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ABSTRACT

& two-degree~of-freedom dynamicel system has been
analyzed to determine an optimum control sequence which will
drive the dynamical system from an arbitrary indtial position
and velocity to one of a prescyribed set of terminsl position
and velocity's in minimum time. The basic complexities ave:

(1) that the forcing function can change
only at discrete iantervals of time, end
(2) +<hat the prescribed terminal states
allow & multipiicity of solutions to
prevell.
A novel but not unigue forcve program which is dependent upon
the initial state of the system has been determined. This
progren consists essentially of the coatinuous application
of a force of the proper cense and maximmm alloweble smplitude
followed by a time during which no force is applied. This is
followed by a time interval in vwhich the forcing function has
a moxdmm anplitude but is of the opposite sign to that used
in the first pert of the program.
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I. INTRODUCTICH

The study undertaken in this paper may be represented
as an atteupt at applying the results cbtained by Ballmanl
end thoroughly treated by others such as Deaaoe:r,g Tﬁim,3 and
Aﬁmﬁa&a&eﬁk in regards to the trancfer of a dynamical system
fros e presceyribed initial state to o prescribed final state in
mintmum time. This particular study will be concerned with
determining a force program in which the forcing function can
change only at diserete intervals of time. Such & constraint
also appears in the discipline of sampled-data control systems.
The results of investigators such as Desocer and Wingﬁ Mullin
and J‘wz'y,é and Altar and EelatrmT provided considersble back-
ground information in regapds to the effects of the sampling

constraint on the response of a dynemlcel systen.

The work of Descer and Wing utilizing sompled data provides
the most appliceble parallel reference to the classical work of
Bellman. Both investigetors delved extensively into the funds~
mental mathematical proofs of the existence of a minimm time
state transfer technique for two-dimensional systems - Desoeyr
and Wing for discrete control time and Bellman for coutinuous
control time.

In addition, this study has included a novel set of
constraints on the terminsl state that differ markedly from

the approach teken by the sbove investigatoys. Here the usual
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practice of defining the terminal stete as s unique point,
+0 be reached in minfwman time, will be relaxed to ilnclude o

bounded set of acceptable otates.

This study will be seen to drow on the results of
investigations conducted by both Bellman end Desoer sod Wiang
ps 1init ceses to the present problem. Thus:

(1) ¢ the disercie control time coanstralnt
of the present problem were renoved and
the terminal state were & unigue polnt
instead of s reglon, then the problem end
1ts gedution condd be related dlrectdy to
the Bellman study.

{2) P force progrem defined herein were
pltered to colncide with that used by
Descer and Wing, and the terminal
state were & walgue point Instead of
g reglon, then the problem and its
solution coudd be related directldy to

these investipgators' results.
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IT. DACKGROUND

Boge of the lnvestigntions sonducted by fellman in the
continvous conteol tinme case, snd Tesoer and Wiag in the
discrete contral tlse case yepregent meighboring coses to the

present problen vhere the windmum tise sclution hes been ityested

These coped are reviewsd here brlefly in owder to:
(1} wmplify the diffevences between the
previcus works snd the present study, and
{2) establish the cuisteonse of proofs to
certoin theorsss which sre utdlised in

the present sbudy.

The relsted problen considered by felloman was thab of
deteminlng the optimm fosse progeen for o stote transferenge
of any dyneslicsl systen which can be described by a lissar
dfrevential cguation with constunt coeificients. The yoots
of its charscteristic equaticn vere gestyicted to terms vhose

reel Harts were alvoys mm-poeltive.

with swltching allowed 40 ocour ab any insbtant of time,
fellagn proved thet tlme-optlmum contrel resulted vwoen the
waningn force aveiloble wes gppdied ot zll times. '"hie node of

comtyol is often weferved to a8 bonp-bang conitrol.

hellnan further proved that wen the chapacteristic roois
vere yvool, Aistlnet ond negotive the directlon of the masimm
force need be veversed at nost ¥ - 1L times. (¥ being the oxder

of the diffeventicl equetion describlogz the system.)
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The related problem considered by Desoey aﬁ& Wing
pertained to o more restricted class of dynamicnl systens
than those studied by Selimen. However, these investigators

introduced the constralnt of sampled data.

