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ABSTRACT 

Grad 1 s thirteen moment method is applied to the problem of the 

shear flow and heat conduction between two concentric, rotating cylinders 

of infinite length. In order to concentrate on the effects of curvature the 

problem is linearized by requiring that the Mach number is small com ... 

pared with unity, and that the temperature difference between the two 

cylinders is small compared with the mean temperature. The solutions 

of the lineariz"€<l Grad equations show a qualitatively correct transition 

of the cylinder drag from free-molecule flow to the classical Navier .. Stokes 

regime. However the magnitude of the curvature effect on the drag in 

rarefied flow is not given correctly, because Grad 1 s distribution function 

ignores the wedge-like domains of influence of the two cylinders. 

The solution obtained for the heat transfer rate is physically 

unrealistic in the free-molecule flow limit, and this result is produced 

by a cross-coupling between the normal stresses and the radial heat flux 

imposed by Grad's distribution function. In this simple problem the 

difficulty can be eliminated by taking the normal stresses to be identically 

zero and employing a truncated moment method. However ,in general this 

device cannot be utilized in problems involving curved solid boundaries, 

or when dissipation is considered. One concludes that the choice of the 

distribution function to be employed in Maxwell's moment equations is 

dictated by the requirements imposed in the limiting case of highly 

rarefied gas flows, as well as in the Navier-Stokes regime. 
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I. INTRODUCTION 

Because of the well-known difficulties encountered in attempting 

to solve the Maxwell-Boltzmann integro-differential equation, a number 

of investigators have turned instead to Maxwell's integral equations of 

transfer.* In this procedure the Maxwell-Boltzmann equation is satisfied 

in a certain average sense, rather than point-by-point, and the particle 

velocity distribution function is regarded as a suitable weighting function. 

The first modern application of Maxwell's technique to fluid mechanics is 

H. Grad' s
2 

thirteen-moment method, which utilizes the "local Maxwellian11 , 

multiplied by a polynomial of the Chapman-Enskog type. The coefficients 

of this polynomial contain the corresponding stresses and heat flux 

quantities, which are now regarded as new dependent variables to be 

determined by solving thirteen simultaneous fir st-order differential 

equations obtained from the Maxwell moment equations. Of course in 

special problems the number of moments required is much less than 

thirteen. 

Yang
3 

and Lees applied Grad's method to the problem of the steady 

shearing motion and heat conduction between two infinite, parallel flat 

plates. In order to bring out some of the main features of Grad's method, 

without becoming involved in undue mathematical complications, the 

problem is linearized by requiring that the Mach number is small com-

pared with unity, and that the tem,perature difference between the two 

plates is small compared with ambient temperature. Reasonable results 

* See Reference 1 for a brief review and discussion of some of 
this work. 
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for drag, heat transfer and velocity and temperature profiles were 

obtained over the whole range of gas densities. In the limit Re/M-+ 0 

these results agree with the usual free-molecule flow quantities, while 

in the opposite limiting case Re/M > > 1 they join smoothly to the 

classical Navier-Stokes and Fourier relations. 

Linearized, steady, plane Couette flow is undoubtedly too simple 

to provide a meaningful test of any integral method. One would like to 

investigate the influence of dissipation and streamline curvature on 

molecular effects. Such a study utilizing Grad's equations might be 

helpful in answering questions about the sensitivity of the results obtained 

by Maxwell's integral method to the form of the weighting function em-

ployed. One of the simplest situations involving curvature is the problem 

of shear flow and heat conduction between two concentric, rotating cylinders 

of infinite length (cylindrical Couette flow). In addition, this flow is one of 

the few that have been studied experimentally over the whole range of gas 

density by several different investigators 
4

• 
5

• 

On the theoretical side, Rose 
6 

was the fir st to apply Grad 1 s equations 

to cylindrical Couette flow, but the results were never published. In a 

private communication Dr. Grad states that no explicit solutions of the 

non-linear problem were obtained. Chiang 
7 

also had some difficulties 

with the non-linear Grad equations for this problem, and he resorted 

instead to an expansion procedure in powers of M
2 
/Re. Up to second

order terms this procedure is identical to the Burnett expansion 8 , and 

is not very helpful for rarefied flows. In the present study the problem 

is linearized by requiring that M
2 < < 1 and AT /T < < 1 , in order to 

concentrate on the curvature effect. In Section II the full Grad equations 
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and boundary conditions for steady, cylindrical Couette flow are written 

down, and the usual conservation integrals are obtained. In Section III 

the linearized equations and boundary conditions are formulated and 

solved, and the results compared with experiments and with the expression 

for the cylinder drag suggested in Reference 3. Section IV contains a 

critical discussion of the results, some conclusions about the difficulties 

inherent in utilizing Grad1 s form of'the weighting funetion, and some 

observations on the rules that must guide the selection of a suitable 

weighting function. 
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II. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS 

II~! .Equations of Motion for Cylindrical Couette Flow 

Grad• s general equations of motion for a two-dimensional problern 

in cylindrical coordinates are given in Appendix I. In the case of steady 

cylindrical Couette flow symmetry requires that all mean quantities are 

functions of r only; hence (a/at) = (o/8Q) = 0, and we are dealing with 

ordinary differential equations. The mean quantities involved in the 

problem are the following: 

p, p, T 

r and Q components of the velocity vector 

r and Q components of the energy flux 

stress components (increment over hydrostatic 
pressure} 

thermodynamic variables; pressure, density, 
and temperature • 

Hence, we have ten unknowns to determine. 

Grad 1 s thirteen moment approximations furnish a set of nine 

moment equations for the 2-dimensional case; thus, one more equation 

is needed. This additional equation is obtained by relating the temperature 

to a certain second moment of the distribution function f. Since Grad's 

scheme is set up for monatomic molecules, each of which has three 

degrees of freedom, the kinetic energy per unit mass is 3/2 RT. An 

2 - ~ element of kinetic energy is i c f d x d) ; integration over all values 
_,. 

of J yields the equation of state 

= (3/2}(p/p} 

or 
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p = p RT 

The nine moment equations are 

Continuity 

(d/dr)(p ur r) = 0 

Momentum 

Energy 

5p ( dllr + Ur) ...;.. ~(dC/r + ft:)+ .!:. l/rr cf.!± .3 dr r ' 3 4r r 3 U t:lr 

Stresses 

~f (2 cl u,.. _ {..,(;-) + ± (:i. d fr _ fr) f- t./. t/.br 
3 ClF r /:5 ti? r r dr 

- 3. }>ffe llr + /Jr llr = _ i:_ Prr 
3 r r ~ 

(l) 

( 2) 

(3) 

(4) 

(5) 

( 6) 
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P(du~ _ Ue)+ ~;/qe _ qe l +ll. c/l}~ + llsf Prr-IJ;a) 
Tr r c\ dr r) r dr r 

+frr1Jfe +2fre 'fr -f 2fre 1Jft: - Peo u; = -~ fre 

Heat Flux 

~ p dRT +RT(dPrr + />rr-/'ee I+ fr !tfl:!t. + !:!c)+t./t-',/q,. -lfeie 
2 ;rr- Tr r J L:tr r dr r 

RT(dPt'IJ +2Lre1 + ief*+ !:k)+ llr die +ir ll@ + lL 91> 0:. dr r J or r Tr r 5 CT r 

(7) 

(8) 

(9) 

( l 0) 

The right-hand side terms in stresses and heat flux equations are produced 
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by the collision integral. In the heat flux equations, the results of the 

stress equations are already utilized; hence -(2/3 p~ ) qi are the only 

terms introduced by the collision integral. 

II. 2. Boundary Conditions 

Since we are dealing with a cylindrical coordinate system which 

is orthogonal, we have a local Cartesian coordinate system; hence the 

boundary conditions for plane Couette flow can be applied to the cylindrical 

case if we simply replace the subscript x by Q and y by r. 

At the outer stationary cylinder (r = b) the boundary conditions are 

as follows
3

: 

u (b) = 0 r ( 11) 

( 12) 

( 13) 

At the inner rotating cylinder (r = a) 

PrtJ{o.J 2(/-i;;<Jl/e(o.J-U (!+ ~ .... ra.J.) 2. (1-o<J 9sta..J (lS) 
f{a) + (!+ol.}[27TR.T(a.)fi 2j'(aJ/ + s (l+ol.)[.z7TRT(aJ]:i/(tI..J=o 
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Equations (11) and (14) represent conservation of mass. 

Equations (12), (15) and (13), (16) represent conservation of momentum 

and energy, respectively, at outer and inner walls. 

II. 3. General Solutions of Cylindrical Flow 

From the integration of Eq. (2) and with the aid of the boundary 

conditions (11) and (14). we obtain that everywhere 

u = 0 ( l 7) r 

This result shows clearly that only shear flow exists. By utilizing this 

result, the rest of the differential equations are simplified enormously 

and we are able to integrate the conservation equations immediately 

( Eq s. ( 4) and ( 5) J : 
2 

Pro = B/r ( 18) 

( 19) 

Equation (18) states that the torque is constant across the annulus, while 

Eq. (19) states that the flux of heat energy plus the rate at which work 

is done on the fluid by the shear stress is a constant. So far the integrals 

obtained are valid for the flow between two concentric cylinders at 

arbitrary temperature difference and rotating speed. A study of the 

equations shows that solutions in reasonably simple form are difficult to 

find. In order to bring out the effect of curvature as simply as possible 

linearized equations and boundary conditions will be used instead. 



