APPLICATION OF ASYMPTOTIC EXPANSION
PROCEDURES TO LOW REYNOLDS NUMBER FLOWS
ABOUT INFINITE BODIES

Thesis by

Herbert Erwin Hunter

In Partial Fulfillment of the Reguirements
For the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, Californis
June 1960



ACKNOWLEDGMENTS

The authoy wishes to express his sincere appreciation to
his advisor Professor 2. A. Lagerstrom for the suggestion of the
probleme and the close guidance given throughout the course of the
investigation. The author is alsc indebted to Dr. 8. Kaplun and
1. Chang for many helpful discussions. IlLastly, thanks are due
Mrs. Alrae Tingley for her capable help in the preparation of the

manuscript.



ABSTRACT

Several limiting cases for viscous incompressible flow are
considered for two emﬁples. The firet example considered is that
of the flow past an expanding infinite ¢ylinder at an angle of attack.

The time dependence of the radius of the cylinder i3 given by the power
law R = At% The second example considered is the flow past & semie
infinite power law body k@f revolution {i.e. R = Ax"} at zero angle of
attack. Both examples are considered for the limiting case of small
Reynolds number. The Reynolds num‘i;;er is based on a characteristic
length obtained from the parameters in the expression for the radiuva.
The second example is aleo considered for the limiting case of the flow
far down streara.

Asymptotic mﬁp&nsieus of the solution valid for the Hmiting
cases considered (i. e. low Reynolds number or flow far down stream)
are obtained by applying singular perturbation procedures. These ex-
pansions are obtalned for 0<m <1 Eégr the firset example and for
04 n<l/2 for the sec@n@. example, 3.‘"‘93: the second example the 2eém
in the low Reynolds number expansion are not obtained in closed form
except for n =1/2. For n< 1/2 the low Reynolds number expansion of
the Navier~Stokes equations is expressed in terms of the solution of the
corresgponding Stokes flow problem. The expansions obtained for the
flow far down stream: on the power law body of revolution have the
character of a very viscous {flow although they are valid for any fixed

Revynolds number,
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I, INTROQDUCTION

1.1, Definition of Purpose

This paper will consider the low Reynolds number flow about
infinite and semi-infinite bodies of revolution. It is hoped that the
consideration of this problem will lead to a better understanding of
low Reynolds number flow in general. The peculiarities of these
bodies bring out many of the fundarmentzl ideas behind low Reynolds
number flow. For instance it is not unusual to find boundary layer
regione of flow along with Stokes-like {low in the same problem.

In this study we shall try to make use of such situations cccurring

in the examples considered to clarify the meaning of low Reynolds
number flow. In .éolvirzg the examples major emphasis is placed

vpon illustrations of the various systematic expansion procedures
which can be used to solve the problems. For this reason the examples
are often sclved by several different methods. The present study also
gives a good opportunity to study the differences between parameter

and coordinate~type expansions.

1. 2.  Hiethod of Presentation

In the study of the low Reynolds aumber flow two examples
are coneidered in detail. In preparation for the consideration of these
examples the expansion procedures to be used are reviewed and some
general aspects of low Reynolde number flow are discussed in Section
2. Section 2 is concluded with the introduction of the coordinate system

and definitions of the variables to be used for the rest of the study. In



Section 3 the first example is solved. The problem is that of the
viscous incompressible flow about an infinite circular cylinder having
a radiue proportional to th, 0<n<1 {t = time}). The cylindef
simultaneocusly moves both normal and parallel to the axis and grows
in size. Due to the simple geometry of the problem the flow may be
gseparated into a cross flow and an axial flow such that the cross {low
iz entirely independent of the axial flow. The cros s‘ flow problem is
the flow normal to the axis of an expanding cylinder. With the croas
flow golution known the axial {low problem reduces to the solution of
a single linear second order partial differential equation with variable
coefficients. The solution is obtained both for the cross flow and
axial flow by means of a parameter type expansion for small overall
Reynolds number.

In E’a@cﬁ@a 4 the second example, namely the viscous incom-
pressible flow about a body of revelution, whose radius grows like
xn, 0£ ndl (x=distance along axis), moving parallel to its axis,
is considered. The uniformly valid expansion is only obtained for the
case n =1/2 where the first term in the expansion is the well-known
Oseen flow about a paraboloid of revolution. The solution for nX 1/2
is only obtained in terms of the Stokes flow about the same body for ’
n < /2. Thus the major difficuity in obtaining the solution for arbi-
trary n is that the Ztokes {low about the body for arbitrary n iz not
known. Several modifications of the standard expansion procedure are
pointed out and discussed.

In Section 5 the study of the second exarmple is gpecialized to
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the flow far downstream. For this case a solution is obtained for éx‘bi-
trary n by use of a coordinate-type expansion. To make it possible

to use the procedures established for parameter-type expansions an .
artificial or eliminatable parameter is introduced. Inprinciple the
solution could also have been obtained without introducing the artificial

parametsr.

I. 3. Previous VWork

The first example, flow about an expanding cylinder at angle of
attack, 15 an extension of the study presented in reference 1 where thé
problem is studied for zero angle of attack, that is, flow parallel to
the axig of the cylinder. In reference 1 this problem has been solved
by use of both the parameter and coordinate-type expansions. The
exact solution iz also obtained for the special cases of a cylinder qf
constant radius and a cylinder growing parabolically in time. In the
vresent paper this solution is extended to the case of non-zero angle
of attack. It is found that for the case of non-zero angle of attack the
problem may be split into an axial flow and a crogs flow. The axial
flow is solved in & manner similar to that used in reference 1 and much
of the discusaion of reference 1 applies equally well to this problem.
The cross flow solution mavy be obtained in a manner gimilar to that
used in reference 2 where a parane ter-type expansion for the low
Reynolds number flow normal to the axis of a circular cylinder is
obtained.

In the second example we consider the low Reynolds number



flow about a power law beody of revolution moving parallel to its axis.
For this reason we shall see that for bodies growing at a parabolic
rate or less the Oseen equations represent a low Reynolde number
limit of the Navier-Stokes equations. The solution of the Useen equa-
tions for flow about a paraboloid of revolution is given in veference 3
and is usged in the present paper in the development of an expansion
of the Navier-Stokes equations for the flow about a paraboloid of
revolution.

The flow far downstream on the body of revolution is solved
by use of a coordinate-type expansion and is very similar to the probe-
lem considered in reference 4 for the flow at large distances from
finite bodies. The problems are similar in that they both may be
solved convmiienﬁv by a coordinate-type expansion. In reference 4
this led to a non-uniqueness which was partially eliminated by the uee
of conservation laws, that ig, an external source of information. In
the present study this non-uniqueness occurred only in the transcen-

dental terms. These points will be discussed further in Section 5.



Ii. REVISW OF ZXPANSION PROCE

1%
LOW REYNCLDS NUMEBER FPLOW

II.1. Expaneion Procedures

Before considering low Reynolds number flow in detail it will
be useful to review some of the fundamentals of the expansion pro=
cedures which will be wsed. There are two types of expansions which»
we shall use, namely a coordinate-type and a parameter-type. Thé
difference between these two types, as their names imply, is that
they are expansions for small {or large) values of a coordinate or a
parameter regpectively. One often has an intuitive feel for the differ-
ence between a parameter and a coordinate from their physical inter-
pretation, but in order to understand the differences between coordinate-
type expansions and parameter<ype expansions it is helpful to under-
stand the mathematical difference between a coordinate aand a para=-
meter.

Thig difference between a coordinate and a parameter ig de-
pendent on the role which the variables play in certain implicit defini-
tions of the function. If the function is given explicitly there ig no
mathematical reason for distinguishing between the variables and calling
one a coordinate and another a parameter. For a detalled discussion
of the differences between coordinates and parameters see reference 4.
In reference 4 it is shown that a coordinate-type expansion must either
be non-uniform or include the exact solution as the firet term. Deaspite
the fact that the coordinate-type expansgions are in genéral not unie

£ ormly valid for the entire flow field they are very useful since one is



-be

often only interested in a certaln portion of the flow field.

These cxpansions are sub-divided again into regular and singu-
lar perturbation problerms. A regular perturbation may be defined as
a perturbation which is everywhere small compared to the undisturbed
systern but a singular p@rwrbat}i@m while having a small integrated
effect, may not be small in some local region. In dealing with singu-
lar perturbation problems it is often necessary to obtain different
expansions valid in the different regions of the flow. Since these
expansions are not valid for the entire flow there will in general be
insufficient boundary conditions for determining them. This difficulty
is overcome by matching the expansions. Thus matching plays a role
analogous to the boundary conditions. For a detailed discussion of
matching see references 1, 2, 3 and 4. For the pregent problem the

matching conditions ave:

Lim U(x€) - UxeE) o o )
EVO [ (€) (2. 1)

where x is in the overlap domain, v and v are expaunsions which
have overlapping domains of validity and (" (€) is a gage factor deter-
mining the order to which the matching is valid. Having obtained two
properly matched sclutions we then wish to construct a uniformly valid
solution. At this point it is ua@é‘ul to introduce the nomenclature of
"outer® and "inner® expansions for the expansions valid near the origin
and infinity respectively. Taking fz ag the inner expansion, £ o 28 the

outer expansion and f

un

as the uniformly valid expansion it is clear



that in general

fun * fI t fo {2. 2)

Since the inner solution may include some of the same terms as the
outer solution there is a duplication of some portions of the solution

in equation 2. 2. Thus we conclude:

fun - t‘k{-fo -G {2. 3)

e

where O ie the portion of fium common to both the inner and outer
solutions. For the problems considered {n this paper it will be suf«
ficient to take:

= =/ L (2. 4)
G 0)(I) Mo L f

However, we should remark that equation 2. 4 ig not true in general

and muet be verified for each problem to which it is applied. A more

w

complete discussion of the difference between the parameter and
coordinate-type expansions including illustrative examples is given in
reference 4 and the fundamentals of singular perturbation theory in-
cluding matching are discussed extensively in references 1, 2 and 5.

In order to define the inner and outer limits in an operational
form it is firet necessary to choose the inner and outer variables.
The cholce of these variables is more e:é an art than a science since
their chéic@ depends on the specific problem being considered.

Une method of selecting these variables which might be called

the intuitive approach is first to determine the undisturbed system.
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Clearly the equations goveraing the undisturbed system will be an
important Eimim For the problems considered here this limit corres~
ponds to the outer lirnit. Then at least one additional limit is requred
to examine the singular region of the undisturbed limit. Ume then
selects the non-dimensional variables such that the equations governing
these limits are obtained from the limit process. A slightly move
rigorous procedure which may help in choosing these variables is to
choose trial variables in terms of one or more undetermined para=
meters. By substituting these trial variables into the original equations
one can determine at which value of the undetermined parameter the
eguations take on a significant form. In general the squations will
take on the éam@ form for a large number of values of the parameter.
Then one tries t{o choose those reduced eqguations which simplify the
problem as much as poesible but cap still be matched, It ig also
desirable that the inner problem retain at least the leading terms of
the boundary conditions near the body and the cuter problem the leading
term of the boundary condition at infinity., One also expects that the
inner limit implies that the observer is relatively near the origin
compared to the outer Hmit. Thus if we designate the inner lmit by
limI and the cuter limit by Hm@ the inner and outer limit processes
are related to their respective variables by the relations:

Lim
Limy U= 50 U (% ,€)

(2. 3)

Limp U = é'_x) U(x,e)
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where X, are the outer variables and Xj the inner variables. At
this point we shall recall the difference between a limit and an ap-
proximate golution. A limit is obtained by letting € = O in the
solution and is thus independent of ~ € while an approximate solution
is an approximation valid for small € which may contain € . The
inner expansion of a solution is defined as the series associated with
the solutions f(X, €) obtained by repeated application of the inner limit;

that is:
f(X€) :Z 5 () f. (Xs) | (2. 6)

is the inner expansion of f(X, €) where:

_o._‘;f‘:__..._ . 3
o=l £ 5 f; = Limg fhs G Ty (2. 7)
7 J/.

+
X x = ioner variables

The outer expansion is defined in an analogous manner. Throughout
this @agaaé we shall make the assumption: the limit of the solution of
the equation considered is equal to the solution of the equation obtained
by taking the limit of the original equation.

We are now able to define the following process as the standard
expansion procedure for a singular perturbation problem. First the
inner and outer variables are determined and the equations for the
inner and outer limits (and any other limit necessary) are derived
by taking the lmit of the squations of motion (written in terms of the

appropriate variables) as the parameter goes to zero (or infinity). One
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then assumes a solution of the sarne form as equation 2. &6 where the
{irst term, fc:’ is the solution of the equations for the inner or cuter
limit, as {he case may be. The solutions are then matched and sub-
stituted back into the coriginal equations written in the proger variables
which leads to the equations for the next termn in the expansion. The
procedure is continued until the desired accuracy is obtained. All of
the singular perturbation problems considered here are solved by this
standard procedure, however certain modifications of this procedure
are pointed out and examplee of these moﬁiﬁca:ti@ms are given. It
should be pointed cut that in the majority of the proklems encountered
it i easiest to obtain the solution by the standard procedure., For
certain problems it is not possible to obtain the solution by the standard
procedure and then certain modifications to the procedure may be use-
ful. Quite often one of the limits will includes the other limit and then
in principle it is only necessary to obtain the one limit; however, it is
usually less accurate and a2 much more complex procedure. A second
objection to this modification is that it hides some of the physical
agpects of the problem.

Throughout this study we shall wish to discuss the relative
order of magnitudes of two quantities. Ve say that the order of 4, (€)

is smaller than the order of §,(€) , © 18, < o {52 { . if:

Lim Jl(e) o
€20 8, (€) {2. 8}

and that the two quantities are of the same order, ol{é‘,? = 0[52; , i



]
Note that it is possible to find S(E) S such that 023,} < 0252 } where
M is any constant. An example of such a case is § =1 ) 5, =

For this case we have:

Lim __€ — '
e;a v.,_)m =0 {2.10)
£ €

and we say that ,5, is transcendentally small with respect to an expan-
sionin §, . Thus if we have an expansion in J, all terms of order

J, may be neglected in computing every term in the expansion.

II. 2. Low Reynolds Number Flow

Since we are primarily concerned with low Reynolds number
flows in this study, it will be worthwhile to obtain an intuitive meaning
for low Reynolds number flow. First we define the overall Reynolds
numnber as:

v

Re = 23— (2.11)

where V and L arve a constant characteristic velocity and length
respectively. In all of the problems considered here there iz a charac-
teristic length, and unlike the prcoblem considered in reference 1 the
Reynolds number based on this length cannot be eliminated from the
problem:. Thus we may deal with parameter-type expansions.

We now consider low Zeynolds number flow as the flow about a

very small object, that is, the flow obtained when the characteristic
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length of the body tends to zero with the length 7//U fixed, and the
observed fixed in epace. Note' that this intuitive definition of low Rey-
nolds number flow only has meaning in connection with a specific
problem, but then it has the advantage that the resulting limit is a
unique solution of the full equations and uniforwn at infinity. Ve also
consider very viscous flow as flow in which the region where the vis«
cous terms are significant is much larger than the local geomstric
length. Py seiting 7 = o0 in the Navier-Stokes eguation we see that
the region of ver'gf viscous flow corresponds to the classical Stokes
flow; however, low Reynolds number flow often has regions which are
not very viscous flows.

