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ABSTRACT

A study of the coupled torsional and bending vibrations of
thin-walled beams of asymmetric open section is made. The formal
solution to Gere's theory for the case of a monosymmetric section
uﬁder general loading conditions and boundary conditions is presented.

A higher order theory including the effect of shear strain in-
duced by bending and warping of the beam is derived. Spectrum
curves of the higher order theory are compared with those from the
elementary theory for various boundary conditions for a special
family of monosymmetric sections, A study is made to assess the
effect of the shape of the cross section of the beam to the differences
of the spectrum curves from the two theories. An experiment is
performed on two specimens to determine their natural frequencies
at different beam lengths and the experimental results are compared
to those predicted from the two theories., It is concluded that when
the beam is long, the elementary theory is adequate to predict the
natural frequencies for torsion predominant modes, but is inadequate
for bending predominant modes, For bending predominant modes,
the higher order théory should be used. The higher order theory also
serves as a guide for the range of validity of the elementary theory.

Certain nonlinear behavior of the beam is observed in the
experiment. When the beam is excited at resonance at a higher
mode, under special circumstances, there is a tendency for the beam
to shift from the higher resonanf mode to vibrate at its fundamental

mode, resulting in a high order subharmonic oscillation. An analysis
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is made to show the possibility of such behavior if the inherently
nonlinear governing equations for coupled torsional and bending

vibrations are used.
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Chapter 1

INTRODUCTION

For intricate structures such as spacecraft, beams of standard
cross sections may not be the most efficient or convenient structural
members to use, Thin-walled beams of open section are frequently
employed for their structural efficiency. With the improvement of
extrusion methods in metal forming, beams of different shapes of
cross sections can be formed to order, Occasions often arise when
nonsymmetrical cross sections are more convenient to use. However,
it has long been known that a beam with nonsymmetrical cross section
under loads will, in general, not only deflect but will twist also,

Only under special loading along the flexure axis, a line joining the
shear centers, will the beam deflect without twist. The concept of
shear center is well known and is discussed in textbooks. Essentially,
it is the point through which the resultant of the shear forces of the
cross section passes, Lf the loading does not pass through the shear
center, a torque is generated by the loading and the resultant of the
reactions from the section. Such a torque will cause the twisting of
the beam. Abundant literature exists on the subject of thin-walled
beams and a fairly comprehensive list of references can be found in

a survey paper by Nowinski(l)e

When a thin-walled beam is subjected to dynamic excitation,
the inertial loading due to the acceleration of the beam itself has to
be taken into account. The resultant of such loading may be con-
sidered to pass through the centroid of the section. Unless the shear

center of the section coincides with its centroid, both bending and
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torsional vibrations will result. Due to the low torsional rigidity of
thin-walled open sections, the problem of coupled bending and tor-
sional vibrations is of particular interest. The coupling of bending
and torsional vibrations can be shown by using d'Alembert's principle
and substituting the inertial forces into the equations of equilibrium(z)o
The equations for bending in the X and Y directions (principal

directions of the section) and for nonuniform torsion along the Z

direction of a beam for static loadings are

EIXXE =P, (L. 1)
m

EL.n =P, (L 2)
nn | 1"

EI_0 - GI® =p, (L. 3)

where £,m are the displacements of the shear center C along the
X,Y directions, and 8 is the rotation of the section about C. The
origin of the axes coincides with the centroid of the section and the
shear center C has coordinates as ay as shown in Figure 1, Py
Py and p, are static loadings in the X, Y directions and the torque
along Z direction. Ixx is the moment of inertia about the Y axis

and I is the moment of inertia about the X axis, I and I, are
Yy ww d

the warping constant and the torsion constant as defined in chapter 3,

equation (III. 22},

For small rotations, the inertia forces of translation in the

2
X and Y directions are p_ = - PA—a—-— (E +a 0) and p_ =
2 x Bt2 y y

- pAi—z {n - aXG), respectively, acting through the centroid O.
ot
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Referring back to the shear center C, the inertial torque is

p, = - pI -{fﬁ- - pAa —8—2—(§ +a B) + pAa —Q—Z—(n—a 0) where 1 is
t g 8t2 y 81:2 vy x 31:2 X g

the polar moment of inertia about the centroid O, Substituting the

expressions for s and into equations {I.1), (L. 2) and (L 3),
P Py PV Py q

there is obtained

EIXXF, " + pA‘,ﬁ° + pAaY.eo =0 (1. 4)
m 20 X3

EIYVn + pAn - pAaxe =0 (1. 5)
nu 13 oo oe oa

EI_© - GI40 + p:[pe + pAayg - pAa_n =0 (1. 6)

where IP is the polar moment of inertia about the shear center C

. 1
and £ = -g—%— , £ = -g—% , etc. Equations (I.4), (I.5) and (I. 6) were
derived by Gere(3). It is seen that the bending and torsional equations

are dynamically coupled,

(4)

A similar set of equations were obtained by Vlasov'™,

mm oo 1 oo

EI & - pIXX§ + pAE + pAaye

XX

it
(o)

(1. 7)

nu LI {1 % X

EX - pl + pAn - pAa_©
YYn Pyyﬂ pAN - pAa_

n
(o}

(I. 8)

Hi eo 11

EIwwe - plwwe - GId

LX)

n a9 LX)
6 +pl O +pAa - pA =0 I.9
PL, Y& pAa.m (1. 9)

The difference between Vlasov's equations and Gere's equations is
*o 1 °s f} e 1
the inclusion of the axial inertia terms pI__§ , pI._ 1 and pI 6 ,
XX vy ww
It is interesting to note that for a section having two axes of

symmetry, the shear center coincides with the centroid of the section

and a, = ay = 0. In this case, the equations (I.4), (I.5) and (I. 6) are
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uncoupled. The bending equations of (I, 4) and (I. 5) reduce to Euler-
Bernoulli equations for bending and the equations (I. 7) and (I. 8} reduce
to Rayleigh's equations for bending, Studies in the theory of bending
show that under most circumstances, the axial inertia effect is indeed
negligible, Hence, for further comparison, Gere's equations are
taken as the basic elementary theory for coupled vibrations of thin-
walled elastic beams.,

The present study is an extension of the elementary theory for
coupled vibrations of thin-walled open sections. In chapter 2, a for-
mal solution to Gere's theory is given under general loading conditions
and general boundary conditions. The range of validity of the elemen-
tary theory is sought next and this is done both theoretically and
experimentally, A higher order theory including the shear strain
effect induced by bending and warping is constructed in chapter 3.
Spectrum curves of the elementary theory and the higher order theory
are compared under various boundary conditions in chapter 4. In
chapter 5, a study is made of the influence of the various sectional
parameters on the mode shapes and frequencies of the coupled vibra-
tions., Experimental verification on two test specimens is given in
chapter 6. An analysis of some possible nonlinear behavior of the
beam together with experimental observations is given in chapter 7.

It is hoped that this study will provide a guide to engineers and
designers on the range of validity of the elementary theory of coupled

bending and torsional vibrations of beams of thin-walled open sections.
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It will enable them to make better predictions of the dynamic behavior
and points out the existence of possible dangerous subharmonic oscil-

lations of such beams.,
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Chapter 2

FORMAL SOLUTION TO GERE'S THEORY OF COUPLED VIBRATIONS

1, Introduction

In this chapter, a formal solution to Gere's theory of coupied
bending and torsional vibrations is presented. Only beams with a
monosymmetric cross scction arc considered. The shear center lies
on the axis of symmetry and if the axis of symmetry of the section is
taken to be the Y axis, then a = 0. According tb Gere's theory,
only one displacement coordinate £(z, t) is coupled with the rotation
coordinate 6(z,t); while the other displacement coordinate n(z,t)
is uncoupled. Thus, it is only necessary to consider the interaction
of equations (I. 4) and (I. 6). The choice of this special case retains
all the essential features of the coupled bending and torsional mecha-
nisms and the analysis can be extended to the general case without
much effort. In this analysis, the two coupled equations in § and B
are treated as one single matrix equation. In this matrix formulation,
each mode is represented by a vector function. A vector function is
a vector in which each individual element is a function of some inde-
pendent variable. The idea of a mode being represented by a vector
function is a logical extension of the idea of a mode being represented
by a function in the case of a continuous system described by one
dependent variable; or the idea of a mode being represented by a
vector in the case of a discrete system of N degrees of freedom.

An orthogonal relationship is derived for the non-degenerate mode in

section 2. With this relationship, the response of the beam under any
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general loading with homogeneous boundary conditions is solved in
section 3. For nonhomogeneous boundary conditions, the technique

(5)

of Mindlin and Goodman'~’ can be used. This technique divides the
solution of the problem into two parts. The first part of the solution
is constructed so that it satisfies the nonhomogeneous boundary con-
ditions; but does not necessarily satisfy the differential equation. The
second part of the solution satisfies the homogeneous boundary con-
ditions. It is so determined that the sum of the two parts will satisfy
both the differential equation and the nonhomogeneous boundary con-
ditions., An example is worked out in section 4 to illustrate this pro-

cedure. Hence, the formal solution of Gere's theory is obtained for

general loadings and general boundary conditions.

2. Orthogonality Relationship of Non-degenerate Modes

From Gere's theory, the pair of coupled homogeneous equa-

tions to be considered are

mnn

EIXX§ + pAE + pAayB =0 (IL. 1)

nn

pAayfé + EIwwG - Gxde" + pIpaeo =0 (1L 2)
with homogeneous boundary conditions. The homogeneous boundary
conditions encountered in common practice are fixed ends, pinned
ends, and free ends. By fixed end, it is meant that there is no dis-
placement, no slope, no rotation and complete restraint of warping
at the end. By pinned end, it is meant that there is no displacement,

no bending moment, no rotation and no restraint of warping. By
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free end, it is meant that there is no bending moment, no shear force,
no restraint of warping and no torque. Mathematically, such boundary

conditions can be expressed as follows:

Fixed end: £E=0; £ =0; 0=0; 8 =0
1 1"
Pinned end: £E=0; £ =0; 6=0; 6 =0 (I1, 3)
11 m n L} G Id 1
Free end: & =0; & =0; 6 =0; © -—E——I————G =0
AR

To reduce the equations to nondimensional form, the radius of

gyration r 1is taken as the characteristic length. Let
- 1/2,  _ .= - LE- -3

r = (IXX/A) ; z=rz; £ =rE; a = ray,

= _ 25 2. _ 2= B

I, =c/3:%); L,=ArL; and I =Arl

Equations (II. 1) and (Il. 2) can be written as one matrix equation with

various nondimensional parameters,

(II. 4)

where D4 = 84/8-'24 ; D2 = 82/8_22., For sinusoidal vibrations, the

form of the solution is taken to be

&(z, t) 2 (z)
= sin At n (11. 5)

0(z, t) © (z)
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Substituting (II. 5) into (II, 4), there is obtained

S R G, ) S

(II. 6)

— T ot
. . “m “m
Premultiplying (IL. 6) by { } , the transpose of { }, and
. e €
m m

integrating along the beam from zero to £/r, (II. 6) becomes

L/r 1 a =
= png {E ,© } [_ _V:l "> dz (1L 7)
Jo mom ay Ip @n

Interchanging the indices m and n in equation (II, 7), there is ob-

tained:

t/r Ep
R T
= pA? Sj/r{zn, @n}[ ]{ } dz (IL. 8)

Subtracting (II. 8) from (II. 7), the following equation is obtainecd:

III



E —
AR =P, 0 "m) &
_)o :‘n’@n r0 ET p -SC1p © 4
2 ww 4 2 d72 m
r r
ﬂ/r 1 a =
= p(\Z - a2 )S. {E ,© 7 M gz (1. 9)
0 non a 1 3]
y p m

Noting that both D4 and D2 are self-adjoint operators, the first

integral on the left-hand side of equation (II. 9) can be integrated by

parts to reduce the left-hand side to the following expression:

3 35 oGS 2 gm
E —_ dl':"‘n d""m,_. ded’_'n d""m d""n
LoH.S. = = (’*m 3 3 “n — = = )
T d d dz dz d dz 0
£
. (4% a0 d’e_ d® /x
T3 ( - —= " —=F — )
T ww dz dz dz dz 0
3 L/r
+ (E——T 0, - ST “©n ©
2 Tww —3 2°d -~ ) m
T dz d 0
E = d3®m G = d@m 1/1'
B (—-2_ Ic.om —3 2 Id — )8 (IL. 10)
T d r dz 0

For the homogeneous boundary conditions as shown in (II, 3) the ex-

pression (II.10) is. zero. Equation (II. 9) becomes
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‘ A/ 1 a =
p(A% - 22 )5 {E ,@m} ¥ *Ldz =0
n mJo m a 1 ©
y P n

For non-degenerate modes, )\i # Kfn for m # n. Therefore,

L/r 1 a 2
g {E ,© } Y dz =0 m#%#n (11.11)
y P n

The vector function can be normalized such that

L/r 1 2 =
f {: ,@} 7 ™z =1
0 mem a_ 1 ©

y P m

Assuming the vector function is normalized, the orthogonality relation-

ship is given by

L/ 1 a =
y = ,© } v Pldz =5 (I1. 12)
y P n

where 6mn is the Kronecker delta. Noting the relationship

: —I—p = —I_g + —.3_3, equation (I1.12) can be written as

M /x _ _ _ _

5 [(E +a®)(E+a@)+1®®]dz=a (1. 13)
0 m vy m "n “yn g mn

It is interesting to note that (En +Ey@n) is precisely the displace-
ment of the centroid of the section for the nth mode. Thus, if new
coordinates are chosen such that the behavior of the beam is specified

P

by the displacements of its centroidal axis =5 g(E), and the rotation of
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the sections about the shear center '@(E), the orthogonality relation-

(6)

ship will have similar form as in the Timoshenko beam theory ',

namely,
L/r _ _
E [(E)(E)He@]dz:a,
0 gm'Tg'n g m n mn

3. Formal Solution for General Loadings with Homogeneous Boundary

Conditions

p(z, t)
The case of a general loading { _ } on the system is
: q{z,t
considered next, From (II. 4), there is obta1ned

L s e ) )
p + r
E - G =
—ZIWD‘I_;ZIdDZ 0
{p('z',t)}
= _ : (11.14)
q(z, t)

Assume the solution takes a form

[ N = _(z)
. - Z Tn(t) (11, 15)
- n=1

Substituting (I1.15) into (II.14) and making use of (IL. 6), there is ob-

tained

DRSS i SR FIRY KSR,

(11, 16)
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T
Premultiplying (I1,16) by { } , integrating along the beam from

“m

©
m

zero to £/r, and using the orthogonal relationship (Il 12), equation

(II. 16) becomes

o0 | £ / p(—z_’ t)
2 e —
Tm(t) + Kme(t) - 50 l{gm’ em} { } dz = an(t)

afz, t)

(1L, 17)

where m=1,2,3,.., » Solving, there is obtained

t
. 1 .
Tm(t) = Amcos th + Bms1n‘xmt + r‘g Q_m('r)s1n )\m(t—T) dT
m*0
(11, 18)

where Am and Bm are arbitrary constants determined from the

initial conditions., Let the initial conditions be:

{E(o,'z") {?ﬁ}zf . {En}
8(0, z) eo('z‘) - n e

. (IL. 19)
2 - — [0.8) -t
{?(o,w ] El(z)} S {*’*n}
0(0, =) o, Z " Lo

The coefficients Rn and 5, can be determined by using the orthogo-

nal relationship and are defined by

Tr -
4 = ]

R =S/r{ m} LYy {%_,‘O dz
m Yo e J) la, T 0,

- \TF — " (II. 20)
. Cf/r{ Hm} 1— —ay {’s’l} -
m - Jg ) |2 T )

m
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Using (II.15) and (I1.19), equation (II. 18) can be written as

S
T (¢)=R_cosh t+ —=sin\ ¢t
m m m A m
m
+ X;njo Q_(7) sin A__(t - 7) dr (IL. 21)

Equations (II.15), (II. 20) and (II.21) give the formal solution for the

case of arbitrary loading on the beam.

4. Solution for Nonhomogeneous Boundary Conditions

When the constraints at the supports of the beam are time
dependent, the boundary conditions of the problem are nonhomogeneous.
In this case, the solution is considered to be composed of two parts:
the first part of the solution is constructed so that it satisfies the time
dependent boundary conditions, but not the differential equation. The
second part of the solution is required to satisfy the homogeneous
boundary conditions, and also a modified nonhomogeneous differential
equation. To illustrate the technique, the case of a beam fixed at one
end and pinned at the other end with the end constraints being time
dependent is considcrcd. Without external loading along the beam,

the differential equation is

1 3 3 Ep . 0 z
v 274
P +1 r
T ) o £
y p. 2w 4 a-2
0

= (I1. 22)
0

i
]
"lo
i
@]
D
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The time dependent boundary conditions are taken to be

{ (0,t). £,(t) E(0,t

6(0, t) F (t) e(o0, t)} {F (t)}
HER £t ,t) £t
o(%, 1) F (t)} {e(—— } { 4(t}

= 8/0z;

(I1. 23)

where D; and D, are spatial operators defined by D,

D, = 82/8_22; and :Ei(t), Fi(t)’ i=1,2,3,4, are given functions of time.

Consider the solution consists of two parts:

€ 3 €
+ (11, 24)
0 5J1 { e}n
£ (Z) 0 f, (t)
0300 Ll e
0 I g 0 G, (z) F. (t)

{ } is so constructed as to satisfy the nonhomogeneous boundary

1

and let

conditions. Substituting equation (I, 25) into the boundary conditions

of (IL. 23) and arranging the result in matrix form, there is obtained
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(92 °11)

\EJ g
Q¢:
1 a
%
(la
1%
(e

BE:

o
(17s
@t
B
(1%a
@
('

Qw

0

Jg
{JNQ

1%
(5178

(0)¥8'a

(0)78

()% 0
0 vamw

(0 sla 0
0 (0)*8'a

(0)¥o 0
0 (0)%8

TWVNONQ 0

0 vammNn

(3)% 0
0 ?w.va

(0%'a 0
0 on.mmﬁm

(0)%D 0
0 (0)8

vaﬂomm 0

0 Aw.:mNm

Awno 0
0 A.ﬁm:m
(0)'o'a 0
o (0'8la
(0)'o 0
0 (0)'8
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In shorthand notation, we can represent equation (Il. 26) as

[G i I]{f} - {o} (IL 26a)

where [ I] is the identity matrix,

From matrix theory, for a non-trivial solution of { f}, the
matrix [G - I] must be singular. However, {f} varies with time
in general and [G - I] is independent of time., In order to satisfy

equation (IL, 26a) at all times,it is necessary to have
[G - 1] = [o] = null matrix (IL, 27)

The functions gi('z—) and Gi(_z_) are so chosen that equations
{(II.26a) or (Il.27) are satisfied. For the specific case considered,

it can be shown that

£ -6 7 - 3P b T

(I1. 28)
3

will satisfy (IL. 27). The choice of gi(z) and Gi(z) is not unique, In
special cases where some fi(t) and Fi(t) are zero, the corres-
ponding gi(z) and Gi(z) can be set to zero., Equation (IL. 26a) is

satisfied in this case, although [ G - I] will not be a null matrix,
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Substituting (II, 24) into (II, 22), and using (IL, 25}, there is

obtained

]
e
1
HN|t1j
© oy
1N
HNIFJ
L]
&
]
N
. o
il
|
[o N
o
[3%)
| I
r oql
<o "'A
x5
®)
——— o
n
[ I— |
Ho s
= =
L,Y_/

Since fi(t) and Fi(t) are given functions of time and gi(E)
and Gi(;) are constructed, as indicated in equation (IL, 28), the right-

hand side of (IL. 29) is a known function of z and t and can be re re-

p(z, t)
sented by _ Thus, the second part of the solution
q(z, t) IL

has to satisfy the nonhomogeneous equation

13, (E = D, 0 3
p _ _ +] r E - G -
ay Ip 9 11 0] '—ZI D4 --;-Z' IdDZ 9 H
{p(E, t)}
a(z, t)

and the homogeneous boundary conditions
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This is exactly the problem solved in section 3, and the solu-
tion is given by equations (II,15), (IL.20), and (IL. 21). Thus, the
complete solution of the case of nonhomogeneous boundary conditions
is given by equations (IL. 24), (IL.25), (II. 28) plus the solution to the
problem of homogeneous boundary conditions under general loading
as given in section 3.

Thus, making use of the orthogonal relationship, the formal
solution to Gere's equations for coupled torsional and bending vibra-
tions of thin-walled beam of open section is found under general

loading conditions and general boundary conditions.
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Chapter 3

DERIVATION OF HIGHER ORDER APPROXIMATE THEORY

1. Introduction

In chapter 2, the formal solution to Gere's theory is presented
under very general loading conditions and general boundary conditions.
In this chapter, a higher order approximate theory will be constructed
in order to check the validity of Gere's theory analytically. In addi-
tion to the Euler-Bernoulli bending mechanism, thé St. Venant torsion
mechanism and the effect of restraint of warping, the effect of shear
strain caused by bending and warping is also included in this higher
order theory. As seen in chapter 1, Gere's equations reduce to the
Euler-Bernoulli beam equations for bending in the case where the
section of the beam has two axes of symmetry; and under the same
condition, Vlasov's equations reduce to Rayleigh's beam equations,

It will be seen that when the shear center coincides with the centroid
of the section, the higher order theory reduces to the Timoshenko
beam theory in bending.

The higher order theory is derived using the variational for-
mulation, treating the thin-walled beam as a special case of a thin-
walled prismatic shell. In this way, not only the governing differ-
ential equations, but also the proper boundary conditions are obtained.
In addition, this approach has the advantage over the "strength of
materials" approach that each assumption implied in the final equa-
tions is clearly stated. This approach was also used by Dzanelidze(7)

to obtain Vlasov's equations for the thin-walled beam.
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The governing equations are derived from Hamilton's Principle.