Heye the dynenical systen was represented by a second
opder differentisl equation vhose charscteristic eguation
contoined one negetive reel root snd one zero yoot. A force
progeom was sousht which would couse the systen to return to
an equilibriun position in the nminbmun poesible time sudbject
to the followlag condliions:

(1) "he applied force wmust be plecewlse
constant for s discrete interval of
T seconds.

(2) Toe megnitude of the epplied force
mey assume eny velue between zero
and 148 neximm value {(which is
deternined by saturntlon consider-
ations) at the beglaning of any
interval 7.

(3) he totel time for the trensference

t be an integer multiple of the

basic sampling verled .

the solutlion proposed by Desocer and Wing consisted of
driving the systen with the meximun foree avelleble untll the
state variasbles were within oue T interval of an optimun

switching condition., Yhe magnitude of the forcing fusction wus
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then reduced. This sclicm caused the state varisbles to lie
on the optimes switching cuyve at the next sanpling periocd.
At this polut the seximzs forcee wes reapplied but in the

opposite sense o the indtisl opplicetiom.

This action was seintained wntil the state varlsbles
were within one time interval T of attainlng the equilibrium
position. The meximu force level wee then redused & second
tiae resuldting dn an interception with the desired state ob the
end of the teralinal sappling period. Desoer and Wing proved that

this tecimigue browdy about o change of state lu wianlmu tine.

On comparing the mreceding optlmal force progrons (with
aad without sampled dabs) one can see that the coabrol process
boetaes wope coaplicated vwhen applled for fized inlervels of
time. At this polunt one may aesk, "Cau more of the sigplicity
of the contloucus contyol process propoged by Deilwan be
retained in the discrete control reglme”™ Thie thesis atieupts

o sagwey ot guestlon.
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11T,  STATERENT OF D PROBLES

The problea to be lnvestigeted in this theesis i the
Pollowlng:
4 dynemloal sysbeg can be ropresented by the following

norundized linesr differential equabtion with constant coefilicients
Be) +» &(8) = 2(e) (33

2(t) vepresents o forelng Punction that 16 plecevise congtant
over & tioe ioteyval 7 ond cap sesume the nommoliped velues of

+ded, =1.0 o zerc ot the beplmpdng of each aew interval.

Toe weoblem 1 bo devise o conbrol seguence whorely
the stote variables of the szbove dynsmical systen can be brought
from sabitrary indtiel conditions 8% © = O, waich will be
expressad as:

(1) Je(0)! srbiteary

(2) @) < 1.0
to o fnel stoete abt tlue tﬁ where:
(1) b, s the minlmun tlue reguired to reach
(&) Je(s) + edle )] < %
() e

(&) Byo Zé:.?, ml ¢ e speclfied constants.

¥

(b0 + &6 )] < %,

e el oo Wiitlions are # R plane iy
Mese finel obate conditions ave ghown in the ¢, & plape in

Flgure L.



cltg) + € &ltg) = K,

VO

clts) + € &(ty) = -K,

FIGURE |

PORTRAYAL OF FINAL STATE CONDITIONS
IN ¢, ¢ PLANE
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The values of the state varlebles et & tilse which does
not cofncide with the begluwlug op mﬁ of & discrete lnterval
gre of no interest because of the nature of the forcing Dunctloun.

Any conbrol segusnce that resulis in the achievewsnt of
the sbove regurements shall be vegexded ag a satlsfactory

solubic.
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Iv. PHASE PLAIE APPROACH

A+ Cenersl

In

order o evaluaie aud analyse the effects of verious
control schomes on the dynandcal system, the phage plane wmosié‘?" 8
was epdoyed. Yhis technique coneists of portraylng the trajece
tories of the Humetions e(t) and &(L) aeonerated by the

forcing function £(t) in @ coordinate plane of & versus co.

It s intevesting to note thet the trajectories of the state
varizbles sre continvous curves even thouph discomtioultles

oecur in the forelng funection.

then a change in the forcing funetion dous ooouy, & new
teajectory 18 ganerated with the chavacteristics of the new
forcing Duaction. Since time varies alomg s glven trajectory,
every polot on thet trajectory represenits the state of the
gysten at o certaln time, . One cap then denote o chenge of
state over a discroete interval of tine by specifled polats on

the cenvlnuous curve.

The cholce of the rheage plane method wase alse giwerned
by the nsture of the constreints. The terminel stete comditicus
ﬁ,csmrﬂ;m a region cenbered ot the opdgln in the phase plane.