The elimination of the apparent contradition which is implied
by this last statement when one uses the historical concept of low
Reynolds number {low (i. e. that the low Reynolds number flow i the

limit a8 7 > ) is one of the advantages of the present concept of low
Reynolds number flow. From the above definition it is easily seen
that low Reynolds number flow cannot be the same as very viscous
flow since low Reynolds aumber flow applies to the entire problem afid
is not a local phenomenon. This may also be seen by the uese of the
following principle: Any equation which governs a uniforraly valid
approximation to the Naﬁer-ﬁtek@s equations for the flow about a body
in an infinite fluid must contain at least one non-zero term which
approximates the dominant inertial or transport term faxr {rom the
body. This is in essence Dgeen's criticism of the Stokes equations

and thus we shall refer to this principle as the (seen criticism. This
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principle may be argued from the fact that the vorticity is produced

at the body. The vorticity produced per unit surface area is finite but
this finite vorticity must diffuse into an infinite fluid and thus i2 is

clear that far from the body the diffusion of vorticity cannot be ime
portant and some other term in the equation raust be dominant unless
all of the othew terms are identically zero. Thus any approximate
equation which neglects all of the termes but the diffusion terms cannot
be valid at infinity and thus the approximation cannoct be uniformly
valid. It follows from the Ogeen criticism that very viscous flow as
defined here cannot be a uniform approximation, while the low Reynolds
number approximation as defined here is a uniform approximation and
thus low Reynolds number flow cannot be the same as very viscous flow,
It also follows from the Oseen criticism that there are some problems
where the dominant transport terms are non-linear such as steady

flow past an infinite plate for which there does not exist any uniformly
valid linear approximation to the Navier-Stokes equations. For these
problems one might expect great difficulty in obtaining uniformly valid
approximations é@ the Naviev-Stokes equations even for very simple
geometries. We alsc note the similarity between the present definition
of the low Reynolds number limit and the outer limit. It is clear that
they both represent the undisturbed system. The main difference being
that the outer limit need not be valid near the body while the low Rey-
nolds number Mmit must be valid everywhere. Thus it is not surprising
that the same ecquations often govern both the outer and the low Reynolds

aumber limits.
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Since very viscous flow is a local phenomenon it is perfectly
consistent to have a bouadary layer itype of flow region when considering
the low Reynolds anumber lirmit of the Navier-Stokes equations. For
semi~-infinite bodies this boundary layer flow mav occur far downstream
simply because given any fixed overall Keynolds number one can always

2 e

proceed sufficiently far downsiream and find a large local or cross
sectional Reynolds nuraber provided the viscous layer grows slower
than the local geometric length. Similarly if the viscous layer grows
faster than the local geometric length one can always go sufficiently
far downstreamn and find a place where the viscous layer is larger
than the local characteristic length regardleses of the overall Neynolds
number. Thus for a body which grows rapidly enough it is always
possible to find a flow which has the character of a boundary layer
type flow. It is clear that these arguments apply in an analogous mane
ner to the case where the geometric and viscous lengths grow in time
rather than in distance. Thus we conclude that for a body growing at
less than a parabolic rate the flow for large time is always of a very
viscous or Stokes type near the body and for a body growing faster
than a pavabolic rate the flow for large time is always a boundary
layer type flow. For {inite bodies it is always possible to choose the
overall Reynolds number sufficiently small {large) to insurs very
vigcous flow (boundary layer type flow) near the entire body and thus

flows,

The Useen equations have also been considered historically as
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the low Reynolds number limit. In general this need not be the case.
The Useen equations may be considered as a linearization about the
free stream. Thus they are valid for the flow at large distances about
any body having zero arvesting powsr. Clearly if we get far enough
away from a f{inite body it will produce a neglizible disturbance on the
free stream and in this region the Oseen equations will be valid for all
Reynolds numbers. There are certain semi-infinite and infinite bodies
such as semi-infinite and infinite needles which possess this same
property {i. e. negligible disturbance of free stream at infinity) and
thus produce flow fields governed by the Useen equations at lavge
distances. However there are other gemi-infinite bodies which do not
posgess this property. For example a @emﬁ;hﬁmite flat plate will
produce a finite ‘ﬁi@'&mﬂ*hanae at very large distances and thus the Opeen
equations do not govern the flow at large distances from a S@mi-ﬁﬁimi&@
flat plate.

For the case of a body which reduces to a semi-infinite flat
plate when the characteristic length goes to mero, such as a two-dimen-
sional parabolic cylinder, the proper ocuter limit of the E\Ea{ri@z‘-ﬁémmg
2quations is the otill unknown flow past a semi-infinite {lat plate.
Clearly problerms such a,a this will be much mors complex than those
which reduce to a body with zere arresting power and thus have the
constant free streaw velocity as an outer limit. All of the problems
considered in this study are of the first type, that is have sero arrbst~
ing power in the Lmit of L - 0.

It is easily seen that at best the Dsecn limit must have & none-
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uniformity at the body since the Useen limit gives the free stream velo-
city everywhere but the no~slip ?:mﬁmda:rv condition gives sero velocity
on the body. The OUseen eguations govern the outer lmit for the flow
about any body having zmero arvesting power. £ they include the inner
equations they will be valid for the entire flow and thus represent a
low Revnclds number limit of the Navier-Stokes equations for the $robe
lem. For example since the Oseen squations include the Stokes eguaticns
we expect that thev will be a uniform low Reynolds number approxima-
tion to the Mavier-Stokes equations for the entire flow field for very
viscous flow. If the flow is not very viscous flow the inner eguations
will be a boundary-layer type eguation and since in general they are not
included in the Ussen equations we oanly expect the Useen equations to
be a valid aﬁ:«praﬁmmim} to the Navier-Stokesg equations at large distances.
Thus we arrive at the following three conditions which are nsces-
sary and sufficient for the Useen equation to be & low Reynolds number
approximation to the Navier-Stokes equations in a glven reglomw
1. ZEither the Useen equations must include the inner equations
valid in the region or the region must be far from the body.
2. The limiting body obtained by letting L - § must have
zero arresting powsesz.
3. Linearization about the free stream must lead to the Useen
eguations.
If these conditions are satisfied over the sntive flow the Oseen equations
are a uniform low Heynolds number approximation to the Navier-Ztokes

equations. Ve note that if conditions 2 and 3 are valid they will hold
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for the entire flow field; however, condition 1 may be satisfied fmiy in
a certain region of the flow ﬁeld. If this is true the Useen escuations
will be a valld approximation to the MNavier-Stokes equations in the
region where condition 1 is satisfied. However, it may not be possible
to determine the higher order terme uniguely without additional infor.
mation since these terms will depend on the flow rezion for which the
approximation is not valid, This is the situation which occurs in the
coordinate-type expansions where some of the indeterminancy may

be removed by use of the conservation laws. Finally we note that the
Useen equations include the Stokes equations and thus condition 1 is
always satiafied for very viscous flow but there are cases for which
condition 1 is satisfied which are not very viscous flows. An example

of such a case is the axtal flow problem in the firat example.
P i3

IL 3. Preliminary Considerations

Before we apply the preceding gensral considerations to the
specific examples we shall consider some definitions that are applicable

to both examples. We shall use the coordinate system defined in fig. 1

balowr:

rdinate Syatem
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it has been etated previously that a characteristic length exists
for both of the exarnples considered. Since the characteristic length
may be defined in a very similar manner for both cases we shall con-
sider them together. Counsider the first example. Restricting our

attention to a cylinder whose radius is given ag a function of time by:

R(t) = At" 0%hn<l {2.12)

Clearly the ﬁ”&ﬁi@ of R{t) to L, where L is the characterisiic length
of the problem, i dlwmensionless. . If U is the characteristic velo-
city of the problem it is clear that one can define L. through the rela-

tHon :

— . — —_—

R(t) _ At" _ (Ut)”
L L

{2.13)

Since n £ 1 sauation 2.13 can be solved for 1. giving:
I
- [A Y -n
[ = (Un)l n {2.14)

A similar process may also be used for the bﬁﬁfj’ of vevolution.
For this case the radius iz a function of the length coordinate vather
than the time and thus the "rate of growth® refers to the rate of growth
in %, rather thag in time. Thus using the preceding problem as a

model we only consider bodies defined by :
R(x) = AX" 0 41 <| (2.15)

Following a similar procedure as before one forms:
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R _ AX". (2&)” 2.16
/[ L L (2.16)
which, since n #£ 1, can again be solved for L giving:
0 ,
[ = AT {2.17)

For the second case, r = Ax", the chavacteristic length given by
equation 2.17 can be shown to be equal to the altitude of the inscribed
right circular cone. Note that for n =1there is no characteristic
length for the problem and the low Reynolds number limit of the prob-
lem is identical to the exact solution!

Ia general we shall find two non-dimensionalizations of the
variables important throughout this study. We shall define these
variables here. Suppose the problem has a characteristic velocity,
T, and characteristic length, L, and a small parameter, € . Then

we define one set of variables by:

* (,("
u" = _5‘
* _ X4
X,( - L
* _ Ut
¥ _ P-Fe
Fr= 5% Ae
- 7 R Y AN,
)

and a second set of variables by:
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Xi = EX;
F = ¢t™ (2.19)
F = P~ Po
PUE

In terms of these variables the incompressible Navier-Stokes equations

may be written:

oOr .

div® ?5‘ =0 (2. 20)
a%‘ I} * % 2
1 d" P" =1L o* =~ ,
a———t* t g grad %z +He grae Rev A {2. 21)
‘“V?} =0 (2. 22)
— C{P = < "
—-——"JE + % gl‘ﬂdﬁ + 7’" ReV 5 (2. 23)

There are additional variables which will be useful for certain portions

of the examples which will be introduced as they are needed.
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11I. EXPANDING SLIDING CYLINDER AT
ANGLE OF ATTACK

11i. . Discussion of Problem

The first example considered is the flow about an infinite
cvlimdér at an angle of attack where the radius i2 a function of time.
Thus R(sx, t) ﬂaeel fig. 1) is chosen independent of Yx" and in fact
we shall restrict our attention to the case for which R{x,t) = At™.

We shall also restrict n suchthat 0 < mn < 1. This problem is
particularly useful since it includes many features of interest, such
as the effects of angle of attack and non-steady effects and yet has
pufficiently simple geometry to allow us to obtain the solution to the
problem. Eif’a@gaﬁse of its simplicity we shall use this example to
illustrate several modifications of the standard expansion procedure.

Because the flow is at an angle of attack the present problem
doee not have axial gymmetry but it does still have a most important
sirnplification, namely, the separation of the axial and cross flows.
This simplification results from the fact that by the conical flow argu-
ment there is no variation of any quantity in the "x* direction (paraliel
to the axis of the cylinder) which implies that 1§§ = 0. It is easyto
see that this will lead to a separation of the axial and cross flow, since

the axial velocity only enters the cross flow momentum equation in

[
terms of the form m«é‘% and the continuity equation in the term %;%

both of which are identically zero. Thus the continuity equation and
the cross flow momentum equations form a complete system for the

pressure and cross {low velocity.
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Three interesting dimensionless parameters may be formed
from the quantities appearing in the present problem, namely the ratio
of the axial to cross flow free stream velocities and the two Eeynolds _
numbers based on these velocities. Clearly only two of these parac
meters are independent. Thus the present problem has two parameters
which cannot be eliminated from the problem. %We shall only consides
parameter-type expansions for this problem. We shall select one
Reynolds number and the ratio of the two velocities as the two indepen-
dent parameters of the problem. For this problem the choice is quite
clear {rom the fact that the croess flow which is to be solved indepen-
dently has only one parameter, the Reynolds number based on the cross
flow velocity., Thus we choose the cross flow Reynolds number, Re '
and the ratic of the cross flow to the axial flow velocities, X , as the
two independent parameters for the problsm. The ratio of velocities,
of , is the inversge tangent of the angle of attack and is a measére of
the effect of the cross flow solution on the axial flow. These two
independent parareters lead to the following four possibilities for
single parameter expansions: 1) Re — o, fized; 2) « - 0, Re,
finad; 3) £ — o, Rew fixed; and 4) Re, = 0, X fixed. |

The iirkst poseible expansion (i. e. R@W - o, « fized) iz 2
high Reynolds number limit and will not be considered here. The
second pogsibility, expansion for small angle of attack, { X - (, R@W
fixed) is of interest because it shows the relation hetween the present
solution and that obtained in reference . The first method that one

thinks of to compare the present result with reference 1 is simply to
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set « =0 inthe present low Reynolds number expansion. It will cnly
be possible to obtain the approximation for £ small in this manner if
one can show that all of the higher order terms in the expansion remain
small as  ~= 0., This is not true for the present case. Thus taking
the Hmit as A - 0 of the low Reynolds number expansion does not
lead to the low Reynolds number expansion of the solution for A = 0.
If one wants to obtain a solution which can be compared with the solution
presented in refevence 1 they should obtain the expansion for -w &,
Re_, fived. This solution would be valid for « =0 and a small but
fized Reynolds number and thus a comparison would be possible. Howe
ever we will not obtain the expansions for « small or infinite angle of
attack here. Since this is a study of low Reynolds number flow the last
of the possibilities, {Rew -~ 0, o fixed), is of primary interest to us.
To be consistent with our concept of low Reynolde number {low we
vieualize L — 0 and */w fixed as the limiting process correspond-
ing to Re - 0. This is then the low Reynolds number limit of the
problem for which it will be shown that the outer sciuti@m should be
governed by the Useen equations and the inner by the Stokes equations.
The cross flow is identical to the preble;xﬁn of viscous incompres-
sible flow normal to the axis of an expanding circular cylinder. Ve can
only expect to f{ind a solution of this problem for the case of low Rey-
nolds number flow. For n=0 the étea&y low Reynolds number golution
is presented in reference 2. In Section III, 4 we shall extend this solu-
‘tion to the non-steady case with arbitrary n. First we note that when

the body is finite we may always choose the overall Reynolds number



w 2o

sufficiently small to insure very viscous flow near the body. Itis
clear from equations 2. 12 and 2. 14 that the limit L — ¢ reduces the
body to 2 point {in the cross flow plane) which has zero arvesting
power. Thus for the cross flow problem we see that all the conditions
nacessary for the Oseen equations to represent the low Reynoclds
number limit of the Navier-Stokes equations are Qatisﬁed averywhere
except perhaps for very large time. k%"e there{ore expect the {Jseen
equations to govern the outer solutions and the Stokes equations the
inner soclution for the croes flow problem.

Since the cross flow solution iz a function of the characterisgic
length, L, and the equations of motion for the axial flow involve the
cross flow solution and thuéa i, it i possible to determine the proper
low Reynolds number liﬁ'nit for the axial {low directly by taking the
low Reynoldg number limit of the axial flow equations. Thie is done
by holding %w fixed and taking the lmit of the axial equations as
L - 0. Note that this procedure does not work for the Navier-Stokes
equations since th@y‘are independent of L and thus the low Reynolds
number limit (as we have visualized it) applied directly to the MNavier-
Stokes equations does not change them. If is easy to see what the )
axial equation will reduce to in the inner and outer limits. The outer
lirnit of the cross flow velocity is the constant cross flow free stream
velocity. The property that % = § implies that the trangport terms
are all of the form: V %% and thus: V = conmst., corresponds to an
Cseen type linearization about the constant cross flow velocity for the

outer equation. This agrees with the argument that the outer flow iz of
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an Oseen type since the body has zero arresting power. Similarly
since the inner limit of the cross flow solution gives V =0 we see
that for the present problem the inner lmit is the corresponding
Stokes equations. Thus the inner equation will be included in the outer
equations and for this problem the ocuter equations represent a low
Reynolds number lmit of the Navier-Stokes equations. Note that this

statement is true for all values of n between zero and unity.

1iL 2. Eguations and Boundary Conditions <

In this section we shall apply the ideas discussed in Part II
to the present example and cbtain the equations and boundary condis
tions for the ianer and outer solutions. Since Re_, has been chosen
ag the Reynolds number it is consistent to take w as the characteris-
tic velocity of the problem and thus it follows from egquation 2. 14 that
the characteristic length is given by

[ = (%n)?ﬁ (3.1)

where:
R(X,t) = R(t) = At"

0N <l {3. 2}

From the definition of the Reynolds number we obtain:
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We try the variables defined by equation 2. 19 as the outer

variables for the problem where:

E=Rew‘ y U:-w— {3. 4)

In terme of the variablee defined by eguation 2. 19 the bouadary cone

ditionsg for this problem ave:

AT P = oo i:[?-{- r (3. 5)

!
x

Since the body has zero arvesting power ag L - § the outer limit
must be the {ree stream velocity and thus we assume an outer expan=

gion of the form:

= (3. 6)

(3. 7)

— .. B
q, = eolution of equations 2. 22 and 2. 23 with E?;‘:g =0

- This choice of outer variables and expansions will result in a lineari-

zation of the equations without modifying the outer boundary conditions.
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The limit of Re w ™0 holding these variables fixed is equivalent to
making the physical variables very large.