9 

III. CYLINDRICAL COUETTE FLOW 

AT LOW MACH NUMBERS AND SMALL TEMPERATURE DIFFERENCES 

III. 1. The Linearization of Equations of Motion and Boundary Conditions 

When the inner cylinder is rotating slowly and the temperature 

difference between the cylinders is kept small, or more precisely if 

M = U/ Y o RT 1 < < 1 

and 

> > 1 

the thermodynamical quantities may be expressed as 

p = P1 + p' 

p = P1 +pi (20) 

T = T + T' 1 

and the coefficient of viscosity 

f<. = .?-1 + /' 1 (21) 

For the remaining quantities, we have 

Q = Q' , (22) 

where Q denotes any velocity component, stress, or heat flux component. 

Subscript 1 denotes quantities evaluated at the inner cylinder, used here 

as the reference base, and the prime denotes perturbations. 

If the expressions (20) to (22) are introduced into Eqs. (1) to (16) 

and all quadratic terms of small perturbations are neglected, the equations 

of motion as well as the boundary conditions are linearized. Furthermore, 
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the tangential quantities u9 , prQ , q 9 and the normal quantities p, 

p (or T), Prr , Pgg , and qr are separated. This uncoupling of tangential 

and normal quantities has been pointed out by Yang and Lees
3

• 9 as being 

typical of the particular linearization procedure. The rem.aining 

equations of motion in linearized form are as follows: 

Momentum 

(23) 

Stresses 

d I I ~ I 

4- ( 2 _ir - r,.. ) = - _!.. f n-
15" dr r j< 1 

(24) 

Ue
1

) + .£{dq~ _ If;)= - /J, /r~ r s Tr r )'1 
(25) 

J I I b I 
- ±.. (q_J_r - 2 fr) = - .LL feo 

IS dr r j-'1 
(26) 

Heat Flux 

I I d' 2b I S b al?T _ R r, f!..l!._ = - - a CJ 
2r/ dr I ar 3 jl1 .Jr 

(27) 

(28) 
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State 

After linearization the shear stress prQ is given by a form 

identical to the Na vier-Stokes stress strain rate relation [ Eqs. (25)and (28)]; 

therefore, we obtain the same expression for u9 as in the incompressible 

Navier-Stokes solution. However, the normal stresses prr and Pgg are 

described by more complicated expressions. Here the heat flux rates 

are coupled in with the normal stresses. This coupling is inherent in 

Grad's scheme and as a result introduces difficulties in the heat transfer 

problem. (See Sections III. 4 and IV.) 

As far as Eq. (27) is concerned, we obtain the familiar Fourier 

conduction law after simply identifying the coefficient of heat conductivity 

k by 15/4 RJll . 

The linearized boundary conditions are at r = b , 

(30) 

(31) 

and at r = a , 

;+;(a.J + 2r1-o1.; ue'ta.J - U 
~ (/t-ol.) £27T R 71 JP:z.. 

=o (32) 
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III. 2. The Solution of the Linearized Equations of Motion 

By simplifying Eqs. (5) and ( 19) we have 

q 1 = c/r r 

The integration of Eq. (25) yields 

B UQ I = Cl r + ""'2 ___ _ 
~l r 

which is the same expression as the incompressible Navier Stokes 

solution. 

Eqs. (24) and (26) give the normal stresses 

P I :: 
· rr 

(33) 

(34) 

(35) 

(36) 

(3 7) 

These normal stresses are identically zero in the Navier Stokes 

solution because div u = 0 , ur = 0 , and u 0 = u
0(r) • 

Substituting prr 1 and .Pgg 1 into Eq. (23) we arrive at 

dp'/dr = 0 or p 1 :::: constant (38) 

Since the pressure is defined asp= p 1 + p 1 
, we see that p 1 is just an 

additive constant; therefore, it may be set equal to zero, i. e., p:::: p
1 

throughout the flow field. Knowing qr 1 we can integrate Eq. (27) to give 
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T 1 = - (4/15) 
c 

(39) 
/'1 R 

T 1 satisfies the Laplace equation and it is natural we obtain the term i..n r 

in cylindrical coordinates. Finally, with the aid of the equation of state 

we have 

p' = (4/15) c. ( 40) 

III. 3. The Evaluation of Tangential Quantities -- Shear Stress, 

Tangential Velocity, and Heat Flux 

The tangential quantities prQ , uQ (qQ = 0) given by the linearized 

Grad equations are identical in form with the Na vier-Stokes solution, 

but the boundary conditions are quite different. We shall ex,press these 

quantities in such a way that the quantity Re/M appears as a parameter. 

The constants B and c 1 in Pro and u 0 may be evaluated by utilizing the 

boundary conditions (30) and (32). After substituting the results of Eqs. 

(18). (35), and (38). Eqs. (30) and (32) become 

B + z (1-ol) ( b+ 
(l+ol-) )2.7TR..{, cl 

a = 0 ( 41) 

B + 2 (1-d) I (c a + B ) = 
p, a.2. (I +DI.) I 2 7TR 7i l 21 I a_ 

2(t-o<J u- .(42) 
(I +ol.) / 2 7T,R,. 7j 

By solving these simultaneous equations for Band c 1 , we obtain 
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B = (43) 
'/-fo( 1707i'( a. j- b~)-+ a..-+ b & 
1-o<.. I 3 b a} a. M 