The lindits on the inlitial state of &(0) describe the upper

160 of the phace portrait.

B, Fwase Plane Trsjectories

Tree basie trajectories aye requlred fop the foreing
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Punctions  +1.0, «1.0, and zero. Oo teking a nev origin of

time in esch interval and setting £t} = & For simp

licity

the desired equation 1o derived by referring to Bguation 1y

o) » &) = £{t) = a

This is equivalent to the systenm

vit) = &(u}

$le) + y(t) = &

noving that
Yy = 3¢ = ay/ac
& . acy
da v

or

ﬁﬁm%

On integrating ower one interval ¥, ome obiteius

e(r) y(2)
g o ﬁ&.

e(0) v(0}



o

o) + &(1) = o(0) + 4(0) + A log 24 (2)

arives the three sets of trajectories generated by

BEquation 2 when A = 1.0 or zero.

C. Hdiference Equatdons

How, having the paths that the system will follow in the
phase plene 1n esch tlse interval, coe may develop additlonzl
souations containing time explicity. fThis step is requived
ia order %0 be able to determine the state polnts at discrete
intervels on a given trajectory. The necessary equations are
thm by integreting the hwic differential equation

¥(t) + &(8) = &

and writing the sclutions in the forw of difierence equations;
lee., evaluated at each end of & tiwe interval O <t < T, This
can be done in vector-matrix methematical lenguage vhere
wnderlined lower case letters ave vectors snd capltal letters

are mabrices.

e differentisl equation of the systenm ig first rewvritten

in the vector-matrix fopm:

) = Ax(e) + £, viere 0LE LT (3)
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FIGURE 2

PHASE PLANE TRAJECTORIES
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with initisl conditlong
0) e g

Topouigh the chenpe of varisbles

o
.
e
6
v

.
ﬁ m?ﬁm-:ﬁ“
ta

£ end ¢ in Fguotien 3 ave

0 (0}

G L
é}-‘ﬂ o2 Fi E £ sf.}: 2 mﬂ .‘E R
‘;} "'3»0‘:3 10‘3 é(g}

ihe integead svluticn of Eguation 3 over on dobterval T ls of

the form

)= e » (W f o) £ an (&)

i
~——
251

where 4 16 o matriz of veotors Tomed frac the solution of the

A iferentdal sguation

a(e) = A+ 3e"P
-4
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and vhoss constonts sre evealvated fron the velaticus

1.0 ‘ 0
©(0) = y and x°(0) =
o 1.0

on wrlting T dn the form

o T
= [ﬁl sﬁ] 1A
it o1 m ’fg P
3
m‘% :z;;
4
where X and X7 ave found Yo be
L0 i lw&u@
A oz
® o= p B0E X7 = -
G ©

we get the necessary matyix
1 1.e™T

et

) =

which can be formed as A(T)c emd F{W) i“f’“l(fz)g iz Bouolen

b o yledd

3 L:' T
1 1-e""] (e(0) leg ()

1 < o {ifer
o e % e o (1-9)

<o f 0
di( 5 } e
e

=

at (9)

3
i

O perforaing the Pingl intwgration we get the baslc difference
equntion in terms of the indtlal and Dinal stoles, the sagpling
Cloe T and the fowpeling functlion 2~ .
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e(7) 1 1-e"T | [eto) Ped Ot~
e + A (€)
wft '
&(7) o e |lae 1-e""

on expanding Fquation 6 apd recowbining terms we get
e(?) « 8{(7) = (0} « 8(0) + T A {7

Tow let us apply Fouation 6 to o specific eituation where
the force program is known but the period of appliostion for
cach force 1s undetersined. For slmplicity we can adopt the

folloving notation for describing a pariticular forcing sequence

ﬁ&z (‘Fl, {}; "'3)
which means that

A = +1.0 over the imterval ¢ < t < /
A = O over the interval f < ¢ < fuma

A = =L over the iunterval /-wz«x <t o< *ésﬁ

(ts =£+m+n)
wheres

() £ - £ me=m T and nenl,
{(2) T is the sempling interval and

(3) Ay my, ond n, are positive Lntegers

(12 Ly ===y k)
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This foreing sequence represents a program for s complete state
transference. However, its application must be restricted to
those initial states vhere & minimum time transfer appears
likely. Thus the phase plane will ultimately be separated

into reglons vhere force prograus begloning with A = +1.0, -1.0

or zero are pyeferred.
The difference equations for the foreing sequence A g
{+1, 0, ~1) become
For the interval O <t «<fwhere A = +1.0

e(d) 1.0 1.9«@4 c(0) { -l.0+e'( 8

&(() ) 0 e'j &(0) ' 1.o~e‘“’e .
and

e(f) + &(f) = o(0) + &(0) + ¢ (9)

