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ABSTRACT

A new analysis of the stress distribution in a laterally—loa&ed,
thin, circular; cylindrical shell is presented. It is shown that the
mathematical analysis required is much simplified if the shell has
zero shear strain and zero circumferential strain. With these hy-
potheses the stress distribution for an axial line load is calculated,
and experimental measurements are made of the siresses in a shell
with such a load. The computed and measured stresses agree with
in the limits of experimental accuracy.

It is concluded that the proposed method of stress analysis will
give satisfactory values for the stresses providing the ratio of length
of cylinder to radius is sufficiently large and so long as there are no

abrupt variations in load intensity.
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I. INTRODUCTION

The established procedures for analyzing a laterally loaded thin
cylindrical shell are based on the system of equilibrium differential
equations given by Love.l The solution of these equations in even the
most simple cases, resulis in very complicated calculations. For the
solution of practical problems, writers have proposed numerous sim-
plifications which consist essentially of dropping more or fewer smaller
terms from the equations.'Z All of these analyses of thin shells are
based on the thickness h of the shell being sufficiently small coﬁpared
with the radius of curvature so that the stress distribution across the
thickness may be taken to vary linearly. The system of equilibrium
eéua:tions are linearized by restricting consideration to such cases
where the stresses Nx’ N', N,q., (Fig. 1) are sufficiently small so that
their effect on the bending is negligible. Also, the stress normal to the
middle surface,l's; , is taken to be small compared with other normal
stresses and is neglected in the stress-sirain relations. Since for most
types of loading, the shearing stresses, ’T"P;and'\;!, are small their
effect is usually neglec’l:e:d.2

The simplifications introduced by previous authors lead to an
eighth order partial differential ecpq.::itionz’3’4 having a greater or fewer
number of terms, depending upon the degree of simplification. An
example is the following equation in terms of the radial displacement,

w; which is given by Naghdi and Berry.3
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The present study utilizes a different approach that is not based on

the equations of L.ove and hence does not invelve an equation- of the type
of equation (1). The solution is obtained by applying the principle of
virtual displacements to the expression for the potential energy. By
making the potential energy the chief consideration, it is possiblé to
determine which factors may be neglected without introducing serious
inaccuracies.

To verify the accuracy of the analysis an experimental measure=-

ment of stresses was made.



II. MIDDLE SURFACE STRAINS, SURFACE STRAINS, STRESSES,

AND DEFLECTIONS OF THE SMALL CYLINDRICAL ELEMENT

The nomenclature for the stresses, strains, etc., given by
Timnoshenko,2 will be used here. |

Figure 1 shows an infinitesimal element of the cylindrical shell
loaded by forces and moments. The location of the elemen;c is‘given by
the distance g from the middle of the span, and the angle @ measured
clockwise from the top generatrix.

The deflections of the element are shown in Fig. 1. The axial
deflection U and tangential deflection y"are positive when the ele;rieﬁt
moves in the positive direction of /¢ and @ respectively. The radial
deflectionwris positive when the element moves toward the axis of the
cylinder. The shearing strain ¥ is positive when the shearing stress
N"“?’ is positive. Fig. 1 shows the positive directions for all d.eflections
and stress components.

The stress components defined here are measured pér unit width
of the element. ‘The bending moments st acting in the axial or longi=-
tudinal plane, a.ndM.\,, acting in the transverse plaﬁe, are posiﬁve when
they i:)roduce tension on the inner surface of the element. The twisting
moment qu,is positive when it produces tension on the inside surface
‘along a diagonal direction of increasing values ofs and‘q . The stress
components}l,‘ , acting in the axial ef longitudinal direction, anqu,,
acting in the transverse direction, are positive when they produce
tension, The shearing stress components, NX? anqu,,r , are positive
when they produce tension along the diagonal of increasing values of

« and@. The radial shear stress components, Qy andQ?, are positive



Fig. 1



when they act in an outward direction on the two sides facing nearest the
origin of coordinates «# and .

TirrlosI.uanko2 gives the following well-known relations between
middle surface strains, deflections, and stress components, applicable
to the small element of length dv, widthaaq, constant thickness \1‘, and
radius @. The surface that bisects the thickness of the shell is called

the middle surface. Thus, the transverse middle surface strain is given

by:
(2 - -
€r= g §E-w) = g We—vi) . Q
The axial middle surface strain is given by: |
- v b - .
€, = 2 = g (Nu-vNe) S0
The shear strain is given by:
= o0 ou . KN 4
¥ = 34 Taoe en . () | (4)

The change in the longitudinal curvature is given by:

b“ur

— 5a
The change in transverse curvature by:
= — 120-v¥) | 5b
Ao = (‘”“l‘ ;r;:.) == g Mo o (55)
The twist of the middle surface is given by:
_ (P
Xx? = a (6?69: ) (5¢)

The material constants, Poisson®s ratio and Yéung‘s modulus, are
denoted by V¥V and E respectively.
The surface strains, those which are directly measured at the

surface, are derived from the following considerations. In the case of

. . . J l
simple bending if Yx and ¥¢ are the values of the radii of curvature



after deformation, the elongations of a thin lamina at a distance, 9 from
the middle surface (Fig. 2) are, to a first order approximation, ex-

prressed by:
’ { \ . | \

=-3F- g)=—3Nite=-30G-w)IX ©
If, in addition to bending, the sides of the element move apart, one may
superpose this stretchiﬁg of the middle surface on the aboye elongations.
Let these second elongations of the middle surface be Ei and 6,;. One
then obtains, to a first order approximation,

&= §=3Uc (a) €= &—F%o (b) - (7)

Surface strains are then obtained by substituting half the thi.ckness of
the shell,—%-, for 3 Using these expressions for the components{bf
strain of the surface lamina and assuming that there are no normal

stresses between laminae (q§= 0), the following expressions for the

components of stress are obtained:

— h |
G“‘¢ —--————15}1[611"”6._ Z (Xq;'f‘”'XX)] - (8)
h '
0y .—‘I:EBT. [6\""’6‘1" -,—;(Xx-!-V?(pﬂ (9



III; FORMULATION OF THE PROBLEM

A. Underlying Assumptions and Simplifications

Consider a thin axial strip of the circular cylindrical shell in
Fig. 3.  The axial stress @™ in this element is produced by an elongation
of the strip plus a bending of the strip, (Fig. 3b). The bending stress
in the element is assumed to be given by the elementary beam theory

so that it may be expressed by,

v
o-—-o-o—'_:—-f;-a-ﬁ'c | (10)

Axial Stress

ad
[ //

//l

- o
\~“-—_i____'__—-—--“"'”7ﬁ/
Lm (b)

Fig.3

Differentiating with respect to ¢, and noting that dc =QJQ, one obtains,



) 2
a;g:::— ngx’“ (11)

The elementary beam theory, (Eq. 10), requires the strain in the cir-
cumferential direction to be zero (€, = 0), so the axial stress of the

element is given by,

ou (12)

o = dx

Differentiating Eq. 12 with respect tod.cl@and eliminatingﬂ"‘by‘means

of Eq. 11, the expression relating the axial displacement W with the

tangential displacement V" is obtained,

L o* v |
Z;&b&?_‘— 30‘1 e - (13)

