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PART 1

KINETIC THEORY DESCRIPTION
OF PLANE, COMPRESSIBLE COUETTE FLOW



ABSTEACT

By utilizing the two-siream Maxwellian in Maxwell's integral
equations of transfer we are able to find a closed~form solution of the
problem of compressible plane Couette flow over the whole rénge of
gas density {rom free molecule flow to atmnospheric. The ratio of shear
stress to the product of ordinary viscosity and velocity gradient, which
is unity for a Newtonian fluid, here depends also on the gas density, the
plate temperatures and the plate spacing. For example, this ratio
decreases rapidly with increasing plate Mach number when the plate
temperatures are fixed. On the other hand, at a {ixed Mach number
based on the temperature of one plate, this ratio approaches unity as
the temperature of the other plate increases. Similar remarks can be
made for the ratio of heat flux to the product of ordinary heat conduction
coefficient and temperature gradient.

The effect of gas densiiy on the skin friction and heat transfer
coefficients is described in terms of a single rarefaction parameter,
which amounts to evaluaiing gas properties at a certain ""kinetic tempere
aigre” defined in texrms of plate Mach number and plate temperature ratio.
Oune interesting result is the effect of plate temperature on velocity ''slip’.
In the Navier«Stokes regime most of the gas follows the hot plate, because
the gas viscosity is larger there. As ithe gas densily decreases the
situation is reversed, because the velocity slip is larger at the hot plate
than at the cold plate. In the limiting case of a highly rarefied gas most

of the gas follows the cold plate.

Limitations of the present sixe-moment approximation at high
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plaie Mach numbers are discussed and it is concluded that an eight«
moment approximation would eliminate these difficulties. The results
obtained in this simple geometry suggest certain conclusions about
hypersonic flow over solid bodies when the surface temperature is much

lower than the kinetic temperature.
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Mach aumber, U/ Ym

"'proper” Mach number, 1\7‘:2 = UZ /TR YW
particle numbé:r dengity, per unit volume

number dengity functions in two-stream Maxwellian
nkT = pRT

defined by the relation Pii =-Pt R

shear stress, ifj, ?ij = - m[ fcicjdg
, 2 .»
normal streass, Pﬁ T - m[ fci dsz

Prandtl number, €y /uc/ke
heat flux in yedirection
arbitrary function of particle velocity
change in Q produced by collisions
distance between two particles
radius vecior
Reynolds number, and//aH
gas constant, k/m
non~dimensional relative veloeity in the normal direction
time
; 2 -

absolute temperature, 3/2nk T=m J (c“/2) ¢ ds
temperature functions in two-stream Maxwellian

+ > - —
mean velocity vector, pu = m f £3 dg

components of mean velocity parallel to x- and y- axes,
respectively

free stream velocity vector
vecior velocity funciions in two=stream Maxwellian

component of mean velocity in iﬁh direction
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g relaiive plate velocity
v relative velocity between two interacting particies :l §1 -§‘
%V coordinates along and normal to plates
* coordinate in im direction
o integration constant, i=1, 2, 3, 4, b
g quantity defined by the relation § = {8/15) YZ2/uy (Re/M)
Y ratio of specific heats, ¢ p/ <,
¢ angle between plane of the orbit and plane containing the
original relative velocity and the x-axis in & binary collision
A Maxwell mean iree path
A i=1, 2, 3, functions defined by Eqs. (352} and (37)
A Pohlhausen parameter
He "classical’ viscosity coefficient
/z viscosity coefficient = Pyy /;du/dy) )
§ vector particle velocity, § = l§ |
-
d& d§i d%i ag,
g " component of particle velocity in j™* direction
£, velocity of colliding particles
' -
p nm , mass density, p = j mifds

The subscripte ''1'" and "2 generaliy denote the two components of the
twoestream Maxwellian, and the subscripts "I and "II' refer to quantities
given at the upper and lower plates respectively. A prime denotes
guantities evaluated after a collision, while unprimed quantiities refer to
conditions before a collision. Thé subscript 'o'' denotes free molecular
flow conditions, the subscript '"w' denotes surface values, the subscript
"w'' denotes free stream quantitieé far ahead of a body, and the subscript

"n' denotes quaniities normal to the surface.
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L INTRODUCTION

In principle, the Maxwell-Boltzmann integro-differential
equation for the single particle velocity distribution function is fully
capable of describing the flow of a2 monatomic gas over the whole range
of gas densities from "{ree~molecule’ flow to the classical Navier-Stokes
regimez' & 10. However the formidable difficulties invelved in cone-
structing solutions of this eguation are too well known to require
repetition hemﬁ. Fortunately, in {fluid mechanics one is not particularly
imareéted in the velocity distribution funciion iiseli, but in certain lower
moments of thie function, such as mean veloeity, shear siress, ete,
Recognizing this fact, 'Maxwenm converted the original Maxwell-
Boltzmann equation into an integral equation of transfer, or moment
equation, for any quantity @ that is a function only of the components of
the particle velocity. In the absence of external forces Maxwell's
integral equation takes the following form in a rectangular Cartesian

coordinate syster ¥

/o0 ([taaf)+ L (@/ex)( [t 0al )= Do, (1)
. i

where AQ represents the time rate of change of Q) produced by

particle collisions, and is given by
AQ = /// @ -, vaf a § babat (2)

Actually Maxwell employed a special form of the distribution
function, but an important advantage of Eq. (1) is just the fact that it

permits a large amount of flexibility in the choice of f. The distribution

% Maxwell's integral equation including external forces and
coordinate system curvature is given in Heference 10,
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func‘ci‘an can be expressed in terms of a certain number of arbitrary
functions of space and time, seclected in such a2 way that essential physical
features of the problem are introduced. Of course the proper number of
aﬁomenta {Q's) must be taken to insure that a campl&e set of first~order
partial differential equations is obtained for these undetermined functions.
As shown by Maxwauu the ordinary gas dynan?ic conservation equations
are obtained regardiess of the choice of { by taking Q to be successively
the collisional invariants of mass, momentum, and energy [Q = m, mi i
m& 2/2.], for which AQ = 0. The number of a&ﬁitiaml moments {and
arbitrary functions) employed depends on the degree of detail desired, and
also on the relative magnitude of these additional moments (Secti&n IiL E).
Clsﬁrly this procedure amounts to satisfying the Maxwell-Boltzmann
equation in a certain average sense, rather than poini~by-point, just as
one does in the more familiar Karman=Poblhausen method for boundary
layex ﬂ0w314 and its extension by Tanin. The distribution function
employed should be regarded as a suitable weighting function which is
not in general an "exact'’ golution of the original Maxwell-Boltzmann
equation. Thus, there is no need to retain the undesira;ble rigidity inherent
in a polynomial of Chapman-Enskog type, as in Grad's methods, In fact,
MottuSmithla found that a distribution function consisting of the sum of
two full=range Maxwellians is quite suitable for a rough description éf the
structure of a strong, steady, normal shock wave. A careful study of
shear flows in rarefied gases and of the difficulties encountered with
Grad's thirteen moment appruximatianl shows that the following basic
requirements must be satisfied by the distribution function employeé in

Maxwell's moment methedlex



(1) It rust have the 'two-sided'’ character that is an essential -
fzature of highly rarefied gas flows, and especially of non-linear rarefied
flows;

{2} It must be capable of pycaviding a smooth traunsition from
rarefied flows to the classical NaviereStokes regime;

(3) It should lead to the simplest possible set of differential
equations and boundary conditions consistent with {1) and (2).

Of course the class of distribution functions satisfying requirements
{1) and (2) is very large. In Reference 10, Lees introduced the "two-
stream' Maxwellian, which is probably one of the simplest such functions,
as & natural generalization of the situation for freeemolecule flow. In
body coordinates all outwardly directed particle velocity vectors lying
within the "cone of influence' {Kegion 1 in Figure 1) are described by

the function { = {1 s, where

gl f<d - bl 2
ni(R,‘t) [§‘ul(ﬁat)]
1 = — 172 axp , {3a)
(e RT (K, t)] ZRT (K, t)
In Region 2 {all other g }
— = — —> a
n, (K, ¢) [ -9 (K, )]
f= fa = — 577 SXPi" s {(3b)
[ZwRTZ(R.t)] 2RT, (K, t)
where By, By, T 10 T?:; R —i{i R ';2. are ten initially undetermined functions

of fﬁ- and t. In the limiting case of free~molecule flow the distribution
function described by Eqs. (3a) and (3b) is an exact soluiion for completely

) N —= — ) —
diffuse reemission, provided that uy=u_, npEa, I, = Tm s Uy = U,

Tl = TW , and n, is the function determined by the boundary condition on



the normal velocity at the body surface. In'the preseat method the varia-
sion of these ten fuactions with }.. and t iz @ moasure of the effect of par-
ticle collisicus ia the gas, as determined b;; Maxwell's moment equations
[ Egs. (1) and (2)] . Thus, one gives up once and for all the search for
“higher ordeyr! macroscopic equations in terms of the mean guantities,
such as the Burnett egquations, Grad's equ;.ticna, etc. Once these ten
functions are determined, the mean quantities are obtained by mﬁizing
the distribution function defined by E;qs; {3a) and {3b}, as in any irue
statistical approach.

One important advantage of the two stream Maxwellian is that the
surface boundary couditione are easily incorporated into the analysis
[Raquiremeni (3) above ] . For example, for complstely diffuse reemis~
sion, the recmnitted particles have a Maxwellian velocity distribution
corresponding to T, » by definition, and the mean velocily of the reemile
ted particles is identical with the local surface velocity. Thus [ Egq. (Ba)],
751 { Eg, t)= ?1;, and 'I‘1 { ﬁ: ity = T, when R = E?:'W . 'When there is no
net mass transfer at the surface an additional boundary condition must be

- satigfied which is similar to the usual free~molecule flow condition,

_except that now i} # Kw in general:

n YRT = 0 YRT, = 0, YR T; Cleg ) » (@)

where 2
-5
3
Cls) = e + I os, (lyexfe ) . . (5)
Here
‘“2 " Yy )
41
8, = ,




where us and v, are the normal components of iz:% and 3W » regpectively.
n n

In considering the uniform rectilinear motion of a finite body in a fluid of

infinite extent the {ollowing boundary conditions must also be imposed (in

body coordinates):
. Iy T T n as x -

As an illustration the present method was applied in Reference 10
to linearized plane Couette flow and to the linearized form of Rayleigh's
problem. But plane, parallel flows at low Mach number with small
temperature differences cannot provide a serious test of any method that
is supposed to be general. Ia this paper we apply the present technigue
to ateady, plane compressible Couette flow, in order to study the effects
of large temperature differences and dissipation in the simplest possible
geometry. In Section II. A, the basic equations and boundary conditions
for this problem are formulated. In order to simplify the work the
particles are supposed to obey Maxwell's inverse fifth-power law of
repulsion, but this restriction is not an essential one. Selution's are
obtained first for arbitrary temperature ratio between the two plates,
but Mz ~— < < 1, (Section IL B.), and then similar methods are employed
for the case of arbitrary Mach number and temperature ratio (Sections
ILC. and II. D. ). In Section III we utilize the calculated behavior of the
velocity and temperature profiles and other mean quantities in this
problem to gain some insight into the effect of Mach number and the
ratio of plate temperatures on the nature of the transition from frece

molecule flow to the classical Navier-Stokes regime.



