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ABSTRACT
PART I
A complete account of a perturbative investigation of ground state
instability is presented for a massless theory involving scalar, pseudoscalar,
and Majorana spinor fields. The effective potential, dimensional regularizatiom,
and renormalization group formalisms are briefly reviewed and then applied in
detail to show the semiclassical vacuum of the model is unstable due to radiative
corrections when the (pseudo)scalar self-interaction strength, f, is less than
the fermion~(pseudo)scalar coupling, g2. Models with stable ground states are
found when £ < gz, and when f = g2 a supersymmetric theory is obtained. The
supersymmetric case is thus encountered as a boundary between stable and unstable
models. This result is discussed and is conjectured to be a general feature of
supersymmetric theories. All perturbative calculations in the analysis are
methodically carried out to the level of two-loop Feynman diagrams, and to this
level, a variety of renormalization prescriptions are considered. The correlation
of the various ultraviolet divergehces for the supersymmetric model is explicitly

demonstrated and shown not to hold in the general theory.

PART IT

Renormalization group analysis is used to show the supersymmetric point in
the effective coupling constant space is an unstable fixed point for several model
gauge theories. The physical significance of this result is discussed in terms of
the stability of the semiclassical ground state. In perturbation theory the su-
persymmetric point appears to be surrounded by regions in the coupling space repre-
senting three classes of theories: class one consists ¢f theories for which the
effective potential V has no apparent lower bound for large (pseudo)scalar field

expectations; class two theories have lower bounds and radiatively induced abso-
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lute minima for V with nonzero field expectations; class three theories apparently
have an absolute minimum of V at the origin of field space. Thus radiatively iﬁ-
duced breaking of gauge invariance occurs for theories in classes one and two,

but pefturbatively the class one theories appear to have no ground states. Class
three theories have ground states in which all gauge invariance remains intact.
For the supersymmetric limits of the models examined the origin is known to be
neutrally stable in field space, permitting an ambiguous breakdown of gauge invar-
iance but not supersymmetry. This phenomenon is discussed in some detail. Calcu-
lations are performed in both Lorentz covariant and noncovariant gauges with a de-
tailed comparison between gauges of the relevant one-loop diagrams. A null-plane

limit of the noncovariant gauges is argued not to exist.
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PREFACE

This thesis consists of two parts. Part I is a thorough discussion of
radiativelybinduced vacuum instabilities in a simple Yukawa-type field'theory.
The significance of the supersymmetric limit of the model is explored in terms
of the stability and characteristics of the quantum mechanical ground state.
This first'part is also intended to be a pedagogical example of renormalization
theory, explicitly done to the level of two-loop Feynman diagrams. Part II of
the thesis extends the vacuum stability analysis of Part I to include several
gauge theories, abelian and nonabelian, which also admit supersymmetric limits.
The analysis there is more general than Part I, but slightly less complete.
Although the second part requires a more extensive background in quantum field
theory (such as may be acquired upon careful study of Part I) to be completely
digested, it is still fairly self-contained.

For both parts of the thesis an almost painful amount of detail 1is presented
for some portions of the analysis, especially in the appendices. I felt this was
justifiable. Appendix C in Part I is representative of essentially all I know
concerning dimensional regularization and the evaluation of Feynman diagrams,
with the exclusion of dispersion relation techniques. Appendix C in Part II
contains the most complete discussion of the Yang-Mills vector self-energy of
which I am aware, and in addition, provides explicit details and criticisms of
quantization of gauge theories in noncovariant gauges.

Finally, one should note that '"radiatively induced instability" is encountered
with two logically independent meanings in the thesis. This may cause some initial
confusion. One instability occurs when radiative corrections cause a change in
the ratio of two renormalized coupling constants. The other occurs when quantum
effects qualitatively shift the positions of the minima of the effective potentiél

from their naive classical wvalues.



PART I

TWO~-LOOP ANALYSIS OF A SIMPLE MODEL



1. INTRODUCTION

Nonabelian gauge theories [l] have increased in physical importance in recent
years becauée of two developments. First, these theories allow the construction
of renormalizable, unified models of the weak and electromagnetic interactions [2].
In these models spontaneous symmetry breaking [3] is used to give large masses to
the mediators of the weak force. Second, gauge models can display in perturbation
theory an almost-free-field behavior at small distances, i.e., "asymptotic
freedom'" [4]. This behavior is widely‘believed to actually occur in hadron dynamics
on the basis of the deep-inelastic leptoproduction data [5]. Both these develop-
ments have raised the hope that a nonabelian gauge theory is the underlying
dynamics of nature and that such a theory, spontaneously broken, may help provide
a unified picture of all the known interactions[6,9].