Integrating this expression with respect to the variable &« gives,

which states that the shear strain is zero. The condition €2 = 0 also
imposes a restriction on the displacements as follows: €, a‘;‘r “WwW-090

®

therefore,
w- = 2V (15)

~ Equations 14 and 15 give two relations between the fhree compo-
nents- of displacement W,V ,w~ and if they are used, the analysis is
very much simplified. Physically these relations mean that the shell
is made of a material that has an infinitely large modulus of shearing
rigidity as regards the shear strain]fxq, and an infinitely large modulus
of elasticity as regards the circumferential strain e,_. Although an
actual shell will not have these moduli infinite the strains Xx?and €2
will be small if the length of the cylinder is large compared to the
radius and if the thickness is sufficiently small compared to fhe

radius. A large class of practical applications satisfies these condi-



tions and an analysis based on equations (14) and (15) will give the
stresses apd strains to a satisfactory degree of accuracy. In the
vicinity of a concentrated load the strains qu,and €, may be large and
in this case the computed stresses in this region may have appreciable

inaccuracies.

B. Formulation of the Potential Energy

The present analysis utilizes the principle of virtual displacements
so that it is necessary to formulate the expression for the strain energy
of the shell. The strain energy, per unit area, of the bending moment

components, M‘ and MQ is given by,2

_ D 2 2 .
.VBEND. .—- z [Xq, -+ Xx + 2 PXxX¢] (16)
3
where D = FZE_(IL?)- , and is called the flexural rigidity. The first term
-V

represents the energy of the transverse or cross bending. The second
term represents the energy of axial plate bending. The third terin is
that energy produced by the simultaneous action of the two bendings.
The strain energy, per unit area, of the twisting moments M;Qand
%‘is expressed by, N |
Viwise = P () 'X':c? | (17)
The strain energy, per unit area, of the shear forces Gxand Q?

_is given by,

Vonenn = (f(,‘;,))(xxﬁ- +) )

The strain energy, per unit area, due to stretching of the middle

surface of the shell is given by,

Vsraern, = ‘zL' (Nx €t Nogot quﬁ,,@) N (19)

The first term represents the energy of the axial extension of the



10

middle surface. The second term represents the énergy of transverse
extension of the middle surface. The third term is that energy pro~
duced by tﬁe simultaneous action of the two extensions,

The total strain energy of an infinitesimal element of the cylinder
is thus obtained by adding together, the energy of bending (Eq. 16), the
energy of twist (Eq. 17), the energy produced by the shear forces Q, and
Q?(Eq. 18), and finally the energy of stretching (Eq. 19).

N = Veewo. + Vrwrszt Venzar, + Vsrrezen, (20)

It is possible to neglect certain factors in this expression without
introducing serious inaccuracies. In this analysis axial pla.fe bending
energy is small compared with the energy of cross bending and is
neglected in Eq. 16. The effect of the third term in Eq. 16 has been
observed to be negligible compared with the cross bending termv and
consequently is neglected in the present theory. The shear forces Qy
and Qqare small for most types of loadings, and the energy produced
by these forces, (Eq. 18), is neglected in the total expression for the
strain energy of the shell. 4

Since the conditions of negligible shear (qu, = 0) and of inextension
in the transverse directions (G,,\ = 0) have been iﬁposed, the stretching
of the middle surface is considered to be in the axial direction only.
Thus, the final two terms in Eq. 19 are omitted in the expression of the
. strain energy.

Integrating this expression (Eq. 20) and applying the above simpli-
fications and Eqgs 3 and 5, the strain energy for the circular cylindrical

shell is obtained in terms of the displacements.

V= JT1R @ s T 2 R adebe

d Qo
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The first two terms of the integrand are the axial beam bending exten-
sion and transverse bending energies respectively. The final term

represents the energy of twisting.

C. Boundary Conditions

The tangential displacement V"may be expressed in the form,
ad
v = 2 fiamne @
Applying Eqgs. 14 and 15, relating the axial displacement Wand radial
displacement W-to the tangential diéplacement Vrespectively, one ob=-
tains,

w = Z '3\' {;(*)WV‘(P

L]

we = v\Z=| hfv\(x) U2 ne

For a particular application the -f“ (x) must satisfy the boundai'y

(23)

conditions at the ends. The boundary conditions depend on the nature
of the restraint of the ends of the shell and on the method of support of
the cylinder as a whole, i.e., built-in, free, or simply supporkted.‘ Two
types of restraint of the end of the shell are shown in F1g 4,

The particular type of shell

| restraint has a small effect
on the stress distribution in
- - - regions away from the ends.
Thus, in the case of thin
| = v anr asy aar i ) shells the rim stresses are
bui(lt)—in pin—(g;uiéd distributed only over a com-
a

paratively narrow region;
Fig. 4 ,
this has been well established

and is presented in detail by Schorer.4 The present analysisi utilizes

restraint 4b,
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By restricting the discussion to the case shown in Fig. 5, the anal-
ysié is much simplified. Fig. 5 shows a simply supported cylindrical
éhell, of cifcular cross-section, supported between two transverse end
stiffeners (Fig. 4b), located in a plane normal to the axis of the shell.

The shell is pin-ended as shown in Fig. 4b.

Fig. 5

This represents a typical and practical application since tubes or cir-
cular shells, subject to continuous surface loads require ciréumferen-
tial stiffening members at the supports, as in the case of pipe lines,
tanks, etc. |

The boundarjr conditions at the two ends, located in the coordinate

£

system shown in Fig. 5, are: At A== z
- w=o0
2%
9
v == 0
ou
Sx =0~

(24)

Choosing the eigen functions appropriate to these boundary conditions,

the displacements may be expressed by,
00

VS ) Amwan n a3 o (25)

m,“
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= T L r
w ——;QA"‘J“(%—) o o9 NG am Tl (25b)
3 )y
w= Z Amn (“) “one w"v_}"‘ x (25c)
v, h

It should be noted that for vt = 1, the displacemenis are:

Vo= Z AMMCPW-‘%I’X - (269)

. =—za A (BT) crog e Ty (o)
w"‘-if\mmqm%oc (26¢c)

This repres ents a purely vertical displacement without distortiovn of
the cross-section. Thus, the radial deflection of the shell at the top
generatrix, (@ = 0), due to the contribution of the first transverse
harmonic (v = 1) is the expression obtained by the elementarﬁr beam
theory where deformation of the cross section is not coﬁsidered.5
Therefore, the contributions to the displacements from the higher
transverse harmonics (n » 1) are “corrections” applied to the simple

beam theory.

D. The Radial Concentrated Load Problem

In the immediate vicinity of a concentrated force the strains Zm
and €, will have an appreciable effect. However, over the remainder
of the shell, the simplified expression for the strain energy (Eq. 21)

will describe the state of stress with satisfactory accuracy.
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Fig. 6

Fig. 6a shows a radially directed, concentrated force api)lied on
the top generatrix mid-way bétween the two trénsverse' end stiffeners,
(k=20,0=0). The shell is simply supported at each endv.