I +o( _/ 10 7T _ Re _k__ 
~~~~~1---~---v~-3~~~ft1~_b_--~--~~--~--~--~ u (44) 

1-ro< ! 10.,,- (a..+ '2._,_) -f a.-rb Re b 
/-ol 3 b a..2- a... M 

where 

M = u 

for a monatomic gas. 

Hence, we obtain 

and Re = f' U (b -a.) 
/<1 

2h2. U Re 
b -a. f 1 M 

I +o!. f foTT (a. + l:i') + a -rh Re 
+(45) 
r 

1-d.. 3 b a:· a... M 

l+d... j ;o-,,. .L. -;- Re _k_ {.k. _ r) 
I -ol... 3 b M h -a.. r b 

The velocity profile u
9
/u across the annulus is plotted in Figure 2 for 

different values of Re/M. 

(46) 
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The drag coefficient CD multiplied by the Mach number M is 

defined as 

At the stationary wall (r = b), 
2 = B/b ; hence 

or 

I = -'-
4 

4 
I + o( }/ o 7T (Ci... f b 2.) -f a...+ b .&._ 
I - ol.. 3 b tL

2 a_ M 

1+o1. (.i!::...+L)j/07! + .!.( 1 + b-a..) Re 
I - of.. b a.i.. 3 2 2.a.. M 

For a diffusively reflecting surface (a = O} , 

= _I (...fl..+_£_) l/07T + .!. ( l + b -a..) Re. 
4 b 0..2. 3 z 20... /l1 

The above expression is in complete agreement with the result 

(47) 

(48) 

(49) 

obtained by G. Y. Liu for small ratio of annulus width to cylinder radius 

in his analysis based on L. Lees method. 
1 

In the limiting case when a 

approaches b, l/CDM takes the form of Eq. (50), which is identical to the 

3 
result for plane Couette flow found by Yang and Lees. 

+ Re 
M 

(50) 

In that paper it was suggested that the drag on the stationary outer 
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cylinder can be written in the form 

l/CDM = A (b/a) + B (b/a) Re/M 

By analogy with the case of plane Couette flow it was thought that 

the function B(b/a) should be identical with the expression for drag 

obtained in the Navier-Stokes regime, and Eq. (49) shows that this 

supposition is correct. However, the function A(b/a) was taken from the 

4 
free molecule flow result of Bowyer and Talbot, i.e., 

Evidently the value of the drag coefficient given by Eq. (49) in 

the limit Re/M __,,,.. 0 is 2(1 + a
3 
/b

3 -1 
) times larger than the correct 

value. (See Section IV.) 

To determine the slip velocity, we have at r = b 

ll.e(b) = u 

and at r::: a 

U.e < b; 
::: u u 

l+r/..j/07T 
/-o( 3 

1 -rcJ. _/ 10 7T (Cl+ b ,_)-+ a.+ b Re 
1-d. J 3 b a..z. a.. M 

a.+b Re 
+ 

a_ M 

In the limit when Re/M----:)- oo , we obtain 

(51) 

(52) 
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Ug{b) 
0 u = 

uo(a) 
l -u- = 

These results represent nothing but the usual no-slip boundary 

conditions associated with the 11 Navier-Stokes11 limit. 

In the other limit when Re/M ~ 0 we obtain 

= 

Furthermore, we have 

u
0

{a) 

u 

= 

1 
= a 

l 

(53) 

(54) 

(55) 

(56) 

if the gap b-a approaches zero, so that again the results are reduced to 
u

0
(a) 

that of the plane case in the limit b/a-+ 1. The variations of U 

and l/CDM vs. Re/M for a diffusively reflecting surface (a. = 0) are 

plotted in Figures 3 and 4, respectively. 

III. 4. The Evaluation of Normal Quantities -- Normal Stresses, 

Normal Heat Flux, and Thermodynamic Variables 

As we pointed out ear lier, the normal and tangential quantities 

are uncoupled after the linearization,so that what is left here reduces to 

the case of steady state heat conduction between two cylinders at rest. 

The whole problem will be solved after the evaluation of the two remaining 

constants c and c 2 , and this can be done by substituting q/ , prr 1 
, and 
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T 1 into the two remaining boundary conditions Eqs. (31) and (33). We 

have therefore 

(57) 

( 27T)t C 4(1-rJ.)! 4 c /J Cz. f I ~ 
R7i tLf'1 + (1-t<i) - IS- }A1R.0 ..(,)1 a.. -t T; 5 A:l./ 0...4) =O 

(58) 

By solving these simultaneous equations for c and c 2 , we obtain 

(59) 

and 
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Hence the temperature variation across the annulus can be 

written as (u = 0) 

T, -T 
T, - 7z. 

( 61) 

The temperature profile, Eq. (61), across the annulus is plotted 

in Figure 5 for a diffusively reflected surface (u = 0). The temperature 

of the gas at the surface of the inner cylinder is given by 

(62) 

In the limiting case when Re/M---. 0 , 
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T, - TC a.J =(~ - Tz.) --:-~1-a:;, _,.. r.. 
/b2. I 7i 

Furthermore, when a approaches band T 2 approaches T 1 we obtain 

In the other limiting case when Re/M ____,,.. oo 

(61) 

( 62) 

T 1 - T(a) = 0 (63) 

As expected there is no temperature jump at normal density. At the 

surface of the outer cylinder we have in the limiting case when Re/M-+ 0 

I 
b::z. Tt - 7z. 
a_:Z. Tt T(b) - T 2 

:i:: (Tl - Tz) b2. T:z. I + a_2. T, 

The ratio of the two temperature jumps is 

7; - Tra.; 
= 

T(b) -Tz. I + o/z. Ty_ a. 7i 

In the limit when a approaches band T 2 approaches T 1 , one 

3 
recovers the result of plane Couette flow found by Yang and Lees. 

( 64) 

(65) 

( 66) 

The products of Stanton number CH and the Mach number Mis defined as 



q M 
r 
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At the wall of the inner cylinder we have 

or 

1 = {l+o<J ~(!+ //'7..)2.Jlo7T + T:.~.Lnj_Pr .Re 
4(1-<1.J b a..'" 7i .2.. 3 7i b -a.. a. M 

+ ..£. a."' ( /,-a. l.M..(; +.ft_ T..) 
. 6 /J z.. a... 7 Re a..... 7i 

One may notice that there are two kinds of limiting processes 

which lead to quite different results. 

(1) Let a approach bat a fixed value of Re/M (also f is taken 

to be 5/3 for a monatomic gas), then we again have the result of plane 

3 
Couette flow • 

( l+ol) 
(1-o<) 

+ Pr (Re/M) 

(67) 

(68) 

(69) 
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(2) For arbitrary a and b, we have as Re/M - oo 

T:z.. 
7i 

CH-?-
7i 

a... ln _E_ (Re/M} Pr 
b -a.. a.. 

6-a... 
a_ 

I I 
Pr .Re/M 

which agrees with the classical solution of Fourier heat conduction for 

steady state. 

However, when Re/M-+- 0, we encounter the difficulty that 

CHM approaches zero instead of the constant value given by a free 

molecule calculation. 

(70) 

(71) 

Thus, in a free molecular limit the temperature distribution and 

heat transfer are physically unrealistic, (See Section IV.) The plot of 

CHM vs. Re/M is given by Figure 6. 
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IV. DISCUSSION AND CONCLUSIONS 

IV. 1. Cylinder Drag and Shear Flow 

A b f . 10, l h . d h 'I d" "b . num er o writers ave po1nte out t at Grad s istr1 ut1on 

function is not expected to be entirely satisfactory for highly rarefied 

gas flows, because it does not contain the 11two-sidedness 11 , or discontinuity 

in velocity space that is so characteristic of the low density regime. In 

the present problem the actual distribution function in the limit Re/M ~ 0 

for particles emitted diffusely from the inner rotating cylinder is given by 

the following expression (See sketch.): 

71 
f p ( J , r) = n ( a 

m 

< < -1 I 0 f3 cos (a r) 

(72) 
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+ 
where u(j3) is constant in magnitude, but not in direction, and 13 is 

uniquely determined by Q and (r/a)*. The velocity distribution function 

for particles em.itted diffusely from the outer stationary cylinder is 

similar, except that°!= 0 and na, Ta are replaced by nb, Tb. On the 

other hand, Grad 1 s distribution function [ Eq. (AI. 3 )J ignores the 

wedge-like domains of influence of the two cylinders at the point P, 

as well as the angular dependence of ti [Eq. (72} J. In the present problem 

these omissions lead inevitably to the Na vier-Stokes relation for the shear 

2 
stress Prg when M < < l [ Eqs. (25) and (28)] ,~*. The boundary con-

ditions [ Eqs. (30) and (32}j are reduced to the same form as Maxwell's 

famous velocity slip relation, thus assuring a qualitatively correct 

transition of the cylinder drag from free molecule flow to the classical 

Navier-Stokes regime [ Eq. {48) J . 
When the width of the annulus is small compared to the inner 

cylinder radius the solutions of the linearized Grad equations for p rQ 

b-a and u
9 

contain only small errors of order (-a) . b-a 
But when -- = 0(1) a 

the wedge-like domains of influence of the two cylinders cannot be 

ignored. For example, in the limit Re/M __._ 0 the effect of the inner 

cylinder rotation on the gas dies off with radial distance like the solid 

* In fact tan Q = (r /a) - cos {3 cos -l 'a/r) ·~ Q ~ 'lT/2 • 
' Sln {3 ' \ 

** Actually this statement is applicable to any function of the 
form f = f [ l + ¢] making the same omissions. We remark that a 
two-sided0function utilizing half-range Maxwellians of the tyge introduced 
in Reference l yields the Navier-Stokes relation only when -a < < 1, 

a but not otherwise. 
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angle subtended by the cylinder at any point in the annulus, and the linear 

mean velocity distribution given by Eq. (46) no longer represents the 

true physical situation. In particular, when b/a > > 1 the mean velocity 

given by Eq. (46) approaches zero everywhere, and uQ(a) ~ 0 , instead 

of i. Thus the drag on the inner cylinder given by Eq. (45) is exactly 

twice the correct free-molecule flow value. 

We conclude that the excellent agreement obtained between the 

solutions of the linearized Grad equations for steady, plane Couette 

flow
3 

in the limit Re/M ~ 0 and the correct free-molecule quantities 

is somewhat misleading. This linearized plane flow problem is so 