Por the interval { <t < fem where A =0

e fam) 1.0 1.0-e2| ey ,

= 10

&(fam) 0 e™ &) !

and

c(lwn) + &(fms) = o) + &0 (11}
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For the interval fwm <t gt vhere A= ~1.0

a(t,) 1.0 1.0-¢"7] (e(fem) n-1,04e"2
- - (12)
&(t,) 0 e &({em) 1.0-e" 2
and
G(’%) + é(ta) = ¢ ) + &( 4m) - n (13)

For the interval 0 <t <t, where A: (41, 0, -1)

t -t ~{men) -n

‘5(%) -l.f) l.ﬂve“ J e{0) {-n+e b.e ~e 41,0
£ 4 ( ) (ll‘)
-4 -t - -
é(ts) LO e ° &{(0) - ie e 4 n~3..o
and
e(t,) + &(t)) = (o) + &(0) + {-n (15)

The necessary eguations for the other force prograus cen
be foxmed in & similar manner. For comparison considey
A (¥, <1, 0)
“tg b, -(nin) -m
c:(%) 1.0 1.0-e a{0) f-nie “eze e
= %+ (3.6)
-t -ty ~{mn) -m

é(ta) 0 e &(0) - 38 -e
and on expanding and recombining Equation 16 we sgain get Equation
5 -

e{t) + &(t)) = c(0) + &(0) + fn
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D, Tiwe ia the Phease Plane

Vor coupletences the elapsed thwe lo terms of the
inlilal and Pioal stobe varisbles con also be debtermsined
from the besic inbsgral expressicm:

(%,) ('t-.@,)
. («&.3
Ty e by =
@(ﬁl) (%}

which in this probles becoes

()

-7 A o= 24T

&(0)

Qan

o substitating this sclution in Douation 2 we geb:

a(?) + &(7) = (@) + &) « 1 4

which 1 the swme o Bguatdon 7.

E. Strotegy for Time Optimed Solution

With the Touregoing lofopuation We are now ready €0 solve
our sroblen. The followling steps were odopted as o strateyy fov
arpiving ot 8 tine optlsal scilution.

Step 1. Partitloniong of the Fhase Plane
By referyivg Yo the trajectories in Flpwe 2 and
the terlnel stote reglon in Fowe 1 (herelnafber called the

tarpet) we can begln relating optlenm fovee assigmesnts with
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initial state conditions in the phase plene. We nobte that

A = »d0 Fopree will couse initisl states in the upper right
(£4rat) quedrent of Pigure 2 $o follow a dirvect path bowaxis

a A« al.0 trajectory. Upwn inteyception, vith s chapge of
fogoe o0 A = +l.0 or zerv, we see that the ltvsjectory proceeds
towprds the origia,

Bed a foree of the uppoalite sense been chosen initlelly
(& = #L.0), the state polnts in this quadvent would not have

sded tovards the origln as yepldly, regardiess of the

sibseguent forcing sequesnce. A noted in Flpuwe 3, the flrzst

sdrent ig then sselgoed an lnidlal force of A » «1.0 except
in o region pear the ovigin. rFollowing e sloilsr ergmment, e
inttial-force aselygnpent for the third gquadrant would be

2 = ddele

mts contaln the bhalk of

ings g 8wy

By wtdlisiog symmetry ve need only investi-
gate the trajectories apsociated with e quedrent and apply
the resulis o the other with e signs roversed.

Proceeding with the second quedrant we cen esbeblish

unds o the 2 o= wlWG region. His in

corasr of an m-mm%v torpget. his boundery estobliches the
eaxdiest polnt that o chenge in the intifel fores chould be
coneidered. Ouce past this bowmdsry we way select o varlety
of forcing seguences foy acquirdng the target reglan in minlmm
i .
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The torget com then be represerted Initislly as

bounded by see

Bats of A = 0 trejectories, and syaetrical
segients of o = 41,0 teajectories. FPorther reflnesents
are effected later iun the study.