Since only inertial loading is considered, Hamilton's Principle can be

stated as(g)
ntZ
8y (T-V)at=0 (I1L. 1)
b
where
T = kinetic energy of the system
V = potential energy (strain energy) of the system

In section 2, the expressions for strain energy and kinetic
energy are derived. The governing equations and boundary conditions
are presented in section 3. Finally, various elementary theories are

given in section 4 as special cases of the derived theory,

2. Expressions for Strain Energy and Kinetic Energy

The thin-walled beam of open section is treated as a thin-
walled prismatic shell, The shell generator is parallel to the Z axis,
Let the origin of the coordinate axes coincide with the centroid of the
cross section and the axes OX, OY be the principal axes of the sec-
tion. For a prismatic shell, the lines of principal curvature are lines
parallel to the generator and lines perpendicular to the generator on
the shell surface., We denote these orthogonal sets of lines z and s
respectively as shown in Figure 2.

(9)

From Love's first approximation in thin shell theory'’’, the

strain energy density ‘U is given by
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FIG. 2 THIN-WALLED BEAM AS
SPECIAL PRISMATIC  SHELL
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= +
U UE UK
= = 2 [(ez ¥ €s>2 - 20 - v)(ezes ) lZYis )]
2(1-v7)
Ec> 2 2
+ — 5 [(KZ + KS) - 2(1 - V)(KZKS -T )] (111, 2)
24(1-v7)
where
€, = strain in z direction
és = strain in s direction
Yyo = shear strain in the z-s plane
KZ = change of curvature in z direction
K_ = change of curvature in s direction

T = twist in the z-s plane

The first term in (IIL 2) denotés the strain energy due to
stretching and the second term denotes the strain energy due to bend-
ing. The underlying assumptions of (IIL. 2) is that the state of stress
is approximately plane, i.e., the effect of transverse shear stress
and transverse normal stress acting on surfaces parallel to the middle
surface of the shell, may be neglected in the strain energy density(lo).
For prismatic shells, the strains and curvatures are related

(9),

to the displacements u,v,w by the following expressions
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u v _ v = Bu, by
€z-32’ €s__a-s. R st_as+az
(111, 3)
%w __a_z_w+§_(x‘). __af_vv_+_a_(z‘)
kK = .2 % Kg=773 9s \R/ ° T jsez Bz \R.
Z oz 0s

whe re
u = longitudinal displacement along the z direction
v = transverse displacement, directed along the tangent of the
profile line of the cross section
w = transverse normal displacement
R = principal radius of curvature of the shell

Thus, once the displacements u(s,z,t), v(s,z,t) and w(s,z,t)
are specified, the state of strain and stress of the shell are com-
pletely determined.

The fundamental assumption in the theory of the thin-walled
beam is that the section contour of the beam is undeformable. During
deformation, the shape of the cross section at all sections of the beam
does not change in its own plane. However, the section can be de-
formed out of its plane. Since a section cannot be deformed in its
plane, the only possible motion of the section in its own plane is
rigid body motion. The rigid body motion of the section can be des-
cribed by three coordinates, two displacements (§,7n) of a point C
and one rotation (8) about the point C. The choice of point C is
arbitrary, but it will be shown later that the algebra of the problem
is greatly reduced if C is chosen as the shear center. Let the

coordinates of point C be (ax, ay). €(z,t) and n(z,t) are displace-
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ments of the point € inthe X and Y direction respectively, and
they are independent of the variable s. Also, the rotation coordinate
0(z,t) is a function of z and t only, and the positive direction of 8
is as shown in Figure 2.

Since w(s,z,t) and v(s,z,t) denote in-plane displacements
perpendicular to the axis of the beam, they can be expressed in terms
of £, n and 6, Let the displacements of a point P on the shell in
the X and Y directions be &.p and , respectively. The dis-

placements v, w at P are related to E,p and np by

vis, z, t) cosy sin Y §p
= { } (111, 4)
w(s, z, t) -sin cos U np
where y(s) is the angle between the tangent of the profile line at P

and the X axis, §p and np are related to £ and m by

£ £ cos ® -sin0 X - a X - a
p X pre
= + -
in O 0 - a -
T]p n sin cos Y v v ay
(I1L. 5)

where {(x,y) are the coordinates of point P,
For small rotations, it is justified to linearize the equations

by using the approximations

sin B = 0 ; cog O =1 (111, 6)

Substituting (IIL, 5) into (IIL, 4) and using (IIL, 6), therc is

obtained



-27-

vis,z,t) = £(z,t) cos Y(s) + n(z,t) sin Y(s) + 8(z, t)h(s)
(111, 7)

w(s, z,t) = - €(z,t) sin Y(s) + n(z, t) cos U(s) + 8(z, t)n(s)

where h{s) = (x - ax)sin Jo- (y = ay)cos U
= perpendicular distance from point C to the tangent
of the profile line at point P
n(s) = {x - aX) cos Yy + (y - ay) sin
= perpendicular distance from point C to the normal of
the profile line at point P
It is convenient to treat each deformational coordinate as con-
sisting of two parts: one part is the deformation calculated by neg-
lecting the shear strain in the strain energy density expression (III, 2);
and the second part gives the contribution due to the shear strain.
Define
Elz,t) = &, (z,t) + € _(z,1)
N (z, t) + (2, 1) (111, 8)

Gb(z, t) + Gs(z, t)

"z, t)

0(z, t)

where the subscript' b denotes the part of solution which the shear
strain has been neglected, and the subscript s denotes the contri-
bution of the shear strain to thé deformational coordinates. This
choice of coordinates has the advantage that when the variables with
subscripts s are :equated to zero, the resulting equations reduce back
to Vlasov's equations; and with minor modifications, to Gere's equa-

tions,
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Similarly, ‘v, w, and u can be divided into their correspond-

ing components.

v = vy + v, = (gbc§s G+ My, sin U+ th) + (Escos ¢+ nssin ¢+ Gsh)
wo=wytw o= (—ébsin L]J-H']bcos ¢+ ebn) +(-—§Ssin Lp+nscos g+ Gsn)
u = u + u (I1L. 9)

u, can be determined in terms of {E,b, nb "and Gb by noting
that all quantities with the subscripts b are determined for zero
shear strain. Splitting Y, o into (st)b and (st)s’ we have

(st)b =0, From (III, 3)’ (st)b is defined by

du ov

- Db b _
(st)b =% ez T 0
) A . o dy dx
Solving and making use of the relations sin { = q. ° Cos g = Is °
ub(s, z,t) is determined.
up (s, 2, ) = Lz, t) - £, (2, t)x(s) - (2, )y(s) - B, (=, thafs)  (IIL 10)

where £(z,t) is the 1ongitudina1 displacement at the point of the con-
tour where s =0, and
S —— ) i
w(s) = 5 h(s) ds
0
We have no means of separating variables so that us(s, z,t) is ex-
pressed as the sum of products of a function of s and a function of

z ‘and t. In order to reduce the governing equations to partial
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differential equations of z and t dnly, it is necessary to make the
assumption that us(s, z,t) is small compared with u.b and can be
neglected. With this assumption, there is obtained from (III. 9) and

(IIL. 10)
w = =Lz, 1) - & (2, t)x(s) - m (2, t)y(s) - O} (=, ths (s) (IIL 1)

Substituting the values of u, v, and w in (IIL. 9} and (III.11) into

(I11. 2), the results are:

1 L[] n

L1
€ = —gbx-’qby-ebw

€ =0
s
] 1 1
= + i +
Y, o §S cos Y nss1n¢ esh
(I11. 12)
n n 1"
KZ=—§ siny tm cos y+0n
K =20
S
H
T=20

For a thin-walled beam where the thickness c¢ is small, the
stretching effect is more important than the bending effect. There-
fore KZ can be neglected in comparison to €, in the strain energy
density calculation. Neglecting K, and noting K, =€g = 0, thc strain
energy density expression can be written as,

3

- Ec 2, (1-v) 2 Ec >
0T 2(1-v2) [GZ ¥ 2 st] * 120+H) T (III.13)
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The strain energy of the whole beam is found by integrating
fhe strain energy density throughout the beam. Using (IIl.12) and

(I11.13), there is obtained

ve P L e ey o

12
Ec o
] 2] } ds dz (II1. 14)

where the integral Sﬂ ds represents the integration through out the

whole contour of the beam.,

The kinetic energy T of the whole beam is given by

g g‘ Pc(u +v2 +w ) ds dz (I1I1. 15)
0

where P = density of the material of the beam,
Using (IIL, 7) and (IIL,11) to express u, v, and w in terms of

L, £, n and 0; and noting the relations

(x-aX) ncos y +h sin

(111, 16)

(y-ay) nsin y - hcos Y

the re is obtained

of o

1 1 ° o1 e 1 2
__Z_S‘S‘s Pc (gz-gbx—nby-e +§ + 1 +e(h +n)

+ 276 (x - a) - 2 8 (y - ay)} dz ds (111, 17)
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3. Derivation of the Differential Equations and Boundary Conditions

To simplify the algcbra, it is convcenicnt to make the following

integrals zero,

S‘XC ds =S yc ds = S'XYC ds =0 {I11.18)
s S Y's

( xwc ds =S‘ ywc ds =0 (I11.19)

Y's s

S‘ wc ds = 0 (I11. 20)
S

The three integrals in (II1.18) are zero when the origin of the
coordinate system is located at the centroid of the section and also
the axes OX and QY are principal axes. Equation (III.19) can be
satisfied by choosing point C to be the shear center of the section.
Equation (III, 20) is taken as the defining equation for the origin of the
coordinate s on the contour of the section. It can be seen that for
a monosymmetric section, the origin of the coordinate s is the point
where the axis of symmetry intersects with the profile.

Substituting (IIL, 14) and (IIL 17} into (III,1) and performing the

(11)

variational procedure'™’, seven equations are obtained for the seven

deformational coordinates U, éb, és, Mys Mg Bb and Gs°

o 1 oo
EYAL - pAL =0 (11, 21a)

e ee 1 oo 00

gﬁ N I -2 ) o0 _
EL_ £, -pl &, +pAE, +E)+ pAa (6, +6) =0  (IIL.21b)
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n

" n : ae oo LX) e
C"(Iccgs * Iscns ¥ Ihces ) - pAay(eb * es) ) p‘A(‘;’b ¥ gs) =0
(III. 21c)

%« nn oo 1t

E Iyynb - plyynb + pA(nb + ns) - pAaX(Gb +06 S) =0 (III. 21d)

n eo

114 i1 °0 oo o9
G(Isc‘gs + Issns * Ihses) - pAM b+ M s) * pAax(eb T8 s) =0
(I11, 21e)
B mm so It oo - oo so v oo e0
E Iwweb - prweb‘ . pIp"e + pAay(ﬁ b tE s) B pAaX(nb * s)

n "
- GId(Gb + Gs) =0 (111, 21£)

n n "

G(Ihcgs + Ihsns + Ihhes) - pIP(Bb + GS) - p.Aay(§ b + £ S)

ae oo u 1
+ pAaX(T‘]b +’r‘|s) + GId(Gb + GS) =0

(111, 21g)
whe re
L
1-v
I =S‘xzcds; I =§yzcds; 1= {ufe as ;
XX S vy S ww )

i 2, 2 ) _ ) - : .
IP'-S‘S(h +n")c ds; Ihc = ‘gsh(cos Y)c ds; Ihs = S‘Sh(sm Y ds;

Ihh = S‘S hzc ds; Isc = S‘c;sin { cos § ds; I~ S‘S (sinztb)c ds;

2 c3
Icc =S\S( cos y)c ds; Id = SS 5 ds

(111, 22)
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The associated boundary conditions are

. £
£ oL =0
0
1 | L ! 1 ' £
gbﬁgb =05 (Iccgs * Iscns + Ihces)ég 0 =0
1" H 1 I 1] ‘a
1"bﬁnb 0 =05 (Iscgs + Issns * Ihses )én 0 =0
1 1 ‘E 1 H 1 1 'e
ebaeb o = Q; (Ihcgs + Ihsns + Ihhes + Ide )66 o =0 (111, 23)

The set of equations in (IIL 21) is a set of coupled partial dif-
ferential equations in the variables z and t with constant coeffi-
cients, The first equation in (III, 21) for the longitudinal displacement
£ 1is a simple wave eciuation and is uncoupled from the rest of the
set, It will be omitted in further discussions, There are two
coupling mechanisms involved in the coupling of the remaining six
equations, First, there is the shear strain contribution coupling
between Gb and BS, éb and gs and M and Mg This coupling
mechanism is similar to the Timoshenko beam theory coupling
between bending and shear. Secondly, there is the dynamic coupling
due to the nonsymmetrical property of the section. Hence, the set
of equations (IIL, 21) can be considered as a "generalized Timoshenko
theory" for thin-walled beams of open sections., It takes into account
not only bending and shearing, but also torsional deformations.

It is worthwhile to summarize all the assumptions involved,

1. The section of the beam should be thin compared to the minimum
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radius of curvature of the section,

2.. The section contour is undeformable. This assumption is realized
for inertial loads and many types of distributed loads, For concen-
trated loads, special diaphragms placed under the loads would be
required to make this condition approximately satisfied.

3. The rotation of the section is small so that the theory may be
linearized,

4, The shear strain contribution to the axial displacement is small
c.ompared to the axial displacement computed when the shear strain

is neglected.

4, Reduction of the Generalized Theory to Elementary Theories

By ncglecting certain parameters, the set of equations (IIL 21)
can be reduced to Vlasov's equations and Gere's equations for coupled
bending and torsional vibration on one hand, and to Timoshenko beam
eqﬁation for bending on the other,

If the effect of shear strain is neglected, E,S, Mg and GS are

zero and & = E,b, n =My and 0 =10 Also, equation (IIL 2l1c), (IIL 2le)

b
and (III, 21g) will not exist because they are the results of variation on
the variables gs, ng and GS. Putting these modifications in (IIIL 21),
Vlasov's equations are obtained as given in (1. 7), {I.8) and (L 9).

Further, if the mixed derivative terms, which are the results
of including the axial inertia terms, are neglected from Vlasov's

equations, Gere's equations are obtained as shown by equations (L. 4),

(I. 5) and (1. 6).
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On the other hand, if the section of the beam has one axis of
symmetry, say the Y axis, then it can be shown from (III. 22) that
I , I , and a_ are zero., In this case, the two equations (III. 21d)
sc’ "hs X
and (III, 21le) for ny and ng become uncoupled from the rest of the

set and reduce to the Timoshenko beam equations for bending in the

Y direction, namely,

sk m *o 1t

(I1L, 24)

n LX)

GI_ng - pAMy Tn ) =0

Writing I_ = k'A where k' is the shear correction coefficient,
equations (IIL, 24) are in the same form as given by Anderson(lz)a The

remaining four equations for &b, és, Gb and SS are:

% n oo I LX ] oo

EI & -pl 6 tpAlf +tE)+ pAay(9b+ 0)=0

XX

"

n X3 0o X3 oa
Gl &y *Tpe0,) = PAa (8, +8 ) - pA(E, +€) =0

% nn H] " 00 [ s
E'T 6 -G8 +06,)-pl 0,  + pIp(eb +0)
+pha (6, +E) =0

n "

G(Ihcgs + Ihhes) - pIp(eb-]- o s) - pAay(gb * gs)

" "
+ GId(eb + es) =0 (111, 25)

For a section with two axes of symmetry, Ihc and ay are

also zero, Then, equations (III, 25) are further uncoupled into
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) »:k nm eo g1 .0 o0 _
EL &, -pl 6 fpAlE +E)=0
(II1. 26)
f .o LX)

and

s un ] " oo I co .0
E Iooweb - CTId(eb * es) - pImweb * pIp(eb * es) =0

(111, 27)

GIhhe: - p:[p(é°b + 'é's) + GId(e;; + e;)‘ =0

Under such conditions, the bending and torsional vibrations are com-
pletely uncoupled. Equations (III. 26) are the Timoshenko beam equa-
tions for bending and equations (IIL. 27) are equations of torsion in-
cluding the effect of warping and shear strain caused by warping in
addition to St, Venant's torsion mechanism. It is a higher order
theory than that which leads to the equations of Gere(13). However,
generally speaking, the primary mechanism is St, Venant's torsion
and the effect of warping is a secondary effect. The shear strain
caused by the warping will be a third order effect. Unless the warp-
ing effect is prominent, such a third order effect will not be important,
In solid sections subjected to torsion, the warping effect is important

(14)

and it has been shown by Barr that the shear strain correction

becomes significant under such circumstances,
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Chapter 4

COMPARISON BETWEEN THE HIGHER ORDER THEORY
AND GERE'S THEORY

1. Introduction

In this chapter, the theory developed in chapter 3 is com-
pared with the elementary theory; namely the equations derived by
Gere. The natural frequencies predicted by the two theories are
taken as the criteria for comparison because natural frequencies are
among the most important characteristics in a system in a dynamic
environment, The geometric factors that can affect the natural fre-
quencies of a thin-walled beam of open section include the length of
the beam, the shape of its cross section and the method of support.
Of all possible shapes, only sections with one axis of symmetry are
considered in this chapter., The vibrations under such a condition
are only "doubly coupled"; i.e.,, the torsional vibration is coupled
with the bending vibration in one direction only., The special family
of shapes chosen for computing the spectrum curves is that of a split
circular ring. By varying the angle subtended by the two radii joining
the center of the section to the edges of the ring, a family of sections
having one axis of symmetry is obtained. Only the coupled bending
and torsional equations are considered while the uncoupled bending
equations are ignored.

In section 2, a scheme to calculate the natural frequencies of
the beam under coupled vibrations is given. The actual calculations

were performed on the IBM 7090 electronic digital computer at the
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California Institute of Technology Computing Center. Spectrum
curves for various boundary conditions for two chosen sections are
presented in graphical form. Also, spectrum curves for a family of
sections under simply supported conditions are given. In section 3,

some observations are made on the spectrum curves.

2. Theoretical Calculations of the Natural Frequencies

According to the theory developed in chapter 3, the governing
.equations for a thin-walled beam with monosymmetric section under
inertial loading are given by (IIL 25).

* nn oo 11 0o

B8 - pLoE *pA(Ey +E) *paa (g, +6) =0

n n oo co oo ee
G(Iccés + Ihces) - pA(&b + §s) - pAay(Gb + Bs) =0

(xv.1)

% LI eefl o8 o n

E Iwweb - plwweb + pIpG + pAayg - GIdG =0
n 1 e co 1t
G(IhcgS + IthS) - pIpﬂ - pAaycﬁ + GIdE) =0
The associated boundary conditions are:

1 1 2 ! 1 £

£.66, 1 =0 (I &, +1 0)86) =0
0 0

1t 1 ‘e 1 1 1 ﬂ O (IV‘, 2)

Bbaeb . =0 ; (Ihcgs + Ihhes + Ide )60 . =

Define



T - - . 2= _ v

AICC - Icc’ Aﬂhc B Ihc’ Ar Ihh - Ihh (Iv. 3)
2= . _ _ 2=

ArTl -Ip, Ar =1 ,; Ar Id—Id

= 8% _,
pr® 8zt atlez?  at? Y ot
2+ 2
G (-f 8 gS ‘f'T 8 eS) SZE — 829 _
~ -Z5-3 2 2=0
2 \'cc 2 he —2 2 v .
P ) 9z ot ot (1V. 4)
4 4
e
E 078, 970, _ 9% .- 9% G - 8% _
2w =% Tt Tty T3 z2la=2=0
Pr 0z ot oz ot ot Pr oz
2 2 _
G (< 8}‘gerT 7% ¢ aze>_T 8% — azg_o
0pl Vhe g=2 " hh =2 d =2 P o2 Y g
The boundary conditions of (IV, 2) become
2
87T, O, . t/r 8. pe.. /x
—:—5(':- =0; (I = +T, _S) 6% =0
9z 9z 0 ¢ oz 8¢ 8z 0
1
8%0 so, |1/ 5% 30 R
b b oA s .= s .= 09 _
2o (=2)] =0 (G =240, =T, 20| -0
0z Oz 0 oz 0z 9z 0
(IV. 5)

For free vibrations, the solutions can be expressed in the form



3 =, (2)

J S o= 9 S & sin At
Gb | @b(_z_)

| GS ] L @S(—z-) ]

Substituting (IV, 6) in (IV, 4) and writing XZ = )\ZprZ/G, equation

(IV. 4) can be written in a matrix form as follows:

b %2 Y G
11 y s
<2 - <2 <2
A bZZ ay)\ IhCD2+ ayk
- =2 S - -2
—ay)\ —ay)\ ’b33 IdDZ- Ip)\
— =2 - -2 = =<2
§ ay)\ IthZ+ ay)\. IdDZ‘l-Ip)\. b44
whe re
ol 2 2
b11= —G—D4+)\D2-)\

22 cc 2

b44 = IdD2 -l-Ith2 +Ip)\

(IV, 6)
- et w M N
=y 0
= 0
Lt
@b 0
L @S‘ LOJ
(Iv.7)
(IV. 8)

In order to solve the system of coupled ordinary differential equations,
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it is convenient to eliminate all but one variable in (IV. 7).

nating ES(_Z_) and @S(—z_) in (IV.7), there is obtained

<2 <2 ~4 2
a D +X%a,D, +X%a, D, +\"a X b4D4+x b,D, N b,

.
CEDEAX CID] )\ CZDZ )\. C

where

X dZDZ )\ d

Elimi-

)

(IV.9)

