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Abstract  

We studied the neuronal correlates of consciousness by characterizing the role of 

attention and awareness in three psychophysical experiments.   First, we investigated the 

role of visual awareness in the formation of afterimages, phenomena believed to occur in 

the retina.  Visibility of the afterimage-inducing stimuli was manipulated by a powerful 

dichoptic suppression technique, continuous flash suppression, which allows us to project 

visual stimuli onto the retina without subjects noticing them at all, sometimes longer than 

three minutes.  We found that reliably suppressing the inducer weakens afterimage 

strength.  Paradoxically, trial-to-trial variability in visibility did not correlate with the 

intensity of afterimage.  As afterimages are enhanced when attention is withdrawn from 

the adaptor, the opposite effects between awareness and attention were demonstrated.  

Second, we examined visual motion processing outside the focus of spatial, top-down 

attention using a dual-task paradigm.   Attentional effects in motion processing were 

characterized by our novel wavelet motion stimuli.   Our stimuli effectively activate 

neurons in the first stage of motion processing, while they are poor stimuli for higher 

motion processing.   Using a contrast-masking paradigm, we found that attention mainly 

affected the strength of inhibition for high-contrast motion stimuli in an orientation-

specific, but not direction-specific manner, presumably reflecting the physiological 

properties for divisive inhibition within the primary visual cortex.  Third, we 

characterized the role of awareness in classical aversive conditioning. Subjects associated 

previously neutral auditory stimuli (CS) with aversive mild electric shocks (US).   We 

used skin conductance response, an index for autonomic arousal, as implicit measure for 
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the conditioned response.   In delay conditioning, CS was paired with delayed but 

overlapping US, while in trace conditioning CS was followed by US after a three-second 

temporal gap.  We intermixed these two CSs with another control CS that never 

predicted US to examine whether awareness plays different roles depending on the 

temporal relationships between CS and US.   Subjects expressed their shock expectancy 

using their gaze direction, from which we inferred the onset of awareness of CS-US 

contingency.   By aligning the skin conductance response with the onset of awareness, we 

found that trace, but not delay, conditioning coincided with the onset of awareness.   
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1. General Introduction 

1.1. The neuronal correlates of consciousness  

The problem of consciousness is one of the biggest mysteries left unsolved in modern 

science.  How and why can our brains, being physical systems, produce subjective 

phenomenon, conscious experience, or qualia?  This is the central question, both in 

neuroscience and philosophy, and finding the answer to this question is the ultimate goal 

of my scientific career.  Why can some neuronal structures, i.e., the cerebral cortex, 

produce consciousness while others, i.e., the cerebellum, cannot?   Why does the cerebral 

cortex sometimes, i.e., after waking up and before going to sleep, produce consciousness, 

while it doesn’t at other times, i.e., during dreamless sleep. These questions are 

sometimes referred to as the Hard Problem of consciousness because there appears to be 

no way to directly answer or even attack these questions rigorously using scientific 

reductionism (Chalmers, 1996).  

Instead of tackling this extremely difficult puzzle of ‘why’ physical brains 

produce any subjective phenomena, we can start from the Easy Problem, trying to 

characterize the properties of consciousness and its correlates in the nervous system 

(Crick and Koch, 1998).  The search for the neuronal correlates of consciousness, the 

NCC, is the first step towards solving the deep puzzle.  Here, the NCC is defined as “the 

minimal set of neuronal mechanisms or events jointly sufficient for a specific conscious 

percept or experience” (Koch, 2004). (For problems associated with defining the term, 

NCC, see (Chalmers, 2000).)   

To infer the mechanisms of the NCC, in this thesis, we obtained verbal or 

behavioral reports from human subjects and measured behavioral or autonomic response, 
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rather than directly measuring neuronal activity.   For studies of the NCC, it is most 

effective to focus on experimental situations where conscious percepts probed by 

behavioral reports1 are dissociated from sensory inputs or behavioral outputs (Frith et al., 

1999). The focus of this thesis is to identify such experimental paradigms that are ideal 

for the search of the NCC. 

In the course of our search for the NCC, we expect to obtain significant insight 

about the mechanisms that are key to understanding consciousness.  For example, 

attention is one such mechanism (Posner, 1994).   Selective attention amplifies attended 

information and suppresses ignored information, serving as a gate for consciousness.  

When we are occupied with something and do not pay attention, we may fail to notice an 

important event.  How does attention modulate neuronal activity and prevent incoming 

information from entering into consciousness?   Are we aware of only what we attend to, 

or do we have a subjective experience outside the focus of attention?   Is there an instance 

where attending to a stimulus and becoming aware of the stimulus result in opposite 

results?  What kinds of tasks require attention or awareness for successful performance? 

These questions constitute the main theme of the three experiments described in this 

thesis.   The relationship between attention and awareness is further discussed in the final 

chapter.  

                                                
1 The term “consciousness” possesses broad and multiple meanings; however, throughout 
this thesis we use ‘consciousness’ to mean the specific content of consciousness, 
distinguishing from consciousness as such (i.e., whether a person is conscious at all or 
not) or conscious states (i.e., awake, dreaming, hallucinating, etc).  Specifically, the 
content of consciousness we refer to in the following chapters includes “visibility of 
stimulus projected to the eye” (in Chapter 2), “sense of visual motion” (in Chapter 3), and 
“contingency awareness that one stimulus predicts an aversive event in near future” (in 
Chapter 4).   
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1.2. Our three approaches to the search for the NCC 

To study the NCC, the content of consciousness (reports) has to be dissociated from 

sensory inputs (stimulation) or behavioral outputs (responses) (Frith et al., 1999).  

(Figure 1.1).  In each of the following three chapters, we focus on a situation where one 

of these three components is held constant while the other two components are 

experimentally controlled.  

One aspect of the study in Chapter 2 deals with unconscious visual processing. 

Visual input to one eye does not give rise to conscious percepts because continuously 

flashed images to the other eye strongly suppress it.  The degree of unconscious visual 

processing of the invisible input is measured in terms of the intensity of the associated 

afterimages2.  This represents one approach to help isolate the NCC, where the content of 

consciousness is kept constant (subjectively invisible, unconscious) during adaptation.  

While subjectively it is always invisible, sensory input has some parameters that are 

varied, and their effects are measured by the extent of subsequent aftereffects (Blake and 

Fox, 1974; Lehmkuhle and Fox, 1975; Wade and Wenderoth, 1978; O'Shea and Crassini, 

1981; He et al., 1996; He and MacLeod, 2001; Hofstoetter et al., 2004; Rajimehr, 2004; 

Moradi et al., 2005).   The method of constant unconsciousness with varied inputs is 

commonly employed in the studies of unconscious processing, such as blindsight (Cowey 

and Stoerig, 1991, 1995), masking (Macknik and Livingstone, 1998; Morris et al., 1998; 

                                                
2 Although after-images from invisible stimuli sounds like an oxymoron, it is not.  
Neuronal activity in the retina does not correlate with consciousness but it is sufficient to 
produce afterimages, to some extent.  In Chapter 3, however, we show that retinal activity 
is not sufficient for the formation of afterimages with full-blown intensity.   
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Ohman and Soares, 1998; Macknik and Martinez-Conde, 2004 ) and priming (Bar and 

Biederman, 1998; Dehaene et al., 1998; Dehaene et al., 2001; Naccache et al., 2002; 

Melcher et al., 2005).   

In Chapter 3, we study vision outside the focus of spatial attention.   In this 

experiment, identical visual stimuli are presented (constant stimulation) while subjects’ 

attentional states are manipulated; subjects attend only to the stimuli presented at the 

periphery (single-task situation), or both at the periphery and at the fixation (dual-task 

situation).   Task performance on the peripheral stimuli is compared under these two 

different attentional states (Braun, 1994; Lee et al., 1997; Lee et al., 1999b; Lee et al., 

1999a; Zenger et al., 2000; Li et al., 2002).  In the past decades, the neural responses to 

identical sensory inputs have been characterized when it is task-relevant (attended) or 

task-irrelevant (ignored) in monkeys with single-unit recording (Moran and Desimone, 

1985; Spitzer et al., 1988; Maunsell, 1995; Treue and Maunsell, 1996; McAdams and 

Maunsell, 1999b, a; Seidemann and Newsome, 1999; Treue and Martinez Trujillo, 1999) 

and in humans with fMRI (Beauchamp et al., 1997; Watanabe et al., 1998a; Gandhi et al., 

1999; Huk et al., 2001; Saenz et al., 2002). The constant input paradigm is very powerful, 

and it includes a hallmark of neurophysiological studies during bistable percepts 

(Logothetis and Schall, 1989; Leopold and Logothetis, 1996; Sheinberg and Logothetis, 

1997). In this situation, identical input results in alternating percepts or interpretations 

over time.  The NCC is straightforwardly defined as the neuronal activity that most 

closely follows in time the perceptual fluctuations reported by subjects.  

Chapter 4 describes an effort to find a paradigm, where performance in two tasks 

is held constant, while the relationship between inputs and consciousness is different; 
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successful performance in one task, but not in the other, is critically dependent on 

consciousness, although the performance in two tasks and inputs in two conditions are 

very similar.  Previous studies implied that consciousness plays a critical role in 

performing a task that requires holding information over a few seconds, while a similar 

task can be carried out automatically, independent of consciousness, if there is no 

temporal gap between stimulus presentation and behavioral response.  In this chapter, we 

report that classical aversive conditioning depends on consciousness when there is a 

temporal gap between CS and US (trace conditioning), while it is independent of 

awareness if CS and US overlaps (delay conditioning).  Our study is based on findings in 

the eyeblink conditioning literature (Clark and Squire, 1998; Clark et al., 2002).  Notably, 

a similar relationship between consciousness and temporal gap is reported in clinical 

studies of blindsight (Marcel, 1993) and visual form agnosia (Milner and Goodale, 1995) 

(For a review (Rossetti, 1998).) When tested, these patients show detection and orienting 

performance well above chance for a target presented in their affected visual field 

without having phenomenal experience of the presence of the target.   However, their 

residual ability is severely compromised if a brief gap is inserted between the 

presentation of the stimuli and the reaction to it.  (Here, subjects are kept unconscious of 

the stimuli in both cases, while residual visuo-behavioral abilities are altered.)   
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Figure 1.1 Scheme for the empirical studies for the NCC 

For the study of the neuronal correlates of consciousness (NCC), the neuronal correlates 

of sensory input (NCS) and the neuronal correlates of behavioral response (NCB) have to 

be controlled experimentally.  Ideally, two factors are kept exactly the same while the 

remaining one is varied3. If one of the three factors is held constant while the other two 

                                                
3 In binocular rivalry, NCS and NCB are held constant while NCC is varied.  To do this, 
we need to compare the NCC across trials by equating behaviors that are used to probe 
subjects’ perceptual flips (e.g., in one trial, pull the lever to indicate perception of a 
vertical grating, and in another trial, push the lever to indicate seeing a horizontal grating, 
and so on).   Holding NCS and NCC while varying NCB is the classical example of 
implicit learning and implicit motor behavior. Even when NCS is varied, NCC and NCB 
can be held constant in the case of aftereffects from invisible stimuli and false memories 
(Frith et al., 1999).  
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are manipulated strategically, the NCC can be studied adequately as well.  The contents 

of consciousness are probed by verbal or voluntary behavioral reports. Implicit 

behavioral responses can be used to assess the degree of unconscious processing.  



 8 

  

1.3. Structure of the thesis 

In the following chapters, we begin by reviewing some background information and the 

motivation for the study.   After the summary of our findings, the research paradigms are 

described, and the results are presented.   
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2. Role of awareness and attention in the formation of negative afterimages 

2.1. Overview 

What are the differences between the neuronal activities that give rise to consciousness 

and those that are buried in the unconscious?  The study of unconscious visual processing 

is one of the most powerful approaches to characterizing the neuronal correlates of 

consciousness. Although much of the computation in the brain is performed without 

reaching consciousness, the exact nature of the difference in neuronal activity for 

conscious and unconscious percepts remains unclear. Understanding the nature of 

unconscious processing would provide us with insights as to what kinds of neuronal 

processing are insufficient for conscious perception.  This kind of eliminative approach is 

a big step towards elucidating necessary and sufficient conditions for the NCC (Crick and 

Koch, 1995; Milner and Goodale, 1995).   

In this chapter, we present and characterize a novel and powerful technique for 

unconscious visual presentation, Continuous Flash Suppression (CFS) (See Section 2.4). 

With CFS, the duration of perceptual invisibility is greatly extended, from a few seconds 

to several minutes, at least 10-fold longer compared to standard binocular rivalry 

suppression.  Further, using a probe detection technique, we characterized the depth of 

continuous flash suppression to be much deeper than the standard binocular rivalry 

suppression.  As CFS allows us to present stimuli unconsciously in a reliable and 

sustained manner, it is very useful for the study of unconscious processing.  

Using this tool, we revisited the question of the neuronal origin of negative 

afterimages.   Though negative afterimages have been traditionally thought to arise from 
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the adaptation process in the retina, our results, as well as other recent studies, show that 

the formation of afterimages involves processing that accesses information from both 

eyes.   Although the reliability of suppression correlated with the reduction of afterimage, 

trial-to-trial variations in the duration the adaptor was visible did not correlate with the 

intensity of the afterimage.   Thus, awareness seems only indirectly responsible for the 

formation of afterimages.   

One intriguing aspect of our findings is the fact that the effects of attention and 

awareness in the formation of afterimages are opposite (See Section 2.5.5).  While 

withdrawing attention enhances the intensity of afterimages, reliable unawareness 

weakens it.   Recently, there has been an emerging body of studies that support the view 

that neuronal mechanisms of attention and awareness can be dissociated under some 

conditions.  Some psychophysical studies show that attention can be attracted by invisible 

cues in normal subjects (McCormick, 1997; Lambert et al., 1999; Rajimehr, 2004) and 

blindsight patients (Kentridge et al., 1999a, b, 2004) (but the exogenous cues made 

invisible by binocular rivalry suppression do not attract attention (Schall et al., 1993)).  

Further evidence from psychophysics shows that attention is necessary for invisible 

stimuli to modulate sensory processing (Naccache et al., 2002; Montaser-Kouhsari and 

Rajimehr, 2005) and that feature-based attention spreads to the invisible stimuli (Kanai et 

al., 2004; Melcher et al., 2005).  Finally, recent studies using backward masking while 

measuring event-related potentials show that an initial 130-200 msec response component 

can be modulated by attention and awareness independently (Koivisto et al., 2005b; 

Koivisto et al., 2005a).     
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Our and other studies imply post-retinal components for the formation of 

afterimages.  On the other hand, recent electrophysiological studies show that the retinal 

network adapts to complex spatiotemporal patterns, which were thought to arise only 

post-retinally (Smirnakis et al., 1997; Hosoya et al., 2005).   We dissociated retinal 

components, which should not be affected by CFS, and post-retinal components, which 

should be suppressed by CFS, by holding retinal adaptation constant while manipulating 

the duration of suppression.  We found that post-retinal components of afterimages decay 

and buildup much more rapidly than the perceptual afterimages and retinal adaptation 

process, indicating previous estimates mainly reflect the retinal adaptation (Section 

2.5.6).  

Because afterimages have traditionally been considered as retinal phenomena, 

nearly nothing is known about the extent to which neuronal mechanisms in cortex and 

elsewhere are involved in the formation, expression, and modulation of afterimages. In 

the context of the search for the NCC, the study of afterimages may advance our 

understanding of the neuronal basis of attention and awareness.  

 



 12 

 

2.2. Summary  

Illusions that produce perceptual suppression despite constant retinal input are used to 

manipulate visual consciousness. Here we report on a powerful variant of existing 

techniques, continuous flash suppression. Distinct images flashed successively at ~10 Hz 

into one eye reliably suppress an image presented to the other eye. The duration of 

perceptual suppression is at least ten times greater than that produced by binocular 

rivalry. Using this tool, we show that the strength of the negative afterimage of an 

adaptor was reduced by half when it was perceptually suppressed by input from the other 

eye. The more likely the adaptor was completely suppressed, the larger the reduction of 

the afterimage intensity. Paradoxically, trial-to-trial visibility of the adaptor did not 

correlate with the degree of reduction. Our results imply that formation of afterimages 

involves neuronal structures that access input from both eyes, but that do not correspond 

directly to the neuronal correlates of perceptual awareness.  
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2.3. Introduction  

The question of the neuronal correlates of conscious perception has seen renewed interest 

over the last decades (Koch, 2004). One powerful tool in this area are illusions that give 

rise to effects that are measurable, yet are not, or only occasionally, consciously seen 

(Blake and Fox, 1974; He et al., 1996; He and MacLeod, 2001; Hofstoetter et al., 2004; 

Rajimehr, 2004). In backward masking (Macknik and Livingstone, 1998; Macknik and 

Martinez-Conde, 2004), inattentional blindness (Mack and Rock, 1998; Rees et al., 1999), 

motion-induced blindness (Bonneh et al., 2001), binocular rivalry (Logothetis and Schall, 

1989; Leopold and Logothetis, 1996; Sheinberg and Logothetis, 1997; Lumer et al., 

1998; Tong et al., 1998; Polonsky et al., 2000; Tong and Engel, 2001; Pasley et al., 2004; 

Williams et al., 2004), and flash suppression (Wolfe, 1984; Sheinberg and Logothetis, 

1997; Kreiman et al., 2002; Wilke et al., 2003), an image is presented to one or both eyes 

of the observer, yet is not seen. 

 Binocular rivalry (BR) is a popular method used to determine if a visual 

aftereffect occurs after or before the neuronal site for the suppression of rivalry for those 

stimuli (Blake and Fox, 1974; Lehmkuhle and Fox, 1975; Lack, 1978; O'Shea and 

Crassini, 1981; Wiesenfelder and Blake, 1990; Blake, 1995; Moradi et al., 2005). In BR, 

two different images are shown to the two eyes, and the subject's percept alternates 

between the two images (Blake and Logothetis, 2002). The strength of the aftereffect 

when the adaptor is presented to one eye and remains plainly visible throughout the 

adaptation period is compared to the aftereffect when the adaptor is suppressed by the 

input to the other eye. 
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 However, the duration and timing of perceptual suppression are difficult to 

control because of the stochastic nature of rivalry. Flash suppression (FS) (Wolfe, 1984; 

Sheinberg and Logothetis, 1997; Kreiman et al., 2002; Wilke et al., 2003) provides better 

control over the timing of suppression, but at the price of shorter periods of suppression, 

too brief to produce strong aftereffects. Furthermore, FS requires a pre-adapting period, 

preventing complete unawareness of the adaptor.  Here we combine aspects of both BR 

and FS into a potent procedure we term continuous flash suppression (CFS). We 

continuously flash different images rapidly into one eye, while the input to the 

corresponding location in the other eye remains the same (see demonstration at 

http://www.klab.caltech.edu/~naotsu/CFSdemo.html). Most observers fail to see the 

image in one eye, even though it is present for a long time, sometimes for several 

minutes.  

 We used CFS to examine the neuronal site for negative afterimages. These are 

vivid percepts that demonstrate the tenuous link between physical stimuli and their 

associated subjective percepts. A variety of evidence supports their origin among neurons 

in the retina (Alpern and Barr, 1962; Brindley, 1962; Loomis, 1972; Sakitt, 1976; Virsu 

and Laurinen, 1977; Loomis, 1978; Wilson, 1997) or lateral geniculate nucleus (LGN) 

(Kelly and Martinez-Uriegas, 1993). In particular, negative afterimages do not transfer 

across eyes, nor is their strength reduced by suppression of the inducing image by 

pressure blinding (Craik, 1940; Lack, 1978) (but see (Virsu and Laurinen, 1977)). Neither 

BR (Lack, 1978) nor motion-induced blindness (MIB) (Hofstoetter et al., 2004) reduces 

either the duration or the strength of afterimages. All of these observations suggest that 

afterimages are retinal phenomena.  
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 However, both BR as well as MIB only suppress the adaptor intermittently. By 

using CFS, we asked what happens when the adapting stimulus is completely suppressed 

from awareness. We found that when an adaptor was reliably suppressed by CFS, the 

intensity of the negative afterimage of the adaptor was reduced by half. Our results imply 

that formation of afterimages involves neuronal structures that access input from both 

eyes, but that do not correspond directly to the neuronal correlates of perceptual 

awareness. 
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2.4. Characterizing Continuous Flash Suppression (CFS) 

2.4.1. Experiment 1: Prolonged invisibility by CFS  

In Experiment 1, we compared the initial duration of stimulus suppression in CFS and 

BR without pre-exposure to the suppressed image (Methods for all experiments in 

chapter 2 are described in Section 2.7 Methods).  While a constant, gray imagehere a 

picture of an angry faceis presented to one eye, CFS stimuli, composed of different 

Mondrian patterns, were presented at the corresponding location in the other eye (Figure 

2.1).  Each Mondrian was replaced by a different pattern every 100 msec.  Seventeen 

naïve subjects pressed a button as soon as any part of the gray figure became visible.  The 

mean initial suppression time in 16 trials was 4.3 sec for BR, and 56.0 sec for CFS, which 

is 13 times longer (paired t-test, t-score = 4.81, d.f. = 16, P < 0.001).  In 40 out of 272 

CFS trials, subjects reported seeing no part of the gray image at all for the full three-

minute trial!  As we treated those trials’ suppression times as 180 sec, we are likely to 

underestimate the true duration of the initial period during which the adaptor remains 

invisible.  
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Figure 2.1 A basic setup for Continuous flash suppression 

A stationary gray stimulus was presented to one eye, while different, colored Mondrian 

patterns were flashed into the other eye every 100 msec.  Subjects fixated on the central 

cross and pressed a button to report when the gray figure started to become visible.  

Initial suppression duration in continuous flash suppression (CFS) was more than ten 

times longer than in binocular rivalry (BR), using the same stimulus but with a stationary 

Mondrian pattern.  
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2.4.2. Experiment 2: Optimal flash interval for CFS 

An important parameter for successful CFS is the flash interval between successive 

presentations of distinct Mondrian patterns. In Experiment 2, we studied dominance 

during a one-minute observation period as a function of different flash intervals (Figure 

2.2 a and b). The most effective flash interval for long suppression was between 80 and 

320 msec (~3-12 Hz flash rate).  We used a 10 Hz flash rate for Experiments 3-11. 



 19 

 

 

 

Figure 2.2 Optimal flash interval for continuous flash suppression.  

(a,c, and e) Total dominance duration (TD) and (b, d, and f) mean of each dominance 

period (MD) were plotted as a function of flash intervals. Error bars correspond to 

standard error. (a and b) Data from the actual experiment. Four subjects tracked the 

visibility of the Gabor patch during one-minute continuous viewing when any part of the 

Gabor pattern was visible (thin dotted lines) or the whole Gabor pattern was completely 

invisible (thick solid lines) while Mondrian patterns  were continuously flashed into the 

other eye with a inter-flash intervals indicated on the x-axis. The right-most two points 

are for the case of binocular rivalry (BR). (c and d) 200 computer-simulated one-minute 
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trials at each flash interval without a flash suppression component.  The strength of the 

Mondrian was modulated to fit TD.  (e and f)  With the FS component included in our 

phenomenological model (Sections 2.4.2 to 2.4.5), the peak of TD and MD is located 

around 80-320 msec flashed intervals (200 simulated trials).  The strength of the 

Mondrian stays constant but the probability of successful FS was fit to the TD data 

(Figure 2.3).  Without the FS component, these TD and MD curves cannot both be fitted 

simultaneously. 
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2.4.3. Is CFS just a stronger version of binocular rivalry?  

Levelt’s second proposition of binocular rivalry (BR) states that the stimulus strength of 

‘A’ primarily determines the mean dominance duration (MD) of the stimulus ‘B’ (MDB) 

presented to the other eye, with little effect on the MD of the stimulus A (MDA) (Levelt, 

1965; Fox and Rasche, 1969; Blake, 1977; Blake and Logothetis, 2002).  Let the number 

of perceptual switches be n, the total experimental duration be T (here it was one minute), 

the total dominance duration of A and B be TDA and TDB respectively, then,  

T = n * (MDA + MDB) = TDA + TDB  

Levelt’s second proposition predicts that when the strength of stimulus A increases into 

A’, MDB’ decreases (i.e., stronger suppression) while MDA’ remains constant (i.e., MDA’ 

= MDA).  Accordingly the frequency of perceptual reversals n increases into n’ 

(i.e.,

! 

n'

n
=
MD

A
+ MD

B

MD
A '

+ MD
B '

>1) and, 

 T = n’ * (MDA’+MDB’) = TDA’ + TDB’  

,where TDA’ = n’ * MDA’ = n’ * MDA  > n * MDA = TDA, that is, the total dominance of A 

increases.  For the total dominance of B, TDB’ = T - TDA’ < T - TDA = TDB, that is, the 

total dominance of B decreases).    

If CFS is a straightforward extension of BR, one would expect the result of Figure 

2.2 a and b, with the dependence of the total dominance (TD) on the flash interval 

reflecting the ‘effective stimulus strength’ of Mondrian flashes.  In other words, the 

increase of TDA would be accompanied by the decrease of MDB and with little effect on 

MDA.  Our analysis of TD (Figure 2.2 a) and MD (Figure 2.2 b) as a function of flash 
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intervals shows that the extended TD of Mondrians is mainly due to the extended MD of 

Mondrian percepts. This is not what would be expected from a simple extrapolation of 

BR in which a “strong” stimulus primarily reduces the MD of the rival stimulus (here the 

Gabor patch).  

We propose a simple model assuming that the prolonged MD of Mondrians, 

which depends on the flash intervals, can be explained by the combined effect of BR and 

repetitive FS (Figure 2.2 e and f). Adding the FS component, whose sensitivity depends 

on the flash interval (Figure 2.3), explains most of the variance of the data (Figure 2.2 e 

and f). 
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2.4.4. CFS is a combined effect of binocular rivalry and flash suppression  

Can CFS be modeled in a quantitative manner as a combination of BR and FS?   We 

started from a simple phenomenological model of BR (Levelt, 1965).  During BR, the 

percept flips randomly between two interpretations with two statistical regularities: 1) 

Each period of dominance for a stimulus presented to one eye is well fit by a Gamma 

distribution and 2) each dominance period is dependent on the strength of the stimulus 

presented to the other eye. Levelt assumes a fourth-order Gamma distribution for the 

probability density functions: 

! 

f4,G (t) =
"M

3!
"M t( )

3
exp #"M t( ) , (1) 

! 

f4,M (t) =
"G

3!
"Gt( )

3
exp #"Gt( ) ,  (2) 

where the subscripts G and M stand for the Gabor and Mondrian percept, respectively, 

and 

! 

" represents the stimulus strength4.  The mean duration of the Gamma distribution is 

inversely related to 

! 

" , such that 

! 

MD
G

=
4

"
M

.  As the MD for Gabor and Mondrian under 

BR are about 4 and 2 sec (Figure 2.2 b), we chose 

! 

"
G

= 2,"
M

=1.  

As in many rivalry situations (Blake and Logothetis, 2002), this model produces 

longer TD of Mondrian when the strength of Mondrian increases (Figure 2.2 c).  

                                                
4 Stimulus strength is an abstract concept proposed by Levelt.  Levelt showed that the 
effect of luminance contrast on the dominance duration follows the relationship described 
in equations 1 and 2.   Motion energy and spatial frequency roughly follow these rules 
(Blake and Logothetis, 2002, but see Bossink et al., 1993).   In Section 2.4.4, we tested if 
the frequency of Mondrian flashes can be considered as stimulus strength.   Note that the 
dominance period of the Gabor depends on the strength of Mondrian,

! 