Despite a great deal of effort, however, the explicit details realizing this
hope are not yet availsble and there are many unresolved theoretical questions.
Consider the following basic points. In the renormalizable models of the weak
interaction, vector fields become massive by absorbing scalar degrees of freedom
to act as longitudinal spin components [3]. Are the scalar fields employed in this
mechanism fundamental fields in the theory, or are they composite (bound state)
operators [7]? If fundamental (pseudo)scalars exist in weak interaction models
then why not in strong interaction theories, since we envision a unification, and
if they do exist, how do we arrange their couplings such that asymptotic freedom
is maintained? The effects of an arbitrary insertion of scalar self-couplings
do not necessarily disappear in short-distance phenomena and in fact, most often
such interaqtions grow in magnitude as momentum transfers increase [8]. More
generally, what are all the fundamental theoretical principles which can be
employed in constructing'ﬁodels? Highly prized examples of such principles are
relations between the numbers and types of fundamental fields and restrictions

on their relative interaction strengths.



Various investigatipns providing incomplete answers to these questions have
been given {2,5,9], but there is not yet a definitive point of view. In this thesis
we will not directly confront these issues but instead we will discuss some
aspects of‘one recent theoretical idea which does suggest partial answers to all
three questions. This idea is supersymmetry [10].

Supersymmetry is an algebra involving spinor charges which generate trans-
formations that mixbthe Bose~Einstein and Fermi-Dirac fields of the theory. The
conservation of these charges occurs only if the fermion-boson couplings and the
boson self-interaction strengths are precisely balanced, and only if the model
contains equal numbers of Fermi and Bose degrees of freedom. When strictly con-
served, the charges and their algebra imply equal masses for multiplets containing
both fermions and bosons [11]. In view of the known particle masses, this last fact
requires supersymmetry to be broken in realistic models. Nevertheless, this
breaking may be soft in the sense that supersymmetry may emerge into view as
shorter distances are probed. This soft breaking could either be explicit, such
as unsymmetric mass terms inserted into a model Lagrangian, or spontaneous, such
as in gauge theories of the weak interaction, or perhaps both. An important point
to be emphasized in regard to spontaneous breaking, however, is that supersymmetric
models naturally involve fundamental scalar and pseudoscalar fields. The most
elementary irreducible supermultiplet consists of a scalar, a pseudoscalar, and a
two~component spinor [12]., Irreducible supermultiplets containing higher spins can
be obtained by decomposing products of this elementary representation [11,13]. Thus
this symmetry principle sheds a certain amount of light on our first question
above. To our knowledge, this principle does not rule out the effects of composite
fields, but it does allow us a natural opportunity to avoid using bound states in
symmetry breaking. For pfactical purposes this is convenient, since the analytic
techniques for investigating symmetry breaking with fundamental scalars are more

easily implemented than those with bound states [7].



Furthermore, supersymmetry provides some answers to our second and third
questions. The symmetry relates Fermi and Bose multiplets and absolutely deter-
mines most Coupling constant ratios. For supersymmetric gauge theories the
scalar/pseudoscalar self-interactions are easily arranged to disappear at short
distances along with the gauge field coupling [14]. The symmetry is very crucial
for maintaining this in higher orders of perturbation theory. Also, because
of their coupling constant relations, supersymmetric theories have correlated
ultraviolet divergences that are completely unrelated in the generic theory with
the same set of fields. The number of independent counterterms in the renormali-
zation program is correspondingly reduced [15].

In view of the above, we decided that supersymmetry has a good chance of
playing a role in future realistic models, and we wanted to further determine
what dynamical features distinguish supersymmetric theories from neighboring
theories with the same fields but different coupling constants. The simplest
questions ome can investigate concern the ground state (vacuum) of a theory, so
we considered the effects of radiative corrections on the stability of the vacuum.
We were especially interested in whether radiative corrections alone could induce
spontaneous supersymmetry breaking [16]. The essential results were reported in-an
earlier letter [17]. We analyzed, in perturbation theory, a model containing the
supermultiplet of lowest spins and found that when the coupling of fermioms to
bosons is stronger than the boson self-coupling, the semiclassical ground state
of the theory is unstable. More precisely, supersymmetry forms a boundary in the
coupling parameter space, or a singular point in the space of coupling constant
ratios, which separates theories with and without stable semiclassical vacua.

The supersymmetric case itself is stable. We have since found that a similar
phenomenon occurs in nonaﬁelian supgrsymmetric gauge theories [18], thus it appears

to be a general feature of supersymmetry. However, because gauge theories have



their own peculiarities which are apparently independent of this particular
feature of vacuum stability, and because of more pedagogical motivations, we
will first present the details of the two-loop calculation for the simple non-
gauge model. This simpler model is embedded in the more involved nonabelian
supersymmetric gauge theories [14], so the actual low-momentum, two-loop diagrams
evaluated in the following are useful in computing higher order corrections in
these nonabelian models. We will discuss some supersymmetric gauge theories in
part IT of this thesis.

Insofar as the main results were previously presented, we intend this thesis
to be partly a review, providing a fairly comprehensive treatment of the standard
perturbative analysis methods of investigating stability in a quantum field
theory [19]. We hope the novice will find here a sufficiently detailed account to
learn the technical aspects of the subjects discussed. At the same time, we have
made a few extensions of the formalism that should interest the more seasoned
investigator.

