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Abstract

Human motion analysis is a very important task for computer vision with many po-

tential applications. There are several problems in human motion analysis: detection,

tracking, and activity interpretation. Detection is the most fundamental problem of

the three, but remains untackled due to its inherent diÆculty. This thesis develops

a solution to the problem. It is based on a learned probabilistic model of the joint

positions and velocities of the body parts, where detection and labeling are performed

by hypothesis testing on the maximum a posterior estimate of the pose and motion

of the body. To achieve eÆciency in learning and testing, a graphical model is used

to approximate the conditional independence of human motion. This model is also

shown to provide a natural way to deal with clutter and occlusion.

One key factor in the proposed method is the probabilistic model of human mo-

tion. In this thesis, an unsupervised learning algorithm that can obtain the proba-

bilistic model automatically from unlabeled training data is presented. The training

data include useful foreground features as well as features that arise from irrelevant

background clutter. The correspondence between parts and detected features is also

unknown in the training data. To learn the best model structure as well as model

parameters, a variant of the EM algorithm is developed where the labeling of the data

(part assignments) is treated as hidden variables. We explore two classes of graphical

models: trees and decomposable triangulated graphs and �nd that the later are su-

perior for our application. To better model human motion, we also consider the case

when the model consists of mixtures of decomposable triangulated graphs.

The eÆciency and e�ectiveness of the algorithm have been demonstrated by ap-

plying it to generate models of human motion automatically from unlabeled image

sequences, and testing the learned models on a variety of sequences. We �nd detection

rates of over 95% on pairs of frames. This is very promising for building a real-life

system, for example, a pedestrian detector.
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Chapter 1 Introduction

This thesis presents a new approach to human motion detection and labeling. In this

chapter, we �rst give the motivation for this work, i.e., why the problem of human

motion analysis is important and why this thesis focuses on detecting and labeling

human motion. We then brief our approach and give the outline for the thesis.

1.1 Motivation for human motion analysis

Human motion analysis is an important but hard problem in computer vision. Hu-

mans are the most important component of our environment. Motion provides a large

amount of information about humans and is very useful for human social interactions.

The goal of human motion analysis is to extract information about human motion

from video sequences. As shown in Figure 1.1, for a given video sequence, we want to

develop a computer system/algorithm which can give us a description of the scene.

The description should �rst address whether there are humans in the scene. If so,

how many there are, where they are located, and what they are doing.

Computer
Vision
Algorithms

image sequences

Description of the scene:
Human presence?
How many?
Where are they?
What are they doing?

desired output

Figure 1.1: Human motion analysis.

Solving this problem can lead to many potential applications including but not
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limited to:

� For the security of airports or big museums, it is very useful that a computer

can detect automatically if someone is doing something suspicious, e.g., trying

to grab a piece of art work.

� Human motion detection is also attractive to the automobile industry. Pedes-

trian detection is very important for transportation safety and for automated

navigation.

� Human computer interfaces. We use keyboard, mouse and/or joystick as our

input devices. If the computer could recognize what we mean when we point

at it and/or give our instruction by our body movement, it would make the

computer more user-friendly.

However, human motion analysis is diÆcult. First of all, the human body is richly

articulated-even a simple stick model describing the pose of arms, legs, torso and

head requires more than 20 degrees of freedom. The body moves in 3-D which makes

the estimation of these degrees of freedom a challenge in a monocular setting [3, 4].

Image processing is also a challenge: humans typically wear clothing which may be

loose and textured. This makes it diÆcult to identify limb boundaries, and even more

so to segment the main parts of the body.

1.2 Problems in human motion analysis

A system for interpreting human activity must, �rst of all, be able to detect human

presence. A second important task is to localize the visible parts of the body and

assign appropriate labels to the corresponding regions of the image-for brevity we call

this the labeling task. Detection and labeling are coupled problems. Once we know

the body parts assignments, we know the presence of a person; and vice versa. Given

a labeling, di�erent parts of the body may be tracked in time [5, 6, 7, 3, 8, 9, 10, 11].

Their trajectories and/or spatiotemporal energy pattern will allow a classi�cation of

the actions and activities [12, 13], which leads to activity interpretation.
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Among these problems, activity interpretation needs to take the results of detec-

tion and tracking as input, whereas tracking algorithms need initializations, which

can be provided by either detection, or in the absence of which, by ad hoc heuristics.

Hence detection is the most fundamental problem of the three. In the �eld of com-

puter vision, tracking has recently been an area of much attention, where considerable

progress has been made. Detection, on the contrary, remains an open problem and

will be the focus of this thesis.

1.3 Human perception: Johansson experiments

Our work on human motion detection and labeling is inspired by human perception.

A striking demonstration of the capabilities of the human visual system is provided by

the experiments of Johansson [14]. Johansson �lmed people acting in total darkness

with small light bulbs �xed to the main joints of their body. A single frame (Figure

1.2) of a Johansson movie is nothing but a cloud of identical bright dots on a dark

�eld; however, as soon as the movie is animated, one can readily detect, count,

segment a number of people in a scene, and even assess their activity, age, and

sex [15, 16, 17]. Although such perception is completely e�ortless, our visual system

is ostensibly solving a hard combinatorial problem (the labeling problem-which dot

should be assigned to which body part of which person?).

Figure 1.2: Sample frames of Johansson's display. In Johansson's original experi-

ments, black background was used instead of white background.

Johansson experiments prove that motion is an important cue for visual percep-

tion. The fact that vivid motion can be perceived easily from a Johansson display
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illustrates that our visual system has developed a very strong ability in perceiving

human motion-we can recognize human motion easily from dots representing the mo-

tion of the main joints. This psychophysical evidence inspires us to build a computer

algorithm to achieve what human eyes can do.

1.4 Approach

We believe that the human visual system gains the ability of recognizing body motion

through learning (daily observation)�. Hence rather than modeling the details of the

mechanics of the human body, we choose to approach human motion perception as

the problem of recognizing a peculiar spatio-temporal pattern which may be learned

perceptually. We approach the problem using learning and statistical inference.

We model how a person moves in a probabilistic way. Though di�erent persons

move in di�erent styles and the same person moves di�erently at di�erent times, a

certain type of motion must share some common features. Moreover, the proportions

of the body are in a similar range despite the di�erence in human body size. Hence

a probabilistic model which captures both the common features and the variance of

human motion is very appropriate.

The approach on gray-scale images is shown in Figure 1.3. To detect and label

a moving human body, a feature detector/tracker (such as a corner detector) is �rst

used to obtain candidate features from a pair of frames. The combination of features

is then selected based on maximum likelihood by using the joint probability density

function formed by the position and motion of the body. Detection is performed by

thresholding the likelihood (see the lower part of Figure 1.3).

We use point features (from a motion capture system or a corner detector) because

they are easier to obtain compared to other types of features, such as body segments,

which may be more susceptible to occlusion. Point features are also a natural choice

since psychophysics experiments (Johansson's experiments [14]) indicate that the hu-

�We once showed a movie of the top-view of one person walking, and it became much harder to

recognize that it was a person walking. One reasonable explanation is that it is because we usually

see a person walking from front view, side view, or back view, but not from the top.
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Presence of Human? 
Localization of parts?
Type of motion?        

  Feature
 detector/
   tracker   

Detection 
    and 
Labeling

Training Data

   Probabilistic
       Model of

Human Motion

  Learning 
  algorithm

  Feature
 detector/
   tracker

RARA
RTRTLTLT

LALA
LHELHE
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LHLH

LELERSRS

RHRH

RERE

LSLS

LWLW
RWRW

N

H

Testing: two frames

Image sequences

Testing

Training

Figure 1.3: Diagram of the system on gray-scale images.

man visual system can perceive vivid human motion from moving dots representing

the motion of the human body joints. However, this does not preclude the use of this

algorithm to other types of features.

One key factor in the method is the probabilistic model of human motion. In order

to avoid an exponential combinatorial search, a graphical model is used to depict the

conditional independence of body parts. Graphical models are a marriage between

probability theory and graph theory [18]. We originally apply them to the problem

of human motion detection and labeling. We explore two classes of graphical models:

trees and decomposable triangulated graphs and �nd that the latter are superior for

our application.

At the training stage of our approach, probabilistic independence structures as well

as model parameters are learned from a training set. There are two types of training

data-labeled and unlabeled. In the case of labeled training data, the parts of the model

and the correspondence between the parts and observed features in the training set

are known, e.g., data from a motion capture system. For labeled training data,

we can hand-craft the probabilistic independence structure and estimate the model

parameters (e.g., mean and covariance for unimodal Gaussian). We use this learning

method in Chapters 2 and 3. In Chapter 4, we tackle a more challenging learning

problem, where algorithms are developed to search for the optimal independence

structure from labeled training data.
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In the case of unlabeled training data, probabilistic models are learned from train-

ing features including both useful foreground parts and background clutter, and the

correspondence between the parts and detected features is unknown. The problem

arises when we run a feature detector (such as the Lucas-Tomasi-Kanade detector

[1]) on real-image sequences, features are detected both on target objects and back-

ground clutter with no identity attached to each feature. From these features, we

wish to know which feature combinations arise in correspondence to a given visual

phenomenon (e.g., person walking from left to right). In Chapters 5 and 6, we develop

unsupervised algorithms that are able to learn models of human motion completely

automatically from real image sequences, i.e., unlabeled training features with clutter

and occlusion.

1.5 Outline of the thesis

This thesis is organized as follows.

Chapter 2 considers the problem of labeling a set of observed points when there

is no clutter and no body parts are missing, which we call the `Johansson problem.'

Chapter 3 explains how to extend the algorithm to perform detection and la-

beling in a cluttered and occluded scene, which we call the `generalized Johansson

problem.'

Chapter 4 describes how to learn the conditional independence structure of the

probabilistic model from labeled data.

Chapter 5 addresses the learning problem when the training features are unla-

beled.

Chapter 6 introduces the concept of mixtures of decomposable triangulated mod-

els and extends the unsupervised learning algorithm to the mixture model. This chap-

ter also presents a more comprehensive experimental section than previous chapters.

Chapter 7 puts decomposable triangulated models in the general framework of

graphical models, compares them with trees, and justi�es the use of decomposable

triangulated graphs.
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Chapter 8 summarizes the thesis work and indicates possible future research

directions.
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Chapter 2 The Johansson problem

In Johansson's human perception experiments, the input to the human visual system

are moving dots, and we can get a vivid perception of human motion and assign body

parts (such as hand, elbow, shoulder, knee and foot) to the dots immediately [14].

During this process, our visual system has solved a hard combinatorial problem-the

labeling problem: which dot should be assigned to which body part of which person?

This chapter develops an algorithm providing a solution to the labeling problem when

there is no clutter and no body parts are missing. Since the display is very similar to

that of Johansson's experiments, we call it the `Johansson problem.'

2.1 Notation and approach

As shown in Figure 2.1, given the position and velocity (arrows in the �gure) of some

dots� in the image plane (Figure 2.1 (a)), we want to assign the correct labels to the

dots. Velocity is used to characterize the motion. In our Johansson scenario each

part appears as a single dot in the image plane. Therefore, its identity is not revealed

by cues other than its relative position and velocity.

We deploy a probabilistic approach. The body pose and motion are characterized

by the joint probability density of the position and velocity of its parts. Let Sbody =

fLW;LE; LS;H : : : RFg be the set of M body parts, for example, LW is the left

wrist, RF is the right foot, etc. Correspondingly, let XLW be the vector representing

the position and velocity of the left wrist, XRF be the vector of the right foot, etc. We

model the pose and motion of the body probabilistically by means of a probability

density function PSbody
(XLW ; XLE; XLS; XH ; : : : ; XRF ).

Suppose that there are N point features in a display. Let X = [X1; : : : ; XN ] be

�In this thesis, the words, `dots,' `points,' `markers,' `features' or `point features,' have the same

meaning: things observed from the images. We will use them interchangeably. The words, `parts'

or `body parts', mean the parts that compose of the object (a moving human in our application).
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H 

N 

LS RS

LE RE

LW RW

LH RH

LK RK

LA
RA

LF
RF

(a) (b)

Figure 2.1: The labeling problem (without clutter and missing points): given the

position and velocity of body parts in the image plane (a), we use a probabilistic

model to assign the correct labels to the body parts (b). `L' and `R' in label names

indicate left and right. H:head, N:neck, S:shoulder, E:elbow, W:wrist, H:hip, K:knee,

A:ankle and F:foot.

the vector of measurements (each Xi, i = 1; : : : ; N , is a vector describing position

and velocity of point i). Here we assume that there are no missing body parts and

no clutter. In this case N = M . Let L = [L1; : : : ; LN ] be a vector of labels, where

Li 2 Sbody is the label of Xi. The labeling problem is to �nd L
�

, over all possible

label vectors L, such that the posterior probability of the labeling given the observed

data is maximized, that is,

L
�

= argmax
L2L

P (LjX) (2.1)

where P (LjX) is the conditional probability of a labeling L given the data X and L

is the set of all possible labelings. Using Bayes' law:

P (LjX) = P (XjL)
P (L)

P (X)
(2.2)
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It is reasonable to assume that the priors P (L) are equal for di�erent labelings,

then

L
�

= argmax
L2L

P (XjL) (2.3)

Given a labeling L, each point feature i has a corresponding label Li. Therefore

each measurementXi may also be written asXLi, i.e., the measurement corresponding

to a speci�c body part associated with label Li. For example, if Li = LW , i.e., the

label corresponding to the left wrist is assigned to the ith point, then Xi = XLW is

the position and velocity of the left wrist. Then,

P (XjL) = PSbody
(XLW ; XLE; XLS; XH ; : : : ; XRF ) (2.4)

where PSbody
is the joint probability density function of the position and velocity of

all the M body parts.

Three problems face us at this point: (a) What is the structure for the probabil-

ity/likelihood function to be maximized? (b) How do we estimate its parameters?

(c) How do we reduce the computational cost of the combinatorial search problem of

�nding the optimal labeling? Problems (a) and (c) need to be addressed together:

the structure of the probability density function must be such that it allows eÆcient

optimization.

A brute force solution to the optimization problem is to search exhaustively among

allM ! (assuming no clutter, no missing body parts) possible L's and �nd the best one.

The search cost is factorial with respect to M . Assume M = 16, then the number of

possible labelings is larger than 2� 1013, which is computationally prohibitive.

It is useful to notice that the body is a kinematic chain: for example, the wrist is

connected to the body indirectly via the elbow and the shoulder. One could assume

that the position and the velocity of the wrist are, therefore, independent of the
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position and velocity of the rest of the body once the position and velocity of elbow

and shoulder are known. This intuition may be generalized to the whole body: once

the position and velocity of a set S of body parts is known, the behavior of body

parts that are separated by S is independent. Of course, this intuition is only an

approximation which needs to be validated experimentally.

Our intuition on how to decompose the problem may be expressed in the lan-

guage of probability: consider the joint probability density function of 5 random vari-

ables P (A;B;C;D;E). By Bayes' rule, it may be expressed as P (A;B;C;D;E) =

P (A;B;C)P (DjA;B;C)P (EjA;B;C;D). If these random variables are conditionally

independent as described in the graph of Figure 2.5, then

P (A;B;C;D;E) = P (A;B;C)P (DjB;C)P (EjC;D) (2.5)

Thus, if the body parts can satisfy the appropriate conditional independence con-

ditions, we can express the joint probability density of the pose and velocity of all parts

as the product of conditional probability densities of n-tuples. This approximation

makes the optimization step computationally eÆcient as will be discussed below.

What is the best decomposition for the human body? What is a reasonable size n

of the groups (or cliques) of body parts? We hope to make n as small as possible to

minimize the cost of the optimization. But as n gets smaller, conditional independence

may not be a reasonable approximation any longer. There is a tradeo� between

computational cost and algorithm performance. We use decomposable triangulated

models with n = 3 as will be discussed below.

2.2 Decomposable triangulated graphs

We use decomposable triangulated graphsy to depict the probabilistic conditional in-

dependence structure of body parts. A decomposable triangulated graph [19] is a

yFor general graphical models, the term decomposable and the term triangulated have their own

meanings (they are actually equivalent properties[18]). In this thesis, we use the term decomposable

triangulated speci�cally for the graph type de�ned in this paragraph.
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collection of cliquesz of size three, where there is an elimination order of vertices such

that (1) when a vertex is deleted, it is only contained in one triangle (we call it a

free vertex); (2) after eliminating one free vertex and the two edges associated with

it, the remaining subgraph is again a collection of cliques of size three until only one

triangle left.

A

B C

D

E

F

B C

D

E

F

C

D

E

F

D

E

F

Figure 2.2: Example of successive elimination of a decomposable triangulated graph,

with elimination order (A;B;C; (DEF )).

Figure 2.2 shows an example of a decomposable triangulated graph. The cliques

of the graphs are fA;B;Eg, fB;E; Fg, fC;E; Fg, and fD;E; Fg. One elimination

order of the vertices is A;B;C, and fD;E; Fg is left as the last clique. Figure 2.2

gives the steps of elimination of vertices following this order. Note that for a �xed

graph structure, the elimination order is not unique. For example, for the graph in

Figure 2.2, another elimination order of vertices is C;D; F with fA;B;Eg left as the

last clique.

Figure 2.3 shows two decomposable graphs of the whole body, along with one

order of successive elimination of the cliques.

To better understand the concept of the decomposable triangulated graph, some

graphs which are not decomposable triangulated graphs are given in Figure 2.4. They

are not decomposable triangulated graphs for the followings reasons. Figure 2.4 (a):

after one free vertex and its associated edges are deleted, the remaining graph is not a

collection of cliques of size three; Figure 2.4 (b): there is no free vertex in the graph;

Figure 2.4 (c): it is a clique of size four, not a collection of cliques of size three.

When decomposable graphs are used to describe conditional independence of ran-

zA clique is a maximal subset of vertices, any two of which are adjacent.
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Figure 2.3: Two decompositions of the human body into triangles. `L' and `R' in

label names indicate left and right. H:head, N:neck, S:shoulder, E:elbow, W:wrist,

H:hip, K:knee, A:ankle and F:foot. The numbers inside triangles give the index of

triangles used in the experiments. In (a) they are also one order in which the vertices

are deleted. In (b) the numbers in brackets show one elimination order.
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Figure 2.4: Examples of non-decomposable triangulated graphs.
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dom variables, the probability density function can be written according to the elim-

ination order of the vertices. For example, following the elimination order given in

Figure 2.2, the joint probability P (A;B;C;D;E; F ) can be approximated by

P (A;B;C;D;E; F ) = P (AjB;E)P (BjE; F )P (CjE; F )P (D;E; F ) (2.6)

If we use another elimination order mentioned above, C;D; F with fA;B;Eg left as

the last clique, then the joint probability P (A;B;C;D;E; F ) can be written as

P (A;B;C;D;E; F ) = P (CjE; F )P (DjE; F )P (F jB;E)P (A;B;E) (2.7)

Using Bayes' rule, it is easy to verify that equations (2.6) and (2.7) are equivalent.

For one graph, although we can write di�erent decompositions according to di�erent

elimination orders, they describe the same conditional independence.

In general, Let Sbody = fS1; S2; : : : ; SMg be the set of M parts, for example, S1

denotes the left wrist, SM is the right foot, etc. XSi, 1 � i � M , is the measure-

ment for Si. If the joint probability density function PSbody
can be decomposed as a

decomposable triangulated graph, it can be written as

PSbody
(XS1; XS2; : : :XSM)

=
YT�1

t=1
PAtjBtCt(XAtjXBt; XCt) � PATBTCT (XAT ; XBT ; XCT ) (2.8)

where Ai; Bi; Ci 2 Sbody, 1 � i � T = M � 2, fA1; A2; : : : ; AT ; BT ; CTg = Sbody, and

(A1; B1; C1); (A2; B2; C2); : : : ; (AT ; BT ; CT ) are the cliques. (A1; A2; : : : ; AT ) gives one

elimination order for the decomposable graph.

The choice of decomposable triangulated graph is motivated by both computa-

tional and performance reasons. Trees are good examples of modeling conditional

(in)dependence [20, 21]. But decomposable triangulated graphs are more powerful

models than trees since each node can be thought of as having two parents. Similar

to trees, decomposable triangulated graphs allow eÆcient algorithms such as dynamic

programming to fast calculate the maximum likelihood interpretation of a given set
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of data [19]. We will give more rigorous analysis on why we choose decomposable tri-

angulated graphs in section 7.5. The details of the dynamic programming algorithm

will be discussed in the next section.