To obtain the coefﬁcient,Am’,\, in the expression for the displace-
ments, the principle of virtual displacements is émployed. ‘

Sw=Jv (27)
The work done by the force P, as a result of an infinitely small varia-

- tion in the radial displacement, is

SW=P5W‘ = {PSA“‘:“:V\'WV\'?/W“-!}-?‘ o, 9.°= PXANIV( v (28)

Equating this to the variation of potential energy and solving for the

coefficient, A“’l"" there is obtained:



15

Avu,v\ s i) ‘_“1)1 ‘ 2 2 ' (29)
& S T T e

E. The Uniform Radial Line Load Problem

Fig. 6b shows a uniform radial line load extending the full length
of the top generatrix, (@=0). The line load of intensity g lbs per in.,
produces a virtual work, as a result of an infinitely small variation in

the radial displacements, that is given by:

;w {%JA"I“IWCOGV\QJ‘W" 4)4} %SA /l“zﬂ MV\MT (30)

2
p=0
Equating this to IV there is obta.1ned:
an AL
A'“,V\ ’zsj— z‘l- A A 122 (31)
Eh M [ “«)1 (/z)#_)Jr(i)ui]
vt + - (2) () (@ AT

Egs. 29 and 31, therefore, in conjunction with Eq, 25 express the dis -
placements, W ,v, and W, for the concentrated load and the line load
respectively.

Differentiaﬁng the axial displacement W with respect to the axial
coordinate 4, the expression for the unit axial middle surface strain is

obtained.
— U f m o W
~x Aw,w " ) Q@ co~ r B (32)
M

Applying Eq. 5b, similarly, for the change in transverse curvature, one

obtains,

2 2. ,
Xo= gz (w3 ) = ) A R nceonqers 5T o3

a ) e a
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IVv. APPLICATION OF THE THEORY TO A SPECIFIC
CIRCULAR CYLINDER

To verify the analysis with measured results a cylinder was made
with the following dimensions:
2 = 45.0 inches, length

a = 3,367 inches, constant cross sectionél radius
h = 0.015 inches, shell thickness
The shell material was steel with Young®’s modulus and Poisson's ratio

of 30 x 106 psi and 0.3 respectively

For simplicity in the calculations, the following notation is adopted
Tl‘sE-h @«

4 2 '
(4) () ;4"(.13362) (39)
b

G(v)Tia®

il

With this notation and the application of Eqgs. 31, 29, and 25, the follow~
ing expressions for the displacements are obtained. For the radial

concentrated load problem the displacements are expressed by,

<0 w T
T>V: =K Z. NP o

(35a)
fn ]k L (%) e G

A a5 OO’JVKPAJM T“
P KT (7) Z -[ +L (l-.v"l) +q (-ﬂ.)] (35b)

] w U .
L OB e (= v B
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For the uniform line load problem the displacements are expressed by,

Y 2x(@) 5 _ anne aniTaunn "
% ™ m‘“m"[__’_l_(l—m‘)_\-a(n)]
o0 wmr w1
- CoOaNPoimn g K A
- ==-2Ka (36b)
3 Yy oYYy
w wAr
%‘ (_)Z Cen® o Frx am FE (369

o Tt L) e ()]

The constants appearing in these series and defined by Eq. 34,

when evaluated for this cylinder, are:

K

L
Q

A typical example of the calculations is presented below. The

I

34.64 x107° iin/lti

595.328 x 1070 [o]

)

H

46.05 x 1070 [0}

radial deflections >, of the shell at the mid-span are caiculated for a
uniform radial line load extending along the top generatrix (Fig. 6b).
These radial deflections are given by Eq. 33c. When the axiai distance,
~, is set equal to zero, the resulting expression (Eq. 37) is a double
Fourier series with transverse harmonics indicated by mode number,
- W, and axial harmonics indicated by mode number, M. The series has
been evaluated through the eighth (W = 8) transverse mode and seventh
(m=7) axial mode.

Results of sufficient accuracy for most practical applications
would be obtained with fewer terms. For example, evaluating the

series through the seventh axial harmonic and through the following
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number of transverse harmonics gives results for the radial dis=-
placement with these accuracies: n = 4, 7 percent; n = 5, 3 percent;

n = 6, 1 percent,
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RADIAL DEFLECTION AT THE MID-SPAN TRANSVERSE
CROSS SECTION FOR THE UNIFORM RADIAL LINE LOAD

10° W~ 2 Coo NP o
333363 9 = XY 106 YR n\?
383 4y e Brrswsa 0y +uos (B o)

TABLE 1. TRANSVERSE HARMONIC CONTRIBUTIONS TO RADIAL DISPLACEMENT

A. First harmonic, n = 1.

)o" n &Mr
"""'*’-M‘PZ%
{24 Y

CEEETE Y
m m5 (m 5)"'1
1 1 1.0000
3 243 0.0041
5 3,125 0.0003
7 16,807 0.0001

0.99%

B. Second harmonic, n = 2

o T

’ *
N g
198353 % WZQZ“; G250 6. m®+ 535795 wm + 102, 72m3

m m3 m5 62,506.12m5  5,357.95m 103.72m3 ) 31 x 108

1 1 1 62,506.12  5,357.75 103.72 467,968 +14.713
3 27 243 15,188,987.16 16,073.85  2,800.44 ~15,207,861 - .066
5 125 3,125 195,331,625.00 26,789.75 12,965.00 +195,371,380 + .005
7 343 16,807 1,050,540,358.84 37,505.65 35,575.46 —1,050,613,441 - .00l
9 729 59,049 3,690,923,879.88 48,221.,55 75,611.88 +3,601,047,714 + .0003
11 1,331 161,051 10,066,673,132.12 58,937.45 138,051.32 -10,066,870,121 — .0001
' 14.651
C. Third harmonic, n = 3
e
] Airn D
v mma— oo o SQ 5 g‘%
493,383 § s 1235 m® + 348w +IToiwm
m m3 m5 12,352m5 328m3 38,101m ) =1 x 106
1 1 1 12,352 ‘328 38,101 50,801  +19.685
3 27 243 3,001,536 8,856 114,303 3,124,695 - .320
5 125 3,125 38,600,000 41,000 190,505 38,831,505 + .026
7 343 16,807 207,600,064 112,504 266,707 207,979,275 - .005
9 729 59,049 729,373,248 239,112 342,909 729,055,269  + .0014
1 1,331 161,051  1,989,301,952 436,568 419,111  1,990,157,631 -~ .0005 -
13 2,197 371,293  4,586,211,136 720,616 495,313  4,587,427,065  + .0002
15 3,375 759,375  9,379,800,000 1,107,000 571,515  9,381,478,515  — 0001