II. MAXWELL'S MOMENT METHOD
FOR PLANE COMPRESSIBLE COUETTE FLOW

II. A. Formulation of the E%oblem

. A. 1. Differential Equations

Maxwell's moment method is applied to the problem of ‘the steady
flow generated by the relative shearing motion of two infinite parallel
flat plates. The upper plate moves with veloeity + U/2 in its own plane

at y = d/2 and is held at temperature T, while the lower plate at

1
y = = d/2 moves parallel to the upper plate with velocity - U/2, and is
kept at temperature TII [E‘igure Zﬁ] . The only independent variable in
this problem is the coordinate normal to the plates, y; thus, Eq. (1)

reduces Lo

d/eay(Jfngd'g*): Ao . (6)

By taking Q to be the collisional invariants m, m¥,_, m §y , and m§2 /2,
successively, four equations are obtained from Eq. {6), corresponding
to the ordinary gas dynamic conservation equations. For these moments

AQ =0, and
N .
jf éy Qd3 = constant . {7
According to kinetic theory,
-
pu, = j mi ¥, d3 , (3a)

where

p = Jmfdg‘ . (8b)



Thus the first of Egs. (7) with Q = m is just the ordinary equation of
continuity for this problem, namely,

p v = constant . {(9a)
But

v{-d/2) = v{d/2)=0 , sothat v{y)= 0 . (9b)

By definition pij z e J H <, c:‘j d g .

where € is the intrinsic or relative velocity & - u. Here

Pij = Pij 3 1#3 &

Py = ~PH+Py; » 32)

where p & = Z(pii/s) = pRT = (2/3) j mi{cZ/Z) a%’
WithQsm & , andm % g » ome obtains [Eq. {7) and {@b)]

px'y =z constant (9c)
and

Pyy = constant, respectively. {94)

Similarly, by taking Q= m §5/ 2 in Eq. (7), and recognizing that
§x = c:};+ a, Ey = cy . éz =c, and v = 0 in this problem, one finds
as expected that

q. - ?xy us constam {9e)

¥
where

q = w / £ ey ca/?. dg , by definition.

In this case the "two-stream Maxwellian” [Eqs. (3a) and (3b)]
- takes the following form (Figure 2)

For §y<0’

HCEECORISE N
2RT1(Y)

f= fl = nl(y)\""‘:""“"“?" exp { = .{10a)




For §y>é .

fzfz .

{10b)
whére ii-?. is @ similar generalized Maxwellian coniaining the functions
ng(y) s Ta(y) . uZ(y) . Two independent moment equations in addition to
the four represented by Eqs. {7) [ar Egs. (9a) = (9@)] are required to
deterraine these six arbitrary funciions of y. Of course these additional
momenis can be chosen guite arbitrarily. Because of our special interest

in the shear siress and normal heat flux in this problem we take

Qg = m Ex §y and Qg =m éy { E?‘/E’.). [ See, however, Section I;I. E.]

Once the two-stream Maxwellian is selected for £, the collision
integral AQ [Eq. (Z)] can be evaluated for any arbitrary law of force

between the particles. For simplicity we utilize Maxwell's inverse

mlmzzi
fifthepower force law ¥ = ..-.-...5-._.... . With this choice the relative
r

— — )
velocity V = | $,-8 | i eliminated from the collision integral, and A Q
for the lower moments containg the components of the heat flux vector

and the shear stress tensor ‘[“'(7); (10), (11)] . To be specific, for

Q5 = m %3, Ek , one finds

Qg = (3/2) A, YZwmK BPy (11)

while £ Q, = m 53 (%‘5/2,) , one has
Q, = (3/2) &, YW K [-.(2/3) 9 + }; Pji u.kl . (12)
[Hera A, = 1. 3682 is the value of the scatiering integral found by
Maxweul i] . Both of these results are independent of the choice of £,
Now the ordinary or ‘“classical’ coefficient of viscosity for

Maxwell particles based on the local fullerange Maxwellian is given by

the expression



M = S : (13)
_ (3/2)A, YZw K

where k is the Boltzmann constant. Therefore,

(3/2) A, YTWER n = (B/U) - * * (14)
Thus the two moment equations supplementing Eqs. {(7) are as follows

(Eas. (6), (11), and (12) } :

@/ay) ( fm ey, §5a8) = w/pg) e, (15)

(@/ay) ( [ e5,% 5%z a) = o/po) [~/ a + py w e p 7016)

If the local full-range Maxwellian
- a 'CZ
fnax (82 V) = RnyE P zgT)
is introduced into the lefi-hand sides of Eqs. (15) and {16) one obtains

the familiar relations

U ldu/dy) = B

- (3/2) €l (dT/ay) = = k_ (dT/dy) = Q-

In fact this approximation corresponds e;&actly to the first step of the
Chapman-Enskog expansion procedure {see for example Reference 10).
~But in general { £ f o, 2 SOthat Pry £ Me (du/dy) and g o # =k (dT/ay).

Six equations for the six arbitrary functions of y appearing in the

¥ The ordinary coefficient of viscosity /,(c is introduced here ,
du, Buy
mainly for convenience. It must be emphasized that £p./{ -5-—-.3 +E-—-).
except in the limiting case Re/M —> w , which /Lc ik *x 9%
corresponds to the classical Navier-Stokes regime (Sections II. B and
uO C).
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two stream Maxwellian are obiained by substituting this [Eqs. (3a) and
(Sb)] into Egs. (7) and Eqs. (15) and {16). All moments and mean flow

guantities are evaluated as follows:

+os o 4w .
<¢>=]¢fd§= [ f ] ¢£1d§xd§yd§'z

‘e @ tw

+ j j [ $i,a8, 4§ af, .

- [

For example,

o) = <m> = (/2 [ ny o] =maly (a7

BI(Y) u_@_(?) + ng(Y) ng(?)
NG EEN G

ay) = (i/p) < mE_> = (18)

Since it is more convenient to work with non-dimnensional quantities, we
select Ny s U, TII , 4 as the characteristic number density, velocity,
temperature and length, respectively. A Mach number and Reynolds

number are introduced based on these characieristic guantities

M= U/IYR Ty
™ nnUd

Re = 5
(/uc)ﬁ

where (/Qc)II denotes the ordinary viscosity coefficient evaluated at
temperature TH . The parameter Re/M is inversely proportional to the

ratio of mean free path, A to the characteristic length d, and this

H #
parameter characterizes the density level of the gas. In fact

Re/M = Y wY/IZT (d/An) .

Let normalized quantities be denoted by & bar superscript. Then



il
the non-dimensional governing equations are as follows:

Continuity

) J— J_ | (19a)

Momentum
R DY PR R

ny / T, {uy~u;) = a (19b)

n, T, + 0, T, = a, A {19¢)
Energy

—_ == 2 —2 —2 o

o /Tl[TgaTl%(YM/t&)(uz -u ) ]zazas {194)
Stress

- 1
(d/ay)n; @, T, + 0,0, T,) +
171°%1 2°2%2 Yooy

(Re/M) a; (a,+1m) = 0 (19¢)

Heat Flux

2

(d/ay)m, T, ‘s KE“T*ZZ) + (ymz/s)(d/dg) (= T u“+ ﬁ;‘fg;aa]

- (2/5) Y M® @ (a/dy) (n;Tu;, + Eafzﬁz;

{191)
« (4/15) YY7Zn (Re/M) Mm* ap (W, + 0,0,)

+ {4/15) YZ7=Y~ (Re/M) ay 0, (n1+ n,) =0 .

where @y, @y, a3 are undetermined integration congtants.

1I. A. 2. Boundary Conditions

For completely diffuse reemission the boundary conditions are

quite simple. (See Introduction.):

Aty = +d/2 (Figure 2) , u, = +(U/2); Ty=T; .



Atyﬁ°d/2 ] “Z”"ﬁu/g) ’ TazTn

Also, v(td/z2)=0, but v= 0 everywhere | Eqs. (92) and (9b) | , so
that Eq. (19a) satisfies this boundary condition automatically.

The sixth boundary condition involves a specification of the density
level of the gas between the plates, by choosing p or n, or u, ata given
point. Sixice the results evidently do not depend on the posiiion of this

reference point we select

n, = n, at y = -d/2 .

In non~dimensional form the boundary conditions are as follows:

El' = % ’ (20a)
_ at ¥ = £

T, = TI/'I‘H | (20b)
_2 = -% . ‘ {20c)
T, = 1 " at ¥ = -} (204)
o=l ' | (20¢)

Plane compressible Couette {low is completely determined by
three independent parameters: (Re/M) {or d/ }\H) the rarefaction
parameter; M‘Z . the dissipation parameter; and the plate temiperature
ratio TI/ T, appearing expliciily only in the boundary conditions. The
governing equations and boundary conditions ( Eqgs. {19} and (20)] are all
regular in the parameters Re/M , TI/TH , and'Ma for all finite values
of these parameters. In particular, in the limiting case Re/M ——0 all
six equations reduce to algebraic squations, and the six unknown functions
approach the (constant) values given by free~molecule flow. In the

opposite limiting case Re/M w0 , clearly a | @nd oy are both
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0O{M/Re) { Eqgs. {19d} and (19@)] . Thus the pairs {% and El . Ea , and
n, , and T, and fl each differ by a term of order M/Reh/)\n/ﬁ R

which corresponds to the classical Navier-Stokes regime [ Sections II. B
and IL. C ] .

In ovder to bring out t‘he‘effect of temperémre difference between
the two plates we study first the simpler case Mz < <1, and then
generaiize the technique for obtaining solutions to the case of arbitrary
Mach number. All mean flow quantities are easily evaluated once the
six functions ?11(?) cebae Ez(ﬂ are deiermined. For convenience the

necessary relations are listed here:

= Pyy (V) = =7 /’T—i (0, =W} = <a (2la)
V) 2,2 o, =, — 2 ——2 ——2
AR Ty YM (p @)=z T) + 0, Tp) =¥M (a;u,” + nyu,) (21b)
P ) P, {y)
1Y 2 s .= =3 {0, T,+n, T,) (21¢c)
g Sy nnk*fu LI e St B A
== T T, o[ B - 4, e wy°
T {Y) & s+ {Y/3) M — {21a)
nl + nz 1;1 + n,
— = , 2(— — — 2 — — — 2
%%TE = % (o, T, + nz'ifz} + {Y/6) M [nl (weu;) +mn, (u=1u,) ](Z;e)
ly = (M2 oy 0+ 5,T,Y 1+ om0, /T,)]
apk Ty Y72 R L1y o ¥ 2
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The expressions for p{y) and u{y) have already been given[ Eqs. (17)
and {18) ] .

According to Eqgs. (21b), {2ic), and {Zle), Pyympxxw' P
when M® w0 , or when Re/M —> o . In general however,
pyy" pmﬂ - p, sothatp,. # 0, in spite of the fact that diva = 0.

This behavior shows again the inadequacy of any camcépi: relating the

siresses to the purely local mean velogity gradients in a rarefied gas flow.

IL. B. Low Mach Number Flow with Arbitrary Plate Temperature Ratio

In this case (M?‘ < <1 ) the basic equations [Eqs. (19)] are

cousiderably simplified:

Comiuuitz

, =0, | T, (22a)

EN T, (ﬁ—z w) = o {22b)

{22c)

'1_22 T, (—fa - E) = 0, 04 (224)

Stress

(d/ayNmy & T, + 5,T,T. (Re/M) o) (3, + T,) = 0 (22e)



Heat Flux

(/ay)E, T, % + T,T,%) + (4/15) JTTRTT Re/M) azey (4T, = 0
(221)
Of course the boundary ccnc.:iitians [Eqs. (20)] are unchanged.

As expected, the small Mach number simplification leads to a
split in the system of equations; namely, Eqs. {22 a, ¢, d, f) govern the
four functions m, , o, , _fl , and —‘ITZ . while Eqs. {22 b, e) describe the
bebavior of Ei and EZ . This independence of thermodynamic variables
and dynamic variables is a baszic feature of low Mach number ﬂewm.
The heat {lux, temwt&ture and density profiles so obtained are clearly
valid for the problem of convective heat transfer between two stationary
plates.