2.3 Algorithms

What is needed is an algorithm that will search through all the legal labelings and

�nd the one that maximizes the global joint probability density function. Notice that

this optimum cannot be obtained by optimizing independently each triplet (clique

of size three). If the joint probability can by decomposed by a decomposable trian-

gulated graph, dynamic programming can be used to solve this problem eÆciently.

The key condition for using dynamic programming is that the problem exhibits op-

timal substructure. For example, we want to �nd the labeling which can maximize

P (A;B;C;D;E). If equation (2.5) holds, then whatever the choices of A;B;C;D

are, the best E must be the one which maximizes P (EjC;D). Therefore to get the

best E, we only need to consider the function P (EjC;D) instead of P (A;B;C;D;E).

More formally,

max
A;B;C;D;E

P (A;B;C;D;E) = max
A;B;C

(P (A;B;C) �max
D

(P (DjB;C) �max
E

P (EjC;D)))

= max
A;B;C

(P (A;B;C) �max
D

(f(B;C;D)))

= max
A;B;C

g(A;B;C) (2.9)

where f(B;C;D) = P (DjB;C) � maxE P (EjC;D) and g(A;B;C) = P (A;B;C) �

maxD f(B;C;D). Assume each variable can take N possible values. If the maximiza-

tion is performed over P (A;B;C;D;E) directly, then the size of the search space is

NM (M is the number of variables, M = 5 for this example). By equation (2.9),

the maximization can be achieved by maximization over P (EjC;D), f(B;C;D) and

g(A;B;C) successively, and the size of the search space is (M � 2) �N3.

Generally, if the joint probability of the whole body can be decomposed as in
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equation (2.8), then

maxPSbody
(XS1; XS2; : : :XSM)

= max
XAT

;XBT
;XCT

PT (XAT ; XBT ; XCT ) max
XAT�1

PT�1(XAT�1
jXBT�1

; XCT�1
) � � �

max
XA2

P2(XA2
jXB2

; XC2
)max
XA1

P1(XA1
jXB1

; XC1
) (2.10)

where the `max' operation is computed from right to left.

If we take the probability density function as the cost function, a dynamic pro-

gramming method similar to that described in [19] can be used. For each triplet

(At; Bt; Ct), we characterize it with a ten dimensional feature vector

x = (vAx; vBx; vCx; vAy; vBy; vCy; pAx; pCx; pAy; pCy)
T (2.11)

The �rst three dimensions of x are the x-direction (horizontal) velocity of body parts

(At; Bt; Ct), the next three are the velocity in the y-direction (vertical), and the last

four dimensions are the positions of body parts At and Ct relative to Bt. Relative

positions are used here so that we can obtain translation invariance. As a �rst-

order approximation, it is convenient to assume that x is jointly Gaussian-distributed

and therefore its parameters may be estimated from training data using standard

techniques. After the joint probability density function is computed, the conditional

one can be obtained accordingly:

PAtjBtCt(XAtjXBt; XCt) =
PAtBtCt(XAt; XBt; XCt)

PBtCt(XBt; XCt)
(2.12)

where PBtCt(XBt; XCt) can be obtained by estimating the joint probability density

function of the vector (vBx; vCx; vBy; vCy; pCx; pCy)
T .

Let

	t(XAt; XBt; XCt) = logPAtjBtCt(XAtjXBt; XCt); for 1 � t � T � 1 (2.13)
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	t(XAt; XBt; XCt) = logPATBTCT (XAT ; XBT ; XCT ); for t = T (2.14)

be the cost function associate with each triangle, then the dynamic programming

algorithm can be described as follows:

Stage 1: for every pair (XB1
; XC1

),

Compute 	1(XA1
; XB1

; XC1
) for all possible XA1

De�ne T1(XA1
; XB1

; XC1
) the total value so far.

Let T1(XA1
; XB1

; XC1
) = 	1(XA1

; XB1
; XC1

)

Store

8<
:

X�

A1[XB1
;XC1

] = argmaxXA1
T1(XA1

; XB1
; XC1

)

T1(X
�

A1[XB1
;XC1

]; XB1
; XC1

)

Stage t, 2 � t � T : for every pair (XBt; XCt),

Compute 	t(XAt; XBt; XCt) for all possible XAt

Compute the total value so far (till stage t):

{ De�ne Tt(XAt; XBt; XCt) the total value so far.

Initialize Tt(XAt; XBt; XCt) = 	t(XAt; XBt; XCt)

{ If edge (At; Bt) is contained in a previous

stage and � is the latest such stage, add the cost

T� (X
�

A� [XAt
;XBt

]; XAt; XBt) (or T� (X
�

A� [XBt
;XAt

]; XBt; XAt) if the

edge was reversed) to Tt(XAt; XBt; XCt)

{ Likewise, add the costs of the latest previous

stages containing respectively edge (At; Ct) and edge (Bt; Ct)

to Tt(XAt; XBt; XCt)

Store

8<
:

X�

At[XBt
;XCt

] = argmaxXAt
Tt(XAt; XBt; XCt)

Tt(X
�

At[XBt
;XCt

]; XBt; XCt)
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When stage T calculation is complete, TT (X
�

AT [BT ;CT ]
; XBT ; XCT ) includes the

value of each 	t, 1 � t � T , exactly once. Since the 	t's are the logs of condi-

tional (and joint) probabilities, then if equation (2.8) holds,

TT (X
�

AT [BT ;CT ]
; XBT ; XCT ) = logPSbody

(XLW ; XLE; XLS; XH : : : XRF )

Thus picking the pair (X�

BT
; X�

CT
) that maximizes TT automatically maximizes the

joint probability density function.

The best labeling can now be found tracing back through each stage: the best

(X�

BT
; X�

CT
) determines X�

AT
, then the latest previous stages with edge respectively

(X�

AT
; X�

BT
), (X�

AT
; X�

CT
), and/or (X�

BT
; X�

CT
) determine more labels and so forth.

A simple example of this algorithm is shown in Figure 2.5.

The above algorithm is computationally eÆcient. Assume M is the number of

body part labels and N (N =M for this section) is the number of candidate markers,

then the total number of stages is T =M � 2 and in each stage the computation cost

is O(N3). Thus, the complexity of the whole algorithm is on the order of M �N3.

2.4 Experiments

We did experiments on motion capture datax, which allow us to explore the labeling

performance of the algorithm on frames with all the body parts observed and no

clutter points. The data were obtained �lming a subject moving freely in 3-D; 16

light bulbs were strapped to the main joints of the subject's body. In order to obtain

ground-truth, the data were �rst acquired, reconstructed and labeled in 3-D using a

4-camera motion capture system operating at a rate of 60 samples/sec. Since our goal

is to detect and label the body directly in the camera image plane, a generic camera

view was simulated by orthographic projection of the 3-D marker coordinates. In the

following sections we will control the camera view with the azimuth viewing angle:

a value of 0 degrees will correspond to a right-side view, a value of 90 to a frontal

xThese data were captured by Drs. Luis Goncalves and Enrico Di Bernado using a motion capture

system built in Vision Lab, Caltech.
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x
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Figure 2.5: An example of dynamic programming algorithm applied to a simple graph.

The goal is to assign the markers to the variables A;B;C;D;E in the graph such that

P (A;B;C;D;E) is maximized.
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view of the subject. Six sequences were acquired each around 2 minutes long. In the

next sections they will be referred as follows: Sequences W1 (7000 frames), W2 (7000

frames): relaxed walking forward and backwards along almost straight paths (with

�20 degree deviations in heading); W3 and W4 (6000 frames each): relaxed walking,

with the subject turning around now and then (Figure 2.6(a) shows sample frames

from W3); Sequence HW (5210 frames): walking in a happy mood, moving the head,

arms, hips more actively (Figure 2.6(b)); Sequence DA (3497 frames): dancing and

jumping (Figure 2.6(c)), with the subject moving his legs and arms freely and much

faster than in the previous four sequences. Given that the data were acquired from the

same subject and that orthographic projection was used to simulate a camera view,

our data were already normalized in scale. The velocity of each candidate marker was

obtained by subtracting its positions in two consecutive frames. Thus, to get velocity

information, we assumed that features could be tracked for two frames but we didn't

use any feature correspondence over more than two frames, which is arguably the

most diÆcult conditions under which to perform labeling and detection, as will be

discussed in section 3.3.

Among the sequences, walking sequences W1 and W2 are the relatively simple

ones, so W1 and W2 were �rst used to test the validity of the Gaussian probabilistic

model and the performance of two possible body decompositions (Figure 2.3). Since

the heading direction of W1 and W2 was roughly along a line, these sequences were

also used to study the performance as a function of viewing angle. Then experiments

were conducted using W3, HW and DA to see how the model worked for more active

and non-periodic motions.

2.4.1 Detection of individual triangles

In this section, the performance of the Gaussian probabilistic model for individual

triangles is examined. In the training phase, the joint Gaussian parameters (mean

and covariance) for each triangle in Figure 2.3 were estimated from walking sequence

W1 (viewed with a 45 degrees viewing angle). In the test phase, for each frame
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830 845 860 875 890

(a)

3600 3615 3630 3645 3660

(b)

2460 2466 2508 2514 2526

(c)

Figure 2.6: Sample frames for the (a) walking sequence W3; (b) happy walking

sequence HW; (c) dancing sequence DA. The numbers on the horizontal axes are the

frame numbers.
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in W2 (also viewed of 45 degrees), each triangle probability was evaluated for all

possible combinations of markers (16� 15� 14 di�erent combinations). Ideally, the

correct combination of markers should produce the highest probability for each re-

spective triangle. Otherwise, an error occurred. Figure 2.7 (a) shows how well each

triangle's joint probability model detects the correct set of markers. Figure 2.7 (b)

shows a similar result for the conditional probability densities of triangles, where for

each triangle conditional probability density PAtjBtCt(XAtjXBt; XCt), we computed

PAtjBtCt(XAtjXBt; XCt) for all the possible choices of At (14 choices), given the cor-

rect choice of markers for Bt and Ct. Figure 2.7 shows that the Gaussian model is

very good for most triangles (in the joint case, if a triangle is chosen randomly, then

the chance of getting the correct one is 3� 10�4 and the probability models do much

better than that).
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Figure 2.7: Local model error rates (percentage of frames for which the correct choice

of markers did not maximize each individual triangle probability). Triangle indices

are those of the two graph models of Figure 2.3. `+': results for decomposition Figure

2.3(a); `o': results for decomposition Figure 2.3 (b). (a) joint probability model; (b)

conditional probability model.

It is not surprising that the performance of some triplets is much worse than

others. The worst triangles in Figure 2.7 (a) are those with left and right knees,

which makes sense because the two knees are so close in some frames that it is even

hard for human eyes to distinguish between them. Therefore, it is also hard for the

probability model to make the correct choice.
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Figure 2.8: Probability ratio (correct markers vs. the solution with the highest prob-

ability when an error happens). The horizontal axis is the index of frames where

error happens. (a) joint probability ratio for triangle 10 or 25 (RH, LK, RK); (b)

conditional probability ratio for triangle 17 (H, N, LS).

Further investigation of the behavior of the triangle probabilities revealed that, for

frames in which the correct choice of markers did not maximize a triangle probability,

that probability was nevertheless quite close to the maximal value. Figure 2.8 shows

the ratio of the probabilities of the correct choice over the maximizing choice for the

two worst behaving triangles, over the set of frames where the errors occurred. Figure

2.8 (a) shows the ratio of the joint probability distribution for triangle 10 (consisting

of right hip, left knee, and right knee, as in �gure 2.3 (a)). Figure 2.8 (b) shows

the ratio of the conditional probability distribution for triangle 17 ( head, neck, and

left shoulder). Although these two triangles had the highest error rates, the correct

marker combination was always very close to being the highest ranking, always less

than a factor of 1.006 away. This is a good indication that the individual triangle

probability models encode the distribution quite well.

2.4.2 Performance of di�erent body graphs

We did experiments using the two decompositions in Figure 2.3. The training se-

quence W1 and the test sequence W2 were under the same viewing angle: 45 degrees,

which is between the side view and the front view. Table 1 shows the results. The
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frame-by-frame error is the percentage of frames in which errors occurred, and label-

by-label error is the percentage of markers wrongly labeled out of all the markers in all

the testing frames. Label-by-label error is smaller than frame-by-frame error because

an error in a frame does not mean all the markers are wrongly labeled.

decomposition model (a) (b)

frame-by-frame error 0.27% 13.13%

label-by-label error 0.06% 1.61%

Table 2.1: Error rates using the models in Figure 2.3

The performance of the algorithm using the decomposition of Figure 2.3(a) is

almost perfect and much better than that of (b), which is consistent with our expec-

tation (by Figure 2.7, the local performance of decomposition Figure 2.3(a) is better

than that of Figure 2.3(b)). We used the better model in the rest of the experiments.

2.4.3 Viewpoint invariance

In the previous sections the viewing angle for training and for testing was the same.

Here we explore the behavior of the method when the testing viewing angle is di�erent

from that used during training. Figure 2.9 shows the results of three such experiments

where walking sequence W1 was used as the training set and W2 as the test set .

The solid line in Figure 2.9(a) shows the percentage of frames labeled correctly

when the training was done at a viewing angle of 90 degrees (subject facing the

camera) and the testing viewing angle was varied from 0 degrees (right-side view) to

180 degrees (left side view) in increments of 10 degrees. When the viewing angle was

between 60 to 120 degrees, almost all frames were labeled correctly, thus showing that

the probabilistic model learned at 90 degrees is insensitive to changes in viewpoint

by up to �30 degrees.

The solid line in Figure 2.9(b) shows the results of a similar experiment where the

training viewpoint was at 0 degrees (right-side view) and the testing angle was varied

from �90 degrees (back view) to 90 degrees (front view) in 10 degree increments. A
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Figure 2.9: Labeling performance as a function of viewing angle. (a) Solid line:

percentage of correctly labeled frames as a function of viewing angle, when the training

was done at 90 degrees (frontal view). Dashed line: training was done by combining

data from views at 30, 90, and 150 degrees. (b) Labeling performance when the

training was done at 0 degrees (right-side view of walker). The dip in performance

near 0 degrees is due to the fact that from a side view orthographic projection without

body self-occlusions it is almost impossible to distinguish left and right.

noticeable dip in the performance centered around 0 degrees is visible in the plot.

Inspection of the errors which occurred at these viewing angles revealed that they

consisted solely of confusions between homologous left-right leg parts; i.e., the two

hips were sometimes confused, as were the knees, the ankles, and the feet. Considering

that an orthographic projection of the 3-D data was used to create the 2-D views,

this result is not surprising; given an orthographic side view of a person walking (with

no self-occlusions) a person viewing the motion is unable to distinguish the left and

right-sides of the body. Thus, modulo this left-right ambiguity, the model learned at

0 degrees viewing angle is insensitive to changes in viewpoint of up to �50 degrees.

The dashed line in Figure 2.9(a) shows the results of an experiment of trying to

increase the invariance of the probabilistic model with respect to changes in viewpoint.

The same 3-D training sequence was used to generate three 2-D data sequences with

viewing angles at 30, 90, and 150 degrees. The three 2-D sequences were combined,

and used all together to learn the probability density functions of the graph triangles.

As shown in the plot, this procedure does in fact improve the labeling accuracy. At
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0 degrees, the only errors were the above mentioned left-right ambiguity within the

legs. Between 10 and 60 degrees, besides left-right errors, also the feet and ankles

were confused. From 120 to 180 degrees, the errors once again consisted solely of

swapped left and right body parts.

2.4.4 Performance with di�erent motions

The previous sections show that for simple motions very good results can be achieved

using the probabilistic model. Here we want to investigate how the method works for

more general sets of motions. We did experiments on walking sequence W3, happy

walking sequence HW, and dancing sequence DA. Each sequence was divided into

four segments for a total of twelve segments. To test a segment, frames from all the

other eleven segments were used as the training set. The error rates for di�erent

sequences are obtained by averaging the results of the corresponding segments.

test set ALL W3 HW DA

frame-by-frame error 6.81% 3.02% 4.49% 15.95%

label-by-label error 0.69% 0.38% 0.50% 1.45%

Table 2.2: Error rates for di�erent sequences. ALL: average over all three sequences;

W3: walking sequence; HW: walking in happy mood; DA: dancing sequence

Table 2 shows the error rates for di�erent sequences. The �rst column is the

average result for all three sequences, and the next three columns show the error

rates for walking sequence W3, happy walking sequence HW and dancing sequence

DA respectively. The results for walking sequence W3 and happy walking sequence

HW are very good, with frame-by-frame error less than 5% and label-by-label error

no more than 0:5%. It is not surprising that the error rates of dancing sequence are

higher than the walking sequences because the motions in the dancing sequence are

more random and agitated and therefore harder to model. Another possible reason

is that the dancing sequence is shorter than the other sequences, so the motion of

dancing has relatively less weight in the training set.
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Figure 2.10: Error rates for individual body parts. `L' and `R' in label names indicate

left and right. H:head, N:neck, S:shoulder, E:elbow, W:wrist, H:hip, K:knee,A:ankle

and F:foot. See section 2.4.4.

Figure 2.10 shows the error rate of each individual body part for each of the

sequences. Notice that most errors occur at the left and right wrist (LW and RW)

in the dancing sequence. This is because in the dancing sequence the wrists are very

close to hips in some frames, and the program mistook the hip markers as being

the wrists. The reason why the program wouldn't mistake wrist markers as hips is

that hips have better motion constraints than wrists. In our decomposed body graph

Figure 2.3(a), both left and right hip (LH and RH) appear in �ve triangles, but the

wrists (LW and RW) are only in one triangle each.

2.5 Summary

In this chapter, we develop an algorithm to solve the labeling problem with all the

body parts present and no clutter, i.e., the `Johansson problem.' We model the pose

and motion of the body probabilistically by the joint probability density function

(pdf) of the positions and velocities of all the body parts. Decomposable triangulated

graphs are used to model the conditional independence of body parts so that dynamic

programming can be used to �nd the best labeling eÆciently. Experiments on motion

capture data show that the algorithm works well for the `Johansson problem.'
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Chapter 3 Generalized Johansson

problem: clutter and occlusion

In the previous chapter we dealt with the ideal case where all the body parts are

present with no clutter points. But in real scenes, there is often clutter due to other

moving patterns (cars driving by, trees swinging in the wind, water rippling... as in

Figure 3.1) or the noisy output of feature detector/selector. Also, some body parts are

not visible due to self-occlusion (Figure 3.1). In this chapter, we extend the algorithm

to handle occlusion and clutter. We call the labeling and detection problem under

clutter and occlusion 'generalized Johansson problem'.

Figure 3.1: Perception of biological motion in real scenes: one has to contend with

a large amount of clutter (more than one person in the scene, other objects in the

scene are also moving), and a large amount of self-occlusion (typically only half of

the body is seen). Observe that segmentation (arm vs. body, left and right leg) is at

best problematic.

The generalized Johansson problem can be formulated as follows: given the po-

sitions and velocities of many points in an image plane (Figure 3.2 (a)), we want to

decide whether a human body is present (detection) and �nd the most likely human

con�guration (labeling) (Figure 3.2 (b)). In practice, the set of dots and associated
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velocities can be obtained from a low-level motion detector/feature tracker applied to

the entire image (for example, Lucas-Tomasi-Kanade feature detector/tracker [1]).

N 
LS

LE RE

RW

LK RK

RA

H 

N 

LS RS

LE RE

LW
RW

LH RH

LK RK

LA RA

(a) (b) (c)

Figure 3.2: Detection and labeling under the conditions of clutter and occlusion:

Given the position and velocity of dots in an image plane (a), we want to decide

whether a person is present in the scene and �nd the most possible human con�gu-

ration. Filled dots in (b) are body parts and circles are background points. Arrows

in (a) and (b) show the velocities. (c) is the full con�guration of the body. Filled

(blackened) dots representing those present in (b), and the '*'s are actually missing

(not available to the program). The body part label names are the same as in Figure

2.1.

In the following sections, we �rst address the labeling problem, i.e., how to �nd

the most human-like con�guration from a given set of features. Based on the tools

and concepts developed for the labeling problem, we will describe how to do detection

and count the number of people in the scene.