19.387
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D. Fourth harmonic, n = 4

e
. M]‘_’:
L w mq.pZ kol Y
433,35 § w 3912 m® £ 4648 WO+ 132,94 %m
m m3 m5 3,912m5 648m3 133,949m 0] ()1 x 106
1 1 1 3,912 648 133,949 138,509  + 7.220
3 27 243 950,616 17,496 401,847 1,369,959 - .730
5 125 3,125 12,225,000 81,000 669,745 12,975,745 4+ 077
7 343 16,807 65,748,984 222,264 937,643 66,908,861 — .015
9 7929 59,049 230,996,688 472,392 1,205,541 232,677,621  + .004
11 1,331 161,051 630,031,512 862,488 1,473,439 632,367,439  — .0016
13 2,197 371,293 1,452,498,216 1,423,656 1,741,337 ~ 1,455,663,209  + .0007
15 3,375 759,375  2,970,675,000 2,187,000 2,009,235  2,974,871,235  — .0003
17 4,913 1,419,857  5,554,480,584 3,183,624 2,277,133  5,559,941,341 = + .0002
19 6,859 2,476,099  9,686,499,288 4,444,632 2,545,031  9,693,488,951 - .0001
6.555
E. Fifth harmonic, n =5
( < Wi
3353 4 = coe 50 /_ e
13333 9 W 1606md 4+ 1082w + 344999 wm
m m3 m5 1,606m5 1,062m3  342,909m ) ! x 106
1 1 1 1,606 1,062 342,909 345,577  + 2.89%
3 27 243 390,258 28,674 1,028,727 1,447,659 = <~ 691
5 125 3,125 5,018,750 132,750 1,714,545 6,866,045  + .146
7 343 " 16,807 26,992,042 364,266 2,400,363 29,756,671 = — .034
9 729 59,049 94,832,694 774,198 3,086,181 98,693,073  + .010
11 1,331 161,051 258,647,906 1,413,533 3,771,999 263,833,427 - .004
13 2,197 371,293 596,296,558 2,333,214 4,457,817 603,087,589  + .00l6
15 3,375 759,375  1,219,556,250 3,584,250 5,143,635  1,228,284,135  — . .0008
17 - 4,913 1,419,857  2,280,290,342 5,217,606 5,829,453  2,291,227,401  + .0005
19 6,859 2,476,099  3,976,614,994 7,284,258 6,515,271  3,990,414,523 -~ .0003
21 9,261 4,084,101  6,559,066,206 9,835,182 7,201,089  6,576,102,477  + .0002
23 12,167 6,436,343 10,336,766,858 12,921,354 7,886,907 10,357,575,119  — .0001
2,322
F. Sixth harmonic, n =6
mwm T
. W Cou GQE —_— N Z
193353 W T78mI £ 15CTwm? + 729,217 m
m m3 m5 778m5 1,567m3 729,277m ) )1 x 108
1 1 1 778 1,567 729,277 731,622 +1.367
3 27 243 189,054 42,309 2,187,831 2,419,194  — .413
5 125 3,125 2,431,250 195,875 3,646,385 8,692,704  + .115
7 343 16,807 13,075,846 537,481 5,104,939 18,718,266  — .053
9 729 59,049 45,940,122 1,142,343 6,563,493 53,645,958  + .019
11 1,331 161,051 125,297,678 2,085,677 8,022,047 135,405,402 - .007
13 2,197 371,293 288,865,954 3,442,699 9,480,601 301,789,254  + .003
15 3,375 759,375 590,793,750 55,288,625 10,939,155 607,021,530  — .0016
17 4,913 1,419,857 1,104,648,746 7,698,671 12,397,709 1,124,745,117  + .0009
19 6,859 2,476,099 1,926,405,022 10,748,053 13,856,263 1,951,009,338  ~ .0005
21 9,261 4,084,101 3,177,430,578 14,511,987 15,314,817 3,191,943,565 + .0003
23 12,167 6,436,343 5,007,476,410 19,065,689 16,773,371 5,043,315,470  — .0002
25 15,625 9,765,625 7,597,656,250 24,484,375 18,231,925  7,640,372,550  + .0001

1.030
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G. Seventh harmonic, n =7

e

T
b W 7P ) N
493,353 g - AZ3wv” + Z16Twvm® +1,37L636m

m m3 m5 423m5 2,167m3  1,371,636m ) ()1 x 106
1 1 1 423 2,167 1,371,636 1,374,226  +0.728

3 27 243 102,789 58,509 4,114,908 4,276,206 — .234

5 125 3,125 1,321,875 270,875 6,858,180 8,450,930  + .118

7 343 16,807 7,109,361 743,281 9,601,452 17,454,094  — 057

9 729 59,049 24,977,727 1,579,743 12,344,724 38,902,194  + .026
11 1,331 161,051 68,124,573 2,884,277 15,087,996 86,096,846  — .012

13 2,197 371,293 157,056,939 4,760,899 17,831,268 179,649,106  + .0056
15 3,375 759,375 321,215,625 7,313,625 20,574,540 349,103,790  — .0029
17 4,913 1,419,857 600,599,511 10,646,471 23,317,812 634,563,794  + .0016
19 6,859 2,476,099 1,047,389,877 14,863,453 26,061,084 1,088,314,414 . — .0009
21 9,261 4,084,101 1,727,574,723 20,068,587 28,804,356 1,776,447,666  + .0006
23 12,167 6,436,343 2,722,572,089 26,365,889 31,547,628 2,780,486,000  — .0004
25 15,625 9,765,625 4,130,859,375 33,859,375 34,290,900 4,199,009,650  + .0001

0.580
H. Eighth harmonic, n =8
ad
x wr . AdsA N
4493.333 ¢ o RTOVMS 2858 TASERES T

m  m3 m5 250m5 2,858m3  2,362,857m ®). (™ x 106
1 1 1 250 2,858 2,362,857 2,365,965  +0.423
3 27 243 60,750 77,166 17,088,571 7,226,487 - .138
5 125 3,125 781,250 357,250 11,814,285 12,952,785  + .077
7 343 16,807 4,201,750 980,294 16,539,999 21,722,043 - .046
9 729 59,049 14,762,250 2,083,482 21,265,713 38,111,445 + .026
11 1,331 161,051 40,262,750 3,803,998 25,991,427 70,058,175 - .014
13 . 2,197 371,293 92,823,250 6,279,026 30,717,141 129,819,417  + .008
15 3375 759,375 189,843,750 9,645,750 35,442,855 364,751,772 = — .003
17 4,913 1,419,857 354,964,250 14,041,354 40,168,569 409,174,173  + .002
19 6,859 2,476,099 619,024,750 19,603,022 44,894,283 683,522,055  — .0015
21 9,261 4,084,101 1,021,025,250 26,467,938 49,619,997 1,097,113,185  + .0009
23 12,167 6,436,343 1,609,085,750 34,773,286 54,345,711 1,698,204,747 - .0006
25 15,625 9,765,625 2,441,406,250 44,656,250 59,071,425 2,545,133,925  + .0004
27 19,683 14,348,907 3,587,226,750 56,254,014 63,797,139  3,707,277,903  — .0003
20 24,389 20,511,149 5,127,787,250 69,703,762 68,522,853 5,266,013,865  + .0002
31 29,791 28,629,151 7,157,287,750 85,142,678 73,248,587 7,315,678,995 -~ .0001
33 35,937 39,135,393 9,783,848,250 102,707,946 77,974,281  9,964,530,477  + .0001

0.334
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Figure 7 shows the radial deflection as a function of the coordinate
Q (Eq. 37c)., at the mid-span cross section under the applied uniform
.fadial line load (Table II). Figure 8 is a curve showing similar results
(see Appendix) obtained for the case of the single radial concentrated
loéd as in Fig. 5a.