Step 2. Study of the 4 = (1) Degiom
By tie forepoling erguments we have reduced the
peoblen to a study of the opbtlusl force prograss within the
ple=-shaped reglone of the seccond and fourth guadrants of
Pioure 3o In stbacking the wiknow reglon in the second
gusdront ve con 8tart by tebulating «ll the permissible force

progeans gopllcaeble to tide guadrant

(1) 2 (+2, 05 =2}
(2) o (31, =i, O)

(3) o (+1, =1)

(8 ~ e (#2)
(5) o~ (0)

(6) o (0, 1)

These progvens wsy be interpreted as e continuous application of
e prescribed force in the order noted. Proprame (1) theough (&)
overlap the o = +l.0 regios, while prograws (S) aud (6) apply

ouly in the o = (7)) reglor of Figure 3.

In sddlticn to these siz progrus we could consider
sequences such as A (+1, <3, +1), (+1, 0, +1) end
(41, =1, %, -1} fopr this sesction of the phase plane. Tese

seguences can be slinluated, however, os aot belag potentlal
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timg-optimsd force progroms.

It is interesting to note that the corresponiing force
progran for the related Bellusn problem would be o @ (+1, -1).

The progran Loy the related Desoer snd Wng study would be

!

!:& H {”?‘Eg ”5"‘&39 “’3_54 "‘%)y i‘mém a’%g ‘“\ l.@o

The wegults of this twoestep spproach Yor solving the

problen are yresented in the next sectlon.
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V. SOLUYICN TO THE PROBLEY

(u gypdying the strategens cutlined in the previous
sectlion one sees that the solution to the problem evalves by
tyial and error. Once an apperent minlmas tise forcing
secuence is deteruived, 1t wuet be tected spgainet othoyr
potential control schenes in opdey to evaluste 1ts optimality.

Ho rigopous mobhenetical ariterion could be derived

for & dlrect neasure

of the quality of au eppavent miolum
tlme solution. ITostead the I VOO0 digltel compuber was
wbilized for & cross-check on the Dol solubion. This is

discussed in the next sectliom.

The following geueral characterigtics were nobted as o
nee of evalusting the veviow foree programe in the

state of the aysten.
(2) Several force progeaus may produce
a state tronsfe:

region in eguivelent time.

(3) e switching boundaries for changing
the applied foree muy be sluple or
copplex in mature. This depends on
the foroe progrsm chosen for tiunes
optinal comtyol.
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8. Provoped Solution o the Problen

The proposed loreing sequence for this problem is
basteally A (41, 0, <L) or (=1, O, +1), depending wpwm
the inldial comditions, On compoying thie scheme with other
possible progrems we note that 2 @ (43, -1, 0) provides en
eguivalent solutice o 2 : (34, 0, «1) Zor soue initlal

gtates. This is portreyed in PMgwre 4. However, in Floure 9

st

we see thet the initisl state polnts (shedad ayes) subject o
A (+1, =1; 0) conteol e within the larser remion (a-b)
gubject to A 1 (+1, 0, -1) contral.

We can aleo note in Mgwe 5 that curves (a) and (b)
foym sinpder pwlicldng bondaries hay the sawbooth curve

requived for o (1, -1, O).

& sluplification of the target rveglon 1o also proposed.
Tale new reglon 18 shown in Fleure € in confunction with the
proposed switching bounderies (o), (L) and {d). Our target
pow confomes o the constralobs of the problam as set forih
in Flgure 1. The target bounderies (end switching bouwnderdes)

are evaluabsd in o labter section.

We ncted previocusly that the opbimm foree 18 devendent
on the dndbial stote conditions. Therefore Toble T has becn
prepaved so that we may spsociate these states with the basic
Force prograg.