In Section 2 we review some of the general formalism of perturbation theory
which is useful in stability analysis. We describe the effective potential, V,
give its physical interpretation, and condense an explanation of why one considers
a "shifted" theory to calculate V. We then summarize the very elegant dimensional
regularization and renormalization methods and use them to cobtain the remcrmalization
group equations for the shifted theory's Green's functions. We make a modest
generalization of the standard formalism to allow for finite renormalizations of
the parameters of a theory.

Section 3 begins with a definition of the specific model and a brief formal
discussion of its supersymmetry properties. We then explicitly go through the
renormalization of the model to the‘two—loop level, calculating the one- and

two-loop corrections to the scalar and spinor propagators in the shifted theory,



and computing the corrections to the scalar effective potential. We point out,
Wherevappropriate, the correlation of ultraviolet divergences which is peculiar
to the supersymmetric theory. Also, we keep the finite one-loop parameter re-
normalizations in our evaiuation of the singular parts of the two-loop diagrams.
These finite renormalizations are further discussed in Section 4, where we
determine the B and y functions of the renormalization group. We show that an
appropriate choice of these finite terms allows one to make analytic headway by
solving for the coupling constant trajectories to the two-loop level. Also, by
changing these finite terms one can get a taste of the effects which arise in
higher orders of perturbation theory when different definitions of the coupling
constant are made. The model's physics must be unchanged by this new parameteri-
zation, of course, and in particular this should be the case regarding the stability
of the ground state. This conclusion is supported when we discuss in Sections 4.2
and 4.3 the solutions, both exact and numerical, of the renormalization group
equations for the propagators and the effective potential. We also speculate in
Section 4.3 on the possible effects that fixed points (zeroes of B8) would have on
the effective potential. Concluding remarks are given in Sectidn 5. The Appendices
contain some minor mathematical details (Appendices A and B), an illustrative

diagram evaluation (C), and a tabulation of low-momentum Feynman diagrams (D).



2.,  GENERAL FORMALISM

In this section we review some field-theoretic tools which are useful in
a perturbative analysis of ground state stability. These tools are tﬁe effective
potential [20,27], dimensional regularization [21], and the renormalization group[22,32].
To keep this part of the theéis self-contained and accessible, our discussion will
be accurate and fairly complete, but nonrigorous. The formalism which we describe
is well-known and commonly used except for the finite renormalization analysis

included in Sections 2.2 and 2.3.

2.1 The Effective Potential

First we will go through a discussion of the effective potential, V, which
reveals its physical interpretation as an energy density and provides a compelling
argument that one should really minimize V, not simply extremize it, in order to
find the ground state of a theory[23]. Then we will give a summary of the "shifted
theory algorithm" which provides a systematic means of computing the radiative
corrections to V using Feynman diagrams [24].

The vacuum or ground state of a theory is the normalized, translationally
invariant state for which the expectation value of the Hamiltonian density is an
absolute minimum. Finding this minimizing state is in general a difficult
problem, but there is a systematic procedure for surveying translationally
invariant states which is particularly useful in perturbation theory. The procedure
is to compute the expectation of the energy density for a certain state which has
some set of expecﬁation values for the local fields in the theory. Then one finds
those certain states providing energy densities which are statiomary with respect
to variations in the field expectation values. Finally, the stationary state which
gives the absolute minimum energy density is interpreted as the vacuum 10). If the
state giving the absolute minimum is not unique, we have degenerate vacua and the

opportunity for so-called spontaneous symmetry breaking [3,20].



Let us be more explicit. Consider a certain state |¢) with the following

properties. First, it is normalized,

oley = 1. (2.1.1)

Second, in this state a scalar field A has a constant expectation value,

olaley = ¢ . (2.1.2)

Third, in this state the energy density H has an expectation which is
stationary under variations subject to the previous two comstraints. We define

the "effective potential" as the expectation of H in this state.

V(o) = (o|H]|ey . (2.1.3)

The immediate objection which comes to mind here is that the state has not yet
been uniquely specified and until the specification of l¢} is complete the
effective potential is ill-defined. A possible mechanism for uniquely specifying
the state can be found, however, by continuing the argument.

Extremizing V(¢) subject to the conditions (2.1.1) and (2.1.2) as required
above is equivalent to an unconstrained extremization over all translatiomnally
invariant states of the expectation value (¢|H-JA-E|$). J and E here are two
Lagrange multipliers which may be employed after all parameter variations to
guarantee the two conditions on |¢). Solving this unconditional extremal problem
on the translationally invariant subspace of states is equivalent to solviag the

eigenvalue problem

jd3x[H (x) - JA(x) - El[e) =0 . (2.1.4)

From this we see that E is a function of J and thatjfd3x E(J) is to be interpreted
as an eigenvalue of the perturbed Hamiltonian:[d3fo-JA). That is, we have added

to H a perturbation with an external source coupled linearly to the field A.



Now to be more precise and to further specify the state [¢), when we say
"translationally invariant" we really mean invariant under translations restricted
to an immense but finite spacetime "box" which will eventually be allowed to fill
all spécetime by a suitable mathematical limiting procedure[25]. 1In addition,
the perturbation JA(x) in (2.1.4), which is needed to guarantee (2.1.2), should
really be thought of as having been adiabatically switched on frem zero in the
remote past, held at the value JA(x) everywhere inside the spacetime box, and
then switched back to zero in the far future. The complete specification of ]¢>
would then be to start with the system in its ground state in the remote past,
slowly switch on the local perturbation JA, and obtain ]¢) as the result of an
adiabatic transition from the original ground state.