From Eqs. 32 and 31 for the uniform radial line load, the following
expression for the direct unit axial strain is obtained:

9_9. = —KkKR Z “wan @ WI“ Mﬂ
bt 2 N een

Figure 9 shows the unit axial straing,, of the middle surface at the mid-

i

€

span transverse cross section as a function of “beam depth“%. The
numerical calculations appear in the Appendix.

Using Eq. 33 for the change in transverse curvature, Eq. 31 for
the coefficient A,,.,\for the line load, and the notation of Eq. 34, the

change in transverse curvature is expressed by,

..“t v !L,x \%I |
Xe= (“"*aqz) K% zf) 2 ‘ ]'_—)-“-:qur:‘)q-:me“-)z] (39)

Figure 10 shows the change in transverse curvature at the mid-span

‘cross section as a function of the coordinate,® . The series e‘xpres-
sion., Eq. 39, is identical with Eq. 36c¢c for the radial defléctiondtr, except
for the coefficient ‘—"g in each term. Thus, the bulk of the numer-

- ical calculation has been performed in the foregoing sémple calculation.

The calculations for this curve are /presented in the Appendix.



2

XTYLVIENTD dOL
(0 =®) ‘XT¥L 1D <

ZOA< QALY avOoT _mzﬁ IVIaV¥E INYOJINN
® \ \ & ALYNI

Qmoou mkw\/ /
=
NOILDJS SS0O¥D Z¢QWIQH§

m_H_ J0 NOILODHETAHA TVIAVH
A.J GE'E66 .

— ‘NOIL UHA.MHQ ddﬁﬂ.«qﬁ

05" G2- &m & o5

Fig. 7



25

5 _2love zoﬁumqmmm qﬁm<

8 =) ‘XTI LVIEINED dOL FHIL NO

——— 7

Z<&m|QH§ IV aITddy 35904 TvIavd QM.H<MHZHUZOU HAOZHW

d LLVNIQEO0Q m%
\ oﬂoma SSOUD NVAS~AIN HELL moﬁoﬁomqmmn IVIavy

\ _ /
051285
Dzl

o 0S OO0l

Om

Fig. 8



26

%

AXIAL STRAIN AT THE MID-SPAN CROSS SECTION
vs. DIAMETRAL DEPTH
UNIFORM RADIAL LINE LOAD APPLIED ALONG
» TOP GENERATRIX (p= 0)
3 =0
o1
//O/
D//
e
/O/ — 2 T
”
-
ap
=
RS
i §
m
5 4\3 2 || o - -2 3 -4 -5 -6 -7
o AXIAL STRAIN, 81800 (3¢)

Fig. 9



27

, (0 =) ‘XTEILVIENED dOL :
DNOTV QIITddV AVOT IANIT "TVIAVY IWYOJINA

\ \\eMH<szmooo 4 NOJLOTS,

— ) B
SSO¥D NVAS-AIN THIL LV “®x‘@¥NLVvAYND ASETASNVEL NI IONVHO

[T

=Y Pl ‘HEIALVAYAID ISEHAASNY YL NI 3DNYHD
2 10/l & ¢

,om_v-

RN
: )5

Fig. 10



28
V. EXPERIMENTAL APPARATUS

A. Physical Description of the Cylinder

The cylindrical shell used in performing the experimental portion
of this study is shown in Fig. 11. The length of the cylinder is 45 inches;
the cross sectional diameter is 6.734 inches. The shell is made of
sheet metal having a thickness of 0.015 inches. There is a welded
axial seam which during the experiments was always located at a
position of minimum extension and radial displacement so that it had a
negligible effect upon the symmetry of the shell. A heavy transverse
ring stiffener is brazed to each end of the cylinder. The cylinder is
supported on four small (3/8 inch square) rubber pads directly under
the ring stiffened ends of the cylinder. Fig. 5 shows schematically these

four points of support.

Fig. 11
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B. Uniform Radial Line Loading Apparatus

To simplate the uniform radial line load use is made of a thin
r;lbber strip and a ballast supporting wire net. The stripping is
grooved and 3/8 inches wide as shown in Fig. 12, which furnishes
flexibility in both the transverse and longitudinal directions. It 1s
placed élong the top generatrix (Q = 0) extending the full length of the
cylinder. The ballast supporting net is 5 inches wide to accommodate
the 25 pound ballast sacks, four of’wlhich are placed axially on the net
extending the full length of the cylinder. The loading is thus »not pre-
cisely a line load but is actually a 3/8" wide strip load. Fig. 13 shows
the rubber stripping in place and the net and ballast sacks in the fore-

ground.

Ballast supporting
wire net

Cylinder
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C. Radial Concentrated Loading Apparatus

The radial concentrated force is applied by the apparatus shown in
Fig. 14 which consists of a wooden fixture through which slides a 1/2
inch steel rod. The concentrated force is applied by the contact end of

the rod which is slightly tapered and spherical.

D. Apparatus for Displacement Measurements

The radial measurements are obtained by introducing into the
cylinder a 1-inch Ames dial gage (10.001"). The gage is mounted on a
small carriage which can slide along a'full length of shaft which is in
turn mounted at each end of the cylinder in suitable bearing. Itis pos-
sible to position the dial gage at any desired point of the shell surface.

Figure 15 shows in detail the Ames dial gage, its carriage mount, and

an angle protractor to designate the position coordinate. The tape
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Fig. 14

Fig. b

measure, also shown in the figure, is to designate the axial position

coordinate, ff.
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E. Strain Measurement Apparatus

Strain is measured with Type “A”™ SR4 wire strain gages attached
to the shell surface with Duco household cement. The gages are located

at the mid-span transverse cross section (& = 0). Their positions on

this cross section are shown in Fig. 16 and 17.
& &

e ,él:"" @ Even numbers - axial strain gage
b é’._ﬁs‘ Odd numbers - circumferential gage
¢ R e i - Inside gage

(©
= 2
(19

®
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The basic D.C. resistance bridge circuit to which each gage is

associated is shown schematically in Fig. 18.

Ra= Active strain gage, 1204
Ry = Dummy gage, 120
R“ R, = Stationary bridge resistors
€ =D.C. emf, 6 volts
AR' = Resistance calibrator

Fig. 18

The electrical quantities are related by the following expressibn;

Vv — RA Rz"' Ru Re (40)

E = (RARIRFR,)

Applying a small calibrating change in R, Eq. 40 becomes,

é_v'= &Ra—LR|~AR']Rn ‘ (41)
E (Ra+ Ru)(R, +R-8R")

According to the conjugate or balancing condition of the bridge,
RARZ ‘-R‘ Rp = 0. Since AR is small compared with R, and Ri, Eq. 41

may be expl:essed to a first order approximation, as

A V' = A R‘ R p (42)
E (KA+ RD)(R/I "'RZ)
Similarly, for a small change inR‘ ,
AV - _ ARaRy )

E (Re Ro)(R,+ Ra)

Dividing Eq. 43 by Eq. 42, one obtains,
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ARA

= {Rz AV }AV K AV (44)

where K is the calibration constant. The gage factor, G.F., relates the

percentage change in resistance to the unit surface strain and is defined
by,

| AR
R N RAA - (45)

A Brown electronic continuous balance potentiometer and a multi-

stage switch are employed and are shown in Fig. 19.
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VI. EXPERIMENTAL PROCEDURE

A. Radial Deflection Measurements

Before the application of loads to the cylinder, an initial survey of
the mid-span transverse cross section is made. Final surveys are
made of the cross section for the cylinder in the loaded conditions.