simple that almost any reasonable distribution function employed in 

Maxwell's moment equations yields satisfactory results. The pre sent 

study shows that the magnitude of the effect of streamline curvature on 

shear drag is not given correctly by Grad's f, but that at least there are 

no gross physical contradictions, so far as shear drag is concerned. 

The mean velocity distribution is less satisfactory. Similar conclusions 

11 
can be drawn from a study of Goldberg's solution of the linearized 

Grad equations for the 11 slow11 flow over a sphere. 

IV. 2. Heat Transfer and Mean Temperature Distribution 

Even for small (but finite) values of (b-a)/a, the heat transfer 

rate given by the solution of the linearized Grad equations approaches 

zero faster than the density in the limit Re/M--?- 0 [ Eq. (68)] • On 

the other hand, if Re/M ""'(b-a)/A is held fixed, while (b-a)/a ~ O , 

we recover the results obtained previously
3 

for linearized plane Couette 

flow, and the heat transfer rate approaches the correct free-molecule 
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flow limit as Re/M-_,;,. 0. This non-uniform convergence and physically 

unrealistic behavior of the heat transfer solutions for linearized cylindri-

cal Couette flow is produced by the coupling between the normal stress 

p and the radial heat flux q , which occurs both in the moment equation rr r 

for prr [ Eq. (24)] and in the energy boundary condition at either cylinder 

[ Eqs. (31) and (33)] • By dimensional analysis one can easily verify that 

a term of order M/Re is thereby introduced. The coupling between p 
rr 

and q in the moment equation, in turn, is forced upon us by the term r 

- f 
0 pRT 

2 
c 

( l - 5RT 

in Grad 1 s distribution function. For example, on the left-hand side of 

Maxwell's moment equation for p one obtains rr 

(1/r) (d/dr) { rm J f J r 3 
dj j, 

and the term containing q in Grad's f evidently gives rise to a term of 
r 

the form (l/r) (d/dr) (rq ) in this equation. 
r 

Similarly, the rate of energy transfer to the surface, given by the 

expression 

m I 
c < 0 

r 

f c (c
2
/2) r 

contains a term proportional to p , because of the term rr 
2 

f (p /2pRT) c appearing in Grad's distribution function. In linearized o rr r 

plane Couette flow p = p .= 0 and q = constant, so that no cross-yy xx y 

coupling occurs. Such cross-couplings do not occur in the moment 

equation for the shear stress PrQ , because (1) the term containing prQ 

in Grad's f is anti-symmetric; (2) all physical quantities are functions 
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2 
of r alone in this particular problem; (3) q 0 ~ 0 when M < < l. 

Because the geometry of the present problem is so simple this 

dilemma can be resolved by a slight modification of Grad's method. When 

M
2 < < 1 the radial momentum equation shows that an acceptable solution 

is given by prr = Pgg = 0, p = constant [Eqs. ( 3) and (23.)]. But 

qr/V ( l/r), so that this solution is clearly incompatible with the stress 

equations for Prr and Pgg [Eqs. (24) and (26)] . Therefore we must 

drop these two moment equations entirely, and agree to employ a modified 

Grad distribution function involving only prQ , qr , and q 9 • When this 

truncated moment method is utilized, the shear flow and cylinder drag 

are not changed, Eq. (27) for q is again reduced to the ordinary Fourier 
r 

heat-conduction 11 law 11 , and the energy boundary condition reduces to the 

well-known ternperature-jump condition. Without going into details 

(Appendix 2), we state that the heat transfer and shear flow problems are 

now entirely similar in this new framework, and the criticisms of the 

shear flow results contained in Section IV. 1 are equally applicable to the 

heat transfer problem. 

Of course this simple device is unacceptable in more general 

flow problems involving streamline 

2 
even when M < < 1. For example, 

curvature, because Prr f Pgg f 0 , 

11 
Goldberg's solution of the linearized 

Grad equations for 11 slow" flow over a sphere exhibits the same contra-

dictions in the heat transfer rate in the limit Re/M ~ 0 • Here p and rr 

Pgg do not vanish identically even in the classical Na vier-Stokes limit 

(Re/M > > 1), which corresponds to Stokes flow over a sphere. When 

dissipation is considered (M
2 

arbitrary) these normal stresses do not 

vanish identically even in the simplest geometry of plane Couette flow, 

and cross-couplings between these stresses and the heat flux are 
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inevitable if the unmodified Grad f is employed. Similar cross-couplings 

. 12 are observed in the problem of the steady, plane shock wave , and 

these cross-couplings are probably responsible for the difficulties that 

have been encountered in applying Grad's method to this problem. 

These remarks are applicable to any f that is a simple extension 

of the Chapman-Enskog polynomial. Perhaps these difficulties can be 

avoided by utilizing the two- sided polynomial distribution of the form 

+ + 
f = f

0 
[ 1 + a

0 
- ex+ a 1 c c + . . . J , x y 

employed by Gross
10 

, Jackson, and Ziering for plane,parallel geometry. 

However, to the author's present knowledge this type off has been applied 

only to the case of linearized flows (M
2 < < l). It is not clear that such a 

velocity distribution function can describe the situation for non-linear, 

highly rarefied gas flows, where two distinctly different Maxwellian 

streams are usually involved. In this connection we remark that the 

weighting function (f) introduced in Reference 1, which utilizes two half-

range Maxwellians expressed in terms of a certain number of parametric 

functions, leads to physically consistent results over the whole range of 

gas density, not only for linearized, cylindrical Couette flow"'\ but also 

for non-linear plane Couette flow
13

. In addition, the moment equations 

derived for the steady plane shock wave do not exhibit any singularities 

within the shock wave. Of course no integral method is unique, but it 

appears that the choice of the weighting function f to be employed in 

Maxwell's moment method is dictated by the requirements imposed in the 

limiting case of highly rarefied gas flows, as well as in the classical 

Navier-Stokes regime. 

* Report in preparation. 
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APPENDIX I 

GRAD'S THIRTEEN MOMENT EQUATIONS 

IN TWO-DIMENSIONAL CYLINDRICAL COORDINATES 

In calculating flow problems one is often mainly interested in 

certain lower moments of the velocity distribution function rather than 

the function itself. Therefore, it is natural that one takes the Maxwell 

integral transport equation as the starting point for applying approximate 

rr1ethods. 

where 

and 

The equation is given as 

f 

Q 

_,. 
F 

is the velocity distribution function 

is any function of the velocity components of a particle 
(rr1oment, energy, etc.) 

~ 

and R are independent variables 

is the external force vector 

/). a = J J s s <a - a,) f f 1 v d r d r1 b d b d h dE 

is the collision integral in which Q' - Q represents the change in Q 

experienced in a collision. 

(I. 1) 

(I. 2) 

In Grad's thirteen-moment approximation the distribution function 

is a linear function of the stresses and heat fluxes, which are now regarded 

as separate dependent variables not explicitly related to p , ti, T , and 

their derivatives. They are, however, related to the second and third 
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moments of the velocity distribution function f. Thus, in a rectangular 

Cartesian coordinate system 

where f is the local Maxwellian. 
0 

By substituting this expression for f (I. 3) into the equation 

(I. 3) 

(I. 1), and by taking Q to be equal successively to m , m 'Ji , m( 32 
/2) , 

m Ji } j and m) i ( J 2 
/2) , the thirteen partial differential equations in a 

rectangular coordinate system (including the conservation relations) are 

-obtained for the thirteen independent moments p, u , T , pij and qi . 

The equations are 

Conservation of Mass 

~ + £_ ( r.>Ur-) = o ot ?JX,.. \ 
(I. 4) 

Conservation of Momentum 

(I. 5) 

Conservation of Ene 

(I. 6) 



33 

Stresses 

CJ h,·. 7) 2 ( d 1: CJ f . 2 . . . di~ ) :f/ +ox,/U~fi/J-r s- eixi -+~. - 3['! (lxo( 

f /t·c< f£-f /Jcju< ~~~ - ~ dj"/rs ~~; (I. 7) 

Heat Fluxes 

(I. 8) 

where the results of stresses are already utilized in the heat flux equations. 

Given below also as a reference is the list of all moments involved 

in Grad 1 s a pproxirr1a ti on. 

(I. 9) 

(I. l 0) 

(I. 11) 

(I. 12) 

where 
~ -:> ...,. -c = J - U. ( R , t ) is the intrinsic or relative velocity. 
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By contraction, the following tensors are produced. 

(I. 13) 

(I. 14) 

p fl. = p ').. -1 s ti-. (I. 15) 

(I. 16) 

Grad's Equations in Two-Dimensional Cylindrical Coordinate System 

In two-dimensional problems, all quantities are independent of z, 

hence we may set w = p = p = q = 0 a prior.i, and the number xz · yz z 

differential equations is reduced to nine. 

To write these equations in cylindrical coordinates, one applies 

the following transformations 

and 

8 = f a.n -I .1.. x 
(I. l 7) 

(I. 18) 

(I. 1 9) 
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(I. 20) 

where i , j are related to x, y and a , j3 are related to r , Q coordinates . 