Although we could use the variables defined by equations 2. 18
as the inner variables this would introduce needless complication.
This follows from the fact that near the body we have very viscous
flow and thus only the diffusion terms are important. The derivative
with respect to time only enters the problem in the inertial terms and
thus near the body we may consider the flow as quasi-steady. This
means that it is perfectly consistent to consider the inner limit pro-
cess as an approach to the body at t large thus we shall choose the
outer and inner time variables equal. Replacing the time variable in

eqguation 2.15 by f the inner boundary condition bacomes:

-n

AT pt= 7 §=1 (3.9)

In the limit as Zé«“r_@w - 0 "e¥ ymugt be wellebehaved and it s clear that

the proper choice for the inner "¢"® is:

+ h * (3. 10)
r* = Re, I
And thus we choose as inner variables, r ’ xf. r'%, P‘}, and g
where:
+ h * _
P = Re, F (3. 1)

In terms of these variables remembering that % =z 0 the incompres=-

sible Navier-5tokes eguations become:
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d[v+ - 0 | ‘
% {3.12)

- ¥ -
{3.13)

S’
"
N
=
[
.‘.
<

where:

“I*:ZJ (Re,).”, (% ) (3. 14)

M
:Z J;‘(Rew) T(CE) (3.15)
m=|

IIL. 3. Initial Conditions
From eguation 3. 9 we see that there is some difficulty at

f =0. If one computes the source strength, , due to the velocity

of expansion of the body one finds:

Q= fﬁ dn—p_rrnR nogEn

(3. 16)

Thus we see that the source strength iz only {inite for all time if

n=1/2. For n < 1/2 the source is infinite for Z =0 andfor n > 1/2

the source strength is infinite for infinite time.

At ¥ = o the infinite source does not lead to a non-uniformity

in the expansion because the velocities in the flow region remain finite,



but the inner eguations change character completely when:

~ ) : )
f <0 {—R—;‘%—n} {3.17)

The essential reason for this phenomenon, which is due to the presence

of the crose flow and does not occur in reference 1, is that the local

cross flow Reynolds number, R(;) £

. ceases to be small. Note that
omission of the problem for 7 large does not invalidate the present
expansion because of the parabolic nature of the equations. Since the
fexact” problem is governed by the incompressible Navier-Stokes
equations an infinite source strength at F =0 implies infinite velo«
cities over the entire flow field at that time. Thus neglecting the
inertial terme is not valid for all time and in particular the expansion
congidered here is noneuniform at 7 =0 for n < /2. For this case,
n < 1/2, the singularity at £ =0 affects the initial condition for

the problem. Thus we prescribe as the initial conditions for ah@"’@mct"

problem:
Re. T
= n e
o w r
As T ¥ ﬁ - Fiman ’,'."2 + 7("*) (3. 18)

That is, we are looking for an expansion of the solution of the income
pressible Navier-Stokes equations for the flow past an expanding cylinder
moving at an angle of attack through an infinite fluid such that the ex-
pansion obtained ig uniformly valid in space and time except for £
small and n < 1/2 or £ large. Thus there are two questions to be

answered before proceeding with the present expansions:
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1. What is the order of the effect of the singular term in the
initial conditions for the times when the expansion is valid,
2. What is the order of the effect of the term g(r) in the
initial conditions for the tirnes when the expansion is valid.
The second question is easily answered;since the initial conditions may
select which of several possible solutions are obtained it is clear that
the effects of g{r) may be of order (1} for all time. Thus we must
prescribe g(r) when obtaining the present expansion. For the probe
lems considered here we shall choose g{r} as zero which corres-
ponds to considering uniform rectilinear motion for £ <0 . Since
the first term in equation 3.17 is only singular for n < 1/2 and of

len
order Re

for n = 1/2 it can only affect the pméent expansion for
n < 1/2. Since the first order terms of the present inner expansion
are governed by a steady linear equation the effect of an initial condi~
tion on the leading ferm may be considered as a term added to the

existing solution. For the present case this term would be:

-n
—- nA
G = [Llew Ir (3.19)
t i-2n r+
Rl n ~h
The effect of this singular term is of order ew / T . Thus we

M
would expect the effects of the singular term to be less than order 5,

if: Rl~n F{ﬁ
°{Zf ¥ 02( 53) } (3. 20)
[

A similar argument applied to the outer equations leads to a similar but

lese restrictive condition on ¥ . Note that although the argument is
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the same for the non~steady outer equations the solution corresponding
to equation 3.19 is slightly more complex. The result that the condi-
tions imposed on Z: by the outer solution are less restrictive is not
surprising because of the 1/r behavior of the singular term. Equation
3. 20 could also be obtained by considering a "nose expansion® for Z:
small. The application of the nose expansion will be illustrated on the
second example. Thus we conclude that for the present expansion,
-which will only be valid for times satisf{ying equation 3.17 for all n

and also equation 3. 20 for n < 1/2, the effects of the singular terms
in the source strength will be transcendental. Thus in terms of co-
ordinates fixed in the fluid the initial condition for the present expansion

may be taken as:
As £ 40 $ = 2 (3. 21)
or in body coordinates:

(3. 22)

s.lx.t

As F 4 0 f—*'—’:*

I11. 4. Croass Flow Solution

We have pointed out that the cross flow problem may be golved
independently of the axial flow problem. To solve this cross flow
problem we first substitute % = 0 into the outer {(equations 2. 22 - 2. 23)
and inner {equations 3. 12) equatione and note that the axial velocity only
appears in the axial momentum equation. Considering only the two

cross flow momentum equations and the continuity equation the outer
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and inner equations become respectively:

divV =0

— + V grac‘V + gradf’ =V'V
Jt -
P
div. V=0
- . {3. 24)
20-n) gy -n — J'l'_a. JfP-i- _ 42
ey + gr =V V
Ao’ &+ Rey V grad V + gra
and the corresponding boundary conditions become:
for the outer solution:
at fF= o0 V=K )/77-'0 {3. 25)
for the inner solution:
(-n
~ N - = n Re ’
at =7 V =1, Z,_‘“n (3. 26)

We note that the boundary conditions are incomplete. The resulting
indeterminacy will be removed through the matching of the inner and

outer solutions. We have already shown that the outer limit is:
Vv =K (3. 27)

and it ia clear that the innex; limit ¥V = ¢ does not overlap with it. Thus
we must show that there is an overlap domain in which both the inner
and outer solutions are valid. Note that it is not always possible to

find such a domain. However, in the present problem the existence

of an overlap domain follows immediately from the fact that the outer

equations include the inner equations. Thue the inner limit of the outer
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equations yields the inner equations but since the solution of the limit
of the equations yields the same solution as the limit of the solution

it follows that the inner limit of the outer solution must be the inner
solution. Since the inner solution must be included in the ocuter solu-
tion there must be some overlap domain where both sclutions are valid
to some as yet unspecified order ['(€). * This overlap domain will
include every point in the fluid where the inner solution is valid since
for these points the additional terms in the outer solution must be
negligible. This discussion applies equally well to the asymptotic
expansion of these solutions with some minor modifications. Since
the;-e are some terms in the solution which may be of transcendental
order with respect to the outer solution, but #wt of transcendental order
with respect to the inner solution, it is clear that it is not alwaye possible
to obtain all of the terms in inner expansion by taking the inner limit
of the ocuter expansion. However, if both the expansions are valid to
order ['(€) in the overlap domain the expansions may be matched in
the domain.

It is easily ved fied that if a set of intermediate limits is de«

fined by :
_ Lim = h
Lim, g = A0 (r,,t, Re) (3. 28)
where:

-~

-1 Re '{ < offt <ofif
f'* f(ﬁe) } O[ g {f% Zi

® . .
This same conclusion can be reached in a more rigorous manner by
applying the extension the yrem which is discussed in reference 3, p. 589.
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the application of any of these limits to the present problem vields
the Stokes equations. Thus the inner solution is valid for any of these
limits and they must all be in the overlap domain. Thus the matching

condition, equation 2.1, may be written:

Lim \7:"'\_/; -0 {3. 29)
f '/—'(Rew)

To find the inner expansion we substitute equaticen 3. 15 into
equation 3. 24 and solve for each succeeding higher order. It will be
- gt l-n
seen that o{é} =0 {A ﬁ{u','} and thus all terms of order Re —~ are
transcendentally small and thus the equations for the inner solutions

are:
22 + _
V' 7, - gred £, =° (3. 30)
+ —
dlv 7”' : O (3‘ 31)
with the boundary conditions:
+_zh e
AT T=t¢ Tw = O
Thus equations 3. 30-3. 31 are satiafied if we write:
—_— —_ ~ —
Y. = Co(£)7, (3. 32)
£, = CultlF (3. 33)

—
where 70 and }Z are the homogenous solution for the Ttokes equa~

tiong which match the outer limit. Ve note that the inner problem is
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quagi-steady and thus independent of the initial conditions except
through matching which only effects C—m (£) and thus the solution given
for "7‘, in reference 2 ig valid for the present problem for n =0 and

it is sasily verified that for arbitrary n this solution may be generali-

zed to:
T A [ z* T+ gf_n t2f
To= Kltal/znaf) =25 greadr’ - 5 grad 55 (3. 34)
~ 2h + +
_t +2_§___ _ Pz »
7: T2 v pté pt2 (3. 35)

The equations for the terms in the cuter expansion are obtained

by substituting equation 3. § into equations 3. 23 which gives:

3 = (3. 36)
div }m 0
I .3 _g2y= ~ e )
(Jf“f'a—% v )?/m+7rad7'9” :fyn("/t) {3.35’}
m-1
— — o~ d —_—
= - [~ y on
‘fm -/ Z I 7,,1_4- {3. 38)
A 3]
Z,(“’) =0 (3. 39)

Ve must now consider the matching condition. The matching condition

is given by equation 3. 29 which gives (since ['(Re) =1 )

Lim v 1-n
Rew-?0<l+-glc"‘e" Rew) =0 {3. 40)

b 4

Equation 3. 40 implies:
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/
- cC = -
Jl - LRI _”;‘ ? / { (3. 41)

Cw
Ye shall refer to the above matching process as step-1 matching., Now

we proceed to what we shall refer to as step-2 matching which will

—

determine &; . For this we use the condition that 72 must be bounded

—

in the overlap domain. This implies that if we leave out the term 52 72
in the matching condition:

—

(K+§7)-87 -8 7,

2 -0 {3. 42)
é‘l

L/Mf

the expression must be bounded at the origin, thus we have:

Lim Rfé,i—?(é‘,luﬁe:”_;ll“ F)e

- —> Fimité (3. 43)
h >0 J—,

which means that ;gf’i must be the solution of the outer equations which

takes on the value of -K M F as F—o. é’althaugh the above statement
oy
&1
easy to see by intultive considerations what E%; is. Since E}: is the

combined with the initial conditions ie sufficient to determine it is

regponse of the outer sclution to the first-order drag of the body, which
must be a constant since the effect of body growth is not included, it is

clear that Z‘Z must be the solution produced by a constant distribution
of the fundamental eingularities from time t =0 to T which may be

expressed as:

R
2 =477/£ Kdr (3. 44)
! ()



£
7;:477[@ Kdr (3. 45)
0
where' _/___é and E are given by:

Q:;‘Zjv?ﬁt - 9raa/ 9radét (3. 46)
p_ 4l¢) o
£ = T grad (La ) q,;,.@?)
(v, 2)==T{o ’a‘zzt*tz) (3. 48)
¢ 4" T 4m ) 4z .

where [(«, X) is the incomplete garnma function, andthe 477 is chosen
sc that %} has the correct behavior for F - {3, It follows from

equations 3. 47 and 3. 45 that:
P =22 (baF) 3. 49
/ iz (3. 49)

Combining equations 3. 44 and 3. 46 one obtains:

3 £
g' :4F[K[V?§td7’ - gr:d[ é!td»r.] {3.50)
! iz
o o

To evaluate the first integral in equation 3. 50 we substitute
equations 3. 46 and 3. 48 into the eguation for the fundamental solution
of the non-steady two-dimensional Useen equations which gives:

a2

P
(5:3 * aéi" vi )V 6,5 = a(X)48(¢-7) (3. 5la)

and thus Vz ét is equal to the fundamental sclution of the heat equation

or:s
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[re-2z(t-7r) + (£-1)%]
F(2-7)

21t _ €
% ét‘ A (t-7)

and thus letting 2- % : o
E‘ ~ _ P -1
Ve, dT = e’ [e )T ")

¢dT = 41T ” d? (3.53)
o /
z/z
vl ENCOREZICITS)
Flowever equation 3. 5la may also be written as
Vi(Z+2 -y =§(x;) §(2-7) 5
A g, =8k (3. 51b)
which implies:
{3. 54)

— = ——dr -2t +yRp , T =27
JZ 21T 37 t
hus gubstituting equations 3. 52 and 3. 53 into eqa_aﬂon 3. 50 we get:

= z{k e /Z[Ko(" (£ ")] grad{H() b F

/ pi- 23 f+ ey - T F
-+ ro, T 7 )+8 [Kong*E(f;r,%)} (3.55a)

Th

5

N f o
fro
-,)

(7
E‘t’”:‘é‘fe 47 47




The properties of E(t, r) are discussed in Appendix Z where

it is shown that for r small we may write:

E(t)r) =-5T(0,2) +0fr¥{ | (3. 57)

and thus for F small equation 3. 55a becomea:

-—

A =K [a F+7- 4 4-+,-§/”(a,-:;)]+

*n] N}

3rﬂ~dF+0[FA F] (3.5553)

Applying the second order step-1 matching by substituting equation 3. 55
into equation 3. 42 one obtaina:

Lim R+8§-K[baF-7ehat-§r(0,£)]+ £ gad F{

20
A. 5
- JI[R(ARQ;,”'A F+.bn E"- é)+§gr2df]
R n O (3. 58)
- 52 C-; K 1‘4 ﬁew - 0

4
which together with equation 3. 41 iroplies:

"G Eob T+ E-NAE -5 (0,F) (3. 59)

In vreference 2 by an appropriate choice of bl it was possible to choose
c, =0 and thus '77; =0 . For the present example this i3 not cone
venient for two reasons. First it would be necessary to choose b; and
then 4 ; a8 functions of ; which would introduce considerable
complications. Second we would like to choose b; euch that 6 for
the cross flow is egual to § for the axial flow. Thus for the present

example it seems most convenient to choose hi and all similar con-
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stants in the 5‘- as zero. Thus 5; - are given by:

£
& = (s)
{3. 60)
[
6, = "
! /en Re'w’l
We then define:
Cim = Coom (£) + Cypy (3. 61)
Thus from equation 3. 59:
{3. 62)
. = -1 _
Cz)z - 2 *Z") ++7
and thusg
7 = ve (2] + 85, ]7, (3. 63)

We now carry out the second order step-2 matching which gives:

Lim(K+8F +§24 ~5(7+
F-,of IZ J.S?Zé 3, (7, ‘5172)} —> FINITE {3, 64)
{

which implies that ;E is the solution of equations 3. 36 through 3. 39
which matches [C',je (f) + CZJJI,. F as F - 0. Thus we may write %}

as:
-— — ~ - —_ s — ~ -
5‘% = /32 (X4-)t) + Cz,zz +_().2(X4',1‘) (3. 65)

where:



(3. 66)

—
‘()'E{x"/t) is the golution of the homogenecus

aon-steady Useen equations matching

—[n,t.,f*zil’(o,f)j,&" r as F -0

Following the same procedure one f{inds the general solution for §

7, = B, (X, £) + C,, }; + N (X, E) (3. 67)
where :
—— ~ ‘t. P )
5 (R,0)=] [ F dras;
vi =
m-i : (3. 68)
——2 - Nd - [ &5
f Z’ gra Zn-j

—
N,,(%,£) is the solution of the homogeneous

Oseen equations matching Cmz ()l ¥
As F—o0

E;", 5 CT.,, ; are determined by matching

Thus the outer solution is given by equation 3. 8 with the g, given by
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equation 3. 67. The uniformly valid solution is now obtained by applying:

— —

— — — —A ‘. -~ P
Vun = vo +(VI— \/mm) =V, +jm(x4',f) {3. 69)

to equations 3.15 and 3. 67. If we recall that the expansions in equation
3. 69 are defined by equation 2. 6 and define ,&m ( Xf} £) as the part of
the inner solution which is not included in the outer solution we may

write for this pxobl@m:

m
b (X, 2) :Z [Z - Ly 7] §'(Ae) (3. 79)
470 /
Thus for m s1!