The difference between the final and initial surveys is then.the net radial
deflection resulting from the applied loads. The cross section‘in the
initial survey deviates irregularly about a mean circle. The maximum
deviations from this mean circle are 0.06 inches. It was verified that
these deviations had a negligible effect upon the stresses anci strains,

or in other words, the magnitude of the stress was well below thét re~
q‘uiréd for local buckling.

An épproxiinately uniform radial line load, extending the full
length of the cylinder along the top generatrix, is applied by the appa-
ratus described previously. The measured average line load intensity,
%, is 2.53 pvounds per inch. This loading causes a 0.11 ingh maximum ra-
dial deflection at mid-span directly under the load. Fig. 20 shows the
experimental dairza‘for the radial deflections at the mid-span. A curve
of the computed solution for 2.53 pounds per inch line load intensity is
also shown.

For the second type of load, a single radial concenﬁrated force of
22 pounds is applied at the mid-span by means of the fixture previously
described (Fig. 14). Fig. 21 shows the experimental data for the radial
deflections at the mid-span as a result of this concentrated load. A
curve of the computed displacements for a force of 22 pounds is also

shown.
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The computed solution for the radial deflections at the mid-span
produced by the radial concentrated load agrees less closely (within
‘;’)3 percent at positions of maximum Ames dial gage readings) with the
experimbental results than in the case of the uniform line load. This
discrepancy is partly due to the fact that an insufficient numbert of terms
were used in the computations and is partly due to the fact that the anal-
ysis is not applicable in the immmediate vicinity of the applied force
where x’"f and €z are not negligible.

B. Measurement of Strains Caused by the Uniform Radial Line Lioad

Axial surface strains €, are measured at nine locations around the
mid-span transverse cross section (Fig. 16). Since with this type of
loading there is negligible axial plate bending the axial surfacé‘s_train
is the same as the axial middle surface strain. Figure 22 shows the
measured axial outside surface strains at the mid-span, and a curve of
the éomputed middle surface axial strain € is also shown for the same
cross section.

Transverse surface strains (‘? are measured at four locations
around the mid~span transverse cross section. At these four positions,
gages are attached both on inside and outside surfaces éf the shell.
This is to facilitate the separate determination of the direct extension
and the transverse bending strains. In the analysis, the direct circum-
. ferential extension of the middle surface € is neglected. At the posi-
tion of maximum gage reading, directly below the load 7 percent of the
reading is due to the effect of direct circumferential extension of the
middle surface. Thus, this effect, although present, is small. Fig. 23
shows the experimental data for the transverse outside surface strains

resulting from transverse bending. With this data, is included a curve
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AXIAL SURFACE STRAIN AT THE MID-SPAN CROSS SECTION

VS.

DIAMETRAL BEAM DEPTH

UNIFORM RADIAL LINE LOAD, q = 2.53 lbs/in

: oo

\

BEAM DEPTH (in)

-l : '-2 ,
AXIAL STRAIN, x 10% (in/in)

O Theoretical Curve
/\ Experimental Data

Fig. 22
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of the computed solution for the outside transverse surface strain,

h
ERXS

VII. COMPARISON OF THEORY AND EXPERIMENT

The agreement between computed and experimental re‘su.lts depends
on the number of terms included in the evaluation of the series expres-
sions for the deflections, etc. as well as on the accuracy of the experi-
mental data.

The measured radial deflections are estimated to be accurate to
£0.003 inches. This represents the combined error accumulatéd from
the iﬁitial and final radial deflection surveys. Considering the line load
case,'the compﬁted solution for the radial deflection at the mid-span
cross section checks very closely with observation (within 4 percent at
positions of maximum Ames dial gage readings). From the convergence
properties vof the series expressions (see example calculations, page
{9), for these deﬂections, agreement within 5 percent of the measured
results would be dbtained if terms are included only through the fifth
traﬁs_verse harmonic M = 5), and through the fifth axial harmonics,
fm = 5). Therefore satisfactory results, for most practical applications,
can be obtained with an appreciable reduction in the numerical com~
'putations from what was actually used.

Considering the possible SR4 s’t?ain gage accuracy and that of the
associated equipment, strain measurements are estimated to be accu~
rate to 5 percent. The computed solution for the axial surface strain,
521%’ and transverse surface strain,% )(q,, of the mid-span cross section

due to the uniform radial line load checks very closely with observation.
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See Figs. 22 and 23. An estimate of the experimental scatter and/or
asymmetry of the strains is obtained by comparing measured strains
for a group of gages which are located symmetrically and therefore
strained. the same amount theoretically. The difference in strain

values recorded at these locations does not exceed 3.5 percent of the

ou
on

data is within 10 percent of the maximum gage readings except in a 30°

readings. The correlation of the axial strain, with the experimental
region about the load. The 0.05 x ,10_3 inch per inch maximum dis~
crepancy in axial strain measurement in this region is attributed to the
fact that the loading was actually applied over a width of 3/8" instead
of the zero inches used in the computations. In this region, also, it is
found that maximum discrepancies occur for the transverse sin‘-f_ace
strain measure_ments.l

On the whole, the agreement between theory and experiment is
sétiéfactory and it is concluded that the simplified analysis gives
accurate values for the stresses and deflections for thin-walled
cylinders with sufficiently large ratios of span to radius'except in the

vicinity of a concentrated load, etc.
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VIII. SUMMARY AND CONCLUSIONS

A simplified method of analysis of a laterally loaded thin-walled
cylinder is developed. It is based on neglecting the effects of shear
strain and circumferential strain, When the ratio of length‘to r‘adius
of the cylinder is sufficiently lar’ge and the ratio of wall thickness to
radius sufficiently small, for most types of lateral loadings, these
strains have small effects on the state of stress. However, the anal- 7
ysis is not valid in the vicinity of concentrated forces and in local
regions near abrupt changes in load intensity, where the circumferen-
tial and shear strains are not negligible.

Stresses and displacements are calculated for a simply supported
cylinder. with a radial concentrated force at the mid-span section and
avlso‘the case with the uniform radial line load extending along the top
generatrix, |

Distortions of the mid-span cross section are measured experi-
mentally. In the case of the line load, the radial deflections are found
to agree within ~4 percent at positions of maximum Ames dial gage
readings. A similar degree of accuracy is obtained for the c»a‘se of the
radiél concentrated force except in a local region near the force.

