APPENDIX A

X-ray Crystallographic Data for:
4,4-Difluoro-3-(trifluoromethyl)-tricyclo[4.2.1.0 $0^{2,5}$]non-7-ene-3-carboxylic acid (2.10)

X-ray Experimental for Compound 2.10:

The crystal was cut from a larger crystal and had approximate dimensions: $0.48 \times 0.24 \times 0.19$ mm . The data were collected on a Nonius Kappa CCD diffractometer using a graphite monochromator with $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA$). A total of 347 frames of data were collected using ω-scans with a scan range of 1° and a counting time of 39 seconds per frame. The data were collected at $-120^{\circ} \mathrm{C}$ using an Oxford Cryostream low temperature device. Details of crystal data, data collection, and structure refinement are listed in Table 1. Data reduction were performed using DENZO-SMN. ${ }^{1}$ The structure was solved by direct methods using SIR92 ${ }^{2}$ and refined by full-matrix least-squares on F^{2} with anisotropic displacement parameters for the non- H atoms using SHELXL-97. ${ }^{3}$ The hydrogen atom positions were located in a $\Delta \mathrm{F}$ and refined with isotropic displacement parameters. The function, $\mathrm{\Sigma w}\left(\left|\mathrm{~F}_{0}\right|^{2}-\left|\mathrm{F}_{\mathrm{c}}\right|^{2}\right)^{2}$, was minimized, where $\mathrm{w}=$ $1 /\left[\left(\sigma\left(\mathrm{F}_{0}\right)\right)^{2}+\left(0.0455^{*} \mathrm{P}\right)^{2}+\left(0.4828^{*} \mathrm{P}\right)\right]$ and $\mathrm{P}=\left(\left|\mathrm{F}_{0}\right|^{2}+2\left|\mathrm{~F}_{\mathrm{c}}\right|^{2}\right) / 3 . \mathrm{R}_{\mathrm{w}}\left(\mathrm{F}^{2}\right)$ refined to 0.102 , with $\mathrm{R}(\mathrm{F})$ equal to 0.0455 and a goodness of fit, $\mathrm{S}=0.998$. Definitions used for calculating $\mathrm{R}(\mathrm{F})$, $\mathrm{R}_{\mathrm{w}}\left(\mathrm{F}^{2}\right)$, and the goodness of fit, S , are given below. ${ }^{4}$ The data were corrected for secondary extinction effects. The correction takes the form: $\mathrm{F}_{\text {corr }}=\mathrm{kF}_{\mathrm{c}}\left[1+\left(6(4) \times 10^{-6}\right) * \mathrm{~F}_{\mathrm{c}}{ }^{2} \lambda^{3} /(\sin 2 \theta)\right]^{0.25}$ where k is the overall scale factor. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992). ${ }^{5}$ All figures were generated using SHELXTL/PC. ${ }^{6}$ Tables of positional and thermal parameters, bond lengths and angles, figures and lists of observed and calculated structure factors are located in Tables 1 through 6 .

References

1) DENZO-SMN. (1997). Z. Otwinowski and W. Minor, Methods in Enzymology, 276: Macromolecular Crystallography, part A, 307-326, C. W. Carter, Jr. and R. M. Sweets, Editors, Academic Press.
2) SIR92. (1993). A program for crystal structure solution. Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. J. Appl. Cryst. 26, 343350.
3) Sheldrick, G. M. (1994). SHELXL97. Program for the Refinement of Crystal Structures. University of Gottingen, Germany.
4) $\quad \mathrm{R}_{\mathrm{w}}\left(\mathrm{F}^{2}\right)=\left\{\Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{o}}\right|^{2}-\left|\mathrm{F}_{\mathrm{c}}\right|^{2}\right)^{2 / \Sigma \mathrm{w}}\left(\mid \mathrm{F}_{\mathrm{o}}\right)^{4}\right\}^{1 / 2}$ where w is the weight given each reflection.
$\left.\mathrm{R}(\mathrm{F})=\Sigma\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|\right\}$ for reflections with $\mathrm{F}_{\mathrm{o}}>4\left(\sigma\left(\mathrm{~F}_{\mathrm{o}}\right)\right)$.
$\mathrm{S}=\left[\Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{o}}\right|^{2}-\left|\mathrm{F}_{\mathrm{c}}\right|^{2}\right)^{2 /(n-p)}\right]^{1 / 2}$, where n is the number of reflections and p is the number of refined parameters.
5) International Tables for X-ray Crystallography (1992). Vol. C, Tables 4.2.6.8 and 6.1.1.4, A. J. C. Wilson, editor, Boston: Kluwer Academic Press.
6) Sheldrick, G. M. (1994). SHELXTL/PC (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