+ z*

- . - - - N ~2n
L (X, E)=-K+8,[7-Lim, Z}=5l 52— gred T3 )

And thus the uniformly valid solution for the cross flow may be written:

"
— Y - -t P - . — - — -
K+ . _ , : -
Vun = K &Z*IM(X,.,t)-I- é;[é'(x't)"c"’Z*ﬂi(xj;t)] . 72)
{2
where Ez s S » E ’ _‘-;, , and [l are given by equations 3. 67a,

3.83 and 3. 8],

£

o {3.73)
% = (1" Ré;,")

and similarly the uniformly valid expression for the pressure is:
) m

Pu“-:Z»/g.J‘.

421

{3, 74)

where:
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~2n +
. 7 +2

2
E"‘ y {3. 75}
pef [T aray en ©

f/)_ = presgure corresponding to ff ( f/'.’ 7)

N

-
—

=5

O
11

C,}

—

115, 5. Axial Flow Solution

Setting % = § im the outer equations {equations 2. 82-2. 23)

and inner equations {eqs. 3.12) the ocuter and inner axial momenturm

equations are respectively:

JL(* -3 ~ ~ D

E*Vgradu* = Vux (3. 76)
Z(I-n)aa* I-h - t x +2 s

Re, 2l Re, V grad u™ = V' u (3. 77)

where V i8 the solution of the cross flow problem. It will be shown
that it is possible and most convenient to choose J(fe,) for the axial
flow egual to 4 ( Ra,) for the cross flow. Thus the terms on the left
side of equation 3, 77 will be transcendentally small and we need only

congider the outer expansion for ¥ which is given by equation 3. 72

and may be written as:

N . mo
V=K ,«Z; g (%,7) (3. 79)
4= ,

where :

l
§(Re,) = % Ré;" (3. 79)
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~

‘<xht) :ﬁz“?,';?] + C4 7 + ), (X;-jf) | (3. 50)

N

and the rest of the terms appearing in equation 3. 80 are given by |

equations 3, 35a and 3. 68, The boundary conditions for the problem

ares

for the inner solution:

~ n .
u*=o0 AT Itz £ (3. 81)
for the outer solution:
“*=i As F — o (3. 82)

o -n ‘
Since terms of order Z%%@zw are transcendentally small for the

pregent expansions we neglect them and the inner equation becomes:

Viu* =0 (3.83)

Substituting equation 3. 14 into equations 3. 81 and 3. 83 we get the follow-

ing problem for the terms in the inner expansion:

+2

v 7, =0 (3. 84)

~ N

T = O Ar rt=¢ {3. 85)
The solution to equations 3. 84 and 3, £5 is:

7 = C(E) £ Pin

=C, (¢ e
Lo ¢ (3. 36)

C: ()

mrr————

¢, (£) !

“.
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where C (f) are determined by matching. Thus we may write equation

3. 14 as:
M

* !~
Uz =Z&-(Re,)64-(f)1« ryE (3. 87)

£=1
We have already shown that the outer limit is given by:

¥*
u, (3. 88)

L
x

. e
Thus the first order step-l matching condition to determine "7, iss

L/M ! . 8¢
ﬁ’ew")O(? 57) =0 =89
or !
—L — -~ /'h
o(‘ S by +8,CUE) b R, =0
Thus:
| S
L by A + b,
| (3. 90)
C (F) =~ vy

The equations for the regt of the termes in the outer expansion are deter-

mined by substituting equation 3. 7 into equation 3. 76 which gives:

°0% . g 2 |
—_ t+ & - . = 7T 3, 91
Y 2 -V, 1, R

¥
The existence of the necessary overlap domaln can be shown by an
analysis analogous to that used in showing the existence of the overlap
domain in the cross flow problem.



f :'_Z 7. grad g (3.92)

g(@) =0 ' | (3.93)
A

We note several important differences between the present problem
and the cross flow problem. First the axial flow is completely inde-
pe_ndent of the pressure and thus the pressure for the entire problern is
given by the cross flow solution. Second the axial flow velocity may be
treated as a scalar and we shall make use of this property to distin-
guish between the axial and cross flow terms.

To determine the behavior of 8y for p small we apply the

first order step~2 matching condition:

Lim x*8 - S [E Al Rey + bl B b pa Fee)
o - FintTe

J,

Thus e is the solution of equations 3, 91-3. 93 which for f

{3. 94)

gmall behaves like - o—:ln F . The work is considerably simplified if we
realize that the firet order outer sclution gy must be the response to
a conatant distribution of the fundamental singularities of the outer
aqguations. This means we are cbserving the body at such a hrge
distance that it appears as a eingular force acting on the fluid. From
this physical interpretation it follows that for semil-infinite bodies

one would expect the body to lock like a distribution of singular forces
over the entire length of the body whﬁtz& would depend on the axial varie-

ation of the drag of the body. Since the present problem is an infinite
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body of constant cross section we shall try the fundamental solution

of the outer equation for 2y integrated from t = 0to ¥. Thus we

trys ~
Ty 2
_ BT s r. ‘
;;_ ?.2‘/5z~(xwt r)dT {3.95)
0
where gt is the fundamental solution of equation 3. 91 and given “:‘:s*yfsg
_ Fepzr4gt
4T
s ()= & 3.96)
¢ 4Tt (3.96)

Substituting equation 3. 96 into equation 3. 95 and integrating one obtains:
2/2

e . -
Z:—-—*[Ka(%hf(f:f)] | {3.97a)

o

which for F small becomes:
L. F - - L £ ¥ 4 F
Zz;‘.[,&.r T+l # ZI"(OJ4]+0[I‘/&4/‘} (3. 970}

MNow applying the second order step-l matching one obtains:

Li Lt S L F-T st - 47 (0,7)]

Rew"ﬂ
o on {3.98)
‘ i-n - ~n C ‘&1 H { -
—;[Aﬁew-,arfl«t ] t 6 Cplmle, =0
which togethey with equation 3. 90 implies;
" XCp =~ gthat-5(0,5)-nbat {3.99)

-&fu-m
See Appendix L
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Again it is moet convenient to choovae 'b} = @0 which gives:
|
¢ - -n
z Rew {3.160)
ComL[v-tnt+ L7 (0, %)+ ntnf]

and choosing all of the succeeding constante corresponding to bl as

zero gives 4. = 5“ . 72 is completely defined by equations 3.8 6

4

and 3.100. ¥or convenience we shall again split C; as follows:
C4’=C,JI-(E)+CZJ,- (3. 101)

For example it {ollows from this and equation 3. 100 that:

- L
Cyz = o—t—)+n,e“z]
(3.102)

Cor = L7 4]

The second order step-2 matching gives that g is the soluiion of
equations 3. 91«3. 93 which satiefies the condition that as r - (3,

z“"(ct,z*cz;z)ﬂ';‘ Thus we may write g, as:

Z, = A (%/Z) fCa2p +1); (%‘,5) (3. 103)

£
(Xw?):/vl % Ty ATy

fazf,- 3"442 | (2. 104)
Cop =2 (T b 4)

where !
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0 2( f;-/ £ ) is the solution of the homogengous
part of equation 3. 91 which behaves like

~z[Fr0 )y entE] 4 Fas F—o

Following the same procedure one finds that in general By ™RY be

written:
=8, (X %)+ i F 3.105
A /3m()9)t) C”'”Z + (., (X 7) { )
whera: ~
t
B (%, t)= [ I 5. f, dT d%;
Vig
'f‘m is given by equation 3. 92
?‘; ars given by equation 3. 67 - (3. 106)
e m ig the solution of the homogeneous part
of equation 3. 91 which behaves like
Cm_,g(f) 2 F as f -0
Ciy1 5 Cmy2 20 determined by matching
and:
M
* / m
U, = 7 *Z?:"J, (2.107)
msz={

In principle the vniformly valid solution may be determined in

the same manner as for the cross flow. However one would find that
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is zero. That is:
M .
/[m :Z ['Z - l/H‘( Z'] é./‘(Hew) =0 (3. 1@3}
Pats)

This may be easily verified for specific values of i by direct substi-

tution. From equation 3. 86 it is clear that:

o{g" Z.(i;/{jﬁew)} < o f 5" (3.109)
and thus the inner solution not only does not contain terms which are
of transcendental order when written in outer variables but also it
does not contain any term in the ith order term which does not appear
in the i+ ﬁm’ order term of the outer solution. From this it is clear
that equation 3. 108 must be valid for all values of "i". Thus if we
apply the equivalent of equation 3. 69 to the present case we find that

[/(u’:\ = a:" and thuse that the uniformly valid solution is given by

equations 3. 105 and 3. 107,

III. 6. Modification of the Expansion Procedure

' % %
It has been shown that u contains all of the terms in uy and
thus:
u* = u*
Uun 0 {3, 110}

It follows from equation 3. 110 that we could have obtained the results
given by equations 3. 105-3. 107 without introducing the inner limit by
applying the boundary condition at the body directly to the outer solution.
However, it was seen that in the cross flow there were terms in the

inner expansion which were transcendentally small in the outer expan-
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sions. Thus if one omitted the inner limit in computing the cross flow
the resulting solution would not include those terms which are of order
6 near the body and it would not be uniformly valid to order 6.

Thus for probleme where the entire inner sclution is contained
in the outer solution one might m@&iﬁy the standard expansion procedure
and only consider the outer solution. This could be carried out almost
identical to the standard procedure except one would not define the
inner solution. The matching conditions would be replaced by the
appropriate approximate boundary conditions at the body. Thus as
each succeeding te'rm in the expansion was considered one would
hope to increase the order to which the boundary conditions were
satisfied. Howeves it is easily seen {rom the preceding digcussion
that this will r;o% alwaye be possible. The fact that one can not deter-
mine whether this method will zllow one to obtain a solution valid to
the same order as that obtained by the standard procedure shows the
inferiority of this method compared to the standard procedure. Although
this modification is not in general recommended it is a good illustration
of the relation between matching conditions and boundary conditions and
thus we shall apply this modified procedure to the axial flow. The
problem is defined by equations 3. 76 and 3, 82 plus the additional
boundary condition:

AT F =R E" u* = o (3. 113)
Assuming an expansion of the form given by equation 3. 7 we substitute
equation 3. 7 into equations 3. 76, 3. 82 and 3. 111 obtaining equations 3. %1

through 3. 93 plus:
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M 1-n ,.. ~ {

Lim ) &lRe,) F:(Re, T E)+ &

Re,0 =0 (3. 112)
£ 5”-‘ (Rew) °

at

N
1
Q

Z:O

Since il =0 the problem for 2y is simply the homogeneous solution

of the above equati@ns which takes on the value of at the

!
& 51 (Aew)
body. Again, making use of the fact that gy must be the response
to a constant distribution of the fundamental singularities of the outer

equation along the axis of the cylinder from t =0 to ©T we get:

Z, - .
g = A€ E[m(%ﬂ[(-f;:;{-)] (3. 113)
!
Subsgtituting equation 3. 113 into equation 3. 112 we obtain:

Lim

" Reno A4 (Hw)("/ew R -da¥y-7) (3. 114)

1
%
from which it follows that:
A= A1
T K
l
S, =
U R

and thus ) is again given by equation 3. 97. Thus the problem for

{3. 115)

&> is given by equations 3. 91-3. 93 with the %mundary conditions:

at = Re, 1 (3. 126)
ng Z COS 9
Lim =+ §(Re,) K, Re.,., £ + 5, (Re,
Re 20 F2 ( ) eu) VL) -0
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or:
~M~n >y _
Z(Rewt 6, F) = 3 [€:08) t Cap]
and’
(L= )Pl e 3,117
52'(Aﬁé;" =4 (3. 17)

%e see that the solution of this problem: consists of three parts. First
the inhomogeneous solution which is still given by ﬁ(’z » Bee equation
3.194, and is uniformly valid to order 52 . The solution satisfying

the steady portion of the boundary condition which is clearly given

by ¢ 2, 251 and finally a solution which is equal to Ci:—(g-),é« L7 A Hél;n
at the body. (],(K, f) as defined by equation 3.104 clearly satisfies this
condition and thus 8, is still given by equation 3.103. The solution

thus far is: ,

b(a*=;<'-+5,7/ +J,2[4(E-,5)‘+Cg/zgw*ﬂz()?;,f)] (3. 118)
However, equation 3. 118 satisfies the boundary condition only to order
) ; and thus we must'c@nstruct a third order term which again has two
parts one the nonhomogeneous solution and the cther the homozeneous
solution which cancels the terms in the first three terme of uz of order
5, : at the body. Dividing these terme into a constant part ¢ 2,3 and

. & tirne dependent part 4 3(t) we see that gy is of the form:
= () +¢C,. O 7 {3.119)

and in general:

Z' :ﬂ‘. (2}/ E) + Cc’/,(' Z + -[24(),(;/?/ {3. 120}
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where @i, < 2.i and mi are defined by equation 3. 406. From equa-
tion 3.4120it is clear that the present result iz identical to that
obtained by the standard procedure, but it must be emphasized that
this is an exception and not the general rule. In general the solution
as obtained above will be less accurate than that obtained by the
standard procedure.

A second possible modification of the expansion procedure
is to construct a properly matched outer solution by making use of
the fact that the fundamental solution of the OUseen equations is the
response to a singular force., This method will only work if the
ocuter equations are valid throughout the fluid. If the first order
outer equations are homogeneous one begins the same as in the stand-
ard expansion procedure and obtains both the innsr and cuter equations.
Then one obtains the solution of the inner equations which matches the
outer limit. The drag on the body is then computed from the inner
solution and if the outer equations are valid throughout the fluid this
drag must be the distribution function for the singular forces produc«
ing the outer solution and thus the integral representation of the
properly matched outer solution is obtained immediately from the |
fundamental solution of the outer gguations. The procedure may then
be continued by constructing the next tetrm in the inner expansion so
that it matches the pr@vious terms in the outer expansion. Then the
drag due to this new inner sclution is computed and must be the dis-
tribution function for the corresponding outer solution. The procedure
may be continued until one reaches an order where the outer equations
are no longer homogeneous. Since this procedure only gives that

part of the solution arising from the effect of the preceding outer
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solution on the drag of the body it is clear that any terms in the outer
eguations arising from a different source rmust be obtained in a differ-
ent manner. For example in the cross flow problem of the present
example the terms in the outer solution arise from two sources: 1)
the inner boundary condition, which may be representsd as a force
acting on the fluid and Z) the non-linear terms. Since the non-linear
terms enter in the second order terms it is necessary to add the
particular solution of the outer equations to the solution obtained by
this method for the second and higher order. Thus we see that the
present method is actually a method of obtaining the homogeneous terms
in the solution. From which it follows, that except in the unusual cases
where the problem is homogeneous to all orders, the present met?mé
only yields a portion of the solution. This means that one must be
very careful in applying this method to be sure that all the sources of
the terms are considered. This method is particularly useful in the
present problem for obtaining integral expressions for the 'ﬁi' To il
lusirate the method we shall consider only the axial {low and use ths
pfe#i@usl‘y determined cross flow as a given function and thus the probe
lem ig defined by équa@ions 3,76-3.82. Proceeding as in section III.5

we {ind that the inner solution is given by equations 3,86 and 3.87:

Ur ¥ 57 = - S’L’}EH (5.121)

T
Zince for this inner solution the boundaries are all parallel to the {rece
stream velocity the pressure does not contribute to the drag and thus

the dimensionless drag is proportional to the skin friction coefficient

and given by:



CD = - ﬁ)l:—n ii(f/ o é 5 (F‘ Hé:: Z/L‘n)
o r=z’ x r (3.1422)
_ 0 X#0
5(x) = I X=0

Ve take CD as the distribution function for the singular forces pro=
o
ducing the first order terms of the outer expansion, g g and thus

asgurming the forces were put in the fluid at t = 0 we get:

r
g,f/ ://5t(?'77 %-3.) Cp (5.,7) d7 d5. (3.123)

where 5 i@ given by equation 3.96 and thus in terms of polar coordi-

nates one obtains:

t » - .
e N _ (V-0 5w d)°+{Z-0cos§)%- 2(Z-aCos § JEN+ (F7)°
s S(-Re.' ") 4(F-7)