Given this more complete determination of [¢), we can continue from (2.1.4)
and eliminate the external source term, J, in favor of ¢ by using simple per-
turbation theory to compute the change inJ{d3x E(J) that follows from an infini-

tesimal change in J. Dropping an overall spatial volume factor, we obtain

-dE(J)/dI = ($|A|e) = ¢ . (2.1.5)

In principle we can use this relation to determine J = J(¢) and then substitute

for J in the effective potential which can now be written

V(¢) = E(J)-JAE(J) /4T , (2.1.6)

where we used (2.1.4) and (2.1.5) in (2.1.3). This last relation states that
E(J) and V(¢) are Legendre transforms of one another with J and ¢ conjugate
variables according to (2.1.3).

Computing the effective potential by Legendre transforming the eigenvalue
E(J) is not the most obvious calculation from the viewpoint of diagrammatic
analysis. In order to clarify how to calculate V(¢) using renormalized pertur-

bation theory, it is convenient to relate E(J) to W[J], the generating functional



of connected Green's functions [26]. The Legendre transform of this generating
functional has a well-known interpretation in terms of Feynman diagrams [27].

W[J] is defined via the transition amplitude from the ground state at t = - ®
to thebground state at t = + « in the presence of the external source, J. We
write

Z[J] = exp(iW[J]) = (0(+=)|0(~=)) . (2.1.7)

In general we will allow J to be a varying function of space and time, and take
constant J as a special limiting case. We approximate the constant external
source by slowly turning on J inside the large spatial box volume V, holding it
constant for the long box time T, and then slowly turning it off., Within the
spacetime box volume VT, the state !¢} which was reached adiabatically from the
original ground state evolves in time according to the perturbed Hamiltonian
density H-JA and develops a phase. When the source is turned off, the system
adiabatically returns to the original ground state, but retains the phase.

Using (2.1.4), we have

OEF=)|0(-9) = exxa(—‘fd4x EWD)) . (2.1.8)

where the integral is implicitly understood to be restricted to the box. We
assume that the errors due to the box edge effects in (2.1.8) are negligible

in the limit of infinite V and T. Thus in that limit with constant J we have

WiT] = —jd4x E(J) . (2.1.9)

Because of this relation, eq. (2.1.5) can actually be written as a functional
derivative

p(x) = SW[IT1/83(x) , (2.1.10)

evaluated at comnstant J.
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Now the functional Legendre transform of W[J] for arbitrary spacetime-

dependent J(x) is defined to be

rie] = W[I] - ]d4x¢(x)J(x) , (2.1.11)

and is known as the "effective action." ¢(x) is defined for arbitrary spacetime-

dependent J(x) as in (2.1.10). Referring to (2.1.6) and (2.1.9), we see that

ri¢] = -fd4x Vo) (2.1.12)

in the limit of constant ¢. So, save for a trivial spacetime volume factor, the
effective potential is minus the effective action evaluated for constant 9.

This is usually taken as the definition of V, from which one can readily show
that V(¢) must be stationary when J vanishes by using (2.1.10) and (2.1.11).

The preceding discussion, however, firmly implies that one should absolutely
minimize V, not just extremize it.

The next step is to determine how to compute the effective potential dia-
grammatically. First we consider Z[J]. A simple formal representation for Z[J]
exists in the picture where [0) is the ground state of H, A is an operator which
evolves dynamically according to f, and - JA is treated as a perturbation. The

representation is

Z[3] = (0]T(exp{_ifd4x I@AE D0, (2.1.13)

where T is the time-ordering operation. Taking N functional derivatives with
respect to iJ and evaluating at J = 0, we obtain in the usual way the Green's
functions for the theory governed by H, i.e., (OIT(A(xl)A(xz)...A(XN)){O). Thus
Z[J] is the generating functional of the Green's functions of the theory. Using
the relation between W and Z, (2.1.7), one can eventually show that W[J] is the
generating functional of cénnected Green's functions [27]. Then using (2.1.10)

and (2.1.11), one can show that T[¢] is the generating functional of one-particle-

irreducible (1PI) connected Green's functions, i.e., the generating functional of
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diagrams that do not multiplicatively factor when one internal propagator line is
cut, Finally, it follows from (2.1.12) that V(¢) is (minus) the generating
function of zero-momentum 1PI Green's functions. The spacetime volume factor
removed from I'[¢] to obtain V($) is just an energy-momentum delta function.

One could perturbatively evaluate V(¢) by summing classes of zero-momentum
Feynman diagrams, using the above information[16]. However, it is more practical,
particularly when a theory contains several fields, to use a ''shifted theory"
algorithm to compute the effective potential[24]. This algorithm provides a
reasonable approximation scheme for V(¢) when the coupling constants are small.
The essential result of the algorithm is given below in eq. (2.1.26). For
completaness, and in order to carefully define all the quantities involved in
this result, we will briefly go through the functional derivation of this equation.