./t.·r/. and ~'{ are direction cosines between the two coordinate 

systems 

( ~Xr 

)_KfJ 

The nine moment equations become (without external force) 

Conservation of Mass 

(I. 21) 

Conservation of Momentum 

r-component 

(I. 22) 

Q-component 

(I. 23) 
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rr 
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Conservation of Energy 

Stresses 
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(I. 24) 

(I. 25) 
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Heat Fluxes 

...i.. .Z. o (..L C!lfr tdDJ ...l ( h g,f; fo qz) 2( b o RT l:c:& ¥l.Tj i 5'.u; r ~e - r - f rrr?Jr -r ;- ()fl + z. rrr or + r ?Jet-

(I. 28) 

(I. 29) 
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APPENDIX II 

CALCULATION OF HEAT LOSS 

FROM VERY THIN HEATED WIRES 

IN A RAREFIED GAS BASED ON A TRUNCATED FORM 

O]f GRAD'S THIRTEEN MOMENT METHOD 

14 
H. J. Bomelburg has performed a series of experiments with 

fine heated wires of different diameters fastened inside a bell jar to 

study quantitatively the behavior of heat conductivity in rarefied gases. 

The temperature of the wire was kept constant and the heat loss at 

various pressures as measured. The heat loss at normal density 

(Kn*= co) is defined as Q , and the heat loss at some lower pressure 
co 

is called Q. The quantity Q/Q is then plotted against Kn on a logarithmic 
co 

scale to show that the heat conductivity is dependent on pressure as the 

mean free path gets to be large compared with the container. The wires 

used are of aspect ratio well above 1000 and the temperature difference 

(Tw - Tb)/Tw is approximately 1/10. [Here Tw is the temperature of 

the wire, and Tb is the temperature of the gas at the wall of the bell jar. 

In these experiments Tw was about 60°C and Tb was about room 

temperature 25°c.J 

Bomelburg' s experiment is very closely related to the linearized 

cylindrical Couette flow, since the geometry is the same and the tern-

perature difference small. On the other hand, since the bell jar as well 

as the hot wire are fixed, there is no mean fluid motion, hence the problem 

>:~ Bomelburg defined Kn as d/ }\ , d being the diameter of the 
wire and )\ the mean free path. His definition is just the reciprocal 
of the Kn commonly used. 
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reduces to a pure heat conduction. We hereby propose to treat the case 

by means of a truncated form of Grad 1 s moment method. [See Section IV, 

Discussion and Conclusion. J (The problem can be idealized as two

dimensional because of the high aspect ratio and the boundary condition 

can be linearized because of small temperature difference.) Fir st of 

all, let us introduce the following symbols: 

a radius of wire 

b radius of bell jar 

Re/M = 

density, coefficient of viscosity, and pressure 
of gas at the wire surface . 

We say a priori that p = Pr"' = 0 and p = p = constant throughout 
rr "" · w 

the field. Furthermore, the two stress equations (prr and Pgg) are not 

used. Symmetry requires that all tangential quantities must vanish. The 

heat loss Q is given by the energy equation as 

Q = c/r 

The heat flux equation becomes 

Q = - 15 / 4 R )A- w ( dT / dr) 

with the boundary conditions 

at r =a 

.J... 

( 2v ) ... Q(a.> +c1-t1.>[Th-Tw + c j ") 
RTw fw + (! +ol) Tw -t IS-Rf<w 7w " t[" :::: O 

at r::::: b 
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Solving for c , we obtain 

Re/M is proportional to Kn or 

Re/M = /s-rr/6 Kn 

For a diffusively reflected surface o, = 0 , 

Q/Q 
00 = 

Q/Q vs. Kn is plotted in Figure 7 on log-log scale. For small values 
00 

of Kn, the two sided solid angle effect becomes more and more important 

and the curve deviates away from experimental results; however, it 

shows qualitatively the correct trend. The problem is now being studied 

at this laboratory by Mrs. Y. L. Wu, utilizing the two- sided Maxwellian 

introduced in Reference l. 



~ 
~ 
~~ 

,, 

" ~ ~ ~ 

41 

'',~ '~ 

~ ~ " ' 

\ 

e 

"~ ', Stationary Cylinder 

'',,~~~~~ 
FIG. I - SCHEMATIC PICTURE ' OF THE PROBLEM 



42 

I. 0 
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PART II 

SMALL PERTURBATIONS 

IN THE UNSTEADY FLOW OF A RAREFIED GAS 

BASED ON GRAD'S THIRTEEN MOMENT APPROXIMATION 
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ABSTRACT 

In this paper, the unsteady one-dimensional flow of a compressible, 

viscous and heat conducting fluid is treated, based on linearized Grad's 

thirteen moment equations. The fluid, initially at rest, is set into motion 

by some small external disturbances. Our interest is to examine the 

nature of all the responses. The fluid field extends to infinity in both 

directions; thus no length is involved, and also there is no solid wall 

boundary existing in the problem. The nature of the external disturbances 

is restricted to having a unit impulse in the momentum equation and a unit 

heat addition in the energy equation. The disturbances are located on an 

infinite plane normal to the flow direction; and the responses induced 

correspond .to fundamental solutions of the problem. The method of Laplace 

transforms is applied, and the inverse transforms of all quantities are 

obtained in integral form. Because of the complicated expressions of the 

integrands involved, we consider only certain limiting cases which 

correspond to small and large times from the start of the motion, compared 

to the average time between molecular collisions. In order to study these 

limiting cases, it is essential to understand the behavior of the integrand 

in the complex plane; hence all singularities and branch points are obtained. 

When t is small, the integrand is expanded in powers oft to obtain 

a wave front approximation. All discontinuities are propagated along the 

characteristics of the linearized system, and a damping term also appears. 

At large values of time, the integrand gets its main contribution 

around the branch points, and these solutions are identical to those 

obtained from the Na vier-Stokes equation. 

The fundamental solution of the one-dimensional unsteady flow, 
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idealized as it seems to be, offers itself as a tool to understand other 

related problems. The piston problem, as well as the normal quantities 

in Rayleigh's problem (e.g., normal velocity, normal stress, and ther

modynamical quantities), are governed by the same set of equations. 

Hence, certain parts of the fundamental solutions can be applied directly 

to these proble:ms. The limiting forms of the normal quantities in 

Rayleigh's problem are expected to be worked out in another paper in the 

near future. 
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I. INTRODUCTION 

Grad 1 s thirteen moment equations, derived from kinetic theory 

considerations, represent a formidable set of non-linear equations far 

more complicated than any set of the hydrodynamic equations one usually 

encounters. It would seem reasonable to tackle the simplest possible 

pro blern.s fir st. If one examines the solutions of Grad 1 s equations in 

existence, one is not surprised to find that most cases considered so far 

1. . dl J 6, l 0, 11 d . 1 1 5 are 1near1ze , an invo ve very simp e geometry • It has been 

known for a long time that linearized hydrodynamic equations offer solutions 

of such a nature that one obtains not only the overall picture, but also 

some typical features of the exact non-linear problems are still retained 
7

• 

The linearization may also be justified by saying that it makes mathe-

matical treatment possible, and thus allows one to carry out a unified 

discussion of various effects
3

• 
8

• 9• Furthermore, within the frame of 

linear theory, superposition can always be applied to construct new 

solutions. For these reasons, a similar treatment is attempted for 

Grad's equations. 

So far, the solutions obtained for Grad's equations are all for the 

steady state case, except Rayleigh's problem 
11 

treated by Yang and Lees. 

In that particular problem, equations of 11acoustic 11 nature and solutions 

at least in limiting cases are obtained for a heat insulated plate. The 

characteristics show an initial linear growth in time, and the solutions 

show interesting features which are quite different in nature to that of 

Navier-Stokes8 . It was also suggested that more non- stationary problems 

should be taken up for investigation. The present work concerns the one-

dimensional unsteady problem, which may be considered as an extension 
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of Rayleigh's problem (normal quantities). On the other hand, it bears 

a certain resemblance to the piston problem. In both cases the longitudinal 

waves 
7 

play an important part. 

The fundamental solutions of the problem are the main interest 

in the present work. Since there is no solid boundary involved, the 

solutions are relatively simple to obtain. Furthermore, the introduction 

of impulse functions makes all solutions appear as contour integrals; 

consequently, studies of limiting cases can be carried out without too 

much difficulty. Although the problem seems to be quite idealized, 

solutions obtained yield appreciable amounts of information that are 

useful, in considering other cases, such as the piston or heat conduction 

of an infinite plate. 
