terms invelving higher powers
than the third were omitted since we are not interested in
terms beyond those that ere quadratic in H and hence in B.
Thet this power series expansion is valid is evident since ¥
may be considered to be of the order of megnitude of a, B is
about 1O~8H, and we are concerned with magnetic fields not

greater than l@s gauss, In a similer manner we can find thav
T, = 4305-’2'— - 2e‘zﬁ€1+%ﬂ

b
?*.EOPZ(*I)“BZ(F}* + 1)
1 & g -3- P

1
R, = o= ( } 2&0
(o] 2m ; (32)
28, .
Ry = é%-(%%) 30 e~F3¢ +1%p3+35p3+609+60]
AO = 1
Ly = e p(%?-+ p+ 1) == %0 (p + 8 + 15 Y + 15 ;ﬁ .

%e will caloulate the numerical values of these in-

tegrals for the case in which the lattice constant is
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a = 3.12 x 10™ om. and g = 8o This value of ¢ 1s chosen al-
though 1t leads to less overlapping of wave functions than
cccurs in cryvstals such as those of lithium since if ¢ 1s as-
sumed to be smaller than & so that there will be more over-
lapping, our approximations become unsatisfactory. e should,
however, be able to determine the essential features of this

method of apprcach by taking ¢ = 6. %e find that
¥, =-2.90 x 107 ergs,
- "‘5
Vy = - 7.66 x 10 13, g.25 x 10 152 ergs,

1.96 x 10~5032 args,

&

R} = 6,71 x 10™31g2 ergs, {33)
&, =1,

4.71 x 10~% 7,14 x 107292,

o
=
L

- 2.18 x 107 ergs.

=5
#

It might appear that we should use in place of the
1s hydrogen wave function, & wave functlon such as that given
by Pauling and Wilsom (11], p. 247, that represents the lowest
state of lithium. Then by considering a body-centered cubic
lattice, we might hope to get results that would be vallid for
actual lithium erystals. No additiomal difficulties in prin-
ciple are involved in this program; and although the calcula-

tlions are made considerably more complicated, they are not



unreasonably long. However, in all actual metals the atoms
are so close together that the interactions are large and the
tight binding approximation gives but a rough idea as to the
actual behavior of the crystal. ‘e ought to be able to get
&s satisfactory results in 2 much clearer manner by consider-
ing the slmplest possible case. It might be advisable, as
suggested by Bardeen and Van Vlieck [1], to use wave functions
of the form, exp({-¢r]/r, that result from screened atom po=-
tentials rather than functions of the form, exp{~cCr], that
result from hydrogenic potentiels. In this way the magnetic
moment as calculated from the energy would be more nearly
equal to that caloculated from the current.

Thus far we have considered only atoms that are in-
side the lattlce and heve not concerned ourselves with atoms
on the boundery. The only change that need be made in our
treatment because of the boundary atoms is a modification of

Vi'l and hence of V{h).

If we consider the approximation used in (31), we
see that V; is not affected while the factor 4 in the expres-
sion for V, is replaced by 3 if h refers to a lattice polnt
on the edge of the orystal and by 2 if h refers to a lattice

point at & cornmer.



§9. Solution When There is No iMagnetic Field
The condition that the set of homogeneous, simultane-

ous equations

i@xp[img}ha—gghl)]A(g-g}oh =0  (28)

possesses solutions determines the possible values for E, and
for each such value there is a set af cg's that satisfy (28).
Before cdnsidering the solution of (88), let us first consider
the simpler case in which there is no magnetic field., The
solution of this problem is, of course well known. The equa~
tion, %@lgﬁg)chao, to which (28} reduces, can be solved either
by guessing th;¥ the solution is exp[ih<k] and checking, by
reducing to dlagonal form the matrix |jag y|| where &g p=Alg-hl,
or by solving the difference equation.ZA&h)c =0. The fact
that g and b are two or three-dimansional vectcrs with integral
components causes no trouble when there is no magnetic fleld.

if we substitute oy = otRE -“in.zﬂigrh ey = 0 and
divide by ai§~ , our equation is solved provided.%A(h) ~‘§~n0.