Consider the path-integral[28] representation of Z[J].
z[J] = (1/zo)~0@exp[ifd4x Llgl+o(x)I(x)] . (2.1.14)

For simplicity we consider a renormalizable theory of a single scalar field,
and we normalize Z[J] so that Z[0] = 1 when all the nontrivial interactions in L
vanish, i.e., ZO =Jf0 ® exp[i}[d4x ((8@)2 —m2®2)/2]. When J # 0, the model
has a certain expectation value for the scalar field, as given by (2.1.1C0). In

terms of the two representations above, this is

(0[T(A(x)egp[ifdazA(z)J(z)])10)
(0| T(exp[1/d*yA ()T ) 1D | 0)

o(x) =

_ ID80(x)explisd zL[o]+8(2) I (2) ]
fU@exp[ifd4yL[®]+®(y)J(y)] (2.1.15)
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For a given J(x) we do not know a priori what ¢(x) will result, or alternatively,
© for a given ¢(x) we do not knbw what J(x) is required. The point af Legendre
transforming toT[¢] is to eliminate J(x) from consideration so that we'may con-
centrate our attention on the field expectation value. This we do as follows. In

the path-integral representation (2.1.14), translate ¢ by ¢ to obtain

2091 = (/zp)exp[1fe*xLIe T @3] -

. Do explifd*zL[oto]-LIo]+I(2)0(2)] . (2.1.16)

Now if ¢(x) is chosen according to (2.1.15), we must have

0 =qu> @(x)exp[ifd“zum]-uq)]u(z)@(z)} . (2.1.17)

This suggests that we should comsider the system with a generating functional
given by
== D6 exp[ifd*xl[0;6,71+3 (x) 0 (x) ]
z[J] = R _1
JD% explifd yd 26 (y)iD ~(¢3y,2z)®(2)/2]

> (2.1.18)

where L [®;¢,J] = L{&+¢]-L[¢$]+TJ® and where we have normalized Z by extracting

the bilinear term in ¢ from Z. This bilinear term is

. —1 2 4

107 o5x,y) = ¢ jd 2L[61/66 ()66 (y) . (2.1.19)
In terms of these quantities, (2.1.16) becomes

2091 = explt [a*xlls1+I (0G0 - Z[I=0] .

. {Doexpli f ad*yatze( 107 (03v, 1) 0 (2) /2]
SDvexpli fd ya*ze () 1D (0;y,2) 8(2) /2]

(2.1.20)

We have used Z0 =J{D®exp[il[dﬁyd4z®(y)iD_l(O;y,z)@(z)/Z]. Also note that the

third term in (2.1.20) can be evaluated, formally, to give [detiD-l(¢)/detiD—1(0)]—1

where the determinant is a functional one (cf. (2.1.24) below).

/2
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In view of (2.1.17), we can now make a crucial observation, namely
W[3=0] = T[9=0] , © (2.1.21)

where f[@}‘= W[JT] —.fd4x$(x)3(x). Since I'[$] is the generating functional of
1PI connected Green's functions of the theory governed by I[®;¢,J], we conclude
that T[0] = W[O] is the sum of all 1PI connected vacuum-to-vacuum diagrams in
this modified theory. It is this fact which we will use to systematically
evaluate V(¢). Consider how we compute W[0O] in perturbation theory. We draw
the vacuum diagrams induced by the interactions (trilinear and quartic) in I,
using D($;x,y) as the propagator in these diagrams (hence our choice of normali-
zation in (2.1.18)). As observed above, we can drop all but the 1PI diagrams,
so we need not consider any terms linear in ¢ from I since they always give
one-particle-reducible graphs. Summing all these 1PI vacuum diagrams gives W[o].
This set of vacuum—to-vacuum diagrams has a simple representation similar

to (2.1.13). First we write

[ d*xttos01 = fateliss0,31060 4 GO-p 0 8[a 2L 101 /80xD)

- [ a*xatyeco ™ Gimmewd ranfatsLy sl

(2.1.22)
where Lint[®;¢] represents the trilinear and quartic terms in I[®;¢,J], That
is, we have simply dropped the terms linear in ¢ in going from I[®;¢,J] to
L[®3¢]. By discarding these linear terms, L[®;¢] has lost its explicit J
dependence and depends only on ¢. We refer to L[®;¢] as the "shifted" theory.

The 1PI vacuum graphs are now obtained by perturbatively evaluating

iW[0] = 1PI connected part of {@|T(expli d4xLint[A';¢]])[Q)

(2.1.23)
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where the operator A' has no expectation with respect to its "vacuum,"”

(2|A'(x)|Q) = 0, and where A' propagates according to (2.1.19), i.e., D(¢;x,y) =
(QIT(A'(x)A'(y))!Q). We then use this D in the pairwise elimination of the fields
that océur in the expansion of the exponential in (2.1.23), as in the utilization

of Wick's theorem for free fields.

