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ABSTRACT 

 The incorporation of fluorine into photoresist materials imparts a variety of highly 

desirable properties for deep ultraviolet lithography at 193 nm and 157 nm.  Chief amongst these 

benefits are the high optical transparency of partially fluorinated materials and the high acidity of 

fluoroalcohols.  While metal-catalyzed polymerizations historically have received less attention 

than radical polymerizations for photoresist synthesis due to concerns over residual metal 

contamination, the high deep UV transparency and etch-resistance of alicyclic norbornene 

monomers have revived interest in metal-catalyzed polymerizations for the development of 

advanced lithographic materials.  Yet, significant challenges remain to incorporate sufficient 

fluorine for high transparency without adversely affecting the polymerization process or 

dissolution behavior. 

 Chapters 2 details the synthesis and characterization of a series of partially fluorinated 

tricyclo[4.2.1.02,5]non-7-ene (TCN) monomers.  The fused cyclobutane ring serves as an 

additional scaffold onto which additional fluorinated groups can be substituted without adversely 

affecting the polymerization behavior of the monomer.  Specifically, this allows the transparent 

α-trifluoromethyl carboxylic acid ester moiety to be incorporated into a polymerizable 

norbornene-like framework.  The ability to incorporate additional fluorine allows for the 

synthesis of metal-catalyzed addition polymers with greatly enhanced transparency relative to 

their less-fluorinated norbornene analogues.  The synthesis and imaging of TCN-based 

photoresist polymers are explored in Chapter 3. 

 Chapter 4 introduces a series of 3-oxa-tricyclonon-7-ene monomers synthesized from 

quadricyclane and fluorinated ketones.  These oxetane-containing monomers undergo a facile 

Lewis acid-catalyzed isomerization to form the polycyclic 4-oxa-tricyclonon-8-enes.  While the 

oxetane ring in oxatricyclononane structures was found to be largely unreactive, the similar high 

transparencies of addition and ring-opening metathesis polymers of fluorinated 

oxatricyclononenes detailed in chapter 5 reveal the effect of the alicyclic backbone structure on 
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transparency at 157 nm.  4-Oxatricyclononenes are valuable comonomers for the elevation of 

glass transition temperatures in ROMP polymers, while low molecular weight ROMP copolymers 

of 3-oxatricyclonene are being evaluated as crosslinking agents in negative tone resist 

formulations. 

 Chapter 6 details the use of cross-metathesis and ring-opening cross-metathesis in the 

synthesis of multifunctional monomers and oligomers for 193 nm immersion and 157 nm 

lithography.  Cross-metathesis with unsaturated hexafluorocarbinols is a facile method to 

generate functionalized olefins without using toxic hexafluoroacetone gas.  In certain instances, 

cross-metathesis reactions with these acidic alcohols were shown to proceed with unusual 

stereoselectivity.  While investigating the nature of this stereoselectivity, simple carboxylic acids 

were found to eliminate problematic ruthenium-catalyzed olefin migration in specific substrates.  

These developments culminate in the synthesis of difunctional norbornenes containing both ester 

and hexafluorocarbinol functionalities.  These ester-containing structures display dramatically 

increased transparency at 157 nm and will potentially afford unique dissolution behavior. 

 Finally, chapter 7 explores the synthesis of trisubstituted olefins via ruthenium-catalyzed 

cross-metathesis.  Mechanistic investigations into the reaction pathways of isobutylene cross-

metathesis revealed 2-methyl-2-butene to be a convenient isobutylene surrogate in the formation 

of prenyl groups via cross-metathesis.  With less reactive olefins, a mechanistic reversal occurs 

which affords only 1,2-disubstituted products.  Understanding of the reactivity of second-

generation metathesis catalysts with 1,1-disubstituted and trisubstituted olefins has prompted the 

exploration of ring-opening cross-metathesis of low strain cyclic olefins and three component 

cross-metathesis reactions with high product selectivity. 
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