3.1 Labeling problem under clutter and occlusion

3.1.1 Notation and description of the problem

Similar to section 2.1, the labeling problem can be described as follows. Suppose that

we observe N points (as in Figure 3.2(a), where N = 38). We assign an arbitrary
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index to each point. Then,

i 2 1; : : : ; N Index (3.1)

X = [X1; : : : ; XN ] Vector of measurements (3.2)

L = [L1; : : : ; LN ] Vector of labels (3.3)

Li 2 Sbody [ fBGg Possible values for each label (3.4)

Since there exist clutter points that do not belong to the body, the background

label BG is added to the label set. Due to clutter and occlusion, N is not necessarily

equal to M (which is the size of Sbody). If we assume that the priors P (L) are equal,

then as in equation (2.3), we want to �nd

L
�

= argmax
L2L

P (XjL)

Let Lbody denote the set of body parts appearing in L, Xbody be the vector of

measurements labeled as body parts, and Xbg be the vector of measurements labeled

as background (BG). More formally, we group the measurements X in two vectors

Xbody and Xbg,

Lbody = fLi; i = 1; : : : ; Ng \ Sbody

Xbody = [Xi1 ; : : : ; XiK ] such that fLi1 ; : : : ; LiKg = Lbody

Xbg = [Xj1; : : : ; XjN�K ] such that Lj1 = � � � = LjN�K = BG (3.5)

where K is the number of points described in Xbody (i.e. the size of Lbody) and N �K

is the number of points in Xbg, i.e. the number of background points.

If we assume that the position and velocity of the visible body parts is independent

of position and velocity of clutter points, then,

P (XjL) = P
Lbody

(Xbody) � Pbg(Xbg) (3.6)
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where P
Lbody

(Xbody) is the marginalized probability density function of PSbody
(as in

equation (2.4)) according to Lbody. If independent uniform background noise is as-

sumed, Pbg(Xbg) = (1=S)N�K, where N�K is the number of background points, and

S is the volume of the space the position and velocity of a background point lies in.

In the following sections, we will address the issues of estimating P
Lbody

(Xbody) and

further �nd the L
�

with the highest likelihood.

3.1.2 Approximation of foreground probability density func-

tion

If no body part is missing, we can use equation (2.8) to get an approximation of the

foreground probability density P
Lbody

(Xbody),

P
Lbody

(Xbody) =
YT�1

t=1
Pt(XAtjXBt; XCt) � PT (XAT ; XBT ; XCT ) (3.7)

where T is the number of triangles in the decomposable triangulated graph, t is the

triangle index, At is the �rst body part associated to triangle t, and etc.

If some body parts are missing, the foreground probability density function (PDF)

is the marginalized version of the above equation { marginalization over the missing

body parts. Let us consider the example in equation (2.5) and Figure 2.5. If A is

missing, the marginalized PDF is P (B;C;D;E), and,

P (B;C;D;E) = P (B;C) � P (DjB;C) � P (EjC;D) (3.8)

But if C is missing, there is no conditional independence among variables A;B;D

and E, and the marginalized PDF P (A;B;D;E) cannot be decomposed into terms

of smaller cliques. Hence the search cost for optimization is increased by one oder

of magnitude. This exposes a general problem for precise marginalization. It may

destroy some conditional independence and increase the computational cost.

We want the marginalization to be a good approximation of the true marginal

PDF and allow eÆcient computation as well. A reasonable way to get such an ap-
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proximation is to remove all the edges connected to the missing body parts, which

may enforce stronger conditional independence. In formulas, this is equivalent to

doing the marginalization term by term (triangle by triangle) of equation (3.7) and

multiplying them together. The idea can be illustrated by a simple example. For the

graph in Figure 2.5, if A is missing, then the marginalized PDF P (B;C;D;E) can

be computed as in equation (3.8). In the case of C missing, if we assume that D

is conditionally independent of A given B, and E is independent of A and B given

D, which is a more demanding conditional independence requirement than that of

equation (2.5), then,

P (A;B;D;E) = P (A;B) � P (DjB) � P (EjD) (3.9)

In the case of D missing, if we assume that E is conditionally independent of A and

B given C, which is also a more demanding conditional independence requirement

than that of equation (2.5), then,

P (A;B;C;E) = P (A;B;C) � 1 � P (EjC) (3.10)

Each term on the right-hand sides of equations (3.8), (3.9), and (3.10) is the marginal-

ized version of its corresponding term in equation (2.5).

Similarly, under some stronger conditional independence, we can obtain an ap-

proximation of P
Lbody

(Xbody) by performing the marginalization term by term of equa-

tion (3.7). For example, considering triangle (At; Bt; Ct), 1 � t � T � 1, if all of At,

Bt and Ct are present, then the tth term of equation (3.7) is PAtjBt;Ct(XAtjXBt; XCt);

if At is missing, the marginalized version of it is 1; if At and Ct are observed, but

Bt is missing, it becomes PAtjCt(XAtjXCt)); if At exists but both Bt and Ct missing,

it is PAt(XAt). The foreground probability P
Lbody

(Xbody) can be approximated by

the product of the above (conditional) probability densities. Note that if too many

body parts are missing, the conditional independence assumptions of the graphical

model may no longer hold; it is reasonable to assume that the wrist is condition-
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ally independent of the rest of the body given the shoulder and elbow, but if both

shoulder and elbow are missing, this is no longer true. We will explore more on

this issue later in this thesis. All the above (conditional) probability densities can

be estimated from the training data. For instance, PAtjBt;Ct(XAtjXBt; XCt) can be

obtained via PAt;Bt;Ct(XAt; XBt; XCt) and PBt;Ct(XBt; XCt) as in equation (2.12), and

PAtjCt(XAtjXCt) can be computed through PAt;Ct(XAt; XCt) and PCt(XCt).

3.1.3 Comparison of two labelings and cost functions for dy-

namic programming

The best labeling (L
�

) can be found by comparing all the possible labelings. To

compare two labelings L
1
and L

2
, if we can assume the priors P (L

1
) and P (L

2
) are

equal, then by equations (2.2) and (3.6),

P (L
1
jX)

P (L
2
jX)

=
P (XjL

1
)

P (XjL
2
)

=
P
L
1

body
(X

1

body) � Pbg(X
1

bg)

P
L
2

body
(X

2

body) � Pbg(X
2

bg)

=
P
L
1

body
(X

1

body) � (1=S)
N�K1

P
L
2

body
(X

2

body) � (1=S)
N�K2

=
P
L
1

body
(X

1

body) � (1=S)
M�K1

P
L
2

body
(X

2

body) � (1=S)
M�K2

(3.11)

where L
1

body and L
2

body are the sets of observed body parts for L
1
and L

2
, respec-

tively, K1 and K2 are the sizes of L
1

body and L
2

body, and M is the total number of

body parts (M = 16 here). P
L
i
body

(X
i

body), i = 1; 2, can be approximated as in sec-

tion 3.1.2. From equation (3.11), the best labeling L
�

is the L which can maximize

P
Lbody

(Xbody) � (1=S)
M�K. This formulation makes both search by dynamic program-

ming and detection in di�erent frames (possibly with di�erent numbers of candidate

features N) easy, as will be explained below.
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At each stage of the dynamic programming algorithm described in section 2.3, the

local optimum is stored according to the total value so far Tt(XAt; XBt; XCt), which

is the sum of the local cost of the current triangle 	t(XAt; XBt; XCt) and the costs

of all the triangles on the path of the deletion of the current triangle. This requires

that the local cost function 	t(XAt; XBt; XCt) be comparable for di�erent labelings:

whether there are missing part(s) or not. Therefore we cannot only use the terms of

P
Lbody

(Xbody), because, for example, as we discussed in the previous subsection, the

tth term of P
Lbody

(Xbody) is PAtjBt;Ct(XAtjXBtXCt) when all the three parts are present

and it is 1 when At is missing. It is unfair to compare PAtjBtCt(XAtjXBt; XCt) with 1

directly. At this point, it is useful to notice that in P
Lbody

(Xbody) � (1=S)
M�K, for each

unobserved (missing) body part (M �K in total), there is a 1=S term. 1=S (S is the

volume of the space the position and velocity of a background point lies in) can be a

reasonable local cost for a triangle with missing vertex At (the vertex to be deleted)

because then for the same stage, the dimension of the domain of the local cost function

is the same. Also, 1=S can be thought of as a threshold of PAtjBtCt(XAtjXBt; XCt),

namely, if PAtjBtCt(XAtjXBt; XCt) is smaller than 1=S, then the hypothesis that At is

missing will win. Therefore, the local cost function (exp(	t(XAt; XBt; XCt))) for the

tth (1 � t � T � 1) triangle can be approximated as follows:

- if all the three body parts are observed, it is PAtjBt;Ct(XAtjXBt; XCt);

- if At is missing or two or three of At; Bt; Ct are missing, it is 1=S;

- if Bt or Ct is missing and the other two body parts are observed, it is PAtjCt(XAtjXCt)

or PAtjBt(XAtjXBt).

The same idea can be applied to the last triangle T . These approximations are to be

validated in experiments. Notice that when two body parts in a triangle are missing,

only velocity information for the third body part is available since we use relative

positions. The velocity of a point alone does not have much information, so for two

parts missing, we use the same cost function as the case of three body parts missing.

The approximation of the local cost functions described above can be illustrated

by a simple example of Figure 2.5 (with M = 5). We want to compare a labeling L
1

with all �ve vertices (A;B;C;D;E) present and another labeling L
2
with D missing.
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By equations (2.5), (3.10) and (3.11), we need to compute

P (A;B;C;D;E)

P (A;B;C;E) � (1=S)

=
P (A;B;C) � P (DjB;C) � P (EjC;D)

P (A;B;C) � 1 � P (EjC) � (1=S)

=
P (A;B;C)

P (A;B;C)
�
P (DjB;C)

(1=S)
�
P (EjC;D)

P (EjC)
(3.12)

The last line of equation (3.12) gives the local cost for each triangle.

With the local cost functions de�ned above, dynamic programming can be used

to �nd the labeling with the highest P
Lbody

(Xbody) � (1=S)
M�K. The computational

complexity is on the order of M �N3.

3.2 Detection

In the previous section, we explain how to compute the likelihood of a hypothesis

labeling L, P (XjL), and how to compare two labelings and obtain the best labeling.

Based on these tools, we are now ready to discuss how detection is performed. Let

O1 denote a person present in the image, and O0 absent. The detection task is to

determine whether the ratio

P (O1jX)

P (O0jX)
=

P (XjO1)P (O1)=P (X)

P (XjO0)P (O0)=P (X)

=
P (XjO1)

P (XjO0)
�
P (O1)

P (O0)
(3.13)

is greater than 1. If we assume the priors are equal, the second term of the above

equation is 1. We need to compute P (XjO1) and P (XjO0). Assume L is the set of

all the possible labelings when a person present (O1), then,



36

P (XjO1) =
X
L2L

P (X;LjO1)

=
X
L2L

P (XjL;O1)P (LjO1) (3.14)

When there is no person in the scene, the only possible labeling is L0 = [BG;BG; : : : ; BG].

Then,

P (XjO0) = P (X;L0jO0)

= P (XjL0; O0)P (L0jO0)

= P (XjL0; O0) (3.15)

If we assume the position and velocity of the visible body parts are independent of

position and velocity of background features (clutter) and the background features

are independently uniformly distributed, then

P (XjL;O1) = P
Lbody

(Xbody) � Pbg(Xbg) = P
Lbody

(Xbody) � (1=S)
N�KL (3.16)

P (XjL0; O0) = Pbg(X) = (1=S)N (3.17)

where we use the same notation as in section 3.1: N is the number of candidate

features, N�KL is he number of background points for labeling L, and S is the volume

of the space Xi can be in. Under the independent uniform background assumption,

part of the background terms in P (XjL;O1) and P (XjL0; O0) can be canceled out

(similar to the last equal sign of equation (3.11)). Substituting equations (3.14) to

(3.17) into equation (3.13), we get

P (O1jX)

P (O0jX)
=

P
L2L PLbody

(Xbody) � (1=S)
M�KL � P (LjO1)

(1=S)M
�
P (O1)

P (O0)
(3.18)
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whereM is the number of body parts, a �xed number across all the frames and all the

hypothesis labelings, and P (O1) and P (O0) do not depend on X either. Therefore,

detection can be performed by thresholding

X
L2L

P
Lbody

(Xbody) � (1=S)
M�K

L � P (LjO1) (3.19)

without accurately estimating background probabilities and prior probabilities P (O1)

and P (O0).

In equation (3.19), P
Lbody

(Xbody) � (1=S)
M�K

L can be computed as in section 3.1.

P (LjO1) can be estimated by the following two strategies: one is `winner-take-all,'

and the other is to assume that all the labelings are equally likely.

3.2.1 Winner-take-all

From section 3.1, the labeling L with the highest P
Lbody

(Xbody) � (1=S)
M�K

L provides

us with the most human-like con�guration out of all the candidate labelings. We call

it the best labeling L
�

. In the winner-take-all strategy, we take P (L
�

jO1) = 1 and

P (LjO1) = 0 for other labeling L's in equation (3.19). Therefore detection is done by

thresholding the likelihood of the best labeling L
�

, P
L
�

body
(Xbody) � (1=S)

M�K
L
� . The

threshold needs to be set based on experiments to ensure the best trade-o� between

false acceptance and false rejection errors.

3.2.2 Summation over all the hypothesis labelings

Another simple and reasonable strategy is to assume that all the hypothesis labelings

are equally likely, that is, for any labeling L, P (LjO1) = 1=jLj, where jLj is the

number of possible labelings. Under this assumption, formula (3.19) becomes (1=jLj)�P
L2L PLbody

(Xbody) � (1=S)
M�KL. It is computationally prohibitive to perform the

summation in a brute-force way. Fortunately, the probability decomposition allows

us to do the summation eÆciently, as will be explained below.

We �rst consider the problem where there are no missing body parts if a person is
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present. In this case, detection depends on (1=jLj) �
P

L2L PSbody
(Xbody). By equation

(2.8),

PSbody
(XS1; XS2; : : :XSM)

=
YT�1

t=1
PAtjBtCt(XAtjXBt; XCt) � PATBTCT (XAT ; XBT ; XCT )

then,

X
L2L

PSbody
(Xbody)

=
X
L2L

YT�1

t=1
Pt(XAtjXBt; XCt)PT (XAT ; XBT ; XCT )

=
X

XAT
;XBT

;XCT

PT (XAT ; XBT ; XCT )
X

XAT�1

� � �
X
XA2

P2(XA2
jXB2

; XC2
)
X
XA1

P1(XA1
jXB1

; XC1
)

(3.20)

where the summation (
P
) is conducted from right to left. Comparing with equation

(2.10), we can see that the only di�erence is that here the operation is 'sum' instead

of 'max'. Therefore, if we replace the 'max' operation with 'sum' operation, the

dynamic programming procedure described in section 2.3 can be applied to compute

the summation. Let

	t(XAt; XBt; XCt) = PAtjBtCt(XAtjXBt; XCt); for 1 � t � T � 1 (3.21)

	t(XAt; XBt; XCt) = PATBTCT (XAT ; XBT ; XCT ); for t = T (3.22)

be the cost function� associated with each triangle, then the summation can be per-

formed as follows:

�In section 2.3, we use logPt(XAt
jXBt

; XCt
) as cost function for numerical reasons (a value

from a high dimensional Gaussian distribution can be very small). But here it is the summation of

probabilities, so it is hard to use log directly. The trick we used to avoid under
ow is to compute

Pt � S = exp(log(Pt) + log(S)), where S is the volume of the uniform background.
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Stage 1: for every pair (XB1
; XC1

),

Compute 	1(XA1
; XB1

; XC1
) for all possible XA1

De�ne T1(XA1
; XB1

; XC1
) the total value so far.

Let T1(XA1
; XB1

; XC1
) = 	1(XA1

; XB1
; XC1

)

Store �1(XB1
; XC1

) =
X
XA1

T1(XA1
; XB1

; XC1
)

Stage t, 2 � t � T : for every pair (XBt; XCt),

Compute 	t(XAt; XBt; XCt) for all possible XAt

Compute the total value so far (till stage t):

{ De�ne Tt(XAt; XBt; XCt) the total value so far.

Initialize Tt(XAt; XBt; XCt) = 	t(XAt; XBt; XCt)

{ If edge (At; Bt) is contained in a previous

stage and � is the latest such stage, multiply

�� (XAt; XBt) (or �� (XBt; XAt) if the edge

was reversed) to Tt(XAt; XBt; XCt)

{ Likewise, multiply the values of the latest previous

stages containing respectively edge (At; Ct) and edge

(Bt; Ct) to Tt(XAt; XBt; XCt)

Store �t(XBt ; XCt) =
X
XAt

Tt(XAt; XBt; XCt)

When stage T calculation is complete, the overall sum can be obtained by

X
L2L

PSbody
(Xbody) =

X
XBT

;XCT

�T (XBT ; XCT ) (3.23)

The computational complexity of the above method is on the order of M �N3.
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When there is occlusion, the local cost function 	t(XAt; XBt; XCt) associated with

each triangle t, (1 � t � T ), can be approximated as in section 3.1.3.

3.2.3 Discussion

In the above sections we present two ways to estimate the prior probabilities of dif-

ferent labelings P (LjO1), and therefore two ways to do detection. From the per-

formance point of view, which estimation is better depends on which one gives a

closer approximation to the 'truth'. If the best labeling is with much higher likeli-

hood than other labelings, the winner-take-all strategy is more 'correct'. If there are

some labelings with similar likelihoods, then the summation of all possible labelings

works better. From the computational point of view, winner-take-all strategy is more

eÆcient because it can do detection and labeling at the same time. For sum-over-all-

labelings strategy, extra computation is needed to obtain localization and labeling.

There are also other ways to model P (LjO1). For instance, if we have some

prior knowledge on the number of background (clutter) points, P (LjO1) can be more

precisely estimated. In [22], the number of clutter points is modeled with a Poisson

distribution. However, it is hard to include this kind of global term in the dynamic

programming algorithm described in sections 2.3 and 3.2.2.

In this chapter we describe the labeling problem (section 3.1) before the detection

problem (section 3.2). This is a convenient way to explain things because section

3.1 provides tools for section 3.2. However, in application, we run detection �rst to

decide whether there is a person in the scene, and then labeling if necessary.

3.3 Integrating temporal information

So far, we have only assumed that we may use information from two consecutive

frames, from which we obtain position and velocity of a number of features. In this

section we extend our previous results to the case where multiple frames are available.

However, in order to maintain generality we will assume that tracking across more

than two frames is impossible and therefore that the measurements from one pair of



41

frames to the next are uncorrelated. This is a simpli�ed model of the situation where,

due to extreme body motion or to loose and textured clothing and occlusion, tracking

is extremely unreliable and each feature's lifetime is short. Neri et al. [23] used similar

assumption when conducting their psychophysical investigation of biological motion

perception in the human visual system.

Let P (OjX) denote the probability of the existence of a person given X observed.

From section 3.2, we use the approximation: P (OjX) is proportional to �(X), which

is de�ned as

�(X)
def
=

8<
:

maxL2L PLbody
(Xbody) � (1=S)

M�K
L if winner-take-all

1
jLj
�
P

L2L PLbody
(Xbody) � (1=S)

M�KL if sum-over-all-labelings
(3.24)

Now if we have n observations X1; X2; : : : ; Xn, the decision depends on

P (OjX1; X2; : : : ; Xn)

=
P (X1; X2; : : : ; XnjO) � P (O)

P (X1; X2; : : : ; Xn)

=
P (X1jO)P (X2jO) : : : P (XnjO) � P (O)

P (X1; X2; : : : ; Xn)
(3.25)

The last line of the above equation holds if we assume that X1; X2; : : : ; Xn are inde-

pendent observations. Assuming the priors are equal, P (OjX1; X2; : : : ; Xn) can be

represented by P (X1jO)P (X2jO) : : : P (XnjO), which is proportional to
Qn

i=1�(X i).

Each �(X i) can be evaluated as equation (3.24). If we set up a threshold forQn

i=1�(X i), we can do detection given X1; X2; : : : ; Xn.

3.4 Counting

Counting how many people are in the scene is also an important task since images of-

ten have multiple people in them. By the method described above, we can �rst detect

whether a person is present. If so, all the points belonging to the most human-like
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con�guration are deleted and the next detection and labeling can then be performed

from the remaining points. We can keep doing this until no person is detected.

Assume M is the number of body parts, N is the number of candidate markers,

and P is the number of people in the scene. The cost of detecting the �rst person is

on the order of M � N3, the cost for the second person is of M � (N �m1)
3, where

m1, (m1 � M), is the number of body parts present in the �rst person, and so on.

Therefore, the total cost of counting P individuals is of P �M �N3.

3.5 Experiments on motion capture data

In this section experiments are conducted on motion capture data (as in section 2.4)

with occlusion and added clutter. We test and compare the two detection strategies

and analyze the detection and labeling rates as functions of the number of visible

body parts, with and without integration of temporal information. We also analyze

the performance of estimating the number of people in the scene.

3.5.1 Detection and labeling

Detection is to distinguish whether or not a person is present in the scene (Figure 3.2).