(Iv.10)

a4 = Id(Icc: +—EC;) ~]-'iEC"z_(-I“ccmp _hc y) '
a, =T (-T__+ %) +X2Tp T, +%) - Xzia'y(%f 'a'y +'th)
ag = - (T, - '53?;)( %)
ol - =
b4 =G cow(Ihc T tee y)
bZ —KZ_I— (Thc ) cc_a_y) Ihc_fd
by = - T (@ - 2{5)
€6 T EG (T}Zm :cc_d _cc-_hh) .
€4 T Thc _hc * _Z_g‘-éy) B ch(Td * Thh) ) Ec; (Td ¥ Thh
c, = (T - XZ)(Td L) +T, (22X -T ) - XZTCC“p
e
) EG— )‘Z(Tp 37)
¢y = (- E_i)(‘fcc - %%)
dZ = Thc:Td ’ Zy_I—c:cThh ) EyT]ic
d =T - 32)
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Eliminating @b(E) from (IV.9), a tenth order ordinary differential

equation for Eb(_z-) is obtained in the form

<2 <2
cbaDio* [ 2622268, o4by | Pyt N[ egPotespyterbyayd, a4, | g

_2[
+A c2b2+a2d2+7\ (c b +c b4 4d )]

—4 — =
+ A\ [czbo-l-cobz—azdo-aodz]DZ} ._.b(z) =0 (IV.11)

Solving (IV.11), the solution for Eb(z) becomes
=, (z) = in g,z T K si z t K, si z + i z
b(z) K151n by 2 2Sin poz K381nh P32 K4s1nh g2
+ S Wz z + z ‘0s z
KSCOb M2 + Kécos Mo Z K7cosh Mz + KS(.Obh Py

+ ng + KlO (IV.12)

where Ki’ (i=1,2,...,10), are arbitrary constants to be determined

from the boundary conditions, and Hj (j =1,2,3,4), are the roots of

the characteristic polynomial

8 =2 6 , <2 4
- + + - -
céb4p + (c6b2 aéd2 A C4b4)}.t + A (c6bo+ c4b2 C2b4 a4d2 aédo)p
+-):2cb+ad+7\2(cb +cb,-a,d) 2
2°2 2 4Po T CoPgq T 48 M
+ %% eb +cb,-a.d -ad)=0 (IV.13)
270 o 2 20 o 2 *

Since the rigid body motions of the system are not of interest, Kg
and KlO can be set equal to zero.
Eliminating '.Eb(_z_) from (IV.9), an equation identical to

(IV.11) is obtained for @b(z)q The solution for @b will be similar to
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(IV.12) with different arbitrary constants. However, the two sets of
arbitrary constants are not independent., Their relationship can be
found using the first equation of (IV.9). The solution for @b(E) can

then be expressed as
@b(z) = Klelsm bz + Kzezsm o2 + K3e3811’1h HyZ + K4e4s1nh pyz

+ Kpe,cos |J.1-Z- + Kge,cos I"LZE * K.e;cosh }.L3E *Kge,cosh p4_27

51
(IV.14)
where
6 _ 4 2
B W o W Lo W
17 4 )
by - by Ty
6 4, 2
. aghy = aghy T Ak, m A,
2 bt - boul +b
atp 7 Pl T R, V. 15
6 4 2 (IV.15)
. = Taghy T AyM3 T APy - 2,
3° 1 7)
b4p3 + b2p3 + b0
i 6 4 2
L S L Sy S B
€4 7 2

2 1
byky T hyry * b,

Knowing E‘.b(—z_) and @b(E), @S (z) can be found.
@S {z) = Klrnlsln My 2 +K2mzsin Moz -I-K3m3 sinh M32Z +K4m4 sinh M y2

+ K5m1cgs U +K6m2cos M2 + K7m3cosh M3z +K8m4cosh g2

(IV.16)

where
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m e oo M
{ l}z = 1—— - [TCC_B:Y{ 1} ) E—Z ch il}
my s et Loty e/ G B
2 = <2
B H Icc_ A
* (_(_}— Icc) 2 * T - —XZ
) cc
(IV.17)
m e * M
my e cely ey G\ g
2 = =2
E* o 3 Icc_ A
- (T}_ * Icc,) 2 (7 T - 7\2
Ny cc

Similarly = _(z) can be obtained by substituting (IV.12), (IV.14) and
S

(IV.16) into the first equation of (IV. 7).

= (z) = i 7+
= (z) = K,n.sin My 2 Kzn

S 1™ sin p,z + K3n381nh N2 + K4n4s1nh P42

2
-, - - -

+ K5nlcos My 2 Kénzcos BoZ +K7n3cosh M.3Z +K8n4cosh M2

(IV.18)

whe re
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4. 2. .
=\« 2 (" - a - a
ax” L) b5 1 7 e, Y m,
4 2 ) -
= ("3 H3 (%3 3
=\ 40ty 2 (- - @ - a
G\ My g 1 Y e Y m,

Thus, the solutions of the set of equations (IV. 7) are given by

)
0

equations (IV.12), (IV.14), (IV.16) and (IV.18), The eight arbitrary

(IV.19)

n

constants Ki , (1=1,2,.0.,8), are determined by imposing the
proper boundary conditions at both ends of the beam as given in (IV. 5).
Boundary conditions encountered in common practice are fixed ends,
pinned ends and free ends. Mathematically, these conditions are

expressed, using (IV.6), as:

oE 1)
Fixed end: = =0, _b =0; ©@=0, __b =0
9z oz
8%, 2’0,
Pinned end: = =0, =0; ©=0, 5 =0
5z ° 5z
> (IV, 20)
_ o 'Eb _ BE'S _ a@s
Free end: — = 0, ce = + Ihc — = 0;
0z " 0z 0z
82@ BE 90
boo, T —S547T +T7.89
—2 ! he — hh — d —
Oz oz o oz

There are four conditions at each end and all together there

are eight conditions to be satisfied. In general, it is not possible to
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satisfy all eight conditions simultarieously unless the frequency \
of the oscillations is a natural frequency of the system, If the
frequency is one of the natural frequencies, the ratios among the
arbitrary constants Ki can also be determined. To illustrate the
procedure, a beam held fixed at both ends, (i.e., no displacement,
no slope, no rotation and complete restraint of warping), is con-
sidered. The corresponding boundary conditions are given by the
first of (IV, 20). Using the expressions (IV.12), (IV.14), (IV.16)
and (IV.18) and evaluating them at z =0 and z = {/r in turn,

there is obtained
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where

C.=cosu.€:; S.=sinpgf (i=1,2)

1 1

¢ . L,
Chj = cosh pj—r- , Shj = sinh pj—; (G = 3,4)

In shorthand notation, (IV, 21) can be written as

[M] {k} - { o} (IV. 21a)

For non-trivial values of { k} s [M] has to be singular. Thus, the
natural frequency of the system under these specific boundary con-
ditions is determined by requiring the determinant of [ M] to be

Zero, i.e.,
M| =0 (IV. 22)

If (IV. 22) is satisfied, then {k} can be determined up to a constant
factor. Substituting the values of {k} back into equations (IV.12),
(IV.14), (IV.16) and (IV.18), Eb’ F"s’ @b and @S are determined
respectively. The mode shape corresponding to that particular
(5@
natural frequency is given by the vector function <« Es(_z-) % .
©,(2)

\ ©_(=) |

The simplest way to obtain the natural frequencies of the
system is to assume an initial value of frequency. From (IV.13), the

values of pj, (i =1,2,3,4) are then determined, For a given {/r,
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the matrix [M] can be formed and the determinant of [M] is
evaluated, In general, |M| will not be zero., Another value of
frequency is then chosen and the whole procedure is repeated. Since
iM1 is a continuous function of the frequency parameter A, a plot

of ,MI against N can be made and the values of N at which |Ml

is zero will give the natural frequencies of the system. By varying
the values of £ /r, a spectrum plot can be obtained. A Fortran pro-
gramme was written to carry out the scheme on the IBM 7090 electro-
nic digital computor for five boundary conditions; namely, for a fixed-
fixed beam, for a fixed-pinned beam, for a fixed-free beam (canti-
lever), for a pinned-pinned beam (simply supported), and for a pinned-
free beam. Each trial value of frequency takes approximately 1/3 of
a second machine time., This includes the forming and solving of the
characteristic polynomial (IV.13), the forming of the matrix [M]
and the evaluation of the determinant of [M] for all five boundary
conditions.

A similar programme was written for the Gere theory. In

L

(IV. 23)

non-dimensional form, Gere's equations are given in (IL 4),

%0

*
—_ E
1 ay £ 2D4 0 k3
r
P + s

- - o= G —
a I 6 0 —-—Z-I D —-—ZIdDZ 6
y p Ir T

ww 4

Let = sin A\t , equation (IV, 23) becomes
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* )
% D,- G -Ey‘xz = (2) 0
w ] = (IV. 24)
-2 %2 E ¥ p-TD,-T%° e(z) 0

v G "ww 4 d72 p

The solutions for (IV. 24) are given by
= (z) = Kysin gz + K sin pyz + K3sinh pyz + K sinh pyz

+ Kgcos |J.1—Z_ + K cos HZE + K,cosh p,z + Kgcosh pLLlE
{IV. 25)

©(z) = Klelsul e +K2e231n M2 +K3e3smh byZ +K4e4smh by Z

+ K5e1cos M2 +K6e2cos M52 +K7e3cosh M3z +K8e4cosh My

where My (i=1,2,3,4) are the roots of the characteristic polynomial

k.2 e ste
E'\s 8 Ex 6 E<x2~ = 4, <2 2 4= =2, _
(& ) T - Gl - NI et N Tt e YT - a2) = 0
(IV. 26)
and
r 3 - 4 ()
°1 Hq !
4
€2 B F2 ) 1
= : 4 5 - = . (IV, 27)
1 e ( Zoxe | ¥ =\
v 4 v X

The expressions for the boundary conditions of fixed end,

pinned end and free end are given in (I 3).

The sectional shape chosen for comparison was that of a
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circular split ring.  Such a shape is specified by three parameters:
the radius a, the thickness c, and the central angle subtended by the
two radii joining the edges of the section to the center 2®, as shown
in Figure 3. The expressions for the various derived geometric
parameters such as Ixx’ Ip are given in Appendix I. Two sections
corresponding to ® = 90° and & =135° were employed for the com-
putation of the spectrum curves. The curves are plotted with )\/RG
against the wave number r/f where \ is the natural frequency pre-
dicted by the higher order theory and KC} is the frequency calculated
from Gere's equations. Not only the fundamental but also a few higher
modes are presented. The modes are numbered in an ascending order
according to the magnitude of their corresponding natural frequencies.
If the frequency corresponding to the fourth mode is denoted by (7\)4
and that corresponding to the third mode by ()\)3, then the numbering
of the modes implies that ()\)4 is greater than ()\)3 for the same

wave number. The spectrum curves are shown in Figures 4 to 8.

If the beam is pinned ended at both ends, the mode shapes
are simple, Since both (IV.4) and (IV. 23) consist of even spatial
derivatives only, it can be shown that =(z) = sin (wrz)/{ and
O(z) = sin (rrz)/L satisfy both the equations and boundary conditions
for both theories. Under such conditions, the natural frequencies are
easy to determine., Spectrum curves for different sections with the
half angle ® ranging from 45° to 180° under the pinned-pinned end
conditions are plotted. In the plot, only modes having a wave length

of 4/(wrr) are shown. The spectrum curves for higher modes can be
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constructed from the curves presented. The higher modes for the
pinned-pinned end conditions are also sinusoidal in shape with a
wave length of IZ/(nTrr) where n is an integer. Thus, the natural
frequencies for the higher mode having a wave length of {/(awr)} can
be found by reading off the value of the frequency corresponding to a
value of (nwr)/l at the abscissa of the graphs.

For a given wave length, there exists two possible modes of
vibration. It will be shown that in one of these modes, the motion
of the beam consists mainly of rotation of the sections, while in the
other mode, the motion is mainly translational. With the sections
chosen, the bending rigidity is much larger than the torsional rigidity,
except for a very long beam. Thus, the lower frequency mode is
torsion predominant and the higher frequency mode is bending pre-

dominant. Both modes for various sections are shown in Figure 9.

3. Discussion on the Spectrum Curves

The following aspects of the spectrum curves are of interest:
1. Under all circumstances, the natural frequency predicted by the
higher order theory'is lower than that given by Gere's theory. Thus
()\/)\G) is always less than unity, and is equal to unity when the beam
is infinitely long. Under this condition, both theories predict a
natural frequency of zero., Since the higher order theory, through
the introduction of three more deformational coordinates, essentially
relaxes some constraints imposed by the elementary theory, it is not

surprising that (K/kG) =1
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2. For all curves, the difference between the two theories is negli-
gible when (r/f) is small, i.e., when the beam is long. This is
also anticipated from past comparisons between the Euler-Bernoulli
beam theory and the Timoshenko beam theory in bending. As the
beam becomes shorter, the difference becomes progressively more
prominent,

3. In general, for a given section, the difference is larger for higher
modes than for lower modes. However, there are exceptions to this
statement. For example, the fourth mode shows a larger difference
than the fifth mode for the section ® = 90° with the boundary con-
ditions fixed at one end and pinned at the other end. Similar excep-
tions occur for different. boundary conditions and for the section

$ =135°. Such exceptions can be explained by the fact that in the
coupled vibrations, the motion of the beam consists essentially of
torsional vibrations for certain modes and consists essentially of
bending vibrations for some other modes. We shall denote these
modes as torsion predominant modes and bending predominant modes
respectively, For torsional vibration, the effect of shear strain cor-
rection is of third order, being generated by the second order effect
of warping. However, the shear strain correction is a second order
effect for bending vibrations. Thus, we can expect the difference
between the two theories to be more significant for a bending pre-~
dominant mode than a torsion predominant mode. A bending pre-
dominant mode may be associated with a lower natural frequency

than that of some higher torsion predominant modes, yet the differ-
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" ence between the two theories will be larger for the bending predomi-
nant mode.bthan“‘sbme‘lii‘gﬂher%t'o;rsﬁcsn predominant modes. The exceptions
cited are examples of this.

4. It is interesting to note the effect of different sections for the
samme (r/ﬂ) and the same boundary conditions. Consistently, the
section & =135° shows a bigger difference between the two theories
than the section ® = 90° for the same mode, same (r/{) and same
boundary conditions, This effect can be seen more. clearly from plots
of Figure 9 for the pinned ended conditions., It can be inferred that
similar situations occur for other boundary conditions. The differ-
ence between the two theories increases as the semi-central angle &
bééomes larger. The inérease is especially prominent as d passes
over 90°. The intrinsic properties of the section that cause such

behavior .are the subject of investigation in the next chapter.
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Chapter 5
PARAMETRIC STUDY OF SECTIONAL PROPERTIES ON EFFECT

OF COUPLING AND FREQUENCIES

1., Introduction

The Rayleigh-Ritz method for determining eigenvalues from
known or assumed eigenvectors or eigenfunctions is well known(ls),
In particular, it is applied to vibrationél problems to determine the
natural frequencies of a system, provided the mode shapes are given,
If the mode shapes are known exactly, the method will give the natural
frequencies of the system exactly. In this chapter, this method is
employed to study the degree of coupling in the coupled torsional and
bending vibrations. Also, this method provides a convenient way to
assess the importance of various geometric parameters introduced
by the higher order theory, With such an analysis, it is possible to
estimate the necessity for using the higher order theory once the
sectional pr@perties of the specimen are given,

In section 2, the degree of coupling of torsional vibration
and bending vibration under various conditions is examined according
to Gere's theory. In section 3, the degree of coupling of the shear
strain effect is examined for both the uncoupled bending vibration
(Timoshenko beam theory) and uncoupled torsional vibration., In
section 4, the effect of various geometric parameters on the natural

frequencies of the higher order theory is studied.
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2, Application of Rayleigh-Ritz Method to Thin-Walled Beams with

Monosymmetric Section

The Rayleigh-Ritz method is applied to thin-walled beams of
monosymmetric open section to study the degree of coupling of the
torsional and bending vibrations. According to Gere's theory, the
strain energy V and the kinetic energy T of the beam are given by

the following expressions:

ve 3§ (B8 "m0 + B 0" () + a1 C(z0] @2 (v
z |
1 22 22 : .
T = 7§0 P [Aé (z,t) + Ipe (z,t) + ZAayé(z,t)G(z,t)] dz (v.2)

For free vibrations, the solution & and 8 can be expressed

in the form

ar E(z) sin At

g(z: t)
(v. 3)

H

0(z,t) = yB(z) sin Mt

where a,y represent the amplitudes and E(z) and ©(z) are the nor-
malized mode shapes. Substituting (V. 3) into {V.1) and (V. 2), there

is obtained

2

l .
_1[ 2.2 % "2 2% 2 ' ].z
.V =5 §O a“r gy IXX’:‘ (z) +1{_ E Iww@ (z) +‘Y GId@ (z) dz | sin™\t

(V. 4)
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N | -
T = L [S P { aZrZAEZ(Z) + YZI @2(z)
2 0 P

+ ZayrAayE(z)@(z)} dz] chosz)\t (V. 5)

The Rayleigh-Ritz method is based on the principle of con-
servation of the total energy of the system. Equating the maximum

kinetic energy of the system to its maximum strain energy, there is

obtained
1 L N2 1 " nl 12 .
g\ r2EE “dz +32 (5 P2ET e +dre dz)
2 o 0 020 d
\° = 7 7 7 (V. 6)
’ l-!z _2 - 2 . —— T
S pPES dz +Y (S eI © dz)+zy§a;®dz
0 o P o7

where y = vy/a = ratio of the amplitudes of rotational motion and
translational motion of the beam.

If the mode shapes =(z) and ©(z) are known, all integrals
in (V, 6) can be evaluated. The remaining unknown in the equation is

vy. The value of y is determined by the condition
=0 (V. 7)

Equation (V.7) results in a quadratic algebraic equation in ? Fach
root of {V.7) gives the degree of coupling of torsion and bending in the
coupled vibrations. Substituting the value of y into (V. 6) yields the
natural frequency fvor the particular mode.

In particular, the case of a beam simply supported at both

ends will be considered, As noted in Chapter 4, the mode shapes in
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this case are sinusoidal, i.e.,

= (z) sin lg%
= wz } (V. 8)
8(2) sin T
Substituting (V. 8) in (V. 6) and writing the result in a non-dimensional

form, there is obtained

* %
E' 4, 2TE = 4, - 2
2 Gr Ty [lew“ ”d”]
- LG ,
1+ I +2va
Y op T Y3y

(V.9)

where p = (vr)/4, and = ()\Zprz)/G, To find the value of 7y, con-

dition (V. 7) is used and the result becomes

|
1

* I I sk %
-2z (;E_“ _.C.1_> s[4d . E 5.7 _E - .
Y &y GIww+H2- +Y[p2 G(Ip Iwc.o):] Gay—o
(V.10)
Solving (V.10), there is obtained
i g% - T, 2% _ 12 E*opt T ?
I R A & + 4|9 - - = = 3
_ [pz G (Ip Iww] {[Ez G { P Iww)] t4g ay( G low’ 2)}
Y}.: b "I'
2 2a (-E— T + .Pl)
v\ G Tow pZ
(V. 11)
B —2(E" I
Since 4 = a“{ =T +—-—) > 0, the roots obtained are real

G G Tww 2
Y B
and have opposite signs. A few special cases are considered to study

the degree of coupling as the length of the beam wvaries.



—%(_ -T ) = E where 0 <€ <<1

Case (i): o ot o

-lep..

This case corresponds to the length of the beam being very

long. From (V.11l), there is obtained

‘ o e % i
_E [;E_f)z S2(E (14 L I
v = —= L& ; =\ ) (o) =3 +0e’)  av.12

- E (- 1
= + X
Zay G (Ip €>

For very long beams, € is small and hence _\71 is small. This
implies the ratio of the amplitude of torsional vibration to that of the
bending vibration is small, corresponding to a bending predominant
mode. For a split ring section, it is shown in Appendix I that EY
is negative. Therefore, -\?1 is negative and this implies thetorsional
motion and the bending motion are out of phase with each other by
180°,

Substituting the approximate value of ;/_1 from (V.12) in

(V.9), there is obtained

%
E 4 (1 =\ =2 2]
5 Gpl:l'!' €+1P)aye

A, =
1+3225(T €% + 2¢)
v p

1

%
E 4[ -2 ’ z]

= =Zpl1-2%€+0 V.13
cH ag (€7} (V.13)

For uncoupled bending vibrations, the Euler-Bernoulli

theory predicts a frequency given by

o,

-2 4

Mending (V. 14)

_E
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Comparison between (V.13) and (V.14) shows the coupled vibrations
give a lower frequency than the uncoupled case.
Using similar approximations, the other root of (V.11) and

its corresponding frequency are determined.

—2
-(1+a"€)
v, ———L— (V.15)
1+1
ay( Pe)
* 4
2 -Egu (T + L +33%
X~ p__¢€ Yy (V. 16)
2 - —2
I -a
P Yy

For uncoupled torsional vibrations, the frequency predicted

(13)

by the theory, including the effect of warping » 1s given by

% E o V.17
)"torsion“ S Ul ) (V.17)
I e
P
The value of Tp in (V.17) is the same as the non-dimensional polar
moment of inertia about the centroid of the section, since the shear
center coincides with the centroid for the uncoupled torsional vibra-
tions. Also, it should be pointed out that —I—p - -52 as appearing in

(V.16) is never zero because

Lo |
o
i
1
>
©
—

where Ig is the polar moment of inertia of the section about the
centroid O,
Equation (V.15) shows that the torsional motion and the

bending motion are in phase and the coupling between the two is
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approximately given by l/gy, The coupled vibrational frequency is
higher than the uncoupled torsional vibrations as seen from (V.16)
and {V.17). It is interesting to note that for long beams, the coupling
between torsion and bending in a bending predominant mode can be
made arbitrarily weak by making the length of the beam arbitrarily
large. However, the coupling in the torsion predominant mode is
determined by the value of EY in the limit, and cannot be made

arbitrarily small.