"
M

 (equation 1), 
and vice versa (equation 2). 
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However, the stronger the Mondrian stimulus (larger 

! 

"
M

 values), the shorter the MD of 

Gabor (equation 1), without any effect on the MD of Mondrian (equation 2).   As a result, 

we cannot reproduce  TD and MD at the same time just by changing the strength of 

Mondrian.  For example, we can approximate TD (Figure 2.2 c) but fail miserably for 

MD (Figure 2.2 d) with this minimal model. Clearly, the MD of Mondrian is independent 

of flash intervals (Figure 2.2 d), which is quite different from the actual inverse U-shape 

function we observe (Figure 2.2 b).  For Figure 2.2 c and d, we set the strength of 

Mondrian as shown in Table 2.1.  

 

Flash interval (msec) 10 20 30 40 50 60 80 160 320 640 1280 BR 

! 

"
M

 1 1.5 2 2.5 3 3.5 4 6 6 2.5 1.5 1 

Table 2.1 Fitted strength of Mondrian for each flash interval 

The strength of Mondrian was adapted to reproduce the total dominance data (TD) for 

each of  the 12 points in Figure 2.2 to obtain the TD in Figure 2.2c.  Therefore, we had 12 

degrees of freedom to fit the data.  
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2.4.5. A phenomenal model of CFS  

In standard FS, the success of suppression crucially depends on the length of pre-

adaptation. Wolfe showed a monotonically increasing sigmoidal relationship between the 

pre-adaptation duration and successful FS (see Fig. 6 in (Wolfe, 1984)). 

 We added an FS component to the above BR model.  When the current percept is 

dominated by Mondrian patterns, each Mondrian flash ‘refreshes’ its percept with 

probability of p(tFI) (tFI is the flash interval).  If the flash is successful, it resets the 

dominance period according to equation (2), maintaining the Mondrian percept. When 

the percept flips to that of a Gabor, the model asserts that Mondrian flashes are unable to 

reverse the percept to the Mondrian for some duration.  We refer to this duration as the 

“refractory period,” which we set to 2 sec. After the refractory period, each Mondrian 

flash to the other eye has the potential to flip the percept instantaneously (with no time 

delay) to a Mondrian.   This flip occurs with probability, p(tFI), which is dependent on 

flash interval (thus, the degree of freedom of this model is 12 (11 levels of flash intervals 

(excluding the BR condition) and the duration of the refractory period)).  This minimal 

addition explains most of the variance of TD and MD (Figure 2.2 e and f).  p(tFI) (Figure 

2.3) was derived to fit TD (Figure 2.2 e).   

 As long as the p(tFI) function shows a similar shape, such as a sigmoidal on a log 

time scale, both TD and MD show an inverted-U shape simultaneously.  In psychological 

terms, this means that our model can explain that the extended TD of Mondrian is caused 

by the extended MD of Mondrian, but not by the reduced MD of Gabor.   The BR model 

introduced in Section 2.4.4 does not show such behavior.   
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Figure 2.3 Probabilistic model of flash suppression 

This monotonically increasing function was obtained by fitting the TD (Figure 2.2 e) for 

the actual data in Figure 2.2 a. Although the probability of suppression for each flash is 

low for small intervals, it accumulates.  
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2.4.6. Objective measurement of strength of CFS and binocular rivalry 

In Sections 2.4.3 to 2.4.5, we argued that we could not explain the more than 10-fold 

longer perceptual suppression in CFS on the basis of the ‘stimulus strength’ theory of 

binocular rivalry.  A model that incorporated flash suppression into binocular rivalry did, 

however, explain the relationship between the dominance duration and flash intervals at a 

quantitative level.  

 So far, we characterized CFS using subjective reports on whether one stimulus is 

consciously visible or not.   While this method allows us to study the phenomenal 

visibility of CFS, it is not suited for quantitative examination of how ‘strong’ continuous 

flash suppression really is.   For that purpose, measures of sensitivity, such as detection 

thresholds, obtained by an objective forced-choice procedure are ideal.  Through 

Experiments 3 to 5, we used a probe detection task to infer the mechanisms of CFS.   In 

terms of the depth of suppression, we characterized CFS in relation to single- and 

multiple- flash suppression, as well as binocular rivalry.  
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2.4.7. Experiment 3: Depth of suppression in CFS 

In Experiment 3, we measured the depth of continuous flash suppression relative to 

binocular rivalry suppression using a probe technique (Fox and Check, 1972; Norman et 

al., 2000; Nguyen et al., 2001; Nguyen et al., 2003; Watanabe et al., 2004).  In the CFS 

condition, a 10% stationary grey-scale baseline grating was projected to one eye and a 

10Hz Mondrian stream, which suppressed the grating, to the other eye.   After making 

sure no part of the grating was visible, subjects pressed a button, which triggered a 500 

msec Gaussian contrast increment pulse superimposed onto the upper or lower half of the 

baseline grating (Figure 2.4 a).  Subjects reported which location the probe appeared in a 

two-alterative forced choice manner. Threshold contrast increment was established using 

a two-down-one-up staircase method.   

In Figure 2.4, we show the results comparing the three conditions. In the 

monocular-viewing condition without any suppression, the threshold was very low 

(1.9±0.2%, error is s.e.m.). For the binocular rivalry (BR) condition, in each trial, 

subjects waited until a stationary Mondrian pattern was perceptually dominant 

exclusively (with no hint of the grating) and, at that point, triggered presentation of the 

contrast increment.  Under these conditions, the increment threshold (6.2±0.9%) was 

elevated only moderately for the BR condition consistent with previous results (Nguyen 

et al., 2001; Watanabe et al., 2004). In contrast, we measured a 20-hold increase in 

increment thresholds (44.7±10.3%) for the CFS condition. 
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a) b)  

 

Figure 2.4 Depth of suppression during CFS 

a) Physical stimuli to two eyes and typical percept in the CFS condition.  Subjects viewed 

a 10% grating in one eye (in this example, left eye (LE)) and a 10Hz stream of grey-scale 

Mondrians in the other eye (right eye (RE)).  Upon a button press, either upper or lower 

half of the grating increased its contrast gradually over 500 msec and subjects 

discriminated which field contained the probe (2AFC).  In the binocular rivalry (BR) 

condition, stimulus to the other eye was a stationary Mondrian.  In the monocular-

viewing (Mono) condition, a blank field was presented to the other eye and contrast 

increment started 500 msec after the button press.  b) Contrast increment thresholds for 

the three conditions.    



 30 

 

These results clearly show that CFS does indeed produce much deeper 

suppression than does BR, consistent with the fact that durations of exclusive dominance 

with CFS are an order of magnitude longer than average dominance durations produced 

by BR (Experiment 1).   However, this conclusion might appear inconsistent with Section 

2.4.3 to 2.4.5, where we argued that CFS is not merely a sstrong version of BR.   This 

apparent inconsistency can be resolved when we consider the role of ‘neuronal 

adaptation’, in bistable perception (Leopold et al., 2002; Blake et al., 2003).  In 

Discussion (2.6.2), we consider the possibility that CFS avoids adaptation of neurons for 

the dominant percept, which triggers perceptual switches in standard binocular rivalry 

and other bistable percepts.  

In Experiments 4 and 5, we dissected CFS into several components using the 

probe technique.  In Experiment 4, we measured the depth of suppression in a single flash 

suppression episode as a function of flash timing, and we characterized its interaction 

with the binocular rivalry suppression. In Experiment 5, we asked whether multiple 

flashes sum their effects to amplify the depth of suppression.  If so, how many flashes are 

necessary to reach the depth of continuous flash suppression?   
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2.4.8. Experiment 4: Depth of single flash suppression  

In Experiment 4, we first dissected ‘continuous’ flashes into single flashes.  Does a single 

flash elevate the detection threshold more than binocular rivalry?  If so, how is it 

characterized by the timing between the onsets of a probe and a Mondrian flash?  

Previous studies of flash suppression (Wolfe, 1984; Wilke et al., 2003) showed a tight 

relation between the effectiveness of perceptual suppression and flash timing, but they 

did not study the relation between the depth of suppression and flash timing.  Second, we 

asked if suppression following a single flash becomes stronger when rivalry suppression 

is already operating.  Do flash suppression and rivalry suppression sum and, therefore, 

amplify the depth of suppression?  

Using a paradigm similar to that used in Experiment 3 (See Methods) we 

measured the thresholds while manipulating the stimulus onset asynchrony (SOA) 

between the onset of a probe and a Mondrian flash.   SOA ranged from -1000 to +500 

msec, where negative SOA means that the Mondrian flash occurred first followed by the 

probe. Figure 2.5 shows the thresholds for the single flash suppression (FS-only) 

condition with filled triangles (error bars are s.e.m.).  Single flash suppression elevated 

the thresholds only within a narrow time window, with the peak threshold elevation 

(12.7±1.4%) occurring at about SOA = +100 msec, which was still lower by 64% than 

CFS (34.8% for the three subjects who participated in this experiment) but higher by 

132% than BR (5.5% for the three subjects who participated in this experiment).   Note 

that the contrast of the probe was modulated in a Gaussian manner with its peak at SOA 

of 250 msec.  In other words, a single flash suppressed the probe most strongly when it 
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was presented to the other eye 150 msec before the contrast of the probe becomes 

maximal.  For SOA longer than 150 msec, the effects of single flash diminished 

dramatically, and with SOA > 300 msec, they reached almost the level of the monocular-

viewing condition in Experiment 3 (a thin broken line and empty triangle).   For SOA < -

100 msec, the effects were comparable to that of binocular rivalry in Experiment 3 (a 

thick broken line and empty circle), suggesting that with this long negative SOA, the 

effects of flash suppression had already dissipated but binocular rivalry was still 

operating.  

Next, we tested the effect of flash suppression after binocular rivalry was already 

induced. As a single flash was combined with binocular rivalry, the situation might be 

closer to CFS.  Figure 2.5 shows the thresholds for this condition (FS + BR, filled 

circles).  The main difference from the FS-only condition was found mainly at SOA > 

100 msec.  Up to SOA = 100 msec, no difference was observed between the two.   

Observing Figure 2.5, we noticed three characteristics. First, when a Mondrian 

flash occurred too early (SOA < -100 msec), the thresholds were comparable with the BR 

condition (5.5%) in both the FS-only and the FS + BR conditions. At SOA = 500 msec, 

the threshold was also similar to the BR condition in the FS + BR condition. These 

thresholds reflected binocular rivalry because at these SOA, timings of a flash were too 

far from the optimal suppression.  Second, the thresholds in the FS-only condition seem 

to agree relatively well with those in the FS + BR condition for SOA < 100 msec.  This 

implies that the rising part of thresholds for both the FS-only and FS + BR conditions 

were due to the effects of FS and not due to the interactive effects between FS and BR.  

Third, for SOA > 150 msec, however, the thresholds for the FS-only condition dropped 
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quickly.  Note that, at SOAs of 150 and 200 msec, the thresholds for the FS-only 

condition were comparable to the BR condition, while those for the FS + BR condition 

almost reached their peak.   This implies that a single flash presented later than 150 msec 

on its own did not impair detection of the probe (no suppression effect), but combined 

with rivalry suppression, that single flash was highly effective.  

To characterize the data more quantitatively, we fitted two Gaussian curves to the 

data with three assumptions.  First, in the FS + BR condition, the thresholds would be 

fitted with a Gaussian function with asymptote value being the threshold in the BR 

condition in Experiment 3.  Second, the thresholds for the rising part in the FS-only 

condition (SOA < 50 ms) would be captured by the above Gaussian fit.  Thus, we made 

no attempt to fit the data here.   Third, the thresholds for the falling part of the FS-only 

condition would be fitted by a second Gaussian curve with a different asymptote value 

being the monocular-viewing condition in Experiment 3.  

Based on these assumptions, we first fitted a Gaussian function of the form 
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) ) + 5.5  to the thresholds in the FS+BR condition, where y is the 

threshold, x is SOA, a is the peak threshold, b is the SOA at the peak, c is the width of the 

tuning, and 5.5% is the threshold in the BR condition.  Using 13 points, we obtained the 

best fit, shown as a thick line in Figure 2.5 (degree of freedom = 10, a = 7.9%, b = 85.5 

msec, c = 201.0 msec, and R
2 
= 0.85).   Next, we fit another Gaussian to the 7 data points 

for SOA ≥ 50 msec in the FS-only condition, with fixing a and b to be 7.9% and 85.5 

msec and changing the asymptote value to the monocular-viewing threshold (1.8%). We 

obtained the best fit for c to be 74.9 msec with R2 = 0.97 (degree of freedom = 6).  Thus, 
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when FS was combined with BR, the temporal tuning of suppression was broadened from 

74.9 to 201.0 msec, implying a nonlinear interaction between FS and BR. 

Our conclusions in this section are threefold.  First, flash suppression impaired the 

probe detection much more than did binocular rivalry, but only within a relatively narrow 

time window, peaking at SOA = 85.5 msec. But even at its maximum effectiveness, flash 

suppression was weaker than CFS.  This time dependency contrasted starkly with the 

time-course of binocular rivalry, where the depth of suppression is reported to be constant 

at all points throughout a dominance phase (Fox and Check, 1972; Norman et al., 2000).  

This difference provides further evidence that flash suppression and binocular rivalry 

suppression are mediated by different mechanisms (Section 2.4.3 - 2.4.5).  Second, flash 

suppression did not summate with binocular rivalry suppression before the peak of the 

flash suppression.  Third, threshold elevation in the FS-only condition dropped to the 

monocular-viewing level with a tuning width of 74.9 msec, yet it synergistically 

interacted with binocular rivalry suppression to broaden the temporal tuning curve (201.0 

msec) to deepen suppression.   These second and third conclusions suggest that the very 

robust strength of suppression accompanying CFS is due to the cooperative inhibition 

among multiple flashes, which we studied in Experiment 4.  
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Figure 2.5 Does a single flash suppression summate with rivalry suppression? 

Contrast increment thresholds as a function of SOA between the onset of a probe and a 

Mondrian flash.  For comparison, the results in Experiment 3 are re-plotted here with 

empty symbols (Monocular, CFS at 10Hz, and BR suppression).  Filled symbols show 

the results in the single flash suppression (FS-only, circles) and the FS combined with 

binocular rivalry suppression (FS+BR, triangles) conditions, respectively (error bars are 

s.e.m.).  The solid curves were the best-fit Gaussian functions to the FS+BR (thick) and 

FS-only (thin) conditions, respectively.  The dotted lines are the asymptotic values for the 

Gaussian, taken from the thresholds for the BR suppression (thick) and the monocular-

viewing (thin) conditions in Experiment 3, respectively.  When the SOA was negative, a 

Mondrian flash came first, then a probe was presented.  For both the FS-only and FS+BR 

conditions, the peak suppression occurred around at SOA = 85.5 msec, where the 
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thresholds were higher than for BR suppression but lower than CFS in Experiment 3.   

The FS-only and the FS+BR conditions did not show a clear difference when SOA was 

below +100 msec, but showed clear differences in tuning width when SOA was above 

+150 msec.     
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2.4.9. Experiment 5: How many flashes are necessary to achieve CFS?  

In Experiment 4, we found that a single flash never elevated the thresholds as much as 

CFS does, regardless when the single flash is presented. Further, we found that when 

combined with binocular rivalry suppression, the suppression produced by a single flash, 

while unchanging in magnitude, was extended in time. To reconcile the results in 

Experiment 3 and 4, we hypothesize that a single flash cooperates with neighboring 

flashes to enhance inhibition, as might be happening in CFS. In Experiment 5, we tested 

this hypothesis by varying the number of flashes from one to five and, at the same time, 

varying the SOA between the onsets of the first flash and the probe systematically 

(Figure 2.6 a).   Our goal was to determine how many flashes are necessary to achieve the 

threshold elevation of the full CFS condition.  Are there critical flashes embedded among 

the continuous flashes?   Although we know that many flashes should eventually amplify 

suppression cooperatively as in CFS, it is difficult to predict what exactly happens for 

intermediate number of flashes.  In the visual masking literature, it is known that when a 

target is inhibited by a first masker, a second masker can inhibit the first masker to 

recover the visibility of the target (disinhibition) (Robinson, 1966; Dember and Purcell, 

1967; Breitmeyer et al., 1981), and in other cases they can enhance inhibition 

cooperatively (Macknik and Livingstone, 1998; Macknik et al., 2000; Macknik and 

Martinez-Conde, 2004).  Which effects are observed depends on the precise spatio-

temporal arrangement of experiments. We know a priori what the answer to this question 

is because CFS is so much more powerful than a single flash; the flashes obviously have 

to interact cooperatively.  
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In Figure 2.6 b, the thresholds at the best SOA are shown as a function of the 

number of flashes, including the CFS condition in Experiment 3.  Notably, the threshold 

for the five-flash suppression was comparable to the threshold for CFS.  However, the 

thresholds in the conditions involving two to four flashes resulted in almost the same 

magnitude observed in the single-flash, far from the CFS condition.    

In Figure 2.6 c, all the measured thresholds are shown as a function of SOA. 

When SOA was less than 200 msec, the thresholds for the five-flash suppression (filled 

squares) were higher than those for the four-flash suppression (empty triangles), which in 

turn were higher than those for the rest of conditions. When SOA was 200 msec, the 

thresholds for all conditions dropped below the level of the BR condition in Experiment 

3.  Thus, at least one flash must be presented no more than 200 msec prior to the onset of 

the probe for effective multiple-flash suppression to occur.  The thresholds in the five-

flash suppression condition was much higher from those in the four-flash suppression at 

the SOA of 0 msec, but not at the other SOAs. Such strong SOA dependency was not 

found in the conditions that involved one to four flashes.    

Detailed examination of Figure 2.6 c reveals that the threshold was 44.4±8.8% for 

the five-flash suppression at SOA = 0 msec, very close to the threshold for the CFS 

condition (44.7%).   The thresholds were considerably lowered by removing the first 

flash (four-flash, SOA = 100 msec) or the last flash (four-flash, SOA = 0 msec) to 

19.2±4.1% or 17.4±1.5%, respectively.  Adding one flash to the four-flash suppression at 

the ‘wrong’ time also did not help; the thresholds were 20.2±2.3% for five-flash at SOA 

= -100 msec and 30.7±6.5% for five-flash at SOA=100 msec.   This kind of highly non-

linear interaction can be observed in other data points as well.  For example, though the 



 39 

three-flash suppression starting at SOA = 200 msec did not elevate thresholds at all on 

their own (4.1±0.9%), combined with the two-flash suppression starting at SOA = 0 

msec, whose threshold was 9.3±1.0%, they amounted to the strongest five-flash 

suppression.  

The depth of suppression produced by CFS was reached when at least five flashes 

were successively presented.  The effects of each of the five flashes were cooperative, but 

highly non-linear; it was difficult to rank order the importance of each flash because the 

suppression became weaker substantially by removing a single flash from five flashes or 

adding a single flash to four flashes at the wrong time.   As for the intermediate number 

of flashes, they neither facilitated suppression nor disinhibited the suppressed target.  It is 

possible that each additional flash acts as a masker that acts on the immediately following 

or the preceding flashes and, as a result, it cancels its suppressive effect (disinhibition 

(Robinson, 1966; Dember and Purcell, 1967; Breitmeyer et al., 1981)).  Why, then, does 

the inhibition become suddenly strong when there are five flashes?   One possibility is 

that disinhibition may be strong only for the flash at the onset or the offset of a set of 

multiple flashes, that is, the first or last flash.  When there are five flashes, disinhibition 

from the first or last flash may not be able to disinhibit the third flash, and threshold 

elevation might have been observed (Macknik and Livingstone, 1998; Macknik et al., 

2000; Macknik and Martinez-Conde, 2004). 
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Figure 2.6 How many flashes are necessary to attain the depth of CFS?   

a) Probe detection thresholds in the multiple-flash suppression.  Each flash was followed 

by another flash with a 100-msec interval.  The timing of the first flash was varied from   

-200 to +200 msec relative to the onset of the probe (in the schematic figure here, vertical 

positions of the Mondrians indicate the timing of flashes).   The contrast of the 500 msec 

probe was modulated in a Gaussian manner, with its peak at 250 msec.   b) Thresholds as 

a function of the number of flashes (error bars for s.e.m.).  For comparison, the threshold 

for the CFS condition from Experiment 3 is re-plotted.  For other conditions, the highest 

thresholds among the five SOAs were plotted (For 1-4 flashes, SOA was +100 msec, and 

for 5 flashes 0 msec. Shown schematically at the corresponding columns in a).  Note the 

much higher thresholds in the five-flash suppression and CFS.   A single flash 

suppression did not differ much from 2-, 3-, and 4-flash suppression.  c) Thresholds as a 

function of all the tested SOAs.   A sharp temporal tuning was observed only for the five-

flash suppression.  Symbols: filled circles, 1 flash; empty circles, 2 flashes; filled 

triangles, 3 flashes; empty triangles, 4 flashes; filled triangles, 5 flashes; an empty square, 

CFS.  
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2.5. CFS reduces the intensity of negative afterimages  

2.5.1. Experiment 6: Pilot experiments on afterimage reduction 

We next examined if CFS interferes with the formation of negative afterimages. These 

experiments were partly motivated by the observation that only a single subject in one out 

of 40 trialswhere subjects did not see the suppressed figure for 3 minutesreported a 

negative afterimage of the gray figure. We did not expect this, given that the image was 

present for three minutes on the retina.  

In Experiment 6, we presented two isoluminant Gabor patches in one eye to the 

left and right of fixation for 5 sec (Figure 2.7, left). At the same time, suppressing CFS 

stimuli were continuously flashed only to one side of the other eye (Figure 2.7, center). 

CFS in one eye effectively renders the Gabor patch at the corresponding location in the 

other eye invisible (Figure 2.7, right).  

Sixteen naïve subjects verbally described their percepts after 5-sec adaptation in 

two trials (Table 2.2). Subjects usually reported that the adaptor suppressed by CFS 

produced a weaker afterimage (87% in the 2-trial experiment and 83% in the 30-trial 

experiment). No subjects reported seeing an afterimage of the Mondrians. This 

consistency was notable, given the known variability in the strength of afterimages across 

trials, subjects, and hemifields (Loomis, 1972; Georgeson and Turner, 1985; Shimojo et 

al., 2001; Hofstoetter et al., 2004). Under the retinal origin hypothesis, input from the 

other eye should not influence afterimage formation. As adaptation at the retina is the 
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same for both visible and suppressed locations, the weakened afterimage must be due to 

interference from sites at or beyond binocular convergence.  
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Figure 2.7 CFS suppresses a Gabor patch and reduces its afterimage  

(Left) Two isoluminant Gabor patches were presented to the left and right of fixation in 

one eye for 5 sec (for Experiment 6 and 9) or 3 sec (for Experiment 8) during adaptation. 

The Gabor patches had 30% contrast and 0.6 cpd spatial frequency but with a spatial 

phase and orientation randomly drawn for each stimulus. (Center) Different Mondrian 

patterns that changed every 100 msec were projected into one half of the visual field 

(right side in this case) of the other eye. (Right) Typically, subjects saw a Gabor patch on 

one side (in this example, on the left visual field) and changing Mondrians on the other 

(the right visual field), failing to perceive the Gabor patch on the right. Subjects verbally 

described their percepts at the end of the adaptation period.   
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16 naïve subjects 8 subjects 
 

Total number  CFS trials Catch trials 

Visible only 7 22% 14% 95% 

Visible > Suppressed 13 41% 65% 0% 

Same 2 6% 16% 1% 

Suppressed > Visible 1 3% 1% 0% 

Suppressed only 0 0% 0% 0% 

No afterimage 9 28% 5% 4% 

 

Table 2.2 Detailed results for Experiment 6  

Sixteen subjects described their percepts immediately after a tone sounded at the end of a 

5 sec adaptation period.  The Mondrians were placed to the left of fixation in one trial and 

to the right in the other. Subjects did not know there would be Gabor patches on both 

sides during the adaptation. Verbal reports of two trials by 16 naïve subjects (32 trials 

total) were classified into six categories: an afterimage was perceived only from the 

visible (or suppressed) adaptor, two afterimages were perceived but the afterimage 

corresponding to the visible (or suppressed) adaptor was stronger, and the two 

afterimages were of the same strength or were not perceived at all.   

Eight of the subjects carried out another 20 trials with Gabor patches on both 

sides (CFS trials) and 10 trials with a Gabor patch only on the side that was not 

suppressed by the CFS (catch trials).  Catch trials were included to ensure the subjects did 

not report imaginary afterimages or afterimages from Mondrian patterns. 10 catch trials 
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were randomly interleaved with 20 CFS trials.  They described their percepts by choosing 

one of the six categories as explained above (six-alternative forced choice). The subjects 

were told there would be Gabor patches on both sides in some of these trials.  

The numbers of trials and rounded percentages of the report (in the six-alternative 

forced choice) are shown.  Excluding those trials where the afterimage was invisible on 

both sides, subjects usually reported that the plainly visible adaptor produced a stronger 

afterimage than the adaptor suppressed by CFS  (87% in the 2-trial experiment and 83% 

in the 30-trial experiment). 
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2.5.2. Experiment 7: Ruling out the possibility of non-specific effects of the 

Mondrian flashes  

Although no subjects reported seeing afterimages to the ever-changing Mondrians, such 

dynamic and luminance-equated patterns could have created afterimages (Virsu and 

Laurinen, 1977). Though their contrast may have been too low to perceive, they may 

nevertheless have interfered with the afterimage from the Gabor adaptor (Breese, 1899; 

Blake et al., 1971). In Experiment 7, we tested for this possibility. We compared the 

subjective ratings of the afterimage intensity from three intermittently presented adaptors 

(2-sec ‘on’ and 2-sec ‘off’ for 30 sec, Figure 2.8). One eye was stimulated by three 

separate Gabor patches while the other eye was stimulated at two of these three locations 

with Mondrians in such a way that this pattern synchronously coincided for 2 sec with 

one of the Gabor patches but was asynchronously delayed by 2 sec from the other Gabor 

pattern. A third location was never suppressed by Mondrians but received a Gabor patch 

intermittently for 2 sec and served as a control for the strength of the afterimage (pegged 

at a subjective rating of 10). Any putative afterimage of the Mondrian would interfere 

with the afterimage of the Gabor in both synchronous and asynchronous CFS locations. If 

CFS has to be presented simultaneously with the adaptors to weaken afterimage 

amplitude, the afterimages should be equally strong for the control and the asynchronous 

CFS locations and should be weaker for the synchronous CFS location.  

Each of 6 naïve subjects performed 20 trials, rating the subjective intensity of the 

afterimages induced by the synchronously and asynchronously suppressed Gabor 

adaptors relative to the control, which received a rating of 10 (Figure 2.8, bottom). The 
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mean afterimage rating from the asynchronous CFS location was 11.1 ± 1.13 (standard 

error of the mean, or s.e.m.), which was not significantly different from 10 (two-tailed t-

test, P > 0.35, t-score = 0.98, d.f. = 5). The mean rating from the synchronous CFS 

location was 5.85 ± 1.63, a reduction of 47% (one-tailed paired t-test on the rating 

between synchronous and asynchronous, P < 0.02). We conclude that the Mondrians 

themselves did not reduce the afterimage, and that coincidence of the adaptor with CFS 

was key to the observed reduction of the afterimage. 
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Figure 2.8 Mondrian flashes themselves do not reduce the afterimage of the 

Gabor   

(Left) Three adaptors were presented to the left, top right, and bottom right of fixation 

during 2-sec ‘on’ periods and removed during 2-sec ‘off’ periods. The contrast of the 

adaptors was 50%. The position of the adaptors and Mondrians was balanced across 

top/bottom and left/right across 20 trials (5 trials for each configuration).  (Center) 

Mondrian flashes were presented synchronously with the adaptors during 2-sec ‘on’ 

periods at the bottom right and asynchronously during 2-sec ‘off’ periods at the top right. 