In this experiment, we �rst test and compare two detection strategies described in

section 3.2. We present the algorithm with two types of inputs (presented randomly

in equal proportions); in one case only clutter (background) points are present, in

the other a pre-determined number of randomly selected body parts in the set of test

data are superimposed on some clutter. If there are body parts in the scene and the

program thinks there is a person, the person is correctly detected. If there are only

background points in the scene but the program thinks there is a person, a false alarm

happens. We measure the frequency of correct detections and false alarms, and build

receiver operating characteristics (ROC) curves for our detector.

We want to test the detection performance when only part of the whole body (with

16 body parts in total) can be seen. We generated the signal points (body parts) in a

frame in the following way: for a �xed number of signal points, we randomly selected
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which body parts to be used for each frame (actually pair of frames, since consecutive

frames are used to estimate the velocity of each body part). Therefore in principle,

each body part has an equal chance to be represented, and as far as the decomposed

body graph is concerned, all kinds of graph structures (with di�erent body parts

missing) can be tested.

The positions and velocities of clutter (background) points were independently

generated from uniform distributions of their corresponding ranges. For positions,

we used the leftmost and rightmost positions of the whole sequence as its horizontal

range, and highest and lowest body part positions as its vertical range. For velocities,

the possible range is inside a circle of the velocity space (horizontal and vertical

velocities) with radius of the maximum magnitude of the velocities from the real

sequences. Figure 3.2 (a) shows a frame with 8 body parts and 30 added background

points with arrows representing velocities.

Figure 3.3 shows the experimental results on walking sequences (sequences W3

and W4, sequence W3 was used for the training and W4 for testing). Figure 3.3(a)

is from the winner-take-all detection strategy. The six solid curves show the receiver

operating characteristics (ROCs) of 3 to 8 signal points with 30 added background

points vs. 30 background points. The bigger the number of signal points observed,

the better the ROC is. With 30 background points, when the number of signal points

is more than 8, the ROCs are almost perfect.

In practice, when using the detector, some detection threshold needs to be set.

If the likelihood exceeds the threshold, a person is deemed to be present. Since the

number of body parts is unknown before detection, we need to �x a threshold that

is independent of (and robust with respect to) the number of body parts present

in the scene. The dashed line in Figure 3.3 (a) shows the overall ROC of all the

frames used for the six ROC curves in solid lines. We took the threshold when

Pdetect = 1� Pfalse�alarm on that curve as our threshold. The star (`*') point on each

solid curve shows the point corresponding to the threshold.

Figure 3.3 (b) shows the ROC curves from the sum-over-all-labelings strategy.

The experiment settings are the same as (a), except a di�erent detection algorithm



44

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false alarm rate

de
te

ct
io

n 
ra

te

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false alarm rate

de
te

ct
io

n 
ra

te

(a) (b)

3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

number of signal points (body parts)

de
te

ct
io

n 
ra

te

2 4 6 8 10 12
0.5

0.6

0.7

0.8

0.9

1

number of signal points (body parts)

co
rr

ec
t l

ab
el

 r
at

e

(c) (d)

Figure 3.3: Detection and labeling results on motion capture data (under the condi-

tions of clutter and occlusion). (a) ROC curves from the winner-take-all detection

strategy. Solid lines: 3 to 8 body parts with 30 background points vs. 30 back-

ground points only. The bigger the number of signal points is, the better the ROC

is; dashed line: overall ROC considering all the frames used in six solid ROCs. The

stars (`*') on the solid curves are the points corresponding to the threshold where

PD = 1�PFA on the dashed overall ROC curve. (b) ROC curves from the sum-over-

all-labelings strategy. The experiment settings are the same as (a), except a di�erent

detection algorithm is used. (c) detection rate vs. number of body parts displayed.

Solid line: from the winner-take-all strategy with regard to the �xed threshold where

PD = 1� PFA on the overall ROC curve in (a), with false alarm rate PFA = 12:97%;

dashed line: from the sum-over-all-labelings strategy with regard to the �xed thresh-

old where PD = 1� PFA on the overall ROC curve in (b), with PFA = 14:96%. (d)
correct label rate (label-by-label rate) vs. number of body parts when a person is cor-

rectly detected (using the winner-take-all strategy with regard to the same threshold

as in (c)).
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is used. Figure 3.3 (c) shows the relation between detection rate and the number of

body parts displayed. The solid line is from the winner-take-all detection strategy

with regard to the �xed threshold where PD = 1 � PFA on the overall ROC curve

in Figure 3.3 (a), with false alarm rate PFA = 12:97%; and the dashed line is from

the sum-over-all-labelings detection strategy with regard to the �xed threshold where

PD = 1�PFA on the overall ROC curve in (b), with PFA = 14:96%. From Figure 3.3,

we can see that both detection algorithms can work well: even when only three body

parts are present in the scene, the detection performance is much better than the

chance level. However, the winner-take-all strategy works better than the sum-over-

all-labelings strategy for these data. This is reasonable because for motion capture

data, one joint is represented by one dot, and therefore, there is only one correct

labeling (or a very small number of close-to-correct labelings), which is much better

than other labelings. This is in contrast to the situation of gray-scale images where

there can be many close candidate features for one body part and therefore many

labelings may be comparable. Since the winner-take-all strategy works better on

motion capture data, we will use it as the detection method in the later experiments

on motion capture data.

When the algorithm can correctly detect whether a person is there, it does not

necessarily mean that all the body parts are correctly labeled. We studied the correct

label rate (label-by-label rate) when a person is correctly detected. An error happens

when a body part is assigned a wrong candidate feature. Figure 3.3 (d) shows the

result. While the detection rate keeps constant (almost 1) with 8 or more body parts

visible, the correct label rate goes up as the number of body parts increases. The

correct label rates here are smaller than the results in section 2.4 since we have less

signal points but many more background points. If the average number of features

detected is N , (N is more than 30 in this experiment), the chance level of a body part

being assigned a correct candidate feature by random selection is 1=(N+1) (with one

more background point). The correct rate here is much higher than that, more than

50% with only 3 body parts (almost 20 times above chance level) and exceeding 90%

when 12 out of the 16 body parts are present.
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3.5.2 Using temporal information

Here we tested how the detection rate improved by integrating information over time,

using the approach described in section 3.3. We used the data of 5 signal points and

30 background points in each frame to test the performance of using information

from multiple frames (the body parts present in each frame were chosen randomly

and independently). Figure 3.4 (a) shows ROC curves of using n (n = 1; :::8) frames.

The bigger n is, the better the ROC curve is. When n > 5, the ROCs are almost

perfect and overlapped with the axes. If � is the likelihood threshold of Pdetect =

1 � Pfalse�alarm when only one frame is used, then the threshold of Pdetect = 1 �

Pfalse�alarm for using n frames is �n. Figure 3.4 (b) plots the detection rate (with

Pdetect = 1�Pfalse�alarm) vs. the number of frames integrated. The results get better

with more frames used, and even with only 5 body parts present it is possible to get

completely accurate detection after combining information from only 6 frames.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false alarm rate

de
te

ct
io

n 
ra

te

1 2 3 4 5 6 7 8
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

numer of frames integrated

de
te

ct
io

n 
ra

te

(a) (b)

Figure 3.4: Results of integrating multiple frames. (a) ROCs of integrating one to

eight frames using only 5 body parts with 30 clutter points present. The more frames

integrated, the better the ROC curve is. When more than �ve frames are used, the

ROCs are almost perfect and overlapped with the axes. (b) detection rate (when

Pdetect = 1� Pfalse�alarm) vs. number of frames used.
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3.5.3 Counting experiments

The counting task is to �nd how many people are in a scene given a number of observed

points (with position and velocity). A person was generated by randomly choosing a

frame from the sequence, and several frames (persons) can be superimposed together

into one image. In one image, the position of each person was randomly selected, but

made sure not to overlap with each other. The background points were generated

in a similar way to the detection and labeling experiments in section 3.5.1, but with

the positions of the background points uniformly distributed on a window which is

three times as wide as the window in Figure 3.2 (a). Figure 3.5 gives an example of

images used in this experiment, with three persons (six body parts each) and sixty

background points.
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Figure 3.5: One sample image of counting experiments. `*' denotes body parts from

a person and `o's are background points. There are three persons (six body parts for

each person) with sixty superimposed background points. Arrows are the velocities.

We did experiments on up to three persons in one image. We used the threshold

from Figure 3.3(a). If the likelihood of the con�guration found was above the thresh-

old, then it was counted as a person. If the number of detected people provided

by the algorithm was di�erent (either more or less) from the ground truth, an error

happened. The curves in Figure 3.6 show the correct rate vs. the number of signal

points (body parts displayed) for each person. To compare the results conveniently,

we used the same number of body parts for di�erent persons in one image (but the

parts appearing were randomly chosen). The solid line with stars is the result of one

person in an image, the dashed line with circles is for two persons, and the dash-dot
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line with triangles is for three persons. If there was no person in the image, the

correct rate is 95%. From Figure 3.6, we see that the result for less people in an

image is better than that of more people, especially when the number of body parts

present is small. We can explain it as follows. If the probability of counting one

person correctly is P , then the probability of counting n people correctly is P n if the

detection of di�erent people is independent. For example, in the case of four body

parts, for one person the correct rate is 0:6, then the correct rate for counting three

person is 0:63 = 0:216. But since we randomly chose the position of each person,

body parts from di�erent persons may be very close, so the independence couldn't

be strictly held. Furthermore, the assumption of independence is also violated since

once a person is detected, the corresponding body parts are removed from the scene

in order to detect subsequent people.
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Figure 3.6: Results of counting people. Solid line (with *): one person; dashed line

(with o): two persons; dash-dot line (with triangles): three persons. Counting is

done with regard to the threshold chosen from Figure 3.3 (a). For that threshold the

correct rate for recognizing that there is no person in the scene is 95%.
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Figure 3.7: Results of dancing sequences. (a) Solid lines: ROC curves for 4 to 10 body

parts with 30 added background points vs. 30 background points only. The bigger

the number of signal points is, the better the ROC is. Dashed line: overall ROC

considering all the frames used in seven solid ROCs. The threshold corresponding

to PD = 1� PFA on this curve was used for (b). The stars (`*') on the solid curves

are the points corresponding to that threshold. (b) detection rate vs. the number of

body parts displayed with regard to a �xed threshold at which PD = 1� PFA on the

overall ROC curve in (a). The false alarm rate is 14.67%.

3.5.4 Experiments on dancing sequence

In this section, we performed detection experiments on the dancing sequence DA

(the �rst half was used for training and the second half for testing). The seven

solid curves of Figure 3.7 (a) are the ROC curves of 4 to 10 signal points with 30

added background points. The signal points are from the dancing sequence and the

background points were generated the same way as in the detection and labeling

experiments in section 3.5. In Figure 3.7 (a), the bigger the number of signal points

observed, the better the ROC. The dashed line in Figure 3.7 (a) shows the overall

ROC of all the frames used for the seven ROC curves in solid line. We take the

threshold when Pdetect = 1 � Pfalsealarm on that curve as our threshold and get the

plot of detection rate vs. the number of signal points in Figure 3.7 (b). The false

alarm rate is 14.67%. With more than 9 (out of 16) body parts present, the detection

rate is almost 1. Comparing with the results in Figure 3.3, we can see that more body

parts must be observed during the dancing sequence to achieve the same detection
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rate as with the walking sequences, which is expected since the motion of dancing

sequences is more active and harder to model. Nevertheless, the ROC curve with 10

out of 16 body parts present is nearly perfect.

3.6 Experiments on gray-scale image sequences

In this section, we conduct experiments on more challenging data: gray-scale image

sequences. To apply the detection and labeling algorithms, candidate features are

obtained from the Lucas-Tomasi-Kanade [1, 2] feature selector/tracker on pairs of

frames. Figure 3.8 illustrates the approach.
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Figure 3.8: Illustration of the approach on gray-scale images. For a given image (a),

features are �rst selected and tracked to the next frame. Dots in (a) are the features,

and (b) shows the features with velocities. From all the candidate feature points

(with positions and velocities), we want to �rst decide whether there is a person in

the scene and then �nd the best labeling { the most human-like con�guration (dark

dots in (a) and (b)) according to a learned probabilistic model.

Figure 3.9 shows the hand-constructed probabilistic decomposition for the exper-

iments. Twenty parts are chosen to represent the human body. The dark dots in

Figure 3.8 shows features representing the parts. Three parts are missing for the

frame in Figure 3.8: two at the left knee and one at the right heel.
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Figure 3.9: Decompositions of the human body for gray-scale image experiments. `L'

and `R' in label names indicate left and right. H:head, N:neck, S:shoulder, E:elbow,

W:wrist, H:hip, KI:inside knee, KO:outside knee, A:ankle, HE:heel, and T:toe. The

numbers inside triangles give one elimination order.

3.6.1 Data

The image sequences were captured by a CCD camera at 30 Hz. There are three

types of motion: (1) A subject walks from left to right, facing 60 degrees away from

the front view (middle row of Figure 3.10). We have 20 sequences with around 120

frames each. (2) A chair moves from left to right (bottom row of Figure 3.10). 8

sequences, with 120 frames each. (3) While a subject walks as in type (1), a chair

also moves as in type (2) (top row of Figure 3.10). 16 sequences, with 120 frames

each.

Training set: manually tracked data. The model parameters (mean and

covariance of Gaussian) are learned from a training set with the hand-constructed

ground truth labeling. The training sequences include eight type (1) walking se-

quences. For the �rst frame of each sequence, we manually select all the features

corresponding to the body parts in the model of Figure 3.9. The features are then

tracked automatically to the next frame using the Lucas-Tomasi-Kanade tracking

algorithm. The tracking results are monitored, and features with obvious tracking

errors are discarded. The tracking procedure provides us with the positions and
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Figure 3.10: Sample frames from body and chair moving sequences (type (3), top

row), body moving sequences (type (1), middle row), and chair moving sequences

(type (2), bottom row). The dots (either in black or in white) are the features

selected by Lucas-Tomasi-Kanade [1, 2] algorithm on pairs of frames. The white dots

are the most human-like con�guration found by our algorithm.
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velocities of features. The labeling (body part assignment of the features) is given

manually. This process is repeated for all the frames.

Testing Set. For the test sequences, features are obtained automatically from

the standard Lucas-Tomasi-Kanade feature selection/tracking algorithm on pairs of

frames. We do not track features over more than two frames, but reselect all the

features at the next frame after tracking, which simulates the arguably most diÆcult

situation for labeling and detection (as discussed in section 3.3). The dots in Figures

3.8 and 3.10 are features from this procedure. The average number of features detected

in each frame is 64, 46, and 58 for type (1), (2), and (3) sequences, respectively. There

are more body parts missing (occlusion) in the automatic detected features than in

the manually tracked training data.

3.6.2 Labeling on manually tracked data

To evaluate the hand-crafted decomposable triangulated probabilistic model (Figure

3.9), labeling experiments were performed on the manually tracked data (with ground

truth labeling). For a test sequence, frames from all the other seven sequences were

used to learn the model parameters (mean and covariance of Gaussian). Figure 3.11

(a) shows the statistics of the number of body parts present. Figure 3.11 (b) shows

the correct labeling rate vs. the number of body parts present, with the overall correct

labeling rate 85:89%. From Figure 3.11 (b), we see that the correct labeling rate goes

up as the number of detected body parts increases, which is consistent with the fact

that with more body parts present, the probability decomposition is a more accurate

approximation.

3.6.3 Detection and localization

The two detection strategies described in section 3.2 were run on the testing set.

Figure 3.12 (a) shows the receiver operating characteristics (ROC) curves when the

type (3) sequences were used as positive examples and type (2) sequences were used

as negative examples. Figure 3.12 (b) shows ROC curves from type (1) and type
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Figure 3.11: (a) percentage of frames corresponding to the number of body parts

present in the hand-constructed data set; (b) correct labeling rate vs. the number

of body parts present. The chance level of a body part being assigned a correct

candidate feature is around 0.06. The correct rates here are much higher than that.

(2) sequences. The solid lines are results of using the sum-over-all-labelings detec-

tion strategy, and the dashed lines are of the winner-take-all strategy. This �gure

shows that the sum-over-all-labelings strategy performs better than the winner-take-

all strategy for the gray-scale images, which is opposite to the results in section 3.5.

We postulate that this is because, for gray-scale images, there are many close candi-

date features for one body part (Figure 3.10) and therefore there are many labelings

close to the `correct' labeling, which makes the sum-over-all-labelings strategy a closer

approximation.

Figure 3.10 gives the localization results. For each image, the white dots give the

best labeling. For most frames, the person is localized correctly. However, for some

frames, the features consisting of the best con�guration can be far away from each

other, e.g., the third image in the top row (Figure 3.10). A detailed study �nds that

the program took the two dots on the wall as `left elbow and left wrist', and the

four dots on the chair as `left outside knee, left ankle, left toe and left heel'. This

is because for the triangulated decomposition in Figure 3.9, if `left shoulder and left

hip' are missing, then both `left elbow and left wrist' and `left outside knee, left ankle,

left toe and left heel' are disconnected with other body parts. Therefore, the optimal

labeling is composed of several independent components, possibly far away from each
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Figure 3.12: ROC curves. (a) Results of images with body and chair vs. images with

chair only. (b) Results of images with body only vs. images with chair only. Solid

line: the sum-over-all-labelings detection strategy; dashed line: the winner-take-all

detection strategy.

other. It is clear that in this case the conditional independence required by equation

(3.7) is not a good approximation any longer. We will address more on this problem

later in sections 5.4.2 and 7.5.

3.6.4 Using information from multiple frames

Here we tested how the detection rates improved by integrating information over time,

using the approach described in section 3.3. Type (3) and type (1) sequences were

used. Figure 3.13(a) shows ROC curves of using 1 to 4 pairs of frames, respectively.

Figure 3.13(b) plots the detection rates (with Pdetect = 1 � Pfalse�alarm) vs. the

number of frames integrated. With more frames used, the detection rate gets higher.

The detection rate is more than 98% when more than 7 frames (around 200 ms) were

used.

3.7 Summary

In this chapter, the detection and labeling algorithms are extended to deal with

occlusion and clutter. In case of occlusion, a way of estimating approximately the

foreground probability density function is presented, which allows one to �nd the best
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Figure 3.13: Results of integrating multiple frames. (a) Four curves are ROCs of

integrating 1 to 4 pairs of frames, respectively. The more frames integrated, the

better the ROC curve is. (b) detection rate (when Pdetect = 1 � Pfalse�alarm) vs.

number of frames used.

labeling eÆciently. We also present two detection strategies: winner-take-all and sum-

over-all-labelings. The algorithms have been tested and compared on motion capture

data and gray-scale images. For our data sets, the winner-take-all strategy works

better for motion capture data, and the sum-over-all-labelings strategy works better

for gray-scale image sequences.
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Chapter 4 Search of optimal

decomposable triangulated graph

In the previous chapters, the graph structure is hand-crafted by expert experience

(or intuition). This is not completely satisfactory for two reasons: �rst, it is time-

consuming to develop such models by hand; second, the data should dictate such

structure rather than the judgment of a human operator. Therefore algorithms which

can �nd the optimal structure automatically from data are desired. Unfortunately,

the problem of �nding the optimal decomposable triangulated graph is NP hard (see

chapter 7 for the justi�cation of this statement). However, we can �nd approximate

solutions to the optimal. Two ways to build a decomposable triangulated graph auto-

matically from labeled training data, with known correspondence between the parts

and the observed features (e.g., data from a motion capture system), are presented

in this chapter. One way is to grow the graph greedily according to the optimization

criterion presented in section 4.1. Another way is to obtain the decomposable trian-

gulated graph from the maximum spanning tree by adding edges, which also proves

that decomposable triangulated graphs are more powerful than trees. The algorithms

on labeled data lay the foundation for dealing with unlabeled training data in Chapter

5.

4.1 Optimization criterion

Our goal is to �nd the decomposable triangulated graph which can best describe

the data. Before giving the optimization criterion, let us review the notations of a

decomposable triangulated graph. Let S = fS1; S2; : : : ; SMg be the set of M parts,

and XSi, 1 � i �M , is the measurement for Si. As we have described in section 2.2,

if the joint probability density function P (XS1; XS2; : : : ; XSM) can be decomposed as
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a decomposable triangulated graph, it can be written as

Pwhole(XS1; XS2; : : :XSM)

=
YT�1

t=1
PAtjBtCt(XAtjXBt; XCt) � PATBTCT (XAT ; XBT ; XCT ) (4.1)

where Ai; Bi; Ci 2 S, 1 � i � T = M � 2, fA1; A2; : : : ; AT ; BT ; CTg = S, and

(A1; B1; C1); (A2; B2; C2); : : : ; (AT ; BT ; CT ) are the cliques. (A1; A2; : : : ; AT ) gives one

elimination order for the decomposable graph.