I b E
.., d E = = _E €
Case (11). —-2' - —G- (IP - I(.OO.)) = -—-C—}—- IEI <<1
M
From (V.11l)}, there is obtained .
' h 2 2
-e+2a_(T +e)2[1+_2__6 ]
y P 4a°(I_ + €)
71 = - y_ P (V.18)
2a_(I_ + ¢€)
Y P
2

€

If << 1, equation (V.18) can be expanded and neglecting

2 -
4 1 +
ay( o €)

higher order terms in €, —ydl can be approximated to

- 1 €
Yy & ——-—-—————-———_ : % 1 —
I +e€)” 2 I +e
( p ) ay( b )

(v.19)

L
2

.Substituting (V.19) into (V. 9), the corresponding frequency is obtained.,

e 4.__71;
2 EpL] € 2
NE o —— |1+ — + O (V. 20)
Py

Similarly, from (V.11l) and (V.9), there is obtained
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yzz——————-——i— 1+—————————————I (V. 21)
T +¢)2 22 (T +e)®
(p ) a(p )
E* 4-1_%;

=2 = -

N ® —%——-——P— 1+ S +o(e2) (V. 22)
TT‘?,-_E 21
P

The frequency of the uncoupled torsional vibrations in this
case is given by

3

=2 _E 4( €
Morsion - @ M LT T ) (V. 23)
P

Taking EY to be negative and € positive, |y ]2 is less

than |y 1° Therefore, :/_2 is associated with the bending predomi-
nant mode and ;1 with the torsion predominant mode. Comparing
the coupled frequencies with the corresponding uncoupled frequencies
as given in (V.14) and (V. 23), it is seen that the coupled frequency

for the bending predominant mode is lower and that for the torsion

predominant mode is higher than the respective uncoupled frequencies.

I 3
. . d_E = =
In particular, when € tends to zero, i.e., ;—z == (Ip Iww)’
there is obtained,
- 1
Yy T N (V. 24)
T
P
3 1
=2 E <H4_I—;
G(I "+a)
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Y, = - (V. 26)

s T (V.27)

Under this condition, the uncoupled bending vibrations and torsional

vibrations have the sams frequency as given by (V.14), i,e.,

N2 = Z |JL4. The amplitude ratio for the two modes in the
uncoupled G

coupled vibrations is the same, but differs in phase. The frequency

corresponding to the in-phase coupled mode has a higher frequency

while the out of phase mode has a lower frequency than the uncoupled

vibrations.
Iy £* ol
. sae g = -5 - e - - _ - 2 >
Case (iii) HZ = (Ip Iww = X where IP Iwr.o X >0
In this case, the value of X is not restricted to be small,
I
but the maximum value of ¥ 1is given by Tp- Tww since -(—iz— =0,
.
From equation (V.11), there is obtained
L
_ x+[x2+432(T-X):|2
Yy = e e = , (V. 28)
2a (I -
Y( o X)
2 .
If —_—_-2—~E~———-—-— <1, the problem reduces to that of case (ii) with - ¥
4aY (Ip- X )

replacing €. KEquations (V.19) and (V. 22) can then be taken as a

first approximation for the frequencies and the degree of coupling.
2

ki -—_—_—2—>—(_-_——-——-—-— > 1, equation (V. 28) can be approximated to obtain
4ay( Ip -X)
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oy 32T - x)
V2 |1 B (V. 29)
ay(Ip-x) X

The corresponding frequency is given by

Xox ;E;p‘*(l - %) = ; e |3
Poby4 (52 X )(L oy X )
X2+3z§(fp-x) T X

Similarly, for the bending predominant mode, there is obtained

2 -

_ a a (T -x)
-Y ~ - —-X ]_ - -—L—R——— (Vn 31)
2 X 2
X
2 _ E 4 1
kz ~ -—G— H _2 (Vu 32)
a_ X
1 - Yy

x° +€;(Tp - X)

A summary of the various couplings and frequencies for
different wave lengths is given in Table I. The frequencies are
written in the form of the products of the corresponding uncoupled
frequency and a correction factor. In this way, not only the correc-
tions to uncoupled frequencies can easily be seen, but also the nature
of the coupled mode, whether bending predominant or torsion predomi-
nant, can be identified by noting the factor representing the uncoupled
frequency in front; The modifications for the frequencies of the
coupled vibrations can be summarized in one statement: the coupling

has the effect of splitting up the original uncoupled frequencies,
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“making the higher frequency higher, and the lower frequency lower.
It is interesting to consider a praétical example to clarify
what is meant by long or short wave lengths in the various cases dis-
cussed. A split thin-walled tube having a cross section of a semi-
circular ring is taken as an example. The diameter of the tube is
2" and the wall thickness is 1/16 inch. It will be informative to calcu-
late the length of the beam that corresponds to the situation where the
uncoupled bending and torsional vibration frequencies are equal. The

values of the geometric properties of such a section can be taken

from Table II.
r=0,707" T =2.00; T = 0.048; T, = 0.0026
p wW

For the condition as stated in case C in Table I, i, e. -% = % T -1 ),

there is obtained

2 ZE*('I" T )
- i
(ﬂ—) - P__ w9 (3 14)%(48.3)°
T GT
a
£ ~107.5"

For a tube of two inches in diameter, a length of 107. 5" is considered
a long beam by common practice. For beams in common use, the
length would, in general, fall in the case E category in Table I,

When the length of the beam is such that the uncoupled tor-
sional and bending frequencies are the same, |§1 | is equal to I\?ZI;
and it is not possible to denote which coupled mode is bending pre-

dominant and which is torsion predominant.
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. N
In addition to the length, the parameter ay’/ Ipa is a good

indicator of the frequency corrections in the coupled vibrations.
Referring to Table I, it can be seen that in case A, the correction
for the torsional mode is of the order (Ey/_fi )”. The corrections
in'cases B, C, and D are of the order EY/TE in both modes.
The correction in case E is of the order Efr/x, In this case, the
length of the beam is short and Td/pz can be considered small,

Also, Twm << TP for most thin-walled sections, In view of the con-

dition stated in case E in Table I, x = I_, and the correction is

P
_ i 3l Aa’
then of the order (a /T>)% since | X | = |—5T— | <1, the
y P I, Aalt 1

corrections for frequencies are greatest in the range when the un-
coupled bending and torsional frequencies are near each other. This
fact has been shown graphically by Gere and Lin in their spectrum

plots(z).

3. Effect of Shear Coupling in Uncoupled Bending and Torsional

Vibrations

Before the effects of various parameters in the higher order
theory for coupled torsional and bending vibrations are investigated,
it is interesting to apply the same technique used in section 2 to show
the modifications involved when the shear strain energy is also con-
sidered in the cases of uncoupled bending and torsional vibrations.
The case of uncoupled bending vibrations taking into account the
effect of shear and rotary inertia is generally known as the Timo-

(16)

shenko beam theory + It has been studied extensively in many
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technical papers; and is generally considered to be a better approxi-
mate theory than the Euler-Bernoulli beam theory when the wave
length involved is short,

Considering the case of bending vibrations in the X direc-

tion, the strain energy and kinetic energy expressions can be written

as
1 ‘a e IIZ ]
V = -ZS.O [E Ixxgb (z,t) + GAgs(z,t)] dz (V.33)
1 02 012
T = %So p[Ag (z,t) +1_¢E, (z,t)] dz (V. 34)

The first term in (V. 33) represents the strain energy due to bending
action, under the assumption that plane sections remain plane during
deformation. The second term in {V. 33) gives the contribution of
shearing effect to the strain energy. The first term in (V. 34) repre-
sents the lateral inertia and the second term represents the rotary

inertia effect. Let

b(Z t )-ib(Z)
£ = §b + §s, and } { }sin At
: g (Z t) (Z)

From Rayleigh's principle, the frequency is given by

™
-L
o

A= (V.35)
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) "
For a simply supported beam, (£ = ﬁb = 0 at both ends), the

mode shape is sinusoidal. Let

Eb 1
= sin EEE
s B

where B 1is the ratio of the amplitudes of ES to Eb' Substituting

in (V. 35), there is obtained

_ 2.2 n ( }JL + {3 )

N =hPr (V.36)
(1 + (3)

The value of B 1is found by setting B_XZ/BB = 0, giving

-2 = 2 E 2 i) 2
[3 +B(1+H ”E;—“‘)”('}_” =0 (V.37)
% * X
Bz-lz(lw.z—Eu)i—[(1+u2—Eu) +4§— 2]2 (V.38)

Only the lower mode of the Timoshenko theory is of interest because
in the lower mode, the bending action is the main feature and the
shear effect is a modification. Seeking the root of B which gives a

smaller absolute value, the positive sign in (V. 38) is taken.

1 2 ET 2
ﬁ:-—z-(l'l‘}l‘—(_TH)+—[(1+FL—_|‘J')+4"G’I‘L (V'39)

— 2 ET 22, EF 21%
c

For the range of wave numbersin which the approximate theory is
valid, p is small and the shear coupling parameter P can be approx-

imated to

K %k 2 * )
_ E 2
B :—12-(1 +p2- %HZ) 1+ ——tolr b +o(u?) (v.40)

: 2 E 2.2
Glitp™ -5 1)
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Substituting the approximate value of B in (V.36), there is obtained

¢ sk
=Bl w04 E) s o) (V. 41)

The correction term for the frequency is given by the second term
in (V, 41) and is proportional to ;.LZ. Therefore, the important geo-
metric parameter for uncoupled bending vibrations is the ratio of
the radius of gyration to that of the length of the beam. When |¢2
becomes significant compared to unity, the shear contribution be-
comes important and the use of the Timoshenko beam theory is
necessary.

For the case of uncoupled torsional vibrations for thin-
walled sections, the effect of restraint of warping is important and
should be considered in addition to St. Venant torsion. In general,
ecach section of the beam tends to warp out of its own plane and if
restraints are ifnposed so that the sections are not free to warp,
longitudinal strains and stresscs will develop. These longitudinal
stresses contribute to the strain energy. The torsional problem
including restraint of warping has been treated by Gere(B)q The
resulting equation is similar to the Euler-Bernoulli beam equation
with an axial load, being:

1 90
KO -K,0 +K;8 =0 (V. 42)

Where Kl’ KZ and’ K3 are all positive constants, The first term
represents the effect of longitudinal stresses set up due to restraint

of warping. The second term is the restoring force from St. Venant
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tqrsion. The third term is the inertia force term. It is seen that,
depending on the magnitude of Kl’ the effect of warping restraint
on the natural frequencies of the system may be significant.

According to the compatibility equations_ in elasticity, certain
shear strain is induced due to the restraint of warping of the sections,
Such shear strain has not been considered in (V.42). The case of
torsion including the shear strain effect has been studied by Barr(14)
for non-circular bars. This problem with special reference to thin-

walled open sections is considered in the following paragraphs. The

strain energy and kinetic energy for this case can be written as

1 £ sk n2 12, 1
V = > S‘O [E Iwweb (z,t) + GIthS (z,t) + GIdQ (Z,t)] dz (V. 43)

1 y/ - o12
T- 'Zgo P[1,6 %2, 0+ 1,8y (1) ] a (v.44)

The first term in (V.43) represents the contribution from
axial strain; the second term corresponds to the shear strain set up
due to the axial strain; and the third term corresponds to the St.
Venant type torsional strain, The first term in (V. 44) corresponds to
the rotational inertia of.the section and the second term represents
the axial inertia from warping. The form of (V.43) and (V. 44)
resembles that of the Timoshenko beam equations, namely (V. 33)
and (V. 34), except for the St. Venant torsion term in the strain
energy expression,

Considering the case of a simply supported beam, corre-

sponding to the conditions of no rotations at each end and the ends are
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free to warp, the mode shapes are again sinusoidal.

Gb Y
= sin-TE—Z sin A\t
GS e}

Substituting in (V. 43) and (V. 44), the frequency expression can be

Let

obtained from Rayleigh's principle:

3%

E'- 4, 2= 2 2= 2

_ = poo 6L T Q)T

A d | (V. 45)
Ip(1+6) +1

where & = §/y. Setting 8_):2/8_6_ = 0, there is obtained

- - __E_*_
I L.
3%
2= ,E = =
pl (=1 -1,
s G p d g (V. 46)
T

As in the case of the Timoshenko beam, only the smaller of the two

roots is of interest. Hence, there is obtained:

_ Bl ¥ _ 0 _ 4
5~ —20 (K I, -Ty + 0" (V. 47)
T,

p
Substituting the approximate value of & in (V.45), the corresponding

frequency becomes

_E_ |J,4'—I_ +1 p,z T
_.ZN ( G ww d ) 1 - P«Z _ww O(H4) (V. 48)
I I
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The first factor in (V. 48) is the frequency predicted from Gere's
equation for torsional vibration including the effect of warping. It
can be seen then that the correction is proportional to }J.Z and also
to the ratio of T to I_. For thin-walled open sections, 1 _ is
W P ww
small compared to Tp in general. Consequently, the shear cor-

rection is not as important in torsional vibrations as it is in bending

vibrations.

4, Effect of Geometric Parameters on Natural Frequencies

In this section, a study is made of the effect of the cross
section of the beam on the difference between the natural frequencies
of coupled torsional and bending vibrations predicted by the two
theories. Any variation of the cross section is represented by vari-
ations of the different geometric parameters such as IXX, Ip’ etc,

To study such effect, it is convenient to express explicitly the depend-
ence of natural frequencies on the different geometric parameters.

Using the higher order theory, the strain energy and kinetic
energy expressions for a monosymmetric open section can be deduced

from (IIL 14) and (III.17). They can be written as

1 { sl I12+ sk n2 12 12
V= 2 Jg [E Ixxgb ‘ E Icoco b * Glccgs * GIhhes
P ]
+2GI _El8_ + GI 0 ] dz (V. 49)
1 (’1 . 2 ° 2 @ . '2 ° '2
=4 +
T = > 3 P [Ag + Ipe ZayAB £ + Ixxg b + Iwe b ] dz

(V. 50)
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For simply supported end conditions, let

~ N
g ~ N\
2,0 1

) ,

_(Z:t) )

< r - = W P > sin%z— sin At (V. 51)
Gb(Z,t) Y

[ %0 (0

Substituting (V. 51) into (V. 49) and (V.50), applying Rayleigh's

principle, and grouping the terms in a convenient way, there is

obtained
%k ) %
¥ 4 2, 2, =2, & 4 2
> el (1)~ + y=(1+6) (—G'M L,Tw Id)
Mo (1+8)2 + T v2(1+45)% + 23 y(1+B)(148) + w? + u°T 2
B ~ a v(1+p |V VA AR
o= 2 = 222, =  —
" [Iccﬁ +T, vE +21hcﬁy6]
* > To 2. -2 = — > = 2
1+8)° + Ty (5 + 23 y(1+p)(148) +p° + Ty

4 2 | = 2=, = 272
H_é-[2,3+p +2I yTo+T vy 6}

B 2 | = 2,452 4 — — 2 2— (v.52)
(1+B) +Ipy (1+8) +2ayy(1+p)(1+6) PSRy

where 3 = 6/y. Thé correct values of B, y, 6 can be dete rmined
by the conditions 8%2/8p =0, &%°/8y =0, and N>/8% = 0. This
‘will result in a set of coupled inhomogeneous algebraic equations

in B, y, and 6. To solve such a set of e“quations explicitly is diffi-
cult, if not impossible. To solve the problem approximately, the

following assumptions are made:
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(i) The shear coupling B between §b and «is in the

coupled bending and torsional vibrations is approximately the same

as given by the uncoupled bending vibrations, i.e., equation (V. 40).

(ii) The shear coupling § between Gb and GS in the

coupled bending and torsional vibrations is approximately equal to

that given by the uncoupled torsional vibrations, i.e., equation (V. 47)

(iii) The torsion and bending coupling (%(_I_LBS) between £
and 6 in the higher order theory is approximately equal to that (V)

given by Gere's theory, i.e., equation (V.11).

From the assumptions (i), (ii), and (iii), there is obtained

sle

Y 2 low
_G'H -
hh

(V. 53)

Substituting the approximate values of f, y, and s in (V. 52), the

frequency expression is given by



2

*, 2 T I, T .
E 4 Z(E ( T —2 "ww _5,— hc ww 8
G P +Idu) v ) (2 T _+Y = )+ow®)
<2 hh hh

—2 ==, 2, 2= 4
1+Ipy +2ay_yxp(1+y Imw)+0(p)

E 4,-2({E = 4 2
z—CTH Ty —G'Iwm“ +Id}l)
——2 — —
1+1 + 2
pY AyY
=2 - = D
* 2, T LT, 1T ok ok
Hé (g_) (2‘_1 +Yz w7 hc ww) W ) E +Y2_]:3_I +Yz_
G cc T T . +T-Z+2__ G G “ww
i hh hh pY o2,y b
T2 L — —
1+71 +2
pY AyY
(V. 54)

From (V.9), the frequency expression from Gere's theory is

E —2 2
Xz_"c? ( weol ”d“)
2 -

1 +T + 2a
13‘Y V.Y

Therefore,

* T 1 TZ
_E_)_(Z_—I— > he ww +§2 ww)
-):2-3:2 G cC -I— -I—
G _ 2 hh hh
x2 " G I
G 1+ (I +——*——‘Zi)
E u

—_2
o L+y71 )
e (V.55)
1+1 +2a vy
oY ayy
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The relation of various geometric parameters to the differ-
ence of frequencies predicted from the two theories is shown in
(V. 55). It can be seen that the difference of the square of the natural
frequencies is proportional to |.L2,. Thus, the difference is small
when the wave length is long; as shown in all the plotted spectrum
curves, For a fixed wave length, p,z is fixed and the difference in
frequencies becomes large if Tww’ —I-ww/l—hh are large, and ch is
small. The values of the geometric parameters of various sections
.are given in Table II. From the table, it can be secen that as the
semi-central angle ¢ of the section increases from 150 to 1800,
T;w and T;w/ihh increase monotonicly, and T;C decreases to a
minimum at & =135°, .This explains the increase in the difference

in frequencies predicted by the two theories for the different cross

sections, as noted in section 3 of Chapter 4.
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Chapter 6

EXPERIMENTAL VERIFICATION OF THE APPROXIMATE THEORIES

1. Introduction

In the previous chapters, Gere's theory is compared with a
higher order theory which serves to check the range of validity of
Gere's theory. It is shown from the spectrum curves that for small
wave number, the two theories predict almost the same result, indi-
cating that the elementary theory is good for long beams. However,
the range of wave length over which the higher order theory is valid
is still undetermined. In order to provide an indication of the
validity of the higher order theory, either a yet higher order approxi-
mate theory may be constructed and checked against the developed
higher order theory, or the approximate theories can be verified
directly by experiment. In this chapter an account is presented of
the experiments performed to verify the accuracy of the two approxi-
mate theories,

In section 2, the set up of the experiment is described. This
includes thec preparation of the test specimens and the instrumentation
used. The actual experimental procedure is described in section 3.
The experimental results are plotted against the calculated results
given by the two approximate theories and a discussion of the results

is given in section 4.
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2, Experimental Set Up

In order to compare the theoretical and experimental results,
the specimens used should necessarily have the same cross section
as those used in the calculations of the spectrum curves in chapter 4.
Such specimens were realized by splitting thin-walled circular alumi-
num tubes along their lengths with the proper central angle. The
actual aluminum tubes used were ALCOA 6061T6WWT789 with an outer
diameter of two inches and a thickness of 1/16 inch, Two specimens
were prepared, one subtending a central angle of 180° (half ring),
and the other, an angle of 270°. The specimens were examined to
ensure that any pretwist resulting from the release of the internal
stresses during the cutting process was negligibly small. One end

of the specimen was cast into a block of "Cerobase, "

a low melting
high density alloy, to form a built-in end (i.e., the end conditions
were such that there was no deflection, no rotation, no slope and
complete restraint of warping). The other end was left free so that
the system constituted a cantilever. The specimen was cast in such
a way that the axis of symmetry of the section would be perpendicular
to the direction of the excitation of the shaking table when the block
was mounted on it. With the specimen mounted this way, there would
be little or no excitation in the direction parallel to the axis of sym-
metry and hence the uncoupled bending vibration would not be excited,
The block was mounted rigidly onto the shaking table by four steel

bolts. Preferably, the size of the casting should be large enough to

ensure that the fixed end conditions are satisfied and yet sufficiently
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. light to be within the capability of the shaking table. A compromise
was neceésary and the actual size used was 4" X 4" X 2-1/2", This
cantilever open section beam constituted the mechanical system to be
tested.

The experiment was carried out in the Vibrations Laboratory
in Thomas Engineering Laboratory at California Institute of Tech-
nonogy. A Ling shaking table was used with a B & K oscillator con-
trol to give the forcing input to the cantilever beam. The B & K
control panel had an automatic frequency sweep device which could
vary the frequency of the shaking table either upward or downward at
a specified rate. The frequency range of the shaker was from 5 - 5000
cycles per second with the resonant frequency of the table itself
around 3800 cps.

The amplitude of the shaker was controlled by a feedback
relay with an Endevco accelerometer (Accelerometer I) mounted on
the table top to supply the feedback signal to the B & K control. The
amplitude could be controlled by requiring the displacement of the
table top to be constant. Alternately, the velocity or acceleration
could be kept constant. A fourth alternative to control the amplitude
was a setting called "Auto" on the panel. Under the "Auto" control,
the displacement was kept constant at the lower frequency range and
switched over to an acceleration constant control at a preset cross
over frequency. When the range of the frequency was large, this
method of controlling the amplitude was specially valuable since it

could avoid excessive displacements at the lower frequency range and
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yet gave sufficient excitation at the higher frequency range. The
actual frequency of the shaking table was also displayed on an H. P.
counter mounted on the control panel. The counter had a gate time of
1/10 second and 1 second. Using the 1 second gate time, the [requency
of the shaker could be determined to within 1 cps.