The three algebraic equations for the four functions n; , ?fz . —‘i‘-i .
and T, [ Eas. (22a), (22c), and (22d) | permit these variables to be
eliminated in favor of a single function G(y); then Eq. (22f) furnishes an
ordinary first~order non~linear equation for G(y). It turns out to be

most coavenient to take ?{1 /—T—l = ?{."3 / -’i‘_z = Gly) -1 . Then

Eq. (22¢) iz reduced to

/?1 + /'fz = a,G , (23a)

while Eq. (22d) becomes

T,-T; = aya, G . {23b)

From Egs. (23a) and {23b) one finds

A

T, (9 = (/4 (s, G = ay) (242)

il

)

T, M = (1/4) (o, G+ az)” (24D)

#0 that



el o - Z | y

‘11 (Y’ -G (aa G - &3} (54(3)

T () = Z ~ (24d)
e ® TR, GT;) ‘ g )

After substitution, Eq. (22f) becomes

(0,%6% - 0,%) (/a7 % GOy + (64/15) YTETRTY (Re/M) aja;=0. (258)

Integration of this equation yields

‘ P @ il E
Gly) = [(ﬁ3/c£3)a T (2/a )0y, -»-fg-g ;% a% %‘} v )‘5»‘] , (25b)

where o, is the new integration constant. The plus sign in G(V) is taken
owing to the fact that

2 2 2 _
e, G ~ay = (Eaa/ll),

and
o, >0, n>0 always.
By using Eqs. (24), one finds that the boundary conditions

{Egs. 20 b, d, and e) lead to the following conditions on G{¥):

2L+ ag _
G = : at v=1 {26a)
ez
Gl , {26b)
&t ?-“.‘ - %
{12 + cz,3 = 2 (26(})

[Here L= /(TI/TH) } . These three conditions are sufficient for

the evaluation of Gos 23, and 2y b the results are

-0

T Y A T Tt

(1+p-L%

. = Lo pets e (27a)
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i
4 3 2% 3 '
a;e2ea,s -((1+p)(L_+ZL +§3}+§,] t{L + B+ 1) (27b)
(1+g-L")
ag= 1=2(14) (ag/ay)+ (ag/az)® (27¢)

in which the abbreviation B = (8/15) Y 2/wy (Re/M) is employed.
Once G(y) is known, o) , 7, , ff’l . TZ are completely determined,
and so are the average density p, temperature T, pressure p and the

heat flux qy . We obtain explicit solutions for these quaantities, as follows:

(3.3 y wd
9/933(34’4§3§g E{)a {28a)
Qs p N
T/Ty = (a,/2) (ay = 4B = é )2 (28b)
P/?n = (‘12/2) : {28¢)
q o | :
- YT;I = (4/15) YT77Y)  a, 05 (Re/M) (28d)
c :
()
where the subscript II denotes quantities evaluated at TII s Pppe
By introducing the Stanton number
c q
H* Pry C 6!’!‘ =T,
I "py I I
and using Eq. {28d), we obtain
G.Z &3
CHM = (4/15) Y{27%y ) . {29}

Pr (1 » L%

Once the solutions for 7, , T{z . T}. , and _'fz are obtained one can
solve for Tz‘l and Ké from Egqs. (22b) and (22e). But one is interested in

the average velocity U rather than u; or u; . According to Eq. (24)
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&. &
— e — 3
BT 4,0, T, = (0,/2) (@) + §y) + —2ur
while . o
Byt eyt 4ty 83 9y
u(y) = — = - - —— .
nl + B, &
Therefore,
ci/d?‘(ﬁlﬁl"i‘—i + 0,0, T,) = o, (du/dy) , * {30}
and Xq. {(22e) is readily integrated to give
T = (15/16) {a,/a,) (o -3’- —)%4» (31)
/23t ey a, y og | 24

where ay and ag are undetermined integration coustants. The boundary
~ conditions for EI and KZ [Eqs. {20a, c)] can also be converted into two

boundary conditions for u:

U= $4 L(al/az) aty=+ &

[+ .
o 3 —_
“”“%’(“1/5“}"‘”&3”"%'(“’1/“3), aty=-4%,

with Gy s @3, and ay given by Egs. (27} .
These two conditions lead to the evaluation of o 1 and ag in terms

of the known guantities 95, @3, 8nda, .

*1 = , 93 1 4L
(15/16)(1/a3) ((% TETT ) ooyt 2 mlg] e
, ,

Qp B = 3 o ?

1

&
(15/16)(1/a3) [(q‘i - Z!%ag)% - (Qé + aga‘i‘)EJ 1:;

% Thzs result means that Pyy = M {du/dy) in the limiting case
M < < ] regardless of the plate iemperature ratio.
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Therefore,
(15/16) (1/a3)
Y= R °3 17 14L
(15/16)(1/%)[(&4 - 2;3&-;)3 ~fay+ z@gg)f]. -
L T, 1 Qg 1
x -.4;»5-..%)2 a[{%-zs%)ﬁgawzgi)z]%(32)
. leL
=

By employing Eq. {2la), we can express the shearing siress as

pxy_ ; 23
P h{ﬁ TII U Yiwy

where ay <0 .

Define the skin friction coefficient C D

then
CDM z - (CDM)G oy

where (C M) = the value of C\M for frec molecular flow (Re/M = 0)
In this limiting case of low Mach number flow Pyy?—.-’ - pand

P

Yy
flow, as shown by Eq. {(28c). Also the energy equation [Eq. (%)}

%0 [Eqs. {(2le, &) ] so that both pYY and p are constant across the

states that q-y = constant in the absence of disgipation., When in addition

T, T
L? = (Ty/Ty)—=1, thenag =0 (...}F....E.I..) , as shown by Eg. (27b)
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and all of these resulis {Eqs. {28a}), (28b), {29), and {31)} reduce to the
solutions found previously in Reference 10.

As a numerical example we take TI/ Ty = 4 the velocity and
temperature profiles for this case are shown in Figures 3 and 4. In
Figures 5 and 6 the normalized skin-friction and heat. tréusfer coefficients

are plotted against Re/M. These results are discussed in Section IIL

IL. C. Arbitrary Mach Number and Plate Temperature Ratio

When the Mach number and plate temperaiure ratio are both
arbitrary the velocity and temperature fields are closely coupled. In
that case the four algebraic congervation relations [ Egs. {19a) ~ (19&)]
allow us to replace the six unknown functions by two independent functions
F(M asd G = (7, YT, )™ = @, YT 1! . 2ad Eqs. (19¢) and (199)
~ furnish two simultaneous, first-order, nonelinear ordinary differential
.equations for F and .

In the expressions for 7, , _f}. . ?fz R ?2 given in Section IL B
the constant o, is replaced by the function F(y) . Thus, Eqs. (19a) and

{19¢) are automatically satisfied by taking

B0 = T (332)
00 = g (a,:c; T | (33b)
T, M = (1/4) (2, G = F)° (33¢)
T, ¥ = (1/4) (s, G+ F)° (334)

and Eqs. {19b) and (19d) yield



3
ek

~

— 4 %2

w, {y) = %{*"'z o == {o, «F)ea, G {33e
S 4 “2 ) |

w, (V) = % [ « = {a,»Fyta, G {33£)
4 rme e 2 1

After substitution, Egs. {19e) and (19f) become two integrable equations

governing G(¥) and F(y), as follows:

2.2 2 . %1 ,
(a,” G” = F") (a¥/dy) ~ ‘; — {Re/M) T =0 (34}
V7w (o o= =)
IM™ %1 %2
G (4G/dy) + )\, F{dF/dy) = © (35)
where
2,% .2 32 ,%.2
| , 21+ YM ‘a‘g"“@%‘f’
A=A ey, ey, YMY) = (1/3). .t . . (35a)
XM Ql + sﬁ.a
Eq. {35) immediately yields the relation
v N FP = oo . | (36)

By employing this expression, Eq. (34) can also be integrated. Thus

"

. (Re/M) . (a;/0) Y+a, = 0 , (37)

where o 4+ Og BT two new integration constants, and

2 4 2 %
>\ﬂ>\(&,u,)’M)=a,( R
A 2YYME e %

Xz = Aglegsay, VMY = (1/3) (g, A + == N e =2 = == ).
3 BT R Y

When the five boundary conditions [Eq. (ZO)]are converted into
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conditions on G(¥} and F{y) by employing Eqs. (33), oune obtains

G=1

at;@r'z-% Faahaa
Y y M
(‘13/@1)(@3“?)4*%@ G%‘*T-ﬁ 0

7’&4

Mot v eyt

o 0w

(XME/E) L (xla + (YMZ/Q) aya, = &22 ag
M/9 a4 a,”

F o= »

{38a)
(38b)

{38c}

(384d)

{38e}

By substituting these conditions into Eqs. (36) and (37) one gets a system _

of five algebraic equations governing the five a's:

Yhi
¢T“ ela,- z“s)z”\ ( L"‘ ‘*‘% oy z""* ‘—‘i3 2o (200,)
(/4 e % e, {XM&/:&; a,” 2
(39a)
«1l = 0
2
YM M z
W (et Xl‘aﬁz‘“z%)s f(2-al)
3 (XMQ‘/»;) a,“+0,” é
- A [1 t Ay (2 =0y’ (39b)
2 z
M 2
Lal*\ﬁé-&@, -Gy Gy g Reg‘l
% ‘ " ) + (2 - 5.1) - 'H E-—S
WM¥/9af+a, 12wy 2

ag = e - a, = (‘(MZ/‘}) (al/az)ii + al)

{3%9¢)
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ey = (A, =M = 00 4 )y (20 8/ YBT) (Re/MMay/y)  (399)

ag=l+ A (2= ay | (39¢}

Solviag numerically for the o's is not so tedious as it seems. The
first two equations, in which the value of ag is given by Eq. (39¢), can
be solved simultaneously for ay and a 2 by meaus of trial and error. The
fact that (- 1) alwayé varies monotonically between unity and zero as
Re/M increases simplifies the iteration procedure considerably. By
consulting the CDM/ (CDM’ o diagram, one can make a fairly good fir aé:

estimate of o then one can asolve for a 2 from Eq. {39a), and substitute

i*
these values of o 1 and ¢ 3 into Egs. (39b) to check if the Re/M so obiained
deviates from the given value. This procedure converges very rapidly to
the final resuli. As soonasa 1 » 8y are known, the other three constants
are readily determined from Eqs. {3%¢, d, and e).

All mean quantities of interest are expressed interms of F, G,

and the five cx‘ s as follows: |

/U = (z/fma)[(asaz/alp (;:: ¥ f-%f :.%)yJ (40a)
T/Ty = 1/4 {1 + (YM%/3) (al/azyz] (o;” G% - F%) (40b)
20,
p/oy = 2 v g (40¢)
L = -,/ V&Y ) (404)
pg YTRT; U

_ 7 ey A ay )
(km;z Ly = (4/15) YT7RTT (Re/M) oy (G240E r) . (200



a4

Hence,
CDM/(CBM)D = =g, where (C M) = Y=Yy (40f£)
and 2
“1 2 TM° ™1
C. M = (4/18) Y(Z/=Y) . {(~=+ -—F}. (40g)
H Pr1-15) %1 € 9

In practice, for a particular y, more than one value of F is
obtained, because Eq. {37) is a third order algebraic equation always
having three real roots. A typical variation of F(y) is sketched in Figure
7. Now F{y) is a continucus function of ¥ in the gas, so that only one of
the three possible braanches is physically acceﬂahm. When LZ = 1, the
velocity profile is always anti~symmetrical about the mideplane, so that
F(V) is also antiesymmetrical {Eq. (éﬂa)] . Thus, only the intermediate
heavily-lined branch 2is physically realistic in this case. When LZ >1
the behavior of F(y) is more complicated, Acearéing to Eq. (34) for
(dr/dy), when Re/M =—=»w , F{y)— constant. As Re/M decreases the
ccurve of F vs. ¥ gradually rotates in the counterclockwise direction at
first, and the pivot point moves smoothly along the ¥~ axis in one direction.
At some intermediate value of Re/M the curve Qi F vse. ¥ reverges ita
direction of rotation and finally reaches a horizontal position in the limit
Re/M ~—=0. Evidently oaly the heavily-lined branch is physically
realistic for any arbitrary values of Lz . Ma . and Re/M. [See Section

As a numerical illustrasion we take M= 3, L% = T, /T, = 4. The
skinefriction and heat transfer céﬁsi‘ficienm are shown as functions of
Re/M in Figures 5 and 6, and the veleocity and temperature profiles are

plotied in Figures 8 and 9. These results are discussed in Section IiL
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II. . Special Case of Equal Plate Temperatures, But Arbitrary Mach

Number

Although this special case is included in the general analysis
given in Seciion II. C, there are certain impeortant simplifications. When
both plates have the same temperaiure, then obviously E}; . E’Z , and w
are all anti~symmetrical, while ?l . T, ., and T (or n) must be

symmeirical with respect toy = 0, i.e.,
T = -G and T (7 = T, (-7

From Eqgs. (33a) and (402), one sees that

L

- F (-7) (412)
G (=y) . {41b)

F (y)
G (v)

Therefore, F(0) = 0, and from Eq. (37), we have Gy = 0. Aty=20,

one can conclude from Eqs. (41b), (33e), and {33f) that

a, = @
aq R

since o) and a, remain finite for all possible values of M and Re/M .