(ue can see fran thls Teble thet all but one seguence

represents a portion of the overall progrmm A ¢ (91, 0, =1).
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FIGURE 4

PHASE PORTRAIT SHOWING EQUIVALENT
TRAJECTORIES FOR A:(+1,0,-1) AND A: (+,-1,0)
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FIGURE 5

REPARTITIONED PHASE PLANE ACCORDING
TO OPTIMUM FORCE PROGRAMS
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LINE OF SYMMETRY
J////(G) \(b)//////////z 1.0 L L L LS Ll L
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A=+10
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< >
N
\; (d)
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Y

FIGURE 6

TIME -OPTIMAL SWITCHING REGIONS
FOR PROPOSED SOLUTION
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TABLE I
SMMARY OF FORCE PROGRAME
FOR PROPOSED SCLUTTON

Regions Entered gt Poroe

Initial
Btate & Sampling Instant Program
Region
ﬁl Aﬁ) K’“l’ B & H (‘3‘1, Q, "’l)
A A, B A (+1, -1)
Al B A (+1)
A, B At (0)
AQ E"’l, B Ht (99 “l)
Hotes

d.

A=0 is applied for one sampling interval ¥
System is cut-off when 3 1is eantered.
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the one exception ie A (3, -1). This edditiopol sequence
ensures that agy trejectory whlch oversteps the ccest zegion
A, in Figure 6 will be intercepbed st the next saupiiayg
period.

Por eveluating the optiuality of our proposed @
we utilized en independent digltal cougmd

wr polution. Tais
step was reguired betsuse the problesm did not lend iteell

%0 o Woorous matheuntical treshaent. Die ves due to e

canstraints of the problen which in tun allowsd equivalent
solutions to oocur wnder dfferent orders of forve applicatiom,
L. A3 ('5‘3-5 Qgg "’l) Vige &0t (*&lg *&3 QBG

The digltal coamuber solution consisted of using an
I8 7090 computer to solve Bgustlion b for a specified seb
of inttinl sud fioadl conditicns. Eguetlon 14 1o restricted 4o
the proposed foree progeam 4 3 (4, O, «1). The TR computer
then evaluated the varlsbles £, wm, snd 2 for the condition
voere ¢, was arbltrarily set equal to 24,0, wheve

% e f»:-mw@»n

1.0 < A - 2.0

tA
ot

1.0

tA
B

< %ﬁ = Zeld

1.0 € n < %aw?z.i}



P is normelized to walty end £, w, and »n are positive

integers in Equation 4.

The vesulte of thie check, while limited in scope,
verified that the proposed foree progean would effect a state
trangfer in the sae time, and no less, as predicted by the
vhage plane amethod.

C. Umicuemese of Propoged Solution
ed solution 18 wot unlgue. ‘here exist s

waltdplicity of paths for cerdaln initisl stetes lylog to the
left of veglon ﬁwl of Flgare O

For exseple, the proposed opbiasl
A= (¥, O, =1}, Yhereas

foroe progren oalls

-Jp; R

for ane coast pericd in the seqw

in PMlaare T 4t cap be seen thet for certaln initial states the
transference can utilize elther one, three, or five coast
pericds and attaln the temmnel regiom in the some total tine

ty (snd no less).



() AN
(2)} A+ 1,0,-1 \

(37

ts(n=1s(2) = tg(3)

A=+10
REGION

FIGURE 7

PHASE PORTRAIT SHOWING EQUIVALENT
TRANSFER PATHS FOR A: ( +1,0, -1 )
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D. Switching and Taurget Boundaries for Proposed Solution

The switching boundaries which separate the regions of

different force application are represented by the lines (a),

(b), and (&) in Pigure 6. The target or terminsl-region

boundaries sre represented by lines () snd (d). The following

egustions describe these contours in the upper half plane
(1) ewitching Boundary (a)

(2)

alty ), = % % - ag'(ﬁtk =1.0) (18)

T

8t), = e(e ™ -1.0) (29)

Svitching Boundary (b)

e «1.0) (z0)

oltyly, = % -k ~(e

é(tk)b = @tk -1.0 (21)

vhere tx is a dwmy variable such that vhen tkczc then

c(0) = -K;, and &(0) =0
{3) Switching and Target Boundary (d)

[e(t) + &(t)]y = K, ] (22)

() Target Doundsry (e)

fe(t) + (1)), = K (23)
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Bquations 10 thwough 21 are derived in the Appendix. fhe
constante in Fguations 22 end 23 eve dlscussed in the following

saetion.