The response of the beam could not be measured directly by
mounting transducers on the beam because the mass of an ordinary
transducer is comparable to that of the beam, and the additional mass
on the beam would alter its natural frequency. An optical method was
used to pick up thc responsc of the system. The Optron, essentially
a displacement measuring device, was used. The Optron is designed
to measure the motion of its targets. A target is a small piece of
cardboard, half of which is painted black and the other half has a
shiny surface., When the Optron is in adjustment, a beam of light
from the Optron is directed towards the boundary between the reflec-
tive and the dull parts of the target. Half of the amount of light sent
out from the Optron is reflected back into the device from the re-
flective portion of the target. Any movement of the target causes
variation in the amount of light reflected back to the Optron. The
amount of light reflected back from the target serves as a feedback
signal to a servo-mechanism in the Optron.which in turn serves to
keep the light beam centered on the target. A voltage proportional
to the movement of the target is the output of the Optron. Various
calibrated lenses are available to accommodate different ranges of

displacement requirements. The particular lens used during the
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experiment was Model 711, #12286 Canon, which gave a maximum
displacement range of 0.1 inch peak to peak. When a target was
mounted at some point on the beam, the response of the beam at that
point could be ascertained.

The main interest in the experiment was the measurement of
the resonant frequencies of the various modes of the beam. No
attempt was made to measure the mode shapes. From the theory of

(17)

selfi-adjoint operators » it can be shown that the eigenvalues are
much more sensitive parameters than the eigenfunctions. It can
then be argued that when the theoretical and experimental values of
the resonant frequencies agree, the corresponding mode shapes will
essentially be those predicted by the theory. Also, the actual shapes
of the resonance curves (i, e., response of the system against exter-
nal exciting frequency) are not of prime interest because no attempt
is made to determine the material damping from the experiment.
This justified the use of the output of the Optron as the response of
the beam although the Optron was actually measuring the absolute
displacement of the target while the response of the system should be
reckoned relative to the base of the beam. The actual resonance
curve could be derived from the response plot from the Optron when
the displacement of the base was also measured.

Since the resonant frequency was the parameter of interest,
it was not necessary to feed the output from the Optron into a record-
ing oscillograph to obtain a time history of the response. Instead,

thc signal from the Optron was taken into the Moseley Logarithmic
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Converter Model 60B. This device accepts an electrical signal at its
input and produces at its output another signal which is the logarithm
of the input. Also, this device accepts A.C. from 20 - 20, 000 cps
and converts it to D, C. with a value equal to the r. m.s. value of the
input. The dynamic range of the instrument is 60 db which gives it

a range of 1,000:1 ratio. The output of the Moseley Logarithmic
Converter was fed into the Y axis of a Moseley Plotter., The X
axis of the plotter was connected to the automatic frequency sweep of
the B & K console. A plot of the response spectrum could then be
obtained from the Moseley Plotter.

It was found necessary to pass the signal from the Optron
through a band pass filter before feeding it into the Moseley Loga-
rithmic Converter in order to cut out the 60 cycle noise that was
inherent in the table. Measurements were made to determine the
magnitude of the 60 cycle noise using the controlling accelerometer
(Accelerometer I) on the shaker as the transducer. The noise was
measured on the Ballentine r. m.s. Voltmeter Model 320 and found to
be equivalent to a magnitude of %g in acceleration. The existence
of the 60 cycle noise at the shaker was a problem at high frequencies.
The reason for this is as follows; let the 60 cycle noise be n sinl20nt
and the signal for the accelerator on the table be sin2wft. The total

acceleration input is

% = sin 27ft + n sin 120wt

and
n__
(120 11')2

5 sin 2wft - sin 120 nt

(2wf)
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Thus, the noise to signal ratio is n in acceleration and is rﬂf/éO)Z
in displacement. If (£/60) 1is larger than unity, the noise to signal
ratio is magnified rapidly. Since the Optron was a displacement
measuring device, the noise problem was significant. A free run

(no load on the table) with and without the use of filter was made and
the plots of the response are shown in Figures 10 and 11. The effect
of the 60 cycle noise in the higher frequency range can be seen
clearly. The response curves show the displacement of a steel bolt
mounted on top of the table measured by the Optron. A Model 330-MR
Krohn-Hite ultra low frequency band pass filter was then used. The
attenuation of the filter is shown in Figure 12. It was found that a low
filter setting at 150 cps would suppress the 60 cycle noise sufficiently
and yet had very little attenuation for frequencies over 200 cps.
Hence, it was decided to introduce the low band pass filter at a setting
of 150 cps when the table frequency was at 200 cps in all subsequent
testing. The high filter was set at 2500 cps., The arrangement of

the test specimen on the shaker 1s shown in Figure 13,

Before the actual testing, a trial run was performed to check
the amplitude control of the table top. It was done with and without
the test speéimen mounted on the table. The acceleration was
measured by Accelerometer I. Plots of the response curves are
shown in Figure 14, It can be seen that the unloaded table gave a
cleaner trace. Certain irregularities in the traces were due to
the interaction of the specimen and the table when the specimen was

in resonance. A Stroboscope was used to check that there was no
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FIG. 13

MOUNTING OF TEST SPECIMEN

(DOUBLE CANTILEVER) ON SHAKER
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deformation of the cross section during the test by viewing the beam

from the free end.

3. Experimental Procedure

Targets for the Optron were placed along the center line of
the beam. After sufficient time was allowed for the instruments to
warm up, the Optron was set to focus on one of the targets of the
beam. The table was set to run at a constant displacement of 0, 012"
from 20 to 100 cps and then automatically switch over to constant
acceleration control at 100 cps. The corresponding acceleration at
100 cps was approximately 6.5 g and was kept constant throughout
the test from 100 to 1800 cps. The filter was used for frequencies
over 200 cps. A spectrum plot was obtained from the Moseley Plotter
as the frequency of the table swept from 20 cps up to 1800 cps. Then,
the peaks in the spectrum plot were retraced by decreasing the table
frcquency from 1800 cps. Fine adjustments of the table frequency
near the peak enabled the frequency that corresponded to the true
maximum to be read within 1 cps on the H. P, counter. Thus, the
spectrum plot gave only a guide to the distribution of the resonant
frequencies while the actual resonant frequencies were not read from
the plot but were read directly from the H.P. counter,

The whole process was repeated for another target on the
beam. This served as a check for the resonant irequencies as
measured in the previous target. When the beam was in resonance,

the response at each point should be at a local maximum, except at
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the nodes. Hence, the resonant frequencies determined from the
various targets should be the same.

After the various natural frequencies were determined, a
target was attached at the base of the beam and another spectrum
. curve was plotted for the displacement of the base. This essentially
served as a base line for the spectrum plots of all the other targets.
Finally, a calibration of the plotter was necessary. A grid was made
to give a scale for the different plots. The various modes (whether
bending predominant or torsion predominant) could be identified by
sensing the number of nodes along the beam during resonance. For
both specimens, the torsional rigidity was less than the bending
rigidity and the lowest mode was torsion predominant. Also, the
response for torsion predominant modes were more violent than that
for the bending predominant modes.

After all the modes were identified and frequencies recorded,
the specimen was shortened by a predetermined amount and the whole
process was repeated. Thebeam was cut until it became so short
that all except one or two of its natural frequencies were outside the
test range. Two specimens were tested; one having a section of a

half ring and the other subtending a central angle of 270°,

4, Experimental Results and Observations

Four of the actual spectrum plots on the Moseley Plotter are
shown in Figures 15 to 18. They are plots for the semi-circular ring

section (@ = 90°) at a length of 19", They show the responses at the
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quarter point, the half point, the three-quarter point and at the tip
of the beam. The peaks in the plots correspond to large displace-
ments of the targets and indicate a state of resonance of the beam.
The displacement of the base is also shown in the plots to give a
baseline to the traces. Certain portions of the curves have a smaller
value of displacement than the base. This can be explained by con-
sidering the phase relationship between the base and the point in
question, The absolute movement of the point is the algebraic sum of
the movement of the base and the movement of the point relative to
the base. If the response of the point is out of phase by 180° with the
forcing function its movement will be in opposite direction to that of
the base, Since the two movements are of opposite signs, the abso-
lute displacement of the point can conceivably be smaller than that
of the base.

The experimental results are tabulated in Tables III and IV.
The resonant frequencies of six modes are presented. Of these,
four are torsion predominant and two are bending predominant. Also
the experimental results are compared with theoretical calculations
and presented in graphical form. The value of (1/27r)(G/pr2)% used to
convert the non-dimensional frequencies in the spectrum curve calcu-
lations to cycles per second is determined by the best fit of the theo-
retical curve to the experimental values for the first mode of the
specimen with semi-central angle & = 900.. In both specimens, the
two approximate theories give essentially the same results for the

first mode for the range of wave numbers considered. The fitting is



-105-

Table III. EXPERIMENTAL VALUES OF RESONANT FREQUENCIES

® = 90°
Length r A 1st 2nd 3rd 4th 5th 6th
in., (cps) |(Bending)| (cps) (cps) (cps) | (Bending)
- 39.5 0.0179 29. T2 108 202 333 376
35 0.0202 34-35 84 128 244 405 490
32 0.0221 38-39 109 147 280 470 576
29 0.0244 43 127 162 324 553 694
26 0.0272 50 154 188 388 669 853
23 0.0307 62-63 188 223 470 818 1050
21 0.0337 67 223 252 545 957 1224
19 0.0372 77-78 263 288 638 1121 1480
17 0.0416 89-90 329 345 774 1364 1768
15 0,0472 107 400 400 937 1650 -
13.5 0.0523 121 508 480 1141 - -
12 0.0589 141 624 579 1419 - -
10,38 0.0681 173 814 730 1749 - -
8.88 | 0.0800 214 1066 935 - - -
8.0 0.0885 237 1393 1033 - - -
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Table IV, EXPERIMENTAL VALUES OF RESONANT FREQUENCIES

& =135°

Length| r/% Ist 2nd 3rd 4th 5th 6th
in. (cps) [Bending) | (cps) (cps) (cps)|(Bending)
44 0.0177 21.5 81 95 241 447 465
39 0.0200 26 91 124 302 560 572
36 0.0216 28.5 124 141 353 647 663
34 0.0229 31 136 156 393 716 736
31 0.0251 35 160 180 465 836 864
30 0.0260 37 170 191 491 873 907
28 0.0278 al 193 217 559 968 1024
26 0.0300 45 219 247 633 1071 1151
24 0.0324 62 252 284 723 1172 1291
22 0.0354 68 299 334 837 1270 1400
20 0.0389 76 353 396 965 1418 -
19 0.0409 81.5 385 434 1032 - -
18 0.0432 89 423 477 1102 - -
17 0.0457 103 468 529 1170 - -
16 0.0487 109 505 577 - - -
15 - | 0.0519 123 575 648 - - -
14 0.0556 136 646 729 - - -
13 0.0596 156 739 825 - - -
12 0.0649 180 846 934 - - -
11 0.0708 210 985 1058 - - -
10 0.0778 249 1125 1211 - - -
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shown in Figure 19. The value of K =(1/Z1T)(G/pr2)%is taken to be 27, 000
and this value is used for computing the higher mode spectrum curves.
The results are shown in Figure 20. The value of (I/ZW)(G/prZ)%for
the section @ =135° can be deduced since the two specimens are
made of the same material and have the same shear modulus and den-
sity. The radius of gyration r for both specimens is given in
Table II. The value calculated is approximately 22, 000 and this
value is used to compute all the spectrum curves for the section
® =135°, The results are shown in Figures 21 and 22, The resonant
frequencies are plotted against wave number for different modes.
The solid line represents the values predicted by the higher order
theory and the dotted line is the values calculated from Gere's theory.

From the graphs presented, it can be seen that the experimen-
tal points agree with the theoretical calculations for small wave num-
bers. When the length of the beam becomes short, both approximate
theories predict a higher value than the experimental result. The
higher order theory gives a closer fit than Gere's theory. It is
interesting to note that when the two approximate theories give
essentially the same result, the experimental points fall right on the
theoretical curve. It is only when the two theories begin to differ
that the experimental points begin to drop below the theoretical
values.

In the bending predominant modes, the curve from Gere's
theory departs from the curve from the higher order theory at

relatively small wave number. The experimental points fall on the
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higher order theory curve for a larger range of wave number. This
lesser accuracy of Gere's theory iﬁ predicting bending predominant
mode frequencies could be expected in view of the lesser accuracy
of the Euler-Bernoulli theory as compared with the Timoshenko
. theory in bending.

An examination of the results shown in Figures 19 to 22 sug-
gests that it is useful to divide up the complete range of wave numbers

nn

into four categories; namely, "long beam, " "medium beam, " "short

beam, " and "very short beam, "

These categories are defined by
comparing the spectrum curves of the eleméntary theory and the
higher order theory. When the results predicted by both theories

are essentially the same, the beam is considered long for that parti-
cular mode. A "medium beam" is one for which the results predicted
by the elementary theory for bending predominant modes begin to
differ from the values given by the higher order theory. However,
the two theories give essentially the same result for the torsion pre-
dominant modes.

"Short beam" covers the range of beam length when the results
of the higher modes as predicted by the two theories begin’to differ
and the two theories give similar results for the first mode only.
"Very short beam" represents the range of beam length which the two
theories predict different results even for the first mode vibration.

If is interesting to observe that for the section & = 900, the
spectrum curves cross at a wave number of about 0.04 as shown in

Figure 20. For small wave numbers, the second mode corresponds
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to a bending predominant mode with no node along the beam. The
third mode cdrresponds to a torsion predominant mode with one node
along the beam. However, for wave number larger than 0.04, the
situation is reversed with the bending predominant mode having a

" higher resonant frequency than the torsion predominant mode.
According to our convention of numbering the modes, the third mode
then becomes bending predominant and the second mode torsion pre-
dominant. This exchange of ordering was also observed experimen-
tally. The reason for such crossing lies in the fact that for bending
deformations the resonant frequency varies inversely as the fourth
power of the length of the beam; while for bt Venant torsion the
frequency varies inversely as the second power of the length. The
bending frequency increases more rapidly than the torsional frequency
as the length of the beam is shortened. ’ Thus, it is reasonable to
expect the frequency of a bending predominant mode to be lower than
that of a torsion predominant mode for long beams, but higher than
the torsion predominant mode for sufficiently short beams. The .

cross over point results in a degenerate mode.
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Chapter 7

NONLINEAR BEHAVIOR OF THIN-WALLED BEAM
OF OPEN SECTION

1. Introduction.

- In the preceding chapters the dynamic behavior of the thin-
walled elastic beam of open section is described and the experimental
results are compared with results calculated from linearized theories.
The linearization process is justified only if the behavior of the beam
can be predicted satisfactorily by the linearized equations, During
the course of the experiment, certain behavior was observed which
could not be forseen from the linearized equations. The observed
phenomenon can be described in two different ways. Taking the beam
as a system, the shaking table excitation as the input to the system,
and the response of the beam as the output of the system, the phenom-
enon can be described as being a high order subharmonic oscillation
of the system under special conditions. When the shaking table fre-
quency is at a multiple or near multiple of the fundamental frequency
of the system and the system has one of its higher natural frequencies
at the table frequency, both harmonic and subharmonic oscillations
are exhibited by the response of the system, the subharmonic oscil-
lations having a frequency close to the fundamental frequency of the
system.

Alternatively, the phenomenon can be described in terms of
the vibrational modes of the beam. When a higher mode resonant

frequency of the beam is a multiple or near multiple of the lowcst
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mode, and when the beam is excited at this resonant frequency, there
‘is a tendency for energy to transmif from the highest mode to the
lowest mode, resulting very often in a high order subharmonic
oscillation,

Most studies in nonlinear mechanics have been of single degree
of freedom systems. For a single degree of freedom system sub-
harmonics of high order are generally of very small amplitude and
are seldom observed although subharmonics of order % or 3

mon. As far as the writer knows, the behavior as observed in his

are coin-

experiments has not been reported before.

In this chapter, a detailed account of this phenomenon as
observed during the experiment is given in section 2. An analysis
for such behavior is presented in the subsequent sections. Intuitively,
such behavior can be explained in terms of the interaction of modes
through nonlinear couplings.

When the rotation of the section is not infinitesimal, the
linearization relationship of (IIl., 6) may not be valid. If such approxi-
mation is not made, the character of the governing equations will be
changed. Firstly, the resulting equations become nonlinear in nature.
This can be demonstrated from the following consideration. Let
equations (I.1), (I.2) and (I.3) be‘taken to be the equations for bending
in the two principal directions and rotation along the axis of the beam.
Using eqﬁation (I11. 5) without aésuming (ITI. 6), the inertial loads

Py py, and P, become
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2
- 9 .
va— - pA ———-—8tz (§ + a_sin 6 - a_cos o)
82
py = - pA 5;-2—(11 - a_sin 0 - aycos 9) (VIL. 1)
2 2
970 0
p, =-PL —5 -pAa_—5 (£ ta_sin 0 - a_cos 0)
t 8 pt° Y at° v x
82
+ pAaX-é?(n - a_sin 0 - a,cos B)

Substituting into (I.1), (I. 2) and (I. 3), the governing equations become

- .o .o o
+ ' - =
EIXX€ pPAE + ay(sm 8) aX(cos 0) 0

inn o0 oe

EI ] + pAI] - a {sin 0 - a {(cos 6 - =0

n

n LR oo oo
EIwwG - Gxde + plge + pAayé - pAaXn

2 . 2 ot
+PA(aX+ay)(sm ) =0

Comparing the set of equations (VII. 2) to equations (I.4), (I.5)
and (L. 6), it can be seen that equations (VIIL. 2) are coupled nonlinear
equations with nonlinear terms in the variable 0. It is interesting to
note that all three equations are coupled even for a monosymmetric
section for which a, is zero. Cnly when the section has two axes of
symmetry are the bending and torsional vibrations uncoupled.

Another effect of dropping the approximation (IIL 6) is the
coupling of the torsional motion and the longitudinal movement along

the axis of the beam. Such coupling is not due to the asymmetry of
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t"(ls), The cou-

the section and can be termed the "shortening effec
pling between longitudinal motion and torsional motion of the beam
can be made plausible as follows. Consider a rectangular strip
whose ends are twisted with the end faces kept in the same transverse
planes. Let the angle of rotation be 6. An originally straight fibre
of length £ at distance y from the central axis of the strip is de-
formed into a helix. The length of such a helix described on a
cylinder of radius y and length { is given by (122 + yzez)l/z. The
increase in length is (ﬂz + yZGZ)l/Z -i= VZGZ/ZL The axial strain
is (yO)Z/(ZE 2) and the axial stress becomes EyZGZ/ZfZ. Since the
axial stress is an even function of vy, summing up the stresses
across the cross section gives a net resultant longitudinal force on
the section, If this axial force is released, there will be a shortening
of the beam so that the "average axial strain" across the section is
zero, It is then seen that the torsional and longitudinal deformations
are fundamentally coupled irrespective of the shape of the cross
section. Such coupling is of higher order in the angle of rotation 6.
When nonlinear terms are neglected in the linearized theories, this
coupling is omitted in the resulting equations and consequently the
longitudinal deformation is uncoupled with the torsional deformation
in linearized theories as noted in chapter 3.

A consistent set of nonlinear equations is derived in section 3
of this chapter and it will be seen that this set of equations exhibits

all the coupling features that are discussed above,

When the modal analysis technique is applied to the governing
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equations, it is found that each mode is coupled with the other modes
due to the inherent nonlinearity of the equations. In addition, the
equation for each mode contains nonlinear terms in the generalized
coordinate associated with that particular mode. Thus, one can

- visualize each mode as a simple oscillator of one degree of freedom
having a nonlinear spring and each oscillator being coupled to the
other oscillators by nonlinear springs. It can be assumed that the
input signal always contains a small amount of noise which causes
each oscillato:? to vibrate with a small amplitude at its own natural
frequency. When oscillator A is excited iﬁto resonance by the input
signal, a certain oscillator B, having a natural frequency at or near
a submultiple of the resonant frequency of oscillator A, may be
excited through the nonlinear coupling between A and B. For
example, consider the case when the nonlinear coupling spring be-
tween A and B exerts a force proportional to a(t)ﬁn(t) on oscil-
lator B, where aft) and f(t) are the displacements of oscillators
A and B respectively and n is a positive integer. If A and ‘B
are vibrating at their natural frequencies )\A and )\B respectively,
the force from the coupling spring will have components with fre-
quencies )\.A:t n)\B‘, )‘A + (n—Z))\B, )\A + (n—4))\B, etc. through the

(22)

"detuning" of the frequencies of the two oscillators. Since Ay
is a submultiple of )\A, it is possible for one component of the force
from-the coupling spring to have a frequency the same as kB“ The

amplitude of oscillator B can then grow under such forcing term,

resulting in the excitation of two non-degenerate modes by a single-
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frequency external excitation,

To supplement this intuitive description, a mathematical
analysis is made of the system to show theoretically the possibility
of such behavior, It is shown that such behavior is possible only
when the amplitude of oscillator A exceeds certain critical value in
addition to the special frequency relationship between the natural
frequencies of oscillators A and B. In section 3, the full set of
nonlinear equations are derived from equations of elasticity, Sim-
plifications are made to reduce the set of equations to a pair of non-
linear partial differential equations. A modal approach is taken in
section 4 to reduce further the cquations to a pair of nonlinear
ordinary differential equations. Further simplification reduces the
problem to a single nonlinear ordinary differential equation with
variable coefficients. This equation is partially solved in section 5

to show the possibility of subharmonic behavior as observed.