Suppose X = fX
1
; X

2
; : : : ; X

N
g is a set of i.i.d samples from a probability density

function of M body parts, where X
n
= (Xn

S1; : : : ; X
n
SM), 1 � n � N�, and Xn

Si, 1 �

i � M is the measurements of body part Si. We call such X
n
labeled datay, since

the correspondence of the body parts and measurements is known. In a maximum

likelihood setting, we want to �nd the decomposable triangulated graph G, such

that P (GjX ) is maximized over all possible such graphs. P (GjX ) is the probability

of graph G being the 'correct' one given the observed data X . Here we use G to

denote both the decomposable graph and the conditional (in)dependence depicted

by the graph. By Bayes' rule, P (GjX ) = P (X jG)P (G)=P (X ), therefore if we can

assume the priors P (G) are equal for di�erent decompositions, then our goal is to

�nd the structure G which can maximize P (X jG). By equation (4.1), P (X jG) can

be computed as follows,

�In this and next chapters, N is the number of samples (pairs of frames) available in the training

set, which is di�erent from that in Chapters 2 and 3.
yNote X

n

in this chapter is di�erent from other chapters. Here X
n

is a sample from a prob-

ability distribution of M body parts. It only includes measurements of body parts with known

correspondence. In other chapters, it denotes the observed measurements which include body parts

and background clutter.
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logP (X jG)

= logP (X
1
; X

2
; : : : ; X

N
jG)

=
XN

n=1
logP (X

n
jG)

=
XN

n=1
(
XT�1

t=1
logP (Xn

At
jXn

Bt
; Xn

Ct
) + logP (Xn

AT
; Xn

BT
; Xn

CT
)) (4.2)

=

T�1X
t=1

NX
n=1

logP (Xn
At
jXn

Bt
; Xn

Ct
) +

NX
n=1

logP (Xn
AT
; Xn

BT
; Xn

CT
))

�= N �

T�1X
t=1

E(logP (XAtjXBt; XCt)) +N � E(logP (XAT ; XBT ; XCT )) (4.3)

= �N �

T�1X
t=1

h(XAtjXBt; XCt)�N � h(XAT ; XBT ; XCT ) (4.4)

= �N �

TX
t=1

h(XAtjXBt; XCt)�N � h(XBT ; XCT ) (4.5)

= N �

TX
t=1

I(XAt;XBt; XCt) + I(XBT ;XCT )�N � (

TX
t=1

h(XAt) + h(XBT ) + h(XCT ))

(4.6)

where E(�) is expectation, h(�) is di�erential entropy or conditional di�erential en-

tropy [24] (we consider continuous random variables here), and I(�; �) is the mutual

information between variables. Equation (4.3) is an approximation which converges

to equality for N ! 1 due to the weak Law of Large numbers, and equations

(4.4, 4.5 and 4.6) are from the de�nitions and properties of di�erential entropy

and mutual information [24, 20, 25, 18, 21]. We want to �nd the decomposition

(A1; B1; C1); (A2; B2; C2); : : : ; (AT ; BT ; CT ) such that the above equations can be max-

imized. If graphs with di�erent elimination orders are taken as di�erent structures,

then the total number of possible structure is 1
2
M ! �

QM�2

j=1 (2j � 1), which makes ex-

haustive search only possible for small Ms. In our application M > 10 and therefore

the number of graph structures is larger than 3� 1012.

If the set of parts S is �xed, then for di�erent probability structures, the last
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term of equation (4.6),
PT

t=1 h(XAt) + h(XBT ) + h(XCT ), is a constant, since it is

the summation of the di�erential entropies of all the body parts. Therefore the

optimization can be performed either over equation (4.5) or over the �rst two terms

of equation (4.6), the summation of mutual information. In the next section, we use

equation (4.5) for computational convenience.

4.2 Greedy search

The search for the optimal decomposable triangulated graph is a NP hard problem

(we will explain it in more detail in section 7.5). We develop a greedy algorithm to

grow the graph. We start from a single vertex, and add vertices one by one in a greedy

way according to equation (4.5). For each possible choice of CT (the last vertex of the

last triangle), �nd the BT which can maximize �h(XBT ; XCT ), then get the best child

of edge (BT ; CT ) as AT , i.e., the vertex (part) that can maximize �h(XAT jXBT ; XCT ).

Add edges (AT ; BT ) and (AT ; CT ) to the graph. The next vertex is added one by one

to the existing graph by choosing the best child of all the edges (legal parents) of the

existing graph until all the vertices are added to the graph. For each choice of CT ,

one such graph can be grown, so there are M candidate graphs. The �nal result is

the graph with the highest logP (X jG) among the M graphs.

Let Gexist denote the decomposable graph obtained so far and Vavail denote the

set of unused vertices (vertices to be added to the graph). The initial value for Gexist

is a empty graph, and the initial value for Vavail is the set of all the parts S. The

algorithm can be described as following,

For each CT 2 S,

add CT to Gexist

remove CT from Vavail

for each v 2 Vavail

compute �h(CT ; v)

�nd BT = argmaxv2Vavail �h(CT ; v)

add vertex BT and edge (BT ; CT ) to Gexist
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remove BT from Vavail

for each t from T to 1,

for each edge e 2 Gexist,

for each v 2 Vavail,

compute �h(vje(1); e(2))

�nd v�(e) = argmaxv�h(vje(1); e(2))

�nd esel = argmaxe�h(v
�(e)je(1); e(2))

let At = v�(esel), Bt = esel(1), and Ct = esel(2)

add vertex At and edges (At; Bt), (At; Ct) to Gexist

remove At from Vavail

From all the graphs originated from di�erent CT , choose the one with the highest

logP (X jG).

The above algorithm is eÆcient. The number of possible choices for CT is M , the

number of choices for BT is M � 1; for stage t, M � 2 = T � t � 1, the number of

edges inGexist (legal parents) is 2�(T�t)+1 and the number of vertices in Vavail (legal

children) is t. Therefore the total search cost isM � (M�1+
P

t((2� (T � t)+1)� t)),

which is on the order ofM4. There is, of course, no guarantee that the global optimal

solution will be found. The e�ectiveness of the algorithm will be explored through

experiments.

4.3 Construction from a maximum spanning tree

Another way to construct decomposable triangulated graphs is adding edges to trees.

In this section, we �rst present a way of transforming a tree into a decomposable

triangulated graph. Based on that, we show how to build a decomposable triangulated

graph from a maximum spanning tree in an e�ort to maximize the likelihood.

4.3.1 Transforming trees into decomposable triangulated graphs

Let's �rst recall the de�nitions of decomposable triangulated graphs and trees. A

decomposable triangulated graph is a collection of cliques of size three, where there



62

is an elimination order of vertices such that (1) when a vertex is deleted, it is only

contained in one triangle (we call it a free vertex); (2) after eliminating one free vertex

and the two edges associated with it, the remaining subgraph is again a collection of

cliques of size three until only one triangle left. A tree is a collection of cliques of

size two, where there is an elimination order of vertices such that (1) when a vertex

is deleted, it is only connected with one other vertex (we call it a leaf); (2) after

eliminating one leaf and the edge associated with it, the remaining subgraph is again

a collection of cliques of size two until only one edge left.

Comparing the above two de�nitions, we can get a way of transforming trees into

decomposable triangulated graphs. For an elimination order of vertices of trees, when

a leaf is deleted, we can connect it with one of the other neighbors of its parent so

that it is contained in a triangle. By adding these edges, a tree is turned into a

collection of cliques of three and the conditions for decomposable triangulated graphs

are satis�ed. Figure 4.1 shows an example. The elimination oder of the vertices is

A;E; F;G; C; J;H; I;D;B. The added edges are shown in dashed lines.

B

A

C

F G H I

D

J

E

B

A

C

F G

E

H

D

I

J

(a) (b)

Figure 4.1: An example of transforming a tree into a decomposable triangulated

graph. Figure (a) shows the tree; �gure (b) gives a decomposable triangulated graph

obtained by adding edges to the tree in (a).

From this procedure, the likelihood of a decomposable graph can be viewed as the

summation of two parts: the likelihood associated with the tree and the likelihood

gain from the tree to the triangulated graph (the likelihood gain is non-negative
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because I(X;Y; Z) � I(X;Y ) for any random variables X; Y; Z). We will describe

how to maximize these two parts below.

4.3.2 Maximum spanning tree

We use the same notations as in section 4.1. For given data X , we want to �nd the

tree Gtree with the highest log-likelihood logP (X jGtree). Let Gtree = (E; V ), where

E is the set of edges and V is the set of vertices (body parts). For any edge e 2 E,

let Ae and Be denote the two vertices at the two ends. From similar derivations to

those in section 4.1, we have

logP (X jGtree) �= N �
X
e2E

I(XAe;XBe)�N �
X
v2V

h(Xv) (4.7)

Therefore, if we take I(XAe;XBe) as the value associated with each edge, the tree with

the highest logP (X jGtree) can be found by a maximum spanning tree algorithm, for

example Prim's algorithm ([26]).

4.3.3 Greedy transformation

We use a greedy strategy to try to maximize the gain from a tree to a decomposable

triangulated graph. Comparing equations (4.6) and (4.7), the mutual information

gain by adding an edge (Ae; C) is I(Ae;Be; C) � I(Ae;Be), where C is the vertex

selected to connect with Ae when Ae is deleted (Ae must be a leaf then). There are

M � 2 edges to be added. We will add edges in a greedy way, that is, the mutual

information gain is maximized when each edge is added. Let Gcurrent denote the

current graph at each stage. The initial value for Gcurrent is the maximum spanning

tree obtained in the previous subsection. One leaf with its edge is deleted fromGcurrent

at each stage. For each leaf node l of Gcurrent, let �(l) denote the parent of l, and

CPI(l) the set of nodes connected to �(l) but excluding l. The algorithm of selecting

these M � 2 edges can be described as follows:

At each stage t, t = 1; : : : ;M � 2,
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For each leaf node l of Gcurrent,

For each node v 2 CPI(l),

compute the gain TG(l; v) of connecting l and v,

TG(l; v) = I(l; �(l); v)� I(l; �(l)).

Find v�(l) = argmaxv TG(l; v) and g
�(l) = TG(l; v�(l))

Find l� = argmaxl g
�(l), then the selected edge is (l�; v�(l�)) and

the gain is g�(l�).

Delete vertex l� and its associated edge from Gcurrent.

By adding all the selected edges to the maximum spanning tree, we construct a

decomposable triangulated graph. The likelihood of this decomposable triangulated

graph is the likelihood of the tree plus the summation of mutual informations gains

from all the added edges. For the decomposable triangulated graph obtained in this

way, we can guarantee that its likelihood is not worse than the likelihood of the

optimal tree.

4.4 Computation of di�erential entropy - transla-

tion invariance

In the greedy search algorithm in section 4.2, we need to compute h(XAtjXBt; XCt) =

h(XAt; XBt; XCt) � h(XBt; XCt), 1 � t � T . For the method in section 4.3, we need

the di�erential entropy of each single body part. If we assume that the pose and

motion of the body parts are jointly Gaussian distributed, the di�erential entropy

can be computed by 1
2
log(2�e)nj�j, where n is the dimension and � is the covariance

matrix [24].

In our applications, position and velocity are used as measurements for each body

part, but humans can be present at di�erent locations of the scene. In order to make

the Gaussian assumption reasonable, translations need to be removed. Therefore, we

use a local coordinate system ([27]) for each triangle (At; Bt; Ct), i.e., we take one body

part (for example At) as the origin, and use relative positions for other body parts.
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More formally, let x denote a vector of positions x = (xAt ; xBt; xCt ; yAt; yBt; yCt)
T ,

where x and y denote horizontal and vertical positions, respectively. Then if we

describe positions relative to At, we obtain, x
0 = (xBt�xAt ; xCt�xAt ; yBt�yAt; yCt�

yAt)
T . This can be written as x0 =Wx, where

W =

0
@ A 0

0 A

1
A , with A =

0
@ �1 1 0

�1 0 1

1
A .

In the greedy search algorithm, the di�erential entropy of all the possible triplets are

needed and di�erent triplets have di�erent origins. We use

�0 =
1

N

NX
n=1

x0n =
1

N

NX
n=1

Wxn =W �
1

N

NX
n=1

xn = W� (4.9)

and

�0 =W�W T (4.10)

From the above equations, we can �rst estimate the mean � and covariance � of

X
n
(including all the body parts and without removing translation), then take the

dimensions corresponding to the triangle and use equations (4.9) and (4.10) to get

the mean and covariance for (XAt; XBt; XCt). A similar procedure can be applied

to pairs (for example, Bt can be taken as origin for (Bt; Ct)) to achieve translation

invariance. For a single body part, we use only velocity information to compute its

di�erential entropy.

4.5 Experiments

We conduct experiments on labeled motion capture data. Under Gaussian assump-

tion, we �rst estimated the joint probability density function (mean and covariance)

of the data (sequence W3). From the estimated mean and covariance, we can compute

di�erential entropies for all the possible triplets and pairs and further run the greedy

search algorithm (section 4.2) to �nd the approximated best triangulated model. We

also obtain a maximum spanning tree and construct a decomposable triangulated
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graph from it (section 4.3). Figure 4.2 displays the models. Figure 4.2(a) is the

hand-constructed model used in previous chapters (Figure 2.3(a)); (b) is the model

obtained from greedy search (section 4.2); (c) is the decomposable triangulated model

grown from a maximum spanning tree (section 4.3). The solid lines are edges from the

maximum spanning tree and the dashed lines are added edges. (d) shows a randomly

generated decomposable triangulated model, which is grown in the following way. We

start from a randomly selected edge. At each following stage a vertex is randomly

selected and an edge in the existing graph is randomly selected as its parent edge,

then the newly selected vertex is connected with the two vertices of the edge.

Figure 4.3(a) shows the expected likelihood (di�erential entropy) of the estimated

joint pdf, for each one of the models as well as a number of randomly generated

models. The decomposable triangulated model from the greedy search (section 4.2)

has the highest expected likelihood of all the approximate models. The triangulated

model grown from maximum spanning tree is the second best. The hand-constructed

model is the third best. The maximum spanning tree is worse than the above three

triangulated models, but is superior to almost all the random triangulated models.

The full Gaussian joint pdf shown for comparison has the highest likelihood. We

conclude that, as far as model likelihood is concerned, there is a signi�cant advantage

for models generated by greedy search, rather than by other methods, or at random.

A natural question to ask is: how close is the likelihood of our greedy graph to

the likelihood of the 'optimal' triangulated graph? We address this question with ex-

periments on synthetic datasets generated by models with decomposable triangulated

independence. To accomplish this we generate a random decomposable triangulated

model, then generate data according to this model. In order to make this a meaning-

ful comparison we add the constraint that, on each triangle, the marginal probability

density of the generated data is the same as that of the original data. Figure 4.4(a)

shows the expected likelihood using 50 synthetic datasets, which were generated from

50 triangulated models. The likelihood of the greedy algorithm (solid curve) matches

the likelihood of the true model (dashed curve) very well. The solid line with error

bars are the expected likelihoods of random triangulated models. To see the results
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Figure 4.2: Decomposable triangulated models for motion capture data. (a) hand-

constructed model; (b) model obtained from greedy search (section 4.2); (c) decom-

posable triangulated model grown from a maximum spanning tree (section 4.3). The

solid lines are edges from the maximum spanning tree and the dashed lines are added

edges. (d) a randomly generated decomposable triangulated model.



68

0 500 1000 1500 2000 2500 3000
155

150

145

140

135

130

125

120

115

110

ex
pe

ct
ed

 lo
g 

lik
el

ih
oo

d

index of randomly generated triangulated models

estimated joint pdf with fully connected Gaussian model

best trangulated model from greedy search

hand constructed triangulated model used in  previous chapters

randomly generated triangulated models

maximum spanning tree (MST)

triangulated model from MST

Figure 4.3: Likelihood evaluation of graph growing algorithms.

0 5 10 15 20 25 30 35 40 45 50
−170

−165

−160

−155

−150

−145

−140

−135

index of randomly generated triangulated models

ex
pe

ct
ed

 lo
g 

lik
el

ih
oo

d

0 5 10 15 20 25 30 35 40 45 50
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

index of randomly generated triangulated models

ex
pe

ct
ed

 lo
g 

lik
el

ih
oo

d 
di

ffe
re

nc
e 

fr
om

 th
e 

gr
ou

nd
 tr

ut
h 

m
od

el

(a) (b)

Figure 4.4: Evaluation of the algorithms on synthetic data with decomposable trian-

gulated independence. (a) Expected likelihoods of the true models (dashed curve)

and of models from greedy search (solid curve). The solid line with error bars are the

expected likelihoods of random triangulated models. (b) Expected likelihood di�er-

ence from the respective true model, i.e., the results of subtracting the likelihood of

the true model. Solid: models from the greedy search (section 4.2); dotted: triangu-

lated models from MST (section 4.3); dash-dot: MST. The solid line with error bars

are the results of random triangulated models.



69

more easily, Figure 4.4(b) shows the expected likelihood di�erence from the respective

true model, i.e., the results of subtracting the likelihood of the true model. Similar

to the results shown in Figure 4.3, for all the synthetic data used here, the models

from the greedy search (section 4.2) have the highest likelihood (solid curve in Figure

4.4(b)), the triangulated models from maximum spanning trees (dotted curve) come

next, and both are better than the maximum spanning tree models (dash-dot curve).

The solid line with error bars are the results of random decomposable triangulated

models. We conclude that the greedy search algorithm (section 4.2) delivers quasi-

optimal solutions on this type of data. We will therefore use this algorithm in future

experiments.

4.6 Summary

This chapter addresses the learning problem when the training features are labeled.

Two ways of building suboptimal decomposable triangulated graphs from data have

been presented and tested. It has also been shown that by the likelihood criterion

the decomposable triangulated graphs obtained have a signi�cant advantage over the

optimal tree. We conclude that the greedy search algorithm (section 4.2) performs

better than other methods. Hence it will be used in future experiments.
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Chapter 5 Unsupervised learning of the

graph structure

In Chapter 4, the training data are labeled in the sense that the parts of the model

and the correspondence between the parts and the observed features are known.

However, when we run a feature detector (such as the Lucas-Tomasi-Kanade detector

[1]) on real-image sequences, the detected features are unlabeled, meaning that they

can be from target objects and background clutter with no identity attached to each

feature, and the correspondence between the candidate features and the parts of the

object is unknown. In this section, we present an algorithm to learn the probabilistic

independence structure of human motion automatically from this type of unlabeled

training data. Our algorithm leads to systems able to learn models of human motion

completely automatically from real-image sequences - unlabeled training features with

clutter and occlusion.

Our approach is based on maximizing the likelihood of the data. Taking the

labeling (part assignments) as hidden variables, a variant of the EM algorithm can

be applied. In the following sections, we �rst derive the algorithm assuming all

the foreground parts are observed for each training sample, and then generalize the

algorithm to handle the case when some body parts are missing (occlusion).

5.1 Brief review of the EM algorithm

The expectation-maximization (or EM, [28, 29]) algorithm is a technique of estimating

probability density functions under missing (unobserved) data. There are three types

of variables in EM: observed data (denoted by d), unobserved (hidden) variables (y),

and parameters of the probability density functions to estimate (�). The goal is to
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�nd � which can maximize,

L(d; �) = log[p(d; �)]

= log[p(dj�)] + log[p(�)]

= log[

Z
dy p(d;yj�)] + log[p(�)] (5.1)

One possible way to maximize the above function is to take derivatives with respect to

� and equate them to zero to obtain the optimum �. However, due to the integration

over y, this operation is diÆcult in most cases. The EM algorithm provides an easier

way. The main idea of EM is that it is much easier to optimize log[p(d;y; �)] if we

had known the values for y. Therefore, at E-step we pretend that we know the

parameters � and get the estimation of y; at M-step we pretend that we know y

(the result of E-step can be used), and obtain the best estimate of �. These two

steps are iterated until the algorithm converges. More formally, instead of optimizing

equation (5.1), we will optimize,

Q(�tj�t�1) = E[log[p(d;y; �t)] jd; �t�1]; (5.2)

where �t is the parameter to estimate at iteration t, and �t�1 is the parameter obtained

from iteration t�1. Q(�tj�t�1) is the expectation of log likelihood given the observed

data and parameter values from the previous iteration. Then,

E-step: Calculate Q(�tj�t�1), given the parameter estimates �t�1 from the previous

iteration;

M-step: Get the �t which can maximize Q(�tj�t�1).