(Right) During 2-sec ‘on’ periods, 6 naïve subjects perceived two adaptors and a stream 

of Mondrian patterns at the bottom right, while during 2-sec ‘off’ periods they saw only a 
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stream of asynchronous Mondrians at the top right.  (Bottom) After 30 seconds of 

adaptation, subjects rated the intensity of the afterimage relative to that at the left visible 

location (control), which was pegged at ’10.’  Next to the expected afterimage, the time 

course of adaptors and Mondrians is shown for each location. Small black squares 

indicate the eight, 2-sec adaptor-on periods while empty squares denote the 2-sec CFS-on 

periods. 
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2.5.3. Experiment 8: Reliability of suppression and afterimage reduction 

Why does CFS reduce the intensity of the afterimage, while previous studies showed that 

perceptual suppression did not influence the duration or the intensity of the afterimage 

using BR (Lack, 1978) or MIB (Hofstoetter et al., 2004)? One notable difference is that 

CFS suppresses adaptors in a more consistent and complete manner than either 

techniques; most subjects do not see the suppressed stimuli at all throughout the 

adaptation period.   

In Experiment 8, we tested the extent to which complete invisibility is necessary 

for the observed reduction in afterimage strength to occur. We measured the reduction in 

the afterimage while manipulating the reliability of suppression of the Gabor patches by 

changing the stimulus properties of both adaptors and Mondrians. In preliminary 

experiments, we found that complete suppression occurred less frequently as the adaptors 

contained more and more high spatial frequencies. Furthermore, as the contrast of 

adaptors (respectively Mondrians) increased, the suppression became less (respectively 

more) reliable. We used 5 different spatial frequencies for the adaptors and 3 

combinations of adaptor/Mondrian contrasts to manipulate the reliability of suppression.  

With the same setup as in Figure 2.7 (except for a 3-sec adaptation period), subjects 

indicated which side had the stronger afterimage and whether they saw the Gabor adaptor 

at the CFS location during adaptation (e.g., the right side in Figure 2.7). We also used BR 

to suppress the inducing image to compare with the efficiency of CFS methods.  

The results (Figure 2.9) are quite unambiguous: the less the Gabor patch is visible 

during adaptation, the weaker the associated afterimage (for CFS, r2 = 0.82, p<1e-5; for 



 52 

BR, r2 = 0.76, p<1e-4). Or, put differently, the more reliable the suppression (in a 

statistical sense), the weaker the afterimage.  If suppression is sufficiently reliable, the 

intensity of the afterimage is reduced.   
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Figure 2.9 Afterimage reduction and the reliability of suppression   

We used two different dichoptic suppression protocols: CFS (as in Figure 2.7, except that 

the adaptation period was shortened to 3 sec) and BR with moving stimuli.  5 subjects 

reported which of the afterimages were stronger and whether or not they saw the 

suppressed Gabor patch during adaptation. To modulate the reliability of suppression, 

three combinations of contrasts for adaptors and Mondrians were used: 30% and 100% 

(triangles), 100% and 100% (circles), or 100% and 5% (squares). The Gabor had one of 
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five different spatial frequencies. Subjects compared the intensity of the afterimage from 

two adaptors with the same contrast and spatial frequency. Increasing symbol size 

represents increasing spatial frequency of the adaptors: 0.60 through 0.84, 1.2, 1.7, to 2.5 

cpd. In total, 30 different experimental conditions were evaluated. Filled symbols 

represent data obtained from CFS, and open symbols represent data from BR. Each data 

point represents the average across five subjects. The y-axis is the proportion of trials in 

which the afterimage from the suppressed adaptor was weaker than the afterimage from 

the plainly visible Gabor patch, representing the degree of afterimage reduction. The x-

axis is the fraction of trials during which any part of the adaptor was visible, representing 

the reliability of complete suppression in a statistical sense. The data clearly show that for 

both CFS and BR, the less frequently the adapting stimulus is seen, the weaker its 

associated afterimage.  
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2.5.4. Experiment 9: Trial-by-trial visibility and the degree of afterimage reduction  

CFS-induced suppression may reduce the afterimage either by eliminating the afterimage 

entirely on some fraction of trials or by lowering the afterimage intensity uniformly on all 

trials.  

In Experiment 9, we tried to distinguish between these hypotheses. We repeated 

three of the conditions from Experiment 8 more extensively to estimate the matching 

contrast.   In Figure 2.10 a, we show the results in the condition with the low-spatial 

frequency Gabor patch and high contrast Mondrian patterns (the small filled triangle in 

Figure 2.9). Here, the contrast of a test Gabor patch that matched the 60% contrast Gabor 

patch suppressed by CFS was 42.7% ± 7.1% (n = 5, t-score = 2.45, P < 0.05, one-tailed t-

test against 60%), replicating our previous finding (in Sections 2.5.1 to 2.5.3). The 

average adaptor visibility duration was 0.51 ± 0.24 sec during the 5-sec adaptation period 

(Figure 2.10 b). Subjects did not report seeing any part of the Gabor in 61.8 ± 15.2% of 

trials (Figure 2.10 c). In the high-spatial frequency condition (the large filled triangle in 

Figure 2.9), the matching contrast was 62.8 ± 6.1%; that is, there was no reduction of 

afterimage intensity (n = 4, t-score = 0.46, P > 0.6). The mean adaptor visibility duration 

was 1.73 ± 0.38 sec, and complete suppression occurred in 18.6 ± 10.9% of trials.  

To evaluate the effect of adaptor visibility, we sorted the 60 trials with the high-

spatial frequency patches at each test contrast into ten bins according to the duration of 

the visibility of the adaptor. Figure 2.10 d shows each data point averaged across four 

subjects and psychometric curves fitted for each of ten bins. Matching contrast was 

independent of adaptor visibility duration (Figure 2.10 e, r2 = 0.18, P = 0.22). Although it 
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did not reach significance, the slope is slightly negative (-2.9% s-1), contrary to the 

prediction that only invisible trials contribute to afterimage reduction. We obtained 

similar results using low-spatial frequency Gabor patches and low-contrast Mondrians 

(Figure 2.11 a and b; n = 5; the matching contrast was 61.2 ± 1.8%, the mean adaptor 

visible duration was 2.03 ± 0.38 sec and complete suppression occurred in 4.12 ± 10.9% 

of trials). Again, we did not find any correlation between matching contrast and the 

adaptor visibility duration (r2 = 0.23, P = 0.16; slope of the regression line was, again, 

slightly negative: -3.2% s-1). Dividing trials into two or three bins did not change the 

results.  Although there was only a little variation in adaptor visibility, we repeated the 

same analysis on the data set in the condition with low-spatial frequency Gabor patches 

and low-contrast Mondrians (Figure 2.11 c).  There was no correlation between matching 

contrast and the adaptor visibility duration (P = 0.52) and the slope of the regression line 

was, again, slightly negative: -3.7% s-1.   

For a given stimulus setting, trial-by-trial variability in the visibility of the adaptor 

did not change the intensity of the afterimage. This is consistent with previous studies of 

afterimages (Lack, 1978; Hofstoetter et al., 2004) but was contrary to the suppression of 

high-level aftereffects (Wiesenfelder and Blake, 1990; Moradi et al., 2005). Since the 

statistical reliability of suppression is correlated with the reduction of the afterimage, the 

visibility of the adaptor seems only indirectly related to the percepts of the associated 

afterimage. Thus, the answer to the question that triggered this experiment, “does CFS-

induced suppression eliminate the afterimage entirely on some trials or does it lower the 

afterimage intensity uniformly on all trials,” is the latter. 
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Figure 2.10 Visibility and afterimage reduction   

We repeated three conditions of Experiment 8.  4 subjects reported the visibility of the 

suppressed Gabor by holding a key during the 5-sec adaptation period and then compared 

the afterimage intensity.  (a-c) We used low- (0.6 cpd, left) and high-spatial frequency 

(2.0 cpd, right) Gabor patches. (a) Matching contrast (estimated by the method of 

constant stimuli), showing a significant reduction of matching contrast only in the low-

spatial frequency condition (error bars represent s.e.m.). (b) Mean duration that the 

adaptor was visible. (c) Proportion of trials where subjects did not see the adaptor at all.  

(d) We divided 60 trials at each test contrast for each subject into ten bins based on the 

adaptor visibility duration in the high-spatial frequency condition (a-c right).  Six trials 

from each of four subjects were pooled to fit a Weibull function, which was used to 

estimate the matching contrast for which the afterimage (AI) induced by the test adaptor 

was stronger than the afterimage induced by a suppressed Gabor adaptor in 50% of trials 

(vertical lines in d). (e) The duration for which the adaptor was visible was weakly but 

negatively correlated (one-tailed t-test; P = 0.22) with the matching contrast (thick solid 

line). Different colors in d and e represent different durations of mean adaptor visibility.  

The large filled black circle and the empty square in e represent the average matching 

contrast in a and adaptor visibility in b for the high- and the low-spatial frequency 

condition, respectively.   If the adaptor visibility would correlate with the intensity of 

afterimages in a trial-to-trial manner, there should be a positive correlation (thin broken 

line).    
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Figure 2.11 Visibility and afterimage reduction (control) 

(a-b) Data from 5 subjects in the condition with a Gabor patch of low spatial frequency 

(0.6 cpd) and low-contrast (2-4%) Mondrian patterns.  The formats are the same as those 

in Figure 2.10 d and e.   We divided 60-70 trials at each test contrast for each subject into 

ten bins based on the adaptor visibility.  Six to seven trials from each of five subjects 

were pooled to fit a Weibull function, which was used to estimate the matching contrast. 

If the adaptor visibility would correlate with the intensity of afterimages in a trial-to-trial 
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manner, there should be a positive correlation (thin broken line).  (c) Data from 5 subjects 

in the baseline condition with a Gabor patch of low spatial frequency (0.6 cpd) and high-

contrast (100%) Mondrian patterns, analyzed as in Figure 2.10 d and e.   We divided 20-

30 trials at each test contrast for each subject into five bins based on the adaptor 

visibility.  Four to six trials from each of five subjects were pooled to fit a Weibull 

function, which was used to estimate the matching contrast.  Because the suppression was 

very strong, there was not much variability in the adaptor visibility.  Although there is no 

significant correlation (P = 0.52), again, there is no trend of positive correlation, which 

would be expected if the adaptor visibility would correlate with the intensity of 

afterimages in a trial-to-trial manner.   
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2.5.5. Experiment 10: Withdrawing attention enhances the intensity of afterimages   

The effects of attention and awareness are similar in most experimental conditions, and 

they are usually difficult to disentangle.  Although some recent research claims a 

dissociation of attention and awareness (McCormick, 1997; Kentridge et al., 1999a, b; 

Lambert et al., 1999; Naccache et al., 2002; Kanai et al., 2004; Kentridge et al., 2004; 

Rajimehr, 2004; Koivisto et al., 2005b; Koivisto et al., 2005a; Melcher et al., 2005; 

Montaser-Kouhsari and Rajimehr, 2005), none of them show the opposite effects of 

attention and awareness.  We wanted to replicate the original finding that withdrawing 

attention enhances afterimages (Lou, 2001; Suzuki and Grabowecky, 2003) in our setting.   

In Experiment 10, we compared the apparent contrast of the afterimage when the 

adaptor was ignored because the spatial attention was withdrawn to a task-relevant rapid 

digit stream presented at the fixation (Figure 2.12 a), and when the adaptor could be 

attended because they did not perform the task. The central task required subjects to 

count the appearance of digit ‘4’s among a stream of 9 other distractor digits.  The 

difficulty of the task was kept around 70% using a 2-down-1-up staircase procedure to 

control the duration of each digit presentation.  The monitoring of digit stream engaged 

spatial attention for a sustained duration, sufficient to modulate the intensity of 

afterimages (Suzuki and Grabowecky, 2003). A task on rapid visual serial presentation is 

shown to withdraw focal attention to the same degree as other attention demanding tasks 

(Braun, 1998).   

The adaptor was either suppressed by CFS or plainly visible without Mondrians 

(visible vs. invisible x attended vs. unattended).  These four experimental conditions was 
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blocked and the order was randomized across subjects.  In each trial, a Gabor patch 

appeared only on one side for 5 sec, while the digit stream was presented at the fixation 

(the same visual inputs for attended vs. unattended condition, Figure 2.12 a).  At the end 

of the adaptation, a Gabor patch with the same appearance as the negative afterimage (i.e., 

phase-reversed and same orientation) was presented on the other side.  Subjects 

compared the apparent contrast of the afterimage with that of the physical Gabor just 

after the end of adaptation period, cued by a tone signal.  Matching contrast was 

estimated with a 1-up-1-down staircase method.  

Making adaptor invisible via CFS reduced the intensity of afterimage from 17.5% 

to 11.9% (across two attentional conditions), whereas withdrawing attention from the 

adaptor by a central task increased the intensity of afterimages from 13.2% to 16.1% 

(across two visibility conditions, Figure 2.12 b). Using ANOVA, we confirmed 

significant main effects of CFS (F = 18.30 P = 0.00058) and attention (F = 4.86, P = 

0.0425). The visibility effect was significant separately for each attentional condition, 

confirming our results in Experiments 6-9; a post-hoc paired one-tailed t-test showed a 

significant effect of visibility when subjects performed the attention-demanding task (t-

score = 3.67, P = 0.011) and when they passively viewed the display without any task (t-

score = 3.55, P = 0.012).  Interestingly, the effect of visibility did not interact with the 

effect of attention (F = 0.15, P = 0.702).  In other words, the magnitude of the attentional 

effect was similar when the target was visible (increase from 15.8 to 19.2%) and when 

the adaptor was invisible (increase from 10.7 to 13.1%).  A post-hoc paired one-tailed t-

test confirmed the attentional effect separately when the adaptor was visible (t-score = 

2.07, P = 0.054), as expected from the previous study of (Suzuki and Grabowecky, 
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2003).  When the adaptor was invisible, we did not have a prior hypothesis, and a post-

hoc two-tailed test for attention did not reach significance (t-score = 2.24, P = 0.089) 5.  

However, we note the magnitude of the attentional effect was similar in both visibility 

conditions and the direction of attentional effect was consistent with the previous study of 

(Suzuki and Grabowecky, 2003).  

We showed performing the central task and thereby ‘drawing attention’ away 

from the Gabor increased the intensity of the afterimage.  The lack of interaction 

indicates that the attentional effect was independent of awareness of the adaptor.  We 

conclude that the lack of attention during CFS-suppressed adaptation does not explain our 

main findings. Indeed, this experiment supports the view that selective visual attention 

and awareness can be dissociated (Lamme, 2003; Koch, 2004).  

                                                
5 Rather small size of the attentional effect seems comparable with the study of Suzuki 
and Grabowecsky, who hired > 20 naïve subjects to confirm the significance of the effect.  
The effect might be enhanced if the subjects actively attend to the adaptor by performing 
a task on the adaptor, rather than passively viewing the display without doing any task.   
Here, we did not opt for such an experimental design because we were concerned about 
the role of fixational eye movements. It is very likely that attending to a target outside the 
fixation would induce (micro-) saccades towards the adaptor, which would reduce the 
intensity of afterimage in a trivial manner.   
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a)  

 

b)  

 

Figure 2.12 Apparent contrast of the afterimage in the presence and the near-

absence of focal attention  

(a) In each trial, a Gabor patch of 60% contrast with random orientation and a spatial 

phase was presented on one side of the fixation to one eye. Visibility of the Gabor patch 
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was manipulated by a 10Hz stream of Mondrian patterns on the same side of the other 

eye.  The focal attention was manipulated by having subjects ignored or engaged in the 

central digit stream, appearing in a fixation area of 0.5 x 0.5° (the size of the digit in the 

figure is exaggerated).  After 5-sec adaptation, subjects compared the apparent contrast of 

the afterimage and the physical Gabor, and in addition, reported the occurrence of the 

digit ‘4’s in an “adaptor-ignored” condition. (b) Matching contrasts of the physical Gabor 

are shown for four experimental conditions.   Error bars are s.e.m.  
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2.5.6. Do we need to give up localizing visual aftereffects?  

Recent psychophysical studies, including our own (Tsuchiya and Koch, 2005), show that 

negative afterimages originate not only from retinal adaptation, as traditionally thought, 

but that post-retinal components also significantly contribute to the formation of negative 

afterimages (Shimojo et al., 2001; Gilroy and Blake, 2005).  Recent electrophysiological 

studies show that neuronal network in mammalian retina possesses substantial 

adaptability to the contrast variation of the input images (Smirnakis et al., 1997), or even 

to highly complex spatiotemporal patterns, such as orientation and motion (Hosoya et al., 

2005).    

The findings discussed so-far question two traditional, well-established 

assumptions about localizing neural functions using visual aftereffects.  First, when an 

aftereffect does not transfer across eyes, as is the case for afterimages, it is assumed that 

monocular channels relatively early in the visual processing are solely responsible for 

mediating the aftereffect (Blake et al., 1981).  Thus, no inter-ocular transfer of 

afterimages has been taken as an evidence for the retinal origin of afterimages (but see 

Discussion 2.6.6).   Second, when an aftereffect requires selectivity to complex visual 

features, such as orientation, direction of motion, or facial identity, it is assumed that the 

aftereffect is mediated by neurons with complex receptive properties, generally found in 

later, i.e. cortical, stages of visual processing.  For example, circular receptive fields in 

the retina and LGN imply that these structures cannot be the neural basis of the 

orientation-selective adaptation (Blakemore and Campbell, 1969) (but see (Hosoya et al., 

2005)).   The recent findings discussed above (Smirnakis et al., 1997; Shimojo et al., 
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2001; Gilroy and Blake, 2005; Hosoya et al., 2005; Tsuchiya and Koch, 2005) call into 

question these assumptions for localizing the neuronal sites for a given aftereffect within 

the visual system.  

Do we need to abandon hope to track down the neuronal correlates of visual 

adaptation to one or more highly localized neuronal populations?   We believe not.   In 

Experiment 11, we provide a new technique to dissociate the microgenesis of retinal and 

post-retinal adaptation, using continuous flash suppression (CFS).  While we induced 

afterimages presented by an adaptor to one eye for a constant duration, we manipulated 

the duration of CFS presented to the other eye.  CFS should prevent post-retinal 

components from adapting, but should not affect retinal adaptation. 
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2.5.7. Experiment 11: Dissociating the microgenesis of retinal and 

post-retinal adaptation 

We showed in Experiment 9 that variability in trial-to-trial visibility did not correlate 

with the intensity of afterimages. In that experiment, we needed to make CFS less reliable 

to obtain sufficient variability in visibility. Here, using an optimal CFS, we manipulated 

the duration of suppression by physically starting or removing CFS during the course of 

adaptation.   When reliable CFS coincides with the adaptor (Experiments 8-10), the 

intensity of afterimages was reduced.   By changing the duration and timing of overlap 

between CFS and the adaptor, we can characterize the temporal characteristic 

(microgenesis) of the post-retinal components of afterimages.  If the adaptor is initially 

visible (or suppressed) and subsequently becomes suppressed (or visible) until the end of 

adaptation, would the afterimage be stronger than the afterimage induced by the 

completely suppressed adaptor?   If so, what is the relationship between the duration of 

suppression and the reduction of afterimage intensity?    

In Experiment 11, we measured the intensity of afterimages with a contrast 

matching technique using a staircase method (Kelly and Martinez-Uriegas, 1993) (see 

Methods). We held the duration of retinal adaptation constant for 5 sec, while 

manipulating the duration of CFS, which should affect adaptation of post-retinal, but not 

retinal, components. For example, when the matching adaptor was fully visible 

throughout (Figure 2.13 a), post-retinal components would adapt maximally and 

afterimages would be most intense.  When the adaptor was suppressed all the time during 

adaptation (Figure 2.13 b), post-retinal components would adapt minimally and 
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afterimages would be least intense.  Critically, when the adaptor was suppressed (via 

CFS) only during the last fraction of the 5-sec adaptation period (Figure 2.13 c), post-

retinal components would adapt until the start of CFS but would then stop adapting and 

decay.  Likewise, to study the buildup of adaptation, we suppressed the adaptor only after 

a variable period of visibility.  In this case, post-retinal components would not adapt until 

the release from CFS, and from then on would start adapting until the end of the 5-sec 

adaptation period.  However, retinal exposure of the adaptor would be exactly the same in 

all conditions, as the CFS stimulus was only presented in the other eye. Thus, we can 

study the microgenesis of post-retinal components of afterimages, that is, how fast they 

buildup or decay. 

In order to minimize covert shifts of attention and eye movements induced by the 

transient apparent motion of the Mondrian patterns from an upper to a lower quadrant, 

subjects performed an attentionally demanding task at the fixation.  The same digit-

counting task was used in Experiment 10 and it did not interfere the formation of 

afterimage (rather, it enhanced the intensity of afterimage, if any).   

Surprisingly, the estimated intensity of afterimages was reduced below 60% of the 

strength of the normal afterimage, even when the adaptor was suppressed for as short as 

the last 0.5 sec, that is, only five Mondrian flashes were presented during the last 500 

msec of adaptation6 (Figure 2.13 d).   In other words, there was little or no dependency of 

how long the adaptor was visible initially, prior to the last period of suppression.  This 

was confirmed by one-way ANOVA, showing a significant difference of the intensity 

                                                
6 We did not use suppression durations shorter than 0.5 sec because we thought that too 
few flashes presented at the end were likely to create afterimages of their own and they 
might make the interpretation of results more difficult.   
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(F(5) = 12.8, P < 1e-6).  A post-hoc Tukey’s least significant difference test confirmed a 

significant difference between the no-suppression (decay time = 0sec) and the other 

conditions (P < 0.05), but not for any other comparisons, including a comparison between 

complete suppression (decay time = 5 sec, Figure 2.13 b) and partial suppression at 0.5 

sec (P > 0.05).   Similarly, when we made the adaptor became visible only for the last 0.5 

sec, the estimated intensity quickly rose above 75% (Figure 2.13 e).  

Our results cannot be explained by differential pupil diameters across conditions, 

because transient CFS flashes were always present in the display for 5 sec (Figure 2.13 a-

c).  We excluded the possibility of the effects of task set and/or attention by having 

subjects engaged in an attentionally demanding task at fixation throughout adaptation and 

by interleaving all conditions randomly within each block to avoid any shift of criterion 

in intensity judgment (see Methods). 

For more quantitative analyses, we fitted these data with exponential functions of 

the form, 

! 

AI= a*exp("T /#) + b , where AI is the estimated intensity of afterimages, a is a 

scaling constant (%), b is the asymptotic afterimage intensity (%), T is the duration of 

decay or buildup (sec), and 

! 

"  is the time constant for 1/e decay or buildup (sec).  The 

best-fit curves are shown in Figure 2.13 d and e.   For decay, the best fit resulted in a = 

37.4% (with the 95% confidence interval of [21.0, 55.83]), b = 57.0 [49.4, 64.4] %, and 

! 

"  = 0.17 [-0.32, 0.65] sec, with R2 = 0.95.  For buildup, the best fit was obtained with a = 

-26.1 [-32.6, -19.6] %, b = 85.7 [81.2, 90.3] %, and 

! 

"  = 0.51 [0.19, 0.84] sec, with R2 = 

0.97.    

These data suggest that post-retinal components of afterimages rapidly decay and 

buildup, possibly reflecting the rapid adaptation and recovery of polarity-selective 
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neurons (See Discussion 2.6.5).  Alternatively, the visibility of afterimages may be 

rapidly modulated by cortical mechanisms that have access to the information about the 

states of perceptual suppression just before the expression of afterimages.  When the 

adaptor is strongly suppressed at the end, the putative mechanisms may turn off 

afterimages. Such modulation is implicated in afterimages created at the periphery, which 

can be turned off when subjects move their eyes so that these locations fall outside of the 

normal visual field (Hayhoe and Williams, 1984).   Another possible explanation might 

be dichoptic forward masking onto the initial part of afterimages, which resulted in the 

reduction of afterimage.  However, this is unlikely for several reasons.  First, similar 

suppression was also obtained by reliable binocular rivalry suppression (Experiment 8), 

where no transients for dichoptic forward masking were present.  Second, there was no 

suppression when unreliable CFS was used (Experiment 8 and 9), where transients for 

dichoptic forward masking were present.  

We note the suppression obtained by five flashes in Experiment 5 was comparable 

with the suppression in CFS.  This is consistent with both the rapid microgenesis and 

modulatory cortical mechanisms.  

The rapid time constants allow us infer the neuronal mechanisms of afterimages.   

Even when we estimate the time constants conservatively at the longer end (0.65 and 0.84 

sec for decay and buildup, respectively), these are still much more rapid than previous 

estimates of microgenesis of afterimage induced by fully visible stimuli, which typically 

shows exponential decay/buildup on the order of 4-8 sec (Kelly and Martinez-Uriegas, 

1993; Hofstoetter et al., 2004). Our results imply the genuine cortical components of 

afterimages adapt and recover much faster than the retina.  
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Other adaptation phenomena, such as contrast adaptation (Blakemore and 

Campbell, 1969) and flicker adaptation (Schieting and Spillmann, 1987), are also 

characterized by slow time constant.  Recent studies (Smirnakis et al., 1997; Hosoya et 

al., 2005) indicate that these types of adaptation may also be found within the retinal 

circuits.  It is plausible that the slow time course in contrast adaptation may as well 

mainly reflect the retinal adaptation processes. 
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a) b) c)  

d)  e)  

 

Figure 2.13 Microgenesis of post-retinal components of afterimage 

(a-c) The constant adaptor of a 30% contrast (bottom left of the left column) and the 

matching adaptor (bottom right) were presented to the non-dominant eye.  A 10Hz stream 

of Mondrians was presented in one of the four quadrants of the dominant eye.  Stimuli 

were presented for 5 sec.  (a) Mondrian patterns were presented at the top right corner to 

equate the display luminance and transients.  In this condition, post-retinal components of 

afterimages were not suppressed at all, corresponding to decay time = 0 sec in d and 

buildup time = 5sec in e.  (b) Mondrians coincided with the location of the matching 

adaptor for 5 sec, corresponding to decay time = 5 sec in d and buildup time = 0 sec in e.  
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(c) To characterize the decay and buildup time constant of post-retinal components of 

afterimage, we started CFS only after some time (here, from the 2nd frame).  (d) Decay 

and (e) buildup of post-retinal components of afterimage.  X-axis is the duration of decay 

or buildup and y-axis is the estimated intensity of afterimage, i.e., normalized matching 

contrast (Error bars are s.e.m.).  The curves were obtained by the best exponential fit.   

The broken horizontal and vertical lines indicate the time constant for 1/e decay and 

buildup and are obtained using a best exponential fit.  
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2.6. Discussion  

2.6.1. Prolonged phenomenal invisibility in continuous flash suppression 

(CFS) 

We identified dichoptic visual stimuli that, for at least ten times longer than existing 

techniques, reliably suppress from conscious perception salient figures presented to one 

eye (Experiment 1).  With CFS as a tool, vivid images can be rendered invisible for long 

periods with excellent control of timing. This suppression of a continuously presented 

stimulus at the fovea dissociates physical stimuli from their associated subjective 

percepts. CFS does not require pre-adaptation, a key aspect of flash suppression (Wolfe, 

1984; Wilke et al., 2003; Pasley et al., 2004; Moradi et al., 2005) to achieve reliable 

disappearance. This property makes CFS attractive for studies that require complete 

unawareness.  