Table 1. Crystal data and structure refinement for 1.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=27.49^{\circ}$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$I>2$ sigma (I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C11 H9 F5 O2
268.18

153(2) K
0.71073 A

Monoclinic
P21/n
$a=6.7504(2) \dot{A} \quad \alpha=90^{\circ}$.
$\mathrm{b}=19.0686(5) \dot{\mathrm{A}} \quad \beta=110.485(2)^{\circ}$.
$\mathrm{c}=8.9486(2) \dot{\AA} \quad \gamma=90^{\circ}$.
1079.03(5) \AA^{3}

4
$1.651 \mathrm{Mg} / \mathrm{m}^{3}$
$0.169 \mathrm{~mm}^{-1}$
544
$0.48 \times 0.24 \times 0.19 \mathrm{~mm}$
3.29 to 27.49°.
$-8<=\mathrm{h}<=8,-22<=\mathrm{k}<=24,-11<=1<=11$
4338
$2414[\mathrm{R}($ int $)=0.0188]$
97.6 \%

None
Full-matrix least-squares on F^{2}
2414 / 0 / 200
0.998
$R 1=0.0392, w R 2=0.0915$
$R 1=0.0585, w R 2=0.1016$
$6(4) \times 10 \times 10^{6}$
0.382 and -0.251 e. \AA^{-3}

Structure 1. View of $\mathbf{2 . 1 0}$ showing the atom labeling scheme. Thermal ellipsoids are scaled to the 30% probability level. Hydrogen atoms are drawn to an arbitrary size.

Structure 2. View of the H -bound dimers formed by $\mathbf{2 . 1 0}$. The dimer lies around a crystallographic inversion center at $0,1 / 2,1 / 2$. The geometry of the interaction is: O13H13 \cdots. O12 (related by -x, 1-y, 1-z), O \cdots O 2.697(2) $\AA, \mathrm{H} \cdots \mathrm{O} 1.85(3) \AA$, O-H $\cdots \mathrm{O}$ $174(2)^{\circ}$. Thermal ellipsoids are scaled to the 30% probability level. Hydrogen atoms are drawn to an arbitrary size.

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for $1 . U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$2305(2)$	$3607(1)$	$3784(2)$	$23(1)$
$\mathrm{C}(2)$	$4730(2)$	$3586(1)$	$4102(2)$	$26(1)$
$\mathrm{C}(3)$	$4345(3)$	$3470(1)$	$2335(2)$	$28(1)$
$\mathrm{C}(4)$	$4800(3)$	$4081(1)$	$1362(2)$	$32(1)$
$\mathrm{C}(5)$	$3661(3)$	$3859(1)$	$-365(2)$	$38(1)$
$\mathrm{C}(6)$	$1613(3)$	$3916(1)$	$-667(2)$	$38(1)$
$\mathrm{C}(7)$	$1299(3)$	$4179(1)$	$847(2)$	$30(1)$
$\mathrm{C}(8)$	$1891(3)$	$3531(1)$	$1956(2)$	$26(1)$
$\mathrm{C}(9)$	$3263(3)$	$4642(1)$	$1510(2)$	$33(1)$
$\mathrm{C}(10)$	$1379(2)$	$4246(1)$	$4334(2)$	$24(1)$
$\mathrm{C}(11)$	$1523(3)$	$2961(1)$	$4411(2)$	$31(1)$
$\mathrm{O}(12)$	$-191(2)$	$4541(1)$	$3460(1)$	$33(1)$
$\mathrm{O}(13)$	$2395(2)$	$4413(1)$	$5826(1)$	$32(1)$
$\mathrm{F}(14)$	$-595(2)$	$2961(1)$	$3925(1)$	$42(1)$
$\mathrm{F}(15)$	$2237(2)$	$2922(1)$	$6001(1)$	$44(1)$
$\mathrm{F}(16)$	$2084(2)$	$2362(1)$	$3878(1)$	$41(1)$
$\mathrm{F}(17)$	$5809(1)$	$4172(1)$	$4781(1)$	$33(1)$
$\mathrm{F}(18)$	$5764(2)$	$3050(1)$	$5069(1)$	$37(1)$

Table 3. Bond lengths $[\dot{A}]$ and angles $\left[{ }^{\circ}\right]$ for 1.