“iomma|| | raery) € cdrdedr 124

00 ¢

Integrating with respect to ¢ and neglecting terms transcendentally
amall with respect to (6 ) one obtains:

?-’T_r+(t ~7)2

4-(t ) on ) -
/ 4_”.0( dd) dfr -{.oé‘ﬁewf {3.425)

Integrating with respect to ¢ and T we obtain:
| o7

[K (£) +E(——)—-)] {3.126)

where Z{t,v) is given by equation 3.56. Equation 3. 120 is identical
with the solution obtained in section IIl. 5 and thus following the stand-
ard procedure for constructing the next term in the inner solution will
yield the same result obtained in section III. ® and thus from egquation

3, 86:

T2 @ [t (3.127)
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At this point it should be recalled that the present modification will
only give »thc@e terms in the outer solution which arise due to the drag
of the body. For the axial flow we do not have non-linear terms as
an additional source of terms but we do have higher order forcing
functions due to the cross flow and these must be concidered sepa=
rately. Thus if we define ﬁi as the nog-hamogem@@u@ solution of the
outer equation, ﬁi as the terms arising from the non-steady portion
of the drag, and Ji the terms arising from the eteady portion of the

drag one may write:

— X- 7 Tz sz 3.4
G =GO E) + U (% F) + 0 (R ) (3.1428)
where the @i cannot be determined by the present medification of the

standard expansion procedure but clearly are given by squation 3. 106,

Using equation 3. 127 to compute the drag arising from g 4 one obtains:

a A an
. F-R
Cp = 5,2[62,27‘ C,,a(t)] 5 ;,“’f ) | (3.429)

and from equation 3.86 it follows that in general the drag due to the ith

term in the outer solution is given by:
i-1
= . z 3.43
CD,{- 5‘ [Ce,x + C’,I‘(t)}cﬂo {3.430)
and thus in general:
: : t
4 X- £) = .ot %4
5 (5, E) = Cai g ” 5, Co, dT d; (2. 134)
v

Comparing equations 3.423 and 3,434 it follows that:

J(X. ) =¢C,; (3.122)
i ]/ 2,4 Z
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In a manner analogous to that used to obtain equation 3.126 one finds

that the term &ii’ﬁcﬁ’iﬁ) Cmo gives rise to:

~

Zf (E ree (£-1)°
<.z = Ci(M) T T y 439
ﬂ‘((x/’t) - 277.- —-67:-7—‘——— e dT (J ﬁ.).‘))
o

Comparing equations 3. 405 and 3. 428 it is clear that %:he a‘zi as defined
here is the same as that previously defined.

The same process could also be applied to the cross flow.
The process would be identical and the main differences would be
that Q:@ and the fundamental solution would be considerably more
complex and the §3i would be due to the non-linear terms rather than
a prescribed forcing function. This calculation will not be carried
out here. It is interesting to note that this modification of the expan=
gion pr@;cedare illustrates & manner by which one can construct an
approximate solution of the Useen equations if the corresponding Stokes

flow is known.
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IV, POWER LAW BODY OF REVOLUTION
IV.1., Discussion of Problem

The second example we shall congider is the steady incom-
pressible low Reynolds number {low about a power law body of revoe
lution at zero angle of attack., Thus R{x,t) (see fig. 1} is chosen
independent of "t" and is of the form R(x,t) = A Ve agaio require
that 0<n < 1. We shall sse that this problem is more difficult than
the first. Since this problem is quite complex we wish to introduce
as much simplification as possible without destroying the essential
fcatures of the problem. Thus we only consider the problem for
steady flow and zero angle of attack. The specification of 2870 angle
of attack insures axial symnetry. Ewven with these two restrictions
we no longer have the very useful simplification, which ocecurred in
the preceding problem, of being able to separate the auial and cross
flow problems.

One simplification would be to consider the problem for the
special values of n for which the body takes on a particularly simple
shape. One such special value of n for which congiderable simplifi-
cation may be expected is n. = 4/2. The physical reasons for expecting
the solution to be less complex for this case are that both the viscous
layer and the body grow at the same rate and the nose radius i finite.
Since the first order outer solution is the solution of the Useen equae-
tions and the first order nose solution a solution of the Stokes equations
we shall be able to obtain these first order solutions directly from
the exact solution of the Useen equations for the flow about a paraboloid
which is given in Ref. 3.

Thus we shall first apply the standard expansion procedure

which was illustrated on the preceding problem to the present problemn



forn = 4/2.

For the present problem there are three limits to consider,
namely

1. Nose limit

- 2. Inner limit

3. Quter limit
These limits may be thought of as corresponding to the inner, wake
and outer limits of Ref. 4. The nose limit is the limit as we approach
the origin. Since we are near the body and the condition of Re — 0
{for n = 1/2) implies this is a very viscous region we expect the nose
lirait to be a solution of the Stokes equations. Since the nose is clearly
three-dimensional we further expect that the full three-dimensional
Stokes equations will be required, The inner limit is the limit as we
approach the body with x {ixed and corresponds to the inner limit in
the préaeding example. Ve are iuterested in the flow in a region which
is much closer éo the body than the nose. Since we are near the body
we again expect the Stokes equations, however, since we ars relatively
far from the nose we do not expect any variation with x. Thus the inner
equations should satisfy the Stokes equations with ail the devivatives
with respect to "x" equal to zero. Finally since we are dealing with
the flow about a body which has zero arresting power when the charac-
: w.:"iatic length tends to zero the outer limit must be the free stream
velocity, or unity in non-dimensional variables, and the outer solution
governed by the Oseen equations.

There are some problems for which it is advisable to intro-
duce more than two limits. It is clear that once one has two ratched

solutions they may be combined into one solution which is valid for
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the entire region in which either of the sclutions were valid separately.
Thus we may extend the standard expansion procedure to problems for
which t!jere are an arbitrary number of approximate solutions each

valid in a different region and having an overlap domain in common with
the approximate solution in the neighboring region. The procedure is the
same as deocribed in section Il. 1 except that one must apply it firet to
two adjacent regiona. Then having obtained a single solution valid in

this combined region this solution is matched and then combined with the
solution in ancther adjacent region to form still another approximation valid
over all three regions. This process is continued until all of the approxi-
mate solutions are cambined to give a single uniformly valid solution.
Both of the examples in the present s‘tu@.‘y ‘w well as the problems studied
in references 4 and 1 should really be considered as having three limits.
For the firstkemmple congidered here and the problem of reference 1 these
limite are: 1) the limit as one approaches the body at fixed "t" or the
inner limit; 2) the limit as one approaches thg time-apace origin or

the nose limit; and 3) the limit as one tends to infinity frorn the time-
space origin or the outer limit. However, for both of these cases the
only terms of the nose solution which differ from those included in the
inner solution are of transcendental order with regpect to the expansions
considered and thus it is only necessary to introduce the nose limit when
congidering the ?;ra,nscemiental terms or the expansion for small time.

In the study of reference 4 the three limits were 1) the limit as one
approaches the waké for x fixed, the inner (or wake} limit; 2) the limit

as one approaches the body or the nose limit; and 3) the cuter limit. In
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this example all three limits were important but in general only the

inner and outer limits had a common overlap domain and thus only these
two limits were considered in detail. In the second example of the present
study there is 1) the inner limit, that is the limit as the body is approached
with =z fixed; 2) the nose limit or the limit as the origin is approached;
and 3) the outesr limit. For /thia problem the nose eqmatioxis include the
inner equations and thus we can dispense with the inner equations applying
the inner boundary conditions directly to the nose equations. It is cleaxr
that for the linear terms this would not cause any loss of accuracy since
the nose and inner boundary conditions are also identical. However, this
gituation should not be expected in general since eliminating the inner
limit is actually the same modification of the standard procedure as

only using the outer limit in the first example. Thus for the same reason
discussed in the first example we would in general expect the uniform
solutions to be valid o a lower order if only two of the lmite in a three
limit problem were used even though one of the lHmits considered includes
the equations for the neglected limit, In general we also could not expect
to be able to predict how much accuracy is lost without computing the
neglected approximate solution. Al‘th@ﬁgh for the present problem some
of these disadvantages of neglecting the inner limit do not materialize

for the linsar terms due to the accident that the boundary conditions are
the samie for the two limits this luck does not hold for the non-linear
terms. IFor the non-linear terms the inner and nose golutions are forced
by the non-linear effécts in the outer solution. Only the effects at = = §
influence the nose solution, but one would expact the effect of these none

linear terms on the inner solution to vary with "=®. This "x" variation
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is not accounted for unless the inner limit is used,
Thus we shall obtain the solution of the second example by
employing all three limits to serve the dual purpose of obtaining a
more accurate expression for the higher order terms downstrears and
to illustrate the extension of the standard expansion procedure to raore
than two limits. Hrom the discussion above it is clear that up to the
third order terms the solutions based on ueing all three of the limits
must be the same as that obtained ﬁsing only the noge and ocuter limits.
After obtaining the solution for n = 1/2 the solution for arbi-
trary n will be obtained in terms of the Stokes flow about the body.
For arbitrary n we shall consider all three limits. Since the body
has zero arresting power for all values of n considered the outer
solution will still be governed by the Oseen equations for all values of
u. However the inﬁar‘etguatiaas will depend on whether n is greater
t han or smaller tha.ng 1/2. For n smaller than 1/2 the viscous layer
will grow faster than the body and thus if one chose the overall Reynolds
aumber sufficiently small there will be a large viscous layer near the
body and the inner solution will be a very viscous type solution. Dut
if n is larger than 1/2 it will always be possible, given any fixed over-
all Reynolds nurmber, to go sufficiently far downstreara and find a region
where the viscous layer is thin cempa?ed to the body diameter. In this
region the boundary-la yer equations are applicable. Since this region
is far downstream for low Reynolds zzuz?xézar flow, the boundary-layer
equations reduce to those for g flat plate and will not be considered here.
Therefore, we shall restrict our attention for the remalinder of this

chapter to the case of n £ 1/2. It is clear that since the flow is very
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viscous and we are interested in the region near the body but far from
the nose the inner solution will satisfy the Stokes equations with §/8x =0
for n 1/2. Since the flow is a very viscous type near the nose, the
nose equations will again be the three-dimensional Stokes equa tions.
After obtaining the solution for arbitrary n by the standard expansion
procedure we shall show that some of the terms in the expansion which
could not be evaluated by the standard procedure may be evaluated by
use of the modified procedure inwhich the inner drag is used as a forcing

function for the outer solution.
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IV.2. Equations and Boundary Conditions
We shall obtain the equations and boundary conditions forx |
arbitrary n here. - For this problem there is only one characteristic
velocity, U. The characteristic length 1. is given by equation 2. 47

and thus it follows that:

LU = -n
He AU

== T — {4.1)

Following the previous example we try the variables defined by equa=

tion 2,49 a0 the outer variables where:

[y

€ = Re
- {4.2)
u=uv
and thus the outer boundary conditions are:
Ar = f =X ‘ {4. 3)

and the outer equations are given by sstting §/8x = 0 in equations
2.22, 2.23, and 4.2,

The nose problem for the present example ie rmmuch more
difficult than the inner problem was in the preceding example. In
the preceding problem it was seen that the flow near the body was
quasi-steady. The corresponding simplification for the present
problem would be to choose the nose variables such that the terms
involving 8/8x were of higher order, that is for "x" to behave like
a congtant or to choose the nose variables equal to tvhe inner variables.
In the preceding example this sivaplification was justifiable for all
time since near the body the inertial terms were small. We might
ﬁsa the same argument that near the body the transport terms are

srall but 8/8x also appears in the diffusion terms which dominate
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near the body. Thus we see that it is physically unrealistic to set
8/8% = 0 near the body. Thus the nose variables for the present ex-
ample are given by equations 2. 13 and 4. 2 and the Navier-Stokes
equations in terms of the nose variables are given by equations 2. 20

and 2. 21, which for steady flow may be written:

dw*f =0 (4. 4)
N
2_ * _ % - ¥*
v* - grad P = Ry ( rad
/P el g fN) (4. 5)
with boundary conditions:
* _ %N — (4. 6)
AT I =X ? = 0 .
N
We assume a nosc expansion of the formy
M
i X %%
7,2/ 5 00 s
A=t
* M % % ox {4. 7}
P =7 p(xr)s(n,)
A
j:l

%“e shall see that 02/5”} < "Z Hc} where &¢I is a finite integer. Thus
substituting equation 4. 7 into eguations 4. 4 through 4. 6 and neglecting

terms smaller than SM we obtain:

—

€ ¥
div: g =0 , (4. 8)
V*E%“ - 3rad*7q* =0

A
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with boundary conditions:
at r o= x f =0 (4.9}
4 :

Thus solutions of equations 4. & and 4. 3 may be written as:

I

ARNON - (4.10)

{4.12)

1

*
72 B; 7/‘7*

—

where ﬁ*’ and 70* are the solution of the three-dimensional Stokes
{ /

equations for the flow about an arbitrary body of revolution, Thus the

nose solution rmay be written as:

M
Z =2%/ ¢ S (R)
AR
yEy 4.12)
M té.

*Zﬁ‘sme

Note that equations 4. 12 are the nose golution for all values of n. If we

k

specialize to n = 1/2 qr and p;‘ become the solution for the Stokes flow
about a paraboloid of revolution.

For the case of the paraboloid, n =1/2, the solution may be
obtained immediately from the Useen solution for the flow about a para-
boloid of revolution which is reported in reference 3. Here we make
use of the principles on which the pr@aentexpansmn procedure is based.

Namely that the limit of the solution is the same as the solution of the
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approximate equations obtained by taking the limit of the exact equations.
Thus the present derivation serves the secondary purpose of illustrating
this principle. It is clear that application of the Stokes limit to the
Useen equations gives the Stokes equations. Thus if we apply the Stokes
limit to the solution of the Oseen equations for the flow about the para-
boloid of revéluﬁi@n we will obtain the selution; of the Stokes eguations
for the flow about a paraboloid of revolution. The solution presented

in reference 3 may be written as:

~2
~ ~ -7 ~2 o
*:r(/- rco,:f"‘)) + s qradfe "4 T+ (g 72)}
1 Plo 7))/ rio %) |
(4.13)
~2
-7 ~Z
~ e b 2
Y= ro7?) o 7
%
In nose variables we have:
- of_ Lo 7*’&)) ! 4*rtoR7™"
= -—t "1 + ra ) e )
; 4 (l F(al '7:;"‘?2) Re F(DJVb*zﬁe) 3
y %2
"He 75 *2
+e R |
Py Ao T e (4. 14)
'75 Re
? B F(OJ Re7b*2) 9)('*)@“ Re7
Noting that for Re small:
2
'7: Re *2
e ~ [~ Re?
= Re) (4. 15)

F(0,7%R) = 4 Ro - (¥+ 8. 7%") + 7R,
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Thus taking the limit of %’ €, as Re — 0 we get for the nose solution:

o 2 *
ﬁ/* = 14, 777;1 + 3raal [7*2" 75*2,&4 7%

(4. 16)
* J »%2
e bn7
/ Ix®
where . . 2
%2 _ P (-7 - (X)) : ‘7*2- /
7 - P) J b T 4
(4. 17)
PR
' " fu Re

- Of course this solution can also be cobtained directly from equations 4. &
and 4. 9. e note that since the vorticity is normal to the velocity
axial symmetry implies that the vorticity may be given by curl i X).

This implies that the velodty must be given by:
- ¥ ‘ -
/
Substituting equation 4. 18 into the continuity equation we get:

v = - = (4.19)

and substitution of equation 4. 18 into the momentum equation gives:

v*——-—_a__x.. ' 4, 20
77— X {4. 20)

2
VX =0 , ' ‘ (4. 21)
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In parabelic coordinates equation 4. 20 takes a form which makes it
possible to find solutions which are functions of 7/ T only. From

eguation 4. 21 we get:

d 7*(JY
d : 422
J7* T o { )

which has the solution:
2
X=A(L7"+8B) {4. 23)

or in parabolic coordinates equation 4. 19 gives:

d ¢ 2
0_17*7*57* =27 %*:4“'“7* (4. 24)

which has the solution:

¢= A('7*2-t CL7*+ 0) (4. 25)

Thus from eguation 4, 17:

-

j’* :Ajr(jv\ 7*2+5) 4 ?rad*(7*8+ qu 7*}}

| (4. 26)

Applying the boundary conditions gives:

— *E . — - *2
B_—’Z‘Vb ; =727 {4.27)

Absorbing the A into the Si and Ci {see eguation 4. 12) we obtain:
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j* -7 A 7*/}:?_ + 7rad*[7*i 47:2/4 g

/

{4. 28)

1}

77*

ps) »e
‘Jx*jv‘ 7

which are identical with equations 4. 16.