Putting all this together, we may take the logarithm of (2.1.20) to get an
expression for W[J]. Because the J term is explicitly indicated in (2.1.20),

however, we may as well perform the Legendre transform (2.1.11) to obtain

Tl¢] = d“xL[¢]+<i/z)1n[detin'l(q>)/detin“l(())}+ﬁ[o1 . (2.1.24)

This is the result for the effective action as a functional of arbitrary ¢(x).
It contains no explicit reference to J(x).

One pbint requires further clarification. What happens to (2.1.24) in the
constant ¢ limit? As it stands (2.1.24) is an expression for the effective action
for arbitrary spacetime debendent ¢(x), and in general it is intractable. The
detiD_l(¢;x,y) term cannot be evaluated for arbitrary $(x), but the coamstant ¢
limit provides a manageable special case [24]. If the original Lagrangian
density L is local, we have iD-l(¢;x,y) = iD-l(¢;x)64(x-y), and if in addition
¢ is a constant, iD_l(¢;x) is independent of x (although it involves derivatives
with respect to x). In this case we have
4

1n[detiD 1 () /detiD 1 (0) ] =jd k
(2m)

=1 L=l 4
A In{detiD ~(¢3k)/detiD (0;k)}:{d X

(2.1.25)

where iD-l(¢;k) = iD_l(¢;X)-exp(ik.x* . The determinant on the right-hand side
x=0
of (2.1.25) is an ordinary matrix determinant over any discrete internal indices

on ¢. Note that (2.1.25) is multiplied by an overall spacetime volume,~[d4x.

Similarly, the other two terms in (2.1.24) have such a factor arising because of
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energy-momentum conservation in the constant ¢ limit. This factor is exactly
what we need to remove to get V(¢), as in (2.1.12). Thus for constant ¢ we have

.
V(6) = -L[¢]-(i/z)j =& 1n[detin'l(¢;k>/detin“l(o;k)]-W[O]/[d‘*x.

(2m)

(2.1.26)

The last term is precisely equal to the sum of all 1PI connected vacuum-to-
vacuum diagrams for the shifted theory as given by L[®;¢] and as represented in
(2.1.23). This final result, generalized to include other fields, is what we
will employ in our model analysis in Section 3.

We close this subsection with a few remarks about the perturbative evaluation
of V using (2.1.26). If one rescales all the exponents in the path integral form
of z[J], (2.1.14), by a factor 1/ % and redefines W[J]>W[J1l/h in (2.1.7), then it
is a simple exercise to see that the first term in (2.1.26) becomes O(ho), the
second term becomes O(hl), and diagrams with L loops in the expansion of the third
term become O(hL). h is then a "loop counting parameter." In fact, if it were
not for our choice of units, for which4r = 1, the obvious candidate for h would
be Planck's constant [29]. Since we have multiplied the total Lagrangian by this
1/h factor, this characterization of the contributions to V in terms of the number
of closed loops in a diagram is unaffected by the value of the shift ¢, and because
we will be using the shift as a variable, it will be convenient to expand V(¢) in
terms of the number of closed loops appearing in the diagrams of the right-hand side
of (2.1.26). This is standardly called the "loop expansion." Also, we naively
expect that if the interaction parameters are small, specific diagrams with large
numbers of closed loops should give small contributions. If we are dealing with
a simple massless scalar theory with only a quartic interaction, one can indeed
show [16] that the L loop terms in (2.1.26) are O(fL+l) (up to logarithms) where
f is the coupling constant. In a tﬁeory with two or more couplings, the locop
expanéion establishesva natural hierarchy for the powers of the coupling constants

as we will see in Section 3. Finally, we note that the individual diagrams in
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the perturbative expansion of (2.1.26) will be divergent and must be regularized
and renormalized to allow us to obtain finite results. As will be evident in
the next section, the lcop expansion is a natural scheme in which to carry out

this renormalization program [30].

2.2 Dimensional Regularization and Renormalization

The dimensional regularization'procedure is essentially a formal extension
of field theory to a spacetime of dimension N, where N is not necessarily a real
positive integer. This extension can be defined in such a way that the internal
momentum integrations of individual Feynman diagrams always give finite results
when N is not equal to certain rational numbers [31]. A detailed example of
dimensional regularization is given in Appendix C where we evaluate a sample
diagram. The customary ''divergences" that occur when diagrams are regulated by
a momentum cutoff A, e.g., "log A," now appear as the singularities of the
meromorphic functions of N which are encountered in evaluating these diagrams in
N dimensicns. For example, when N is near but not equal to 4, diagrams are

analytic functions of the variable

e = (4-N)/2 . (2.2.1)

However, as € -+ 0, these unrenormalized amplitudes diverge due to their having
poles in . Thus we must take care in extracting finite answers for physical
processes. This is accomplished by renormalizing the model. That is, we make
the bare or unrenormalized parameters and fields of the theory functions of ¢,
and we systematically insert poles in these bare quantities in order to éancel
the previous poles in ¢. In this way we obtain finite renormalized Green's
functions in the limit ¢ - 0 [21,30].