CFS extends the total duration for which Mondrians are perceived by prolonging 

their period of dominance without shortening their period of suppression (Experiment 2). 

In binocular rivalry, strong stimuli have the effect of shortening the period of dominance 

of the other, weaker, stimuli (that is, effectively shortening the period during which they 

are suppressed), with little effect on their period of dominance (Levelt, 1965; Fox and 

Rasche, 1969; Blake, 1977; Blake and Logothetis, 2002) (but see (Mueller and Blake, 

1989; Bossink et al., 1993; Sobel and Blake, 2002)). Thus, CFS is not simply a stronger 

version of binocular rivalry. This observation is compatible with the hypothesis that CFS 

involves a repetitive flash suppression component, in addition to binocular rivalry. 

Indeed, we present a simple model (Sections 2.4.3 to 2.4.5) that combines aspects of flash 
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suppression and binocular rivalry and describes the measured periods of CFS dominance 

and suppression in a quantitative manner.  

 

2.6.2. CFS suppresses the target strongly but avoids adaptation to 

prolong dominance 

Using a probe detection task, we found that the detection threshold was 20-times higher 

in CFS than under monocular-viewing conditions (Experiment 3), but only three-times 

higher in binocular rivalry.  The prolonged dominance in CFS (Experiment 1) may be 

due to the stronger suppression.  This conclusion seems in conflict with the evidence that 

‘strong’ stimuli in binocular rivalry do not prolong its dominance (Levelt, 1965; Fox and 

Rasche, 1969; Blake, 1977; Blake and Logothetis, 2002) as we argued in (Sections 2.4.3 

to 2.4.5).   

The apparent conflict is resolved when we consider the effects of adaptation for 

perceptual switches in bistable percepts.   We argue that CFS effectively minimize 

neuronal adaptation, which is one possible cause of terminating dominance in binocular 

rivalry (See a review by (Leopold and Logothetis, 1999) for other possible causes of 

perceptual switches).  In this framework, two competing neuronal populations 

reciprocally inhibit each other via feedback, and the winning population dominates the 

percept (Matsuoka, 1984; Lehky, 1988; Mueller, 1990; Wilson, 2003).  When the 

dominating population fatigues, adapts or recalibrates, its inhibition becomes weaker and 

a perceptual switch occurs.  In this model, any methodology that alleviates adaptation of 

neuronal population for the dominant percept would prolong the dominance. Indeed, two 

techniques to prolong dominance in rivalry has been recently reported; inserting blanks 



 77 

between bistable percepts (i.e., freezing (Leopold et al., 2002)) and changing retinal 

location during rivalry (Blake et al., 2003) both prolong the dominance duration.  In CFS, 

randomly generated Mondrians were replaced every ~100 msec.  This short presentation 

of each pattern minimize adaptation of neurons that respond to patterns as a whole or to 

local, high contrast edges, because each Mondrian pattern is unique and its edges are 

located at random positions.  However, in conventional ‘strong’ rivalry stimuli, especially 

high contrast ones, most strong rivalry stimuli are stationary or periodic if they are 

dynamic, thus, they strongly stimulate the same population of neurons during perceptual 

dominance.  Compared to weak stimuli, neuronal response to strong stimuli would be 

initially more vigorous, but reduced faster by adaptation, fatigue, and/or recalibration, 

leading to the similar duration of perceptual dominance (Matsuoka, 1984; Lehky, 1988; 

Mueller, 1990) (During perceptual suppression, these models posit that neuronal 

responses to the preferred stimuli recover from adaptation.  The speed of recovery 

depends on the strength of stimuli, explaining the major effects of stimulus strength on 

the duration of perceptual suppression (See also Section 2.4.3. to 2.4.5)). 

 

2.6.3. Reducing the intensity of afterimage via dichoptic suppression  

We applied CFS to ascertain the extent to which dichoptic inhibition interferes with the 

formation of negative afterimages. Though it is widely believed that afterimages originate 

among retinal neurons (Craik, 1940; Alpern and Barr, 1962; Brindley, 1962; Loomis, 

1972; Sakitt, 1976; Virsu and Laurinen, 1977; Lack, 1978; Loomis, 1978; Wilson, 1997), 

and their formation therefore immune from influences from the other eye, some 

experiments imply that post-retinal processing can modulate (Anstis et al., 1978; Hayhoe 
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and Williams, 1984; Lou, 2001; Suzuki and Grabowecky, 2003) or possibly even create 

(Weiskrantz, 1950; Shimojo et al., 2001) negative afterimages. Our results are consistent 

with these latter studies.  Notably, they imply that such post-retinal components may be 

necessary for the formation of afterimages.  Dichoptic inhibition that underlies the 

afterimage reduction has been found as early as the LGN (Sengpiel et al., 1995) in 

anesthetized cats.  In contrast, dichoptic inhibitory effects in a masking paradigm were 

not found in the LGN of awake monkeys (Macknik and Martinez-Conde, 2004).  For 

binocular rivalry, electrophysiological evidence for the suppression in LGN is 

controversial conflicting between the results from anesthetized cats (Varela and Singer, 

1987) and awake monkeys (Lehky and Maunsell, 1996).  Recent human fMRI studies 

provide evidence for the hemodynamic modulation of the LGN during binocular rivalry 

(Haynes et al., 2005; Wunderlich et al., 2005). 

The possibility that latent afterimages from the Mondrians interfered with the 

afterimage of the Gabor pattern was ruled out by Experiment 7. Asynchronously 

presented Mondrian patterns did not reduce the intensity of the afterimage, whereas 

synchronously presented Mondrians reduced it by about 50%. This suggests that one 

peculiarity of CFS, continuously present transient signals, is not sufficient for the 

reduction of the afterimage. Rather, the adaptor has to be suppressed strongly by stimuli 

presented simultaneously to the other eye.  
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2.6.4. Reliability of suppression and trial-to-trial visibility in a two-

stage hierarchical model 

We found that the degree of afterimage reduction correlated with how reliably adaptors 

are suppressed in a statistical sense. This relationship exists for both binocular rivalry and 

CFS (Experiment 8), implying that the inconsistency between our results and previous 

studies (Lack, 1978) arises partly from the reliable suppression induced by CFS. 

Although cortical neurons may adapt under partial suppression, they seem to adapt less 

under reliable suppression.  In an analogy with lesion studies, partial suppression 

techniques can be compared with ‘unilateral lesions’ and CFS with ‘bilateral lesions’; 

often, bilateral, but not unilateral, lesions result in behavioral deficits. Partial suppression 

by binocular rivalry and MIB may leave sufficient residual activity to produce full-blown 

adaptation and an afterimage.  

 Further, we confirmed (Lack, 1978; Hofstoetter et al., 2004) that afterimage 

intensity was not influenced by trial-by-trial variability in adaptor visibility, indicating 

that post-retinal components for the afterimage are not directly related to the neuronal 

correlates of awareness.  

 Although reliability of suppression correlated with the reduction of afterimage 

intensity, trial-to-trial visibility did not.  Because these two measures were obtained by 

independent methods7, it is not so surprising to find that the degrees of correlation were 

different.  Still, it is important to point out that completely invisible CFS trials did lead to 

reduced afterimage intensities, while equally invisible trials that are a subset of unreliable 

                                                
7  Indeed, difference in reliability of suppression comes from the difference in the 
experimental protocols including suppression technique (e.g., CFS vs. BR vs. MIB), 
contrast and spatial frequency of stimuli.  
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suppression did not reduce afterimage intensity (Figure 2.10).  This is reminiscent of the 

finding on the depth of suppression in Experiment 3. Perceptual suppression induced by 

reliable CFS and binocular rivalry were phenomenally indistinguishable; however, the 

depth of suppression were very different.   

We can explain the results of Experiments 8 and 9 with the help of a two-stage 

hierarchical model, where reliability of suppression and trial-to-trial visibility reflect 

outputs from the first and the second stage, respectively.  In the first stage, inputs from 

two eyes converge and the strength of each input pattern is compared.  In the second 

stage, based on the analysis at the first stage, only one pattern survives because of a 

winner-take-all computation.  Because of internal noise, adaptation and other factors 

(Discussion 2.6.2), the winner is not necessarily the stronger one and who the winner is 

may fluctuate unpredictably on a moment-by-moment basis.  Trial-to-trial visibility 

corresponds to the output from this second stage.   Reliability of suppression reflects the 

output from the first stage because it corresponds to the probability that one pattern wins 

over many trials.  This two-stage model is consistent with electrophysiological studies of 

binocular rivalry, where the proportion of neurons whose firing correlates with monkey’s 

percept is low in the early visual cortex (20% in V1 and V2) and higher as the processing 

goes deeper (40% in MT, MST and V4, and 90% in IT and STS (Logothetis, 1998).   V1 

and V2 would correspond to the first stage, and IT and STS the second stage.  It is also 

consistent with a computational model based on the two layers of spiking neurons, which 

reconciles contradicting ideas between eye-specific vs. pattern-specific rivalry 

hypotheses (Wilson, 2003). 
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According to the two-stage model, post-retinal components of afterimages are 

mainly formed in the neural structures corresponding to the first stage (Experiment 8), 

but not the second stage (Experiment 9).   Difference in reliability of suppression at the 

first stage resolves the apparent contradiction regarding the effects of perceptual 

suppression on the formation of afterimages; the intensity of afterimages is reduced by 

strong reliable suppression (Gilroy and Blake, 2005; Tsuchiya and Koch, 2005), but not 

by unreliable suppression (Lack, 1978; Hofstoetter et al., 2004) at the first stage. Trial-to-

trial visibility, the output from the second stage, does not influence the intensity of 

afterimages (Lack, 1978; Hofstoetter et al., 2004; Tsuchiya and Koch, 2005).  

There are other types of aftereffects that appear to be formed in the first stage.  

Such candidate aftereffects include aftereffects of (orientation-specific) contrast, 

translational motion and tilt.   Although original studies show that visibility does not 

influence the magnitudes of these aftereffects (Blake and Fox, 1974; Lehmkuhle and Fox, 

1975; Wade and Wenderoth, 1978; O'Shea and Crassini, 1981; Moradi et al., 2005), 

recent studies show that strong suppression or weak adaptors reduce these aftereffects 

(Lehky and Blake, 1991; Kanai et al., 2004; Sobel et al., 2004).  It remains to be tested if 

the magnitudes of these aftereffects do not correlate with trial-to-trial visibility, as we 

here demonstrate for afterimages ((Moradi et al., 2005) reports no correlation between the 

orientation-specific contrast aftereffects and trial-to-trial visibility).  

Some aftereffects appear to be formed in the second stage.  The magnitude of the 

spiral motion aftereffects (Wiesenfelder and Blake, 1990) and the face-identity specific 

aftereffects (Moradi et al., 2005) correlates with trial-to-trial visibility. Both aftereffects 

were reduced even with binocular rivalry.  
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2.6.5. The opposing effects of awareness and attention in the 

formation of afterimages 

In Experiment 10, we showed that our results in Experiments 6-9 could not be explained 

by a lack of attention to the adaptor owing to complete suppression. Attending to 

adaptors during adaptation weakens the afterimage (Lou, 2001; Suzuki and Grabowecky, 

2003) as we replicated in Experiment 10.  If one assumes that lack of attention to an 

object is equivalent to not being aware of it (O'Regan and Noe, 2001), one would expect 

both would cause the same effects on the afterimage. However, lack of attention 

enhances afterimages, while reliable perceptual suppression reduces afterimages. These 

results support the view that attention and awareness involve different mechanisms 

(Lamme, 2003; Koch, 2004).    

Why are the effects of attention and awareness on the formation of afterimages 

opposing?   In terms of neuronal activity, attending to and becoming aware of a stimulus 

is usually recorded as an increase of firing (for a review of the neurophysiology of 

attention see (Desimone and Duncan, 1995; Maunsell, 1995) and for awareness see 

(Logothetis, 1998)).  There are some exceptions, though, for example, some neurons in 

MT, MST, and V4 decrease their firing rate when monkeys becomes aware of the 

preferred stimuli of the recorded neuron (Logothetis and Schall, 1989; Leopold and 

Logothetis, 1996).  FMRI studies in humans likewise report that BOLD signals increase 

when subjects attend to (Watanabe et al., 1998a; Gandhi et al., 1999; O'Craven et al., 

1999; Saenz et al., 2002) or become aware of the stimuli during binocular rivalry (Lumer 

et al., 1998; Tong et al., 1998; Polonsky et al., 2000). 
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It is known from psychophysics that the aftereffects of tilt, motion and face are all 

enhanced by attending to adaptors during adaptation (Chaudhuri, 1990; Spivey and Spirn, 

2000; Kanai et al., 2004; Moradi et al., 2005) and reduced when adaptors are made 

invisible by inter-ocular suppression, such as binocular rivalry or continuous flash 

suppression (Kanai et al., 2004; Sobel et al., 2004; Moradi et al., 2005).  Therefore, we 

cannot explain why awareness and attention cause opposing effects on the strength of 

afterimages in terms of any common mechanism for aftereffects in general8.   We have to 

consider something specific to afterimages. 

Perceived afterimages are polarity-reversed version of the adapted pattern, hence, 

they are called ‘negative’ afterimages (in our experiments, red-green polarity was 

reversed).  Negative afterimages are formed due to adaptation of polarity-sensitive 

neurons, which are abundant in the retina, LGN and among simple cells in V1. Once 

induced, the intensity of afterimages also depends on the state of other processes, namely, 

polarity-independent (or contrast sensitive) cells, such as complex cells in V1. The 

involvement of such polarity-independent process is shown by experiments showing that 

adaptation to counter-phase or drifting grating, which do not produce interfering 

afterimages on their own, reduces the intensity and duration of the subsequently induced 

afterimages (Leguire and Blake, 1982; Burbeck and Kelly, 1984; Georgeson and Turner, 

1985). (Suzuki and Grabowecky, 2003) suggested that attention enhances adaptation of 

                                                
8 For example, one might think of ‘rebound’ of attention as a possible explanation; 
attending to the adaptor during the formation of afterimages might repel attention from 
the adaptor location during perception of afterimages, much like inhibition-of-return of 
attention.  If this were true, attention would be directed to the previously ignored adaptor, 
therefore, the ignored adaptor would produce more intense afterimages than the attended 
one.   This logic is not satisfactory because reduction of aftereffects should be also 
observed for aftereffects of tilt, motion and facial identity.  
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polarity-independent processes (e.g., contrast adaptation) more than polarity-sensitive 

processes (e.g., formation of afterimages). This prediction receives some support by 

experiments showing attending to the adaptor during adaptation enhances contrast 

adaptation (Festman and Ahissar, 2004), but its effect may be rather small (Moradi et al., 

2005).  To be conclusive, the magnitude of contrast aftereffects and its attentional 

modulation should be compared directly with the magnitude of attentional reduction in 

afterimage intensity in a within-subject design9.   

 

2.6.6. Reconciling with no inter-ocular transfer of afterimages  

A reduction of 50% in the strength of the afterimage when the inducing image is present 

on the retina but not seen by the observer seems to be at odds with the fact that 

afterimages do not transfer across eyes; when the subject closes the adapted eye, no 

afterimage is seen. It is known that the binocular components of afterimages have access 

to the direction of gaze (Hayhoe and Williams, 1984). Likewise, it may be possible that 

these mechanisms have access to the overall brightness from the eye and, if it is closed, 

may reduce or even eliminate afterimages, resulting in no transfer of afterimages. The 

involvement of a cortical suppression mechanism is supported by patients with cortical 

lesions who report abnormally long afterimages that transfer across eyes (Chan et al., 

                                                
9 According to this framework, reliable suppression prevents adaptation of the polarity-
sensitive processes more so than adaptation of the polarity-independent processes 
(Experiment 8) and trial-to-trial visibility either does not influence adaptation of the 
polarity-selective process or influences adaptation of both processes but each one cancels 
the effects of each other.  This framework is consistent with our two-stage model 
(Discussion 2.6.4) if we assume the proportion of polarity-sensitive neurons is higher for 
the first stage than the second stage.   
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2001; Weiskrantz, 2002). This may reflect the disruption of cortical mechanisms for 

afterimage reduction. If normal observers open both eyes during the test period, the inter-

ocular transfer effect, albeit weak, can be measured psychophysically in detection or 

discrimination procedures (Schiller and Dolan, 1994).  

 

2.6.7. Rapid microgenesis of post-retinal components of afterimages: 

compensatory rapid mechanisms for slow retinal adaptation?  

Are there any functional reasons why post-retinal components of afterimages have faster 

microgenesis? A more fundamental question would be, is there any functional role at all 

for negative afterimages?   

 Traditionally, vision scientists considered ‘retinal’ negative afterimages as a by-

product or an epiphenomenon of luminance adaptation (Virsu, 1978).  By adapting to the 

ambient light level, the visual system becomes more sensitive around the mean 

luminance level and optimizes information transfer.  Luminance adaptation is highly 

functional as the ambient light level varies daily over more than nine orders of 

magnitude, while optic nerves can encode information with neuronal spikes with less 

than two orders of magnitude of bandwidth (Barlow, 1981)   However, because this 

adaptive mechanism is mainly based on local mechanisms (i.e., photoreceptors and 

retinal neurons with small receptive fields), it can be mal-adaptive when it manifests 

itself as negative afterimages, which lower sensitivity (Leguire and Blake, 1982; Burbeck 

and Kelly, 1984; Georgeson and Turner, 1985).  

 If local negative afterimages are non-adaptive, it makes sense if the cortical 

mechanisms, which have access to much richer information, compensate for the 
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maladaptive afterimages.  The post-retinal processing of afterimages we characterized in 

this chapter are largely consistent with this idea. As we have seen, post-retinal 

components of afterimages can be modulated depending on the efferent signals for gaze 

direction (Hayhoe and Williams, 1984) and eye closure (See Discussion 2.6.6), attention 

(Experiment 10) and the interference from the other eye (Experiments 6-9, 11).  None of 

the information above is available at the level of retinal processing.  Thus, the efferent 

signals and attention may be utilized to alleviate the mal-adaptive aspects of afterimages.  

These mechanisms may operate rapidly as revealed by dichoptic suppression (Experiment 

11), which may explain why we are largely oblivious to afterimages induced in everyday 

life.  
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2.7. Methods 

Subjects were recruited from the Caltech campus, except for Experiment 3-5, which were 

performed at Vanderbilt University.  Subjects gave consent before participating in the 

experiments. They had normal or corrected eyesight and normal stereo vision. Subjects 

observed the display through a set of mirrors.  The distance between the eyes and the 

display was 92 cm. To stabilize fixation, a head and chin rest was employed.  We used 

Matlab 6.5 under Windows 98 (Experiment 1 and 2) and Matlab 5.2.1 under Mac OS and 

the Psychophysics Toolbox (Brainard, 1997).  The Mondrian images consisted of 

randomly generated squares of random colors (Experiment 1 and 2) or white, black, and 

gray squares superimposed onto each other.  Twenty to forty distinct Mondrians were 

generated prior to each session.   

 

2.7.1. Experiment 1: Prolonged invisibility by CFS 

Seventeen naïve subjects participated.  They were instructed to hit a space bar when any 

part of a gray image became visible and to describe it verbally to the experimenter.  The 

time to key press was taken as the duration of initial suppression. One of four types of 

gray images was used in each trial: A 45° left-tilted Gabor patch of 30% contrast, a 45° 

right-tilted Gabor patch of 60% contrast, an angry face, and a blurred angry face. Spatial 

frequency and standard deviation of the Gabor patches were 0.5 cpd and 1°, respectively. 

Each type of image appeared once in a block of 4 trials. In total, 4 blocks of 16 trials 

were run.  The images were presented at the fovea and extended 6 x 6°.  



 88 

 

2.7.2. Experiment 2: Optimal flash interval for CFS 

Four naïve subjects participated.  During a one-minute observation period, a gray Gabor 

patch was presented to one eye while color Mondrian patterns at flash intervals ranging 

from 10 to 1280 msec or a stationary Mondrian (binocular rivalry) were presented to the 

other eye in the same set-up as in Figure 2.1.  Subjects pressed and held one of three keys 

to indicate their current percept: Mondrian only, Gabor only, and a mixture of the two.  

The flash interval was randomized within sessions.  The measurement was repeated four 

times.   Subjects took at least a one-minute break between trials. In the analysis, ‘Gabor 

only’ and ‘mix percept’ were treated the same (Gabor visible) and were contrasted 

against ‘Mondrian only’ percepts (Gabor invisible). The mean dominance period was 

calculated by excluding periods that were terminated by the end of the one-minute 

observation interval. 

 

2.7.3. Experiment 3: Depth of suppression in CFS 

The author of this thesis and three experienced observers in the Blake lab at Vanderbilt 

University participated in Experiment 3-5.  The primary objectives of Experiment 3-5 

were to compare the depth of suppression in CFS with the conventional binocular rivalry.  

When binocular rivalry is induced using small targets, only one pattern, but not the other, 

is almost always exclusively visible at a given moment (for exceptions to this rule, see 

(Wolfe, 1983; Liu et al., 1992)).  As the rivalry targets become larger, the global percept 

becomes patchy or piecemeal, while retaining local exclusive visibility (Blake et al., 
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1992).  Accordingly, in Experiment 3-5, we used smaller suppressed targets and 

Mondrians (1.6 x 1.6°) to facilitate the comparison between binocular rivalry and CFS.  

Forty different black/gray/white Mondrian patterns were created before each block using 

the same algorithm as in the other experiments, but they were shrunk to fit to the square 

(Figure 2.4 a).  As a result, the spatial frequency of the Mondrians was higher than the 

other experiments.  A red fixation cross and black/white stripes surrounding targets 

helped binocular fusion. The monitor refresh rate was 100Hz.  The monitor was carefully 

calibrated using a color-bit stealing technique that provided an effective resolution of 10-

bits after linearization (Tyler, 1997).  

Subjects initiated a trial by pressing a button.  In the CFS condition, subjects saw 

a 10Hz stream of Mondrian patterns presented to one eye and did not see a horizontal 

sinusoidal grating of 10 % contrast and 1.8 cpd presented to the other eye.  After making 

sure that no part of the grating was visible, they pressed a button, which triggered a 

contrast increment pulse (The first frame for the contrast increment was synchronized 

with the next closest Mondrian flash).  Either upper or lower half of the grating increased 

its contrast.  The phase of the grating was 0° at the horizontal center to avoid an 

artifactual edge.   The contrast was smoothly increased in a Gaussian manner (standard 

deviation of 100 msec, Figure 2.4 a) for an extent of 500 msec to avoid abrupt 

onset/offset signals.   At the end of probe presentation, a brief beep sound alerted subjects 

to press an up or a down arrow key to report which field contained the probe (2AFC).  

CFS and the baseline grating were kept on the display until subjects responded.  No 

feedback was given to subjects after each response. After two consecutive successful 

responses contrast increment was reduced by 30% of the current increment, and after 
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each error it was set by 30% higher (a two-down-one-up staircase converging to the level 

for 71% correct performance (Levitt, 1971)).  After four reversals, the contrast 

adjustment was reduced to 15%.  One block terminated after 12 reversals and a threshold 

was calculated by taking the geometric mean of the contrast increment values of last 10 

reversals.    

In the binocular rivalry condition, a single stationary Mondrian pattern was 

randomly chosen from 40 patterns for each trial.  After initiating a trial, subjects waited 

until the stationary Mondrian achieved complete dominance.  Upon complete dominance, 

they pressed a key, immediately followed by a contrast increment.  In the monocular-

viewing condition, we presented a blank field to the suppressing eye.  In this case, a 

contrast increment was induced 500 msec after the key press, until then subjects saw the 

10% contrast grating. The other aspects of these conditions were the same as the CFS 

condition.  

During one block of staircase, the same eye was used for probe detection and the 

suppression protocol was held constant.  The author of this thesis used one eye as the 

probe eye throughout and the other subjects used both eyes in a balanced manner.  

Measurement was repeated twice to six times for each condition.  

 

2.7.4. Experiment 4: Depth of single flash suppression 

Three experienced subjects in Experiment 3, including the author of this thesis, 

participated in the experiment.  The equipments, the stimuli (Mondrians and probes), and 

the basic procedure to estimate thresholds (2AFC and staircase) were identical to 

Experiment 3.  
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In the single flash suppression (FS-only) condition, subjects initially viewed a 

blank field on the suppressing eye and the baseline grating on the probe eye. The blank 

field was swapped into a Mondrian pattern at time TM, which remained on until a 

response.  A contrast increment probe was superimposed to the grating from time TC and 

extended for 500 msec.  Across blocks, the stimulus onset asynchrony (SOA) between 

the onsets of a probe and a Mondrian flash was manipulated (SOA = TC – TM).  When 

SOA < 0 (a Mondrian flash occurred first, followed by a probe), the actual sequence of a 

trial was, 1) subjects pressed a button, which triggered a baseline grating of 10% contrast 

for 500 msec, 2) the blank field was swapped into the Mondrian pattern at TM, then 3) the 

probe was presented.   When SOA ≥ 0, the order of 2) and 3) were swapped.   When the 

single flash was applied after binocular rivalry completed (the FS+BR condition), 

subjects initiated a trial by a key press and saw a stationary Mondrian on the suppressing 

eye and the baseline grating on the probe eye.  When the stationary Mondrian completely 

dominated over the baseline grating, they pressed a button again, upon which the 

Mondrian swapped into another Mondrian pattern, then the probe was presented (when 

SOA < 0).  When SOA ≥ 0, the order was reversed.    For each trial, Mondrian patterns 

were chosen randomly from 40 patterns that were created before each block.  

 

2.7.5. Experiment 5: How many flashes are necessary to achieve CFS? 

The four subjects in Experiment 4 participated in this experiment.  The equipments, 

stimuli, and basic procedure were the same as for the single flash suppression only 

condition in Experiment 4.  The number of flashes was varied from one to five and, at the 
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same time, the SOA between the onsets of the probe and the first Mondrian flash from -

200 to 200 msec was varied across staircases.   

Subjects initiated a trial by a button press, which triggered 500 msec presentation 

of 10% contrast baseline grating to the probe eye and blank field to the suppressing eye.  

With an appropriate SOA (see Method for Experiment 4), the probe and the first of 

multiple Mondrian patterns were presented.  Until subjects made a response, the last 

Mondrian pattern and the baseline grating remained on the display to avoid any transient 

offset signal.   Except for the last Mondrian pattern, each Mondrian pattern was replaced 

with another one in an interval of 100 msec. 

 

2.7.6. Experiment 6: Pilot experiments on afterimage reduction 

Sixteen naïve subjects participated. Isoluminant Gabor patches (spatial frequency, 0.6 

cpd; standard deviation, 0.83°) were used as afterimage inducers. The isoluminant green 

level was calibrated to equate with pink (CIE [x, y]=[0.389,0.205], luminance 18.7 

cd/mm2) using a full-field flicker-minimizing technique for each subject. The average 

green level was [x,y]=[0.201,0.278]. The contrast of the isoluminant Gabor patch was 

defined as the contrast modulation of the red or the green intensity, 

! 