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II. LINEARIZED GRAD'S EQUATIONS 

The general Grad's thirteen rr1.oment equations 
4 

with external 

force and heat addition are given below in Cartesian tensor form: 

Continuity 

( l) 

Momentum 

(2) 

Energy 

Stresses 

( 4) 

Heat Flux 

(5) 
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Altogether, fifteen unknowns are involved in Eqs. (1) to (5); hence, we 

need in addition the equation of state, which is also obtained from certain 

moment relation 
4

, to complete the set. 

P = p RT (6) 

Furthermore, from the definition of the moments and also from Eq. (4), 

there exists the relation 

P·· = 0 11 

Therefore, in general, only five stresses are to be solved, and the total 

number of moment equations reduces to thirteen. 

In the following, the analysis will be based on the theory of small 

perturbations. By small perturbations, we mean that 

P =fo ( l+f>} " T=To(1+&J ( 7) 

/ ~u ( where p, Q, s < < 1 everywhere, and < < c , c being the isentropic 

speed of sound. For stresses and heat flux, we have 

and 

We also assume 

I 

where p
0 

=)l
0 

( T 
0

) and .)<- < < 1. We can utilize the above relations to 

linearize Eqs. (1) to (6) by dropping all products and squares of pertur-

bations. A set of linearized equations is obtained in the following form. 

Continuity 

0 (9) 
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Momentum 

/ 

F· 
' 

Energy 

Stresses 

Heat Flux 

State 

/J=S+e 

The kind of linearization used above is very common in hydro-

dynamics. One would get the steady state Oseen1 s type of equations by 

applying a Galilean transformation to the above equations 
7

. 

( l 0) 

( 11) 

{ 12) 

( 13) 

( 14) 
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III. ONE-DIMENSIONAL UNSTEADY FLOW 

III. 1. Equations of Motion 

For the one-dimensional flow problem, the number of moments 

required is greatly reduced. Here, we have a set of 5 first order partial 

differential equations instead of the thirteen needed for the general case, 

and one algebraic (equation of state) equation. The six unknowns to be 

determined are the following: 

p perturbation pressure 

s perturbation density 

Q perturbation temperature 

u velocity 

T normal stress 

q heat flux 

The quantities p, s, and Q are non-dimensional. If we introduce 

a new set of coordinates 

, 

the six equations describing the flow are 

Continuity 

oS r iJl/ == 0 
ot- 7JX ( 15) 

Momentum 

( 16) 

Energy 

(I 7) 
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Stress 

0 ( 18) 

Heat Flux 

( 19) 

State 

s+e (20) 

where 

III. 2. Laplace Transforms with Zero Initial Conditions 

Since our purpose is to determine the responses generated by 

small disturbances in a fluid field originally at rest, we may set t = 0 

as the time at which the disturbances are introduced; therefore, only 

solutions for t > 0 are of interest to us. Hence, the method of Laplace 

transforms should bring out all solutions, at least in integral form. 

The Laplace transform with respect to t of any quantity Q = Q(x, t) 

is 
00 

L [ Qj ==a =I e-A-t Q(x,t)dt (21) 
0 

With zero initial condition, 

L {~~}=A. Q (22) 

and the inverse transform is defined as 



60 

fT+t()() 

I ! 4.t - d CV= 27T£ <!' Q A.. (23) 
<T-ltX> 

where <T is to the right of all singularities. The transformed equations 

become ordinary differential equations of the independent variable, x, 

as follows: 

Continuity 

Momentum 

Energy 

Stress 

Heat 

State 

du 
dx -_A. s 

,/u-+~c/i 1di: -
/J., eo d x + ~o d x = F < x _;A.-) 

T- - 41' 4. ;:; - 5 ° 4...t-/ r 

-
f - s + e 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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III. 3. Solutions of Transformed Equations 

In order to solve the six unknowns from Eqs. (24) to (29), we 

start off by eliminating Q from Eq. (29), u from Eq. (24), i from Eq. (27), 

and q from Eq. (28) successively to arrive at two simultaneous equations 

for sand p. 

(30) 

( 31) 

=f {4+1J{4--t ~J H 

Cross-differentiation of the above equations yields the governing 

equations of sand p respectively. 

(32) 

(33) 
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We notice that both equations have the same homogeneous part, 

but the inhomogeneous parts differ. In fact, the same linear differential 

operator governs all unknown quantities to be determined. This behavior 

is expected, since the linear operator is related to the characteristics 

of the linearized system. To save writing, we denote 

where 
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The quantities Tsp and fpF are introduced by the external forcing 

term, while fs 
11 

and fj;.
1 

correspond to the heat addition term. Since 

the equations are linear, the solutions associated with F and H can be 

treated separately. 

Equations (32) and (33) are now written as 

Here we already have factored the fourth order operator 

into the product of two second-order operators, 

The A1 

are given below. 

- - ,6,,, - /a... 

or more precisely, 

,4., {3'1 A 2.. B I 846 lf ll;f 3 47 2.. 2. ..LJ 1:rJ=4.+t) 25 "o(, -f S.4.. -f 3 ± 625"4_ + /2S4. +z5"4, -t34..f tf 

(34) 

(35) 

(35a) 

The A 1 s are identical to the quantity j (,,lJ[ftf 4..) ± f7-(4,Jj obtained 

by Yang and Lees in Reference 2, except that here distorted coordinates 

are used, so that the ~ differs by a factor of Jo/j<-o 

So far, the forcing functions F and H are left open. They can be 

any well- behaved functions. However, our present interest is to find 

the fundamental solutions; thus, we specify 

F(x, t) = o(x)o(t) (36) 

and 

H(x, t) = o(x)o(t) (3 7) 
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The term F(x, t) represents a unit impulse in the x, t plane distributed 

evenly on an infinite plane normal to the x-axis at x = 0 and t = O. This 

is equivalent to a uniform impulse of strength u. 
3 
/p 

3 
in the x 1, t 1 

;--0 0 

plane located at x 1 = 0 and t 1 = 0. Similarly, the term H(x, t) represents 

a unit heat input introduced at t = 0, and at the plane x = O. In the physical 

plane, the addition of heat is of the magnitude of },(_ 
3 
/p 

4
. The integrations 

I O 0 

of F(x, t) and H(x, t) taken with respect to x and t through any interval 

including the origin are unity. The reasons that one is interested in 

the fundamental solutions are the following: 

(1) In principle, having found the fundamental solutions of the 

problem, solutions corresponding to any other given functions can be 

generated. Furthermore, fundamental solutions themselves yield an 

appreciable arr10unt of information. 

(2) All solutions will appear in the form of contour integrals in 

the complex 4., plane. Either these integrations can be performed exactly, 

or certain limiting forms can be obtained if the integrands become too 

involved, which turns out to be the case in this problem. 

The transforms of F and Hare 

- ;°" -At F ( x ; A) = e S<x) h(f) dt 
0 

(38) 

and 
o<1 

ii< Xj 4-) =J e-.4-t &cxJ srt J dt - b <x) (39) 

0 

and 

(40) 
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· h th d d . . f F- -is t e n or er er1vative o or H. Having specified the forms of F 

and H, we can write down immediately the solutions of the equations 

( 3 2) and ( 3 3). 

+IX> +OQ 

SF= j c,'1'rxjJJfs" r3;dy, SH jr:r'(x;;rfs"rpd3 (4IJ 
-~ -~ 

7~ +~ 

j5F J <?<21(X;)>fh=q>d) ; pfl j&(2./x;5)fPH() )j} (42) 
-oo -~ 

where 

(IJ (I) _jJ;°J/X-)f 
h- (X"?)=/:r (X-~)=-1 e I I J ) '7 I / 2fTt 

(1J c11 I _fh/x-}J 
q-:L < x; J ) ::: (;-2 c x - 3 J = zµ,, e 

are the Green's functions of the operators (-t:- )\ 
1) ( t:-,\ 

2), 
dz /,.. 

( -;J?- - A 1 ), and ( 7'0- - ;\ 2 ), respectively. Substituting the expressions 

off_ and f- into their corresponding equations, we obtain 
s p . 
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(46) 

One would expect that in order to obtain all the transformed 

quantities, the integral 

( 4 7) 

for n = 0, 1, 2, and 3 must be evaluated. At th th d . . x - > , e n er1vahve 

of the Green's function G~2 ) (x- J ) with respect to J is continuous; 

therefore we can integrate Eq. (47) by parts. The results are collected 

in Appendix I. 

We now have 
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From Eq. (41), we obtain 

With the aid of Eqs. (39), (40), and (37), the rest of the transforms 

are determined as 

and 

-/f, /XI 
ti = _ ~-A--'--JAi_, e;:;;___ 
J. r 2(.A,-,..h) 

(54) 

(55) 

2(>.").-A,) 
(56) 

(57) 

(58) 



68 

(59) 

III. 4. Approximations 

In the previous Section III. 3, we have determined the transforms 

of all dependent variables. The exact evaluation of these transforms, 

however, involves a great deal of difficulty because of the complicated 

expressions we encounter. Nevertheless, certain approximations can be 

made without too much trouble. Furthermore, these approximations 

really represent limiting cases, which interest us. There are two 

approximations we consider in detail. One is the small time approximation; 

the other is the large time approximation. 

By small times, we mean that the time elapsed from t = 0 is 

small compared with the average collision time tr By large values of 

time, we mean that the tim.e elapsed from t:::: 0 is much larger than tr 

The physical significance of these approximations will be taken up again 

in Section IV. 