Stresses are measured on a cylinder with a uniform radial line

“load. The axial and circumferential stress distributioﬁs around the
mid-span cross section are found to agree within 10 percent of Athe

maximum gage readings exceptin a 30° local region near the load.
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It is concluded that the simplified analysis gives accurate values -
of stresses and deflections for thin-walled cylinders having sufficiently
large ratios of length to radius except in the vicinity of concentrated

forces or near abrupt changes in load intensity.
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APPENDIX A

Calculations
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AXIAL STRAIN AT THE MID-SPAN TRANSVERSE
CROSS SECTION FOR THE UNIFORM LINE LOAD

00613 du __ Z o e amZT
) dx - M‘v‘a[J‘:Tb +595.33 (::t "-I'%.OJ'(m"‘")z

TABLE 3. TrANSVERSE HARMONIC CONTRIBUTIONS TO THE AXIAL STRAlIN

A. First harmonic, n = 1.
‘

0.0613 ) & am ";t-w'
. xjiQ A,

e = g Z Ky

% WA Ve

m m3 71 106

1 1 +1.000
3 27 - .037
5 125 + .008
7 343 - .003
9 729 + .001

0.999

B. Second harmonic, n = 2

B Wil
0.0613 2% . couz (_.L} L ban TH —
% (S ? 4 s x50 G vl + VB4 W 4 JINE wa !
m m3 62,506m> 104m m 1 5358m! b +271 108
1 1 62,506 104 1,000 5,358 67,968 - +14.712
3 27 1,687,662 312 .333 1,784 1,689,758 -~ .592.
5 125 7,813,250 520  .200 1,072 7,814,842  + 137
7 343 21,439,558 728 .143 766 21,441,052 - .047
9 729 45,566,874 936  .111 595 45,568,405  + .022
11 1,331 83,195,486 1,144  .091 488 83,197,118 - .012
13 2,197 137,325,682 1,351 077 413 137,327,447 + .007
15 3,375 210,957,750 1,560  .067 359 210,959,669  — .005
17 4,913 307,091,978 1,7%68  .059 316 307,094,062  + .003
19 6,859 428,728,654 1976  .053 984 428,730,914  — .002
+ .002

21 9,261 578,868,066 2,184 048 257 578,870,507

3.56
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C. Third harmonic, n = 3.

. =3
LR %mms@(l_) § o BT
d U 12,252 w? 4 3248w + 38,101 v
m m3 m 1 12,352m3 328m  38,101m ! T +371 108
1 1 1.000 12,352 328 38,101 50,781  +19.692
3 27 .333 333,504 984 12,688 347,176 ~ 2.880
5 125  .200 1,544,000 1,640 7,620 1,553,260 + .644
7 343 .143 4,236,736 2,296 5,448 4,244,480 - 236
9 720 111 9,004,608 2,952 4,229 9,011,789 + 111
11 1,331  .091 16,440,512 3,608 3,467 16,447,587 - .061
13 2,197  .077 27,137,344 4,264 2,934 27,144,542 + .037
15 3,375  .067 41,688,000 4,920 2,553 41,695,473 ~ 024
17 4,913 ~ .059 60,685,376 5,576 2,248 60,693,200 + .017
19 6,859  .053 84,722,368 6,232 2,019 84,730,619 ~ 012
21 9,261  .048 114,391,872 6,888 1,829 114,400,589  + .009
23 12,167  .044 150,286,784 7,544 1,676 150,296,004 - .007
25 15,625  .040 193,000,000 8,200 1,524 193,009,724 + .005
27 19,683  .037 243,124,416 8,856 1,410 243,134,682 -~ .004
20 24,380  .035 301,252,928 9,512 1,334 301,263,774 + .003
31. 29,791  .032 367,978,432 10,168 1,219 367,989,819 —~ .003
33 35,937  .030 443,893,824 10,824 1,143 443,905,791 + .002
35 42,875  .029 529,592,000 11,480 1,105 529,604,585 - .002
37 50,653 ..027 625,665,856 12,136 1,029 625,679,021 + .001

1.92
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D. Fourth harmonic, n = 4.

o
2. T
2613 du — mqq;(..!_)z aon B .
Yoox el 33mmm® + 648 wm 3394w
e m3 m 3,912m3 648m  133,049m " p =371 106
1 1 1.000 3,912 648 133,949 138,509  +7.220
3 27 .333 105,624 1,944 44,605 152,173 —6.571
5 125 .200 489,000 3,240 26,790 519,030  +1.927
7 343 .143 1,341,816 4,536 19,155 1,365,507 -~ .732
9 729 111 2,851,848 5,832 14,868 2,872,548 + .348
11 1331 091 5,206,872 7,128 12,189 5,226,180  —.101
13 2,197 077 8,504,664 8,424 10,314 8,613,402  + 116
15 3,375 .067 13,203,000 9,720 8,975 13,221,695 - .076
17 4,913  .059 19,219,656 11,016 7,903 19,238,585  + .052
19 6,859  .053 26,832,408 12,312 7,099 26,851,819  — .037
21 9,261 - .048 36,229,032 13,608 6,430 36,249,070  + .028
23 12,167  .044 47,507,304 14,904 5,804 47,618,102 —.021
25 15625  .040 61,125,000 16,200 5,358 61,146,558  + .016
.27 19,683 .037 76,999,896 17,49 4,956 77,022,348 - 013
20 24,389  .035 95,409,768 18,792 4,688 95,433,248 -+ .011
31 29,791  .032 116,542,392 20,088 4,286 116,566,766  — .009
33 35,937  .030 140,585,544 21,384 4,019 140,610,947  + .007
35 42,875 029 167,727,000 22,680 3,885 167,753,565 - .006
37 50,653 .027 198,154,536 23,976 3,617 198,182,120  + .005
30 59,319 .02 232,055,928 25,272 3,483 232,084,683  ~— .004
41 68,921 - .024 269,618,952 26,568 3,215 260,648,735  + .004
43 79,507  .023 311,031,384 27,864 3,081 311,062,329 - .003
45 91,125 .022 356,481,000 29,160 2,047 356,513,107  + .003
47 103,823  .021 406,155,576 30,456 2,813 406,188,885 - .002
49 117,649 .020 460,242,588 31,752 2,679 460,277,319  + .002
51 132,651  .020 518,930,712 33,048 2,679 518,966,439  — .002
53 148,877  .019 582,406,824 34,384 2,545 582,443,713 + .002
55 166,375  .018 650,859,000 35,640 2,411 650,897,051 - .00l

0.13
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E. Fifth harmonic, n =5