Contrast =
max(red,green) "min(red,green)

max(red,green) +min(red,green)
.  Peaks of the red intensity coincided with 

troughs of the green to keep the luminance level roughly at 20 cd/mm2. The luminance 

level for black and white was 0.028 and 67.6 cd/mm2.  Three crosses on a rectangle with 

random texture (0.48° x 4.8°) served to stabilize binocular fusion. Subjects fixated the 

middle cross. Each of two Gabor patches of 30% contrast were presented within an 
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imaginary 4.8° x 4.8° square, with the center of the square 2.6° away from the fixation 

(Figure 2.7, left). The phase and orientation of the adaptor were randomized for each 

trial. The black and white Mondrians flashed at 10 Hz were presented in the 

corresponding imaginary square (Figure 2.7, center).  After a 5 sec adaptation period, the 

adaptors and CFS stimuli were replaced with a uniform gray background to induce 

negative afterimages. We asked subjects to describe their percepts immediately after a 

tone sounded at the end of the adaptation period.  In the two-trial experiment, the CFS 

stimuli were placed to the left of fixation in one trial and to the right in the other. The 

verbal reports from 16 naïve observers were categorized into six classes. Eight subjects 

were further tested in a 30-trial experiment in a six-alternative forced-choice manner. 

 

2.7.7. Experiment 7: Ruling out the possibility of non-specific effects of the 

Mondrian flashes 

Six naïve subjects performed 20 trials.  Three 50% contrast Gabor adaptors were 

presented spaced apart (Figure 2.8). One visible control adaptor was placed to the left (or 

right) of fixation (3.6° square, with its center location 2° from fixation; two other 

adaptors were placed at the top or bottom right (or left) from the fixation (3.6° square, 

1.8° above or below fixation). Three adaptors appeared simultaneously for 2 sec and 

turned off for 2 sec, repeating over 7 cycles and ending with a 2-sec on period.  After 30 

sec of adaptation, subjects rated the intensity of the afterimage on a linear scale, relative 

to the control, which was pegged at ’10.’  If no afterimage was visible, the rating was ‘0.’  

A rating of ‘5’ (or ‘20’) was given when the intensity was half (or twice) as strong as the 

afterimage from the control adaptor.   
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2.7.8. Experiment 8: Reliability of suppression and afterimage reduction 
Four naïve subjects and the author of this thesis participated. Subjects compared the 

intensity of afterimages produced by a pair of adaptors with the same contrast and spatial 

frequency. Different spatial frequencies (0.60, 0.84, 1.2, 1.7, and 2.5 cpd) and two types 

of dichoptic suppression (CFS and BR) were randomly interleaved within a block, ruling 

out possible accumulative effects. The contrast of adaptors and Mondrians was held 

constant in one block of 100 trials. Each subject completed at least 30 trials for each 

combination of the suppression protocol, the spatial frequency of adaptors, and contrasts 

of adaptors and Mondrians (30% vs. 100%, 100% vs. 100%, 100% vs. 5%). We created 

motion binocular rivalry (BR) stimuli by sliding Mondrian patterns horizontally. The 

right and left half of the moving texture converged at the midline of the pattern (see the 

QuickTime movie at http://www.klab.caltech.edu/~naotsu/CFSdemo.html).  The speed of 

horizontal motion was 0.71 deg/sec. The texture of the motion BR stimulus was 

randomly created before each trial.  

 

2.7.9. Experiment 9: Trial-by-trial visibility and the degree of afterimage reduction 

Four experienced (but naïve to the hypothesis of this experiment) subjects and the author 

of this thesis participated.  Subjects pressed a key to indicate if the suppressed Gabor 

became visible during 5-sec adaptation and then reported on which side the afterimage 

was stronger. Only CFS was used as a suppressing protocol.  The spatial frequency of 

Gabor was either 0.6 or 2.0 cpd, and the contrast of Mondrian was either 100% or 2-4%.   
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In the low spatial frequency and high Mondrian contrast condition, the test 

contrast was adjusted between either 10% to 50% or 15% to 100% in five linear steps, 

depending on the matching contrast for each subject.  In one block of 50 trials (10 trials at 

each of 5 contrast levels), test contrasts were randomized.  Each subject completed at 

least two blocks.  In other conditions, the test contrast was always adjusted 15% to 100% 

in five linear steps, and 6 blocks were conducted.  

To estimate the matching contrast for the test adaptor, we fitted a Weibull 

function to the data.  For the correlation analysis, 60 trials at each test contrast were 

sorted according to the adaptor visibility duration; the 6 trials with the shortest visibility 

duration were categorized in the first bin, another 6 trials with the next shortest visibility 

duration were categorized in the second bin, and so on.  For each bin, responses from 4 

subjects were pooled, thus each point in Figure 2.10 represents the average of 24 trials.    

 

2.7.10. Experiment 10: Withdrawing attention enhances the intensity of afterimages 

Four subjects who were experienced as subjects but naïve to the hypothesis of this 

experiment and the author of this thesis participated.  The central task was a continuous 

digit-counting task at fixation (Suzuki and Grabowecky, 2003), i.e., counting the 

occurrence of  ‘4’ embedded in a stream of numbers between 0 to 9.  ‘4’ appeared 0 to 9 

times.  The digit was presented in a fixation are of 0.5 x 0.5°.  This task was shown to 

withdraw spatial attention from the adaptor and delay the onset of the afterimage (Suzuki 

and Grabowecky, 2003).  The task difficulty was maintained by a ‘three-down-one-up’ 

staircase procedure; after each correct answer the presentation time of each digit was 

decreased by 10 msec, while after each mistake it was increased by 30 msec.  This 
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procedure converges to a 79.4% correct performance level (Levitt, 1971). Subjects 

performed the task at approximately 150 msec for each digit presentation. 

The apparent contrast of the afterimage was measured by controlling the contrast 

of a ‘physical’ isoluminant Gabor patch with a one-up-one-down staircase procedure.  

The physical Gabor had the same orientation but the opposite phase of the adaptor, that is, 

the same orientation and phase as the negative afterimage.  The orientation and phase 

were randomized for each trial. The spatial frequency was set to 0.6 cpd and the adaptor 

contrast to 60%.   The contrast of the physical Gabor decayed exponentially with a time 

constant of 5.0 sec (Kelly and Martinez-Uriegas, 1993).  As the appearance of the 

physical Gabor was comparable to that of the negative afterimage, all subjects felt 

comfortable with comparing the apparent contrast of the two.  We emphasized the 

importance of comparing the contrasts just after the end of the adaptor presentation (in 

the beginning of the physical Gabor presentation), signaled by a tone.  Step size of the 

staircase for the physical Gabor was set approximately to 1/10 of the threshold, estimated 

during practice blocks.  

Each block contained four independent staircases interleaved randomly. Two 

staircases controlled the contrast of the physical Gabor that appeared on the left side of 

fixation and the other two controlled on the right side. Two staircases started from high 

contrast (~60%) and the other two started from 0% contrast.  Each staircase was 

terminated after 6 reversals, that is, one block terminated after 24 reversals.   The 

arithmetic mean of the last 5 reversal contrasts from 4 staircases was taken as the 

apparent contrast of the afterimage. 

 



 97 

2.7.11. Experiment 11: Dissociating the microgenesis of retinal and post-retinal 

adaptation 

Six naïve subjects and the author of this thesis participated.  All subjects participated in 

the experiment measuring the decay time, and three naïve subjects and the author of this 

thesis measured the buildup time.   

In each trial, we presented a 30% contrast adaptor and another matching adaptor 

whose contrast was adjusted by the staircase method.  These two isoluminant Gabors 

were presented at the bottom left and right quadrants for 5 sec.  The 30% contrast adaptor 

was never suppressed and the matching adaptor was suppressed for a variable duration.  

A 10Hz stream of Mondrian patterns was presented for 5 sec, but it could change its 

location among four quadrants (Figure 2.13 a-c).  By presenting Mondrians for the entire 

5 sec in all conditions, we equated the average luminance level and image contrast to 

equate the pupil diameter.  After the trial subjects made two responses.  First, they 

reported how many times the digit ‘4’ was embedded in the digit stream presented at the 

fixation (see Experiment 10).  This task helped fixation and forced them to ignore the 

adaptors and the Mondrians.  Second, they reported which side contained the stronger 

afterimages.  The contrast of the matching adaptor was raised or lowered by 10% 

according to the response.  

When measuring the decay time, 12 independent staircases were run 

simultaneously in one session: two Mondrian locations (bottom left or right) x six decay 

durations (0, 0.5, 1, 4, 4.5, or 5 sec).    By intermixing these conditions we avoided shifts 

of criterion and attention.  Each session terminated when all staircases reversed twice.  

Eight to twelve reversal contrasts were averaged to estimate the matching contrast.   
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When measuring the buildup time, we varied buildup durations from 0, 0.1, 0.3, 0.5, 1, 2, 

to 5 sec (simultaneous 14 staircases), and twelve reversals were averaged to estimate the 

matching contrast.  The intensity of afterimages was estimated by the following formula,  

afterimage intensity = 30% / measured matching contrast (%). 
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2.8. Appendix  

2.8.1. Appendix 1: Prolonged first dominance period in CFS  

In addition to our arguments in Sections 2.4.2 to 2.4.5, there is additional evidence that 

suggests that CFS involves a repetitive FS component that maintains the dominant 

percept, besides contributions from BR.  This additional FS component is probably 

responsible for the extended dominance. Thus, CFS is not simply an extension of BR.  

We analyzed the duration of the first, second, and third dominance periods in 

Experiment 2 (Figure 2.2 a and b).  In BR, the duration of successive dominance is 

independent and the mean of both is constant, indicating that rivalry does not accelerate 

nor slow down and that it does not employ a periodic mechanism (Fox and Hermann, 

1967; Blake et al., 1990).    

This is different in CFS. We tested if the successive dominance durations are 

constant in a subset of 176 CFS trials of Experiment 2 (four subjects x four trials x eleven 

levels of flash intervals (10, 20, 30, 40, 50, 60, 80, 160, 320, 640, 1280 msec)).  Some 

trials were excluded from the analysis if the trial terminated before the second (in Figure 

2.14 a) or third (Figure 2.14 b) dominance was completed.  For CFS (blue crosses), we 

found that the Mondrian dominance (DM) differs between the first (DM,1) and the second 

(DM,2) intervals (Figure 2.14 a: two-tailed paired t-test, P < 0.001, t-score = 3.89, d.f. = 

147), but not between the second (DM,2) and the third (DM,3) intervals (Figure 2.14 b: P > 

0.9, t-score = -0.034, d.f. = 137).   For 16 BR trials (red circles), there was no difference 
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between DM,1 and DM,2 (Figure 2.14 a: P > 0.7, t-score = -0.39, d.f. = 15) and DM,2 and 

DM,3 (Figure 2.14 b:  P > 0.4, t-score =  -0.84, d.f. = 14).   

In Figure 2.15, we plot the data in Figure 2.14 in a different representation; the 

difference between DM,1 and  DM,2  is plotted as a function of flash interval as blue points 

and that between DM,2 and DM,3 is plotted as red points.  The number beside each point 

denotes the number of trials included in the analysis. 

DM,1 was significantly longer than  DM,2 and DM,3 in CFS, perhaps due to fatigue or 

adaptation of the mechanism that is sensitive to repetitive FS.   This suggests that CFS 

involves an additional flash-sensitive component that is not present for BR.  
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(a)  

(b)  
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Figure 2.14 Scatter plot for the successive dominance durations  

We analyzed the dominance durations in Experiment 2.    Red circles and blue crosses are 

data for BR and CFS, respectively.   Data for CFS consists of a subset of 176 trials.  (a) 

x- and y-axes are durations of first and second dominance, respectively. We excluded the 

trials if the second dominance did not finish before the trial ended (60 sec).  Clearly first-

dominance duration is much longer than the second dominance only in CFS but not in 

BR. (b) x- and y-axes are durations of second and third dominance, respectively. We 

excluded the trials if the third dominance did not finish before the trial ended (60 sec).   

Note that the duration is much shorter than in a and that there is no apparent difference 

between second- and third-dominance durations for both CFS and BR.  
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Figure 2.15 Difference between the successive duration of dominance as a function 

of flash interval in CFS 

The same data in Figure 2.14 are plotted in a different representation; data in Figure 2.14 

a and b correspond to blue and red points here, respectively.  Y-axis is the difference in 

dominance duration between the first and second (solid blue line) or second and third 

(broken red line) dominance phases. The numbers along each data point show the number 

of trials that contributed to that data point.  Note that the number of trials that contributed 

to the point for flash intervals from 60-320ms is rather small because CFS is too effective 
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and many trials ended before second (blue) or third (red) dominance finished before the 

60 sec trials ended.  
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2.8.2. Appendix 2: The effects of novelty in CFS 

In preliminary experiments we investigated the question of how important novelty is for 

CFS. The basic set-up is the same as for Experiment 2, but we fixed the flash interval and 

varied the number of Mondrian patterns, which was fixed to 20 in Experiment 2.  If 

novelty plays an important role, we would expect to see the total dominance duration 

(TD) and the mean duration (MD) increase as the number of Mondrian patterns increases.   

One naïve subject and the author of this thesis participated in this experiment 

(Appendix 2). To avoid the saturation of the CFS effects, we set the flash interval to 200 

msec and the contrast of the Gabor to 100%.   The number of Mondrian patterns was 

varied (1, 2, 4, 8, 16, 32).  The order of trials was randomized within a block of 6 trials.  

Each subject completed 4 blocks. The data was analyzed and represented as in Figure 2.2.   

The results are shown in Figure 2.16.  Although we used rather abstract and meaningless 

Mondrian stimuli, Mondrian dominance measured as both TD and MD increased as the 

number of Mondrian patterns increased, while Gabor dominance stayed rather constant. 

This pattern is again difficult to reconcile with a notion that novel patterns are considered 

as ‘strong’ stimuli (see Section 2.4.3).  We conclude that novelty plays some role in 

extending CFS.  Note that we did not use meaningful naturalistic stimuli, usually 

deployed to examine the effect of novelty. Such experiments remain to be carried out.   
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Figure 2.16 The effects of novelty in CFS 

Total dominance (left) and mean dominance (right) as a function of the number of 

Mondrian patterns for 2 subjects.  The flash interval was 200 msec. The contrast of Gabor 

was 100%. The error bars represent s.e.m. The solid lines correspond to the times for 

which the Gabor pattern remains invisible, the broken lines for when the Gabor is visible.  
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3. Component motion processing outside the focus of attention 

3.1. Overview  

Attention is thought to be key to the scientific understanding of consciousness (Posner, 

1994).  In everyday life, sometimes we do not notice some salient objects or events 

consciously if we are occupied by some thoughts or concentrating on a task at hand.  

Indeed, such situations have been extensively studied by psychologists, showing the 

importance of attention for conscious vision.  This point is made very clear in some 

dramatic demonstrations, including inattentional blindness (Mack and Rock, 1998) and 

change blindness (O'Regan and Noe, 2001). In inattentional blindness, subjects do not 

notice a salient object appearing at fixation and cannot report on its presence during 

interview immediately after the trial.  In change blindness subjects cannot detect 

unsubtle, big changes in alternating two pictures unless attention is directed to an 

appropriate location. Based on these phenomena, these authors as well as other 

researchers claim that conscious vision without any attention is impossible10.  With 

appropriate expectation and familiarity of the stimuli, however, we do experience 

phenomenal vision at the periphery in certain aspects, even when significant attentional 

resources are dedicated to a demanding task at the fixation (Braun, 1998).  

                                                
10 There is an on-going debate as to how to interpret inattentional blindness and change 
blindness.   Braun argues that inattentional blindness occurs when subjects fail to expect 
stimuli and that “inattentional” blindness is a misnomer (Braun J (2001) It's Great But 
Not Necessarily About Attention. In: Psyche.).  Wolfe argues that inattentional blindness 
and change blindness occur not because subjects fail to see the objects but because they 
immediately forget them after seeing them (inattentional amnesia hypothesis).   



 109 

In this chapter, we studied visual motion processing outside the focus of attention 

using a dual-task paradigm.   Here, the inputs are held constant while the attentional 

states are varied in two conditions.   In a single-task situation, only the peripheral 

stimulus is task-relevant and it is fully attended.  In a dual-task situation, subjects perform 

a demanding T/L discrimination task at the fixation in addition to the peripheral task, 

leaving the peripheral target poorly or not at all attended.   Since the display is identical 

across the two conditions, any difference in the peripheral task performance between the 

two conditions is due to whether the peripheral target is fully or poorly attended.   

The design of our study in visual motion is based on the previous efforts (Lee et 

al., 1999b; Itti et al., 2000), where performance in an array of the static visual tasks is 

modeled in a quantitative and unified manner.  There, the effect of visual attention is 

explained by an increased non-linear interaction among populations of neurons tuned to a 

particular orientation and spatial frequency.  Here, we showed that attention strongly 

modulated lateral masking and local direction-selective inhibition for the component 

motion processing, whereas it did not affect local facilitation or local orientation-selective 

inhibition (See Section 3.6.7).  

Here, we applied this strategy to the visual motion domain and further improved 

our approach by utilizing the hierarchical structure of motion processing and tailoring our 

novel “targeted” motion stimuli—wavelet motion—to a particular stage of the visual 

motion system.   Visual motion of an object is processed in at least two stages; motion of 

the luminance-defined edge is detected by spatio-temporal energy filters (the component 

motion stage) (Adelson and Bergen, 1985).  The outputs from the component stage, 

which suffers from ambiguity (the aperture problem), are integrated to compute the 
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unique direction of motion of the object (the pattern motion stage) (Movshon et al., 1985; 

Welch, 1989; Simoncelli and Heeger, 1998; Weiss et al., 2002).   We designed each 

wavelet with a specific spatio-temporal tuning so that it effectively activates detectors in 

the first, but not the second, stage.  This is different from the commonly employed 

random dot motion stimulus; random dot motion has a broad spatio-temporal spectrum, 

and its luminance step can be controlled only by a pixel-level luminance resolution, both 

of these factors making it difficult to control the activity of the neurons, especially in V1.  

Within a circular patch composed of multiple wavelets, however, each wavelet has a 

counterpart wavelet that moves in the opposite direction. Thereby, units for the pattern 

motion processing are inhibited due to motion opponency (Qian and Andersen, 1994; 

Heeger et al., 1999).  Further, unlike intersections of the plaid motion, our wavelet 

composite does not possess any traceable features so that second-order motion processing 

is minimally involved.  As a result, our results are expected to reflect attentional 

modulation of the component motion stage without secondary attentional effects from 

higher visual motion processing stages.  



 111 

 

3.2. Summary  

We describe a novel motion display, which combines advantages of luminance gratings 

(frequency selectivity) and of dynamic random dots (coherence manipulation) and which 

distinguishes between representations of component and of pattern motion.  In particular, 

we characterize visual filters selective for component motion with contrast masking 

experiments.  To ascertain the extent to which the representation of component motion is 

altered by attention, we establish contrast masking thresholds for fully and for poorly 

attended stimuli, controlling the availability of attention with a demanding concurrent 

task.  Our results show a prominent threshold reduction (facilitation of detection) for low 

mask contrast (4%), revealing an accelerating contrast response in the low contrast 

regime.  This contrast response of component motion mechanisms is not changed by 

attention, establishing a clear difference to static visual mechanisms.  Second, we find 

that thresholds for component motion are impaired by presence of nearby components, 

but that this impairment is attenuated by attention.  In short, attention ameliorates lateral 

masking for component motion. With displays that stimulate pattern motion mechanisms, 

we observe a direction-selective threshold elevation, which again is ameliorated by 

attention.  In summary, we find specific attention effects not on the representation of 

component motion, but on representation of pattern motion. 
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3.3. Introduction  

Contrast thresholds measured in the presence of a masking pattern reveal the tuning of, 

and interaction between, visual filters.  The paradigm of “contrast masking” has been 

developed and refined in the course of extensive efforts to understand spatial vision, that 

is, the perception of contrast, orientation, and spatial frequency of static visual patterns 

(Legge and Foley, 1980; Wilson, 1980; Foley, 1994; Lee et al., 1999b; Itti et al., 2000).  

The perceptual account that resulted from these efforts agrees well, and in some regards 

quantitatively, with the tuning of, and interaction between, cortical neurons selective to 

contrast, orientation and spatial frequency (Geisler and Albrecht, 1997; Itti et al., 2000). 

When combined with manipulations of visual attention, contrast masking 

experiments can also uncover how visual representations are altered by attention (Lee et 

al., 1999b; Carrasco et al., 2000; Zenger et al., 2000; Freeman et al., 2001; Morrone et al., 

2002).  For example, we found previously that attention intensifies competitive 

interactions among visual filters, resulting in a higher effective gain and a sharper 

effective tuning (Lee et al., 1999b).   

Here we ask whether contrast masking experiments can uncover comparable 

attention effects on the visual representation of moving patterns.  Traditionally, the effect 

of attention on the perception of visual motion was thought to be slight.  Manipulations of 

attention with cueing and visual search paradigms typically produce little or no effect on 

the perception of visual motion (Raymond, 2000).  However, more recent psychophysical 

work (Chaudhuri, 1990; Raymond et al., 1998) as well as a series of neuroimaging 

(Watanabe et al., 1998b; Gandhi et al., 1999; Huk and Heeger, 2000; Saenz et al., 2002) 
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and neurophysiological studies (Treue and Maunsell, 1996; Seidemann and Newsome, 

1999; Martinez-Trujillo and Treue, 2002) have established robust attention effects on the 

neural representation of visual motion.  We hoped that psychophysical experiments with 

contrast masking, which have proven so successful in spatial vision, would uncover 

sizeable attention effects also in the perception of moving visual patterns.  

One obstacle to achieving this goal is that visual motion is represented at multiple 

levels in the visual system.  Particularly relevant here are the levels of “component 

motion” and “pattern motion” (Adelson and Movshon, 1982; Welch, 1989; Wilson and 

Kim, 1994; Simoncelli and Heeger, 1998).  Filters or neurons selective for local spatio-

temporal energy represent “component motion” which is inherently ambiguous (Adelson 

and Bergen, 1985).  Filters or neurons that integrate selected component motions over a 

larger region of visual space resolve this ambiguity and represent “pattern motion” 

(Adelson and Movshon, 1982; Welch, 1989).   Several areas of visual cortex, including 

area V1, exhibit selectivity for component motion, whereas selectivity for pattern motion 

appears restricted to middle temporal cortex (area MT or V5)(Movshon et al., 1985; 

Movshon and Newsome, 1996; Huk and Heeger, 2002) (but also see (Guo et al., 2004)).  

The neural circuits that underlie this transformation are under active study (Movshon and 

Newsome, 1996; Heuer and Britten, 2002).  

The distinct representations of component and pattern motion were first described 

with the help of ‘moving plaid’ stimuli, which superimpose two moving sinusoidal 

gratings (Adelson and Movshon, 1982).  However, the conspicuous ‘nodes’ at which the 

gratings intersect are a drawback of this stimulus (Stoner et al., 1990; Stoner and 

Albright, 1992; Wilson and Kim, 1994).  Schrater and colleagues avoided the problem by 
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filtering dynamic noise such as to achieve a comparable distribution of motion energy 

without introducing conspicuous features (Schrater et al., 2000).  We adopted a similar 

approach and combined discrete moving ‘wavelets’ to create spatially uniform dynamic 

textures.  In addition, we matched the motion energy carried by each ‘wavelet’ to the 

neural tuning for component motion. 

To isolate perceptions based on component mechanism and to distinguish them 

from perceptions derived from pattern mechanisms, we took advantage of known 

properties of pattern selective neurons in middle temporal area MT.  The response of 

such neurons to a preferred motion is reduced, and in some cases even suppressed, by the 

simultaneous presence of motion in the opposite direction.  This non-linear interaction 

between different motion components is known as ‘motion opponency’ (Snowden et al., 

1991; Qian and Andersen, 1994; Heeger et al., 1999).  In fact, area MT as a whole 

responds only minimally to multiple motion components in random directions (Britten et 

al., 1993; Rees et al., 2000). Presumably, the response to any one component is inhibited 

by the simultaneous presence of the other components (Simoncelli and Heeger, 1998).  

Accordingly, dynamic patterns with equal energy in all directions of motion are expected 

to stimulate component mechanisms comparatively well and pattern mechanisms 

comparatively poorly.  

With such a stimulus, we carried out contrast masking experiments to characterize 

facilitatory and inhibitory interaction among visual filters selective for component 

motion.  Our experiments confirmed and extended the results of a number of earlier 

studies on motion masking (Anderson and Burr, 1985; Ferrera and Wilson, 1987; 

Anderson and Burr, 1989; Anderson et al., 1991; Lu and Sperling, 1995, 1996).  To 
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ascertain the impact of attention, we used an established dual-task paradigm (Braun, 

1994; Lee et al., 1997; Braun, 1998; Braun and Julesz, 1998; Lee et al., 1999b; Lee et al., 

1999a; Zenger et al., 2000; Li et al., 2002 ) to compare masking thresholds when moving 

patterns are either fully or poorly attended. 
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3.4. Methods 

3.4.1. Psychophysical task 

3.4.1.1. Subjects and apparatus 

Six naïve subjects participated in daily 1-hour sessions lasting for a period of 1 to 3 

months (20 to 40 hours total) and were paid $13 per hour.   The study was divided into 

three parts, with at least two subjects contributing to each part. 

Stimuli were generated by a Silicon Graphics O2 workstation and displayed on a 

19” raster monitor (1280 x 1024 pixels RGB) with 74 Hz refresh (13 msec/frame). 

Viewing was binocular from a distance of 120 cm  (80 pixels per 1° visual angle).  The 

average display luminance was 40 cd/m2, and gamma correction combined with color bit 

stealing (Tyler, 1997) provided linear luminance step size of 0.07 cd/m2.  Ambient 

luminance was 3 cd/m2.  

Subjects initiated each trial by fixating a cross at display center and by pressing a 

key. Central and peripheral stimuli appeared and subjects produced one or two responses 

pertaining to either or both stimuli, depending on instructions (see below).   The short 

presentation time and random polar angle of peripheral stimuli renders eye-movements 

counterproductive11.  As a result, subjects maintain central fixation even when reporting 

only on the peripheral stimulus.   

                                                
11 Because the phase of individual wavelets moves alternating its polarity rapidly, visual 
persistence of the stimuli should be negligible.   For the contrast discrimination task in 
our study, therefore, the optimal strategy is to integrate contrast information over the time 
period, especially around the 8th frame where the contrast of individual wavelets becomes 
maximal (Figure 3.3 and Figure 3.4).  The 8th frame occurs ~104 msec after the onset of 
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3.4.1.2. Central task (letter discrimination) 

To draw attention away from the visual periphery, we had subjects perform a demanding 

letter discrimination task with an array of seven letters (Figure 3.1 a) as a central task in 

the dual-task situation.  Seven letters (T’s and/or L’s of size 0.5°) appeared at nine 

possible locations (one at fixation and the other eight horizontal, vertical, and diagonal to 

the fixation), rotated randomly and independently, and appeared within 1.4° eccentricity.  

Subjects were instructed to press the ‘S’ key for seven T’s or seven L’s and the ‘F’ key 

for six T’s and one L or six L’s and one T. They received auditory feedback immediately 

after each mistake.  Each letter was followed by an independently rotated masking letter 

(F) to limit visual persistence.  Stimulus onset asynchrony (SOA) was adjusted for each 

observer to maintain performance of approximately 80% (164–250 ms).   

This letter task engages spatial attention to such an extent that a concurrent, 

attention-demanding task cannot be performed significantly above chance (Braun, 1994; 

Lee et al., 1997; Braun, 1998; Braun and Julesz, 1998; Lee et al., 1999b; Lee et al., 

1999a; Zenger et al., 2000; Li et al., 2002 ).  