The above two steps are iterated until convergence. It can be proved that the proce-

dure increases the likelihood (L(d; �)) at each iteration, and it converges when a local

maximum is reached. More rigorous mathematical treatment of the EM algorithm

can be found at [28, 29].
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5.2 Learning with all foreground parts observed

In this section we will develop an algorithm to �nd the best decomposable triangulated

model from unlabeled data using the idea of EM. Assume that we have a data set

of N samples X = fX
1
; X

2
; : : : ; X

N
g. Each sample X

n
, 1 � n � N , is a group

of detected features at time n containing the target object. But X
n
is unlabeled,

meaning that the correspondence between the candidate features and the parts of the

object and background clutter is unknown. We want to select the useful composite

parts of the object and learn the probability independence structure of parts from X .

For the convenience of derivation, we �rst assume that all the foreground parts are

observed for each sample. If the labeling for each X
n
is taken as a hidden variable,

the EM algorithm can be used to learn the probability structure and parameters.

Our method was inspired by [22], but here we learn the probabilistic independence

structure. Let hn denote the labeling for X
n
. If X

n
contains nk features, then h

n is an

nk-dimensional vector with each element taking a value from Sbody[fBGg (Sbody is the

set of body parts and BG is the background clutter label). The observations for the

EM algorithm are X = fX
1
; X

2
; : : : ; X

N
g, the hidden variables are H = fhngNn=1,

and the parameters to optimize are the probability (in)dependence structure (i.e.,

the decomposable triangulated graph) and parameters for its associated probability

density function. We use G to represent both the probability structure and the

parameters. If we assume that X
n
s are independent from each other and hn only

depends on X
n
, then the likelihood function to maximize is

L = logP (X ; G)

= logP (X jG) + logP (G)

=
XN

n=1
logP (X

n
jG) + logP (G)

=
XN

n=1
log

X
hni 2H

n

P (X
n
; hn = hni jG) + logP (G) (5.3)

where hni is the ith possible labeling for X
n
, and Hn is the set of all such labelings.

Since hni is a discrete variable, summation is performed in equation (5.3) instead
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of integration in equation (5.1). Optimization directly over equation (5.3) is hard,

and the EM algorithm solves the optimization problem iteratively. In EM, for each

iteration t, we will optimize the function,

Q(GtjGt�1) = E[logP (X ;H; Gt)jX ; Gt�1]

=
XN

n=1
E[logP (X

n
; hn; Gt)jX

n
; Gt�1]

=
XN

n=1

X
hni 2H

n

P (hn = hni jX
n
; Gt�1) � logP (X

n
; hn = hni ; Gt)

=
XN

n=1

X
hni 2H

n

Rn
i logP (X

n
; hn = hni ; Gt) (5.4)

where Rn
i = P (hn = hni jX

n
; Gt�1) is the probability of h

n = hni given the observation

X
n
and the decomposable probability structure Gt�1. R

n
i can be computed as,

Rn
i = P (hni jX

n
; Gt�1) = P (X

n
; hni ; Gt�1)=

X
hn
k
2Hn

P (X
n
; hnk ; Gt�1) (5.5)

For each iteration t, Rn
i is a �xed number for a hypothesis hni .

We use the same method as in section 3.1 to compute P (hni ; X
n
; G) (G is Gt in

equation (5.4) and Gt�1 in equation (5.5)). Under the labeling hypothesis hn = hni ,

X
n
is divided into the foreground features X

n

fg, which are parts of the object, and

background (clutter) X
n

bg. If the foreground features X
n

fg are independent of clutter

X
n

bg, then

P (X
n
; hni ; G) = P (X

n
jhni ; G)P (h

n
i ; G)

= P (X
n

fgjh
n
i ; G)P (X

n

bgjh
n
i ; G)P (h

n
i jG)P (G) (5.6)
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Substituting equation (5.6) into equation (5.4), we get

XN

n=1

X
hni 2H

n

Rn
i logP (X

n
; hn = hni ; Gt)

=
XN

n=1

X
hni 2H

n

Rn
i [logP (X

n

fgjh
n
i ; Gt) + logP (X

n

bgjh
n
i ; Gt) + logP (hni jGt) + logP (Gt)]

=
X

n

X
hni

Rn
i logP (X

n

fgjh
n
i ; Gt) +

X
n

X
hni

Rn
i logP (X

n

bgjh
n
i ; Gt) +

X
n

X
hni

Rn
i logP (h

n
i jGt) +

X
n

X
hni

Rn
i logP (Gt) (5.7)

If we assume that the priors P (hni jGt) are the same for di�erent h
n
i , and P (Gt) are

the same for di�erent graph structures, the last two terms of equation (5.7) do not

depend on Gt. If we assume uniform background densities as in Chapter 3 and [22],

then the second term P (X
n

bgjh
n
i ; Gt) = ( 1

S
)nk�M , where S is the volume of the space a

background feature lies in, is not a function ofGt. Hence we only need to optimize over

the �rst term. Under probability decomposition Gt, P (X
n

fgjh
n
i ; Gt) can be computed

as in equation (2.8). Therefore the maximization of equation (5.4) is equivalent to

maximizing,

Q(GtjGt�1) �
XN

n=1

X
hni

Rn
i log[P (X

n

fgjh
n
i ; Gt)] (5.8)

=
XN

n=1

X
hni

Rn
i [

TX
t=1

logP (Xni
At
jXni

Bt
; Xni

Ct
) + logP (Xni

BT
; Xni

CT
)](5.9)

Xni
At

is the measurements of body part At under labeling h
n
i for X

n
, and so on. For

most problems, the number of possible labelings is very large (on the order of Mnk),

and it is computationally prohibitive to sum over all the possible hni as in equation

(5.9). However, if there is one hypothesis labeling hn�i that is much better than other

hypotheses, i.e., Rn�
i corresponding to hn�i is much larger than other Rn

i 's, then Rn�
i
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can be taken as 1 and other Rn
i 's as 0. Hence equation (5.9) can be approximated as

Q(GtjGt�1) �
XN

n=1
[

TX
t=1

logP (Xni�
At
jXni�

Bt
; Xni�

Ct
) + logP (Xni�

BT
; Xni�

CT
)] (5.10)

where Xni�
At
; Xni�

Bt
andXni�

Ct
are measurements corresponding to the best labeling hn�i ,

which can be obtained through the labeling algorithm presented in section 3.1 using

model Gt�1. Comparing equation (5.10) with equation (4.2) we know for iteration

t, if the best hypothesis hn�i is used as the 'true' labeling, then the decomposable

triangulated graph structure Gt can be obtained through the greedy algorithm de-

scribed in section 4.2. One approximation we make here is that the best hypothesis

labeling hn�i for each X
n
is really dominant among all the possible labelings so that

hard assignment for labelings can be used. This is similar to the situation of K-means

vs. mixture of Gaussian for clustering problems ([30]). Note that the best labeling is

used to update the parameters of the probability density function (mean and covari-

ance under Gaussian assumption). Therefore, in case of several labelings with close

likelihoods, as long as the measurements associated with the body parts from these

labelings are similar, the above approximation is still a good one.

The whole algorithm can be summarized as follows. Given some random initial

guess of the decomposable graph structure G0 and its parameters, then for iteration

t, (t is from 1 until the algorithm converges),

E-step: use Gt�1 to �nd the best labeling hn�i for each X
n
. Let X

n�

fg denote the

corresponding foreground measurements.

M-step: the mean �t and covariance matrix �t can be updated as

�t =
1

N

X
n

X
n�

fg (5.11)

�t =
1

N

X
n

(X
n�

fg � �t)(X
n�

fg � �t)
T (5.12)

Use �t and �t to compute di�erential entropies (section 4.4) and run the graph grow-

ing algorithm described in section 4.2 to get Gt.
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Comparing with the standard EM technique, we make two approximations in the

above procedure. In the E-step, we use the best labeling instead of the weighted

sum of all the possible labelings. In the M-step, there is no guarantee that the graph

growing algorithm will �nd the optimal graph. We evaluate these approximations

with experiments.

5.3 Dealing with missing parts (occlusion)

So far we have assumed that all the parts are observed. When some parts are missing,

the measurements for the missing body parts may be modeled as additional hidden

variables [22], and the EM algorithm can be modi�ed to handle the missing parts.

For each hypothesis labeling hn, let X
n

o denote the measurements of the observed

parts, X
n

m be the measurements for the missing parts, and X
n

fg = [X
nT

o X
nT

m ]T be the

measurements of the whole object (to reduce clutter in the notation, we assume that

the dimensions can be sorted in this way). The superscript T denotes transpose. For

each EM iteration t, we need to compute �t and �t to obtain the di�erential entropies

and then Gt with its parameters. Taking hn and X
n

m as hidden variables, we can get

�t =
1

N

X
n

E(X
n

fg) (5.13)

�t =
1

N

X
n

E(X
n

fg � �t)(X
n

fg � �t)
T =

1

N

X
n

E(X
n

fgX
nT

fg )� �t�
T
t (5.14)

where E(X
n

fg) = [X
n�T

o E(X
nT

m )]T , and E(X
n

fgX
nT

fg ) =

2
4 X

n�

o X
n�T

o X
n�

o E(X
nT

m )

E(X
n

m)X
n�T

o E(X
n

mX
nT

m )

3
5.

All the expectations E(�) are conditional expectations with respect to X
n
; hn = hn�i

and decomposable graph structure Gt�1. Therefore, X
n�

o are the measurements of the

observed foreground parts under hn = hn�i . Since Gt�1 is Gaussian distributed, con-

ditional expectation E(X
n

m) and E(X
n

mX
nT

m ) can be computed from observed parts

X
n�

o and the mean and covariance matrix of Gt�1.
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5.4 Experiments

We tested our algorithm on both motion capture data (Johansson displays) and on

features detected from real-image sequences. The motion capture data allowed us

to run the learning algorithm under conditions where all body parts were present

(section 5.2) and their position in space was tracked with millimetric precision. The

real-image sequences presented a more challenging scenario where a two-frame noisy

feature detector [1] was used to generate the training set, and with many occlusions

occurring (section 5.3).

5.4.1 Results on motion capture data

We �rst investigate the performance of the algorithm on motion capture data. Se-

quence W3 was used for learning and W4 for testing (see section 2.4 for detailed

description of the data). Although the motion capture system provided labeled data,

the data were treated as unlabeled for this experiment, and the labeling was only

used as a ground truth to quantify the accuracy of the learned model.

We chose to learn models with 9 parts instead of all 14 to see if the model was

able to consistently pick out 9 parts and ignore the other 5. We assumed all the pdfs

to be Gaussian, and the di�erential entropies can be computed from the covariance

matrix (section 4.4 and [24]). We ran the EM-like algorithm described in this chapter

ten times with di�erent random initializations.

Evaluation of the EM-like algorithm. The EM algorithm guarantees that

the likelihood improves with each iteration and converges. In our algorithm (section

5.2), we make two approximations: that the best hypothesis labeling is taken instead

of summing over all the possible hypotheses (equation (5.10)) and a greedy search

is used to �nd the approximated optimal graph structure. These approximations

are evaluated by checking how the log-likelihoods evolve with EM iterations and if

they converge. Figure 5.1 shows how the likelihood evolves with iterations. We used

random initializations, and each curve of Figure 5.1 corresponds to one such random

initialization. From Figure 5.1 we can see that generally the log-likelihoods grow and



78

converge well with the iterations of EM.
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Figure 5.1: Log-likelihood vs. iterations of EM for di�erent random initializations.

Iteration 0 means random initializations, iteration 1 is after one iteration, and so on.

The results are from motion capture data, assuming that all the foreground parts are

observed in the learning algorithm (section 5.2).

Models obtained. Figures 5.2 (a) and (b) are the two best models obtained

(with the highest likelihoods). The �gure shows the mean positions of each model

part (up to some horizontal and vertical scale factor), which corresponds quite nicely

to the geometrical structure of the human body. The labels corresponding to each

point were obtained by putting the original data's labels in correspondence with the

results from the model. In the �rst model (a), the same vertex represents both the

left and right knee (LK(RK)) (it detected the left knee 63% of the time and the

right knee 37% of the time). This is due to the fact that, from an orthographic

side view with all points present (i.e., no self-occlusions), during some parts of the

walk cycle it is very diÆcult to distinguish the left and right knee, and so the model

has accumulated the statistics of both into one point. A similar situation occurs

with the ankles, point LA(RA). Since except for LK(RK) and LA(RA), each learned

model part corresponds consistently to a 'real' body part (according to the ground

truth labeling of the training set, see Figure 5.2), we can quantify the detection and

labeling performance in testing.

Figure 5.3 depicts how the model in Figure 5.2(a) evolves with iterations by show-

ing the mean positions of the parts of the model at each stage.
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Figure 5.2: Two decomposable triangulated models for Johansson displays. These

models were learned automatically from unlabeled training data. 'L': left; 'R': right.

H:head, N:neck, S:shoulder, E:elbow, W:wrist, H:hip, K:knee, A:ankle.

Detection and labeling. Figure 5.4 shows the detection and labeling results by

using the two models in Figure 5.2. Figures 5.4 (a) and (b) are ROC curves corre-

sponding to Figures 5.2 (a) and (b), respectively. They were generated by comparing

the likelihood of the model on frames consisting of only 30 random background points

to frames with 30 background points plus 3 to 8 body parts present. With 5 or more

body parts present, the ROC curve is nearly perfect. The dashed curve is the overall

ROC considering all the frames used (from 3 to 8 body parts). The threshold cor-

responding to PDetect = 1� PFalseAccept on this curve was used for later experiments.

The stars ('*') on the solid curves are corresponding to that threshold. Figure 5.4(c)

shows the detection rate vs. number of body parts displayed with regard to the �xed

threshold. Figure 5.4 (d) is the curve of correct label rate (label-by-label rate) vs.

number of body parts when a person is correctly detected. In Figure 5.4 (c) and

(d), the solid lines (with *) are from model Figure 5.2 (a); the dashed lines (with o)

are from model Figure 5.2 (b); and dash-dot lines with triangles are from the hand-

crafted model in Figure 2.3 (a) (also see Figure 3.3). Though it is not fair to compare

directly the results from the automatically learned models and the hand-constructed

model due to the fact that they have di�erent number of parts and therefore di�erent



80

−200 −100 0 100 200
−200

−150

−100

−50

0

50

100

150
random initialization

−40 −30 −20 −10 0 10 20
0

50

100

150
after 1 iteration(s)

−40 −30 −20 −10 0 10 20
0

50

100

150
after 2 iteration(s)

−40 −30 −20 −10 0 10 20
0

50

100

150
after 3 iteration(s)

−30 −20 −10 0 10 20
0

50

100

150
after 4 iteration(s)

−30 −20 −10 0 10 20
0

50

100

150
after 5 iteration(s)

−30 −20 −10 0 10 20
0

50

100

150
after 6 iteration(s)

−30 −20 −10 0 10 20
0

50

100

150
after 7 iteration(s)

−30 −20 −10 0 10 20
0

50

100

150
after 8 iteration(s)

−30 −20 −10 0 10 20
0

50

100

150
after 9 iteration(s)

−30 −20 −10 0 10 20
0

50

100

150
after 10 iteration(s)

−30 −20 −10 0 10 20
0

50

100

150
after 11 iteration(s)

−40 −30 −20 −10 0 10 20
0

50

100

150
after 12 iteration(s)

−40 −30 −20 −10 0 10 20
0

50

100

150
after 13 iteration(s)

−40 −30 −20 −10 0 10 20
0

50

100

150
after 14 iteration(s)

Figure 5.3: Evolution of a model with iterations (from motion capture data).
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Figure 5.4: Detection and labeling results. (a) and (b) are ROC curves corresponding

to models Figure 5.2 (a) and (b), respectively. Solid lines: 3 to 8 body parts with

30 background points vs. 30 background points only. The more body parts present,

the better the ROC. Dashed line: overall ROC considering all the frames used. The

threshold corresponding to PD = 1�PFA on this curve was used for later experiments.

The stars ('*') on the solid curves are corresponding to that threshold. (c) detection

rate vs. number of body parts displayed with regard to the �xed threshold. (d)

correct label rate (label-by-label rate) vs. number of body parts when a person is

correctly detected. In (c) and (d), solid lines (with *) are from model Figure 5.2 (a);

dashed lines (with o) are from model Figure 5.2 (b); and dash-dot lines with triangles

are from the hand-crafted model in Figure 2.3(a) (also see Figure 3.3).
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properties of graph connectivity for the same number of body parts present, Figure

5.4 still shows that the automatically learned models work quite well.

5.4.2 Results on real-image sequences

We did experiments on the same image sequences as in section 3.6, and compared the

automatically learned model with the hand-constructed one.

We learned an 11-part model by taking the training data as unlabeled. Figure

5.5 shows the best model obtained (by the likelihood criterion) after we ran the EM

algorithms for 12 times. Figure 5.5(a) gives the mean positions and mean velocities

(shown in arrows) of the composed parts selected by the algorithm. Figure 5.5(b)

shows the learned decomposable triangulated probabilistic structure. The numbers

in brackets show the correspondence of (a) and (b) and one elimination order.
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Figure 5.5: (a) The mean positions and mean velocities (shown in arrows) of the

composed parts selected by the algorithm. (b) The learned decomposable triangulated

probabilistic structure. The numbers in brackets show the correspondence of (a) and

(b) and one elimination order.

Figure 5.6 shows labeling results on some sample frames. Comparing this �g-

ure with �gure 3.10, we can see that here all the features composed of the best-

con�guration are on the human body, but this is not true for Figure 3.10. For exper-

iments displayed in Figure 3.10, there exists a problem that due to occlusion the best
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Figure 5.6: Sample frames from body and chair moving sequences (top two rows) and

body moving sequences (bottom two rows). The dots (either in black or in white) are

the features selected by Lucas-Tomasi-Kanade algorithm on two frames. The white

dots are the most human-like con�guration found by the automatically learned model

(Figure 5.5).
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con�guration is composed of several independent components and these component

can be far away from each other. The situation has been improved a lot by using the

automatically learned model as in Figure 5.5. Comparing the two models (Figures

3.9 and 5.5), we can �nd that Figure 3.9 is a more local model, which means that

the parts close to each other are connected, and Figure 5.5 is more global since some

triangles contains parts far away, for example the triangle of parts (3), (4) and (7).

This global connectivity helps prevent the graph from becoming separated in case of

some body parts missing.
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Figure 5.7: ROC curves. (a) Results of images with body and chair vs. images with

chair only. (b) Results of images with body only vs. images with chair only. Solid

line: using the automatically learned model as in Figure 5.5; dashed line: using the

model in Figure 3.9 (dashed lines of Figure 3.12).

The ROC curves in Figure 5.7 show the detection results. Detection is based

on thresholding the likelihood of the most human-like con�guration selected by the

model (winner-take-all). Solid lines are from the automatically learned model as in

Figure 5.5; dashed lines are from the model in Figure 3.9 (dashed lines of Figure 3.12).

Figure 5.7(a) shows results of images with body and chair vs. images with chair only;

and curves in Figure 5.7 (b) are results of images with body only vs. images with

chair only. From Figure 5.7, we see that the automatically learned model performs

better than the hand-constructed model in Figure 3.9. The automatically learned
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model is also more eÆcient since there are only 11 parts in the model (there are 20

parts in the hand-constructed model in Figure 3.9).

5.5 Summary

In this chapter, we develop an algorithm for learning the probability independence

structure of parts from unlabeled data, i.e., data with unknown correspondence be-

tween the parts and the observed features, and with clutter and occlusion. A variant

of the EM algorithm is developed where the labeling of the data (part assignments) is

treated as hidden variables. We use decomposable triangulated graphs to depict the

probabilistic independence of parts, but the unsupervised technique is not limited to

this type of graph. Our algorithm enables the creation of systems that are able to

learn models of human motion completely automatically from real-image sequences.
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Chapter 6 Mixtures of decomposable

triangulated models

In the previous chapters, we model each triangle by a Gaussian distribution, therefore

the joint probability density function of all the parts is a unimodal Gaussian. To

better express the variability and/or di�erent phases of human motion, we extend

the algorithms to mixtures of decomposable triangulated models, which are mixtures

of Gaussians [30], with each component model being a Gaussian with decomposable

triangulated independence.