For discussion purposes, consider the simple Lagrangian density

h

L = = (aAO) __!Ag' . (2‘.2.2)
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The zero subscript indicates bare fields and parameters. The model has no

bare mass term and so no mass renormalization needs to take place. ‘Using the
dimensional regularization scheme mass renormalization can be done multiplicatively
by defining the renormalized mass as m = meo. If my = 0, then the renormalized
mass also vanishes with this definition. Although we have introduced no bare mass
and no renormalized mass, however, we must introduce a unit of mass, M, to carry
out the renormalization of the theory. To completely define the renormalized
theory, we must have a scale. For example, M is sometimes introduced by defining
the renormalized coupling constant in terms of a renormalized Green's function
evaluated with momentum products pi and pi'pj equal to specific fractions of

M2 [19]. 1In this context M is referred to as a "subtraction” point. If the
theory were to describe a real physical particle of known non-zero mass, it

would be natural to choose this mass for the value of M, but it is important to
understand that this is only a convention. We may choose any convenient non-

zero value which we prefer for the mass scale.

The essential point to realize is that so long as a regularization procedure
has been agreed upon, and the bare parameters of the theory specified, the physics
of the model is determined. Adjusting mass scales and definitions of the renor-
malized parameters may facilitate the analysis of the model, but it should not
alter the physical predictioms.

We will introduce a unit of mass in defining renormalized quantities in the
following way. The renormalized field and coupling constant of the model (2.2.2),

A and f, are obtained by rescaling the bare quantities.

_ ,1/2
AO =z A . (2.2.3)

fd = Zf £ . (2.2.4)
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To keep the action a dimensionless quantity in N dimensional spacetime, LO must

have dimension [LOI = N (in mass units). However, the bare field should have
diménsion [AO] = (N-2)/2=1-e, so we require [fo] = 2e. If we define ﬁhe re-
normalized quantities such that [A] = 1 and [f] = 0, as in four spacetiﬁe dimensions,
then we must have {ZA] = —2£’and [Zf] = 2¢. Coﬁsidering these trivial dimensional

arguments, we introduce our mass scale by writing [32]

_ a2E S i 3 3
z, =M 1 +.Z h™[F,, () +‘Z zAij (£)/s ]!- (2.2.5)
i=1 i=1
and
2¢ T 1 < i
— Y
Z.f= M f+i£1 R [Fg, (D) +j§lzfij(f)/e 1> . (2.2.6)

The expressions in braces deserve a few clarifying remarks. These
expressions represent the perturbation series for the renormalization constants.
We will sometimes refer to the terms in the series as "counterterms." Note that
the expressions are written as power series in the parameter h, where h is the
loop counting parameter introduced at the end of Secticn 2.1. Each of the series
is to be understood, then, as an expansion in terms of diagrams with increasing
numbers of closed loops. Such an expansion is a very natural way to think of
the renormalization program. For a given number of closed loops, there are
only a finite number of one-particle-irreducible divergent diagrams in a renor-
malizable theory such as (2.2.2). To obtain new divergences which must be re-

normalized away, the number of internal momentum loops must be allowed to increase.
Because of this, renormalization is a procedure that is implemented on a loop-by-
loop basis.

ZAij and Zfij are polynomials in the renormalized coupling constant £. They
are determined by requiring that all the poles in € disappear from the renormalized

Green's functions of the theory, order by order in the loop expansion. The reason
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the index j is at most equal to i is that each additional loop in a diagram can
at most increase the multiplicity of the pole in ¢ by one unit, and one-loop
diagrams give no worse than simple poles. For example, in Appendix C the two-

loop diagram considered has l/e2 and 1l/e singularities. ¥F,, and Ffi represent

Ai
arbitrary finite renormalizations which depend on the particular definitions of
the renormalized field and coupling constant which are employed. We will give
explicit examples of such F's below (Section 4.1). Also, we will always insist
that each term in the sums in (2.2.5) and (2.2.6) vanish relative to the first
terms, i.e., the 1 and the £, when £ - 0. One could generalize the sums in (2.2.5)
and (2.2.6) by allowing arbitrary positive powers of ¢ within the braces but we
will not do so. TFor the purposes of our explicit two-loop calculation, the
equations are general enough as they stand.

The transition from unrenormalized to renormalized Green's functions may in

principle be carried out through the generating functional. We define the renor-

malized effective action in four dimensions, I', in terms of the unrenormalizad

action, PO’ by changing variables and taking the limit ¢ - 0.
rlf,¢,M] = Liml {fo(f,M,S),¢0(f,¢,M,€)} . (2.2.7)
>0

This should be a finite limit for a "renormalizable' theory, in particular for the
model specified by (2.2.2). Since the K-point, (unrenormalized) renormalized 1PI
Green's function is obtained by taking K functional derivatives of (TO)P with

respect to (¢0)¢, and ¢ is related to ¢0 exactly as A is related to AO in (2.2.3),

we have the following relation between unrenormalized and rencrmalized 1PI Green's

functions in four dimensions.