0.0613 9% OME@(}Z%) = aanm TGE

% LX LGoew® 1, <pc»1m1-347~,°i0i
m m3 m 1 1,606m° 1,602m  342,909m 1 T = 1x 106
1 1 1.000 1,606 1,602 342,909 346,117 ©  +2,889
3 27  .333 43,362 4,806 114,189 162,357 -6.159
5 125  .200 200,750 8,010 68,582 277,342 +3.606
7 343 .143 550,858 11,214 49,036 611,108 -1.636
9 720 111 1,170,774 14,418 38,063 1,223,255 + .817
11 1,331  .091 2,137,586 17,622 31,205 2,186,413 — 457
13 2,197 077 3,528,382 20,826 26,404 3,575,612 + .280
15 3,375 .067 5,420,250 24,030 22,975 5,467,255 - - .183
17 4,913 .059 7,890,278 27,234 20,232 7,937,744 +.126
19 6,859  .053 11,015,554 30,438 18,174 11,064,166 ~ .09
21 9,261  .048 14,873,166 33,642 16,460 14,923,268 +.067
23 12,167  .044 19,540,202 36,846 15,088 19,592,136 - .051
25 15,625  .040 25,093,750 40,050 13,716 25,147,516 + .040
27 19,683  .037 31,610,898 43,254 12,688 31,666,840 ~ .032
20 24,389 . .035 39,168,734 46,458 12,002 39,227,194 +.026
31 29,791  .032 47,844,346 49,662 10,973 47,904,981 - .021
33 35937  .030 57,714,822 52,866 10,287 57,777,975 + 017
35 42,875  .029 68,857,250 56,070 9,944 68,923,264 - 015
37 50,653  .027 81,348,718 59,274 9,259 81,417,251 + 012
39 59,319 .02 95,266,314 62,478 8,916 95,337,708 - .01l
41 68,921  .02¢ 110,687,126 65,682 8,230 110,761,038 + .009
43 79,507  .023 127,688,242 68,886 7,887 127,765,015 - .008
45 01,125  .022 146,346,750 72,090 7,544 146,426,384 + .007
47 103,823  .021 166,739,738 75,294 7,201 166,822,233 ~ .006
49 117,649  .020 188,944,294 78,498 6,558 189,029,650 + .005
51 132,651  .020 213,027,506 81,702 6,858 213,126,066 ~ .005
53 148,877  .019 239,096,462 84,906 6,515 239,187,883 + .004
.55 166,375  .018 267,198,250 88,110 6,172 267,292,532 ~.004
57 185,193  .018 297,419,958 91,314 6,172 297,517,444 + .003
59 205,379  .017 329,838,674 94,518 5,830 329,939,022 - .003
61 226,981  .016 364,531,486 97,722 5,487 364,634,695 +.003
63 250,047  .0l6 401,575,482 100,926 5,487 401,681,895 — .003
65 274,625  .015 441,047,750 104,130 5,144 441,157,024 +.002
67 300,763  .015 482,880,838 107,334 5,144 482,993,316 - 002
69 328,509 .04 527,585,454 110,538 4,801 527,700,793 +.002
71 357,911  .014 574,805,066 113,742 4,801 574,923,609 — .002
73 389,017  .014 624,761,302 116,946 4,801 624,883,049 + .002
75 421,875  .013 677,531,250 120,150 4,458 677,655,858 - .001

-0.03
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TABLE 4. SummaTioN OF TRANSVERSE HARMONIC C ONTRIBUTIONS
TO THE AXIAL S TRAIN

¢ | 1cosch|3.56 cos2¢ | 1.92 cos3¢h | 0.13 cos 4¢ | —0.03 cos 5¢ 0.0613 x 106 g—"
x

0| 1.000 3.56 1.92 0.13 ~0.03 6.58

15| 0.966 3.08 1.36 .065 - .007 5.46

30 .866 1.78 0 -0.065 .026 2.61

45 707 0 -1.36 -0.13 .021 —0.76

55 574 —1.22 -1.86 -.10 - .003 —2.61

65 423 -2.29 -1.86 - .023 - .025 -3.775

75 .259 -3.08 -1.36 .065 - .029 —4.145

80 174 -3.35 -0.96 .10 - .023 —~4.06

90| 0 -3.56 0 .13 0 -3.43

105 | —0.259 -3.08 1.36 .065 0.027 -1.89

125 | — .574 al.22 1.86 .10 .003 0.17

135 - .707 0 1.36 - .013 - .021 62

150§ — .866 1.78 0 - 065 . - .026 - .82

180 | -1.000 3.56 -1.92 0.13 0.03 0.80

CHANGE IN TRANSVERSE CURVATURE AT MID-SPAN
CROSS-SECTION FOR THE UNIFORM RADIAL LINE
LOAD EXTENDING ALONG THE TOP GENERATRIX

W
__J_ft_-_a_LQf_ = U~ ’“)cmwm—a::
3 e Z r [ 19 + 59 533 (2X) + 4. 05 (V]

TABLE 5. TRANSVERSE HARMONIC CONTRIBUTIONS TO X

2
n cosng n2 -1 |2 (See page 19) }.—l‘hq(l Xo
1 cos ¢ 0 0.966 0 :
2 cos 2¢h -3 14.65 — 43.95 cos 2¢
3 cos 3¢5 -8 19.39 ~155.1 cos 3¢
4 cos 4¢ ~15 6.56 ~ 98.3 cos4dg
5 cos 5¢ —24 2.33 ~ 55.7 cos5¢
6 cos 6¢ 35 1.03 ~ 36.1 cosé6g
7 cos 7¢h —48 0.58 ~ 278 cos7¢
8 cos 8¢h -63 0.33 ~21.0 cos8¢
9 cos 9 -80 007 — 13.6 cos9¢
10 cos 10¢h -59 0.09 9.0 cos 10¢
11 cos11¢ -120 0.05 6.0 cos 11¢
12 cos 12¢ —143 0.03 4.3 cos12¢
13 cos13¢h -168 0.02 3.4 cosl3¢
14 cos 14¢> -195 0.01 2.0 cos 14¢h




T g1 97— z- 9'g S 1 9 g1 9¢ 193 0°81= L ov- ¥SL 9°LL 04— | 001

4 05— 02— 0 £ 0 06— 013 0 98- ) €86 0 S6 €~ | 06

962 | ST 93 zo- oG- g1 981 9g 19z 0°81- Lzy ¥ Sl 9LL ~ 01— |08

0°'601-] ¥'0- ge- 23— 6°¢ '8 0 8'61- 0'81— 081+ 6"V L1 e rel- vee- | 0L

0°ZLT~] 01— L1 gY 0°¢ 9" p— 91— 9°01- 6 ¢l o+ 6°L% 6V ssi- 8 15~ |09

202~ 61~ Z'1 T 6°5— 6°9- 0 91 gLz 08T+ 61~ v 26~ evel- 9L— |08

- LL6T-) 61~ 2 g~ g 01 6°9 9" g1 191 gV 0°81- ¥ 35— V26— 9Ll - 9L ov
n ¥v8zl-| o1 62 ey z's 9% 0 901~ 1'V5- Tog- z'8y- Z'6%— 0 812 o¢
9°62 0 90— 7o 9 - g'8— 9 ¢l 61— T 18- 0°81- L6 ~ Ll 9 4L v ge 02

rsog || ¢ I- A 73— - - 0 9°¢ $'6 0°81 8'g¢ ¥'SL e ¥el 0" 1b 01

gy | 02 Ve ey 09 0'6 9°g1 T¥0°12 817 T9e LSS £'86 SSt g6°ey 0

®x Nloﬁlxhqlmﬂ PYLSO00 T |PEISOO $°¢ [HTTS0D g'§| PIIS0D 9 [POT 503 6 |h6 509 9°ET | P8BSO T0' [T |PL 503 §°LT |9 503 [°9¢ [hS 505 LGS |p¥ SO0 €86 | PE S0 ['SGT | pgs00 G6°gh| ¢

PX ‘TUNLVAHNT) ASHAASNVHE ], NI FONVHD) FHL OL SNOLLAHIYINO7T) DINOWHMV] HSHIASNVH ], FHI 40 NOLLVWANGS *9 JTIVI



52

APPENDIX B
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