The non-trivial ¢'s are then governed by Eqs. (3%¢, d, and e)

.0.2 (2 -‘az) - (YMa/é) ay (1 + oy y = 0 {42a)

M, = A2 =)+ A, (2= a,) ¢ ———(Re/M){a,/a,) = 0 (42b)
172 = A3 2 2 2 1/

oy = 1+A (2 =a,)° (4z¢)

So one can easily express a, in terms of e by means of Eq. {42a).

Selecting the positive root,

a, = 1+ \/1‘(YMZ/4)¢11 (1+a)) .



26

By substituting this expression for o, into Eq. (42b), one solves for ay s
and then one obtains ag from Eq. (42c).

The variation of skinefriction coefficient with the rarefaction
parameter Re/M for the case M = 3, TI/TII = 1 is shown in Figure 5,
and the velocity and temperature profiles are plotted in Figures 10 and

11.
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III. DISCUSSION AND CONCI.USIONS

IIl. A. SkineFriction and Heat Transfer Coefficients

As expected from the structure of the basic differential equations
[ Eq. (19)] the variation efv the gkin friction and heat transfer coefficients
with Re/M is smooth and continuous over the whole range (Figures 5 and
6). For all values of Mach number and plate temperature ratio CEM
approaches the value given by the solution of the Navier-Stokes equations
as Re/M w0 (Appendix), and C,,M approaches the free molecule flow
value of Y{ry/2) as Re/M - 0. According to Eg. (A~9)

(CDM)Navier = Rﬁﬁ?ﬁf ) % [1 + (TI/TII) * (‘Y %_ 1 ,) Pr Mz] * (A-9)
Stokes

This behavior suggests that the rarefaction parameter should be
renormalized by replacing Re/M, based on physical quantities evaluated

at Ty, pyy» With @ new parameter {(Re/M)*, where

2

(Re/M)* = (Re/M) ' -
L4 (T/Tp) + (57 ) Pr M°

This procedure amounts to evaluating the '"proper’'' mean free path at a

density corresponding to a certain ''kinetic temperature’’, i.e.,

(Map = (A4« (T /Ty)

where‘ TK/TII is given by the bracket in Eq. {A-9). Evidently

(A/d)* > > ()\n/d) for high values of M2 and/or TI/TH .
In Figure 12 the drag coefficient is replotted in terms of this

new rarefaction parameter (Re/M)*. In these coordinates all the curves

deviate only slightly from the "basic’' curve corresponding to MZ =0,



(3%
[

TI/TIX = 1. Appreciable deviations { ¥ 10 per cent) from the classical
Navier-Siokes solution éccur even at values of Re/M as high as 30, or
{N\/d)¥ = 1/20. The approach to free-molecule flow is also quite slow,
because the solutions are simple algebraic functions of Re/M. On the
other hand, the w portion of the transition from the classical
Navier=Stokes regime to the highly rarefied regime occurs over an
interval of less than a decade in Re/M or gas &ensif;y

[ 3 < (Re/M)* <30, or %< (A/d)y*<1/20 J . This behavior rmust be
closely connected with the ‘'cascading” effect of pariicle collisions in
the gas. When a particle suffers only one or two collisions in péssing
from one plate to the other the effect on the particle velocity distribution
is small. But when 5 - 10 collisions occur, especially with particles
emitted from the opposite plate, the effect is cumulative, and almost all
the particles quickly forget their original place of birth.

Since the Mach naumber appears in the definition of "kinetic
temperature' only as the factor [I-é-}‘] Pr MZ = {2/27) MZ for a monatomic
gas, the drag coefficient is rather insensitive to Mach number for
M < 1.5 This coﬁclusion agrees with the experimental results of
Bowyer and Talbot®, Kuhlthau’, and Chiang® for cylindrical Couette

flow with small ratio of annulus width o cylinder radius.

IIl. B. Shear Stress and Normal Heat Flux

By utilizing Eq. {2la), one {inds that

XY 4 o (Re/M) —— (L1 (43)
/Y =7~ & dy

But according to Eq. {40a),



{du/dy) = '%{"“‘2“ o + 62‘}'

go that the ratio -——-m%- is constant across the flow[ Eq. (43) ],
c

4
a “{a./
/7;%733?)‘=(/7//‘c’3[ Y; ]'[’E&T(zal)(laﬁ](%)

T '
1+t /a? | |2 (&a/"’l“'(“‘x/"‘*z)]

and is given by

Clearly /’z""’/uc when M° —>0 , or when Re/M >> 1, for any values
of MZ and TI/TII . On the other hand at any finite fixed values of
Tl/ Ty and Re/M the ratio }J—v / /U_c decreases rapidly with increasing plate
Mach nwmnber. This behavior is connected with the fact that the (non-
dimensional) shear stress is not much affected by plate velocity, but the
gas temperature is everywhere large in a rarefied gas at high plate Mach
number. In Figure 13 this behavior is shown schematically for the
limiting case Re/M = 0. In Figure 15 the variation of /7 4u ¢ With Re/M
ig illustrated for two values of TI/TH at M = 3. Again one sees that the
transition {rom the classical Navier-Stokes regime to the almost free
molecule ﬁow regime occurs over about one decade in the rarefaction
parameter. . |

We observe thatﬁ//u¢ —>1 when T/T;; >> 1 (Figure 13). In
this case the condition of zero normal velocity [Eq. (19&)] shows that
nn/nI = /TI/TII >>1 when Re/M = 0, and the mean temperature in
the gas approaches the geomeiric mean value |/ "II TII , regardless
of the Mach number [Eq. (am)]. Thus the "proper’ Mach number is

based on this mean temperature, or
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~ & 2

M® = M" T /T —> 0  when T/Ty>>1

and it is not surprising that Pyy — M {du/dy) in this limiting case.
In fact this argument is valid for all values of Re/M and Ma . To

prove this conclusion formally, one observes that

P e —— Y e

"~ 'n
when ':*I/'r-II >>1, sothata, >>1. Then Eq. (44) shows that
He M -
Similar remarks apply to the ratio of normal heat flux qy to

|-k {(aT/dy). One finds that , ‘

(2/ 15’XME[(?1.,%Z(“ o), /o Zx]{c ?m%(“ oo )=a, /o zx]

G0 z —
© [”z%d*‘(%/“z)z ]'[”“_22 )\1]

The variation of this ratio with the parameters TI/TII and Mz in the

3

limiting case Re/M =0 is shown in Figure 14.

1Il. C. Mean Temperature and Mean Velocity Profiles

When Mz < < 1 the mean gas temperature approaches the geometric

mean / T,Ty; in the limit Re/M —>0 , as expected from the statistical
weighting of the two Maxwellian streams. For arbitrary Mach numbers
the gas temperature in this'iimiting case is equal to the geometric mean,
plus a ""kinetic’ term [Eq. ‘(2ld) and Figure 9 ] . The temperature
profiles pass smoothly from this free-molecule flow behavior to the

behavior predicted by the Navier-Stokes-Fourier relalions as Re/ M

increases.
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The behavior of the mean velocity profiles is more interesting.
By starting with Eq. {Z1a) for the shear stress, and introducing the
boundary conditions [Eq. (2,0)] , one can derive a very simple relation

for the ratio of the velocity slip at the two plates. Thus,

atys=+d/2, n f;fx (§~§)u~al {45a)
aty=-4a/2, (3+W) = -a, . (45b)

By utilizing the expression for mean velocity Eq. (18) atys= t da/2 ,
the quantities W, {+ d/2) and u (- d/2) are eliminated in favor of G,

and Eqgs. {45a) and (45b) become
(EI/KZ) T { % - w(d/2) ] =-a; (45¢)

(a/m)) [E(»d/2)+~§:} =-a - (454)

But Egs. {(19a) and (19c) vield the relation

Y Ti fz = constant = o, . {45e)
By utilizing this last relation, Eq. (19a), and the boundary conditions

on ?1 and _'i‘_z one obtains

g-utrafay T/T (46)

(- a/2)+ % o

independently of Re/M or M.

————

In the Navier-Stokes regime most of the gas follows the hot plate
(Figures 3 and 8) because He ™~ T, and the stopping power of the hot
plate is larger. However, the situation is reversed as the gas deasity
decreases, because according to Eq. (46) the velocity 'slip’' at the hot
plate is larger than at the cold plate. Finally, in the limit Re/M =0 ,

most of the gas follows the cold plate.



When TI/ Ty>>1, the velocity slip at the cold plate is small,
because the numnber density of particles emitted from the cold plate is
much larger than the number density emitted from the hot plate. In this

case — e {du/dy) (Section IIL. B), yet the flow bears no resemblance

to the predictions of the classical Navier-Stokes equations with no slip..
Especially in the highly rarefied flow regime the mean velocity is

determined by the statistical weighting of the influence of the two plates.

L D. Comparison of Present Results with Maxwell's Velocity Slip

Relation
.

When the gas is not too rarefied Maxwell suggested that the
Newtonian relation Pry = Mo {du/dy) might hold in the main body of the
gas, up to a distance of the order of one local mean free path from a solid
surface. By considering the balance of tangential momentum at the sure
face itself, Maxwell found that

gas wall o ay ‘wall
for completely diffuse reemission. According to kinetic theory,
/uc ={a/2) p < A , where €= YTBRT/%) , and a is a numerical factor

. o du PR :
of order unity, so that ug ~u ¥ a { }\ yic )w . It is interesting to

compare this simple and widely-used suggestion with the resulis obtained
from the present approximate solution of the MaxwelleBoltzmann
equation.

When M% < < 1 s Pyy —> /uc {du/dy) everywhere, accordiang to

the present solution (Sections II. B and IIL. B). At tile upper plate
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[Eqs. {2la} , (45¢), and {45e) } .

RTq %2 _ du
pxy {+ d/g) = (pn \; U ) { : (%‘u)Ja(ﬂCE{?)Y@%‘d/z
JT/ Ty
But (az/éZ) = pT/pxITn [Eq. (a{%c)]; therefore ,

2
(U/2) - w (+a/2) = ..;/f‘.% T/T (du/dy)y:+d/2 = a)\ /TI/T {du/dy)ywd/z '

where (p '&’) and /U. e’ and \ are evaluated at the gas temperature (or

the gas density), and not the surface temperature.

One sees that even for MZ < < 1 the Maxwell velocity slip relation
is strictly co#rect only when the gas temperature and the surface tem-
perature are nearly equal, i.e¢., when (TI - TH}/TI < < 1 (Reference 10},
or when Re/M > > 1. But

Iy A =1
TI/T = 14‘%(—1?-;%{1?}(——%;-}-1—){*... R

where AT = Ty T{d/2). Now, AT/(,TI - T.) ~ 0.10 when(Re/M)* = 30,

iy
so that the Maxwell velocity slip relation is in ervor by 5 per cent when
f’I’I/Tn = 2 and (Re/M)* = 30, or (A/d)* = 1/20. Thus the usual velocity
slip relation is quite useful in the near~-Navier«Stokes regime, as
Maxwell suggested.