 

                                                                                                                                            
the stimuli.   Even if the wavelets are detected at the first frame (when their contrast is 
very low), a saccade to the target is too late to reach there when the contrast is maximal 
(in humans, the latency of saccade is approximately 200 to 250 msec).  Therefore, 
saccades are very counter-productive in our task.  
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Figure 3.1 Psychophysical procedure  

a) Subjects fixated at the centre of the display sequence throughout.  The stimulus display 

consisted of two parts:  a central letter cluster (masked, varying positions < 1.4° 

eccentricity)  and a peripheral array of moving wavelets   (not masked, varying position 

at a constant eccentricity of 3.7°). In a control experiment, a circular cue indicated the 

future position of the peripheral array.  b) In the dual-task condition, subjects reported 

whether all letters were identical or whether one letter differed from the others and, 

independently, whether moving wavelets comprised only ‘mask’ wavelets or both ‘target’ 

and ‘mask’ wavelets (see Figure 3.2 and Figure 3.3).  c) In the single-task condition, 

subjects ignored the central letters and reported only on the peripheral array. 
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3.4.1.3. Peripheral task (contrast masking) 

The peripheral stimulus appeared at a random polar angle at 3.7° eccentricity and filled a 

circular region of up to 1.5° in diameter (Figure 3.1 a).   It was composed of 1 or 23 pairs 

of ‘moving wavelets’ (see below), each pair comprising a target wavelet and a 

superimposed masker wavelet. A standard adaptive staircase method was used to 

establish contrast thresholds for target detection (2-down-1-up, converging to 70.7% 

correct performance (Levitt, 1971)). Subjects were instructed to press the ‘J’ key to report 

presence of target wavelets and the ‘L’ key to report absence (contrast masking) (Figure 

3.1 b). Contrast of masking wavelets remained fixed throughout each block, which 

terminated after 25 reversals (typically 80–120 trials for a staircase). Subjects received 

immediate auditory feedback after each mistake. The mean target contrast during the last 

40 trials of each block was taken as a threshold estimate. After one to three practice 

blocks at each condition (see below), the contrast step size was set at approximately one-

tenth of the threshold value achieved during practice. The initial contrast value was set at 

approximately twice the threshold value.  When a staircase failed to converge, the results 

were discarded and stair parameters adjusted. For each subject, data from 3-12 converged 

staircases were combined to estimate the individual threshold and standard error.  More 

staircases were collected for high mask contrasts to compensate for larger variance. 

For each observer, a mean threshold and a standard error were computed by 

averaging over all staircases collected at each condition.   A representative threshold and 

standard error were obtained by averaging the means and square standard errors of all 
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subjects.  Note that the resulting error bars reflect the variance observed within subjects, 

not between subjects. 

In a subset of experiments, the peripheral stimulus was preceded by a cue (a thin 

white circle of 30% contrast and 1.8° in diameter, Figure 3.1 a).  When present, the cue 

was flashed briefly (26 ms) and preceded the stimulus onset by 104 msec.  The relatively 

short cue lead time was chosen to ensure a facilitatory effect of cueing and to eliminate 

the possibility of ‘inhibition of return’ (Klein, 2000). 

 

3.4.1.4. Dual task 

When performing both tasks concurrently, subjects responded to the central task first and 

to the peripheral task second (Figure 3.1 c).  Subjects were instructed firmly to give 

priority to the central task and to perform as well as they possibly could on the peripheral 

task. The dual-task blocks with central performance lower than 75% were discarded, to 

ensure enough attention was paid to the central task. Four subjects completed 536 blocks 

of dual task in total.  

Note that subjects are aware of the peripheral wavelets and are able to judge their 

contrast even though their attention focuses on the central task.  This allows thresholds to 

be established for ‘poorly attended’ stimuli (Lee et al., 1997, 1999a; Zenger et al., 2000; 

Morrone et al., 2002). 

We compared thresholds with poor attention (peripheral-task performance in the 

dual task) to thresholds with full attention (the peripheral task is carried out alone and the 

central task was ignored).  However, the central and peripheral stimuli were always both 
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present, and subjects always fixated at display center, so that the visual inputs were 

identical under single and dual task conditions. 
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3.4.2. Log Gabor wavelets 

3.4.2.1. Single Log Gabor wavelet 

We used a set of self-similar wavelets to generate visual motion.  To facilitate 

comparison with the sensitivity of V1 neurons, we chose to use log Gabor wavelets 

(Field, 1987) instead of the more conventional linear Gabors (Figure 3.2. See the demos 

at http://www.klab.caltech.edu/~naotsu/DemoComponentMotion/index.html).   Log and 

linear Gabors are similar in that both present a drifting contrast phase within a stationary 

spatiotemporal envelope and in that Fourier energy is concentrated around one particular 

spatiotemporal frequency 

! 

("x,"y,"t ).  However, in the case of log Gabors, the Fourier 

energy conforms to Gaussian distributions with respect to the logarithm of spatial 

frequency and the logarithm of temporal frequency (as well as with respect to linear 

spatial direction), as is also the case for neurons in V1 (Geisler and Albrecht, 1997). 

Accordingly, the Fourier amplitude of a log Gabor wavelet is given by 
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where the Cartesian coordinates of Fourier space (ωx, ωy, ωt) are replaced by polar 

coordinates (ωr, θ, ωt). Ωr [cpd], Ωt [Hz], and Ωθ [°] are the peak spatial and temporal 
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frequencies and directions, respectively; Λr [octaves], Λt [octaves], and Λθ [°] are the 

standard deviations or bandwidth; and Φ is the phase of the wavelet. 

A spatiotemporal wavelet W(x, y, t) was obtained as the inverse Fourier transform of 

E

! 

("x,"y," t )  (Schrater et al., 2000).  The normalization of E

! 

("x,"y," t )  was chosen such 

that |W(x,y,t)| takes maximal values on the order of unity. The same normalization factor 

was used for all the 144 wavelets.  

The functions A+, A-, B+, and B- denote positive and negative lobes of the Fourier 

amplitude, which jointly determine the wavelet motion in space-time.  

For example, a horizontally oriented and vertically upward-moving wavelet 

(going in the 90° direction) has A+ with Ωθ = -90° and A- with Ωθ = +90°, whereas a 

downward moving wavelet has A+ with Ωθ = +90° and A- with Ωθ  = -90°. 

A± gives the direction dependency θ,   

! 

A "( )
± = exp #

" #$"
±( )
2

2%"
2

& 

' 

( 
( 

) 

* 

+ 
+ 
  

and, B± gives the Gaussian dependency on the logarithm of temporal frequency ωt 

! 

B " t( )
± = exp #

ln2
±" t +

$t

2% t

2 ln2 2

& 

' 

( 
( 
( 
( 

) 

* 

+ 
+ 
+ 
+ 

where x
+

=
x if x , 0

0 if x < 0

- 
. 
/ 

  . 

 

The dimensions of each log Gabor wavelet were 128 pixels x 128 pixels x 16 

video frames.  The peaks and standard deviations of Fourier amplitude were Ωr = 2.5 cpd, 

Λr = 0.6 octave, Λθ = 13°, Ωt = 6.0 Hz, and Λt = 0.6 octaves. For comparison, the median 

values for V1 neurons of macaque are Ωr = 4.2 cpd, Λr = 0.72 octave, Λθ = 15°, Ωt = 7.2 
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Hz, and Λt = 1.2 octave (Geisler and Albrecht, 1997). Note, however, that V1 neurons in 

a given locus show a continuum of spatial frequency peaks over a very broad range of 

more than 3 octaves in the parafoveal (3 – 5°) region (De Valois et al., 1982).  

Using 3D inverse Fourier transform, we computed 144 wavelets covering 36 

directions (0, 10, 20°…) and 4 phases (0, 90, 180, and 270°), each in the form of a 3D 

real-valued matrix (128 x 128 pixels x 16 frames).   The contrast of individual wavelets 

was defined as 
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where maxima and minima are taken over the entire set of 144 wavelets.  Additional 

contrast values were obtained by linear scaling. 
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Figure 3.2 Tuning characteristics of a log Gabor wavelet in Fourier space  

Here represented by an iso-power surface (7% of peak power) and its symmetry plane. 

Tuning is separable in log spatial frequency, log temporal frequency, and direction, and 

conforms to a Gaussian distribution in each of these dimensions.  The peak sensitivities 

and standard deviations of the wavelets used were Ωr = 2.5 cpd, Λr = 0.6 octaves, Ωt = 

6.0 Hz, Λt = 0.6 octaves, and Ωθ = 45°, Λθ = 13°.   For comparison, the median values for 
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neurons in area V1 of macaque are Ωr = 4.2 cpd, Λr = 0.72 octaves, Ωt = 7.2 Hz, Λt = 1.2 

octaves, and Λθ = 15° (Geisler and Albrecht, 1997).  The circle at the bottom indicates the 

projection of the peak spatial frequency (Ωr = 2.5 cpd) for wavelets of all possible 

directions with identical spatio-temporal tuning. 
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3.4.2.2. Pairs of wavelets (target & masker) 

We formed pairs of wavelets by superimposing target and masker wavelets that 

coextended in space and time (Figure 3.3. See the demos at 

http://www.klab.caltech.edu/~naotsu/DemoComponentMotion/Single.html).  The phase 

difference (relative phase) between target and masker wavelets was fixed at 0° to 

maximize the interaction.  The direction difference (relative direction) between target and 

masker wavelets (0, 30, 90, 150, and 180°) and masker contrast (0 to 64%) was held 

constant during each staircase (while target contrast varied from trial to trial, see above).  

With a relative direction of 0°, a pair of target and masker wavelets effectively 

forms a single wavelet (of higher contrast).   For other relative directions, a target and 

masker pair forms various ‘interference patterns.’   For example, an intersection may be 

visible at 90°, and a contrast flash or pulse may be seen at 180° (a ‘counterphase’ 

situation).  Well above threshold contrast, subjects tend to use the presence or absence of 

these ‘interference patterns’ as a cue to the presence or absence of the target wavelet.   At 

near threshold contrast, however, ‘interference patterns’ are not visible, obliging subjects 

to base their judgment solely on contrast information.  
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Figure 3.3 Superposition of target and mask wavelets   

Wavelets occupy a volume in space-time (X=1…128, Y=1…128, T=1…16) and are 

represented by slices through this volume.   (Top) Mask wavelet of a given contrast 

(exaggerated for clarity).  Instantaneous appearance is illustrated by three X-Y slices (at 

times T=4,8,12) and temporal evolution by one X-T slice (at position Y=64).  (Middle) 

Target wavelet of half the masking contrast, here differing by 30° in its direction of 

motion from mask wavelet.  Other directional differences used were 0, 90, 150, and 180° 

(not shown).  (Bottom) Target and mask wavelet superimposed.  Both the instantaneous 

appearance and temporal evolution are affected by the superposition. See the demos at 

http://www.klab.caltech.edu/~naotsu/DemoComponentMotion/Single.html 
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3.4.2.3. Wavelet composites 

To create wavelet composites, 23 wavelet pairs were placed randomly (but with a 

minimal center-to-center spacing of 0.25°) in a circular area of 1.5° diameters, centered at 

an eccentricity ε = 3.7°.  For comparison, the average diameter of central receptive fields 

at this eccentricity has been estimated as 0.22° in area V1 (0.224° + 0.000617 × ε; (Dow 

et al., 1981)) and as 3.3° in area MT (1.04° + 0.61 × ε; (Albright and Desimone, 1987)). 

Three conditions were compared (Figure 3.4): (i) a single wavelet pair of random 

direction placed randomly in the 1.5° area, (ii) 23 parallel wavelet pairs of identical 

orientation and direction of motion, chosen randomly for each trial (See the demo at 

http://www.klab.caltech.edu/~naotsu/DemoComponentMotion/Parallel.html), and  (iii) 

23 random wavelets pairs with different orientations and directions of motion, randomly 

assigned to each pair (See the demo at 

http://www.klab.caltech.edu/~naotsu/DemoComponentMotion/Random.html).  Iso-

orientation-specific lateral interactions between wavelet pairs are expected to be 

maximized by the parallel and minimized by the random configuration.  Lateral 

interaction, which is insensitive to the relative orientation, should be present for both 

cases.  In the absence of lateral interactions, thresholds should depend only on local 

interactions between target and masker wavelets of each pair.   
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Figure 3.4  Instantaneous appearance of wavelet arrays (at the time of maximal 

contrast)   

(Top) Single wavelets.  A single wavelet pair (target and mask) appeared at a random 

position within a circular array of diameter 1.5°.  Observers discriminated between a 

mask wavelet (leftmost frame) and the superposition of mask and target wavelets (other 

frames).   The respective directions of motion of mask and target wavelets differed by 0, 

30, 90, 150, or 180° (only the first three possibilities are shown.  For 150 and 180°, see 

http://www.klab.caltech.edu/~naotsu/DemoComponentMotion/Parallel.html and 

http://www.klab.caltech.edu/~naotsu/DemoComponentMotion/Random.html).  Target 
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contrast was adjusted to determine the observer’s discrimination thresholds.  In the 0° 

case, the threshold was in effect a ‘contrast increment’ threshold.  In the other cases, the 

measurement determined a ‘contrast masking’ threshold.  (Middle) Parallel wavelets.  

Twenty-three wavelet pairs appeared within the circular array.  Observers discriminated 

between mask wavelets only (leftmost frame) and the superposition of an equal number 

of mask and target wavelets (other frames).  Within each pair, the relative directions of 

target and mask were fixed (0, 30, 90, 150, or 180°), in some cases creating the 

appearance of a ‘plaid’ (rightmost frame).  (Bottom)  Random wavelets.  Similar to 

above, except that mask (pedestal) wavelets assumed random directions.   The relative 

direction of target and mask wavelets remained fixed within each pair. See the demos at 

http://www.klab.caltech.edu/~naotsu/DemoComponentMotion/index.html 
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3.4.3. Contingency analysis 

In any dual-task situation, the observer may on some trials favor one task and on other 

trials favor the other task.  If this should occur, there would be a positive correlation 

between success on one task and failure on the other. Let the numbers of trials with 

particular dual-task outcomes be n00, n10, n01, n11, where the subscripts 1 and 0 stand for 

correct and incorrect responses in the central and peripheral task, respectively.  If the 

tasks are performed independently (i.e., in the absence of any correlation), the expected 

numbers of trials of each type are 
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where the statistical significance of any difference between expected and actual values is 

given by the χ2 measure of association: 
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As peripheral performance changes systematically during each staircase block, we 

restricted the contingency analysis to the subset of trials in which target contrast was near 

threshold contrast.  This ensured that average peripheral performance in the analyzed 

subset was close to the limiting performance of the staircase (i.e., 70.7%) (Levitt, 1971).  

In case of a negative correlation, there would be fewer-than-expected trials with identical 

outcomes on both tasks (
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3.4.4. Statistical Analysis 

As a criterion of significance, we used P < 0.05 unless noted otherwise. When we used 

ANOVA to assess contrast-increment thresholds, we submitted log contrast thresholds in 

order to achieve the equal variance assumption between lower and higher mask contrast 

regimes.  When comparing across stimulus configuration using different subjects, data 

from a single subject is collapsed, and variability across subjects served as residual. 

When comparing other factors (i.e., effects of mask contrast and direction, withdrawing 

attention, and so on) using the same subjects, variability among multiple blocks served as 

residual.  Only interesting main effects and interactions are reported (i.e., except for main 

effects of subject and so on).  
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3.5. Results  

We studied interactions between components of visual motion and how such interactions 

are altered by attention. Our stimuli combined several ‘moving wavelets,’ which 

approximately matched the known sensitivity of component motion mechanisms in the 

visual cortex (Figure 3.2).  We were interested both in local interactions, such as between 

wavelets superimposed in space and time, and in lateral interactions, such as those that 

may arise from the presence of nearby wavelets in close proximity.  To characterize both 

interactions, we measured the contrast necessary for detecting target wavelets in the 

presence of masker wavelets.   Target and masker wavelets were superimposed one-on-

one, so that each target wavelet was paired with a masker wavelet at the same spatio-

temporal location (Figure 3.3). To characterize local interactions, we varied the 

configuration within each wavelet pair, varying contrast and direction of a masker 

wavelet relative to the associated target wavelet.  To assess lateral interactions, we 

manipulated the configuration between wavelet pairs, comparing multiple random 

wavelets, multiple parallel wavelets, and single wavelets (Figure 3.4).  We expected 

lateral interactions to be moderate for random wavelets and maximal for parallel 

wavelets. Single wavelets cannot, of course, generate lateral interactions.   

Our peripheral stimulus was a roughly circular array of wavelets measuring 1.5° 

in diameter (see Methods 3.4.1.3).  Subjects reported the presence or absence of target 

wavelets, which were paired with superimposed masker wavelets.  As target and masker 

wavelets of each pair shared the same phase (relative phase 0°), a special situation arose 

when they also shared the same direction (relative direction 0°).   In this case, target and 
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masker wavelets had identical waveforms and the observer’s task was reduced to 

detecting a contrast increment, contrast-increment threshold measurements.  For other 

relative directions (30, 90, 150, and 180°), the observer’s task involved detecting one 

complex pattern (array of target wavelets) in the presence of another (array of masker 

wavelets), contrast-masking threshold measurements. 
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Figure 3.5 Contrast increment and contrast masking thresholds measured with 

full and poor attention  

Thresholds are shown with closed and open symbols for full and poor attention, 

respectively. (Top, a-c) Contrast increment thresholds as a function of mask contrast in 

log scale for both x- and y-axes. (Middle d-f)  Thresholds in linear scale as a function of 
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the relative direction of target and mask wavelets at low masking contrast (1% or 4%), 

which tend to facilitate target detection. (Bottom g-i) Thresholds in linear scale as a 

function of the relative direction of target and mask wavelets at high masking contrast 

(16% or 32%), which tend to inhibit target detection.   Results for single wavelets, 

parallel wavelets, and random wavelets are shown in the left (a, d, g), middle (b, e, h), 

and right (c, f, i) columns, respectively.  
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3.5.1. Contrast-increment thresholds with full attention (Figure 3.5 a-c) 

The average absolute detection threshold (masker contrast 0%, relative direction 0°) was 

6.7 ± 0.2% for single, 1.9 ± 0.2% for parallel, and 3.7 ± 0.1% for random wavelets (mean 

and standard error from 4, 2, and 6 observers, respectively). This rank order of wavelet 

configurations (parallel < random < single) held consistently for all observers. The 

difference between configurations was significant (one-tailed t-test on single vs. random: 

t-score = 4.73, d.f. = 8; random vs. parallel, t-score = 2.04, d.f. = 6).  Multiple wavelets 

are expected to exhibit lower thresholds than single wavelets, due to signal summation.   

The additional, two-fold difference between parallel and random wavelets may reflect 

sensitive higher-level mechanisms for coherent motion (see Discussion 3.6.3). 

 At relative direction 0°, detecting target wavelets is equivalent to detecting a 

contrast increment.   Contrast-increment thresholds measured for a series of masker 

contrasts  (0, 1, 2, 4, 16, and 32%) are depicted in Figure 3.5 a-c.   As is typical, 

thresholds improve as masker contrast increases from zero to approximately the level of 

detection threshold (‘dipper’), before rising as masker contrast increases beyond the 

detection level.  The former regime (reduced thresholds) is thought to reflect facilitatory 

local interactions between target and masker wavelets, whereas the latter regime 

(elevated thresholds) is likely to reflect inhibitory local interactions (Zenger and Sagi, 

1996; Itti et al., 2000).  The ‘dipper’ was pronounced for single wavelets (46% reduction; 

from 6.7 ± 0.2% at 0% mask to 3.1 ± 0.2% at 4% mask) and for random wavelets (37% 

reduction; 3.7 ± 0.1% to 1.4 ± 0.1%), but comparatively slight for parallel wavelets (65% 

reduction; 1.9 ± 0.2% to 1.2 ± 0.1% at 1% mask). Two-way ANOVA (subject x contrast 
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[at the dipper and at the absolute detection]) on log contrast thresholds revealed a very 

strong main effect of contrast (P < 1e-6), with F = 66.76, 42.07, 179.55 for the single, 

parallel, and random configurations, respectively.  In the high-contrast regime (above 

4%), all three wavelet configurations produced similar results.  This is confirmed by a 

two-way ANOVA (stimulus configuration x contrast at 8% and 16% mask contrast) 

without significant configuration x contrast interaction (F = 1.03), whereas at low 

contrast mask (0, 2, and 4%) significant interaction was found (F = 5.24).  Previous 

studies of contrast increment thresholds for moving stimuli report little or no ‘dipper’ 

(see Discussion 3.6.5).  

 The location of the peripheral stimulus varied from trial to trial, creating 

‘positional uncertainty’ when the total stimulus (target + mask) contrast was at or near the 

detection threshold (Solomon et al., 1997; Foley and Schwarz, 1998).  To determine how 

much of our results (especially at low masker contrast) were contaminated by positional 

uncertainty, we re-measured some thresholds with positional cueing for the peripheral 

stimulus to remove uncertainty (see Methods 3.4.1.3).  The absolute detection thresholds 

for both single and random wavelets were reduced by 82% from 6.7 ± 0.2% to 5.5 ± 

0.2% (F = 17.76) and by 68% from 3.8 ± 0.1% to 2.6 ± 0.2% (F = 26.41).  Though 

cueing reduced the absolute detection thresholds, they nevertheless remained above the 

minimal thresholds at the bottom of the dipper with full attention (3.2 ± 0.2% for single 

and 1.3 ± 0.1% for random).    

To make sure that the dipper is present with cueing, we measured the thresholds 

at low mask contrast (2, 4, and 8%) in two subjects.  Reduction of thresholds was evident 

for both stimulus types.  For random wavelets, the minimal threshold was 1.6 ± 0.1% at 
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mask contrast of 2% (vs. detection threshold of 2.6 ± 0.2%), whereas for single wavelets 

the minimal threshold was 2.7 ± 0.1% at mask contrast 4% (vs. detection threshold of 5.5 

± 0.2%).  Accordingly, the dipper was obtained for both stimuli even after removing 

positional uncertainty.   

 

3.5.2. Contrast-masking thresholds with full attention (Figure 3.5 d-i) 

At relative directions other than 0°, the nature of the task changes from detecting a 

contrast increment to discriminating a complex, moving pattern (target wavelets) that is 

superimposed over another complex, moving pattern (masker wavelets). We studied the 

dependence of thresholds on the relative direction of motion within each wavelet pair in 

order to characterize the direction tuning of local interactions between target and masker 

wavelets.  In addition, we used two levels of masker contrast in order to characterize 

separately the facilitatory and inhibitory regimes of masker-target interactions.  A masker 

contrast at the lowest point of the ‘dipper’ (4% for single and random wavelets and 1% 

for parallel wavelets) resulted in facilitatory local interactions.  The highest masker 

contrast available (32% for single and random and 16% for parallel wavelets) revealed 

inhibitory local interactions.   The relative direction of target and masker wavelets in each 

pair was set to 0, 30, 90, 150, or 180°.   A relative direction of 0° produced ‘in-phase’ 

motion, whereas one of 180° resulted in ‘counter-phase’ (or opponent) motion. 

The effect of low-contrast maskers is depicted in Figure 3.5 d-f (filled symbols).  

As expected, the overall effect was facilitatory in that thresholds were lower than or equal 

to absolute detection threshold for each wavelet configuration.  In general, thresholds 

increased as relative direction increased from 0 to 30°, but for relative directions of 90° 



 141 

and above reached a plateau at the level of the absolute detection threshold.   The 

particular results for each wavelet configuration follow closely the contrast increment 

thresholds in Figure 3.5 a-c.  In each case, the lowest point (single 3.4 ± 0.2%, parallel 

1.2 ± 0.1%, random 1.1 ± 0.1%) and the plateau level, [average across 90, 150, and 180°] 

(6.8 ± 0.2%, 2.2 ± 0.2%, 4.5 ± 0.2%) in Figure 3.5 d-f correspond to, respectively, the 

lowest point of the ‘dipper’ (3.1 ± 0.2%, 1.2 ± 0.1%, 1.4 ± 0.1%) and the absolute 

detection threshold (6.7 ± 0.2%, 1.9 ± 0.2%, 3.7 ± 0.1%) in Figure 3.5 a-c. In short, the 

threshold increase is pronounced for wavelet configurations with a pronounced ‘dipper’ 

(single and random wavelets) but slight for the configuration with a shallow ‘dipper’ 

(parallel wavelets). 

Interestingly, no significant facilitation occurred at 180° (opponent or 

‘counterphase’ motion), even though target and masker wavelets shared the same spatial 

orientation.   This shows that the local facilitation is selective for direction of motion 

(rather than merely for spatial orientation) and thus that it is mediated by direction-

selective motion-specific mechanisms.  

Overall, the differences between the results for three wavelet configurations 

appeared quantitative rather than qualitative and mirrored the rank order of absolute 

detection thresholds (see above):  Thresholds were highest for single wavelets and 

reduced for multiple wavelets, presumably reflecting summation of multiple signals.   In 

addition, thresholds for the parallel configuration were up to 2 times lower than for the 

random configuration, perhaps due to facilitatory lateral interaction (see Discussion 

3.6.5). 
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The effect of high-contrast maskers (Figure 3.5 g-i, filled symbols) tended to be 

inhibitory, in that thresholds were generally higher than absolute detection thresholds.  

For all wavelet configurations, thresholds were lowest at relative direction 90°.  In the 

case of single wavelets, thresholds with 90° maskers were only a little above absolute 

detection thresholds (8.5 ± 0.6% and 6.7 ± 0.5%, respectively).   In the case of parallel 

and random wavelets, 90° maskers raise thresholds approximately two-fold above 

absolute detection levels (from 1.9 ± 0.2% to 3.5 ± 0.4% and 3.7 ± 0.1% to 9.1 ± 0.4%, 

respectively).   For relative directions either greater or smaller than 90°, thresholds rise to 

even higher levels.  The details of this rise suggest that there may be qualitative 

differences between wavelet configurations. 

In the case of single wavelets, there was a pronounced asymmetry in the effect of 

maskers at 0 and 30° (16.5 ± 1.0% and 17.7 ± 0.7%) on the one hand, and at 150 and 

180° (12.5 ± 0.5% and 13.1 ± 0.4%, respectively), on the other, with in-phase motion 

providing a more effective ‘mask’ than counter-phase motion.  This asymmetry, which 

was also observed with low-contrast maskers (see above), reveals the operation of a local 

inhibition that is specific for direction of motion.  In contrast, the random wavelet 

configuration produced a more symmetric pattern of thresholds, with comparable values 

at 0 and 30° (9.4 ± 0.5% and 15.4 ± 0.6%) and at 150 and 180° (14.9 ± 0.6% and 13.6 ± 

0.5%, respectively).  This symmetric pattern hints at the presence of another type of local 

inhibition, which is specific for spatial orientation rather than for direction of motion 

(Figure 3.5).  In the case of parallel wavelets, no clear pattern emerged with full attention, 

and the results at 0 and 30° (7.2 ± 0.8% and 6.0 ± 0.5%) and at 150 and 180° (6.9 ± 0.6% 

and 6.6 ± 0.5%, respectively) may well reflect a combination of orientation-selective 
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(symmetric) and direction-selective (asymmetric) local inhibition. Taken together, these 

results suggest that there are both direction-specific and orientation-specific types of 

local inhibition and that different wavelet configurations are differentially susceptible to 

each type of inhibition.  As both symmetric and asymmetric threshold patterns become 

more pronounced with poor attention, we will return to these points further below.  

With 3 subjects, we conducted additional contrast masking experiments for single 

and random wavelets (data not shown).   The resulting pattern of masking thresholds was 

consistently asymmetric for low-contrast maskers (2 and 4%) and symmetric for high-

contrast maskers (16, 32, and 64%), consistent with direction-selective facilitation and 

orientation-selective inhibition, respectively.   For maskers of intermediate contrast (8%), 

the results varied and were not consistent across subjects. 