2. Nonlinear Behavior as Observed in the Experiment

The nonlinear behavior of the test specimen was first observed
with the section & = 90° at a beam length of 35", The response of
the beam, as measured by the Optron and viewed through a cathode-
ray oscilloscope appeared not to be purely sinusoidal for a small
range of the exciting frequcncy as the shaking table frequency swept
- through the resonant frequency of the sixth mode (a bending predom-
inant mode with one node)., A careful examination of the response

revealed that it was a superposition of two sinusoidal waves. The



-120~

frequencieé of the two waves were identified by means of a wave
analyser (the Radiometer Wave Analyser) in connection with a digital
counter (the Beckman Berkeley Counter Model 7350). The signal
from the Optron was fed into the wave analyser. The exact frequency
- at which the wave analyser was scanning was read from the Berkeley
Counter. The amplitude of the wave was read from the meter on the
wave analyser. In this case, one component of the signal had the
shaking table frequency of 490 cps and the other component had a
frequency of 35 cps. It was found that 35 cps was very close to the
resonant frequency for the first mode of the system. Visual inspec-
tion of the mode shape of the beam indicated that the beam was es-
sentially vibrating at the first mode. The frequency ratio indicated
the system was executing a 14th subharmonic oscillation.

The range of table frequencies over which such subharmonic
behavior was possible depended on the amplitude of excitation of the
table. The larger the excitation, the wider was the critical range. In
the case cited, the range was from 489-493 cps for an excitation of
2g acceleration amplitude of the shaking table. The corresponding
ranges for 4g and 6g acceleration amplitude were 486-493 cps and
484-493 cps respectively.

The transition from harmonic to subharmonic oscillation also
depended on the path of approach to the critical region. When the
~ critical region was approached from above by decreasing the table
frequencies slowly, the transition was relatively insensitive to ex-

ternal disturbance. When the critical region was approached from
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below, the fransition was sudden and highly sensitive to external
‘disturbance. 'Over a narrow range of exciting frequencies, the sys-
tem could be shock excited into subharmonic oscillations or could
be returned to harmonic oscillations through external means. In
- other words, there existed two stable steady' states within this narrow
range of table frequency., The system displayed the "jump" phenom-
enon as commonly known in nonlinear mechanics. In the case cited,
this multi-state range was 489-490 cps for fhe 2g constant accelera-
tion excitation. The corresponding figures for the 4g and 6g con-
stant acceleration were 486-488 cps and 484-486 cps respectively.
Plots of the response against table frequency is shown in Figure 23
corresponding to excitations of 4g and 2g constant acceleration.
The response plotted was the r.m.s. value of the displacement at
the mid-point of the beam and normalized to the displacement at table
frequency of 480 cps. It should be pointed out that the frequency
plotted is the table frequency and not the frequency of the specimen.
The specimen may execute harmonic or subharmonic oscillations.
The plots show at least qualitatively the response of the beam as the
critical region was approached from both directions. They also
illustrate the existence of the "jump" region. At frequency 493 cps,
it was at the borderline stage of entering the critical region and the
amplitude of the response became very critical.

An effort was made to detect the existence of any other sub-
harmonics, using the wave analyser to scan the whole frequency

rangé. Also, the table frequency was changed to integral multiples
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of the resonant frequency of the first mode. DBoth efforts faﬂed to
detect. anything other than harrnonié response of the specimen.

As the beam was shortened, subharmonic oscillations were
observed at beam lengths of 32", 29"\, 26", and 23". For the
section & =13 50, this phenomenon was observed at beam lengths of
39" and 34", Ratios‘ of the resonant frequencies for the different
modes for the ’two specimens are given in Tables V and VI, For any
given beam length, the resonant frequencies of the first six modes of
a specimen are given in the table. Also the frequency ratios of these
modes to the first three modes are presented. The modes that are
bending predominant are labelled "bending" and the ratios correspond-
ing to which nonlinear behaviors were observed are underlined. It
can be seen that when subharmonic oscillation was observed, the
higher mode resonant frequency was a multiple or near multiple of
the first mode resonant frequency.

In order to eliminate the possibility that such behavior might
be caused By the shaker due to unbalanced moments from the specimen,
a double cantilever system was cast. The section used was & = 90°
and it was arranged in such a way that the systerﬁ was symmetric in
bending and antisymmetric in torsion relative to the base. Such a
system could not exert moments on the shaker. For a beam length
of 38-1/8" subharmonic oscillations were observed. The responses
at the nﬁd—point of the beam as seen on the oscilloscope are shown by
a series of photographs as the table frequency varies. The table was

sct at a constant acccleration of 4g. In each picture in Figures 24
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AT 405 cps

AT 406 cps

AT 407 cps

AT 409 cps

FIG. 24 SUBHARMONIC RESPONSES

DOUBLE CANTILEVER $ =90° LENGTH = 38.1"
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AT 410 cps

AT 412 cps

AT 413 cps

AT 414 cps

FIG. 25 SUBHARMONIC RESPONSES

DOUBLE CANTILEVER ® -90° LENGTH = 38.1"
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and 25, the upper trace represents the response of the beam'meas-
ured by the Optron. The lower trace is the acceleration measured
by an auxiliary Endevco accelerometer mounted on the shaking table.
The acceleration trace essentially gives a frequency scale to the
response trace. At a table frequency of 405 cps, the response shows
the beam is vibrating at the same frequency as the table and there
are no subharmonic oscillations. At 406 cps, subharmonic oscil-
lations begin. The responses at 407 cps and 409 cps show the sub-
harmonic oscillations and the beam is vibrating mainly at the sub-
harmonic frequency with harmonic oscillations superimposed on it.
The rapid increase in amplitude due to the subharmonic oscillations
should be noted. At 410 cps, it is seen that the amplitude of the
harmonic oscillations begins to grow. Such growth is attributed to
the resonance of the higher mode. It is interesting to note that the
overall amplitude at 410 cps is less than the amplitude at 409 cps.
The response at 412 cps table frequency shows the increase in ampli-
tudes of both the harmonic and subharmonic oscillations. At 413 cps,
the maximum response of the beam is shown. The last picture shows
that the subharmonic oscillations havc disappeared resulting in pure
harmonic oscillations of large amplitude, corresponding to the
resonant condition of the higher mode. The table frequency for this
case is 414 cps. Further increase in the table frequency results in
decrease of amplitude of the harmonic oscillations because the
higher mode has passed over its resonant peak. The subharmonic

frequency in this case is close to 32 cps which is the frequency of
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the first mbde. Again, visual inspection of the mode shape indicates
.that it is the first mode that is being excited. The frequencies 414 cps
and 32 cps give a ratio of 12. 94, or 13. Thus, the system is executing
a 13th order subharmonic, This ratio can also be obtained by counting
- the number of cycles of high frequency oscillations during one cycle

of the subharmonic oscillations.

It should be noted that the response shown on the photographs
is the displacement of a point at the middle of the beam. If the dis-
placement at the tip of the beam were taken for illustration, the
difference in amplitudes due to the subharmonic oscillations would
even be greater than shown in the photographs. In fact, the sub-
harmonic behavior of the system is much more violent than the
resonant motion of the higher mode. Such violent motion can lead to
failure if it is not forseen and allowed for in design. Therefore,
the subharmonic behavior is interesting both from the theoretical and

practical point of view.

3. Derivation of the Complete Set of Equations

In order to have a better understanding of the subharmonic
behavior, it is necessary to consider the complete set of nonlinear
equations as derived from the equations of elasticity. This can be
accomplis‘hed by following the steps given in chapter 3 without making
- use of the linearized approximations of (III. 6) . From (IIL. 4) and

(I11. 5), there is obtained
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vi{s,z,t) =€ cos Y +nNsin y + (cos 6-1)n + h sin 6
(VIIL. 3)

w(s,z,t) = - £ siny +tncos - (cos O-1)h +n sin 6

From experimental observations, it was seen that when the
subharmonic oscillations occurred, the length of the beam was
sufficiently long so that the elementary linearized theory and the
higher order linearized theory predict essentially the same result,
In view of the experimental results from chapter 6, it is concluded
that the effect of mid-plane shear strain may be neglected during the

subharmonic oscillations. From Yo = gl—; + —g% = 0, there is ob-

tained
1 H 1 1
uls,z,t) =L -Ex-ny+0 QsinB -6 wcos 6 (VIIL, 4)
where
s
Q(s) =§ n(s) ds
and . 0 (VIL 5)
s
w(s) =S h(s) ds
0

Using the relations between displacements, strains and changes in

curvature as given in (IIL, 3), there is obtained

Su 1 1 " 12 n
€ =—a-£=(= ~-&€ x-my+(0 “"cos ® +06 sin 0)Q

n IZ
- (6 cos B -6 " sin B)w
{VII. 6)

€ = — - ¥ zcos O -1

wn
(o]
1))
el
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=
1}

n 1t " '2.
-£ siny +m cos Y+ (0 sin 6 + 6 “cos O)h

n 1
+(0 cos 6 -0 2sin 0)n
(VIL 6)
K =20
8

1
T =0 cos @

As in chapter 3, the contribution of K, to the strain energy
density expression is small in comparison to €, and will be neg-

lected. From (IIL, 2), thestrain energy density in this case becomes

e % 3
_Ec,2,. 2 E ¢ o2
U = 5= (eZ + € + zvezes) +———12 (1-v)7T (VIL. 7)
The strain energy V is given by
L
vl { vasa (VIL 8)
0¥s

The kinetic energy T can also be written in terms of the generalized
coordinates using (IIL.15) with u, v, and w given by (VIL 3) and
(VII. 4). Applying Hamilton's Principle as given in (IIL. 1), the set of
governing equations can be obtained. The equations obtained are as

follows:

an 1 se 1
pl - AL - Iosin 8(0 - 670 ) - Iocos 0(208 +00 )]
* n 1 m 13 TN
+E [ AL - AvO sin® +16sin6(6 -8 7) +3150 6 cos 0]



-132-

oo

' LR L] L] L L]
ol Ixxg - A - AaX(G sin 6) - AaV(G cos 0)

feso ) ae n e o1 o !2 12‘ 2
—IQXCOSG(ZBG +0060 +200 +206° -0 707)

. Ita 2 ] 1o 1 o |2
- I, sin 8(8 - 8 0%- 4606 - 0 6 %]
FET-T £ +1 0400 +30 2-¢0%
%X T inxCos ( B )
mnm 1 1"
+1o sin 6(8 - 60 26)] = o (VII. 10)

oe 11

o[I m - An+ AaX(G cos 0) - Aay(e sin 9).

yy tes § LA ) | + ot ‘lz ‘2 '2.
- I,Ccos B(20 6 +66 + 200 +26 °- 670 )

I, Si e('é ' 9'0% 4000 -0 e'z]
"}:Sln I_IH n ) 1 )
%, 2 4
+E[-I + s 0(4 + -
L o IgyC"(')lb 0( ?e" 30 6 )
. 2
+ sin B{(8 - 66 “9 = 0 VII. 11
Iﬂy ( )] { )

plIgkin O - I bin O - 1o 6in om

1 ae 1 .o
+ Iﬂﬂsin 0(0 sin 0) + Iwwcos 6(6 cos 0)

1 ooy 12+ > ° 1y e o e N
—Iﬂwcosze(zee - 070"+ 286 "+ 260 +00)

. as 11 e > o oy e 1o
- IQwSHl 200 -6 B -460 06 -60"7)
- IPG - Aax((sin 0 -(cos O)n) - Aay((sin 8)n Hcos 6) }]

% 2 (Ll IZ n "2 T om 14
~-E[I cos“8(®6 -60°0)-1 sin 6 cos 6(30 “+4606 -0 ")
Ww Ww
m

A sin B(cos 0 -1 + vg') + IQ(sin e

21V sin 6(gin 0)8 +(cos )8 %) - I (sin O)

. m . "2 1 m |4
- IQ}}SHI om + Iﬂﬂsm O cos B(36 “+460 -0 )
2 (L4 IZ n "2 1 m l4
1 IQQSin 6(6 - 60 "0 ) - IQwCOS 20(30 +4006 -0 7)
. m 1 1 G 2 n IZ .
- I sin 20(86 - 66 “0 )- —*Id(cos 60 - 6 “sin O cos 8)]
E
-0 (VIL 12)

where
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IQ:S‘ Qc ds ; ngzgﬂxcds; Iﬂyzgﬂycds;
‘s s s
:S'chds; I =S‘chds
w 5 QQ 5

and the other quantities are defined in chapter 3.

Equations (VII. 9) to (VIL.12) are four coupled nonlinear partial
differential equations for ¢, §&, 1 and 6. The coupling of the four
equations is through the rotation éoordinate 0. The longitudinal
displacement coordinate { is coupled to 6 through the "shortening
effect, " and the bending displacement coordinates £ and m are
coupled to 6 through the asymmetry of the section of the beam as
stated in section 1 of this chapter. For a section with one axis of
symmetry, the equation for the displacement parallel to the axis of
symmetry is no longer uncoupled as in the linearized theories.
Taking the axis of symmetry as the Y axis, it can be shown that the
paramctcrs a_s IQX’ and VIQw are zero. Rewriting equations
(VII.9) to (VII.12) for a monosymmetric section in non-dimensional

form, there is obtained

-7 4+ xz-?——%—xzv sin 0 29

0z 9z

+ T,

o xisine(ﬁ_i_%— (9—9-)3) +37\2§—28 © cos @

o7 © 57 522

_ e(é_éz_a_e_‘ - eze——+°e§_3_e -0
- z aE) o2 ( 9z az)

(VII.13)
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2% .. . . 4
S_ZE -% - a(®cosH) - )\i 8—_—?—; =0 (VII. 14)
dz y 0z
2=, . . 4—
T a_; -M -2 (9 sin 0) -xiT 8——-_2
YY 5% y YV oz
3 2n 2 4
i [ () (2
y oz 9z oz 0z
4 2 L2
+22 sine(———-a__g- 622 (—‘2@) )
oz oz
" *o 2 ° 2.° ° \2'
—cosG(Z—BT?-Bje_"'eé_—_g +29§—_—-g—92(i__9_))
9z 0z oz oz o0z
2 . 2 o p - AN
- sin 0 222 -929:-2-4993-@-9(32) ) |=o
o0z Oz dz 0z oz

(VII, 15)
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-T,0 - 2 (kin Ol +{cos OE) +T_ cos 0 9 (cos 028 )"
Oz 8z

+
1)}
-
B
@
| e |
@1
@
ll M
i
<3
@
Nl’ s
i3 e
+
b’-—i
2
(e
o
puny
[s]
o)
Ico
@
N

+22T cos @ (4-‘3_‘-?_—9:2-+3(8 9y -(28) )

xi(l—cose-véé+f L ¢ 8

Y az3 Ry =4 )

82

2>\f)v'fs2 (sin en_zjg- + cos 6 (_:g) )

+

9
3 z 4

2t (420870 (aze‘ (ae‘ -
X cos B {4 —— +3{2=2)- {2
o QR 8—Z- 3—2—3 3;2' ) ) )

2

4 2
xi Toqsin 9(222 -6 2}_2 (_z.g) )

2
- )\2 _§_< Td cos 0 (_8% > }: 0 (VIL 16)
E 0z

where

=
[\
w

[1:8

Q,Ar =IQ’, IQyAr =1

Equations (VIL.13) to (VIL.16) are too complicated to handle
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directly. Simplificati ons are necessary to rendér the solution
‘tractable.,' The nonlinear terms in the equations arise either from
the variation of the kinetic ene rgy expression or the variation of the
strain energy expression. In analogy to the términology used in
linear vibrations for coupling, the nonlinear terms arise from the
kinetic energy expréssion are termed dynamic nonlinearities and
those from the strain energy expression are termed static non-
linearities. All dynamic nonlinearities involve time derivatives and
the static nonlinearities are premultiplied by the quantity )\i, When
the system is executing harmonic oscillations, its frequency is the
same as the shaking table frequency . When the system is vibrat-
ing in subharmonic motions, the frequency is less than the table
frequency A. Thus, for each time derivative, a factor of at most A
is involved to muitiply the dynamic nonlinearities. Since the shaking
table frequency N\ was much smaller than )\.O throughout the

eXpe riment, it is felt that the effects of the dynamic nonlinearities
are negligible compared with those from the static nonlinearities.

It should be noted that all generalized coordinates refer to
the undeformed state of the beam. When the base of the beam is
shaken at a frequency v)\ in the X direction, this has the effecvt of
an inertial loading on the speciménq Mathematically this is repre-
scntcd by a forcing te rm in the £ equation. Neglecting the dynamic
"nonlinearities, the axial inertia terms 82% /8;2, 82:7:] /8;2 and
82"9“ /8-52, and including a forcing term in the € 'equation, equations

(VIIL. 13) to (VII.16) can be written as
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- % + a_g - ysin 0 -
)\O oz 9z
3
= 3 : 2
+Tg| sin 0 3_36 - ?_E‘) 3cos 022201 20 (viL17)
0z 0z dz 0z
2 o a 4
S+ Xo+2L - Poosnt (VIL18)
SO oz

.o 4
23 4 .
RIS S R cos 0 @_8 +3 86) 08 }
)\i VY §74 Qy ( ( )
1 sin e{—a——q 62 e (86 ) } (VII. 19)
0

-Pg - 2y T -1 9_%9. + &1 _‘2_.9
2 2 ww —4 *°d —2
A A 0 E )
o) o ,
- 3+ 4—
inoll . T 3_4 2
+ vsin O e Iﬂsm 0 3 + IQ sin 9 4

’ 2
+2vT, sin@{s1n6% + e )}
- . 06 8 ¢
-1 sin © | cos © —_—— 1+ 3
QR [ { 5% 573 )}
2
4 2 X
+ sin 0 8_2 -6 ———a__ze —@—g )
0z 0z oz

2 ‘2;

+T1 {—6cosze8 9 @)
wWw —2 :
0z oz

2 2 3 4
_ 51112&6 3 8_(2)) + 4@ 8—3 _ (B_E) =0
0z 9z 0z oz

(VII, 20)
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Neglecting £ and 7 in equations (VII.17) and (VIL 19) respectively,

ot /oz , 83Z/8-Z3 and 843/8_2—4 can be expressed in terms of 6,

Z oz

2
_ 2 _
?—g—z—l)cose—fﬂ smG—a—g +cose(99)
9z =2 9z

w
u~t}

2 2
= =VS1n6-?——e- + v cos 8(2_-_6-

oz 9z2

2
4 2
—_fs-z sin 0 8__2 -68_29 (9-_9_ )
dz 0z 0z
2 2 4
+ cos 64428 __a—g +3 (222 ) -(—8-%)
9z 9z 0z 0z

: —J—[{—— +3< <ae>}

Q

(VIL. 21)

e

|

N
iS

Substituting (VII. 21) into (VIIL, 20) and neglecting higher order terms
such as (89/82)4 in comparison with terms like 4(89/82)(836/853),

there is obtained

.. a .. 4 2
2+ JE +fww§__9_%<fd?:.g+1\1(e)= (VIL. 22)
)‘o )\o 9 E oz
where
3 2. 2
N(e) = HEZ Qv 4T |4 28 22 5 (23 ]
2 — —3 —2
0z 0Oz 0z
T, 5% 8%0 [ 90 ‘
+ 5 = (- cos 20) - 3T 2 (= ) (VIL 23)
8z D 5z% ‘oz
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= . : = _= =2 =2 ;= .
and I is definedas T = 00 " 1o (IQY /Iyy)° In obtaining
(VII. 22), Tww is neglected in comparison with Tn' For the speci-

mens tested, 1 is small compared to I_ and leaving out T is
W n W

justifiable.

4. Modal Approach to the Governing Equations

In section 3, the governing equations were reduced to two

coupled partial differential equations; namely,

oa _a-. ce
_l_"g' + Y +§f§ =P cos A\t (VIL.18)
2 2 —4
A A oz
o] [
T oo & . 4 2
2%+ IE +T ) __%Td_a__gﬂ\r(e):o (VIL. 22)
)‘o )‘o W 57 E Bz

and N(8) is given by

2
. 3 2
N(8) = sin 28 L2 +T 42‘? B_g +3 (8—2 ) ]
9z 0z oz
- 2
I 4 2
v 2 8 8 1 . cos 20) - 3T —5-—9-(9-@ ) (VIL 23)
— n —2 —_—
oz o0z

[o>]

It is interesting to note that equation (VII.18) is a linear dif-
ferential equation and is dynamically coupled to equation {VIL, 22),
Equation (VIL. 22) is a nonlinear equation due to theterm N(8). There
is no standard method of solution for a coupled pair of nonlinear
partial differential equations, The method of analysis adopted is
essentially guided by experimental observations and no attempt is

made to solve the equations completely. The motivation for the
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analysis is to show that the possibility of high order subharmonics
is contained in the equations if nonlinear effects are taken into
account. Therefore, simplifications consistent with the general
theme are made whenever possible in order to simplify the algebra.
For the length of beam for which such nonlinear behavior was
observed, the resonant frequencies predicted from the linearized
theory agree well with the experimental values. This indicates that
the linearized theory (Gere's theory) is adequate except for predicting
the subharmonic behavior of the system. Thus, when the nonlinear
terms are included, the same eigenvalue expansion technique is used
to reduce the pair of partial differential equations to a pair of ordi-
nary differential equations. In this approach, it is assumed that the
mode shapes of the system are essentially the same for both the
linearized theory and the nonlinear theory. Such an assumption
seems reasonable on two counts. Firstly, for some nonlinear prob-
lems in continuum mechanics, such as the vibrations of a stretched
string held fixed at both ends, the mode shape for both the linearized
problem and the nonlinear problem is identical. By the linearized
problem is meant the case where the tension in the string is assumed
constant. When the variation of tension during vibration is taken
into account, the problem is nonlinear in nature. Secondly, the mode
shape observed in the experiment when the fundamental "mode" was
parametrically excited did not differ markedly from that of the
fundamental mode when it was externally excited.