For arbitrary Mach number p, £ Mo (du/dy), and
(o,/2) # p'}.‘/pHTH . In that case the velocity slip can be expressed as

fallowag:

(U/2) = u(+d/2) = a | A

(du/dy) ] ,
y=+d/2

8
/ ‘I‘Z/T

where
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5= il

T @7ay

By utilizing Eq. (44), Section lil. B, one can show that for Re/M > > 1,
& = 1 = /Jl(l{{e/m)-a-%... H

also, T,/T = 1+ 4, (R&‘a/b.:i)"1 where 4, and J, are constants.
Onee again the Maxwell velocily slip relation is found to be correct to
first order [(RE/M)‘l] for large Re/M. The departure from the Navier=
Stokes relation is of second order. We conclude that Maxwell's
suggestion is a good {irsteapproximation for arbitrary Mach number and
plate temperature ratio in the near-Navier-Stokes regime. One could

not expect it to hold for the traansitional or highly rarefied flow regimes,

Il E. Limitations of the Six-Moment Approximation

Our original choice of six Maxwell moments {Section IL A) is
expected to furnish a good first approximation for plane Couetie flow
when M= 0{1). But at high plate Mach numbers (M >>1) Pyy _and PVY
are of the same order as qy in a rarefied gas [Eqs; {21b), {21c), (2le),
and (zlf)] , and the six-moment approximation is inadequate.

As an indication of the limitations of this approximation, consider

the differential equation for (d¥/d¥) [ Eq. {34) ] :

a & - [49
. 1 4 %2 % .1 L
dF/dy = - , [(" — ) ] (47)
| Y777 (a,°G -F%) M© %1 %

When Re/M >> 1, a, —>2 and a; =0 [(Iﬁe/M}m3 ], s0 the quantity in

brackets is positive and 0 [(Re/M)"lJ . ©On the other hand when
+

[T I/T ) anda) = =1,

Re/M >0 , 6y = 0y

:}l
o l
K’w
‘.‘.’:
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80 the bracket ({1l 4+ L) [‘"ﬁz {1+ L)Z - 1]'1 , where Lis / TI/TH .
™

So long as Mz < {4/Y N1 + L)Z this bracket is positive when Re/M = 0,
and remains positive for all values of Re/ M However, when

M > (4/YN1 + L)° the bracket is negative in the limit Re/M —=0 ,
and therefore must have changed sign for some intermediate value of
Re/M. Such behavior is physically unrealistic, and some difficulties
are to be expected with the sixemoment approximation. {For 'B’ = 5/3
and L = 1, the "¢ritical" Mach number is 3, 1.)

Without going into details we indicate the actual behavior of the
curve of F{y) vs. ¥ and the behavior of uf+ $) for values of Mz smaller
and larger than (4/Y )1 + L)z. As spaf:ific examples, we selected Li= 1
and M= 3 and 10, When Mz < {4/Y )] + L)g the curve of F(y) behaves in
the manner described in Section IL C, and shown in the accompanying
Siketch A. The value of u (+ }) decreases smoothly as Re/M decreases,
and the point of inflection shown in Sketch B occurs at a value of Re/M
very close to the point at which the curve of F({y) has its maximum
inclination. However, for M = 10 the curve of F{y) rotates counter

clockvise to a certain maximum angle as Re/M decreases, but is unable
to negotiate the return journey to the horizontal position. In fact for
values of Re/M less than a certain critical value no real solutions could
be found {Sketch A and B).

The situation is somewhat analogous to the difficulty encountered
with the KarmanePohlbausen methoﬁm when a guartic is employed to
approximate the mean velocity profile across the laminar boundary
layer. For pesitive sireamwise pressure gradients it is welleknown that

flow separation occurs at A\ = = 12, where A is the Pohlhausen
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parameter. But there is also a difficuley at A =+ 12, where none is
axpected on paysical grounds. As shown by Taniig the best way to
avoid {or postipone) such singularities is to take an additional moment.
In ocur case %:Jg_e immportance of the moments associated with P and pyy

at high Mach numbers dictates a similar procedure.

A rough calculation replacing ij = m §§i§’§’ by 0 = rr*%‘;
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{corresponding to pxx) already shows that the difficulty illustrated by
Eq. (47) dissappears. Of course this choice of moments is poor when
M= 0 {1). Clearly the proper course is to employ an eight-morment
approximation, in which the four moments in addition to the collicional

invariants are ag follows:
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Qg = m%x%y
Q = mE, (5%/2)
Q, = mzxz
Qg = mg,’
For this calculation we select 2 modified two stream Maxwellian of

the following forra:

5,0, f=4 [i+al(§)€x§/}

5, >0, f=4 [Mazm gxsy ] .
where {; and f, are given by Eqs. (10a) and (10b), and a,(y), a,(y) are
two additional functions of y. The boundary conditions [S&ctiﬁn I A. 2]
lead to the conditions given by Eq. (20), pluea, (+ 3) = 0 and
a, {= ) = 0. An eight-moment approximation yields four algebraic
and four first-order non~linear differential equations for the eight
unknown fanctions n, () covenncens §2{§) . al(?) s azﬁr) . Thus the

problem is completely formulated, and is currently being investigated.

L ¥. Conclusions and Future Work

By employing the simple two-stéeam Maxwellian in Maxwell's
moment equations one obtains considerable insight into the nature of the
tmnsitiaﬁ from highly rarefied flows to the classical Navier=Stokes
regime. The results obtained for plane, compressible Couette flow
suggest ceriain conclusions about hypersonic flow. For a blunt-nosed
body with surface temperature much less than the kinetic temperature
the tangential velocity slip is expected io be very small near the nose,
even in free~molecule flow. In spite of this fact the classical Navier~

Stokes relations are not likely to provide a correct description of the



flow field when \%*/ R, > 1/20 (approximately), where \ % is the mean
free path evaluated just behind the bow shock, and R o 18 nose radius.
G‘ﬁ the other hand the transition from the near-Navier.Stokes regime to
nearly-iree molecule flow occurs over a range of gas density of about
one decade. Similar conclusions apply to those portions of slender bodies
where the normal component of flight velocity is large compared with the
thermal velocity corresponding to the surface temperature.

There are important differences between the present results
and those obtained by the ad hoc procedure of utilizing the Navier-Stokes
equations plus Maxwell's velocity slip relation {Section IIl. D). In spite
of this fact, the values of gkin-friction &nd heat transfer coefficients
obtained by such an ad hoc procedure are not far wrong. As pointed
out by. Dr. H. Grad, plane Couectie flow is probably still too simple a
geometry to show any critical features of these gross macroscopic
quaniities. For this reason we are studying the problem of heat
coanduction between two concentric cylinders, where the ad hoc procedure
is grossly inas:curatel.

Another important example of nonelinear flow is the steady, plane
shock wave. This problem deserves to be investigated in order to
learn about molecular effects in longitudinal flows without shear.
Eventually one should have a much clearer understanding of the limita=

-ions and advantages of Maxwell's moment method.
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APPENDIX

PLANE COMPRESSIBLE COQUETTE FLOW
ACCORDING TO THE CLASEBICAL NAVIER~STOKES EQUATIONS

The clasgsical Navier-Stokes solution is given here for reference.
In obtaining the solution, the medium is assumed to be & perfect gas, and
the viscosity coefficient /u ¢ is directly proportional to the absolute
temuperature, just as for Maxwell molecules. Alse, the Prandtl nume
ber is constant.

Clearly, the continuity equation (d/dy}{pv}) = 0 , together with the

requirement that v vanishes at the plate surfaces leads immediately to

t

v it . {A«1)

Thus the conservation equations are as follows:
Momentum
du oy
(d/dy) (p, gz ) = O (A-2)
(dp/dy) 2 © (A-3)

Eﬁnergz

- ke & 2
{a/dy) | - Tl |+ M claw/an® = o .

'l

In addition, we have p= pRT. The corresponding boundary conditions

are as follows:

y= - (d/2), u==(U/2), T=Tg y=+1{d/2), us+(U/2), T=T . (A=5)

w
Integration of Egs. (A~2) and (A«4) yields the following momentum and

energy integrals:
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M taw/dy) = by (A-6)

2 » -
cPT+(Pr/a)u ww(bz/bl}u = by | (A-T)

with the undetermined constants bl . ba . b3 s

Let { ye c)il denote the viscosity coefficient evaluated at tem=
pera.mré ’X‘n . Then by integrating Eq. (A-6) once agﬁin, we have

b, y+b
I
J/‘c Mpdu & = myr -
But /u c/(/‘c’u = 'r/'rIz , and by using Eq. (A-7) and integrating, we
finally obtain
: b b
2 3 1 4

/(e T.) | by ut (b,/2b.) u” « {(Pr/b) u” |z gergeem ¥ + :

P I [ 3 S ] Cidn ™ Ui (a-8)
where b, is another integration constant. The four b's appearing in Eqs.
{A~7) and {A~8) are determined by the four boundary conditions [ Eqgs.

{A-~5) ] The final results expregsed in terms of nonedimensional quantities

‘are

C, = (p W)/(%pﬁu‘?*) = {1/Re) [1 +{TY/Ty) +Z§-‘. Pr M‘?‘] (A-9)

R £ W - SRR Vol | RS SN S -
b erre - T we T P B (Ao
The veloeity and temperature pxeﬁles are given by the relations

2 _Y¥-1

T,
[1 + (TI/'I‘H) + "T‘ Pr M ](u/’ﬂ)—(l - ‘I"“”" u/U) = Pr M (u/m3

| (A=11)
z[u(wx/wn)a--—s.-mm ] - 1/4 (1 'T""’

-,3%4» 5L e v /e - TEE) =i Ti';"" e M (a-12)
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PART U

KINETIC THEORY DESCRIPTION
OF CONDUCTIVE HEAT TRANSFER
FROM A FINE WIRE
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ABSTRACT

The Maxwell moment method utilizing the twoesided Maxwellian
distribution function is applied to the problem of conductive heat
transfer between two concentric clylinders at rest. Analytical solutions
are obtained for small temperature differences between the cylinders.'
The predicted heat transfer agrees very well with e:%periments per=
formed by Bomelburg, SchifereRating and Eucken. Comparison with
results given by the Grad's thirteen moment equations, and with those
given by Fourier's “law" plus Maxwell-Smoluchowski temperature-
jurnp boundary condition shows that the two-sided character in the
distribution function is a crucial factor in problems involving surface

curvature.
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LIST OF SYMBOLS

a thermal accommodation coefficient
A, = 1.3682, value of scattering integral

impact parameter

B integraiion constant

< mean thermal velocity, <1 /wm

£ velocity distribution function

f ° local full-range Maxwellian

H L fg components of twoesiream Maxwellign

F interparticle force

G funciion defined by the relation "5; T; + ?12 T;,;

k Boltzmann constant

.kc "elassical" thermal conduciivity

K quantity used in Welander's work {see Section I, also
function defined by the relation -{1; T: _»-;% »TE

K constant in expression for inverse fifth«power force law,
F= (rnl m., R)/r

£ length of heated wire

m mass of a particle

my o, Wi, mMass of two interacting particles

ny, n, number density functions in two=stream Maxwellian
Nl , NZ perturbations of a; , 1, over unity

P nkT, hydrostatic pressure

PRR’ POO’ Pzz normal stresses in R, 9, Z directions

4p radial heat transfer rate

0 arbitrary funciion of particle velocity, also total heat

iransfer from: heated wire

AR change in Q produced by collisions
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T distance between two particles

R radial distance

ﬁz . non-dimensional radial distance of Knudsen layer from center
of heated wire

R 1 RE‘; radii of inner and outer cylinders

ARI » AR, free molecular heat transier regions near Rl and R,

e 8y perturbations of Ty T, over unity

T absolute temperature

T e T, temperature functions in two-siream Maxwellian

TE » TII absqlute temperatures of inner and ouier cylinders

up mean radial velocity

\'4 relative velocity between two interacting particles

z axial distance

a wedge angle, ccs‘itﬁl/ﬁ)

8] integration constani

& parameter defined by Eq. {17)

o' parameter defined by Eq. (23)

A | non-dimensional radial distance of Knudsen layer from
surface of heated wire

& angle beiween plane of the orbit and plane containing the

original relative velocity and the x-axzis in a binary
collision (see Reference 13)

€ (Ty = Tp)/ Ty

) circular angle in cylindrical coordinates
A Maxwell mean free path
AN correction factor used in Dickins' work (see Section )

Me "classical' viscosity coefficient



o4

g vector particle velocity
ag s, d §; 43
Sp

planar velocity vector, §p = /§R£ + ggg

%.R » %‘9 . gz velocity components of particle velocity in R, 9, Z
directious :

e mean mass density

angle between particle planar velocity % and radius

vegior R

The subscripts "I'" and "II'" refer to quantities given at the inner and
outer cylinders, respectively. The subscript "'’ denotes quantities
evaluated at the continuum limit. The bar {( — } superscript refers

to non-dimensional guantities.
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I. DESCRIPTION OF THE PROBLEM

The present problem deals with the conductive heat transfer
from a metallic wire to a monatomic gas at rest. A fine wire is
placed coaxially in a large cylindrical bell jar and is elecirically heated.
The wire temperature is known from its electrical resistance, while
ihe heat input is found by measuring the curreat. Ai normal gas densiiy,
heat conductiion fic»m the wire is clearly independent of the gas pressure;
while at very low gas density the heat loss is proportional to gas pressure.
When the gas density is in the transiiion range, the relation between
heai conduciion and pressure is not as simple, but the two limiting
regimes are joined smooihly (Figure 1}). This simple device has long

§ -
1,2,3,4,6 to determine the thermal

been used by many investigators
conductivity of gases and t0 study the phenomena of temperature jump
and energy accommeda‘tion at the wire surface. Some auihors have also
approached the problem analytically, but they are all foréed to introduce
certain ad hoc assumpiions, which restrict their results to small

values of ithe ratio of the mean {ree path to the wire radius.