Thnerefore the energy ls determined from the equation

mo(n)e 2 E = 5 (00 (1)+V () +R(n) Je in-k (34)
From this it appears that we get & solution no matter what k
is, and that by proper choice of k we can get any of an in-

finite number of energles for the system. This infinlte number
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of solutions corresponds to the fact that we have sald nothing
about boundary conditions for our ocrystal lattice but have
tacitly assumed that it was an infinite corystal. If we wish
to have only & finite number of solutiona, we mmst specify
our boundary conditions. The simplest econditions for this
case are obtained by requiring that nggggg_nhere G. is the
number of atoms on & side of the square that forms one cycle.
We call these conditions cyclic boundary conditions since they
require that ¢ (r+Geg) = y(r). They restrict k so th@t kG/2w
is a vector with integral oomponents lying between 1 and G,
inelusive, and give us a set of Gz solutions. It is usually
easier to treat other boundary conditions by either the
matrix or the difference equation method than to try to get

a solution by inspection,

In using the matrix method, we must include the
boundary conditions when setting up the matrix. If we take
the cyclic conditions °hﬁrG’°h’ we get the particularly
simple matrix that results from the set of equatians '

Ecﬁpé.(gfh-fG) = 0. The superscripts on the summations indi-
=

cate that the two components of h run from 1 to .G while those
of £ run from ~oc to +oo. Although this set contains an in-
finite number of equations since the components of g run from
«o to +, each equation is the same asz some member of the
subset obtaineé when the components of g lie between 1 and G.

Hence we can restrict g to thls range and get G2 homegeneous,
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simmltaneous equations in the G2 unknowns, cy. If, instead
of considering an infinite lattice with cyclic boundary con-
ditions, we oonsidered a finite, square crystal containing G
atoms on a side, g and h each run over the 6% values cor-
responding to the ¢® atoms of the erystal, and ageln we get
from %A(gw_k_;_) Cp = 0, 6% equations in G2 unknowns.

Our problem heas been reduced toc & standard type and
we can use standard methods in ite solution. The only com-
plication is that the subscripts thet identify cur ¢® unknowns,
Chs are two-dimensional vectors with integral components in-
stead of integers. Similarly g, which by taking on its dif-
ferent velues gives the G2 equations to be solved, is a vector.
In considering the formal solution to the set of equations we
£ind that this introduces no changes except that .the matrices
will be four-dimensional instead of two-dimensional arrays.

It is possible to formulate satisfactory rules for the manipu-
lation of such matrices and the determinants derived from them and
to carry through telie entire solution on this basis. We will

find it most convenient to use four-dimensional matrices and
determinants throughout the formal treatment where they can be
treated and tbought of as though they were ordinmary matrices

and determipants; but to reduce them to ordinary matrices and
determinants when we wish to solve any specific problem. If

A= “Q. ,lx" is the matirix of the coefficients of the oE's end

&
I;Al is the determinant of this matrix, then the energy is
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determined from the equation fal=0., It we can determine a
unitary matrix M= "mh,t“ such that M*AM is a diagonal matrix
whose elements are Ii;ear in the energy, the energy is given
directly by |m*aul = 0, and the oy's corresponding to the
energy determined from the f'th row snd f'th ocolumh of this
determinant are proportional to Ty, g The + indicates that NM'
is the adjoint matrix to M; that is, rows and columns are
interchanged and all elements are replaced by their complex
conjugates. If obvious pi’aoantions as to the nature ‘or M- are
taken, it need not be a unitary matrix.