III. 4. a. Solutions Suitable for Small Values of Time 

For small time, we are looking essentially for an expansion in 

powers of I/ 4, • 2. by neglecting terms of the order of 1/ A.. , we have 

$'9 ! 
-1-;=(=:=!=3=-r==;:/tt=,,.==}=p=,,== 1 -~ J 

:5"" f" 
The first term contributes in the integral 

( 4,/Xf J 
exp l '/(13+11& /o j 

(60) 
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which represents a translation through a distance of 

/x/ /(13:t/94) Po t 
Sf" 

In order to understand this, let us now examine the characteristics of the 

equations. 

The characteristics <j> (x, t) = constant of the linearized system are 

found by the vanishing of the determinant: 

f-t 0 <Px 0 0 

0 ~: rfx 'ft fa 1>x 0 

0 ft Ps fx 0 fp/lx = 0 (61) 

0 0 rP0 fx rf-t. t,-<Px 

-}ilcp, ;-p; 4>i 0 {: 4>~ <fat 
2. fo l( 2: ~u X 

Along <f (x, t) = constant 

% = - 1'-t/<l>x 

where dx/dt is the slope of the various characteristic curves. The 

determinant Eq. (61) thus reduces to an algebraic equation for dx/dt. 

dx /(dx) 4 
_ 78 J:..o {tlx ):z. -f 3 ,!:/ J _ 

di: di IS" ('o cit- fo'2. - O 
(62) 

With solutions 

dx 
di: = 0 

(63) 

(64) 
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the solution (dx/dt) = 0 means that the particle path is one characteristic. 

The solutions of Eq. (64) represent characteristic directions at "sound 

speed11 (dx/dt), different from the isentropic sound- speed which is the 

characteristic slope from the Euler equations. All the characteristics 

obtained here are identical to those given by Yang and Lees
11 

corresponding 

to normal quantities. This behavior is to be expected, since no transverse 

quantity appears in the one-dimensional problem. Because of the 

linearization, all "characteristic curves" are straight lines and are known 

in advance. The characteristics normalized against the isothermal speed 

of sound are plotted in Figure I. 

From Eq. ( 64), we see that 

Ix I ==-/U3 1 ff42 p,, t 
s- f<> 

are characteristic lines; hence the term 

[ 
A/xi =-1 

exp -; (/3 ~) .P" j 

shifts whatever occurs at x = 0 and t = 0 to 

at t; i.e., signals travel along wave fronts. 

The second term contributes to the integral 

I -V'? 
exp -J [ 13 + ffi) po 

S fo 
[ .J... - - 1 j /XI] 

2. pj4 j 

which is a damping term such that all perturbations induced die out 

exponentially. The transforms after having being expanded into power 

series of l/A, may be represented in the following form: 
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( 65) 

A term by term inversion of this transform gives a delta function as the 

leading term which is the signal initially introduced. The second term 

gives a unit step function, and from there on, a power series solution 

valid across the lines of characteristics. Therefore, we have essentially 

a wave front approximation. 

III. 4. b. Solutions Suitable for Large Values of Time 

To evaluate a contour integral, the singularities and branch points 

of the integrand must be first located in order to understand fully the 

behavior of the integral. By equating ~ 
1 2 

= 0, one finds that the points , 

A-= -1, - 2/3, - 5/9, and 0 are branch points. The point A..= - 5/9 is 

also an essential singularity. As one can see, they are all located to the 

left of the imaginary axis in the complex .4.... - plane. In other words, 

they all have negative real parts. If this were not the case, it would 

mean all quantities diverge with respect to time, and such behavior is 

physically impossible. 

For large values of time, the integral gets the dominating contri-

bution around the algebraically largest branch point, which in our case is 

the origin; hence, we can expand all transforms in powers of 4.. • As an 

example, SF is worked out in detail. From Eq. (48), 

By keeping only the leading terms of the expansion, 
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s ;= (66) 

The inverse transform SF is given by 

(6 7) 

where 

~I 
I J--1-t'oo 4f-MJ";l/Xld 

--'--.- e A-
2.7Tl ' . 

(68) 
-lt>O 

+/oo A-. 

I A.-t - ~(1- toA)/X/ 
--'-1-. e r~'fq dA-

27Tt. (69) 
-/oq 

The other QF physical quantities have leading terms in o
1 

and 

o2 , except T F , which is of higher order. This behavior is shown in 

Eq. (27) in which T /\...../ A,, p for A.. small. For the part induced by H, 

we have given some of the results below. These are 

(70) 

(71) 

and 

(72) 

Hand F have different influences on the responses, and especially on 

the discontinuities (See Section IV.). The 6 1 s are evaluated in Appendix 

II. We have given below the results. 
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(73) 

b == L fiQ _I /eJ.o/- __!_!!__ (x-ctl? + exD!- ;o(x+c~J,
2 Z 

2 z J ~,i 127r-t 1 7C.,_ 4t j r 7c-z..4 :J (74) 

(75) 
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IV. DISCUSSION AND CONCLUSIONS 

When t/tf < < 1 the solutions of the linearized Grad equations 

show that the original delta function impulse is propagated along two 

distinct characteristics, representing a "fast 11 wave and a 11 slow" wave, 

compared with the isentropic sound speed. The amplitude of the impulse 

(or the energy and momentum contained within it) decays exponentially 

with distance from the plane of origin of the disturbance, and step-function 

disturbances with "jumpsH across both wave fronts are left behind. This 

behavior is quite different from that predicted by the Navier-Stokes 

equations. The responses to the force and heat input functions do not 

differ in any significant way when t/tf < < 1. 

When t/tf > > 1, the two distinct wave fronts have disappeared, 

and a disturbance propagating at the isentropic sound speed is observed, 

accompanied by viscous-conductive diffusion away from this "front". The 

width of this dissipative zone grows like y-;:;-f , while the perturbation 

amplitudes decay like 1/ l/T . Both force and heat input delta functions 

produce such waves. The amplitude of the pressure, density, temperature, 

and flow velocity perturbations are all of the same order, while the 

viscous stress and heat flux are of higher order, as expected. 

In addition to these wave fronts, a 11 wake 11 is left behind when 

t/tf > > I , but the character of this wake for the heat input and force 

impulse delta functions is quite different. In the case of the heat function, 

the density and temperature perturbations in the wake are of the classical 

form 

; ( x2 - eKp --; yµt #t 
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with maximum amplitude at the plane of origin, containing a constant 

total 11 area" or heat quantity at all times. The velocity, pressure, etc., 

are all of higher order. In the case of the force impulse function, 

however, the density and temperature perturbations act like a/ax of the 

classical delta heat function solutions, which means that the maximum 

amplitude occurs at a distance from the origin ,.._,ft. and the magnitude 

of this amplitude ,,.__,,, t- 1• The area or heat quantity associated with 

this disturbance decays like 1/ {T. Apparently the application of the delta 

force function introduces a kind of heat "dipole", or equal and opposite" 

heating and cdoling delta function at the origin. Thus, in the case of the 

heat input function, the wave front and wake perturbations are equally 

important; but in the case of the force impulse function, the important 

part of the disturbance is contained in the waves. 

For t/tf < < 1 , Grad's equations furnish a kind of average behavior, 

as observed in Reference 11 for Rayleigh's problem. It would be desirable 

to examine the present problem with the aid of a somewhat more 

sophisticated particle velocity distribution function, in order to account 

for the fact that particles with velocities faster than the Grad characteristics 

speeds will carry the disturbance ahead of these "wave fronts". It would 

also be instructive to study other non- steady flow problems, such as the 

disturbance produced by the sudden heating of an infinite, stationary flat 

plate, or the piston problem, which have certain close resemblances to 

the present problem. 
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APPENDIX I 

SOME FORMULAS IN CONNECTION WITH 

THE GREEN'S FUNCTION G(Z)(x;)) 

In calculating the fundamental solutions, integrals of the type 

n = 0, 1, 2, 3 

and differentiation of the integrals 

n = 0, 1, 2, 3 

appear repeatedly. 

In this Appendix, we give the results of these integrals and some 

useful formulas in connection with the evaluation of these integrals. 

(I. 1) 

(I. 2) 

(I. 3) 

_ / ! IT -alxf _ 11 -/lzlxJ 
];.. - 2(111 -Ai.)lv'A1 e .;Az.e 

(I. 4) 



d I."1-1 - I 
dx - n 

( 4q,.J7 X) = r I 
(/ - I 
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n = l, 2, 3 

n = l, 2, 3 

x>O 
for 

x<O 

(I. 5) 

(I. 6) 

(I. 7) 

(I. 8) 

(I. 9) 

(I. l 0) 

(I. 11) 
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APPENDIX II 

COLLECTED RESULTS OF CONTOUR INTEGRALS 

Integral 1 

+tl!JQ 

=- ,0 d4-~ 1 j A:l:.-au 
I J.7(f \.... 

where 

In this integral, ~ = 0 is a branch point; hence, we may consider 

the contour as the one given in Figure 2. 

o 1 is equivalent to the integral along path I, but we know that 

I= - III - IV since II and V vanish as R goes to infinity. If we let 

iO A = re , thus 

171 
A=!le =-k 

-nr 
4..=Ae =-h. 

{)Q 

!, ==fr/ e -Jt~ alli dk 
0 

If we introduce the transformation 

and 

then 

along III , and 