It is easy to see that this type of instrument enjoys the privilege
of simplicity. Up until very recently experiments with such a heated
wire furnished one of the few sets of data for the full range of gas
densities {rom the free molecular regime to the continuum regime.
Moreover, the presen:t problem is fundamentally important because
it contains the effect of boith convex and concave surfaces. The effects
of curvature on heat transfer and temperature distribution in rarefied
gases have never been thoroughly investigated. Along with plane
Coueite flow and shock wave structiure, this problem has received a

good deal of attention in rarefied gas dynamics. Weberi and
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2
Schafer-Rating, and Eucken sub~-divide the annulus into three parts:

two free molecular heat transier regions near the solid surfaces

R1<R<R1-§-ARA, R2~ARZ<R<R2(RE. Rzare&hﬁwireand

bell jar radii respectively); and 2 region bemesn E‘l + ARI and R, ‘ARZ
where continuum heat conduction is assumed. The arbiirary quantities

ARI and AR;?. are functions of the mean free path A, and in Weber's
case they are taken simply equal to (15/8) X\ . In Schafer-Rating and
Eucken's ealculation A E.l/ A and ARE/X are functions of

PN /RI and >\/ RZ ., respectively. In their studies, the implication
that \ is small in comparison with RI and R, has been made. The
choice of ARl and A R, is clearly related to the temperature jump
boundary condition proposed by Smoluchowski {see Section IV. 4)5.
He suggested that for a small degree of rarefaction, the difference
between the gas temperature and wall tem:perature at the solid surface

is equal to -(15/8) X\ (dT/dn)wau , where (d'I’/cin)wan is the gas

temperature gradieant normal to the wall. Application of &moluchowski's
relation to the present problem is discussed in Section IV. 4.

Gxegory3 and his followers have investigated this "hot-wire"
method over the period of a decade. Their primary goal is accurate
determination of the gaseous thermal conductivity as a function of
temperature. Early developments were more along technical lines
than analytical, like keeping the wire temperature constant under
different conditions, elimination of convective losses, eic. In computation,
they merely used the ﬁsual Fourier regult that the total heat transfer Q

is 2wk, (Ty - Tp) / In (Ra/ﬂl), in which k_ is the "classical®
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thermal éon&uctivity of the gas¥, £ ihe length of the wire, and ’II

and T, are the temperatures of the wire and the bell jar, respectively.

11
They allow kc to decrease if the pressure decreages appreciably below
atmospheric3; however, their original focal point is the temperature
dependence but not the pressure effect.

later, Dic:kinusqig adopied Gregory's apparatus to determine

accommodation coefficients. ¥ He correctied the heat transfer O at low

pressures by an amount A/R1 , 50 that

2wk Z(TE~ Ty )
n (Ry/Ry) + { /A/R))

=

in which A= (15/8) A{2-a)/a and a is Knudsen's accormmodation
coefficient. As determined by Dicking experiment "a' is about 0. 9
for most gases except helium and hydrogen. The correction/\ is
eagily seen 10 be based on Smoluchowski's x’elations.

Two years later, Gregary6 generalized the same relation for
polyatomic gases, but /\ then included a numerical factor which
accounts for intermolecular forces and has to be determined by -

experimental data on viscosity and specific heat. At the same time,

ot

# It should be noted that the Fourier relation g = - ch T

holds only at normal densities; thus the 'classical’ thermal conductivity
kc introduced here is merely for convenience. {See Section IV.4.)

#%¥ The thermal accommodation coefficient "a'' advanced by
Knudsen?® is defined as E - F
g r

® T ETE
g w
E = energy transported to surface by incident molecules in
equilibrium at the gas temperature
E_ = actual energy carried away by molecules leaving the suriace
E, = energy of re-emitted molecules in equilibriwm at the wall
temperature
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microscopic studies have also besn made by Zen@r? and Dewmshim@
on the general aspect of solid-gas interchange of energy. They
require exparimental determination of certain cmmia;.n&s related to
intermolecular forces.

9

Welander in 1954° worked the problem anew but used a different -

constant for [\ , in which the factor %?)’- ie veplaced by -fi;:i-ﬁf—— .

The quantity K is found to be 0. 8&7 by solving the “"Krooked' Boltzmann

equaiianmw, in which the colligion integral is taken to be

(/150 €/ \) (£ - £,) , where { is the unknown velocity distribution

function, f@ is the local Maxwellian, and ¢ the mean thermal velocity

<= !%ga . Welander attempted to extend the validity of the

S=ila
a

function of gas density. Under the assumption that ] (éT/d.’&)w all (N T)l

espression to the {ree molecular regime by allowing K to be a

is small in comparison with unity and that the distribution {unction
differs slightly from the local Maxwellian, he obtained an integral
equation governing the K- funciion, but he did not solve that equation.
Instead he estimated K from experimental data given by Schafer-Rating
and Eackenz, and found that X varied between 0. 1 and 0. 6., The fact
that K depends only on pressure is rather obvious; yet Welander's
result demonstrates very little beyond this point.

Though it might be difficult to record all the investigations of
thig “"simple" problem since the ﬁrss: usé of the apparatus by Schleiere

11
macher for determination of gaseous conductivity in 1888, yet it is

% Welander also used a different numerical factor 75%/128
instead of 15/8; however, the quantative difference is negligible.

27 ¥ Welander's paper is published at the same time as Krook's
work .
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clear that a thorough theoretical investigation of the problera is long

osverdue,
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II.. FORMULATION OF THE PROBLEM
ACCORDING TO THE MAXWELL MOMENT METHOD

I A. Distribution Function and Mean Quantities

We consider a wire of radius R 1 placed at the center of a cone
centric ¢ylinder of radius RE , with R, > RI (Figure 2). The wire is
heated to a temperature Ti » while the outer cylinder is kept at tem-
perature TH . The annular region (Rl < R < Ry)is filled with
monatomic gas at an arbitrary deasity level, which is characterized
by the mean free path A evaluated at a convenient reference peint
{say R = Ri" If the wire is sufficiently long, end effects are negligible;
thus the problem is axially symunetric and two-dimensional.

In compliance with the requirements given by Leesw(%e also
introduction, Part [ of this thesis), the simplest distribution function
having a “itwoe-gided” character and capable of giving a smooth transition
between the highly rarefied gas regime and the continuuam lmit consists
of two Maxwellians, each containing several parametrie functions. All

e

outwardly directed molecules with planar velocity vector { P
( §p = ‘/W , $=tan"t Se/ $4) ) lying inside the wedge
of influence (region I in Figure 2) are characterized by one Maxwellian
fl ., Where

fzfl for o € P < we-a
in which

a = cas-l (RL/R) .

Then, all molecules with planar velocity & p lying outside of region I
are characterized by fg . loe.,
f=1{ for reo < @ < 2v+a .

&
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The requirement that { should be discontinuous on the sides of the
wedge of influence' is the most basic feature in the present scheme;
ite imporiance will be seen shortly.
In order to satisfy at least the three conservation equations and
the heat flux equation, one {inds that four parametric functions specifying

fl and fg are the absolute minimum. Thus we prescribe that
7.
m < ” 2 2 ]
= N, [ — Xp | — == +
f, I(Zﬂk%) e/’[ ka(gp §z)
likewisge,

o= (i) o[- Fae59)

where nl(R), Ty{R), ny{R), T {R) are the four unknown functions of
radial distance. Here the n's have the dimension of a number deasity,
while the T's have the dimension of a temperature, and it must be
stressed that each individual function has no explicit physical significance
in general,

Knowing the disiribution function {, one can evaluate all mean -

quantities @ by averaging over all velocity space,

= [ras =] [ [ o+ [ | [Frosbu

For example, the mean density is
P =£R)=[mfd§ = & [n (-2 m(ra0]

and the mean temperature is



T2

7T (T-2) + 7l (W+2)
n, (-2 + 75 (7w +2e)

T=TR) = @

Netice that the angular dependence appears directly, while T 1’ Ty,

, will bring in a purely radial dependence. Expressions for radial

velocity Uz , hydrostatic pressure p, and radial heat transfer qp

are listed below for latey usage:

Up = wlﬁ%k' - Cos. A 7T = 7adR (3)

7 (m ~2%) + Na( +2%)

b tFoo Bz
3

= zé; [ﬂ,‘/,’('ir—,zx)+ n472'(7r+2o<)] = - (4a)

Pn=-<pEi> = - z’f—r—[ 7, T, (=2 41 28) + 7, T, (74 240030

P = - PE> = - 2%; (7T, (7 et 2)+ 7, T, (T2 +in2)] (4}

Pre= -—<j°§zz> = -é%[zz,’]j (7-24) + 7?172(7T+2o<)]

gﬁ — ;.% - COS. [78/ (/é ﬁ)j/z— q> (/4-7;)3/{] {5)

It should be pointed out here that the normal stresses in different

directions are generally not the same; namely, EM% Peﬁb - ﬁ

IL B. Differential Equations

In cylindrical coordinates the Maxwell integral equation of

transfer is as fellowsl?’:
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#30 [RIF5QIT | + 555 15.QdF + & Ji5.ad8 s

f’(ie 3%, §§« )T = AQ (6)
where

Q=QGk. % 3:) =Q(5, ¢ %)

= I (Q'-Q)# VIEIE sdrde

Because of two-dimensionality and axial-symmetry, Eqg. (6) further

reduces Lo

% 5 [R[F5@dF] - /7?(553‘2 So%as )9 = 4Q,

Setting O =m, m §E , §72, , respectively, we find AQ =0
because the mass, momentum, and energy are invariant during
collisions, and we obtain the ordinary continuity, radial momentum,
and energy equations. Since we are primarily interested in radial

heat transfer, we take Q g = W $ R § * / 2, which yields the heat flux
equation in which the collision integral A Q, for simplicity, is
evaluated with Maxwell's inverse fifth power force law F = .....Z’./....&_/L,._

2%
and is found to be proportional to the heat flux %213. The four differ-

ential equations governing the four unknown functions are as follows:

® See Introduction in Part I of thesis; also Reference 13,



Continuity
e+ m] . AT = T (8a)
R~Momentwun |
[Q = m ER])

thz Zd——Zd) 5/?(77/7/— -n,T;) +7757[f(”/7;_+ 77272—.):0, (8b)

o= 257,
ws. o (T %= nT %)= B/R (8e)
Heat Flux
[ﬁ = %“%gz],
(din 2ot — 2e0) 5% (a7 nT°)+ Wo%f (n 7+ 7 T2)

_ 4, [EB
= ——fm/‘},2 R [71,(7T-2°<)+7?z(77’+-3°0] {8d)

In Eg. (8¢}, B is an undetermined integration constant; in
Eq. (84d), A= 1. 3682 is the value of the scattering integral for Maxwell
moleculesm, and k is the Boltzmann constant. AZ and z}; are related ‘

to the ‘'classical’ coefiicient of viscosity by the expression
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_ kT
AR ST d ' *

Since Ppp # Pyg # - p the momentum equation, Eq. {Sb) does not

imply (dp/dR) = 0. This obsexrvation is important, because a pressure
gradient exists owing to heat conduction but not because of fluid flow.