In order to simplify the algebra, the case of'asimply supported
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beam is analyzed instead of a cantilever. For the simply supported
beam, the eigenfunctions for both the displacement & and rotation 6
are sine functions. Only two modes are of interest, namely, the mode
which is excited into resonance by the external source, and the mode
which is subharmonically excited. In the experiments it was always
the first mode of the system that was subharmonically excited. There-
fore, in the eigenvalue expansion process, only the lowest mode and

another higher mode are considered., Let

_ . Trz . jmwrz
€ = ul(t) sin —= + uj(t) sin £

(VII. 24)

. Tz . jwrz
v, (t) sin —— + vj(t) sin 2

<D
il

where

§=2,3,4, ...

Substituting (VIL 24) into (VIL, 18), multiplying (VIL 18) by sin (wrz)/L

and integrating through the length of the beam, there is obtained

u e 4
—+ L v + p'u, = q,cos At (VIL. 25)
2 2 1 1171
A A
0 O
where
i/r —
q) = —%r§ P sinilg‘- dz (VIL. 26)
0
and .
L o= IT
M1 = 7

Similarly, multiplying (VII.18) by sin (jrrz)/f and integrating,

there is obtained
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u.,  a ..

S+ X +pte =g cos (VIL 27)
2 2 J] J

A A
o] o]

where
2r l/r—— inrz  — jTr

q. =—5 P sin ™% 47 and p, == (VII. 28)

j ] 0 ) j J

Similar operations apply to equation (VII, 22) and result in two equations

o6 a— e
s T o4+ 87,2 -
5 Vit oy U gy v v) = 00 (VL 29)
A A E
[e] o]
314,31 + @ o+ ST 08y, +F.(v,v.) = 0 (V1L 30)
2V T2 T Maat - RS B DM U L :
A A E
o] o]
where
2r ﬂ/r - — —_
Fj(vl’ vj) = 5 50 sin pjz N(vlsin plz,vjsin pjz) dz

( VIL 31)

sin w.z N(v,sin p.z,v. sin p.z) dz
”1 (Vl P*l :VJ “_] )

The equations (VII, 25), (VIIL, 27), (VIL 29) and (VIL 30) can be written

in matrix form:



- _ 4 . - F 4
1 . 0 0 ) My 0
— — 4
_12_ ay Ip 0 0 4 v - 0 My C1
A 0 0 a u, 0 0
0 1 Y J
0 0 a L v, 0 0
y P J
0 ( q,cos Mt
Fl(vl’vj) 0
P~ =
0 g.cos At -
F.{v,, v. 0
J(Vl VJ) | ]
whe re
= G = 1
C,=T + 2L T =
b Ww £ d ij

(o]

e ©

o

(VIL, 32)

(VII, 33)

It can be seen that Uy is coupled to vy only and wu, is coupled to

Vj. It is possible to make a linear transformation to uncouple the
linear part of equation (VIIL. 32). Let
. N s T (0 )
| a; 2, 0 0 %
vy 1 1 0 0 61
1 Fo= . % > (VIL, 34)
% 0 0 a33 23 %
v, 0 0 1 1 B.
[ J L i G
where
= - = 2 q1/2
I-C I-C. .
-3 ) [ e
312 y o V -
_ L 5 _1/2 (VII, 35)
333 1 I -C,. I -C,.,
=- 3 (_l’:_l + (_lLJ) +4C
434 ay L ay .
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Substituting (VIL, 34) into (VIL, 32) and premultiplying (VIL. 32) by

there is obtained

-
m,; 0 0
0 m 0
__l_ 22
%
0 0 m33
0 0 0
Fl
Fl
+ < .
F.
J
F.
“ J o

where

1, 0 0
0 k22 0
0 0 k33
0 0 0

(VII, 36)
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C
| -y P
my) = alz(all tag) +lapa 1)
o _
Ma2 "a?l(alz”La ) tlaja +1)
_(_:.'1
my, = - 8‘34(213,‘3 +a )+ (a33a +1 )
_(_31 — -
Mgy = a33(""34 Ta))tlagga, +1)
(VIL 37)
a.
_ 11 4
kll“(l'a_,lz)cﬂﬁ
_ M2 4
kyp =1 - q;’cm
a
33 4
k,, = {1l - ==)C.u.
33 ( a34) JPJ
a
34 4
k,, =(l-—=)C.p
44 ( a3 ) Jp'J

In equation (VIL, 36), ar ﬁl’ O’j’ BJ. each represent one mode
of vibration, If the nonlinear terms in (VIL. 22) are neglected, i.e.,

N(®) = 0, both F. and Fj will be zero and the system is completely

1
uncoupled. However, since F1 and Fj are not zero, each mode is

coupled to another mode in a mnonlinear fashion. From (VII, 34),

we have
= + =
vy =0y [31, \f aj+[3j
From experimental observations, only two modes were involved:

the harmonic and the subharmonic mode, Let ﬁj be the harmonic

mode and ay be the subharmonic mode, Then, modes [31 and uj
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are not excited under subharmonic oscillation conditions and can be

neglected. Thus,
1® 9y v.= B, (VII. 38)

and also the second and third equations in (VIIL, 36) are left out in the
analysis. Rewriting (VII, 36), there is obtained
my; 0 | kp O “ File P
1 " + J
=
v Lo my, B 0 Ky d LB Fi(a), B)
c

2 q,cos At

_ a
- 12 (VIL. 39)

C.
-l q.cos At
433 )

It remains to calculate Fl(al, Bj) and Fj(al, ﬁj) as defined
in equation (VIIL. 31). N(8) is given in (VIL, 23) and © is expressed in
a form given in (VII, 24). In order to perform the integration in z,
it is necessary to express sin 20 and cos 20 in terms of elemen-

tary functions of z.

sin 20 = sin (2v;sin pl—z_) cos (Zvjsin ij)

+ cos (Zvlsin p.l—z_) sin (Zvjsin pj-z-)
(VII. 40)

cos 20 = cos (Zvlsin p.lg) cos (Zvjsin pj-z_)

- sin (Zvlsln plz) 51n.(2vj51n pjz)

To express sin (Zvlsin [‘Ll;) etc. in terms of elementary functions of

z and Vl(t), the following identities are used.



-146-
o0
cos (z sin x) = Jo(z) + ZZ Jzi(z) cos 2ix

i=1 |
(VIL, 41)

@
sin (z sin x) = ZZ JZi—l(z) sin (2i-1)x
i=1

where Ji(z) is the Bessel Function of the first kind of integral order
i with argument z. Direct substitution of (VIIL. 41) into (VII. 40)
results in very cumbersome expressions for sin 20 and cos 26,
Since sin (pJ.E) is bounded by unity, approximations are made for
small values of vj(t), is €.,

sin (Zvjsin ij) = Zvjsin ij

(VI 42)

cos (2v.sin p.z) = 1
( i HJ)

Using identities (VIL, 41) and approximations (VII, 42), (VII. 40) can be
written as

o

sin 20 = 2Vj51n(pjz) JO(Zvl) + Z>_, JZi(Zvl)cos (21p1z)

i=1

(09)
+ ZE JZi—l(Zvl)sm (21—1)p.12
i=1 (VIL. 43)
(0.0]

cos 20 = JO(ZVI) + ZZ JZi(Zvl)COS (Ziplz)

i=1

(0o
- 4vjs1n (p.jz) Z JZi_l(Zvl)sul (21-1)plz

i=1

Substituting (VIL 43) into (VII. 23), the values of Fl(vl’vj) and Fj(vl,vj)

can be calculated from (VII, 31) through simple integrations in z.
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A typical integration involved is

£

ﬂ/r _ _
go sin (pjz) sin (1p1z) dz = o

5. . i=1,2,3,...
1]

where ’Sij is the Kronecker delta. The results obtained are:

(0,0}
D |2 )
=) V5085, 2547 8, 25200905 Ty ]

2 2

2r 3.2, ..
+vvj[—23+33 JZj

.2 .
1 Jo- 3j Jz- 3j

3.2 .3 . 3.2, .3, .
SRR IS EPPRPLAC Sl Mo | PYUPN

7

7
B 71.“633', 21177 0

35, 21-11 T2
2.5 1 . 3 3.2

vl Iimg 35l Tvvl(5-5-57-35398; 55
1 ....3 3.2 2

T "3 I8 it BITNE 54170,

421 . 9 9 1 4
Il 3 3 g gt g Tl -3 vLey, Zi+1—6j,21—1]J21}]

(VII, 44)
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QO
Fj(vlvj)zz{gz[vjuo- T +85 2117514)

i=l
4= ) 2 3.2 1 7
Ty In{vl"j[EJ “39.72 33 +’ZJ +4J23+2 7 72;- 2]

3 2

20 _0:.:3,9. 9.2 . .3
AL AR RIRLHPARLAC RILh b I LYo

5 +(j +J3+3 Y

3
3j, 2i-1

3.2, ..
3T 34, 20110 T2

4 33 .5
+JVjZ+ZJ
J

(o]

- 3J
4 1 Yo, %
itvil 3 - TR R

01

7
j, 2iHl” 4 5 , 2i- 3]J21~1

3.2

tu 0+39)3- (5 + 35545457 L+25%-5-547,. 1]

2yt (z¥3i7-i-) Mo5-1

4 2 11 9 1
LT 65, 2017 7 835, 2010 920-17 3L 85, 2607 85, 2410 0 }]

(VII, 45)

where all the arguments of the Bessel Functions are understood to be
2v1(t)°

From experimental observations, the transition generally
occurred at the second bending predominant mode (a mode in which
bending vibrations are predominant and has one node). Therefore,

the case of j = 2 is considered here. For j = 2,
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2. .= 4| 2,5 2 )
Fy(vy,v,) = vEI+T g [v1(4 3, 4 J,) +vv5(6+123 -167,-127,+167 )

2,1 .9 9 Y1, 3.3 |
+8V2(J1+—2-J3——2-J5)+—2—(1 J0+J2)+Zv1jl

(VIL 46)

_ 2 - T ot |2 Sl 1
Folvp vy =vivo (T = J) +1py [VIVZ(() 5307292 3 942 3¢

+v v, (137 - Iy —33 )+v S0z + 207 _- 487

5y +28J)

4

+v,(8 - 8T + 8J4)} (VIL. 47)

Using the relationship

(Vl)n (vl)2 (Vl)
L-1emy P TrEee (VIL 48)

the Bessel Functions in (VII. 46) and (VII. 47) can be approximated in
powers of their arguments for small values of vy When n is odd,
Jn is expandable into odd powers of its argument only. Similarly,
when n is even, only even powers of the argument exist in the ex-
pansion,

The significant feature in (VII, 46) is the form the nonlinearity

takes when expressed in terms of power of variables v, and Ve
Fl(V]’VZ) can be written in the form

o'} 00

) 2i41 | 2 7 o2,
Fl(vl’ VZ) = Z a;vy + v, (t) /,
i=1 i=l
00
+
S z o) +p (t)z Zi-lh) (VIL 49)

i=1 i=1
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where a and bi are the coefficients of the nonlinear terms.
F_(v,,v,) can be written in the form

Similarly,
[0 8] 0
Folv,v.)=v (t)z 2.v2) +v3(t)z B.v2i(t) (VII. 50)
2Vl =V, i1 2 i1 .
i=0

i=1
where Zi and Bi are again coefficients. The asymmetry Fl(vl,vz)
and F (vl, 2) as shown in (VIL, 49) and (VIL, 50) is a consequence of

the approximations of (VII,42), In (VII,42), the higher powers of
(t) are neglected and hence no powers of vz(t) higher than the third
power appears in (VIL. 49) and (VIIL, 50). If the approximations (VII. 42)

were not used, the forms of Fl and F2 would probably be as

follows,

(Z v 1(t)) (Z b,V t))— a b v, (t)
i=0

(VII. 51)
00 ©
_ - 21 1 2
Fps (z ®)( Z v (0) - 3B,
i=1 i=0
Rewriting equation (VIIL. 39) there is obtained
11 o c
—)I-Z—— o + k11 1= Fl(al,ﬁz) - —— q;cos A\t
o)
(VIL. 52)
44 L X C
~Z Po tkygPy = - FylapsPy) - 2, 12908 M

o
Guided by experimental observations, the possibility of a periodic

solution for a. (t) is sought under the condition when f,(t) is excited
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in resonance. The exciting frequency N is assumed to be far away
from the natural frequency of the a, mode and the response of a;
mode to such external excitation is small, Therefore, the external
forcing term in the first equation of (VII. 52) may be neglected.

By a trivial change of the time variable, the first equation of

{VII. 52) can be written in the form

o9

a, ta, = - Fla,B,) (VII. 53)

In the next section, it is shown that a periodic solution for al(t) of

period 2w is possible under special circumstances.

5. Solution of a Parametrically Excited Nonlinear System

In section 4, the equation for the lower mode vibration is

reduced to the form

a + a = - Fl(o.l, 62) (VIL. 53)

where ¥, is given by (VII, 51). For small (32, F, can be approxi-
mated and is given by (VIL. 46) or (VII. 49). Experimental observa-
tions showed that the higher mode was vibrating at table frequency

before the subharmonic oscillations set in. Therefore, 52 may be

taken as
BZ = R cos A\t (VIL. 54)

where R is the amplitude of the higher mode and X\ is the table

frequency.
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In this section, a periodic solution of (VIL, 53) is sought when
‘A is at or near some integral value n. The algebra involved to find
the solution of (VIL. 53) including all the nonlinear terms of F1 is
formidable. Since only the mechanisms producing high order sub-
harmonics are of interest, only terms in F1 that are capable of
producing high order subharmonics are retained. For any one
particular order subharmonic, there are a number of terms in ]:T‘1
which are capable of producing it, Out of these, only the dominant
term is taken in the analysis, qu example, under suitable condi-
tions, both terms a?—lﬁz and alzn_lﬁg are capablc of producing a

subharmonic of order n. Considering both ay and 62 are smaller

than unity, alzn_lﬁg is a higher order term compared to a?—lﬁz.
Thus, only the term a?nlﬁz is retained in the analysis. It should

be noted that a subharmonic of order n 1is the highest subharmonic
possible produced by both terms.
Seeking a probable mechanism to produce a subharmonic of

order n/2, it is proposed to retain only three terms in F The

10
three terms retained are o.;n, a?-l, and a;l_lﬁga Using (VIL. 54),

u?—lﬁg can be written as (RZ/Z)(L‘L?_I + a?—l cos 2At); and the three
terms retained become a{n, a?’_l and a?-lcos 2\t. For consistency,

it is required that m be odd and n be even so that the terms re-
tained are actually derivable from (VII. 49) or (VIL. 51). Also, we
consider the case where m is larger than n. Equation (VIL, 53) then

becomes

(X}

a, + a, = - bla;n - bzail—l + b3R2a?_1 cos 2At (VIL. 55)
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where bl’ bZ’ and b3

of the higher mode. Equation (VIL, 55) is a nonlinear ordinary differ-

are positive constants and R is the amplitude

ential equation parametrically excited through the coupling term with
the higher mode. Nonlinear ordinary differential equations of second
order have been extensively treated by many authors. Parametric
excitations of linear systems have also been treated to a fair
extent(lg’ 20, 21). The stability of such a system can be obtained
using Floquet theory and in particular, the theory of Mathieu's
function(zz’ 23). However, very little is known for parametrically
excited nonlinear systems. In the following paragraphs, the be-
havior of such a system is studied. The technique used is a general
perturbational method first introduced by Struble(24), The method is
essentially a combination of the technique of slowly varying parame=

ters and that of perturbations. Assuming a solution of (VII. 55) to be

of the form
al(’c) = B(t) cos (t - ¢(t) } (VII. 56)

and substituting (VIL 56) into (VII. 55), the left-hand side of (VII. 55)

becomes

L.H.S. = [B +2B¢- Bd]cos (t-¢) +[ B¢+ 2B - 2B] sin (t-)
(VII.57)
.To evaluate the right-hand side of (VIL. 55), it is convenient to express

cosn_l(t-¢) and cosm(t—¢) in terms of multiple angles using the

following identities:
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n/2
Zn—lcosn(t—d)) = nCi cos[({n-2i){t-¢)] - -12 nCn/2 (for n even)
‘20 _
' (VIL. 58)
(n-1)/2
Zn_lcosn(t-d)) = nCicos[(n—Zi)(t—dJ)] (for n odd)
i=0

where nCi represents the possible combinations of choosing from n

articles i articles at a time. In the multiple angles expansion, only

the terms that are capable of producing secular terms are retained.
.m n-1

1% and bzul , only the

cos (t-9) terms in the expansions are retained since they are actually

For example, in the expansions for b

the terms which give rise to secular terms. In the expansion of the
term baRzan_lcos 2\t, only the first term in the expansion is retained
because only the highest possible subharmonic generated by such

coupling term is considered here., The right-hand side of (VIL, 55)

can then be written as

BB v,
R.H. S, = - —— Cm_l cos (t-9)- — Cn—Z cos (t-9)
2 _— 2 —
2 2
b3R2Bn_1
+ —— cos 2\t cos| (n-1)(t-d)]
2

(VIL. 59)

The third term in (VII, 59) can be expanded using the trigonometric

identity
cos 2\t cos| (n-1)(t-9)] = -12- cos [ (2N 4n-1)t-(n-1)9]

+ cos[ (2A-h#)t + (n-1)9] (VII, 60)
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It can be seen that when \ = n/Z, the second term of (VIL, 60) becomes
a secular term while no positive values of X can make the first term
a secular term. Since only terms which can lead to secular terms

are retained, the first term in (VII, 60) is left out in further con-
siderations. The second term in {VII. 60) can be written in the form

-lz[cos (t-d)cos ¢ - sin {t-¢) sin o¢]. Then, (VII.59) becomes

ble m bZBn_1 n-1
R.H. S, = - — Cm_1 cos (t-¢) - — Cn—Z cos (t-¢)
2 2 2 z
b RZBn-l
+ SN cos (t-¢)cos ¢ - sin (t-9) sin o| (VII, 61)
2n-l
where

o= (2N - n)t + nd {(VIiI. 62)

Equating (VIL. 57) and (VIL 61) with an examination of the ‘terms

suggests the following distribution:

-1
b, B b.B"
ao o ° 2 1 m 2 n_l
B+ 2Bd - B¢ = - ——'—Z ) Cm-—l_ —-————Zn_z Cn-Z
2 2
b3RZBn_1
+ 1 cos o (VII, 63)
2

e e e b3Ran'1
B¢ +2B¢ - 2B = - ~— sin o (VIL, 64)

2 .

If the variational parameters B(t) and ¢(t) are slowly varying, the
time derivatives of the parameters are small and can be considered

highcr order terms compared with the parameters. Neglecting higher
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order terms in the left-hand side of (VII. 63) and (VII, 64), there is

.obtained
m n-1
o b.B b_ B _
Bo(t) = - 1 m~ _ 2 nlc
2rn m-1 2n—l n-2
2 2
b3RZBn'1
+ —————— cos o (VIL, 65)
n
2
. b3RZBn'1
B(t) = —_— sin o _ (VII. 66)
2

Differentiating (VIIL, 62) with respect to t and using (VIL, 65), there is

obtained
¢ n ble m bZBn_l n-1
o) =@m) +5) - T Cma T TaT G-z
) 2
b3RZBn'1
t—=>  _ cos o (VIL 67)
Zn

Equations (VIIL. 65), (VIL. 66) and (VII. 67) are three equations for the
three unknowns B, ¢, and o¢. It is difficult to write out explicitly
the dependence of B, ¢ and ¢ on time t. However, sufficient

information can be obtained using the phase plane technique. From

(VIL, 66) and (VII. 67) there is obtained

b3RZBn
sin ¢
dB _ 2"
do | _blem bZBn—l 1 b3R?.Bn—l
{(2\-n)B + n( C - —— C + cos 0')
m m-1 n-1 n-2 n ,

(VIL 68)
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Equation (VIL, 68) is an exact differential and its first integral is

mtl n
2v-m)B® n PP m PP aa
2 {(m+1) >m m-1 2n--l n-2
3 7
b3R2Bn
+-2— cos o =K (VIL 69)
2

where K is a constant of integration. For given values of m and
n and for each value of K, a trajectory can be constructed from
(VIL, 69) in the B-o phase plane, using B as the polar distance from
the origin and o as the polar angle,

However, it is more instructive to study the singularities in
the B-o phase plane. The singularities are found by equating both
the numerator and denominator of (VII 68) to zero. The possible

singularities are:

(i) B =0, i.e,, the origin is a singularity.

For B # 0, then

(ii})e sino =0 (VII, 70)
and
b n-2
1 m m-1 n-1 2
- C_..B +(2b, "7°C__,- b,R%cos 0) =
2 2
(____2’;‘11) = 0 (VIL 71)

To satisfy equation (VII, 70), ¢ can be zero or m. For given values

of m and n, equation (VIIL. 71) can be solved for B and the roots of
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the equation give the locations of the singularities, Only positive
.roots of (VII. 71) are of interest because B, being the polar distance
in the B-¢ phase plane, is never negative., The distribution of
roots in equation (VII. 71) can be deduced from Descartes' rule for
real roots of algebraic equations. It states that the number of posi-
tive roots is equal to the number of sign changes in the coefficients
of the equation, or less than that by an even number. Zero coeffi-
cients are ignored in such counts. The number of positive roots of
(VII, 71), and hence the number of singularities of {VIL, 68), excluding

the origin, is summarized in Table VII.