$\mathrm{C}(1)-\mathrm{C}(11)$	1.523(2)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.527(3)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.526(2)	$\mathrm{C}(6)-\mathrm{H}(6)$	1.01(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.561(2)$	C(7)-C(9)	1.529(3)
$\mathrm{C}(1)-\mathrm{C}(8)$	1.567(2)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.548(2)
C(2)-F(17)	$1.3563(19)$	$\mathrm{C}(7)-\mathrm{H}(7)$	0.95(2)
$\mathrm{C}(2)-\mathrm{F}(18)$	1.3632(18)	$\mathrm{C}(8)-\mathrm{H}(8)$	0.981(19)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.526(2)	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.98(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.549(2)	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	1.00(2)
$\mathrm{C}(3)-\mathrm{C}(8)$	1.574(2)	$\mathrm{C}(10)-\mathrm{O}(12)$	$1.2125(19)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.96(2)	$\mathrm{C}(10)-\mathrm{O}(13)$	1.3094(19)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.525(3)	$\mathrm{C}(11)-\mathrm{F}(15)$	$1.335(2)$
$\mathrm{C}(4)-\mathrm{C}(9)$	1.529(3)	$\mathrm{C}(11)-\mathrm{F}(14)$	$1.341(2)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.988(19)	$\mathrm{C}(11)-\mathrm{F}(16)$	$1.341(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	1.317(3)	$\mathrm{O}(13)-\mathrm{H}(13)$	0.85(3)
$\mathrm{C}(5)-\mathrm{H}(5)$	1.03(2)	-	
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(10)$	107.03(13)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	99.51(14)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$	112.84(13)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	103.46(15)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	118.94(13)	$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(3)$	101.77(13)
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(8)$	110.56 (13)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	118.8(11)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(8)$	117.86(13)	$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{H}(4)$	118.6(12)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	88.86(11)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	112.2(11)
$\mathrm{F}(17)-\mathrm{C}(2)-\mathrm{F}(18)$	104.97(12)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	107.82(16)
$\mathrm{F}(17)-\mathrm{C}(2)-\mathrm{C}(3)$	117.02(13)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	127.3(13)
$\mathrm{F}(18)-\mathrm{C}(2)-\mathrm{C}(3)$	$114.35(14)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	124.3(13)
$\mathrm{F}(17)-\mathrm{C}(2)-\mathrm{C}(1)$	115.12(13)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	107.84(16)
$\mathrm{F}(18)-\mathrm{C}(2)-\mathrm{C}(1)$	113.99(13)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	127.9(12)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	91.57(11)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	124.0(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118.56(15)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	99.42(15)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	89.86(12)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	102.78(14)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	102.91(13)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$	102.60(13)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	112.1(12)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	118.1(11)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	113.6(12)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{H}(7)$	116.6(12)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{H}(3)$	117.6(11)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	114.9(11)

$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	$120.45(14)$	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	$108.6(16)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$102.34(13)$	$\mathrm{O}(12)-\mathrm{C}(10)-\mathrm{O}(13)$	$124.93(15)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(3)$	$89.55(11)$	$\mathrm{O}(12)-\mathrm{C}(10)-\mathrm{C}(1)$	$121.73(14)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	$113.0(11)$	$\mathrm{O}(13)-\mathrm{C}(10)-\mathrm{C}(1)$	$113.28(14)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(8)$	$111.1(11)$	$\mathrm{F}(15)-\mathrm{C}(11)-\mathrm{F}(14)$	$106.96(13)$
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8)$	$118.4(11)$	$\mathrm{F}(15)-\mathrm{C}(11)-\mathrm{F}(16)$	$106.85(14)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(7)$	$94.83(14)$	$\mathrm{F}(14)-\mathrm{C}(11)-\mathrm{F}(16)$	$106.65(14)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	$114.3(11)$	$\mathrm{F}(15)-\mathrm{C}(11)-\mathrm{C}(1)$	$113.28(14)$
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	$115.1(11)$	$\mathrm{F}(14)-\mathrm{C}(11)-\mathrm{C}(1)$	$110.38(14)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	$112.7(11)$	$\mathrm{F}(16)-\mathrm{C}(11)-\mathrm{C}(1)$	$112.35(13)$
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	$110.8(11)$	$\mathrm{C}(10)-\mathrm{O}(13)-\mathrm{H}(13)$	$106.8(16)$