along IV 
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Integral 2 

r1oa A. J I 

j 4t-;;:::;;;(l-loAJ X 
& ==-1-. e v'~~ d4-

2. 2.7T l 
-100 

We introduce the new variable, z = 4.,, - 5/7 , 

Along the path z = iy: hence 

Integral 3 

I I xz. ] 
= /7Tt ex; - ~ P>f:,,4t 

o3 is integrated in the same way as o 1 . 



81 

APPENDIX III 

SOME THEOREMS ABOUT FUNDAMENTAL SOLUTIONS 

In this Appendix we shall state some simple theorems with proofs 

about fundamental solutions of some special linear differential equations. 

Theorerr1 1 

If G. (l) is the fundamental solution of 
l 

( M - ;(;) l,{ = - I (X) 

defined by 

1 = I, 2 (III. 1) 

(III. 2) 

where M stands for any linear differential operator in one, two, or three 

dimensional space, t{ i are constants with the condition ~ 
1 

/. ) 
2 

and 
00 J means to integrate over all components of the position vector 

Then the fundamental solution of 

(III. 3) 

over the same region of the space is given by 

(III. 4) 

such that 

(III. 5) 
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Proof 

Since M is a linear operator and A 
1 

, ) 
2 

are constants, 

( A 
1 

I A 
2

) , the operators (M - ) 1) and (M - A 2) are commutable. 

Thus (III. 3) may also be written as 

(III. 6) 

Considering (M - ) 2) u as an unknown function in (III. 3) and 

applying the definition of fundamental solutions given by (III. 2), we have 
00 

I 
(/) 

( M - ;( 7- ) u := <li ( x; J) I ( J ) d J (III. 7) 

Similarly, from Eq. (III. 6), we obtain 
00 

(M-),)u ~c;;"rx nJf<JM; (III. 8) 

Subtracting Eq. (III. 8) from Eq. (III. 7) yields 

(III. 9) 

Comparing Eq. (III. 9) with Eq. (III. 5) we obtain, for A 1 I 1 2 

This proves the theorem. 

Theorem 2 

Use the same notations and definitions as in theorem 1, for 

i = 1, 2, 3, A 
1 

I ) 
2 

I t{ 
3 

• The fundamental solution of 

( M-;/, )( M-)2 )(M-A3 ) u = -f <xJ (III. 10) 
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is given by 

such that 

J (~) 
ll (X) = (j- { x; J) I ( J) d} 

Proof 

Here operators (M - ) 1), (M - A 2) and (M - ~ 3 ) are again 

commutable, so by applying the definitions of G/
1

) given by Eq. (III. 2) 

to Eq. (III. 10) we have 

()<J 

(M -!, J( M-J)u =[M
2

-{)3 -1-1,)M +A3ljll. ! C,:0

fq J d; 

00 

(III. 11) 

(III. 12) 

(III. 13) 

• (III. 14) 

For the case A 
1 

f. A 2 f ) 3 , the following identities are easily proven: 

(III. 15) 

(III. 16) 
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and 

(III. l 7) 

Divide Eq. (III. 12) by ( j l - ) zH A 1 - ~ 3L Eq. (III. 13) by () 2 - j 1) 

( ;/ 
2 

- A ) and Eq. (III. 14) by ( ~ 3 -A 1 )(A 3 - A 2) and adding, using the 

relations Eqs. (III. 15) through (III. l 7), we then obtain 

00 

(III. 18) 

Therefore, the result (III. 11) follows. 
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APPENDIX IV 

SOLUTIONS OF 

NAVIER-STOKES EQUATIONS AND FOURIER CONDUCTION LAW 

8 
The equivalent problem has been treated by T. Y. Wu based on 

a system of linearized Navier Stokes equations and the Fourier conduction 

law. The fundamental solutions generated by a unit impulse and a unit 

heat addition are obtained for the Prandtl number, Pr= cpf'o 
Ko 

taken to be 3/4. The reason for choosing this particular value is to 

lower the order of one of the differential equations (equation for p). 

Since at large values of time the solutions of Grad's equations are expected 

to approach that of the Na vier-Stokes, Wu's work is therefore of special 

interest to us. However, the Prandtl number associated with Grad's 

equation is 2/3. In order to make any direct comparison, modifications 

must be made. Here, Wu's problem is reworked without specifying the 

Prandtl number. The distorted coordinates are introduced and a parallel 

way of solving the equations is taken to make a step by step corr1parison 

with Grad 1 s equations possible. The approximation made for the evaluation 

of integral transforms are also duplicated for the simple reason that the 

forms of the integrands obtained from Grad1 s equations are algebraically 

more involved, and the present evaluations of the integrals are limited to 

very rough fir st approximations. 

The following are Wu1 s original equations in physical coordinates 

x 1 and t 1• 

Continuity 

(IV. I) 
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Momentum 

(IV. 2) 

Energy 

(IV. 3) 

State 

P - s +e (IV. 4) 

where F 1 is the external force, H' is heat addition, K = K /(c p ). 
0 v 0 

µ = )A- / p , and K = 15/ 4 R LA
0 

• Later on O is taken to be 5/3 for a o o · o ".F 

monatornic gas. 

The above equations can be replaced by an equivalent set of first 

order partial differential equations similar to Grad's scheme in distorted 

coordinates x and t introduced previously. 

The equivalent set of equations are 

Continuity 

(IV. 5) 

Momentum 

(IV. 6) 

Energy 

?/, -J-.>-Jtt + (~~tJ<i9 -H<X I:) 
d~ 1 Cl ?JX f>o ?JX - Y 

(IV. 7) 
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Stress 

0 (IV. 8) 

Heat 

(IV. 9) 

State 

P-s+e (IV. 10) 

where 

fl 

Equations (IV. 5), (IV. 6), and (IV. 7) are exactly the same as that 

of Grad's for 0 = 5/3 since they represent nothing but the conservation of 

mass, momentum, and energy, respectively. The differences show up 

in the stress and heat conduction relations. The equation of state is of 

course unchanged. Unlike Grad's system, the above equations are 

parabolic, and no finite characteristic speeds exist. 

If we apply the method of Laplace transform with zero initial 

conditions to Eqs. (IV. 5) to (IV. 10) we obtain the following equations for 

the transformed quantities. 

Continuity 

du 
dx 

Momentum 

-4.. s (IV. 11) 

(IV. 12) 
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Energy 

Jq lfo 4 {f S -p) -ti j>of/ dx - (IV. 13) 

Stress 

T 
4 -- 3fo~ S (IV. 14) 

Heat 

j - _ 15 e_: de 
4 ro dx 

(IV. 15) 

State 

I - s +e (IV. 16) 

Successive elimination of the transformed variables leads us to 

a final equation 

(IV. l 7) 

where Lis the fourth order differential operator, 

L = g(~4..-r1)d1: - f.., 4:.(2 + ll4) i.,. + ;. A-3 
fo.i 3 . X f" 3 5 a)("" .J 

Q stands for any one of the six dependent varaibles, and .J Q denotes the 

inhomogeneous part of the equation corresponding to each particular Q. 

The operator L can be factored into two second order operators 

as follows: 

where 



and 

2. 

a = 1:1 ( t 4. + I) 

b =-!:.? .4..(2+ 23 4..) 
f6 6 s 

c=z,,[3 
5" 
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or more precisely, 

Knowing ) Q, one can write down immediately the 

+oo 

Q == -~1 e;-',(x; J J) &. ( 31 dy 
-()q 

solution for each Q. 

• (IV. 18) 

Furthermore, since the equations are linear, we can split each solution 

into two parts, one corresponding to F and the other to H. 

where 

_ (i.J _ _ 
/ 

I.L -fi,lx/ _ _L -/hlx/ l 
C:t ex I )J - zr,1, -Ji.J za e A e J 

is the Green's function of the operator L. The transforms are given below 
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(IV.19) 

(IV. 20} 

(IV. 21) 

(IV. 22) 

(IV. 23) 

(IV. 24) 
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(IV. 25) 

(IV. 26) 

(IV. 28) 

e/li.}X/ (IV. 30) 
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The Inverse Transforms 

The inverse transform of a quantity Q is given by 

r:r+rlx> - If 4..t - d Q - 27Ti e a(~) -4... 

c:T-t~ 

(IV. 31) 

where er is to the right of all singularities. Therefore, it is important to 

understand the behavior of Q, or more precisely, the behavior of~ s 

in this case. We have 

11,z =6 £.. (±.:-t1)(2 -t 2}4- ±2/! -f"A-t-1'14/f(/o} 
fo 3 

(IV. 32) 

By setting A 
1 2 = 0, one finds that d = 0 and A., = - 3/4 are branch points, , 

and the latter is also being an essential singularity. Since we are mainly 

interested here in the value of the integrals at large time, a branch point 

approximation would serve the purpose. The point A = 0 undoubtedly plays 

the dominating part; hence we will focus our attention at this point. Given 

below is the case of SF worked out in detail. The rest of the integrals are 

treated in similar fashion. 

The Evaluation of SF for Large t 

If we substitute the ;/ s into SF and expand it in powers of ,A.., 

we get, by keeping only the leading terms 

where 

(IV. 33) 
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are obtained by taking /; -f A.. -f1f~/too = / + ~ (A. r 4r4t)o) f -- · 

Therefore, we have 

(IV. 33a) 

The inverse transform of SF consists of two integrals 6
1 

and 6 2 , where 

(IV. 34) 

The details of evaluation of 6
1 

and 62 are given in Appendix IV. We find 

also that, by keeping the leading terms 

(IV. 3 5) 

(IV. 36) 

(IV. 3 7) 

Therefore, TF is of higher order compared with PF at large t (small s). 
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(IV. 38) 

(IV. 39) 

Some of the responses induced by Hare given below 

SH (IV. 40) 

-/lJ'/XI 3 -.fitfx/ e ~ 3 1 e e 
H - fof3/zP"/fo(A -/OC (IV. 41) 

_ -f,f.,.'* I XI 
UH :::: - ( s gnx) 3I1 0 e (IV. 42) 

Hence 

(IV. 43) 

{IV. 44) 

and 

(IV. 45) 

where 

5 - _f I xz. J 
3 - /TTt ex; - ¥z. Po/~() 4 t (IV. 46) 

o
1 

and o
3 

represent the wake, while o2 represents the two running 

sound waves. 
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FIG. I - CHARACTERISTICS NORMALIZED AGAINST THE 

ISOTHERMAL SPEED OF SOUND 



JI[ 

\ 

. -
2 
3 

96 

R 

\ 

5 
9 

FIG. 2 

s - plane 

I 

0 