 

3.5.3. Central task performance and attentional strategy 

Performance of the central task was nearly constant across conditions.  Mean 

performance and mean standard error of central performance were 81.1, 83.4, and 81.1% 

in 175, 156, and 205 blocks, when combined with detecting single, parallel, and random 

wavelets, respectively. This was due to the fact that instructions emphasized the central 

task and that the analysis excluded blocks of trials where central task performance was 

compromised (see Methods 3.4.1.4).  

Although central task performance was consistently high on average, attention 

might have swerved to the peripheral array in a subset of trials, e.g., in the trials 

conducted closest to threshold. To test for this possibility, we analyzed correlations 

between central and peripheral responses (see Methods 3.4.3) for the critical subset of 
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trials in each experiment, that is, the trials in which target contrast equaled threshold 

contrast. Among a total 91 contingency analyses (pooled across different masking 

contrast and direction in 2-4 subjects in 3 stimulus configurations), χ2 measures of 

association revealed no significant correlation (P > 0.05) between central and peripheral 

responses in 87 cases.  A significant positive correlation was observed in four cases; no 

significant negative correlation was observed.  In short, we find no evidence that 

attention ‘swerves’ away from the central task, confirming that dual-task thresholds were 

indeed established under conditions of poor attention.   

 

3.5.4. Contrast-increment thresholds with poor attention (Figure 3.5 a-c) 

Under conditions of poor attention, absolute detection thresholds (masker contrast 0%, 

relative direction 0°) were 7.6 ± 0.2%, 2.7 ± 0.2%, and 4.2 ± 0.2% (12, 46, and 13% 

higher than under conditions of full attention for 2, 2, and 4 subjects), significant for 

single and parallel (F = 11.03, 10.44), and almost significant (P < 0.07, F = 3.73) for 

random wavelets.   For masker contrasts above zero (1, 2, 4, 8, 16, and 32%), the effect 

of attention depended strongly on array configuration: for single wavelets, poorly 

attended thresholds averaged 22% above fully attended thresholds whereas, for multiple 

wavelets, the average difference was 109 and 94% for parallel and random, reaching 

300% in the most extreme case (i.e., parallel wavelets, 16% masker contrast).  Three-way 

ANOVA (subject x mask contrast x attention) revealed a significant main effect of 

contrast (F = 127.59, 82.37, and 195.91) and attention (F = 15.09, 82.56, 111.82), as well 

as a significant interaction between contrast and attention (F = 4.48, 4.28, and 11.24) for 

single, parallel, and random stimuli.  This confirms the significant effect of attention 
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overall; especially strong effects were seen at high contrast revealed by significant 

interaction. 

Thus, thresholds measured with multiple wavelets more than doubled under 

conditions of poor attention, overturning the advantage (i.e., lower thresholds) enjoyed by 

multiple wavelets under conditions of full attention.  As lateral masking is one of the 

factors that disadvantage multiple wavelets compared to single wavelets, these 

observations suggest that attention substantially alters the lateral interactions that mediate 

masking (see Discussion 3.6.4 and 3.6.7).  For all wavelet configurations, the difference 

between poorly and fully attended thresholds increased disproportionately with masker 

contrast (significant interaction), so that the largest proportional difference was always 

obtained with higher masker contrasts. 

  

3.5.5. Contrast-masking thresholds with poor attention (Figure 3.5 d-i) 

The combined effect of poor attention and maskers of low contrast (4% for single and 

random wavelets, 1% for parallel wavelets) is depicted in Figure 3.5 d-f (open symbols).  

In general, thresholds followed the asymmetric same pattern as with full attention, 

increasing from parallel to random to single wavelets and exhibiting facilitation when 

masker wavelets moved with target wavelets (relative direction 0 and 30°), but not when 

maskers moved against target wavelets (relative direction 90, 150, and 180°), consistent 

with direction-specific facilitation.   Compared to full attention, thresholds tended to be 

slightly higher (12% for single wavelets, 12% for parallel wavelets, and 9% for random 

wavelets). However, withdrawing attention raised thresholds significantly only in 3 out of 

15 experiments (5 directions and 3 configurations). In one case, it decreased thresholds, 
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which suggests weak and inconsistent effects of attention.  Three-way ANOVA (subject 

x mask direction x attention) revealed significant effect of mask direction (F = 45.15, 

10.65, 105.07) but attention only in single (F =8.93). Interaction between attention and 

direction was significant only in random stimulus (F = 3.92). This confirms strong 

threshold dependency on local mask direction with rather weak effect of attention at low 

mask contrast. 

Taken together with the findings on contrast-increment thresholds and contrast-

masking at higher thresholds (see below), this demonstrates that attention is of little 

consequence as long as the interaction between masker and target wavelets remains 

facilitatory, that is, as long as masker contrast remains in the ‘dipper’ regime. 

Poor attention had a rather more dramatic effect when combined with maskers of 

high contrast (32% for single and random wavelets and 16% for parallel wavelets, Figure 

3.5 g-i, open symbols).  Compared to full attention, poorly attended thresholds were 33% 

higher with single wavelets, 216% higher with parallel wavelets, and 82% higher with 

random wavelets. 

Three-way ANOVA (subject x mask direction x attention) revealed significant 

effect of mask direction (F = 39.28, 6.97, 5.73) and attention (F = 69.28, 123.52, 80.56), 

but the two factors (attention and mask direction) interacted significantly only with single 

and parallel wavelets (F = 10.54, 4.31), not random wavelets (F = 1.22). This confirms 

that thresholds with all wavelet configurations depend on both mask direction and 

attention. Note, however, that for random wavelets the attention effect was the same at all 

mask directions.  
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The comparatively large effect of attention seems to reflect a combination of 

several factors.  Firstly, poor attention impaired thresholds for multiple wavelets far more 

than those for single wavelets, as had been true already for contrast-increment thresholds 

(see above), presumably because poor attention exacerbates lateral masking.  Due to this, 

a substantial gap separated multiple wavelet thresholds with full and poor attention at all 

relative directions  (0, 30, 90, 150, 180°).  Secondly, for single and parallel wavelets, we 

obtained an asymmetric pattern of masking thresholds, so that poorly attended thresholds 

were higher when maskers moved with (0 and 30°) rather than against (150 and 180°) 

target wavelets.  This pattern, which was noted already with full attention (see above) but 

proved even stronger with poor attention (as is revealed by the significant interaction 

between attention and direction), suggests a direction-specific local inhibition by masker 

wavelets.    Thirdly, for random wavelets, the pattern of masking thresholds was 

symmetric (as is shown by the lack of interaction between attention and direction), so that 

poorly attended thresholds were elevated to the same extent when maskers moved either 

with (0 and 30°) or against (150 and 180°) target wavelets, compared to when maskers 

moved orthogonally to target wavelets (90°).   We take this pattern to be evidence for 

another type of local inhibition, namely, an inhibition that is specific to static orientation 

rather than motion direction.   Both types of inhibition (direction- and orientation-

specific) appeared to also modulate thresholds for parallel wavelets.  Lastly, maskers with 

axial motion (0 and 180°) tended to elevate thresholds less than maskers with slightly off-

axial motion (30 and 150°).  This general rule was violated substantially only in the case 

of parallel wavelets, where one would expect strong grouping effects that are absent in 
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the other two cases.  It is not clear why there should be this difference between axial and 

off-axial masking. 

Our results corroborate one incremental effect of attention, specifically, poor 

attention exacerbating direction-selective inhibition (producing an asymmetric pattern of 

incremental threshold elevation).  They do not support any incremental attention effect on 

orientation-selective inhibition (as there seems to be no symmetric pattern of incremental 

threshold elevation).  In sum, our results show an attentional modulation of lateral 

masking and local direction-selective inhibition, but not of local facilitation or local 

orientation-selective inhibition. 
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3.6. Discussion 

3.6.1. Purpose of experiment 

Our aim was to compare the representation of visual motion under conditions of full and 

poor attention. We distinguished the representations of component and of pattern motion, 

which appear to involve different levels of visual cortex.  Specifically, we sought to 

maximally stimulate component-sensitive mechanisms while simultaneously minimizing 

stimulation of pattern-sensitive mechanisms by using random (or incoherent) patterns of 

motion (Snowden et al., 1991; Britten et al., 1993; Qian and Andersen, 1994; Heeger et 

al., 1999; Rees et al., 2000).  To probe interactions between component-sensitive 

mechanisms, we used the psychophysical paradigm of contrast masking (Legge and 

Foley, 1980; Wilson, 1980; Foley, 1994; Lee et al., 1999b; Itti et al., 2000).  The 

observer’s attention was controlled with the same dual-task technique that we have used 

previously for studying spatial vision (Lee et al., 1999b). 



 150 

 

3.6.2. Simoncelli and Heeger model 

A widely accepted model of the representation of visual motion is the two-stage model by 

Simoncelli and Heeger (Simoncelli and Heeger, 1998).  The first stage consists of visual 

filters selective for component motions, similar to direction-selective neurons in area V1 

or to filters that measure energy at a particular spatio-temporal frequency (Adelson and 

Bergen, 1985).  The sensitivity of each first-stage filter can be represented by a pair of 

spheres, symmetrically arranged about the origin, in the Fourier domain (Figure 3.2).  

The second stage is composed of filters selective for pattern motion, that is, for a moving 

pattern with a particular overall direction and velocity.  The sensitivity of second-stage 

filters can be represented by a zero-crossing plane in the Fourier domain and resembles 

that of pattern selective cells in area MT.  At both stages, the output of each filter is half-

rectified and normalized (divided) by the linear sum of a pool of filters (Heeger, 1993).  

Figure 3.6 illustrates this divisive normalization for the first-stage filters (i.e., the stage 

that matter for contrast masking thresholds).  Among other advantages, divisive 

normalization renders tuning properties largely independent of stimulus contrasts.  In 

addition to divisive normalization, second-stage filters are subject to a subtractive 

inhibition termed ‘motion opponency,’ (Snowden et al., 1991; Qian and Andersen, 1994; 

Heeger et al., 1999). 
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Figure 3.6 Divisive normalization by direction- and orientation-specific filters  

Contrast masking thresholds reflect the contrast response of first-stage filters, which are 

selective for the direction of component motion.  They can be modeled by comparing the 

activity of filters representing directions similar to, and opposite to, the probe stimulus 

direction.  Each filter response results from divisive normalization (shown by a symbol 

for division) of the linear response, followed by rectification.  In general, two filter pools 

are expected to contribute to the normalization: a “direction-specific pool” with filters of 
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similar direction and an “orientation-specific pool” with filters of both similar and 

opposite directions.  
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3.6.3. Absolute detection threshold 

Different stimulus configurations show a consistent rank order of detection thresholds.  

Some difference is due to the summation of signals (i.e., single vs. 23 wavelets). 

Theoretical consideration of signal-to-noise ratio based on ideal signal summation 

predicts reduction of the detection thresholds by a factor of 4.8.  However, previous 

empirical studies consistently show a less-than-ideal degree of summation (Quick, 1974; 

Bonneh and Sagi, 1998; Meese and Williams, 2000; Tyler and Chen, 2000).  The reason 

for this is unclear, in particular as less-than-ideal summation is observed even with well-

separated signals (Bonneh and Sagi, 1998; Meese and Williams, 2000).  

 Table 3.1 compares the measured and predicted thresholds for 23 wavelets, with 

the latter calculated from the following formula, 
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CSINGLE is the measured detection threshold for single wavelets and CMULTI is the 

calculated threshold for multiple wavelets.  As in other studies, a value of q=4 produces 

good agreement between predicted thresholds and the average measured thresholds.  

However, we also observe an additional effect of wavelet configuration that is not 

predicted. 

Detection thresholds for multiple random wavelets are poorer than predicted, 

perhaps due to subtractive inhibition at the pattern motion stage (Schrater et al., 2000).  

Thresholds for multiple parallel wavelets are better than predicted, perhaps reflecting 

collinear facilitation at the level of component motion. 
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 Measured 
single 

Average 
multiple 

Predicted 
multiple 

Measured 
multiple 
random 

Measured 
multiple 
parallel 

Poor attention 7.6 ± 0.2 3.4 3.5 ± 0.1 4.2 ± 0.2 2.6 ± 0.2 
Full attention 6.7 ± 0.2 2.8 3.1 ± 0.1 3.7 ± 0.1 1.9 ± 0.2 

Cueing 5.5 ± 0.2 2.6 2.5 ± 0.1   
   

Table 3.1 Probability summation  

Comparison of absolute detection thresholds (in % contrast and s.e.m.) for patterns with 

one and with multiple (23) wavelets.  The fourth-root power-law was used to predict the 

effect of probability summation.  Thresholds for cued detection were established only for 

single and random wavelets.  The predictions underestimate the observed thresholds for 

multiple random wavelets and overestimate those for multiple parallel wavelets.   



 155 

 

3.6.4. Inhibitory lateral interaction  (relative mask direction 90°) 

Lateral interactions between wavelets are expected to become inhibitory at high contrast 

(Polat and Sagi, 1993).  Accordingly, any such interactions should be evident in the 

comparison of increment thresholds between single and multiple wavelets.  The lowest 

increment thresholds (at high mask contrast) are obtained with orthogonal target and 

mask wavelets (relative direction 90°), where local interactions are expected to be 

minimal.  Accordingly, situations with orthogonal target and mask wavelets are the most 

suited for observing threshold elevation due to lateral interactions in the presence of 

multiple wavelets (Table 3.2).   With full attention, the presence of a single masking 

wavelet elevates detection thresholds by 126% (presumably due to local inhibition), 

whereas the presence of multiple masking wavelets elevates thresholds by 250% (random 

wavelets) and 180% (parallel wavelets).  Note that the latter value was obtained for a 

lower mask contrast.  This additional increase presumably reflects lateral inhibitory 

interactions.  
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 Single (32% mask) Random (32% mask) Parallel (16% mask) 
Detection (0% mask) 6.7 ± 0.2 3.7 ± 0.1 1.9 ± 0.2 

Full attention 8.5 ± 0.6 (126%) 9.1 ± 0.4 (250%) 3.5 ± 0.4 (180%) 
Poor attention 9.8 ± 0.4 (145%) 17.5 ± 1.3 (470%) 14.6 ± 1.4 (770%) 

 

Table 3.2 Threshold elevation due to lateral interactions 

Comparison of detection and increment thresholds for single and multiple wavelets, with 

orthogonal target and mask wavelets.  Threshold value (% contrast and s.e.m.) and 

threshold elevation (percentage points).  Note that values for random and parallel 

wavelets were obtained with different mask contrasts. 
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3.6.5. Facilitation and inhibition (relative mask direction 0°) 

The “dipper” regime in the contrast increment threshold function reveals facilitatory 

effects of mask wavelets that move in parallel to probe wavelets (relative direction 0°).  

(That the “dipper” did not result from positional uncertainty was shown by a control 

experiment with cueing.)  We find facilitatory mask effects in the contrast regime of 2-

4%.  For larger mask contrasts, the mask wavelets become inhibitory and the contrast 

increment threshold function saturates.  This inhibition may reflect local divisive 

normalization and/or lateral inhibition between nearby wavelets.  

We observe a comparatively shallow “dipper” with multiple parallel wavelets, 

echoing previous results with sinusoidal gratings (Bowne, 1990; Lu and Sperling, 1995, 

1996).  For single and multiple random wavelets, however, we obtain a prominent 

“dipper” regime (Figure 3.5 a-c).  This strongly suggests that component motion 

mechanisms exhibit a markedly sigmoidal contrast dependency.  At the level of pattern 

motion mechanism, this sigmoidal contrast response may be lost due to summation.  

Tootell and colleagues (Tootell et al., 1995) compared contrast response function with 

gratings using fMRI in V1 and MT, finding an early saturation of BOLD signal in MT 

but not in V1. 
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3.6.6. Direction dependence of contrast masking (relative mask direction 30°, 150°) 

We observe facilitation at low contrast (Figure 3.5 d-f) when mask wavelets move in 

directions similar to target wavelets.  This is consistent with earlier results that sub-

threshold summation occurs between similar, but not opposite, directions of motion 

(Levinson and Sekuler, 1975; Stromeyer et al., 1984; Wilson, 1985).  In contrast, the 

observed inhibition at high contrast (Figure 3.5 g-i) depends on the configuration of 

wavelets (random or parallel). For multiple random wavelets, the threshold increment 

reveals an orientation-specific inhibition (symmetric ‘M’ shape in Figure 3.5 i).  This 

selectivity matches the organization of direction-columns in area V1 organization, where 

adjacent columns represent opposite directions of motion (Shmuel and Grinvald, 1996; 

Weliky et al., 1996; Ohki et al., 2005).  Accordingly, indiscriminate connectivity between 

nearby columns would be expected to result in a normalizing pool that includes columns 

selective for both similar and opposite directions.  In other words, a local inhibitory pool 

is expected to be orientation-selective without being direction-selective.    

Using low-pass filtered one-dimensional noise motion as a masking stimulus, 

Anderson and Burr (Anderson and Burr, 1985) found weak inhibitory effects with the 

masker moving in the opposite direction.  The magnitude of inhibitory effects in their 

experiments resembles our asymmetrical inhibition with single and parallel wavelets at 

high contrast masking.  A common property of these stimuli is that they activate MT 

efficiently in mask-only trials, but the target moving in the opponent direction suppresses 

MT activity.  The reduction of MT activity can be utilized for target detection.  Thus, the 
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reduction of inhibition at the opposite direction indicates motion opponency at the level 

of MT.  

An unexpected feature of our results is the reduced inhibition for maskers of 

identical (0°) and exactly opponent (180°) direction (‘M’ symmetry rather than inverse 

‘U’ symmetry in Figure 3.5 i).  The reason is unclear.  One possibility is that the 

inhibitory pool “spares the center (0 and 180°)” and is shaped like an annulus rather than 

like a Gaussian blob.   There are some reports implicating stronger divisive inhibition 

from relative directions of 30-45° than of 0° (Foley, 1994; Zenger and Sagi, 1996) 

(however, see also (Anderson and Burr, 1985)). 
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3.6.7. Attentional effects  

We found no evidence that attention alters the facilitating effect of low-contrast masks.  

Neither the depth of the “dipper” function (Figure 3.5 a-c) nor its dependence on relative 

mask direction (Figure 3.5 d-f) was affected by attention.   Apparently, the initial contrast 

response (i.e., response at low contrast) of component motion mechanisms is not affected 

by the state of attention. 

This finding differs markedly from our earlier results for static visual patterns.  

In that case, mask facilitation at low contrast was significantly enhanced by attention 

(Lee et al., 1999b).  Specifically, attention enhanced both the effective gain and 

sharpened the effective tuning of visual filters selective for static patterns.  The effects 

observed for static patterns were quantitatively consistent with the possibility that visual 

attention intensifies a competitive interaction among overlapping visual filters. 

Taken together, our findings for static and dynamic visual patterns imply that 

any change in competitive interactions be restricted to static filters.  The presumed neural 

correlates of static and dynamic visual filters are, respectively, orientation and direction 

columns in primary visual cortex.  Our observations imply, therefore, that attentional 

feedback should differentiate between the two classes of filters.  

Besides this negative finding, our results demonstrate two clear effects of 

attention.  The first effect is a uniform reduction of inhibition by high-contrast masks 

(Figure 3.5 hi).  This effect is observed for all relative mask directions, but only for 

multiple wavelets (parallel or random).  Accordingly, the interaction modulated by 

attention appears to be a lateral inhibition by nearby wavelets of high contrast.  This 
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would be consistent with previous reports that attention modulates lateral interactions 

between high-contrast stimuli (Zenger et al., 2000; Freeman et al., 2001, 2004).  

Inhibitory interactions (i.e., lateral masking) are particularly affected, as attention may 

decrease their effect by a factor of four or more (Zenger et al., 2000).  

The second effect of attention is a reduction of direction-selective inhibition 

(Figure 3.5 gh).  This inhibition in question is direction-selective as it elevates thresholds 

for relative mask directions of 0 and 30°, but not 150 and 180°.  It is observed only for 

single wavelets and parallel multiple wavelets, not for random multiple wavelets.  This 

restriction to stimuli that activate pattern motion mechanisms suggests that the inhibition 

in question operates at that level.  It might reflect either motion opponency or divisive 

normalization or both.  In either case, this direction-selective inhibition in the 

representation of pattern motion is reduced significantly by attention. 

In summary, we find no evidence for an attentional modulation of the 

representation of component motion.  We do find that attention reduces a direction-

selective inhibition in the representation of pattern motion and, consistent with previous 

studies, that attention reduces lateral masking by high-contrast stimuli (both moving and 

stationary). 
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4. Role of awareness in trace and delay aversive conditioning  

4.1. Overview  

For the study of consciousness, it would be desirable to have a battery of tests for the 

presence of consciousness, which can be applied to any non-speaking humans, including 

infants and neurological patients, as well as animals, from mammals to even 

invertebrates12.  Such tests would be useful in objectively assessing the presence of 

consciousness in these organisms, in much the same way as a Turing-test has been used 

to assess artificial intelligence (Koch, 2004).   In this chapter, we explore the possibility 

that a simple learning paradigm may serve as a Turing-test for consciousness.   

A hallmark study that alluded to such a possibility is reported by Clarke and 

Squire in 1998 (Clark and Squire, 1998). Successful performance in simple eyeblink 

conditioning relies on attention and awareness, depending on the temporal relationships 

between the two stimuli; in delay conditioning, a previously neutral tone (CS) is paired 

with a temporally overlapping airpuff stimulus to the eyelid (US), while in trace 

conditioning, a temporal gap is inserted between CS and US, so that a memory trace has 

to be stored in working memory to bridge the gap between the offset of the CS and the 

onset of the US.   Clark and Squire report that trace eyeblink conditioning depends on 

contingency awareness of the relationship of CS and US, while delay eyeblink 

conditioning occurs independently of the awareness.   Further, while trace conditioning is 

                                                
12  Even if babies, patients during epileptic seizures, or animals show apparently 
complicated behaviors, these behaviors by themselves do not guarantee the presence of 
consciousness, as there are many examples of so-called “zombie behaviors” that are 
highly elaborated and operate without giving rise to consciousness.  
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disrupted when attention is distracted by a concurrent task, delay conditioning is resilient 

to distraction.  Previously, we extended their findings on attention to aversive 

conditioning, using mild electrical shocks as US and skin-conductance response as a 

measure of conditioned responses (Carter et al., 2003).  Here, we show that trace 

conditioning develops at that point in time at which subjects become aware of the 

relationship between CS and US, while such a temporal synchrony is not found in delay 

conditioning.  The observed difference in dependency on consciousness between the two 

protocols is remarkable; the inputs are very similar (the only difference being the 

presence or absence of a 3-sec temporal gap), and the overall performances are 

comparable (See Section 4.5).  

Our results suggest that we might be able to use the trace/delay-conditioning 

paradigm as a Turing-test for the presence of awareness and/or attention in non-verbal 

organisms.   During trace but not delay conditioning, candidate neural systems for the 

NCC should be actively involved in the maintenance of the memory trace.  These neural 

systems are likely to be disturbed when attention is distracted, which would eliminate 

trace but not delay conditioning.  The above inference would be extremely powerful 

when it is applied to flies and mice, whose genomes can be rather easily manipulated 

using ever more powerful molecular tools.  In addition to the exquisite spatial resolution, 

molecular markers allow us to target a specific class of neurons, which may be 

distributed across space.   Probing a particular population of neurons required to carry out 

a Turing-test for consciousness might turn out to be a critical step in the study of the 

NCC, because only a subset of neurons, that are distinguished by peculiar molecular 
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markers yet distributed across different areas, might be critical for producing 

consciousness.   
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4.2. Summary  

Previous studies showed that human associative conditioning can depend on subjects 

becoming aware of the exact, temporal relationship between neutral and aversive stimuli. 

Such awareness seems necessary for eyeblink trace conditioning (where the airpuff 

follows the tone after some temporal gap) but not for eyeblink delay conditioning (where 

the airpuff overlaps with the tone). We investigated if conditioning and awareness 

develop synchronously during trace and delay aversive conditioning.  Trace and delay 

conditioning were performed in a single session to reduce inter-subject variability. The 

degree of conditioning was assessed by skin-conductance response, a measure of 

autonomic arousal. Each subject expressed their shock expectancy throughout the 

experiment, allowing us to infer the onset of awareness of the relationship between tones 

and shock.  We found that the level of differential skin-conductance response did not 

differ between trace and delay conditioning when averaged across all the trials.  

However, when the response was aligned at the onset of awareness, trace, but not delay, 

conditioning showed significant discrimination between paired and unpaired stimuli. Our 

result is consistent with the idea that trace conditioning is more tightly related to 

awareness than delay conditioning and that different mechanisms mediate the two types 

of learning. 
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4.3. Introduction  

In classical conditioning, subjects learn to associate a previously meaningless conditioned 

stimulus (CS) with a meaningful unconditioned stimulus (US).  Whether they need to be 

aware of the CS-US contingency in order to be conditioned remains controversial 

(Dawson and Furedy, 1976; Dawson and Schell, 1985; Clark and Squire, 1998; Clark et 

al., 2002; Lovibond and Shanks, 2002).  A tight relationship between conditioning and 

contingency awareness is supported by aversive autonomic conditioning studies (Dawson 

and Furedy, 1976; Dawson and Schell, 1985; Lovibond and Shanks, 2002). Successfully 

conditioned subjects verbalize the correct CS-US contingency, but knowledge of the 

contingency itself is insufficient for conditioning. When subjective shock expectancy is 

concurrently assessed on a trial-by-trial basis, conditioning occurs when subjects realize 

the correct CS-US contingency (Dawson and Biferno, 1973; Biferno and Dawson, 1977).  

No evidence of conditioning is seen before they express this awareness.  These results are 

explained within a ‘necessary-gate’ framework, in which successful conditioning requires 

awareness and conditioning can occur only after awareness has developed; however, 

awareness by itself is not sufficient for conditioning to occur (Dawson and Furedy, 1976; 

Dawson and Schell, 1985; Lovibond and Shanks, 2002).   

On the other hand, classical conditioning is regarded as a non-declarative learning 

process, which does not require conscious association and can occur automatically 

(Milner et al., 1998).  This notion has been refined by Clark and Squire, who claim that 

the link between conditioning and awareness depends on the temporal relationship 

between CS and US; awareness is necessary when CS and US are separated in time (trace 

conditioning), while it is not required when CS and US overlap (delay conditioning) 
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(Clark and Squire, 1998; Clark et al., 2002).  In an eyeblink conditioning paradigm, 

where an airpuff to the eyelid serves as US, delay conditioning occurs even though 

subjects are unaware of the contingency, either due to a concurrent distracting task or due 

to hippocampal amnesia (Gabrieli et al., 1995; Clark and Squire, 1998).  Attentional 

distraction interferes, however, with the acquisition of trace eyeblink conditioning (Clark 

and Squire, 1998).  We previously showed that trace aversive conditioning was easily 

disrupted by a concurrent working-memory task while delay aversive conditioning was 

more resilient (Carter et al., 2003).   