Also, the heat flux equation, Eq. (384}, relating 4y to two higher
moments? f m { f:m@@; + 37)df and jm £ %,’"cw’;ﬁ( §;’+ $ha¥
bears no gesemblenaa to Fourier's ”léw*’ﬁ in general; in fact Eq. (8d)
reduces z:; Uy = = kﬁ {dT/dR) only if the local full-range Maxwellian

is introduced into the left-hand side. In other words, Eq. (3d) would

give Fourier's "law' to the {irst order if the Chapman-Enskog expansion

procedure is employiedw.

iI. C. Boundary Conditions

For completely diffusive reemission, the boundary conditions

are very simplew, namely

T,

th

’K‘I at R= Ry (Figure 2} {%9a)

T, = Ty at R:EE {9b)
One additional condition is to specify the density level at a
convenient point. We may set

¥ As it has been mentioned in Reference 15,

/“cgpjk / { ;34 + iiﬁk ) except in the Navier~Stokes regime.
% 7

Also it should be pointed out that the Prandtl number for Maxwell
molecules is equal to 2/3,
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The fourth condition is the vanishing of mean radial velocity
uR =0 at R=R;and R= R, . From the expression for U,
[.Eq. (3)] and the continuily eguation [Eq. g@a}] ., we conclude

immediately that U= 0 everywhere in the annulus, or

R
T = T, | (94)

These four boundary conditions are sufficient for the four

equations [Eqs. (8)].

I . Differential Eqguations and Boundary Conditions in Non-Dimensional

Form

In order to bring out all pertinent parameters governing the
problem, we normalize Egs. (8) and (9) by choosing a5, TI » Ry as
the characteristic number density, temperature, and length, respectively.

We also utilize the fact that the Maxwell mean free path evaluated at

\. = 1 Tk Tp
I 346 Pd

Denoting all normalized guantities by a bar superacript, like

condition [ is

and so on, Egs. {3) in non~dimensional form are as follows:

- Continuity
T = AT, ' (10a)
ReMMomentum

. d po7 == _d/ = _=
(4«&-2«)(7;(477—”472% m ;jg(nﬂﬁ %lk)=0 {(10b)
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Emergg
— e
(mT*-2T?) = ¢ | (10¢)
Heat Flux

(sin 24~ 2) 2 (7T nl )+vd& (AT +2T°)

LRp tioa
+/5 )‘I R [”/(W—»Zd)+”z(7r+w] =

in which § is the integration constant.

The normalized boundary conditions corresponding to Eqs. (9) are

atR=1,
T, = 1 {11la)
Eﬁ. = 1 o {llc)

AtR = {RZ/E{I ),
(TH/TI) (11b)

There are &é;ree parameters governing this problem: the rare-
faction parameter \ I‘/ Ry of Eq. {10d); the temperature ratio TH 1
appearing in the boundary condition; and the radius ratio R,/ R, describing
the geomeirical configuration. One can readily see that Egs. {10) would
all become algebraic at the {ree molecular lizdt, namely, (\ I/;fe.l) 5§
thus, T, ..., TZ would all have the constant values prescribed by
the boundary conditions. Then the distribution function f would not only
be discontinuous in velocity space, but also independent of space
coordinates. Nevertheless, mean quantities [ see Egs. di~5§] would

still depend on R even in free molecular flow. It has been mentioned

previcusly that the set of equations, Eqs. (10}, reduce to the usual
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Fourier formulation if an expansion in >\1‘/R1 is exnployed. Of course
the complete solutions to these equations will demonstrate these

lHiniting characteristics.
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IIL. SOLUTIONS FOR
SMALL TEMPERATURE DIFFERENCES BETWEEN CYLINDERS

In general, one can utilize Eqgs. {10a), {10c) to express
ﬁ”i R ﬁa R §E s %—2 in favor of two unknown functions; as in Reference 15;
then one has to integrate Egs. {10b, 10d) numerically for these two

functions. For example, if we designate
n —T,_ + M, = GR)
v - T = KQR)
then by ueing Egs. (10a), {10c), we can express all {our unkanown

functions by these two new functions G and K as

71',_1;2_. KG/ ,32_._2:_,___5_6_____
l

P (x+e) B* (% -2)

=_ P IV = p° 2

T=7 (x+3) L=y (-2)

Substituting into Eqs. {10b) {10d), we obtain two governing equations

daGg
G Zd_;{&nzoc dK —fn(/(ﬁ)
(32 / > mE— 2«»(6)‘_:/_

R

dK _ 5 ﬂ3 s @-/@z
dR 2 (3= in 20) GE—_- gs (n o(-—zx)‘

= h(KGR)
/« |

Boundary conditions can be converted easily into conditions for G and K.
As in all two-point boundary value problems, to start integration at one
point one must make a guess on some undetermined constants, then

adjust the guessed values until the boundary conditions at the other point
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are satisfied. For the present case, once the value of ¢ is assumed,

G and ¥ at R = ! are kuown, integration can then be started from W= 1
towards R = RZ;/RJ' . The correct value of 3 would be the one that
leads to the correct T, value (.e., T, = TH/TI yatRs Ry/R; . In
actual computation, interpolation would be more practical than the
iteration schemne; namely, for a giveni&l/}\ g+ ©ne may work with a
spectrum of §'s which lead to a spectrum of corzesponding ;‘%—H'S’ Then
for a prescribed T, » the corresponding 3 value at that particular
density level can be found by interpolation.

By examining the situation more closely, one finds that the
linear problem is in fact the most important. In all experiments
previously performed, the wire is fmly slightly heated and its tem-
perature never exceeds the ﬁemperamr@ of the bell jar by more than

| 15 per cent. With large temperature difference pure conduction would
be quite difficult to achieve. Thus, Egs. (10) are linearized in order
to acquire analytical solutions, to compare with experiments, and to
study particularly the effect of suriace curvature. .

When the temperature ratio ’.?:H/ T, departs little from unity,
the four f@ctiang ER . Eig . 7’1_"'1 s _T—‘Z also depart from unity by an

amount small compared with one. Symbolically, if

Tu/'i‘zz 1€  where €<,
then
E = 1 +N ? E—I- = 1 + N";
4ot - ¢ (12)
Tl-"— 1+ti , Tz=l+t2

inwhicth, N&, tl‘ ta«:v:l.

Such limiting process implies that each of the distribution functions



51 and f&i are slightly perturbed over a constant Maxwellian, but the
distribution is still di sceﬁtimmuﬁ on the surface of the wedge of
influence (Figure 2). This procedure is intrinsically different from
perturbation over a full-range local Maxwellian which usually is
space dependent; the latter procedure iollows practically ‘the same
line as the Chapman-Enskog scheme. Thus it should not be surprising
to learn that the results so obiained would be useful only when the gas
ig slightly rarefied. In other words, the present linearization implies
no restriction on the value of the rarefaction pavameter. The scheme
does imply that Nl s Ny, ty s by are of the same ordeyr of magnitude.
Introducing Egs. {12} in Egs. (10), one readily finds the set of

governing equaiions for guantities Nyo Ny, 85,8,

N, + Z]=Nz+2/—& {13a)

V e

(atn. Zd—%)ﬁ% (N+1-Ny=E )+ 775-5 N+t +M,#8,)=0 (13b)

(N - W) +5(t-t)=f (13¢)

By using Eqs. {132) and (13¢), one obtains

Lt =g (13¢")
and
N, =N, = /2 (13a")

Eq. (13b) then yields

/\/I +tl +/\/z+z:€ = ¢constant

or

N,

. +z'/ = constant {13b%)



The heat flux equation [Lq. {Na)] becoines

(e 2-2) = (N 421, - N,-2t) +T 2k (et rag) 2R Lam=0 134
or [Eqs. (13a'b'c')]

c/K (t+12) +/§-/\If—

Tntegrating and applying the boundary conditions

6, = 0 ‘ _ {14a)
} at R = 1
Ny = 0 (14b)
t,= =€ at R= (szﬁz) = §Ei {14¢)
One obtains the following solutions
_ 4 A 5
N=75 5 PA \
! 4 KI D
Ny = p(z * FribnR) T
b = 15 Ar /jﬁ"ﬁ
4K, 5
=g/ +ET5R]
with
P= 1 J
- 4 R, %
S v b

Using subscript « to denote quantities evaluated at the continuuwm limit,

we then find the heat transfer ratioc as
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e

9]
!
R
|
=

- = = = (16)

PR
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I
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50
3
%‘m
S
<+
JwN

Inserting the results of Nl . N;?; R tl R &:2 into Eg. {2}, we obtain

the temperature distribution

W(/+/5IZ”K> * ij/(/{) + 0(e)
or 2”(/+/f/\1% R '

7 7, (&
Ak C A ws"(%)%("‘”f%é)"
Ry

(17)

with

g = [’*/jxlﬁ”( J

Other mean guantities can be immediately writtea down from
Egs. {1, 3, 4, 5, and 15) in a similar fashion. Results will be discussed

in Section IV.
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IV. DISCUSSION

IV. A. Heat Trangfer and Comparison with Experiment

Knudsen's formuls for heat loss from a surface of temperature

T, to a stream of incident molecules of temperature T, at low pressumm

1
has been generally accepted as a good one:

/z/c |
qﬁ# at surface ™ ﬁ (7;- - EL) (18)

where a is Knudsen's thermal accommodation coefficient, which in the

I

present study has been taken to be unity. Studies on accommodation
coefficients, though guantitatively inconclusive, leave no doubt about the
validity of Eq. (18). Diekins4 observed the linear dependency of thermal
conductivity on pressure below 5 em Hg. Ma.nmaz also confirmed that
“a" is independent of pressure within 2~3 per cent accuracy up to 330
microns for an instrument with 3"&22/ Rx = 1250, Of course direct measuree
ments on heat loss support this fact quantitatively (Section I).

Owing to its "twoepided! character the present formulation
naturally brings out Eq. {i8) as a limit for X 1/’\1 - O , as can

be seen from Egs. {5) and (15):

RSN I CRERICTE

,,,”—(T Tz) +O(f)

/( =0 T
$=o0 M'/e,

I

| 1 Ri . R,
Here it shows clearly that if 75 << 30 21rk7} /LII b ?



Kaudsen's formula is quite applicable.

On the other hand, Egs. {5) and {15} readily yield the Fourier

result
g, — kc (E—TH)
R R
R b (%)
as soon as we set QRQ/X I) - op and utilize the relation ,Q = j//—:f ’_/;_

for a monatomic gas.

Calculation of heat loss over the whole range of éienssiﬁiés has
also bgen done by Al using Grad's thirteen moment mguatiaasm. Al
ebtains the Fourier heat conduction relation over the whole range of

dengities and gives the result

Q /

Q . 19

oo 1 + _@._’f‘ﬂnﬁz ‘ ( )
/15 AR,

which yields a value twice as large as the aciual heat loss at low |
pressures. As one can learn from Knudsen's formula [ Eq. 418)] the
heat loss at low pressures is proportional to the difference between the
gas temperature and the temperature of the solid wall., Grad's formulation
lacks the “twoe-sided! angular effect, and always overestimates the
temperature difference at the wall by a factor of two. (See next section.)
The same factor is found when the Fourier relation is used in con=
Junction with the Maxwell-Smoluchowski temperature "jump" condition
{Section ]).