Although we can not in general neglect the derivative with reapect
to "x" if we consider the flow far downstream and take the inner limit
we can neglect this derivative. We have called this the inner limit
because of its analogy with the inner limit of reference 4 which described
the flow in the wake behind a finite b@d{i}’. MNote that the inner limit
corresponds to the inner limit of the preceding example except that for
the present example it i8 not uniformly valid in x. Thusg using the inner
solution of the preceding example as a guide we define the inner variables

ae X , P and 7<7+ where X is defined by equation 2.19 and
n *
rr=FRe r

(4. 29)
+
PR T

where 2* and p’* are defined by equations 2.18. In terms af’ these co-
ordinates the body is given by J*= X¥/.

The inner solution is extremely simple even for the case of
arbitrary n. The inner variables for this problem are given above
and in terms of these variables the Navier-Stokes equations for axially

symmetric flow are:
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Mou 1L a(rty)
e -
Re X rt apt =0

% Jrr_,*jT(f—FUTa ) ;U-n)(,}‘% teF)- A 22 - g—;P;:&
with boundary conditions:
f:x—‘a-{-?;U' =0 Ar rt= gn (4. 31)

We assume an inner expansion of the form:

7=/ ¢ dmsn
4';71 (4. 32)
t o o+
P:ZZG ()()/")Jl-(ﬁe)

L=l

Again making use of the fact that 0[5,,,} < OZHeE where m is a

finite integer we get after substituting equations 4. 32 into equations

4. 30 and 4. 31 and neglecting terms smaller than § :

+
v
o _
orr {4. 33)

+ Ze
jrz‘i = 0
Q_ﬂ + Quj‘
art ort

with boundary conditions:



N i P

S ) A ' (4. 34)

at - X ; 5

The solution to these equmationa is:
- __ = re t+
f=Ah )G g(R)
- (4. 35)

p=o

< +
Note that for n =1/2 if Ci = const. equation 4. 35 could slso have been

—

obtained by taking the inner limit of equation 4. 12 where 7/* and
' !

¥*

are given by equation 4. 28. The inner solution for arbitrary n is
given by equation 4. 35 where the C;(f) and §, (A,) are determined by

matching.

IV. 3. Solution for n =1/2

The inner and noge solutions are given by equations 4. 35 and
4. 12 respectively. The outer solution is valid for all = and thus we
begin by constructing 2 solution near the body which is also valid for
all % (This is possible since we know that the inner expansion is an

asymptotic expansion of the nose expansion. ) Ve define:

= Lim '
Lle-,7:Re—>0 7 (X, 1z, Ae) (4. 36)
where:
t X
”7 -— ._r_.__. x = S
g ! i
(4. 37)
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Note that if El =1, Lim, = Lim,. It is easily verified that Limf of
1 1
the Navier-Stokes equations for the present problem gives the inner
equations. From which it follows that the matching condition between
the inner and nose solutions may be written:
lin, 8 " % 0 ‘ ; (4. 38)

" I'(Re)

For Re - 0, }'; and Xf', fixed we have:
1

2 rz =3
,7* = fl/Xfl -+ 0[?_’—@] (4. 39)

Making use of equation 4. 39 and substituting equations 4.12 and 4. 35

into equations 4. 38 we obtain:

Mo Mt
ZJ“[C‘-LA’;‘E/X{.. - Cj('f,)(fl)dadr;z/xﬁ + 0[%]] fO{é-, f57

oy /;,1 (Re) = {4. 40}
Thua if @f(‘x} ie regular at % = 0 equation 4. 40 implies:
/;1 (Re) = 5/M[ ﬁe ) ' (4. 41}
C.= C; (0) (4. 42)

and thus the properly matched inner and nose sclutions are:



M
—_— s _,,2 -f~ F
I:xﬂw%ZC;(X)S (Fe) |

< (4. 43)

. M
— * + .
7, = 17/ GO
N ! 4
A =1
e construct the solution uniformly valid in x near the body from:
A PN M
- = x S+ i
- + — ° 4?
fpu™ Fy T § - Ly g /s, (4. 24)
L=
which givea:

M .
2 -
i;; %{N $Z0 " 6@ - @5 ojs b (4. 45)
£
From this we see that the nose solution is the uniformly valid solution
near the body for all "x" to order SIM only if Czﬂ(x)r is a constant.
In general we shall now match e% with 7:; to determine @f(@} amé.
Z{% with E}; to determine Cz(ﬁ) and then construct the uniformly valid
solutions frow:

—
—

%un = 791,( + (Z - G’go) (én.‘%&;

‘ .3 - binad I3 l £ i P
where .  is that portion of %y also included in Uy Since for the
A2 . i

2x)
present problem Ci(@) can be determined from Cf(x) it is sufficient
to match QE and “53; and then all three matched solutions can be com-~

bined into a uniformly valid solution. Note that when the inner lmit is

neglected we only determine Cz" and thus we also leave out part of the
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outer solution. The matching condition is:

lJM;i(mz%%'iﬂhi@{}_o

A,~>0 (Fa)
r o= - (4. 473
7 f(Re)

-n
A, } <o[f} <oji}
If we drop the non-steady terimns in equations 2. 22 and 2. 23

and set £ = Re we get as the outer equatmns for the present problem:

v 7, » (4. 48)
’VZ__a
J =
% 7rad7 t gra j—o (. 49)

with boundary conditions:
ag ¥ - w , a; -1 ’ (4. 30)

Ve assume an outer expansion of the forms:
M

T4 ) G )5 (Re)

N

O

L=1

M
:Zf (%, F )5 (Re |
A=

Substituting equations 4. 5] into equations 4. 48 and 4. 49 one cbtains:

Y
VZ

(<. 51)

se (4. 52)

V1

A

<t K\st

4/:;7'{’
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where:

as T ® g =0 o {4. 53)

Note that these resulis are valid for arbitrary n. Thus the firast order

step-1 matching gives:

Lim + Z
fuso [1HC(R)S,(Re) du R} = 0 (4. 54)
From which it follows that:
+ A
¢, (X) =~ {4. 55)
and thus for M =1; E;;u = E?N' Thus the first order calculation of o

proceeds exactly as if we had only used the nose limit. To determine
the behavior of E; near the origin we apply the firast order step-2
matching which by the same reasoning that was used in the first example
gives:

Lim (1 +‘§,Z)—5,c, 5/-*

F-o
51

—> F/mvITE . (4. 56)

which implies that:

Lim — 2
fFoo 57,1'/(,&\47 Z -2 FiwniTE (4. 57)
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where:

. Fo
for ¥ emall 7 x /¥ (4. 58)

From equation 4, 57 we conclude that fg‘; is the solution of eguations 4. 52

g — - E ~ [} 2
with fl = { which goes to ~ 4 b 7 as T — 0. A solution of equations
‘ %

4. 52 expressed in parabolic coordinates is:

F = grad [10. 7%+ 87(69)])- 7 Brio, )

(4. 59)
~ L ~ 2
77 “Aaiﬁ”7 (4. 60)
where
7RI
’ {4. 61)

A, B are arbitrary constanis

Neglecting terms of order Rel/ 2 and substituting equation 4. 59 into

equation 4. 57 one obtainsg:

yod [(A-B) £y T3 - T (B4, =0 (4. 62)
9.

Frowm which we conclude:

A=B=-1 (4- 63)

and thus:

%
See reference 3.
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7=TI(07%) -grad [t 74 (67")]
1
~ 2 (4. 64a)

__ 9
P = ﬁjzn’7

The outer solution will not contain all of the terms in the inner salmién

and thus regardless of the number of terms taken the outer solution for

this problem will not be uniformly valid to order 1. In this respect the

present example is similar to the cress flow problem for the previous

example. For / small equation 4. 64a becomes:

l%:jhA7i7)—j/2d?zf0577 {4. 64b)

Applying the second order step-l matching by substituting equations 4. 12

and 4. 64 into equation 4. 47 one obtains:

— - ~ ~ ~pP — [/ ~
Ié,;_/\jo éL,Z(J +§l[-,( (,&1’72+2’) - grad“/ )—gl[junﬁefz_/ém 72

/ Sd 7 Hé/a cad™ A &
o le) - 9rad T0r B gridT]-5,0, 70 R ] <0 (4 65)

which together with equation 4. 55 implies:

Co=-T+b bt (4. 66)
It ig clear from this that if we choovse:

by =7-tlat = L (4. 67)
CZ = 0. Thus we only need the first term e’)é the inner expansion to

take care of the linear portion of the solution. The second order step-2
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matching i;& unnecessary and EE;; is simply the solution due to the non-
linear terms or:

)

._..n

|
¥

\bsﬁ

/ i (5.)d5. (4. 68)
v ,

I AT AAN @)

—_—

where and f;  are the fundamental solution of the steady axial

i3

symmetric Oseen equation and given by:

N :;VeéA - grad grad fA

5 _ _Bo T 2ro !
/I:IDA = - = 9l‘ac([F( )j;:;Z+r2+Jz+ng >J

R/a X- !,

/ETI'
/ ‘ (4. T0)

d°< duwr

R=J0g)ftrito2-rocoe

F(tK) = elliptic integral of the first kind

However, the third order step~l matching now becomes:

a —- 2. 2 - y
Lim g,gfglz & 7 - (~J,ﬁ*+o+£,c;(f)i‘,+7}

=0
R.>0 5/;_ {4, 71}
2 Zl” 7 v - ~ 15 2
and since for this cage firo f(x AL /92 ¥0)za,(X)4 equation 4. 71
becomes:
Lim [ - t, v § y , =
a, (X C.(Xx) &2 2 [/ 4, 72
fro a‘)+,<)‘¥le,ev,ﬁe]“0 (4. 72)

g 38
See Appendix L
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Thus we conclude:

+ ‘ ~ : g £
CJ(x):mE(x) F PO L] B (4. 73)
In carrying out the step-2 matching we use @%u as the inner solution

and thusg the third order step~-2 matching becomes:

Fo 5 10T 187 1,70 - (65 o a0 7>
-2 (4. 74)
=454 (ﬁ« r/ﬁj)[az(f)” 42(0)]} > FIiniTE
which implies that:
Lim = — vl ﬁ'2~ - ~ ~ _
i {73 t 2,0l 7' -ta /3 ]+ 7 0,0 4 F | = Frwire 0. 75)

Thus we conclude that L% has a homogeneous component which goes to
- 52 - ~

~4 [@300) Lo T H (45(R) - Ay ()l T ] as T — 0. Taking into ac-

count the non-homogeneous portion of qu also we get:

—_— -

7= AL F) + aa(o);z*(g )+ (,(% F) | (4. 76)

or continuing the procedure one finds in general:

—

7 = ﬁ;(%} F)+ ape0) g () F) +10,,(% ) | (4. 77)

and thus making use of equation 4, 46 we have in general for the uniform

polution:

| Mo L
7., = 7*Z°S‘[(f*/,>“i-:(”’ tg + ]+ b (4. 76)
L=

and:



where!

-fie

M .
(4. 79)

755\ = f/"(o) 78 - ‘7/;&[.& 7he (o ’72/’]
B == grad™(47*)

- 3y 7t
= - a;(o) & +
i
ﬂ(X;F)) 1;’ = solution of hormogenecus Useen equations which tends to

-4 qj.,()?)‘djﬂ(o)]_& Foas %-;»@

~

Mo L.
A 5 i
A =portion of , {1, included in g

£73
) F = fundamental solution of steady axial symmetric Oseen
eguations.

[P
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IV. 5. Solution for Arbitrary n.

In this section we shall discuss the extension of the previous
results to arbitrary n. Ve showed in the previous section that the best
way to carry out the expansion procedure is to consider all three lirnits.
it has been pointed out that for arbitrary "a" the inner, nose and outer

limits are still given by equations 4. 35, 4.12 and 4. 51-4. 53 respectively.

—

However ca—*
[

and 77’* are now the atill unknown solutions to the three-
dimensional steady Stokes equations about an arbitrary power law body
of revolution. Thus the difficuity ip obtaining the solutions for az*biﬁ:rary.‘
"n® is not in the expansion procedure but in O%témmg the appropriate
solution of the Stokes equatioaa; Since the nose equations include the
iimmb eqguations and the nose and inner boundary conditions are the same
at the body it follows that for arbitrary n:

- . 2
l’”f, 1_‘* = 4 A rf,/xfzn (4. 81)

Thus we see that equation 4. 45 is valid for arbitrary n provided we
consider i; as the Stokes flow about a body given by I*=¥" . Since
the outer limit is still the free stream velocity the first order step-1
matching between the inner and outer limits will still give ¢/ (¥)=-/ .

The first order step-2 matching will define ;; as the solution of the

w

—

Cseen equations which cancels the unbounded terms in g;*( I’j X, ) as
T — 0. At this point we can no longer follow the procedure for n =1/2

~ identically since g“; and qf may be of such a form that it is not pos~

+
sible to satisfy the second order step-1 matching with (, (X) =0 . Thus
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for n arbitrary it may be necessary to represent g} by:

=4, +C o7 + 11 (4.
Z; 2 2 Z 2

e
where /32 is still given by equation 4. 68 with the appropriate change
in T, ( £). 1 p is the solution of the homogeneous Oseen equations
which tends to -“[Cl(f)—,C:(O)j,l.4 F as T - 0. Thus constructing the

uniformly valid solution we get for arbitrary n:

M
Zz - ip 4, a2 =y T {4. 83)
Foo =415 [C0F +& + 17 ],
A=
whezre:
/
= -
S )
b, = arbitrary constant chosen to simplify result
Cy(%) = -1
Cz"(:?«f} is a function determined by matching
E; is the solution of the CUseen equations whicﬁ cancels
the unbounded terms in 7-/* (FYA,) ag ¥~ @ {4, 84)

- f%f is the solution of the steady Stokes equation for the
flow about a body given by F*= x™

3. = (X, 5. _‘ . -

R AT AN

[ = fundamental solution of steady axial symmetric
Oseen equation

I

solutions of homogeneous Useen equations which tend
* - + ~
to-[C/(X)- /O]l ' as T—0

N,

o
’(H' = portion of q, included in q
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Examining this solution we see that there are three terms which are

e
e

particularly difficult to evaluate., These terms ave ﬂ;* . f and
i

———

_[)_4. . However, if we recall the modification of the standard expansion

——Sn

procedure discussed in section (Il 6) we see that if j/* is obtained we
may express E; and _QJ- in an integral form. To do this we first calcu-
late the drag on the body. The force I per unit area acting on the body

is given by:

S S
F=FP N (4. 85)
where:
,‘;, = PJ‘/ + 64.).
6;" = rate of strain tensor {4. 86)
P =pressure
Thus:
F;“ = PSivé t ExF Cos 6 "E;; Siv €
{4.87)
- drx
6= Tan (——"—)
dx*

The radial forces do not contribute to the drag and thus the drag per

unit length is:

_2Fhk _
CD —7—2— E[Plee‘f'GFJ;[COS@‘Ei;' SING]r*.:S‘('n eéogg.}}
where: -n
Siy 6 = LL——N—;
\/’rXTzum) «rnaﬁéu‘m
'\x-l‘n
Cos & = a(::;zﬁ {4£. 82)
xa(l'n’ +niﬁe
€z = —'—[Qg_ii- o2& 3 . du
RX T 2loF Tax) v Exx T =

L
=<
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and thus neglecting transcendental terms and substituting equations 4. 45

and 4.89 into equation 4. 88 we get:

Cp (F, 7/=5,"{[g*c2)~cj(o))-;— +C (a)[ I, w ] } S(F-RE") (4. 90)

and since this modification will only give those terms in the outer solu-

tion arising from the inner solution:

C‘(0)2+_ﬁj ://:/: (F’ a, Y‘E/)TCD‘(U;S',) dO'dE/ (4-913
[4]
Frowm which it follows that .
00
_ _a_g: ‘QU;* ~pithon o -
7= )7 5% )5, BEATS, FR) 25, (4.92)
o F8"g
o0 _ n )
N (F Re"8" X-5 4.93
ﬂ"Z/[C(f)C(O)]A;e,_,,’ 7 J¥ { }
/ Me

o

Note that equation 4. 93 is also useful for obtaining () ¢ forn=1/2.
Thus we see that the present expansion procedure has allowed us to
reduce the problem for finding a solution of the Navier-Stokes equations
for low Reymolds flow about the body to the problem of finding the Stokes

flow about this body.
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V. BODY OF REVOLUTION FAR DOWN STREAM

V.1l Discussion

In the preceding section we saw that the major difficulty in obtaining
the solution for the arbitrary body of revolution was due to the nose
limit. Thos if one were just concerned with the flow far downstream
one would expect to be able to obtain a simpler solution. “YWe have seen
that this is indeed the case since the inner limit is much simpler than
the nose limit. In this section we shall discuse how this flow can be
studied in a systematic way without using the nose limit. Since we wish
to study the flow far downstream it seems natural to use a coordinate-
tvpe expansion. Thie is very similar to the problem considered in
reference 4 where it was eesential that the flow be studied without the
benefit of the limit corresponding to the nose limit since the only "'zmaae"
limit which could be matched corresponded to the solution of the full
Navier-Stokes equations. Thue we would expect the methods developed
in reforence 4 to apply to the present problem. In addition to expecting
a simpler solution for this case we also sxupect that the coordinate-type
expansion will be valid for all Re. This advantage occurring for infinite
bodies was already pointed out in reference 1 where it was concluded that
this made the coordinate-type expansion more desirable than the para-
meter-type expansion. | The more recent studies of reference 4 have
pointed cut that in general both expansions may be useful since the co-
ordinate~type expansion may also have some gerious limitations, such as

the existence of eigensolutions which are actually those portions of the
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solution which arise in the regions of the flow field where the coordinate-
type expansion e not valid

Ve are interested in the flow far downstream. Thus we ghall expand
for = large. It is easily seen that for x large the outer equations are
atill the Oseen equations since the body has zero arresting power. Re-
stricting our attention to n < 1/2 the flow far downstream is very viscous
and the Oseen equations are valid to the body. Thus the entire flow region
being considered is governed by the Oseen equations. However, we note
that the Dseen equations are actually valid at a large digtance from the
nose even if x is small. Since the flow upstream has no solid boundary
we would expect very little change if we consider the expansion for a
large radial distance from the nose. This is the expansion that‘ Wag cone
sidered in reference 4,and both for reference 4 and the present case the
entire flow considered is governed by the Useen equations to first order.
Thue a straightiorward linearization in terms of some srnall parameter
would lead to an approximate solution of the Navier«Stokes equations
valid for % large. We mavy deal with a coordinate~-type expansion. We
can thus choose a proper form for the coordinate-type expansion and
proceed to find the terms in this expansion. However to enable us to
make use of the procedures developed for parameéter-type expansions we
shall use the method of the artificial parameters presented in reference 4,
It should be emphasiaed that the artificial parameter is iniroduced for
convenience only and in principle the expansion could be obtained without
introducing this artificial parameter. In reference 4 it was shown that

an artificial parameter is a parameter which can be eliminated from the
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problem by a suitable choice of variables. Fora complete discussion

of the artificial parameter the reader is referred to section 2. 4 of refer~
ence 4. However, we shall summarize, without proof, some of the
impértant properties of expansions in artificial parameters, obtained
there:

1. The expansion in an artificial parameter is either non-uani-
form or the first term contains the exact solution,

2. Principle of eliminability--it must be possible to eliminate
the artificial parameter from the solution by a proper choice of the
variables.

3. The ordinary technigque of parameters-type expansion leads
to an indeterminacy. (That is, there exist eigensolutions which may be
added without violating the boundary condition. Sometimes the proper
eigensolutions may be selected by the use of integral Iéws. )

The first and third of these properties follow directly from the
properties of a coordinate-type expansion. For the present problem
we introduce some artificial length R o° ‘our problern now hag two inde-

pendent parameters € and Re where

€ = A, (5.1)

Ve assume € << |/

We have seen that the Cgeen equations should govern the first
order solution and thus we could in principle assume a linearization about
the free stream in powers of € and substitute this into equations 2. 20«

2. 21 with a/m”‘ = 0 and solve the resulting Oseen equations for the first
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order term. However, difficulty would arise in determining the eigen-
saimiom.' That is, we have seen that for an expansion in an artificial
parameter the solution may not be unique and thus we must not only
satisfy the eguations and boundary conditions but also show that we

have obtained all the possible solutions which satis{y the equations and
‘boundary conditions. Ewven for the simplest case {the low Reynolds
number limit) the solution for the first order term as outlined above is
the still unsolved problem for the exact solution of the Useen flow

about an arbitrary power law body of revolution. Thue we see that if
we are to obtain a solution it will be necessary to introduce still further
simplifications. One such simpliﬁcatian would be to divide the ;smblem
into smaller parts as in the previous chapters by introducing inrer and
outey limits.

We know from the previous chapter that the Stokes equations
with 8/8x = 0 may be considered as the inner equations if we retain the
Oseen equations as the outer equations. Although it should be possible
in principle to obtain all of the eigensolutions by repeated diﬁiemmti&fion
of any one of the eigensolutions as was done in reference 4 the complexity
of the Oseen equations makes this quite impractical. Thus we would like
to simplify the outer equations etill further. In reference 4 it was found
sufficient to use the linearized Euler equations as the outer squations.
However, the linearized Euler eguations do not overlap with the Stokes
equations. Thic is easily seen since neither the Euler or the Stokes
equations are valid in that region of the flow where the diffusion and

tfam@p@r& terms are of the same order. This difficulty may be overcome
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by introducing an intermediate Hmit. This intermediate limit is the
same 28 the inner lmit of reference 4 and iz governed by the Oseen
boundary-layer equations. [t is clear that since the Stokes equations
with §/8x = 0 ({(the inner equations) only include the diffusion normal
to the free stream they must be included in the Useen béunﬂary-l&y@x
equations which include both the normal diffusion and the linearized
transport terms. Thus the intermediate and inner limit néﬁ only have
an overlap domain but we zﬁight compietely dispensé with the inner
limit. However, the inner limit is not affected by the non~uniform
region of the solution and thus none of the eigensolutions appear in it.
Thus we may restrict the problem of generating the eigensolutions to
the intermediate limit. There is little extra work in obtaining the inner
solution and as we have seen in the preceding chapters there is always
the possibility of less accuracy dus to terms in the inner solution
which may be transcendental in the other solutions and still appear in
the "uniform® solution. Note that in the above statement "uniiorm"
means the solution which is uniformly valid to some order in the entire
region in which the coordinate-type expansion is expected to be valid!
That is, we are using the methods of the preceding chapters to construct
a uniform approximation to the solutions far from the nose but it is
clear that this solution can only be valid in those regions where the
"axact® solution i valid. The resulte of reference 4 indicate that the
Oseen boundary layer equations should govern the intermediate limit.

Since we are only considering the case of n< 1/2 the body grows



slower than the viscous disturbance from the nose and furthermore the
viscous region due to the afterbody lies within the viscous region due
to the nose. Thus the outer limit for the present problem sees pri-
marily the disturbance from the nose which is the same for a finite or
semi-finite body. A second similar reasoning is that for n < 1/2
the entire disturbance dus to the body looks like a parabolic wake for
which the boundary layer approximation holds. But since we are only
considering the region where the Oseen eguations are valid we should
apply this boundary layer approximation to the Useen equations which
gives the Useen boundary-laver equations. However, as in reference
4 the Oseen boundary-layer equations can be matched with the linearized
Euler equations. Since sufficiently far from the body the diffusion terms
are not important it is clear that the linearized Euler equations do repre=
sent an outer limit. Further if we make use of the principle of rapid
decay of vorticity, see reference 4, we see that the outer flow is potential.
Before obtaining the solution for n < 1/2 we shall consider th
flow far downstream for other values of n. For n > 1/2 the viscous
layer is very thin compared to the body diameter and thus the houndary-
layer equations are valid near the body. It is clear that since we are
far from the nose the curvature effects will be negligible and thus the
boundary layer is a two-dimensional boundary layer over a flat surface.
However we may have an external pressure gradient. Since the external
or outer flow is the potential flow about a pawe% iaw body of revolution
it is also known in principle. Since this is simply an example of classical

boundary layer theory we shall not consider it further here. For n = 1/2



both the body and the viscous region grow at the same rate and thus
the character of the ﬁc}w is only dependent on t;he Reynolds numbex.
Thus the flow far downstream will behave girmilar to that for n< 1/2
for low Reynolds number and similar to that for n > 1/2 for large
Reynolds numbers. This case is more suitable for a parameter-type
expansion and we shall not consider the coordinate-type expansion

for n =1/2.

V. 2. Seolution valid far down stream.

e shall now apply th@ method of an expansion in terms of an
artificial parameter to determining the flow far downstream about 2
body given by r = Ax®; 0<n< 1/2. We have introduced the artificial
length, RO, into the problem and thus the interesting dimensionless

parameters are:

. UR, :
E;Re,ReRo_—_—;’ (5. 2)

Only two of these parameters are independent since they are related by:

Re = €Re ' (5. 3)

The characteristic length L is defined by equation 2.17 as in the previous
problem. We choose as independent variables for the inner problem et

and = where:

+ F- . +=~
pt= Vg 5 X=X (5. 4)

~ A~ o= %
and r, % v and :x are gtill defined by aquations 2.18-2.19. e
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shall choose € and ﬁeRoas the parameters for the inner problerm.

In reference 4 it was also found convenient to distort the dependent radial
velocity so that the axial and radial velocities in the inner expansioa
would be of the same order. However, for the present problem we shall
see that since the expansion is valid to a lower order than that obtained
in reference 4 the radial velocity is of transcendental order with respect
to the expansion and thus there is no advantage in distorting it in the

present congiderations. Thus the inner equations become:

¢ rv* €/-n Ju*

rt art IxX
1 #ou*_ ,een[ Ju p*ou 2P * Ju* 5,5
r’Jr*'"ar*'e [afa ﬁeRo( ax +5x=) tey ort 5.2
[ 5 ptdU™ u**_é?‘f"[ Forx | wdU® -n
Lo p#d0¥ g*_mon Jux v x0* 9P
ra’r,;r* r axe Reﬁo“ 0% | *€ Hen( ort ,)r')
with the boundary conditions:

at f =X ﬁzo {5. ¢)

: : &
However, we shall see that terms of ovder € , A D0, are of

transcendental order with respect to this expansion and thus the entire

inner expansion is given by

1L artv*

r ot T O

19 u* 5.7
r*ar*r+§r* -0 oo
0 r* U U¥*

r*ar* art rrt

from which we conclude that the inner expansion may be expressed as:
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R X [} %
?’:9—-"“'_.-(/- + 6/‘?—9—5—:0
r ar o%
I 2 -—aa* L(‘)(' aﬁ U'* * aau*
- =F = - L(*___._ + of _ k. U _ _
ror ar Re{ 2%  gx €% JF ) € 532 {5. 13}
=} % * ¥ 320—*
OF __ woU*, [ xdU* L (LA F20TUN L £ 2
5F U T AST T ) RS

Note that there are no boundary conditions on thiz solution since it
matches with the inner solution for ¥ small and with the outer solution
for T large. Since there are no solid boundaries in this region we
expect the solution to be a perturbation of the free stream velocity and

thug we assumne an expansion of the form:

M
U =1+ & F)s; (%)
/'—"IA
v*=e® ) GRS (Fe) 5.14)
M’m
ﬁ:Z:i; NF [X/é)

Substituting equations 5. 14 into equations 5. 13 and neglecting terms of

transcendental order one ohialns:

éa’"‘f‘+9,f7*' =0 o (5.15)
r ar d X

L2 roli _p a4 _ £, = =~ .
Farl 57 “ReS% =1(F %) (5. 16)
oF |

— =0 {5.17)
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Equation 5. 17 implies, as in classical boundary layer theory, that the
pressure is given by the outer flow and thug is a knom function of =, »r
at each order. Thus it follows that £, is also a known function and

- given by:

firn=hR3E + RZ[“ 1 55 ] (5. 33)

Thus we see from equation 5, 18 that even though the radial velocity is
itself of transcendental order in the intermediate expansion its influence
is not and thue we must calculate the radial velocity in order to obtain
the higher order terms. Since equation 5. 16 is the heat equation we may

express u; as:

W=, -+ u , : {5.19)

y &

where:

Ui b j/ ,ho)f(3,0) dods, (5. 20)

—o0 0

where 5; a containg the eigensoclutions and the homogeneous solution
of equation 5. 16 which matches the innersolution and S = is the funda-

mental sclution of the axial symmetric heat equation and is given b'gr:*

’Re riyg@ _
o - Re€ " *%5 (Rem -
X P(%-3%) 4073, ) (5. 21)

2 _ [4 2
“gz+§a

See Appendix 1.
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The problem for E—ia is:

_a___F ga:_,a _ 9(74.')4
€ 9x

-0 (5. 22)

But because of eliminability we know the solution must have the following

similayity:

Wop = Uial7) 7= '7/()7" (5. 23)

7

Substituting equation 5, 23 into equation 5. 22 we get:

4 Wia . _’+“7Re) AUz . (5. 24)

d78 VT B gy 7O - -
which has the solution:

— - A Ae F'*

05 o = Ay = Az (0, =) (5. 25)

where A},i and A&i are arbitrary constants. Thus the solution for

=2
- . ) Ael — 7 o
Uu = A;}, - Ag/, F(0j4} ) t U (V//-F) {5. 2ba)
as T - 0 it is clear from equation 5. 21 that the last term of equation
5. 26a is at most a function of x but by the eliminability requirement
it is clear that this must be a constant and thus for r small equation

5. 26a may be written:
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~ A . . LARF® & —
= A,J, + A;/,, A 4; + “i,b(o) | (5. 26b)
Noting that the last term of equation 5. 26a is zero for ¥ — m we get

for T large:

—

M"' ~ A/JX. (5. Z@C)

It is clear that since both the binner and outer equations are
included in the intermediate equations we may define an overlap domain
between the inner and intermediate and the intermediate and cuter
solutions. Thus we may carry out the matching as in the previous
sections. The first order step~l matching between the inner and inter-

mediate solutions gives:

L/M i 7. 7R —
/7‘5 > A +A u, (0
(E) Ay + ey X T ) (5. 27)
—,S,[E")ij i ”Z‘”f 0
Thus:
Jl(g-) - é o ;= | (5. 28)
/Z/l (é-) ¢ +b/
and the step«2 matching gives:
Lim 1+ 5,(2)2 k) b F = 5,(Z )0 F- L")
F>0 —> Finire {5. 29}

J

or:
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Ay, = L+ | (5. 30)
From the second order step-l matching we conclude:
C = (A tT,0) 5 b= LBl (5. 31)

and it is clear that in general:

-/

)y""] (5. 32)

- C
A?,l‘ - —-Z—" (5' 33)

J

M >

Ci = CA';X;I - a;.,jb(o):) ) £ >l ; J :51"‘ = [A V7, Ae (

and thus the inner solution is given by equations 5.8, 5.9, 5. 28 and
5. 32. It is easily verified that the entire inner solution is contained
within the intermediate solution to the same order and thus the inter-
mediate solution represents a "uniformly® valid approximation clear

to the body and is given by:

.2 — ~
_ _ /. Re (e
Y = A’/ +21[A61 t Ui-/,bw)J (9, 57" ) £ U (/Vx) (5. 34)

and equations 5. 14 and 5. 32. The solution for ;’;i is obtained immedi-

ately from equation 5.15 and in terms of Tii is:

I

GO - Gl = FELAVI (") JF (5. 35)
I‘ ax
[/
Byt U~0 [é"”f in the inner solution éu& thus (Z‘(o) ~ 0 [ 6//2-;7; and

is transcendental with respect to the present expansion and thus we take
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’s?i(é)) = 0 in equation 5. 35.
For the outer variables we chooge ¥ and ¥ and the para-
meters ¢ and Re. Thus the outer equations are given by equation 2. 22

and 2. 23. Assuming an expansion of the form:

M —
7=2 1) %5
1 I f;d.(e) (5. 36}
M
P=) F 56
£=1
the outer equations become:
=~
div % =}
2-«-' _ B A~! ~ N -~
———gi t grad 7 = i 9gr d j’ . (5. 37)
72X “ . 7/ s :
s

However, the principle of rapid decay of vorticity leads to the conclusion
that the outer flow must be irrotational and thus the outer sclution is
potential to the first order. However, in reference 4 we note that

%; =1 to order € and since ¢o{€f is transcendental with respect

‘to the present expansion and since we expect the outer solution to be
similar to the problem in reference 4 we would expect ﬁ: = 0 and

Tﬁi = 0. This is verified by the matching between the intermediate and

the cuter expansions which gives:
g =1+of€] ; P = ofe} (5. 38)
and that:

A ; =0 (5. 39)

Equation 5. 38 is exactly the same result as obtained in reference 4. It



-102-

is clear that the entire outer solution is also contained withia the intsr-
mediate solution and thus the intermediate solution represents the
"uniformly" valid solution for the problem. This gives as the "uniformly”

valid expansion to order (LLE)M:

o~

v=FP =0 (5. 40)
M /
= g (T !
U /+Zu;(4—5('—')(,lﬂ'/ﬁ'(z_)’/z-n)
£=f F] €
whare .
~ (F - U4f-l,b(°) A. F 2 — -
(/{4(//7') *"2—-—"*/—1(0;%)*“},1:("//?)) 420
4y =1
Wi () =M5x<?-f,,f}f)t.(f;,er)aads, (5. 41

~e0 O

")

A=l :
A = _'9(:{:'.- @\ dUi,
G0 = A 155 e (4 53 47) 53]
£

S « = fundamental sclution of axial symmetric heat equation.