6.1 De�nition

A mixture model is a weighted sum of several individual decomposable triangulated

models. Each component model is relatively independent in the sense that di�erent

components can have di�erent sets of body parts. More formally, a C-cluster (compo-

nent) mixture model can be represented by G = [G1G2 � � �GC ] and � = [�1�2 � � ��C ],

where Gj, j = 1; : : : ; C, is a decomposable triangulated Gaussian model, and �j is

the prior probability of Gj. Each component model Gj has an independent set of

body parts-some features corresponding to foreground body parts of one component

model may be taken as background by another component model.

For an unlabeled observation X, let c (taking a value from 1 to C) represent the

random variable assigning a component model to X, and hj the random variable

denoting the labeling of X under component model Gj. Since di�erent component

models may have di�erent sets of body parts, a labeling must be associated with a
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particular component model. The probability of an unlabeled observation X is,

P (X) =
XC

j=1
P (Xjc = j)P (c = j) (6.1)

=
XC

j=1

X
hji2Hj

P (X; hj = hjijc = j)P (c = j) (6.2)

where hji is the ith possible labeling of X under component model j, and Hj is the

set of all such possible labelings. In the above equation, P (c = j) = �j is the prior

probability of component j, and P (X; hj = hjijc = j) can be computed in a similar

way to section 3.1 and equation (5.6), that is,

P (X; hj = hjijc = j) = P (Xjhji; c = j)P (hjijc = j) (6.3)

= PGj(Xfgjhji; c = j)P (Xbgjhji; c = j)P (hjijc = j) (6.4)

The �rst two terms of equation (6.4), PGj (Xfgjhji; c = j) and P (Xbgjhji; c = j) can

be estimated as in section 3.1, and we assume that under one component model j,

(1 � j � C), the prior probabilities of possible labelings are uniformly distributed,

i.e., P (hjijc = j) = 1=jHjj, where jHjj is the size of Hj.

6.2 EM learning rules

For clarity, we �rst assume that all the foreground parts are present for each compo-

nent. Compared with the EM algorithm in section 5.2, the observations are the same:

X = fX
1
; X

2
; : : : ; X

N
g. But we have one more set of hidden variables C = fcngNn=1,

where cn assigns a component (from 1 to C) to X
n
, and H, the set of random vari-

ables for labeling, becomes H = fhngNn=1, where h
n = fhnj g

C
j=1, and h

n
j is the labeling

of X
n
under the jth component model. The parameters to estimate are the multiple

components model G and its associated prior probabilities �. By Bayes' rule and
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equation (6.2), the likelihood function we want to maximize is

L = logP (X ; G;�)

= logP (X jG;�) + logP (G;�)

=
XN

n=1
logP (X

n
jG;�) + logP (G;�)

=
XN

n=1
log
XC

j=1

X
hnji2H

n
j

P (X
n
; hnj = hnji; c

n = jjG;�) + logP (G;�)(6.5)

where hnji is the ith possible labeling of X
n
under the jth component model, and Hn

j

is the set of all such possible labelings. Optimization directly over equation (6.5) is

hard, and the EM algorithm solves the problem iteratively. Let Gt = [G1
tG

2
t � � �G

C
t ]

and �t = [�1
t �

2
t � � ��

C
t ] denote the parameters at iteration t. Then in EM, at each

iteration t, we will optimize the function,

Q(Gt;�tjGt�1;�t�1)

= E[logP (X ;H; C; Gt;�t)jX ; Gt�1;�t�1] (6.6)

=
XN

n=1
E[logP (X

n
; hn; cn; Gt;�t)jX

n
; Gt�1;�t�1] (6.7)

=
XN

n=1

XC

j=1

X
hnji2H

n
j

P (hnj = hnji; c
n = jjX

n
; Gt�1;�t�1)

� logP (X
n
; hnj = hnji; c

n = j; Gt;�t) (6.8)

=
XN

n=1

XC

j=1

X
hnji2H

n
j

P (hnj = hnjijc
n = j;X

n
; Gt�1;�t�1) � P (c

n = jjX
n
; Gt�1;�t�1)

� logP (X
n
; hnj = hnji; c

n = j; Gt;�t) (6.9)

The E[�] in equations (6.6) and (6.7) is the expectation of log likelihood given the

observed data and parameters from iteration t � 1. Equation (6.8) is computing

the expectation by summing over all the possible values of the hidden variables.

For convenience, we de�ne Rn
ji = P (hnj = hnjijc

n = j;X
n
; Gt�1;�t�1), which is the

probability of a labeling hnji of X
n
given X

n
and X

n
belonging to cluster j, and

!nj = P (cn = jjX
n
; Gt�1;�t�1), which is the probability of X

n
belonging to cluster j
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given X
n
. We explain how to compute !nj and Rn

ji below.

!nj

= P (cn = jjX
n
; Gt�1;�t�1)

=
P (cn = j;X

n
jGt�1;�t�1)PC

k=1P (c
n = k;X

n
jGt�1;�t�1)

=
P (X

n
jcn = j; Gt�1;�t�1)P (c

n = jjGt�1;�t�1)PC

k=1P (X
n
jcn = k;Gt�1;�t�1)P (cn = kjGt�1;�t�1)

=

P
hnji2H

n
j
P (X

n
; hnjijc

n = j; Gt�1;�t�1) � �
j
t�1PC

k=1

P
hn
ki
2Hn

k
P (X

n
; hnkijc

n = k;Gt�1;�t�1) � �
k
t�1

=
�jt�1

P
hnji2H

n
j

P (X
n
jhnji; c

n = j; Gt�1;�t�1)P (h
n
jijc

n = j; Gt�1;�t�1)PC

k=1�
k
t�1

P
hn
ki
2Hn

k
P (X

n
jhnki; c

n = k;Gt�1;�t�1)P (h
n
kijc

n = k;Gt�1;�t�1)
(6.10)

=
�jt�1

P
hnji2H

n
j

P (X
n

fg(ji)jh
n
ji; G

j
t�1)PC

k=1�
k
t�1

P
hn
ki
2Hn

k
P (X

n

fg(ki)jh
n
ki; G

k
t�1)

(6.11)

where X
n

fg(ki), k = 1; : : : ; C, is the foreground measurements of labeling hnki 2 Hn
k un-

der component model k. The �rst couple of steps in the above derivation are mainly

from Bayes' rule and distributive law of summation. The equal sign from equation

(6.10) to equation (6.11) holds due to the following three reasons. (1). Given X
n

belonging to cluster j, the probability of X
n
only depends on Gj, not other compo-

nent models or priors. Therefore P (X
n
jhnki; c

n = k;Gt�1;�t�1) = P (X
n
jhnki; G

k
t�1) =

P (X
n

fg(ki)jh
n
ki; G

k
t�1)P (X

n

bg(ki)jh
n
ki; G

k
t�1). (2). In this chapter, we assume that all the

component models have the same number of body parts. Then in the case of all

foreground parts observed, the number of background points is the same for di�erent

labelings under di�erent component models. Therefore under the uniform background

assumption the background probabilities X
n

bg(ki) can be canceled out. (3). Since all

the component models have the same number of body parts, the total number of

possible labelings is the same for di�erent component models. If we assume that

within one component model the prior probabilities of all the possible labelings are

uniformly distributed, then P (hnkijc
n = k;Gt�1;�t�1) is the same for all the possible

choices of k and i.
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Since each Gk
t�1, k = 1; : : : ; C, is a decomposable triangulated Gaussian model,

the summation
P

hn
ki
2Hn

k
P (X

n

fg(ki)jh
n
ki; G

k
t�1) in equation (6.11) can be computed ef-

�ciently by dynamic programming (use 'sum' operation instead of 'max' operation,

for more details see section 3.2.2 and [31]).

The computation of Rn
ji is the same as equation (5.5) but using component model

Gj
t�1. !

n
j and R

n
ji are computed using the parameters from iteration t� 1, hence they

are �xed constants for function Q at iteration t.

Substituting !nj and Rn
ji into equation (6.9), we get

Q(Gt;�tjGt�1;�t�1)

=
XN

n=1

XC

j=1

X
hnji2H

n
j

Rn
ji � !

n
j � logP (X

n
; hnj = hnji; c

n = j; Gt;�t)

=
XN

n=1

XC

j=1
!nj
X

hnji2H
n
j

Rn
ji � logP (X

n
; hnj = hnji; c

n = j; Gt;�t)

=
XN

n=1

XC

j=1
!nj

X
hnji2H

n
j

Rn
ji � [logP (X

n
jhnj = hnji; c

n = j; Gt;�t)

+ logP (hnj = hnjijc
n = j; Gt;�t) + logP (cn = jjGt;�t)]

=
XN

n=1

XC

j=1
!nj

X
hnji2H

n
j

Rn
ji � [logP (X

n

fg(ji)jh
n
j = hnji; c

n = j; Gt;�t)

+ logP (X
n

bg(ji)jh
n
j = hnji; c

n = j; Gt;�t)

+ logP (hnj = hnjijc
n = j; Gt;�t) + logP (cn = jjGt;�t)]

= Q1 +Q2 +Q3 +Q4 (6.12)
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where

Q1 =
XN

n=1

XC

j=1
!nj
X

hnji2H
n
j

Rn
ji � logP (X

n

fg(ji)jh
n
j = hnji; c

n = j; Gt;�t)

=
XC

j=1

XN

n=1
!nj

X
hnji2H

n
j

Rn
ji � logP (X

n

fg(ji)jh
n
j = hnji; G

j
t)

=
XC

j=1
Q
j
1 (6.13)

Q2 =
XN

n=1

XC

j=1
!nj
X

hnji2H
n
j

Rn
ji � logP (X

n

bg(ji)jh
n
j = hnji; c

n = j; Gt;�t)(6.14)

Q3 =
XN

n=1

XC

j=1
!nj
X

hnji2H
n
j

Rn
ji � logP (h

n
j = hnjijc

n = j; Gt;�t) (6.15)

Q4 =
XN

n=1

XC

j=1
!nj
X

hnji2H
n
j

Rn
ji � logP (c

n = jjGt;�t)

=
XC

j=1

XN

n=1
!nj
X

hnji2H
n
j

Rn
ji � log(�

j
t )

=
XC

j=1
(
XN

n=1
!nj ) log(�

j
t ) (6.16)

We want to �nd Gt and �t which can maximize Q = Q1 +Q2 +Q3 +Q4. Q2 and

Q3 are not functions of Gt and �t. Q1 is a function of Gt and Q4 is a function of �t.

From equation (6.13), the best Gj
t is the one which can maximize

Qj
1 =

XN

n=1
!nj
X

hnji2H
n
j

Rn
ji � logP (X

n

fg(ji)jh
n
j = hnji; G

j
t) (6.17)

�
XN

n=1
!nj logP (X

n�

fg(ji)jG
j
t) (6.18)

where X
n�

fg(ji) is the foreground con�guration with the highest Rn
ji, i.e. the best la-

beling of X
n
under model Gj

t�1. The approximation from equation (6.17) to (6.18)

is under the same reasoning as from equation (5.9) to (5.10). Under Gaussian as-

sumption, the maximum likelihood parameter estimation of Gj
t can be obtained by

taking derivatives of equation (6.18) with respect to mean and covariance matrix and

equating to zero. Then we have the updated parameters,

�jt =

P
n !

n
jX

n�

fg(ji)P
n !

n
j

(6.19)
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�
j
t =

P
n !

n
jX

n�

fg(ji)(X
n�

fg(ji))
TP

n !
n
j

� �jt(�
j
t )
T (6.20)

From �jt and �
j
t , the decomposable triangulated structure can be obtained by running

the graph growing algorithm in section 4.

To optimize �t, we maximize Q4 under the constraint
PC

j=1 �
j
t = 1. Using La-

grange multipliers, we get

�jt =

P
n !

n
j

N
(6.21)

The whole EM algorithm can be summarized as follows. First we need to �x C,

the number of component models in the mixtures, and the number of body parts in

each component model. Then we generate random initializations for each component

model, G0 = [G1
0; : : : ; G

C
0 ], and the initial priors �0. At each EM iteration t, (t from

1 till convergence),

E-step: For each X
n
, �nd the best labeling X

n�

fg(ji) using component model Gj
t�1,

j = 1; : : : ; C and compute !nj by equation (6.11).

M-step: Compute �jt and �
j
t as in equations (6.19) and (6.20). Run the graph

growing algorithm (section 4) on each �
j
t to obtain updated G

j
t , j = 1; : : : ; C. Update

�t as in equation (6.21).

So far we have assumed that all the foreground parts are observed for each com-

ponent model. In the case of some parts missing (occlusion), the same techniques as

in section 5.3 are applied.

6.3 Detection and labeling using mixture models

For an observationX, we can run the detection and labelings algorithms as in Chapter

3 using each component model Gj, j = 1; : : : ; C, to get the best labeling X
�

fg(j) and

an estimation of PGj (X) (by either winner-take-all strategy or sum-over-all-possible-

labeling strategy). Detection can be performed by thresholding
PC

j=1�
j �PGj(X). The

localization of the human body can be determined by the best con�guration X
�

fg(j)

with the highest �j � PGj (X) among all the best con�gurations X
�

fg(j), j = 1; : : : ; C.
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code-name description

p1 person walking R-L. 10 subjects. Subject LG (12 x 80); other subjects (3-4 x 80) each.

p2 person walking R-L with another person biking either R-L or L-R. (4 x 50)

p3 person walking R-L with a car driving R-L. (4 x 40-60)

b+ person biking R-L alone or with another person walking L-R. (3 x 40)

b- person biking L-R alone or with another person walking L-R. (5 x 40)

c+ car moving R-L. (2 x 70)

c- car moving L-R alone (1 x 100) or car moving L-R with a person walking L-R (1 x 50)

r+ person running R-L. (6 x 30)

r- person running L-R. (6 x 30)

w+ water running R-L. (1 x 30)

cp+ stationary background (no person) with camera panning L-R. (1 x 50)

cp- stationary background (no person) with camera panning R-L. (1 x 50)

cps+ stationary scene (with person standing still) with camera panning L-R. (2 x 50)

cps- stationary scene (with person standing still) with camera panning R-L. (2 x 50)

cpt+ person walking L-R and camera panning L-R to follow the person. (2 x 50)

cpt- person walking R-L and camera panning R-L to follow the person. (2 x 50)

Table 6.1: Types of images used in the experiments. 'L-R' denotes 'from left to right,'

and 'R-L' means 'from right to left.' The digits in the parenthesis are the number of

sequences by the number of frames in each sequence. For example, (3-4 x 80) means

that there are 3 or 4 sequences, with around 80 frames for each sequence. The +/-

in the code-names denotes whether movement is R-L or L-R.

6.4 Experiments

In this section, we conduct experiments on gray-scale image sequences. The image

sequences were acquired using a digital cam-corder at 30 Hz frame rate. The images

were converted into gray-scale, and the image resolution is 240 x 360. To apply

our algorithms, candidate features were obtained using a Lucas-Tomasi-Kanade [1]

feature selector/tracker on pairs of frames. Features are selected at each frame, and

are tracked to the next frame to obtain positions and velocities [31].

The image sequences (see Figures 6.1 and 6.6 for sample images) used in the

experiments are summarized in Table 6.1. The ten subjects of the (p1) sequences

include 6 males and 4 females from 20 to 50 years old. We assume that the distance

between the person and the camera is constant. The di�erent sizes of the subjects

are taken care of by the probabilistic model automatically.
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(p1) (p1)

(p1) (p3)

(b-) (w+)

Figure 6.1: Sample images. The text string in parenthesis indicates the image type.
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In the experiments, R-L walking motion models were learned from (p1) sequences

and tested on all types of sequences to see if the learned model can detect R-L walking

and label the body parts correctly. Type (p1), (p2) and (p3) sequences are considered

as positive examples, and the others are negative examples. In the following we �rst

evaluate the learning algorithms, and then report the detection and labeling results.

6.4.1 Evaluation of the EM algorithm

There are two approximations in the unsupervised learning algorithms (see the end

of section 5.2). Here we evaluate the EM-like algorithm by checking how the log-

likelihoods evolve with EM iterations and if they converge.

We learn two types of models. The �rst one is a single-subject model: using 9

type (p1) sequences of subject LG. The other is a multiple-people model: using 12

type (p1) sequences from 4 subjects (including subject LG).

Figure 6.2 shows the results of learning a 3-cluster model, each cluster with 12

parts. Figure 6.2(a) is of single-subject models, and (b) is of multiple-people models.

We used random initializations, and the ten curves in Figure 6.2(a) or (b) correspond

to ten such random initializations. If the likelihood di�erence of two iterations is

less than 0.1%, a convergence is claimed and the algorithm terminates. From Figure

6.2 we can see that generally the log-likelihoods grow and converge well with the

iterations of EM.

6.4.2 Models obtained

Figure 6.2 shows that the models obtained from di�erent initializations are quite

similar by likelihood criterion. We tested the models using a small validation set,

and found no big di�erence in terms of detection performance. Figures 6.3 (a) and

(b) show a single-subject model (corresponding to the thick curve in Figure 6.2 (a)).

Figure 6.3(a) gives the mean positions and mean velocities (shown in arrows) of the

parts for each component model. The prior probabilities are shown on top of each

plot. Figure 6.3(b) depicts the learned decomposable triangulated probabilistic struc-
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Figure 6.2: Evaluation of the EM-like algorithm: log-likelihood vs. iterations of EM

for di�erent random initializations. The indices along x-axis show the number of

iterations passed. (a). 12-part 3-cluster single-subject models; (b). 12-part 3-cluster

multiple-people models.
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ture for the three component models in (a), respectively. The letter labels show the

body parts correspondence. Figure 6.3 (c) and (d) are a multiple-people model (cor-

responding to the thick curve in Figure 6.2 (b)), and follow the same representation

custom as in (a) and (b).

6.4.3 Detection and labeling

We run detection and labeling (section 6.3) experiments using the models obtained.

Instead of a �xed threshold, we represent the detection performance by receiver op-

erating characteristics (ROC) curves. Figure 6.4 shows some ROC curves using the

single-subject model as in Figure 6.3(a)-(b). Figure 6.4(a) is the ROC curves of posi-

tive walking sequences (type p1 to p3) vs. person biking R-L sequences (b+), and (b)

is the ROC curves of positive walking sequences vs. car moving R-L sequences (c+).

The positive examples for the solid curves are the positive R-L walking sequences

(type p1 to p3) of subject LG excluding the sequences used for training, and the

positive examples for the dashed curves are the R-L walking sequences (type p1 to

p3) of other subjects not in the training set. From Figure 6.4 (a) and (b), we see

that the single-subject model performs similarly well on the in-training-set subject

and the out-of-training-set subjects. To further test if the single-subject model can

distinguish the in-training-set subject from other subjects, we obtain an ROC curve

(Figure 6.4 (c)) by taking the R-L walking sequences of subject LG as positive ex-

amples and the R-L walking sequences of other subjects as negative examples. From

Figure 6.4, we see that it is hard to distinguish the in-training-set subject from other

subjects using the single-subject model as in Figure 6.3(a). In other words, the model

is invariant with respect to the subject being observed.

From an ROC curve, we can take the detection rate when Pdetection = 1�Pfalsealarm

as an indicator of detection performance. Figure 6.5 summarizes such detection rates

of positive R-L walking sequences vs. di�erent types of negative sequences. The

x-axis of Figure 6.5 displays the di�erent types of negative examples (as described in

Table 1). We �rst get the detection rate of each positive R-L walking sequence vs.
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Figure 6.3: Examples of 12-part 3-cluster models. (a)-(b) are a single-subject model

(corresponding to the thick curve in Figure 6.2 (a)), and (c)-(d) are a multiple-people

model (corresponding to the thick curve in Figure 6.2 (b)). (a) (or (c)) gives the mean

positions and mean velocities (shown in arrows) of the parts for each component

model. The number �i, i = 1; 2; 3, on top of each plot is the prior probability

for each component model. (b) (or (d)) is the learned decomposable triangulated

probabilistic structure for models in (a) (or (c)). The letter labels show the body

parts correspondence.
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Figure 6.4: ROC curves using the single-subject model as in Figure 6.3 (a). (a)

positive walking sequences vs. person biking R-L sequences (b+); (b) positive walking

sequences vs. car moving R-L sequences (c+). Solid curves use positive walking

sequences of subject LG as positive examples, and dashed curves use sequences of

other subjects. (c) is obtained by taking the R-L walking sequences of subject LG

as positive examples and the R-L walking sequences of other subjects as negative

examples.
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a certain type of negative sequences, and the average detection rate is shown either

in star (*) or in circle (o). The error bars show the maximum or minimum detection

rate. The stars (*) with error bars use the positive walking sequences of subject LG

as positive examples, and the circles (o) with error bars use the positive sequences of

other subjects not in the training set. Figure 6.5(a) is from the single-subject model

as in Figure 6.3(a), and Figure 6.5(b) is from the multiple-people model as in Figure

6.3(c).