Numerous experiments have been performed using the heated
fine wire to determine gasecus conductivity, or mostly thermal accommoe

dation coefficients. Conductivity measurements are often made at
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normal density with different temperatures, while the determinations of
~accommodation coefficients are usually done at low pressures. Un-
foriunately, data obtained in the past years are utterly inconsistent.
Values of accommodation coefficient for a given pressure differing
irom each other by one or two orders of magnitude are not surprising
at all. Hartnettm in hie survey report on accommodation coefficients
atiributes this discrepancy io three factors: {1} the properties of the
solid surface which are usually unspecified greatly affect the result;
 {2) evaluation of the accommodation coefficient by Knudgen's formula
[Eq. (18)] for free molecular {low is oftien unjustified, because the
pressures are usually not low enough to insure the iree molecular
limnit; {3) use of an excessive radiation correction. BPesides the in-
consistency of these experiments, most publications give only the final
accommodation coefficients; a backward deduction to the heat loss is
not only dangerous but alse irmpossible owing to lack of knowledge of
some physical consianis employed in their computations.

The most recent measurement designed solely to study conductive
heat transfer is done by Bamelﬁurgl 7. He uses Wollaston wire of
diameters 1. 25/11 , S/L R 10/1., and bell jars of diameters 4 inches and
10 inches®. His results in the %ranéii:icm regime are reproduced in
Figure 3, in which the three curves represent calculatione according
to Eq. {16). It is understandable that at low pressures when

)\E > 200 Ry, radiation and end losses become dominant; thus cone
duction measurements at this range would be more difficult, But it

has been clearly shown in Figure 3 that Bomelburg's experiment agrees

%* Private communication through D. K. Al



with Eq, (16) fairly well. |

Tracing back chronologically, we find the measurements by
Schafer, Rating, and Eucken in 19423. They use a platinum wire of
Ry = 0. 00208 cm in a tube of inner radius R, = 0. 294 cm., Tests are
run at 3. 5°C with pressures ranging from 1. to 1/3000 atmosphere,
so the ratio 2R,/ Ag covers a wide region from 0.1 to 1000. Heat
transier results for Argon and CO,; are plotied in Figure 4, in which
the solid curve again represents Bq. {16). Poi.m's for Argon all fall
along the predicted curve with 2 maximum deviation of 10 per cent at the
lowest pressure point. The fact that the heat loss for S@z also cbeys
Eq. {16) is rather amaszing, as the experiments of Q@Z went down to as
low as 1/200 atm. One would expect that the factor 4/15 in Eq. (16)
supp@singly' valid for monatomic gas only should be modified for a
polyatomic gas. However, the general agreement is certainly not
accidental.

Other experiments giving heat loss data have all been performed
with diatomic gases. Gregory and Archex's meawrem@m;3 {1926)
using air and hydrogen gave @/@w values 20 - 30 per ceant lower than
that predicted by Eq. {16). Knudsen's classical exp%rim@ml@ {1911)
also using hydrogen at various pressure levels showed higher heat loss
than expectied. Fredtundl 2 later correlated Knudsen's data with a formula
exactly like Eq. {16). His correlation required a aumerical factor
approximately three times larger than 4/1 5, which iz qualitatively in

the right direction for a polyatornic gas correction.



IV. B. Temperature Distribution

The expression for the mean gas ternperature [Eq, QE?)] ig

rewritten herve

st @lor sl

where , 4k PN
g= (14550 (3)
the significance of this parameter will be clear shortly. This expression
shows that the temperature field is composed of two parts (See Figure 5);
the first {part 1 ) is an angular part weighted by §, the second part
{ part 2 ) is logarithmic, and if is in turn weighted by the guantity
{i-6). Part 1 has thé character of a free molecular temperature
field, while the other part has the same character ag the Fourier solution.
One should note that cos™ ' (®;/R) becomes practically equal to w/2
at about ten diameters from the center of the inner cylinder. Thus, at
fairly low pressures the physical pregence of the wire bas no influence
on the temperature at & point several diameters away. As § becomes
smaller, the logarithmic part would penetrate deeper from F, towards
Ry and it finally dominates the whole temperature field when § w0,
A gketeh of the temperature digtribution for various values of 2/\I/ By
is given in Figure 6.

From another point of view, the ternperature distribution can be
interpreted as the composition of an "outer’ solution and an "'inner"

solution. The "outer" sclution describes the temperature field



corresponding to the solution of the Fourler heat conduction problem
with a temperature "jump” at the inner wir¢ when R /R, >>1,
which {8 the only case in which this "splitting’ makes gense. This

ficld is given by the expression

-7 4 R
(%:_fl—_)oum = ¢ [ I+ /5 /\1 ]

The inner solution is of the form

A L “’(4)]
C [ 7z T 7T (7
where the quantity in brackets is exactly the free~molecule solution,

and C iz an undetermined constant. Now, if one matches the inner and

outer solutions by requiring that

o (12T = 4w

R0 \ [~ 7}[ INNER R - 7}} )OUTE,Q

thea ( = § Evidently Eq. (20} represents the full solution which is
valid over the whole region.

Temperature jump phenomenon is golely accounted far by the
angular part (part 1 ), which contributes to (1 - T - fﬁ) a differeace
of §/2 at the surface of the wim‘[ﬁzq. (20) ] . 5o the gas temperature

at the free molecular Hmit equals the algebraic mean of Tf.“x and T as

I
one would expect in this linearized case. Grad's scheme cmploying

ouly the logarithmic term gives a temperature profile
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L

— A '
T — 5+ C’_J)_&% * (21)
[=Tg ,ﬂn(ﬁ>

from which one finds the "temperature jump" at the wire surface to be
&, which differs from the present result by a factor of two, thug over-
estimating the heat loss by the same factor. Moreover, Eq. (21)
yielde a8 minimum {or maximum) somewhere in the annulus and is
clearly physically unrealistic. The importance of the two-sided
angular effect is {ully shown here. On the other hand, at the wall of
the outer ¢ylinder the gas temperature there is practically the same as
the wall temperature T, for any value of Rl/ Api Ry > 20R) . In
that cage, as far as the outer cylinder is concerned, there is virtually
no {ree molecular limit regardless how large the i:m«:zan free path becomes.
At the surface of the hot wire there exists a thin 71’@@5.@31 usually
known as a Knudsen layer at small degrees of rarefaction where the
angular part { part 1 ; Figure 5) efiectively influences the temse

perature profile. This layer can be brought out by considering that
at R, =1+ A with A<<l ,

COSQ:I*(@:}.‘E/Z) + Qo-oouakf.g;éz = l"’A "§’ RS

Eizfms

e = (208)° = [2(R, - 1)]

and

80

£ ;:%) = Lo [N+ E D R-D e

¥ This expression though not given explicitly in Reference 23
can be deduced from it easily.



Figure 7 sketches the separate terms of Eq. (22). The layer is then
defined by the region where the angular and logarithmic parts are of the

same order of magnitude, namely,

7 J2R-D = H(5E) (R-D

or,

ff;—/ ~ 2.86 (%)z
when {AI/E%.“«:M..

Thus the thickness of this Knudsen layer is proportional to the sguare
of the Knudsen number.

A comparison between predicted and experimental temperature
distributions has not been possible, because up to the present time, the
only temperature distribution measurements in ravefied gases were
done by Lazareffl ?, Mandell, and W@sﬁ:m between two parallel plates.
Experiments designed to chart temperatures between two concentric

cylinders have not yet been initiated.

IV.C. "Free Molecular!” Criterion

The minimum size of the mean free path required to insure that
free molecular conditions prevail in an experiment has always been a
puzzling question. The choice between conditions like A 177 Ry >Ry
oF };12 > A I >> Ry is quite uncertain. The confusion can be totally
avoided by considering the guantity §. One realizes that § is in fact
the true criterion for free molscular flow; neither RI/ >\ p ner

R,/R, alone governsthe situation; i, e., & =1 signifies the free
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molecular limit, while & ~= 0 represents the continuum regime. For
instance, with an apparatus of given R,/R, , & —==1 can be reached by
reducing the gas density; or at a given gas condition, one achieves
iree molecular flow by increasing the RZ/ R,y ratio.

Referring to the definition of §, one can now safely impose

aumerically that
R ! R,z, < /
1 Z"(ﬁ < j0
or equivalently P
R —R AN
< (/\’,) f

as the domain of free meolecular flow, where Knudsen's formula

[ Zq. (18)] ie valid within about 3 per cent. On the other hand, the
condition

75—;—/\/% 5,,(757‘) > 20. (say)
or

A < L. ol (7%)

Kz - K 7 (%) -~/

represents the continuwm limit where the Fourier result will be correct
within b per cent. Figure & shows these two domaing as well as the

transition region for different values of R,/R, -



IV. D. Fourier-Maxwell-Smoluchowski Formulation

It has been generally accepted that the Fourier relation with the
Mazwell=Smoluchowski temnperalure jump boundary condition would be
fairly correct for gasas of small degree of rarefaction. Iis limit of
validity for a problem involved curvatures has never been investigated.
According to the relation

Gp = = kg (dT/dR)
and the boundary conditions that

| /5 dT
~T(R) = —5s ( f)
(R) TR Jour,
and

T6)-Tr= - 5% (R,

one would obtain an expression equivalent to Eq. (20) for the tem=

perature distribution, namely,

=T = &'+ 1= (1+ 7 )J] (

23
~ (23)

[l

)
((’*RJ* /5T (%)}—;

The ratio of heat transfer to the heat transfer in the Manit ) E/ Ry —>0

with

is
Q _ % f
Q. A . (/ + Ri/Rz) {24)
0o 'gﬂ /?2.)
/5 /\J_—

In the cass whea RB. 3 Ml R zw.mely, the gap ba&we@n two cylinders

[l

iz small in comparison with Ry, the curvature effect then is not
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irnportant and Eqgs. {23) and (24) would be quite correct even at low
pressures. This situation is not surprising, as we have learned from
the linearized case

{ .,_..._Tu_...TI e PP J

I

~of the plane Couette flow msh%amm’ 24; There the Fouriere-Maxwelle
Smoluchowski rasuiﬁcam be valid even when ) I is large, at least
with the minimum number of moments. However, the present type of
apparatus normally has 2 large R,/R, ratio; therefore, the heat transfer
predicted by the Smoluchowslk] method [Eq. Ql%} oversheots by a
factor of two when A\ 1 > ‘RE . esactly é.a Ai's regult®, The present
temnperature profile [Eq. 623}] differs from Al's [ Eq. é?sl)]
appreciably, because § # §' in general. Now, one may confidently
confirm a long tirme belief that, as far as gross gquantities (like heat
flux, total drag) are concerned, the Navier-Stokes-Fourier relations

along with velocity-slip or temperature-jumnp boundary conditions

would be fairly good for a linearized problem in which all curvature

effects can be considered n@g}_iﬁibla, but details {like velocity or

tem:perature profile) so obtained would be open to doubt.
The domain of validity of the Fourier«Masxwell-Zmoluchowski
formulation for this "hotewire" instrument now can be sstimated from

Eqgs. {23) and {24) a5

% Al in his study has imposed a boundary cendition T(R,) = TZI
at all density levels, which would be true only if RZ > 20 Rl [see SeC=
tion IV, B.] , 80 his solution contains an implicit assumption of RZ’/ R i >> 1.



ANf/Ry <<(8/15) [n(Ry/Ry) i€ (Ry/R))>>1)

or numerically {say)
M/Fu < 8/150 [n(Ry/R,) .

A sketch of the . q / = k (dT/dR) ratio [Figure 9 ] based on
Ege. (5) and {15) shows that Fourier's “law" is valid either far from the
center wire at aay deansity, or everywhere at normal d@néity. One
interesting note is that the ratio {alls to zero at the wire surface for
finite >‘I ; this behavior arigses owing to the infinite tezmmperature
gradient résulting from differentiation of c@sd QRI/ R). It is quite
gimilar to the situation of having an infinite velocitly gradient at the
forward stagnation point ¢f a cylinder in rarefied gas flow. The
gradient becomes f{inite if the curvature bec@mes' small and the cylinder

iz transformed to a flat disak%.
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IN CYLINDRICAL COORDINATES
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FIG. 7
THICKNESS OF KNUDSEN LAYER
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DEPARTURE FROM FOURIER'S RELATION

FIG. 9