B. Bvsluating Constants of the Systen

Until now, the conwbents ¢ %‘;1, and %:E havwe rensined
roltrary, These constants are anslogous $o systen scoursey
and ap such do aot beay dirvectly o the deterninstion of the
optlmal control sequence. The minlmum target slze for weudlaws:
gysten sccuracy is deterumdnsd by
22+ B

/2.0 + Ky ~(e 1 1.0)

{‘}a‘w
1% il

f e gz‘l

(1) e =

i/
o T -1 \
(2) X, (min) = -ga&fﬁ + log [ﬁ«-g%-‘-&}] (25)
(3) r,(ote) = (26)

Tras we see that in order fo mmintain o lgh degree of
systen sccuracy the value of T st be hept saall. (The

gbove eguetlons eve devived in the Appendix.)
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VI. SIMMARY AND CONCLUSIONS

A sscond order dynamical asystem involving sampled data
has been analyzed from the time-optimal control viewpoint.
From t&m results of this snelysis we can conclude that

(1) A veng-bang forcing sequence can be
used effectively for optimal control,
subject to certain constrainta,

(2) Bang-beng control with en inter
nediate cosst pericd produces &
state trensference between certain
initial and final states in minimen
tine.

(3) The proposed solution does not pro-
vide & simpler conirol scheme than that
proposed by Descer and Wing for a
similar problem.

Teis study has provided some insight into the couplexities
introduced by the sampling or discrete control process. Diserete
control for this class of dymamical syptems, e.g. rolling of an
airplane or rotation of an electric motor, is considerably more

cuphersome than 1ts counterpart in the continuous control field,
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VII. APPENDIX

A. Derivation of E:l(mix;) Equation

The minimum aceceptable value of the system conetant,
Kl’ is determined by the cholce of control scheme and the

s value of &(0). For an arbitrery force program end
é(0) = 1.0, K, should be set equal to T/2 for setisfactory
switching performance,

A smmller value for Kl results vhen one uses the
proposed scheme in Fgure 6. From the geometry of Figure 8 we

see that
T o= a:lw;l
or
T Y
L =3-%

We can evaluate 1;1 using the difference equations derived in
the text, where, by applying A =0 to the choice of &(0) or

ém ve get

8(ty) = e 8

M
on applying A = +1.0, for one intervel 7, to ém we obtain
é(‘i‘) e a'.'tf [ém "'110} +l.0

on epplying A = -1.,0, for an interval ty, to &(T) we obtain
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(b)

(a) C(t)

AN

A=+41.0 A =-10

>0

ctt))

"—T

vo

FIGURE 8

PHASE PLANE GEOMETRY FOR EVALUATING K (min)
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=t

&(t,) = e T [&(T) +1.0] 1.0

ccmbining these equations ve see that

i/z

. ¢ (& -1.0) +z.

& e
“‘tl ' @ 1.0
O

or waen ém = 1.0

Be Derivation of ¢ HBguation

On derlving an expression for ¢, we will have the required
constants for the terget boundary equation

¢+ et = Kl

An expression for & ocan be cbtained in & manner similayr to the

derivation of K,. TFrom the geometry of Figurs 9 we mote that

-l

@ﬁmz-(%—-y
€



[ 2
C
A
— C (te)
clte) + E(fe) = K2
te KI2
= X »C
0 \
— T -
|
C(’e)
FIGURE 9

PHASE PLANE

GEOMETRY FOR

EVALUATING €
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b o Ia(%) +* Kl[
t, = /2 + K
and on evaluating é(ta) and «z{tg) we sse that
t
) = e € .10

a(ts) + é(te) = T/28

oF

t
- (a ¢ “‘loﬁ)

eley

G(ta) =

%
/2 -(e © -1.0)
¢ (radisng) = tan"t g ! -a-;{l :

@ 6 wd O

vhich for waall angles tan ¢ =~ ¢ then

t
l'r/a + ¥ ~(e © -1.0)

© T ! e € 1,0
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C. Derivation of Switching Boundery (b)

T™his bouwndary in the upper helf plane represents & section
of a A = -1.0 trejectory. On epplying the boundary conditions
e{f) = K, end (1) = 0 to the basic difference equations we
see that

&0) = e -1.0
a(0) = T K ~(e® -1.0)
for gemerality ve introduce the dumy varieble t, 8o that
oy = b - K (e ¥ -2.0) (20)
de), = o 1.0 (22)

D. Derivation of Switching Boundary (s)
ary 1a generated by adding 8 A = 0 sequence to




(18)

(19)
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