All the negative sequences ending with (+) have R-L motion, and (-) means that

L-R motion is the major motion. Detection is almost perfect when images from a L-R

(-) type of sequences are used as negative examples. Among the R-L (+) types of

sequences, the water moving R-L sequence (with a lot of features) and the sequences of

a person standing still with camera panning are the hardest. From Figure 6.5, we see

that the two models perform similarly, with overall detection rates (out-of-training-

set subjects) of 97:0% and 96:1% for the single-subject model and multiple-people

model, respectively.

Figure 6.6 shows results on some images using the 12-part 3-cluster multiple-

people model (Figure 6.3 (c)). The text string at the bottom right corner of each

image indicates which type of sequences the image is from. The small black circles are

candidate features obtained from the Lucas-Tomasi-Kanade feature detector/tracker.

The arrows associated with circles indicate the velocities. The horizontal lines at

the bottom left of each image give the log-likelihoods. The top three lines are the

log-likelihoods (PGj(X)) of the three component models, respectively. The bottom

line is the overall log-likelihood (
PC

j=1�
j � PGj(X)) (section 6.3). The short vertical

bar (at the bottom) indicates the threshold for detection, under which we get equal

missed detection rate and false alarm rate for all the available positive and negative

examples. If a R-L walking motion is detected according to the threshold, then the

best labeling from the component with the highest log-likelihood is drawn in solid

black dots, and the letter beside each dot shows the correspondence with the parts of

the component model in Figure 6.3 (c). The number at the upper right corner shows

the highest likelihood component, with 1; 2; 3 corresponding to the three components



101

b+ b− c+ c− r+ r− w+ cp+ cp− cps+ cps− cpt+ cpt−
0.5

0.6

0.7

0.8

0.9

1

average detection rate: subject L 0.978; out−training−subjects 0.970

types of negative examples

de
te

ct
io

n 
ra

te

(a)

b+ b− c+ c− r+ r− w+ cp+ cp− cps+ cps− cpt+ cpt−
0.5

0.6

0.7

0.8

0.9

1

average detection rate: subject L 0.955; out−training−subjects 0.961

types of negative examples

de
te

ct
io

n 
ra

te

(b)

Figure 6.5: Detection rates vs. types of negative examples. (a) is from the single-

subject model (Figure 6.3 (a)), and (b) is from the multiple-people model (Figure

6.3 (b)). Stars (*) with error bars use R-L walking sequences of subject LG as

positive examples, and circles (o) with error bars use R-L walking sequences of other

subjects. The stars (or circles) show the average detection rates, and error bars give

the maximum and minimum detection rates. The performance is measured on pairs

of frames. It improves further when multiple pairs in a sequence are considered.
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in Figure 6.3 (c) from left to right. For the samples in Figure 6.6, all the positive

R-L walking examples are correctly detected, and only one negative example (from

the water running R-L sequence) is wrongly claimed as a person R-L walking (a false

alarm).

6.5 Conclusions

The algorithms developed in previous chapters are extended to mixtures of Gaussian

with decomposable triangulated independence. We explore the eÆciency and e�ec-

tiveness of this algorithm by learning a model of right-to-left walking and testing on

walking sequences of a number of people as well as a variety of non-walking motions.

We �nd an average of 4% error rate on our examples. This rate is based on pairs

of frames, and it can be further improved when more pairs of frames (150-200 ms of

video) are included (sections 3.3 and 3.5.2).

We �nd that our models generalize well across subjects and not at all across types

of motions. The model learned on subject LG worked equally well in detecting all

other subjects and very poorly at subject discrimination. By contrast, it was easy to

discriminate walking from jogging and biking in the same direction.
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explanation of symbols.
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Chapter 7 Decomposable triangulated

graphs and junction trees

In this thesis, we use decomposable triangulated graphs to depict the probabilistic

conditional independence structure of body parts. Detection and labeling can be

done eÆciently through dynamic programming. In this chapter, we show how a

decomposable triangulated graph can be transformed into a junction tree such that

max-propagation developed for graphical models can be used to the labeling problem.

We also justify our choice of decomposable triangulated graphs over other types of

graphical models.

This chapter does not intend to give a thorough survey of graphical models and

inference algorithms. Instead we want to show how those algorithms are related to

our problem.

7.1 Introduction

Graphical models are graphs which describe the probabilistic conditional (in)dependence

of variables. Each node of the graph represents a random variable, and edges give the

dependency among these variables. If each variable can take values from a discrete

set, the con�guration that maximizes the joint probability can be found eÆciently

by max-propagation on junction trees, which are graphs built on original graphs to

make the description of inference algorithms easier.

For our labeling problem, each body part is denoted by a node in the graph, and

it can take values from a set of candidate features. Therefore the labeling problem is

the most-probable-con�guration problem on the graph.

In the following sections, we will describe what junction trees are and how the

most-probable-con�guration problem is solved through max-propagation on junc-
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tion trees. We will compare the dynamic programming algorithm with the max-

propagation on junction trees and �nally justify our choice of decomposable triangu-

lated graphs from a graphic theoretical point of view.

7.2 Junction trees

A clique tree is a tree in which the nodes are the cliques of an underlying graph.

For example, Figure 7.1 shows examples of clique trees. The edges of a clique tree

ABE BEF

CEFDEF

ABE BEF

CEFDEF

(a) (b)

CDEABE

ABE ADE

BCE CDE

ABCD

(c) (d) (e)

CDEABC

BCD

ABC

CDE

BCD

(f) (g)

Figure 7.1: Examples of clique trees. (a) and (b) are for the graph in Figure 2.2; (c),

(d) and (e) are for the graphs of Figure 2.4 (a,b,c), respectively; (f) and (g) are for

the graph in Figure 2.5. (a,c,e,f) are junction trees, and (b,d,g) are not.

can be labeled with separators-the intersection of the corresponding cliques of the

two adjacent nodes. Figure 7.2 shows some cliques trees with separators. A junction

tree is a clique tree with the property that the nodes containing the same variable

are connected, which is called 'junction tree property'. Not all the clique trees are

junction trees. In Figure 7.1, (a,c,e,f) are junction trees, and (b,d,g) are not. All the

graphs have clique trees, but not all the graphs have junction trees. For example,
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there is no junction tree for the graph of Figure 2.4(b). There exists a junction tree

if and only if a graph is triangulated or decomposable. A graph is triangulated if

there are no chordless cycles in the graph. A graph is decomposable if there exists an

elimination order of the vertices such that when a vertex is eliminated, all the vertices

connected to it are connected with each other. It can proved that triangulated and

decomposable are two equivalent properties. A non-triangulated graph can become

triangulated by adding edges.
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Figure 7.2: Examples of clique trees with separators. Clique trees are from Figure

7.1.

For the decomposable triangulated graphs (see notes in section 2.2) we used in

the previous chapters, all the cliques are of size three, and all the separators are of

size two. Figure 7.3 shows one junction tree for Figure 2.3 (a).

7.3 Max-propagation on junction trees

Let U be the set of variables. We consider a clique tree over U . Let C denote the

set of cliques, and S denote the set of separators. We de�ne potentials 	C(XC) on
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Figure 7.3: A junction tree with separators for the body decomposition graph in

Figure 2.3 (a).

each clique C 2 C, and �S(XS) for each separator S 2 S. Potentials are non-negative

functions, and in order to make the max-propagation work, the only condition on the

initial potentials is that the joint probability can be expressed as

P (XU) =

Q
C2C 	C(XC)Q
S2S

�S(XS)
(7.1)

For example, we can initialize 	C(XC) = P (XC) and �S(XS) = P (XS).

V S W

Figure 7.4: Two cliques V and W with separator S.

Let us �rst consider max-propagation on two cliques. Figure 7.4 shows cliques V
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and W with separator S. If we want to pass message from clique V to clique W , then

��

S = max
V nS

	V (7.2)

	�

W =
��

S

�S

	W ; (7.3)

where the asterisk means the updated value. It can be easily proved that the joint

probability remains unaltered after this message passing, that is, if we de�ne 	�

V =

	V , then
	�V 	�W
��
S

= 	V 	W

�S
. Similarly, if we want to pass message from W to V ,

���

S = max
WnS

	�

W (7.4)

	��

V =
���

S

��

S

	�

V : (7.5)

Again the joint probability remains unchanged. Another important property is that

after one pair of message passing, local consistency holds, which is

max
V nS

	��

V = max
WnS

	��

W (7.6)

For a clique tree, if we pass the messages according to the Message-Passing pro-

tocol: a clique can send a message to a neighboring clique only when it has received

messages from all of its other neighbors, then after one round of message passing,

local consistency between any two cliques are guaranteed. For a junction tree, local

consistency implies global consistency because in a junction tree, if some variables are

common for two cliques, they are common for all the cliques on the path of those two

cliques. More importantly, the junction tree property ensures that when the message

passing terminates, we have

	C(XC) = max
UnC

P (XU) (7.7)

From equation (7.7), the most probable con�guration can be found through maxi-

mization over each individual clique. If for one clique there are multiple max con�g-
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urations, then we can choose one of the con�gurations, and take it as evidence to run

max-propagation again until one most-probable-con�guration is obtained.

Assume that M is the number of variables, N is the number of the values each

variable can take, and r is the maximum clique size. From equations (7.2) and (7.3),

the cost of one message passing is on the order ofM r, exponential with the maximum

clique size r. If the underlying graph is connected, the number of cliques in a junction

tree is no more than N � 1 and the number of edges (separators) is no more than

N � 2. Hence in one run of the above max-propagation, there are at most 2(N � 2)

message passing. For decomposable triangulated graphs, there are N � 2 cliques and

2(N � 3) message passing.

7.4 Comparison between dynamic programming and

max-propagation on junction trees

The above max-propagation algorithm can work on any junction trees, so the labeling

problem can be solved on graphs other than decomposable triangulated graphs. Dy-

namic programming can also work on graphs other than decomposable triangulated

graphs ([32]). The computational complexity of both algorithms are determined by

the maximum size of the cliques. Therefore they essentially have the same order of

complexity. But there are still di�erences. Dynamic programming is an elimination

algorithm ([33]) for the most-probable-con�guration problem. For general marginal-

ization problems, probability propagation on junction trees is more eÆcient (better)

than an elimination algorithm, because we can obtain all the needed marginal proba-

bilities after one round of probability propagation, and for the elimination algorithm

we may need to run the algorithm many times. But for our labeling (most-probable-

con�guration) problem, dynamic programming is designed directly to solve it and is

more eÆcient than max-propagation on junction trees. The cost of dynamic program-

ming is about one-half of that of one round max-propagation since the computational

cost of one stage of dynamic programming (section 2.3) is about the same as a single
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message passing from one clique to another clique (equations (7.2,7.3)).

Note that the max-propagation algorithm on junction trees described above is just

one inference algorithm (Hugin algorithm [34, 33]) on graphical models. There exist

other inferences algorithms. But they are essentially the same.

7.5 Justi�cation for the use of decomposable tri-

angulated graphs

The computational complexity of both algorithms is determined by the maximum size

of the cliques. Therefore, the type of graph we used, i.e, decomposable triangulated

graphs, is the most powerful one among the graphs with similar computational cost.

It is the most powerful in the sense that it can model any probabilistic (in)dependency

that can be modeled by a graph with maximum clique size three. This is because for

any decomposable graph with maximum clique size three, we can always convert it

into a decomposable triangulated graph by adding edges. By the same reasoning, de-

composable triangulated graphs are more powerful than the decomposable graph with

maximum clique size of less than three, e.g., trees. In other words, for any probabil-

ity distribution, decomposable graphs can provide the most accurate approximation

among all the decomposable graphs with maximum clique size equal to or less than

three. The family of probability distribution represented by decomposable triangu-

lated graphs is the same as the family represented by all the decomposable graph

with maximum clique size equal to or less than three.

From the above discussion, we know the search for the optimal decomposable

triangulated graph is equivalent to the search for the optimal graph with tree-width

not greater than three. It is proved that the latter problem is NP-hard ([35] and [36]).

Therefore, the search of optimal decomposable triangulated graph is NP-hard.

The method of transforming a decomposable graph with maximum clique size

equal to or less than three into a decomposable triangulated graph is quite straight-

forward. First we need an elimination ordering of vertices. When we subsequently
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delete a vertex, we ensure that it is contained in one triangle by adding edges. Fig-

ure 4.1 in Chapter 4 shows an example of transforming a tree into a decomposable

triangulated graph.

7.5.1 Trees vs. decomposable triangulated graphs

Trees are a type of widely studied and used graphs. Trees have computational ad-

vantages over decomposable triangulated graphs. First, the maximum clique size of

a tree is two, so trees have a lower computational cost. Second, there exist eÆcient

algorithms that can guarantee the �nding of the optimal tree (max-spanning-tree al-

gorithms [26]). But the following advantages of decomposable triangulated graphs

make them a better choice for our problem.

Power of the model. In section 4.3, we give an algorithm for �nding decompos-

able triangulated dependency based on trees. We �rst �nd the best tree dependency

by the maximum spanning tree algorithm, and then transform it into a decomposable

triangulated model by adding edges. This method guarantees that the decomposable

graph obtained is not worse than the optimal tree for any given optimization criterion

(mutual information for our problem), because the set of probability independences

described by trees is a subset of that by decomposable triangulated graphs.

Graph connectivity in case of occlusion. A connected graph means that

there is a path between any two vertices of a graph. Graph connectivity is very

important for our problem. The body parts have only the local dependence described

by the graph. If some body parts are missing (occlusion), other body parts can

become disconnected, and therefore independent. Then the graph is no longer a good

approximation of the true probability density function. For example, in Figure 4.1, if

vertex B is missing, then the tree in Figure 4.1(a) becomes four mutual independent

subgraphs, (A), (C; F;G), (D;H; I; J) and (E), but the decomposable graph in Figure

4.1(b) is still a connected graph. In fact, it is generally true that decomposable

triangulated graphs have advantages over trees on the property of graph connectivity.

If the number of vertices is M , then the number of edges in a tree is M � 1, and
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it is 2 �M � 3 for a decomposable triangulated graph. A decomposable graph has

almost twice as many edges as a tree. But the advantage on connectivity is more than

twice. We test the connectivity under occlusion on a tree (solid lines in Figure 4.2(c))

and a decomposable triangulated graph (solid and dashed lines in Figure 4.2(c)). We

randomly select some body parts and check if they belong to a connected subgraph.

For example, (LE;LS; LH) is connected in both the tree and the triangulated graph,

but (LE;LS;N) is connected in the triangulated graph but not in the tree. We run

the algorithm many times with random selection of body parts. Figure 7.5 shows

the results. Figure 7.5 (a) shows the percentage of connected graphs vs. number of

vertices present (out of 14 in total). The solid line with stars is for the tree, and

the line with triangles for the decomposable triangulated graph. Figure 7.5 (b) gives

the ratio of the connected percentage as in Figure 7.5 (a). The connected percentage

of the decomposable triangulated graph is divided by that of the tree. The average

ratio considering all the situations is more than 7. When we average over the cases of

four to twelve body parts present, which is more representative of typical situations

of real occlusion, the ratio is around 10.
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Figure 7.5: (a) percentage of connected graphs vs. number of vertices present (out

of 14). The solid line with stars is for the tree, and the line with triangles for the de-

composable triangulated graph. (b) the ratio of connected percentage: decomposable

triangulated graphs vs. trees.

Figure 7.5 gives an idea of how connectivity changes with the number of vertices

present in the general case. It is not a very accurate model for the case of human
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motion since occlusion doesn't happen completely randomly. For example, the left

wrist and elbow may disappear or appear together, and the right wrist and elbow

may disappear or appear together. This correlation of the body part presence might

be used to construct graphs with better connectivities.

In case of occlusion we can use the approximation described in chapter 3 to deal

with missing body parts. But for trees the problem becomes harder because once a

non-leaf node is missing, the original tree becomes several isolated subgraphs. Those

subgraphs are independent of each other, which makes it diÆcult to �nd a connected

human body.

Translation invariance As we mentioned in the previous chapters (sections 2.3

and 4.4), we use local coordinate systems to deal with translation invariance. For

example, for a triangle (At; Bt; Ct), we take one body part (for example Bt) as the

origin, and use relative positions for other body parts. When we compute conditional

probability P (AtjBt; Ct), there can be relative position information on both sides of

the condition sign (j), but for trees the position information can only be on one side,

which makes the model less descriptive.

The weakness of trees may be compensated by a mixture of trees ([21, 37]). In

[37], rectangular segments instead of point features are used as body parts so that

one edge of the tree in [37] contains a similar amount of human body information as

one triangle in our model and therefore translation invariance can be achieved (but

the connectivity is still that of a tree).

7.6 Summary

Graphical models are a very active research area, and show great promise for computer

vision problems. In this chapter, we place our decomposable triangulated model in

the general framework of graphical models, and show how the labeling problem can be

solved by max-propagation on junction trees. The dynamic programming algorithm

is compared with the inference algorithms of graphical models.

Decomposable triangulated graphs are the most powerful among graphs with sim-
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ilar or less computational cost for inference. We justify our choice of decomposable

triangulated graphs over trees by the accuracy of the model, graph connectivity in

case of occlusion, and the ability to achieve translation invariance.
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Chapter 8 Conclusions and future work

In this thesis, we have presented a probabilistic approach to human motion detec-

tion and labeling, i.e., how to perform human motion detection and labeling using

a probabilistic model and how to learn the probabilistic model from data. Section

8.1 summarizes the main contributions of this thesis. Section 8.2 outlines future

directions for improving and generalizing this work.

8.1 Summary of main contributions

In the �eld of computer vision, human motion detection is a very important problem,

but it has never been tackled before due to its inherent diÆculty. This thesis proposes

a learning based probabilistic approach to solve the problem. Under the assumption

that the human body is composed of body parts, graphical models are originally

deployed to model the joint probability density function (PDF) of the position and

velocity of the body parts so that a combinatorial search is avoided and detection and

labeling are performed eÆciently. The proposed method can handle occlusion and

extraneous clutter in a systematic way - a challenging scenario for computer vision

algorithms.

This thesis also makes important contributions to the learning of graphical models.

An unsupervised learning algorithm that can obtain a probabilistic model of an object,

independence structures, as well as model parameters automatically from unlabeled

training data has been presented. It is the �rst work that can learn graph structure

from training data including useful foreground features and irrelevant background

clutter with unknown correspondence between the parts and the features. Model

learning can also be performed when features belonging to some foreground parts are

missing (occlusion). This algorithm enables the creation of systems that are able to

learn models of human motion (or other objects) completely automatically from real
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image sequences.

All the algorithms presented in this thesis are tested and supported by experiments

on motion capture data and/or grayscale image sequences. When we learn a mixture

model of right-to-left walking and test on walking sequences of a number of people

as well as a variety of non-walking motions, detection rates of over 95% are achieved

on pairs of frames.

8.2 Future work

We have demonstrated the eÆciency and e�ectiveness of our algorithms through

experiments on learning and testing a model of side-view walking. This work can be

extended, improved and further experimented in the following aspects.

The algorithms can be extended to other types of graphical models, since both the

labeling algorithm and the unsupervised technique are not limited to decomposable

triangulated graphs. Loopy graphical models may be used to more accurately model

the conditional independence of variables and provide hopes for handling occlusion in

a more precise way, i.e., without stronger independence assumption. This work has

already been started in the vision lab at Caltech.

In this thesis we used measurements from pairs of frames in most experiments.

Considering more frames can improve the detection performance (section 3.5.2).

There are other ideas which can make use of the information from more frames

(longer duration). A straightforward way is to model the whole body using a higher

dimensional Gaussian to include measurements from multiple frames. Another more

sensible way in dealing with more complex motion than walking is to add a higher

level temporal correlation (dynamics) among frames. For example, the models de-

scribed in this thesis can be applied on pairs of frames, and the relation among the

pairs of frames can be captured using the idea of Hidden Markov Model ([38]).

There is also more work to be done on the experimental side. (1) Experiments

can be conducted with di�erent types of motion beyond walking. (2) The trade-o�

between model complexity (number of clusters and number of parts) and accuracy
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should be systematically studied. (3) Viewpoint invariance and scale invariance can

be studied on grayscale image sequences. (4) The algorithm can be made to run

faster on images with a large number of features. One possible way to speed up is

to build a pyramid-like hierarchy system. Another idea is to decompose an image

into several subregions and run the algorithm on each subregion. (5) Other types of

features, including other point feature detectors/trackers or non-point features, may

also be examined to see if the system can be further improved.
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