411 this will be clearer if we consider as an ex-
ample the case in which we have oyclic boundary conditions and
only the interactions of an atom with its four nearest neigh-
bors are important. In this case, provided we consider only s
states, &g n = zfm(gag-»_g_e) 1s a® ir g=h, is a' if £b-L6 is o
unit vector for some f (which mmet be elther a zero or & umit
vector}, and is zero otherwise. In order to be able to write
down the matrix conveniently in this case we mnat write it as
a two-dimensional array. Since g and h are vectors viith
integrel components, there is no intrinsinu& naturel way in
~ which to order their values. Hence we arbitrarily decide
always to run through the values of g and h in the order
(1,1)3(1,2)00e(1,6);(2,1);(2,2)00.(2,6)000(G,1);(C,2) ¢0e{G,6).
The resulting matrix A is best expressed as & G by ¢ matrix

sach of whose elemsnts is & G by & matrix,
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4=||BD 0...0 B}, where B =[{a® &8* 0 ... 0 &'
DBD...OO &t &o 8'«¢¢ 0 O

0 D BeneO O 0 a* e%,.. 0 O 1

(I RN RN NNNREX.) I X R W N N N N R N NN W N N

JO O O,eeB B C O O o0 a% at}

D O CsosD B 8 0 0 400 at a®

and D is a G by G diagqnal matrix, each of whose diagonal
elements is a'. In writinmg A in this manner, we thimk of it
at first as e kind of chart that enablestte write down a 6°
by G2 matrix whose elements are ordinery numbers; soon we
will come to think of A as a genuine G by G matrix whose
elements are of a somewhat uncommon type.

If B gand D were ordinary numbers, A would be'a eyelic
matriz end could be reduced to diagonal form by means of the

transformation N*AN, where N = "nfl'hln and nrl’hlaezﬂiflklfﬁ,

The term on the diagonal in the £3'th column of the resulting
diagonal matrix is B+2Dcos(8nif;/G). Exaetly the seme pro-
cedure cen be used in our problem if B and D are matrices and
Be,,hy is assumed to be a unit matrix multiplied by
amif. /G
Ne ph =6 ¥,
T1»By

transformation conteins nothing but zeros except in G by G

The G> by 6° matrix thet results from the

blocks along 1ts diagonal. Sinece each of these bloeks is

eyclic, it 1s not very difficult to find & further transforma-

tion that wili give us a diagonal ma;rix, the diagonal element

in the [(£3-1)6+£5]1'th column being a®+2a'cos(2mif)/c)+2a'cos(2nify/G
By multiplying together the two transformations used, we find the
single equivalent transformation to be M’*"mg,gﬂ where



2rif.h/G | .
mibﬁ,' e « Henoe the set of ep's that goes with the

energy equation a9+aa'eos(2ﬂir1/G)+aa'c@s(BmitzG) =0 is
Ch * cﬁm‘g‘.y G

where C is & normalizing constant. If we have
eyellice boundary conditions but wish to include the interac-
tions of all atoms, aﬁ;h = F.‘.A(g—h-—rt}) depends only on g-h.
Therefore, A is a bleok-cyclic matrix, each block being itself
cyclic. The same matrix used in the above example transforms

A to disgonal form; but the energy is given by'zkih) g‘“/G

This 1s, of course, equivalent to equation (54). Other types
of boundary conditions can usually be conveniently treated by
matrix manipulation if, when single letters are snbstitﬁted
for G by G blooks of elements, & G by G matrix results that
can be treated by known methods. This method sometimes breaks
down because of the fact that the order of numerical factors
does not matter while the order of matrix factors does.

Perhaps the most powerful attack on this prohiem can
be made by transfo:éming %&(gwﬁ) o = 0 into the difference equa-
tion zA(h)c = 0, This tramsformation is formally only a

slight change in notation; there is no real change since we
try to solve exactly'the same set of equations in either case.
We have nsrely notioed that our eqnations have the same form
as the set that is derived from a difference equation and
have deoideé to apply soms of the known methods of treating
difference equations to our problem. Since we have a linear

difference equation with comstant coefficients, a particular
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solution is found by means of the substitution ¢ g = o 18K, k
may, in general, have sither real or complex components and is
connected with the coefficients of the difference equation by
the relation EA(p_)eiE’;l- = 0. But while this equation fixes E
a8 a function of k since A(h) is linear in E, for every value
of E there are many possible values of k and consequently
many partiocular solutions. The general solution is & linear
combination of the particular solutions. By using the bound-
ary conditioﬁs we can determine the allowed values of k and
of E, and the coefficients in the linear ocombination.