Table 4. Anisotropic displacement parameters $\left(\dot{A}^{2} \times 10^{3}\right)$ for 1 . The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	$\mathrm{U}^{\prime 1}$	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$25(1)$	$23(1)$	$23(1)$	$-1(1)$	$10(1)$	$0(1)$
$\mathrm{C}(2)$	$25(1)$	$28(1)$	$26(1)$	$3(1)$	$9(1)$	$2(1)$
$\mathrm{C}(3)$	$30(1)$	$30(1)$	$28(1)$	$2(1)$	$13(1)$	$7(1)$
$\mathrm{C}(4)$	$28(1)$	$41(1)$	$30(1)$	$5(1)$	$13(1)$	$2(1)$
$\mathrm{C}(5)$	$45(1)$	$46(1)$	$28(1)$	$4(1)$	$18(1)$	$7(1)$
$\mathrm{C}(6)$	$41(1)$	$48(1)$	$24(1)$	$2(1)$	$11(1)$	$3(1)$
$\mathrm{C}(7)$	$28(1)$	$35(1)$	$26(1)$	$5(1)$	$10(1)$	$8(1)$
$\mathrm{C}(8)$	$28(1)$	$26(1)$	$24(1)$	$-4(1)$	$11(1)$	$-3(1)$
$\mathrm{C}(9)$	$40(1)$	$30(1)$	$29(1)$	$5(1)$	$13(1)$	$-1(1)$
$\mathrm{C}(10)$	$24(1)$	$26(1)$	$24(1)$	$-2(1)$	$11(1)$	$-2(1)$
$\mathrm{C}(11)$	$34(1)$	$29(1)$	$32(1)$	$0(1)$	$16(1)$	$-2(1)$
$\mathrm{O}(12)$	$28(1)$	$39(1)$	$28(1)$	$-8(1)$	$6(1)$	$9(1)$
$\mathrm{O}(13)$	$34(1)$	$36(1)$	$23(1)$	$-5(1)$	$7(1)$	$8(1)$
$\mathrm{F}(14)$	$35(1)$	$43(1)$	$54(1)$	$-1(1)$	$23(1)$	$-10(1)$
$\mathrm{F}(15)$	$60(1)$	$41(1)$	$33(1)$	$9(1)$	$21(1)$	$-4(1)$
$\mathrm{F}(16)$	$54(1)$	$23(1)$	$53(1)$	$-1(1)$	$27(1)$	$-2(1)$
$\mathrm{F}(17)$	$27(1)$	$39(1)$	$30(1)$	$-2(1)$	$7(1)$	$-7(1)$
$\mathrm{F}(18)$	$33(1)$	$42(1)$	$36(1)$	$13(1)$	$12(1)$	$13(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 1 .

	x	y	z	$U(e q)$
$H(3)$	$4880(30)$	$3027(11)$	$2140(20)$	$35(5)$
$H(4)$	$6320(30)$	$4195(10)$	$1710(20)$	$38(5)$
$H(5)$	$4390(40)$	$3634(12)$	$-1080(30)$	$55(6)$
$H(6)$	$420(30)$	$3772(11)$	$-1660(30)$	$43(6)$
$H(7)$	$-20(30)$	$4390(10)$	$750(20)$	$34(5)$
$H(8)$	$1000(30)$	$3121(10)$	$1510(20)$	$30(5)$
$H(9 A)$	$3560(30)$	$4814(10)$	$2600(20)$	$37(5)$
$H(9 B)$	$3170(30)$	$5056(11)$	$800(20)$	$40(5)$
$H(13)$	$1750(40)$	$4764(14)$	$6040(30)$	$63(7)$