We here revisit the phenomenon of synchronous development of conditioning and 

awareness by monitoring shock expectancy throughout a learning session (Dawson and 

Biferno, 1973; Biferno and Dawson, 1977) and contrast differences between delay and 

trace protocols. To reduce inter-subject variability, we directly compare trace and delay 

by intermixing three CSs in a single session (Knight et al., 2004). Based upon the claim 

that trace conditioning is more dependent on consciousness than delay conditioning 

(Clark and Squire, 1998; Clark et al., 2002; Carter et al., 2003), we predict that trace 

conditioning develops with the onset of contingency awareness, while delay conditioning 

does not.    
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4.4. Methods 

4.4.1. Subjects and equipment  

To record skin conductance, we attached electrodes to the subjects’ index and middle 

fingers at the second phalanx of the non-dominant hand. Skin conductance was sampled 

at 50Hz.  Electrical shocks were delivered through electrodes attached to the ring and 

little fingers at the second phalanx of the dominant hand.  The delivery of shocks and 

recording of skin conductance was performed by a system from Contact Precision 

Instruments controlled by PSYLAB software. We used Silver/Silver Chloride electrodes 

filled with Med Associates paste TD-246. 

Subjects expressed their immediate shock expectancy by gaze position, which 

was recorded at a sampling rate of 120 Hz with an infrared video-based eyetracker 

(ISCAN, Cambridge, MA). A head and chin rest minimized head and body motion.  The 

display was placed 85 cm from the subjects.  Presentation® software (Version 0.70) 

controlled the experimental procedure, played recorded instructions, and presented visual 

stimuli for the distracter task.  

We used three different auditory, 2-sec-long CSs to conduct trace and delay 

conditioning in a single session for each subject: a 2kHz tone (101dB), a white noise 

sound (83dB), and a bubbling water sound (98.5dB).   The volume of each was 

determined in a pilot study with 20 naïve subjects so that each sound produced 

approximately the same SCR amplitude.  Each auditory CS was assigned to either CS+D 

(delay), CS+T (trace), or CS-, and was balanced across subjects.  The CS+D co-
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terminated with a 0.25-sec electrical shock (US), the CS+T was followed by the US after 

a 3-sec trace interval, and the CS- was never accompanied by the US (Figure 4.1 a).  

Thirty-three subjects (13 female) employed at Caltech gave consent and were paid 

for participating in the experiment.  The protocol was approved by Caltech’s IRB. 

Subjects’ ages ranged from 18 to 48 years (mean 24.2). After signing the consent form 

and before the experiment, each subject adjusted the intensity of the shock level so that it 

was ‘uncomfortable but not painful.’  Three subjects were excluded because they reached 

the maximal shock amplitude before rating it as uncomfortable.  An additional six 

subjects were excluded because they did not respond to shocks in more than 8 out of 40 

trials.  
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Figure 4.1 Stimuli characteristics and event-related time course of SCR and 

shock expectancy  

Left column is for delay and right column is for trace conditioning.  a) Delay and trace 

conditioning were performed in a single session by intermixing three auditory 2-sec-long 

CSs (CS+D, CS+T, CS-). Shock expectancy expressed by direction of gaze was 

continuously monitored. The average expectancy during the 0.75 sec before the US onset 

was used as an expectancy score for each trial (black squares).  CS- expectancy from the 

corresponding period was compared with CS+T or CS+D appropriately. b) The average 

time course of the skin conductance in all acquisition trials for the "no task" group (n = 

12, see Section 4.4.3) was first normalized by the mean response to US and then averaged 

across subjects.  Shocks for delay and trace conditioning are represented as vertical lines 

at 1.75 sec and 5 sec, respectively.  We defined a SCR for each trial using a time window 

from 1 sec to 2.75 sec (gray zone).  For trace conditioning, the thick solid line for the 

83% reinforced trials (CS+T) diverges at ~7 sec (~2 sec after shocks) from the thin solid 

line for the non-reinforced trials (CS+NT).  Similarly, the line for the reinforced delay 

trials (CS+D) diverges from the line for the non-reinforced delay trials (CS+ND) around 

~3.5 sec.  c) The average shock expectancy during acquisition. All aware subjects could 

reliably move their eyes to signal high shock expectancy well before 1 sec after CS onset 

while performing a visual task.  The expectancy score is the average expectancy during 

0.75 sec before the shock (gray zone).  
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4.4.2. Experimental design 

The conditioning session consisted of three phases (habituation, acquisition, and 

extinction), with no explicit cue for the transition between phases (Table 4.1). In 

habituation and extinction, no shock reinforcements occurred.  There were 2, 24, and 8 

blocks for habituation, acquisition, and extinction, respectively.  One block consisted of 

three trials whose order was randomized so that the same trial type only occurs, at most, 

twice in a row. During acquisition, CS+T and CS+D were reinforced with shocks in 83% 

of the trials (20 reinforced and 4 non-reinforced trials).  To facilitate conditioning, the 

first 3 blocks in acquisition were always reinforced.  Inter-trial intervals were chosen 

from time periods of 10, 12, 14, 16, 18, or 20 sec.  
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Table 4.1 Exemplar trial sequence for depiction of experimental design 

This table shows the actual trial sequence used for an exemplar subject, whose shock 

expectancy data is shown in Figure 4.2 (See also Section 4.5.1).  The conditioning 

session consisted of three phases (2 blocks of habituation, 24 blocks of acquisition, and 8 

blocks of extinction).  There was no explicit cue for the transition between phases and 

blocks.  Three types of CS (CS+T, CS+D, and CS-) were randomized within a block so 
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that the same trial type only occurred, at most, twice in a row across blocks (i.e., here, 

both trial 9 and 10 were CS+D).  During acquisition, 4 non-reinforced trials, CS+NT and 

CS+ND, occurred (i.e., CS+NT for block 5 in acquisition) with a restriction that two non-

reinforced trials did not occur within a single block.  To facilitate conditioning, the first 3 

blocks in acquisition (A1-A3) were always reinforced.  Inter-trial intervals were on 

average 15 sec.   This particular subject became aware of the CS-US contingency for 

trace conditioning at the 52nd trial according to the generalized onset of awareness (See 

Section 4.5.1 and Figure 4.2). The three trials for CS+ (in the table for the onset trial pair, 

OTP, depicted as T0+, T1+, and T2+) and the other three trials for CS- (T0-, T1-, and T2-) 

are paired to form three trial pairs to calculate the difference of SCR between CS+ and 

CS- (∆SCR) (See Section 4.5.1 and 4.5.2, Figure 4.3).  For the preceding 6 trials, three 

trial pairs (T-3±, T-2±, and T-1±) are likewise formed to calculate ∆SCR.  
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4.4.3. Distraction task and expectancy monitoring task 

As a distracter, we used a visual discrimination task known to function in the near 

absence of focal visual attention (Li et al., 2002). We assigned subjects blindly to the 

“distraction task” group (n = 12, 4 female) or to the “no task” group (n = 12, 4 female).  

During practice of the discrimination task, we presented a central white fixation 

cross (0.4 x 0.4°) that was visible throughout the session and a natural scene picture (4.6 

x 7.9°). Each picture was shown for 0.1 sec and replaced with a gray field for 1.9 sec 

until the next picture was presented.  Subjects pressed a mouse button with the dominant 

hand (the one with the shock electrodes) whenever the natural scene contained a means of 

transportation (e.g., cars, trucks, trains, boats, aircraft, and hot-air balloons).  The sixty 

practice stimuli were different from those used in the main experiment (437 targets, 911 

distracters). During conditioning, pictures were presented once every 2 sec.   When the 

CS is presented, pictures were shown 0.3 sec after the CS onset, so that pictures do not 

interfere with the processing of CS.  

During conditioning, 3 sets of identical stimuli, consisting of an image and 

fixation cross, were projected onto a horizontal line with a separation of 8.3°. Subjects 

expressed their shock expectancy by fixating one of the three crosses. The recorded 

instructions indicated that they should either: 1. look at the left fixation cross when they 

‘think it is likely that there will be a shock within the next few seconds,’ 2. look at the 

center point when they ‘do not know whether or not there will be a shock within the next 

few seconds,’ 3. fixate the right cross when they ‘think it is unlikely that there will be a 

shock within the next few seconds.’  Whether the left or right fixation cross indicated 



 177 

high shock expectancy was randomized across subjects.  Subjects practiced the 

expectancy task for 40 sec, where text on the screen indicated which cross should be 

fixated.  

Finally, subjects practiced reporting their shock expectancy by moving their eyes 

while performing the distraction task.  The recorded instructions emphasized the primacy 

of reporting shock expectancy over performance on the distraction task.  None of the 

subjects had problems performing both tasks at the same time (mean reaction time = 451 

± 56 msec (s.d.), 97.1% correct detection, 3.5% false alarm for the distraction group (n = 

12) in the main experiment). After the final instruction, subjects were assigned to the 

distraction or the “no task” group.  We told the subjects in the "no task" group that they 

would only perform the expectancy monitoring task. 

 

4.4.4. Data Analysis 

Figure 4.1 a shows the time course of the CS and US for each protocol, and Figure 4.1 b 

shows the average time courses of skin conductance.  Skin conductance was first 

normalized by the mean SCR amplitude of the responses to shocks within the 1-10 sec 

interval after CS onset for that subject, and then was averaged across subjects (Lykken, 

1972; Ben-Shakhar, 1985).  An event-related time course was obtained by aligning skin 

conductance to 0% at CS onset (time = 0 sec).  We defined the skin conductance response 

(SCR) for each trial as the increase in normalized conductance from the trough to the 

peak in the 1-2.75-sec interval after CS onset (gray zone in Figure 4.1 b). The tail of the 

time window, 2.75 sec, occurs 1 sec after the onset of the 0.25-sec long shocks for CS+D 

trials, which is well before the average SCR onset of 1.8 sec (Venables and Christie, 
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1980). We confirmed the SCR latency in each trial for each subject and found no subjects 

with a SCR latency faster than 1 sec.  This allows us to include the SCR from reinforced 

trials as well as those from non-reinforced CS+ presentations.  SCR was corrected by a 

square root transformation for normality. 

Shock expectancy was obtained by converting the gaze position into three discrete 

expectancy scores, –1 (no shock expected), 0 (unsure), and +1 (shock expected).  The 

expectancy score for each trial was the average expectancy during 0.75 sec before the 

shock (black squares in Figure 4.1 a and gray zone in Figure 4.1 c), that is, the average 

from 1 to 1.75 sec in CS+D (delay) trials and from 4.25 to 5 sec in CS+T (trace) trials. 

Shock expectancy in CS- trials was measured within the 1 to 1.75 sec interval to compare 

with CS+D and from 4.25 to 5 sec to compare with CS+T.   
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4.5. Results  

4.5.1. Generalized definition for the onset of awareness 

Dawson and Biferno (Dawson and Biferno, 1973; Biferno and Dawson, 1977) introduced 

two ways to define the onset of awareness.  When subjects expect shocks for CS+ and no 

shocks for CS-, they have ‘valence’ awareness. When their shock expectancy for CS+ is 

higher than for CS-, they are said to have ‘discrimination’ awareness.  The original 

definition required correct expectancy to be ‘sustained’ until the end of acquisition.   

The requirement for ‘sustained’ expression may be too strict to allow for subjects 

who were somewhat aware of the contingency.  Since CS-US contingency awareness for 

the entire experiment is likely to be a graded phenomenon rather than black-and-white, 

vague awareness is also a valid measure (Merikle and Reingold, 1992).  Subjects’ 

confidence in their judgment concerning CS-US contingency can wax and wane over the 

course of the experiment. This is particularly true if partial reinforcement was used (as in 

our study) since not all CS+'s are followed by a shock.  In the post-experimental 

interview, subjects volunteered several possible reasons why they changed their 

expectancy after they became aware of the correct contingency.  Some commented that 

once they realized the correct contingency, they further noticed non-reinforced trials and 

tried to predict the absence of a shock in a CS+ trial.  Others noted that they thought their 

expectancy responses might trigger shocks via feedback, and that they tried to confirm 

this by expressing the opposite expectancy. Furthermore, subjects may forget to move 

their eyes on some trials.  Therefore, we need measures of awareness that capture a 

graded level of awareness.   
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We generalize the original definition of the onset of awareness by introducing two 

variables: ‘consecutiveness,’ N, defines how many consecutive trials are necessary for 

the onset of awareness to be detected, while ‘violations tolerated,’ V, quantifies how 

often, i.e., for how many trials, the expectancy can be violated after the onset of 

awareness.  The original definition by Dawson & Biferno is equivalent to our generalized 

definition with N=6 and V=0; in this case, the onset trial is defined as the ith trial; from 

then on, the correct shock expectancy is expressed in the following N=6 consecutive 

trials, equivalent to three CS+/CS- pairs.  The three (= N/2) trials for CS+ and the other 

three trials for CS- are paired to form three trial pairs (trial pair 0, the onset pair; +1; and 

+2) to calculate the difference of SCR between CS+ and CS- (∆SCR) (Table 4.1).  For 

the preceding N = 6 trials, three trial pairs (-3, -2, and -1) are likewise formed to calculate 

∆SCR.  After the ith trial, there are no trials (V = 0) where the expression of the correct 

shock expectancy can be violated.   

In the following analysis, we varied N from 4 to 6 and 8 and V from 0, 1, 3, 7, 15, 

to 31 (The data for V ≥ 31 were identical). The onset of awareness was detected 

separately for trace and delay shock expectancy.  We rejected the onset of awareness that 

occurred too early (i < N) or too late (i + N > 78, the end of the acquisition phase).  

Though we performed the analyses with both discrimination and valence criteria, we 

report only the results with the discrimination criterion because significant effects were 

not obtained using the valence criterion.  

Figure 4.2 a and b show the shock expectancy of an exemplar subject as a 

function of trials, to illustrate how the onset trial is detected.  In Figure 4.2 c, we show the 

number of aware subjects in a color-coded matrix whose columns and rows represent the 



 181 

consecutiveness (N) and the violations tolerated (V), respectively.  Because our main 

concern is the comparison between trace and delay conditioning in a within-subject 

manner, we only included subjects when their awareness was detected for both trace and 

delay protocols.  For example, the exemplar subject was considered aware and was 

included in the analysis with the discrimination criterion only when V ≥ 3 for any N (‘o’ 

in Figure 4.2 c), as he failed to express the correct shock expectancy twice in trace 

conditioning (in the 76th and 78th trials).  The mean number of aware subjects across all 

N’s and V’s was 11.28 out of 24 subjects, ranging from 7 to 19.  As expected, more 

aware subjects were detected as the definition became looser, that is, as N decreases or as 

V increases (towards the upper left corner). 

To estimate how many of these aware subjects could have been detected by 

chance, we performed a Monte Carlo simulation. We randomly created 100,000 sets of a 

simulated shock expectancy. Each set of simulated data consisted of 78 values, randomly 

taken from -1, 0, or 1.  We treated three sets of 26 values as shock expectancy for CS+T, 

CS+D, and CS- and submitted each set to the same awareness detection algorithm as the 

real data.  Figure 4.2 d shows the number of aware subjects detected by chance alone, 

multiplied by a ratio between the participants (n=24) and the simulated trials (n=100,000). 

The mean was 1.51, ranging from 0.037 to 12.32. The differences between the data and 

the simulation were well separated everywhere (Figure 4.2 e); the mean difference was 

9.77, ranging from 6.68 to 13.14.  In other words, our generalized awareness criterion 

detects more aware subjects in the data than the random data in any tested combination of 

N and V.  
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Figure 4.2 Definition of the onset of awareness  

Shock expectancy from an exemplar subject in a) delay and b) trace conditioning, as a 

function of the trial number. The acquisition phase started at the 7th trial and ended at the 

78th trial (the two gray regions correspond to habituation and extinction).  Blue, red, and 

green corresponds to the shock expectancy scores for CS+T, CS+D, and CS- trials, 

respectively. a) For trace conditioning, this subject started expressing correct 

discrimination awareness from the 52nd trial onward (vertical blue), but violated it at the 

76th and 78th trial.  He did not demonstrate valence awareness.  b) For delay conditioning, 

he demonstrated discrimination and valence awareness, starting at the 54th trial (solid 

vertical red) and 69th trial (broken vertical red), respectively.  No violations occurred.   c) 

The number of detected “aware” subjects (out of a total of 24) changes in a graded 

manner depending on both how many consecutive trials are required to detect the onset of 

awareness (N, x-axis), and how many violations are allowed (V, y-axis). The color scale 

on the right indicates the number of aware subjects for a given set of criteria. The ‘o’ 

symbols in c) denote the combinations of N and V where the exemplar subject is 

considered aware.  d) The same analysis was repeated on simulated shock expectancy to 

estimate how many subjects could have been detected by chance. e) The difference 

between data and simulation.  The number of aware subjects increases as the criterion 

becomes looser and is always larger than simulated data.  
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4.5.2. Trace but not delay conditioning coincides with the onset of awareness 

Following the convention of the matrix notation in Figure 4.3 c-e, we show ∆SCR in four 

trial pairs (i.e., two trial pairs prior to the onset of awareness, at the onset of awareness, 

and one trial pair following the onset) in color-coded matrices in Figure 4.3 for trace (top 

row) and delay (middle row) conditioning, respectively; the same subjects contributed to 

both matrices at corresponding locations.  To assess the degree of conditioning, we tested 

whether ΔSCR was significantly above 0 at each entry of the matrices; we used a one-

tailed paired t-test (the degree of freedom was the number of subjects -1 at each entry in 

Figure 4.2 c; a Bonferroni correction was applied for multiple comparisons across the 4 

trials). No correction for multiple comparisons was applied across N’s and V’s, as each 

entry was highly correlated with other entries (i.e., in Figure 4.2 c, the trial pairs of the 

exemplar subject were identical across all the entries with ‘o’ marks, that is, V ≥ 3 for all 

N).  ΔSCR was significantly above 0 (P < 0.05), only at trial pair 0, the onset of 

awareness, and only for trace conditioning. No other entries were significant following 

the Bonferroni correction.  

Utilizing our advantage of within-subject comparison between trace and delay 

conditioning, we calculated the difference between ΔSCR for trace and delay for each 

trial pair and applied the same one-tailed t-test as above because we had a prior 

hypothesis that trace conditioning is more tightly related to awareness than is delay 

conditioning.  In the bottom row of Figure 4.3, we show the difference as t-score (i.e., the 

difference of ΔSCR divided by the square root of the number of subjects in each entry of 

the matrix in Figure 4.2 c).  For presentation purposes, we thresholded the t-score at P < 
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0.05. When the P-value did not survive the Bonferroni correction for the four trials 

considered, we marked the pixel with ‘o.’  The difference between trace and delay 

protocols was significant only for the trial pair 0, that is, at the onset of discrimination 

awareness.  Notably, this was true when at least six consecutive trials were required for 

the detection of awareness. When the requirement was more transient (N = 4), only V = 0 

or 3 violations could be allowed to find a significant difference between trace and delay 

conditioning.   

The significant difference at trial pair 0 cannot be explained by the better overall 

conditionability in trace than in delay conditioning.  At each entry of the matrix, we 

tested for a difference in the mean ∆SCR during acquisition (the first trial pair was 

excluded) between trace and delay (two-tailed t-test).  There was no difference in any of 

the entries (P > 0.17 for all).  Thus, the difference between trace and delay conditioning 

was seen specifically at the onset of discrimination awareness.  
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Figure 4.3  Differential skin conductance response (∆SCR) around the onset of 

awareness 

The convention for x- and y-axes in each color matrix follows Figure 4.2 c-e.  ∆SCR is 

color-coded from trial pair -2 to +1 for trace (top) and delay (middle) conditioning 

around the onset of awareness.  Note that the same subjects contributed to both trace and 

delay conditioning. (bottom) The difference between trace and delay ∆SCR is divided by 

the standard error to calculate a t-score (thresholded at P < 0.05).  Those pixels that did 
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not survive the Bonferroni correction across 4 trials were marked by ‘o.’  Trace, but not 

delay conditioning, coincides with the onset of discrimination awareness.  
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4.5.3. Trace conditioning correlates to shock expectancy score  

We performed linear regression analyses between the average ΔSCR and the mean 

difference between shock expectancy for CS+ and CS- (Δexpectancy). We found a 

significant correlation in 23 acquisition trials (excluding the first trial pair) within the 

time interval 1-2.75 sec in trace (Figure 4.4 left, blue, R = 0.476, F score = 6.45, P = 

0.0187) but not delay conditioning (Figure 4.4 left, red, R = 0.294, F score =2.09, P = 

0.162).  Significant correlations were also found when we correlated the mean 

Δexpectancy with the difference between the mean SCR of 4 non-reinforced CS+ trials 

and the mean SCR of 23 CS- trials with the 1-6 sec interval in trace (Figure 4.4 middle, 

blue, R = 0.561, F score =10.1, P = 0.00433), but not delay conditioning (Figure 4.4 

middle, red, R = 0.298, F score = 2.15, P = 0.157), and also when we correlated the mean 

Δexpectancy with the mean ΔSCR in all 23 acquisition trials with the 1-6 sec interval for 

trace conditioning (Figure 4.4 right, blue, R = 0.643, F score = 15.5, P = 0.000695).   

To test if the correlation coefficient for trace conditioning is significantly better 

than delay conditioning, we used a one-tailed z-test (Because (Clark et al., 2002) reported 

a stronger correlation for trace conditioning, we had a prior hypothesis that trace 

correlates better than delay).  Transforming the correlation coefficient R into Fisher’s Z 

scores, we computed P-values on the difference between the two Fisher’s Z scores.   The 

difference was not significant when we used either the 1-2.75-sec interval (P = 0.24358, 

Figure 4.4 left) or the 1-6-sec interval and non-reinforced trials (P = 0.14467, Figure 4.4 

middle).  



 189 

 

 

 

Figure 4.4 Trace conditioning correlates with shock expectancy score 

The x-axis corresponds to the mean difference between the shock expectancy for CS+ 

and CS- during acquisition.  The y-axis corresponds to the mean ΔSCR in the 1-2.75-sec 

interval in all acquisition trials (left), the mean ΔSCR in four non-reinforced trials with 

the 1-6-sec interval (middle) or, the mean ΔSCR in all 23 acquisition trials with the 1-6-

sec interval (right).  Trace (blue circles, thick blue lines) and delay (red cross, thin red 

lines) conditioning can be directly compared in the left and middle plots.   
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4.5.4. Negative evidence for unconscious delay conditioning  

We did not find any evidence of conditioning for unaware subjects in any entry in the 

matrix (one-tailed t-test on the mean ΔSCR, P > 0.38 for all delay-unaware subjects and 

P > 0.44 for all trace-unaware subjects).  We did not find any difference in the degree of 

conditioning among those unaware subjects between trace and delay conditioning in any 

entry of the matrix (paired two-tailed t-test on the mean ΔSCR, P > 0.53 for all).  

In Figure 4.5, we show the number of unaware subjects (out of n = 24) in the 

same format as in Figure 4.2 c.  The mean number of unaware subjects is 5.61, ranging 

from 2 to 8.  The numbers in the corresponding entries of the two matrices (unaware 

subjects for Figure 4.5 and aware subjects for Figure 4.2 c) do not add up to 24 because 

some subjects were classified as aware in either delay or trace conditioning and as 

unaware in the alternative protocol.   
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Figure 4.5 The number of unaware subjects 

The convention follows Figure 4.2 c.  
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4.6. Discussion  

We performed trace and delay conditioning in a single session, while subjects monitored 

their immediate shock expectancy throughout the session.  By generalizing the definition 

of the onset of discrimination awareness  (Dawson and Biferno, 1973; Biferno and 

Dawson, 1977), we detected awareness with graded levels of ‘consecutiveness (N)’ and 

‘violations tolerated (V).’  Our results showed that trace, but not delay, conditioning 

coincided with the onset of discrimination awareness when we required at least 6 

consecutive trials (N ≥ 6) for detecting awareness.  We reached the same conclusion 

when we included subjects who did not consistently express the correct shock expectancy 

after the onset of awareness (i.e., V > 0).  This confirmed the reports by some subjects 

who commented that they did not express the correct expectancy throughout, and 

sometimes even intentionally violated it. Our generalized definition of the onset of 

awareness circumvented problems due to these uncertain strategies or behaviors and 

showed that including these subjects did not add noise.  Our approach may be useful even 

when the reinforcement rate is 100% because some subjects may believe that their act of 

expressing expectancy (monitored by gaze direction in this study) influences the 

probability of shocking or because they may forget and fail to express the correct shock 

expectancy after they become aware of the CS-US relationship.   

The contrasting relationship between trace and delay conditioning is consistent 

with the idea that trace and delay conditioning are mediated by two distinctive systems; 

trace conditioning is mediated by mechanisms with access to declarative knowledge, 

while delay conditioning is supported by non-declarative mechanisms.  Our results are 
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consistent with previous aversive (Carter et al., 2003) and eyeblink studies (Clark et al., 

2002), which showed that trace conditioning was more dependent on awareness than 

delay. 

Comparison between trace and long delay conditioning (Ivkovich et al., 2000; 

Herbert et al., 2003) would be interesting and deserves extensive study in the future, 

though such a study would require a very large group of subjects due to the difficulty in 

balancing 4 CSs in a single session or in recruiting two separate groups with 2 CSs. 

Delay aversive conditioning, presumably mediated by the amygdala (Fanselow 

and LeDoux, 1999), was not affected by the onset of awareness.  The reason for this lack 

of modulation is unclear.  In eyeblink conditioning, similar results are observed (Clark et 

al., 2001): subjects expected an airpuff with a higher probability when there had been no 

recent airpuff. This effect was observed in both trace and delay conditioning.  Clark and 

colleagues found that the conditioned response increased for trace but decreased for delay 

as US expectancy increased, similar to our findings.  An inhibitory interaction between 

the prefrontal cortex and the amygdala has been shown in rats (Rosenkranz et al., 2003).  

In human studies, the prefrontal cortex has been implicated in awareness during learning 

(McIntosh et al., 1999), (Carter et al., submitted). It is possible that a similar inhibitory 

interaction between the prefrontal cortex and the amygdala is at work in our subjects. 

Similar to the conditioning studies where a brief temporal gap between CS and 

US eliminates successful trace conditioning under attentional distraction (Clark et al., 

2002; Carter et al., 2003), implicit perception and behaviors are remarkably retarded 

when subjects have to hold their response for a brief duration (on the order of 1 to 10 sec) 

(Marcel, 1993; Milner and Goodale, 1995; Rossetti, 1998).  This raises the possibility 
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that our brains may switch between conscious and unconscious operating modes 

depending on the temporal structures of the required task performance.   However, 

previous studies of implicit processing have largely ignored the importance of the 

temporal structure between stimulus input and behavioral response.  Because the implicit 

perception and behaviors themselves are still controversial (Morgan et al., 1997; 

Lovibond and Shanks, 2002), reports on implicit processing tend to emphasize only the 

positive existence of the subjects’ ability to perform tasks without conscious percepts, 

and therefore the relationship between temporal factors and implicit processing has not 

been extensively studied.  Implicit processing may degrade after some temporal delay, 

perhaps because the memory for implicit process may degrade very fast. However, it is 

also possible that neuronal systems for unconscious processing may be inhibited by that 

for conscious processing (Rossetti, 1998); in this study, we saw that delay conditioning 

did not increase at the onset of awareness, which cannot be explained by the short-

memory-for-unconsciousness hypothesis but can be explained by the conscious-

unconscious-competitive hypothesis.  

 In summary, our results support the ‘necessary-gate’ framework (Dawson and 

Furedy, 1976; Dawson and Schell, 1985; Lovibond and Shanks, 2002) and are consistent 

with (Dawson and Biferno, 1973; Biferno and Dawson, 1977) assuming that their 8-sec 

long CS delay protocol approximates trace conditioning at the neuronal level (Ivkovich et 

al., 2000; Herbert et al., 2003).  The difference between trace and delay conditioning at 

the onset of awareness supports the view that these two types of learning are related to 

awareness in distinctive ways (Clark and Squire, 1998; Clark et al., 2002; Carter et al., 

2003). 
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