To make this method clear, let us consider the case
of a G by G lattice in which only the interactions of an atom
with its four nearest neighbors are important. If the wave
functions represent atoms in an s state, the difference equa-

tion becomes

| . -
“Cg; .85 %81 *1, 82" %81 ~1,85 %8} 541" %8, 851 = O (35)

where a-A:(_q)/A(;_). For boundary oconditions at the side of

the square we take the aqﬁations

Gﬂgl’1‘9681+1’1*081~1,1+061,a =0

©0g),G*%g) +1,6"%g;~1,6"%g,; -1 = ¢
) (36)
ael,sz*‘cz,sa*al,sg*l*.nl, Sz-l =0

aGG)62+OG“1,83+OG’82+1+OG’ 8po-1 =9
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while at the corners we take

“°1,1*°2,1*°1,2 = 0 “°e;1*%pan°G,z =0

_ ' (37)
@) a*°2,6*%1,6-1 = O *¢g 6*%g-1,6"%¢,c-1 = O°
These equations are convenient mathematiocally since now the
problem is eguivalent to the problem of the two~dimensional
analogue of the loaded string; but they are not quite right
physicelly. They would give the boundary conditions developed
on page 38 if a were replaced by a4V°/4A(;) in (38) énd by
a-V,/24(1) in (37). Substituting e,aeig?g-in (35) gives

&
a+2008 k; + 2008 k, = 0. Since changing the sign of k; or of

kg does not affect a, we try letting g = clai(glk1+38k2)

+Gz
that this combination conteins enough terms to enable us to
setisfy (36) and (37). The boundary conditions require that

ky end kg take only the values fn/(G+l) where f is any integer
between 1 and G, ineclusive, and that the C's be such that
qsfcsin(glkl)sin(gzkz)scsin(ﬂflglle*llsin(ﬂtggzla+l). Com~
parison of this result with that for cycliec boundary conditions
shows that the change in boundary conditions has made but an
insignificant change in the energy spectrum. We therefore

ecan hope that it is not necessary to use the accurate boundary
conditions and that we can use any conditiong that are mathe-
matiéalLy convenient and that resemble the true conditions

fairly closely.
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§10. Attempted Solutions in & Magnetic Field
Having considered the various methods by which solu-

tions of

Zexp[iB(e;by-6ghy ) Jalg-bley = ©  (28)

can be obteined when H = 0, let us now consider the problem
when a magnetic field is pfasent. S8ince there are no obvious
sointicns to be obtained by inspection, we turn at once to
the matrix method.

A particularly simple matrix results if we consider
a G by G lattice in which we assume that only the interﬁotions
of an atom with its four nearest neighbors matter, that the
wave functions represent atoms in an s state, and that the
bouhd#ry conditions are the mathematically convenieﬁt'ones
that reduce to (36) and (37) when there is ro magnetic field.

Phese conditions are evident from the form of the matrix

which is

A=lBp*0 ...0 O |lwhereBy=lle 8% 0 ...0 O
D Bg D* ess O ) B-R o ﬂm cee O ¢)
0 D Bﬁ T (4] B"ma oes O 0
0 0 0O +ee¢ Bgal Dt 0 0 O oce0 @ am
0 0 O s0e D BG, 0 0 O ece B~R o

D= |G 0 O eoe O 4]
0 B2 0 ...0 0
c 0 8% ... 0 4]
I A XX NN N RN ENEY XYY WENEN]
0 0 0 wees®l0
¢ O

0 o0 O BG

(38)
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We have divided (28) through by A(1) sc that a = A(Q)/A(1) and
8 = ¢iB, |

Freq