It is clear that since the intermeéi_ate solution completely con-
tained all the terms of both the inner and outer solutions to the same
order both the inner and outer solutions could have been omitted for
this case and the matching conditions replaced by approximate boundary
conditions. However, as we have pointed out in previous sections this
ig not true in general and can not be predicted a priori. It is clear that

this problem was a relatively simple problem. We were able to predict
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simplicity before we started since we have avoided the most difficult
portion of the flow field, namely the flow near the nose, and the only
other flow near a solid boundary is of a very viscous type which is
usually relatively simple. Although we would expect the present prob-
lem to be slightly more difficult than that of reference 4 due to the
existence of a solid boundary in the region of interest.it is clear by
comparing the order of validity of the present solution with that of
reference 4 that the entire expansion aétained for the present problem
is only an approximation to the first term in the expansion cobtained in
reference 4! Since the two significant difficulties of switch-back and
indeterminacy which occurred in reierence 4 occurred in terms of
higher order than € they do not occur in the present analysis. Thus
we see that the indeterminacy which we predicted in studying the co-
ordinate-type expansion in general does not occur in the present
problem only because we have not obtéined the solution to a sufficiently
high order. Note thaéthia same discuseion gpplies equally well to the
coordinate~type solution presented in reference 1. The coordinate-type
expé,asion cbtainéd in reference 1 is analogous to that obtained in this
section. That is, it is reasonable to expect the indeterminacy to ocecur
at a higher order than the highest order term in the expansion. ’E‘hié is
easily seen from the discussion in séciion 1V. 2 where it was pointed out
that the effects of the "nose" region (i.e. t U 0) were much smaller
for the problem considered in reference 1 than in the present problem.
Since we have shown by comparing the present problem with that of

reference 4 that we do not expect the indeterminacy due to the effects
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of the nose region to occur until algebraic orders it follows that these
effects would not occur until at least algebraic orders in reference 1
also. We note that the coordinate-type expansion obtained in reference
1 was obtained by two different methods neither of which was the method
of artificial parameters. It is clear that the same expansion could also
have been obtained following the method illustrated here. This illus-
trates the point that the artificial parameter is introduced merely for
convenience in order to allow us to use the methods dev'elwped for para-

meter-type expansions for obtaining coordinate-type expansions.
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¥i. CONCLUDING REMARKS

In this section we shall briefly review some of the most im-
portant properties of the expansion procedure and of low Reynolds number
flow which were illustrated in this study. From some of these properties
we shall draw some additional conclusions which are beyond the require-
ments of this study. Finally we shall consider some related problems

which might be solved by the methods illustrated here.

Vi.l. Expansion Procedures

In the examples considered we have found that the standard ex-
pansion procedure is quite adequate for reducing the singular perturba-
tion problem to a series of simpler problems. It was also found that if
the inner equations were included within the cuter equations one could
always find an integral representation for a portion of the outer solution
in terms of the fundamental solution of the outer equations by modifying
the standard procedure slightly. In essence this modification amounted
to replacing the step-2 matching by the condition that the distribution
of fundamental singularities for the outer solution was determined by the
inner solution for the homogeneous terms of the ocuter gsolution. This
modification proved very useful in obtaining integral expressione for
terme, where the problem in terms of the differential equation given
by the standard procedure was extremely difficult to solve. It seems
that this will be true in general especially for more difficult problems.

This modification also showed that for any problem for which the Cseen
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equations represent the low Reynolds number limit of the Navier-Jtokes
eguations one can always obtain an integral expression for a solution

of the Oseen esquations if the Stokes solution is known for the problem.
This solution of the Oseen equations will satisfy the approximate
boundary conditions consistent with the approximation to the Navier-

- Stokes equations which the Oseen eguations represent. Thus we see
that even though the Stokes solution does not represent the low Reynolds
number limit of the Navier?ﬁtakes equations if the Oseen equations do
represent this limit it can be obtained from the Stockes solution.

A pecond modification which can be applied whenever the eqgua-
tions for one solution include the equations for another sclution is to
neglect the included solution. However it was seen that in general
when this procedure was used the uniformly valid solution was less
accurate and the cases where this was not true could not in general be
determined & priori. This procedure is not recommended especially
since the neglected problem is usually simpler than the retained prob-
lem. In addition to the gain in accuracy resulting when one retains all
the posaible solutions éne gete a better insight into the problem and is
less likely to make errors.

| The comparison of the sclution of the second example for the
flow far downstream with the solution of reference 4 aids considerably
in understanding the relationship between references 1 and 4. Here we
saw that the reason that the difficulties which arisge in reference 4 did
not occur in reference 1 or the present study was entirely due to the

fact that these latter solutions were not valid to the order at which these
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difficulties were to be expected. Thus one of the reasons that the cow
ordinate-type expansion seemed much more satisfactory in reference 1
was that these difficulties which may occur for coordinate-type expane
sicns did not materialize. However & more fundamental resson for
this apparent overwhelming advantage of the coordinate-type expansion
appearing in reference 1 is due to the fact that the Reynolds number
could be eliminated from the problem. Thus we see from the discussion
of the artificial parameter given in reference 4 that the Re was an
artificial parameter in reference 1 and both the expansions obtained
there were coordinate~type expansions. The principle of eliminability
was né’& applied in obtaining the solution in the artificial parameter

and the regulting expansion which was presumed typical of parameter~
type expansions had the disadvantagee of both the parameter and the
coordinate«type expansgion. This Situa,tion is clarified by the present
examples from which it is clear that 2 coordinate-type expansion is
valid for all values of the parameter, but only a certain region of the
space, while a parameter-type expansion is valid for all space but only
for certain values luﬁgthe paramster. %%;‘Swevef the coordinate-iype
expansion may 2lso have the disadvantage of indeterminacy. Um the
other hand in &hé present example the coordinate~type expansion led to
a simpler problem and the terme of the expaunsion could be found in
closed form for 0% n ¢ /2 which was not true for the parameter~
type solution. Thus we see that the choice between coordinate and

parameter-type expansion depends on the problem being considered. ‘
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Vi. 2. Low Reynolds Number Flow

In this bstwﬁy w@ have argued that the most meaningful concept
of low Reynolds num’i:}ér flow is the limit of any given problem as the
characteristic length of the problem tends to zero. Assurning that the
body tends te a unigue body as its characteristic length tends to zero
the present concept has the advantage that the low Revnolds number
flow defined has the same uniqueness and gxistence properties as the
original flow. Further this definition assures that the low Reynolds
pumber limit is a uniform limit. This latter statement is not tyue in
general if either Oseen or Stokes flows are considered as the low
Reynolds number limit since in general they are nen#unii@rm‘ at the body
and infinity respectively. Because of the almost universal ideantification
of Stokes and Useen flows with low Reynolds number flows the major
emphagis given this definition here sesrms justified.. However, it is
clear that both the Stokes and Oseen am:aruximé&ians are closely related
to low Reynolds number flow. In particular the conditions for the ﬁ'&@éﬁ
equations to represent the low Reynolds number limit of the MNaviers
Stokes equations are given in gection IL 2. From these conditions we
concluded that the (seen equations are the low Reynolds number limit
for the flow about a pavaboloid of revolution. It has bsen pointed out
that another conge guence of the present concept is that the low Reynolds
number limit of the Navier~Stokes ecquations only has meaning for a
epecific problem. This follows from the fact that the characteristic
length can only be defined if the problem is specified.

Another fmportant concept in considering low Heynolds mumbesr
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flow is the Caeen criticism. This was originally given as an explanation
of the fallure of the Stokes equations 238 a low Reynolds number approxi-
mation. However, in this study we have found it very useful in tryving

to decide what approximation might lead to some simplification. The
CUseen cri&icism is simply that there exists sore point in the flow at which
some other term is of the same order as the diffusion term. In general
an approximation will lead to a significant simplification only if the
dominant term exclusive of the diffusion terms is linear. One case

when the Useen criticism does not apply is when all of the transport

and inertial terms are ide_ntically BT O,

Y1 3. FRelated Problems

It would be useful in obtaining the overall picture of the low
Reynolds number flow to solve the present problemes considering some
of the features which have been removed for simplicity. For example
it would be of interest to consider the effects of compressibility. The
effects of compresaibility at low Reynolds number are discussed in
reference 6. However this discuseion is not complete and there remain
many unanswered questions in the area of compressible low Reynolds
nurnber flow. Another extension of the examples which might prove
interesting and could be handled by the methods discussed here would
be in the extension to an arbitrary rate of growth or an arbitrary body
of revolution. This ria discussed in considerable detail in reference 1
for the problem considered there but the discussion applies equally well

to the problems considered in the present study. It would also prove
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interesting to consider the golution of the first exaraple for t large

by the method of artificial parameters. This should be a relatively
sirople problem and be very similar to Chapter V of the present study.
For the second examnle one might also consider the case of nonezerc
angle of attacly however, since the axial and cross-flows do not separate
in this case the problem will be considerably more difficult than the

first example. In either problem considered here it should not be diffi-
cult to extend the results to a non-circular cross section. For the second
example the first order terms for the case cf a non-circular cross section

are again given in reference 3 for n =1/2.
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APPENDIX 1L REVIEW OF THE FUNDAMENTAL SOLUTION

The fundamental solution, 8, of the differential operator L{q)

is defined ag the response of the operator to an impulsive force or:

[(S) = §(P-q) Ly
whe‘rer
o P*aq
J(F—q)'—/ P:Q
/J(P-Q)JQ =

- o0

From which it can be shown that if 1{) is linear the particular integral
of L{q) = §{P) is: |

ﬁ:{f(a)S(P/l?)da (L 2)

For a more complete discussion of the fundamental solution see reference
7. The fundamental solution of the heat equation for n dimensions is
given by the solution of the problem:

S
\725 - I’(é—f =-K§(r-0)d(t-7) {L 3)
¢ gt }}
where n = number of dimensiona. The golution of this problem is given

in reference 3 and after suitable change of notation may be written:
K n - KR?
S % fer) = 2 Hz-7)
(X5, t7) = (‘}ﬂ(t-?‘)) c H(z-7)

h
F\"E :Z(xi“fi)z
L=

For a two-dimensional axially symmetric problem the distribution

{1. 4)
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function, £{{1), in equation L 2 is independent of the angular coordinate
and thus the integration with respect to this coordinate may be carried
out imnmediately. Thus expressing L. 4 in polar coordinates and inte-

grating* with respect to ¢ the fundamental solution of the two-di-

mensional heat equation for an axial symmetric problem is:

K ré+g?
d 2(¢-7) o \4(¢-7) )

{5. 21)
025 + 5]

The fundamental solution for equation 3. 104 may also be obtained directly

from equation L. 4. It is easily seen that equations I 3 and 3. 104 are

related by a Galilean transformation;thus applving the Galilean transfor-

mation to equation L 4 and setting n = 2 we get as the fundamental

solution of equation 3. 104

_ R%2(z-5)(t-r) ¢ (¢t-1)°
e 4(t-7T)

5, (V-%,,2-5,, ¢-7) = (3.109)

41 (t-7)

The fundamental solution of the steady three-dimensional Oseen

- equations is given in reference 9. With the appropriate change of notation
it may be written ae;

I Vaé - grad grad ¢

__ 1 L
- ﬁgradﬁ

i

~} 1

(L. 5)

[ %1 e "
fz‘ﬁ[) <~ d% i S=R+f(x-F%)
RE=(x-%5)2+r%+ o2 2to Cos (6-¢)

e
“Reference 8, equation 337, 15b.
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Considering the axial symmetric case it is clear that the distribution
function is again independent of the angular coordinate. Thus carrying
out the integration with respect to d) in equation L. 5 we obtain as the

fundamental solution of the steady threg-dimensional axial symmetric

Ceeen equatione:

£ :i’ V?@A— grad grad ng

—

20 7
e 2ro
F= VFB’VW ) s

o]

= elliptic integral of the first kind

d« d ¢

it is eaéily verified that all the components in the circumferential

direction are zero in equation 4. 52 by noting that:
2T
;H(x,a, t,R)] S (6-6) d(8-9) (L 6)
0

where { is an arbitrary function.
We assume that the fundamental solution of the nonesteady two-

dimensional Oseen equations may be written as:

iy

- ;‘v?é _gp-ad 3ra.c( él" {3. 40)

l

= 9ra A( §t+ aﬁt" 2%) ‘HﬂﬂraJ(ﬂn/”) (3. 47)

Equations 3. 46 and 3. 47 satisfy the continuity equation identically and

substituting them into the equations for the fundamental solution of the
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non-gteady two-dimensional Oseen equations gives equation 3. 51. Thus
ét is given by equation 3. 52 and it is clear from the application of the
CGalilean tranaformation to the solution for the corresponding Stokes

problem given in reference 9 that the particular solution of equation 2. 52

ia:
! piopzt+t?
¢, =ZfrF(0er :; - ) (3. 48)

Equations 3. 46-3, 48 then give the desired fundamental solution.
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APPENDIX II. PROPERTIES OF E{t, r)

The function E{t, r) is defined by
2 -
! -r‘/t (7+ ’t,:‘g' 7 ’)

e ‘ |
v {3. 68)

(]

L

E(tdr)':%é

To study the behavior for r small we consider the first two terms

of the Taylor series expansions about r = 0 which gives:

E(t,r) = =5 (0,2) =P (-h2) + (1. 1)

’ 242
By expanding the integrand of equation 3. 68 for r 7 small and inte-
£e

g

ating one cbtains the following asymptotic expansion for ¢t large:

M m
E(tr) BLZ C 2™ (o 2) (L. 2)

m/f

m=0
2 %2
Simidlarly expanding the integrand of equation 3. 68 for ir—; small and

integrating one obtains the following asymptotic expansiona:
M "
-n" zm L r?
~lp -2m, L
E(f;")szm! rTo ’t) (L 3)
m=0 _
Hee

Making use of the property’
e

Not valid for ¢ -+ 0 since as t - 0 both terms in the exponent be-
come indeterminant at the lower Hmit. From egquation 3. 53 we see:

E(o,r) = - Ko (2F)
Hek

‘See reference 10, volume 2, page 137.
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f'(mx)— [f'(o X)- e _')iz_]

/fl

one obtains {rom the previous expansions:

M
2m
r

\ , m-l_’ ; :
Etr) > -2 (m,)z[/’(a, £)- e %-‘:—“Z—/]
m=0 77

M
r/ 2n-1

1Y DT
EOI) %5 ) ni 7(2m’)[r( 6% )" [”’/I(r}

m=o /'0

{IL 4}

{IL 5)

J (1. &)