Table VII

DISTRIBUTION OF POSITIVE ROOTS OF (VIL 71)
UNDER DIFFERENT CONDITIONS

Conditions on Parametric Excitation "shase” ¢ Number of
Frequency Amplitude Positive Roots
2 n-1
2 -n>0 b3R > 2]1:‘2 Cn-—Z 0 1
‘ 2
2 n-1
ZA~-n>0 b3R < 2b2 Cn—Z 0 1
2
2N -n>0 - ™ 1
2 n-1
2 -n<o0 b,R™ > 2b C 0 2 or zero
3 2 n-2
2
2 n-1
2L -n<0 b3R < sz Cn—Z 0 0
2
2 -n<0 - T 0
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It is interesting to note that the number of singularities depends both
“on the frequency and the amplitude éf the parametric excitation. -

In order to investigate the nature of the singularities, it is
necesséry tb have explicit expressions for the locations of the singu-
larities. However, there is no formula in general to give the roots
of (VIL, 71) explicitly. To overcome this difficulty, a special case is
considered and the nature of the singularities in this case is studied.
The results from this special case are taken as a guide to the nature
of the singularities in the general case,

The special case considered is for the values m =5, and n =4,

In this case, C___, =10, 7'C__ = 3. Equation (VIL 68) becomes
2z —Z
b R2B3sin o
dB 3
48 - Z > 5 (VIL, 72)
o 16(21-4) - 20b;B™ - 4B%(6b,- bR cos o)
Equation (VIIL. 71) bec¢omes
4 2 2 _
5b,B" + (6b,- b;R%cos ¢)B” - 4(2\ - 4) = 0 (VIL, 73)

Solving, there is obtained,

i

. 2 2 2
B2 - T%—bT{ (6b,- byR%cos o) [(6b2—b3R cos ¢)2+80 bl(zx—a_ﬂ

}

(VII, 74)

Only the positive roots of (VIL, 74) are of interest. Considering for
exan’iple, the case when 2\ -4>0, ¢ =0 and b3R2 > 6b2, it is

obtained
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(b3R2 - 6b,) , 80b (2 - 4)
B% = . 1+ (14 > 5.
1 (b,R?- 6b)

i,
2
) (VIL 75)

Different approximations can be made to (VII, 75) under different
conditions. For example, when (2\ - 4) is small and (b,R%- 6b,)°
is large, corresponding to the case when the exciting frequency is at
or near multiples of the fundamental and the amplitude of the paramet-

ric excitation is large, the expression under the square root sign can

80 bl(Z)\ - 4)
2

be expanded into powers of and only the first power

- 2
(b3R - 6b2)
term is retained. Alternately, the exciting frequency may not be
near amultigde of the fundamental while the amplitude of the excitation
is very close to the critical amplitude. Mathematically, this corre-

2

sponds to (2\ - 4) large and (bSRz- 6b small, A different expan-

5)

sion and approximation would then be appropriate. Experimental

observations showed that the exciting frequency was the critical

parameter. The parametrically exciting amplitude was the resonant

amplitude of the higher mode. Thus, it is felt that in all cases con-
80b1(2h - 4)

sidered, it is reasonable to assume > << 1; and the ex-

2
(b3R - 6b2)

pression under the square root sign is expanded into powers of

( X

such approximation, a summary of the locations of the singularities

80 bl(Z)\ - 4)

) and only the first power term is retained. Using
(bR~ 6b,)°

under various conditions is given in Table VIII,
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It should be pointed out that the origin B =0 is always a
singularity in addition to those shown in Table VIII. When
b3R2— 6b2 = 0, all results in Table VIII are no longer valid. The
solution can be obtained directly from (VIIL, 73)

i
.3
B2 = 4_(23%_.?_)) (VIL. 76)
1

In this case, only when 2\ - 4 > 0 can positive real roots exist.
Before the trajectories in the B - ¢ phase plane can be
sketched, it is necessary to know the nature of the singularities, i.e.,
the behavior of the trajectories in the neighborhood of the singulari-
ties. Such information can best be obtained by considering the per-

turbational equations, Let

B=B +B
© (VIL, 77)

¢ =0, +
where B and o give the location of the singularity and g, o are
the perturbational variables to describe the trajectories in the neighbor-
hood of the singularity. Substituting (VII. 77) into equations (VII. 66)
and (VIIL, 67) and ne glecting higher order terms in B and o the per-

turbational equations are obtained.

a8 b3RZBr;'2 - ~ ]
s [Bocos Ny + (n-1) sin O'OB (VII. 78)
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o 5 nb3R2Bn_2 - -
Bo—a?: = {2\-n)B + = [(n-l)cos O'OB - Bosin 0‘00” ]

_ [n(nal) bZBlc')x—Z n—lC smon . pm-l m . ]g

n-1 n-2 n 1 o m-1
2 z ‘ 2
(VII. 79)
Specializing to the case m =5, n = 4, there is obtained
i biR%BZ . .
5T e [Bocos c o +3sino B ] (VIL. 80)
YL (21-4)B +E§I—f—B-§ [3 cos ¢ B - B_sin N]
04t 4 % o 757
9 2,25 47 =
2 B2 +2 blBO] B (VIL 81)

To investigate the nature of the singularities, each singularity

is examined in turn. For example, in case (i} of Table VIII, one

N b3R2— 6b, 20by(2\ - 4)
i ity i =0, B =—-——r—— 11+ From
singularity is o s o 55, T RZ - en 2 .

(VIL, 80) and (VIL, 81), it is found

2.3
~  b,R“B
C}i? = 316 > (VIIL. 82)
do (b5R%-6b,)° ol
Boat =7 | 108, + 6(2x-4) + O{(2x-2) J|B (VL 3)

Equations (VIL, 82) and (VII, 83) can be written in the form

(VII. 84)

where K is a positive constant. Direct integration of (VIL, 84) leads
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to elliptic trajectories in the neighborhood of the singularity. There-

tore, the singularity considered is a center,

Similarly, for the singularity T, = Bi = é—(-%-)lz:i?—— , we
b,R™+6Db
h 3 2
ave
2.3
g b,R™B
dB _ 73 0
T - 5 o (VII, 85) |
do _ 2N IS
B < = -[2(7.)\-4) + of(2x-4) )] B (VIL. 86)

From (VIL, 85) and (VII. 86), there is obtained

aB

~ =K
do

(VII, 87)

gala t

where K is a positive constant. Direct integration of (VII. 87) leads
to hyperbolic trajectories near the singularity., K Thus, the singularity
considered is a saddle point,

To complete the consideration of singularities in the case
2N - 4> 0, b3R2 > 6b2, it is necessary to investigate the singularity
at the origin, BO = 0, Substitution of the value of Bo in (VIL. 80) and
(VII, 81) yields no information. The reason is that the origin happens
to be an inherent singularity of the polar coordinate system also., A
Van de Pol plot {(Cartesian phase plane plot) instead of the polar plot
becomes more suitable in this case,

Let X=Bcos o, Y=DB since. Equation (VIL, 72) is trans-

formed to
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202,02 205, o
g_b3RY(X+Y)+HX
ax -

> > 53 (VII. 85)
b, REXY(X" +Y9)" - HY .

where

2 2

' i
H = 16(2\-4) + 4b3R2X(X +72)E 24b2(X2+Y ) - ZObl(XZ+Y2)Z

Let X= X0 + fc', Y = Y0 + i, The perturbational equations for X

and 3"(: can be written in the form

dy _ ~ ~ >
S =16(2a-4)X +£(X_, Y )X +g)(X_, Y )Y
~ (VIL. 86)
9X o 16(2N-4) Y+ (X, Y )X + g (X, Y)Y
dt 2'70" "o 2'70 "o
where £(0,0) = £,(0,0) = g(0,0) = g,(0,0) = 0. (VIL 87)

The nature of the singularity at the origin can be studied using
(VIIL, 86). At the origin, XO = Yo = 0, By virtue of (VIL, 87), (VII. 86)

becomes

dy . - (29X (VIL 88)

ax (21-4)Y

Direct integration of (VI, 88) gives circular trajectories near the

origin, Therefore, the origin is a center for all cases when 2\-4% 0,
Such a conclusion can also be reached from consideration of

the theory of differential equations. It is seen that (VIIL. 55) satisfies

the nonlinearity condition, i.e.,

|bjal® + bal - b R% P Feos 21t ]
lim =0 (VIL 89)
a1~°’0 |0,1]

eq e . 24 .
From theorems on the stability of nonlinear systems( ), it can be
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shown that the stability of (VII. 55) is governed by the behavior of its
linear parts in the neighborhood of fhe origin, The linear part of
(VII. 55) is marginally stable. Hence (VIL. 55) is also marginally
stable near the origin., It can then be deduced that the origin is a
center,

The other singularities for the different cases are studied in
a similar way and their characters are listed in Table VIII. Using
(VIL. 69) and specializing it to the case m = 5, n = 4, the equation
for the trajectories is given by

- 4 b3R2cos oBi 5b1B6
(2\-4)B _ZbZB + 3 - —— = constant (VIIi. 90)

Sketches of the trajectories in the phase plane are shown in Figures
26, 27 and 28.

It can be seen that motions in all regions of the phase plane
are amplitude stable, but the "phase™ ¢ is stable only at the shaded
regions. The net change of ¢ in such regions after one cycle is
zero while the net change is 2T in the unshaded regions. o is defined
by equation (VIIL, 62) where ¢ is the true phase angle of the motion.
Recalling that |2\ - 4| is small in all the cases considered, the
phase angle ¢ is essentially constant when the net change of ¢ over
one cycle is zero, From (VIL, 56), it is seen that the motion of al(t)
has a period of 27 in such regions and hence subharmonic motion is
indeed possible. It is interesting to note that the area of the shaded
area and also the singularity inside the shaded region is highly de-

pendent on the amplitude of the parametric excitation, For the
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CASE (i)
2x-4>0

b,R*-6b,> 0

D

CASE (i)
2\"4> 0

b,R?-6b, < O

FIG. 26

PHASE PLANE DIAGRAM
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CASE (iii)
2\-4 =0
by R*- 6b,> 0

/

\

CASE (iv)
2x-4 =0
bsR? - 6b,<0

- FIG. 27 PHASE PLANE DIAGRAM
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CASE (v)
2rx-4< O
b,R?- 6b,>0

CASE (vi)
27~ 4 <0
b,R*-6b, < O

X

N

FIG. 28 PHASE PLANE DIAGRAM
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exciting amplitude less than a critical value, no shaded area exists
in the cases 2\-4= 0, and the shaded arca is small in the case

2\-4 > 0, The center inside the region is close to the origin in the
latter case. On the other hand, whenthe exciting amplitude exceeds
the critical value, shaded areas exist under all three frequency con-
ditions and the distance of the center from the origin is roughly
proportional to the exciting amplitude., Large amplitude subharmonic
oscillation is possible under such circumstances. This agrees well
with experimental observations that the subharmonic behavior was
observed only when a higher mode was in resonance and hence the
exciting amplitude to the lower mode was large.

The phase plane plots are for the case m =5 and n =4, The
corresponding possible subharmonic oscillation is of order 2. In
view of Table VII, the distribution of singularities in the general
case will be similar and it is reasonable to assume the nature of the
singularities will be similar to the case considered also, Then, it
is indirectly shown that equation (VII. 55) is capable of producing
high order subharmonics under favorable conditions. Equation
(VIL, 55) is derivable from the equations of elasticity and its solution
predicts behavior which agrees well with experimental observations,
It is felt that such nonlinear parametric excitation of the lower mode
through the resonance of a higher mode is a possible, if not the only
mechanism responsible for the observed nonlinear behavior of the
beam.

It must be pointed out that there are observed facts not ex-
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plained by the proposed model. For example, subharmonic behavior
was observed when the beam was excited at the resonant frequency
of the higher mode but no ultraharmonic behavior was observed when
the beam was excited at the first mode. Perhaps this can be par-

~ tially argued that the response of the beam in the first mode reso=
nance is of a much more violent nature than the higher modes. Any
possible ultraharmonics superposed on the resonant response of the
first mode may not be noticeable. Another observed fact was that
whenever subharmonic behavior was observed, the two modes in-
volved were the lowest mode and the "second bending predominant

mode, "

The only exception was with a section @ = 120° at a beam
length of 36". A subharmonic of order % was observed when the
sixth mode (the second bending predominant mode) was excited at
594 cps and subharmonic oscillations occurred at 296 cps, a value
close to the resonant frequency of the fourth mode (the third torsion
predominant Iﬁode). |

It is suggested that further research is necessary before such
observed facts can be clarified. The analysis in the present case is
hampered by the vast number of terms in the governing equations.
Various approximations have to be used to simplify the analysis be-
fore meaningful results can be obtained, Further research can
avoid such difficulty by considering simpler systems, For example,
~ when the section of the beam has two axes of symmetry, the bending

and torsional motions" are uncoupled. Only the longitudinal and

torsional motions are nonlinearly coupled. If there are methods to



-172-

excite the specimen torsionally, the response of the specimen will
consist only of rotation and longitudinal displace’ment, but no bending
displacements. A system under such conditions is simpler to analyze
because the governing equations are a pair of coupled nonlinear
equations instead of four coupled/equations as in the case of a mono-
symmetric section. The difficulty in such an approach lies in the
experimentation. It may be difficult to excite the specimen to execute
pure torsional motion,

Perhaps a more fruitful approach is to study discrete systems
having the characteristics of nonlinear couplings among their gener-
alized coordinates. Such systems are simpler to study because the
governing equations will be nonlinear ordinary differential equations
instead of nonlinear partial differential equations as in the case of a
continuous system. One example of such a system is a beam-
pendulum system studied by Sevin(lg), Struble and Heinbockel(zo),
The system cénsists of a pinned ended beam supported at the ends
of two simple pendulums. The case of free vibration of such a sys-
tem has been studied. In their analysis, higher order nonlinear
coupling terms are neglected and the problem is reduced to a linear
parametrically excited system. Under such circumstances, the only
subharmonic possible .is of order %. It would be most interesting to
extend the analysis to include the higher order nonlinear coupling
- terms between the pendulum motion and the beam motion to study the

necessary and sufficient conditions for higher order subharmonics

for such a system,
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Chapter 8

CONCLUSIONS

The validity of existing theories of the dynamics of thin-
walled elastic beams of open cross section has been examined both
analytically and experimentally. Analytically, a higher order theory
which includes effects of shear strains induced by bending and warp-
ing was constructed and compared with the existing elementary theory
for different boundary conditions. Experimentally, tests were con-
ducted on beams of two different cross sections and varying lengths,
The resonant frequencies were found and compared with the values
predicted by the analysis. Although the investigations were confined
to specific sections, it is felt that generalizations can be made to
extend the results to thin-walled elastic beams of open cross sections
in general,

Comparing the experimental results with the calculated curves
for the different categories of beam lengths, the following conclusions
can be drawn from the investigations:

1. The existing elementary theory gives good predictions of
the resonant frequencies of the first few modes of vibration when the
beam is long., Recalling the definition of long beam in chapter 6,
and that the difference between the higher order theory and the ele-

'mentary theory is the inclusion of the effect of shear strain due to
bending and restraint of warping, it can be concluded that for long
beams, the shear strain effect is indeed negligible; and hence both

theories give the same result.
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2. For medium beam length, the elementary theory is satis-
factory in predicting resonant frequencies of the first few torsion
predominant modes, It overestimates the natural frequencies for the
bending predominant modes. In this range, the higher order theory
is preferred for predicting the frequencies of the bending predominant
modes.

3. For short beams, the approximate theories are satis-
factory in giving the first mode response. Both of them overesti-
mate the frequencies of the higher modes. To estimate the correct
values of resonant frequencies of the higher modes, the curves in

chapter 6 suggest the following empirical formula,

(frequency)truez Z(frequency)higher order theory

- (frequency)elementary theory  (VIIL1)

4. For very short beams, none of the approximate theories
is satisfactory and it is necessary to analyze the system as a shell
structure,

Hence, the function of the higher order theory is threefold.
Firstly, together with the elementary theory, it serves as a scale
to divide up the beam length into the different categories as defined.
In this way, the validity of the elementary theory can be estimated.
Secondly, it is the theory to use when bending predominant modes
are involved since the elementary theory is not adequate in such

instances except for very long beams. Thirdly, when the beam is
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short, the true frequency of the higher modes can be estimated using
the empirical formula (VIII. 1).

‘"The results predicted by the two theories are affected by the
geometric shape of the cross section., For a monosymmetric sec-
tion, it is found that the geometric parameters Tww’ Tww/l_hh and
1 as defined in (IV, 3) give a good indication of the difference in

ccC

results predicted by the two theories for a fixed r/f. When Tww’
—I—uxo/fhh are large and ch is small, the difference in results can be
expected to be larger than if the opposite situations occur. There-
fore, the useful range of the elementary theory as well as the higher
order theory will diminish accordingly.

The occurrence of subharmonic oscillations observed in the
expe riment indicates that linearization of the governing equations is
not valid under certain conditions. The equations for the coupled
torsional and bending vibrations are inherently nonlinear because the
transformation required to express a rotation in terms of rectilinear
displacements is nonlinear. Usually, the transformation may be
considered linear for infinitesimal rotations, Whenever such an
approximation is used, it is implied that no mechanism exists in the
system that will magnify the small nonlinear effects that have been
neglected. In the present case,‘ resonance of the lowest mode may
act as the magnifying mechanism to render the linear approximation
invalid in special circumstances. Since the structural damping for
metals is small in general, resonance is a very efficient magnifying

mechanism. Thus, the most important conclusion from the nonlinear
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analysis is that seemingly insignificant terms can be neglected only
when no mechanism exists that may magnify their effects subse-.
quently,

Experimental observations point to the fact that a necessary
- condition for such subharmonic oscillations is that one of the reso-
nant frequencies of the higher modes being a multiple or near multiple
of the resonant frequency of the mode to be excited into subharmonic
oscillations. Nonlinear vibrations of large amplitude are generated
in the laboratory. Unless it is accounted for in design, such unde-
sirable vibrations may also occur in missiles and submarines where

such beams are used,
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Appendix I

CALCULATIONS OF THE GEOMETRIC PROPERTIES
OF A SPLIT RING SECTION

A circular split ring section is completely defined geometri- -
"~ cally by three quantities: the radius a, the thickness c, and the
semi-central angle & as shown in Figure 3. The origin of the axes
is at the centroid of the section and let OY be the axis of symmetry.
Let the coordinates of the geometric center of the section B be

(O, L), and ¢ be the angle measured from the axis of symmetry as
shown. It is noted in chapter 3 that the origin of the coordinate s
for a monosymmetric section is at the point where the axis of sym-
metry cuts the section. From the geometric properties of a circle,

the following relations are obtained.

s = a (1)
x = a sin ¢ (2)
y=L-acosd | (3)
b =9 @

N

The valuc of L. is found by noting 5 yc ds = 0, giving
s

_ asin ®
L= —5— : (5)
' , o)
I =5 xzc ds = a3cS‘ sinzd) da¢
\XX s ) _@
= 29c(® - sin & cos ®) (6)

The next step is to determine the shear center C, (aX, ay).,
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From symmetry, a_ = 0, It can be shown(4) that

a =L--fl—-—wa c ds

Y xx"Ys B
where
: 2
wpls) = 2a"¢
= twice the area swept by the radius moving along
the section starting at s =0
Therefore,

o .
a ZL—T_I_S a4c¢sin<l>dcl>
xx Y -d

_asin®  2a(sin @ - & cos @)
) ® - sin ® cos @

-a(®d sin & + sin2d> cos & + 2<I>2cos @) (7)
(® - sin ® cos @)

From (III. 7), the expressions for h(s) and n(s) are determined,

his) = (x - aX) siny - (y - ay) cos ¢
- 2a(sin & - & cos P)
=2 (& - s 3 cos &) °°° ¢ (8)
and
ns) = (x - aX) cos¥y + (y - ay) sin ¢
2a(sin ® - ® cos ®) .
(® - sin ® cos D) sin ¢ (9)
s
w(s) =S. h ds

0

_ .2 2(sin @ - ® cos &) .
- e [q” (& - sin & cos @) Sm‘i’] (10)
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With the expressions for h(s), n(s) and w(s) given, all the

rema1n1ng sectional properties can be calculated.

= g (h2 + nz)c ds
s

3 4®(sin & - & cos CIJ) _ 4 sin $(sin & - & cos &
=2a"c |® + > )
[ (® - sin @ cos @) ¢ - sin @ cos @ }

]

2 5 3 6(sin® - ® cos D)
-é—ac[;@ ® - sin ® cos @ i‘ (12)

Ihh = §S hzc ds

3c & + 2 (sin & - & cos <I>) _ 4 sin <I>(s1n d - & cos D)
(P - sin & cos c1>)2 (@ - sin & cos @)

sin 2@(sin & - ® cos (I))Z ]

* ® - sin ® cos & (13)
I Ciyhcos;pcds
2 | . . (sin® - & cos &)(® +sin & cos d)
=2a ¢ \:s1n P @ - sin ® cos &) ] (14)

2
Icc—g cos  cds .

S

= ac{® + sin & cos @) (15)
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SUMMARY OF SYMBOLS

Most symbols used are defined., The following list is a sum-

mary of those appearing more frequently in the thesis.

Xy Vr 2

P
.

Area of the cross section

Modulus of elasticity

Shear modulus

Coordinates of the shear center C
Wall thickness of the beam

Length of the beam

Radius of gyration in the X direction
Time

Cartesian coordinates along the principle directions of

the cross section and along the axis of the beam
Poisson's ratio (taken to be 0,33 in all célculations)
Rotation of the section about the shear center
Displacement of the shear center in the X direction
Displacement of the shear center in the Y direction
Density

Frequency

O(u?) = Of the order of n°