F(K)(f,¢,M;xl,...,xK) = fim Zi/z réK)(f0’¢0;Xl"'°’xK)’ (2.2.8)

£+0

Note that we have evaluated the functional derivations at ¢(x) = ¢ = constant,

as will be necessary in discussing the shifted theory.
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2.3 The Renormalization Group

The renormalization group results from exploiting the simple fact that the
masé scale is arbitrary [32]. If we change the mass scale by dM but insist
that the physical model is unchanged, we must have dfo/dM =0 = d¢0/dM and
dPéK)(fO,¢O;...)/dM = 0. Using this, differentiating (2.2.8), and interchanging

d/d4 and the limit & > 0, gives

M3y + B(E)3, + Y(D)03, + gy (5) 1T (5,000 = 0, (2.3.1)
where
d
8 = 2im (M < £) , (2.3.2)
e M T EgsdgE
M d M 4
Yy = im G 47 $) = fim (- — = 2n Z,) .(2.3.3)
an Gt Vrgeg.e T U0 Tz @ 22,0,

Eq. (2.3.1), in which we have suppressed the coordinate dependence (xl,xz,...,xK),
is the renormalization group equation for the renormalized Green's function. By
transforming into momentum space one can use (2.3.1) to obtain information about

(X)

" the behavior of T under a uniform rescaling of the momenta, particularly when

¢ = 0 [33]. Below, we will be more interested in the complementary situation

where ail momenta are zero and ¢ is rescaled [16]. Depending on the characteristics
of B, (2.3.1) may also be useful in this case by permitting the reliable extension
of the "raw'" perturbative calculations of the zero-momentum Green's functions over

a mﬁch wider range of the shift ¢. In particular, for the model in Section 3,

the contributions of individual diagrams grow large as ¢/M goes to either zero or
infinity, and we cannot trust the'predictions of a small number of specific
diagrams. With the help of the renormalization group differential equations, we may

sometimes replace the individual diagrams with approximations that are reliable

as ¢/M vanishes.
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B and y in (2.3.2) and (2.3.3) are expressible in terms of the quantities
appearing in the perturbation series for the field and coupling constant re-

normalizations. To show this we first rewrite (2.2.3) through (2.2.6) as

=]

- M2E 3
fg =M {E+F (D) +j£1 INOS I (2.3.4)
02 = P w1 E (0 + ] z, (/) (2.3.5)
0 A 421 Aj
- where we have performed the sum over loops and defined
F_(£) = ] ol ) Z., () =] nt 2 (£) (2.3.6a,b)
£ £i ’ £3 £ij ? cETeTEs

i=1 i=3

with similar definitions for FA and Z In writing (2.3.4) and (2.3.5) we

Aj°
have indicated that the F's and Z's depend only on £. Because we have in mind
the shifted theory, however, there are two massive parameters available, ¢ and
M, and a priori it would seem possible for the F's and Z's for fO’ say, to
explicitly depend on ¢/M. It is nevertheless true that one can specify renormali-
zation prescriptions for which there is no such explicit ¢/M dependence so that
(2.3.4) and (2.3.5) are correct. General arguments supporting this remark are
available in the literature [34] and will not be discussed here. In Secticn 4,
we will give explicit examples, to O(hz), of such ¢/M independent prescriptions,
and in the following implicitly assume that we are only discussing such cases.

Now setting dfo/dM = 0 in (2.3.4), using d4/dM = 3/3M + (df/dM)3f, and

collecting the coefficients of powers of e gives

d f+Ff
Maﬁ £f=8 - ZE(I:S—f—) R (2.3.7)
ff
f+F 2 Z
£ f1
g8 =2 (——~*:— 3 (- = ) s (2.3.8)
. l+8fbf} £ r+:f
and 5
£+F Z.,
5z =2 e af(gggi). (2.3.9)
£y (I+3.F ) £
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We have also used (2.3.2) and assumed that the left-hand side of (2.3.7) is

an analytic function of e. It is curious that the right-hand side of (2.3.7)

only involves terms independent of € or linear in e, There is no €2 for example.
This turns out to be a comsequence of the 'spacetime' dependence of [fO], the

mass dimension of the bare coupling constant: this mass dimension varies linearly
with the number of dimensions of spacetime.

Similarly, setting d¢./dM = 0 and using (2.3.5) and (2.3.7) we get
0]

(f+F )o F

Mdo _ | £fA
> e e[ = )(1+a 5 , (2.3.10)
.. (HF3 2, Es-*' Z,, (£+F) 3., 2 aan

@) (T3 F ) (T+F,) (T3 F )| (I+F,)
and
£+F —
- Y A CAj+l "fA f

(B3,+27) 2, = 2(l+3fFf> l_aszj+l (1+F T (2.3.12)

Again we have assumed that the first of these equations, (2.3.10), is analytic
in €, and again there are no 82, 23, etc., terms on the right-hand side of this
equation because the dimension of the bare field varies linearly with the number
of spacetime dimensions.

B and y can be determined using (2.3.8) and (2.3.11), from which we see that
only the terms independent of ¢ and proportional to 1/¢ are needed from the per-
turbation expansions in (2.3.4) and (2.3.5). These terms involve all crders of
perturbation theory, though, as can be seen from (2.3.6). It is also easy to see
that the one-loop (0(h)) approximations to 8 and y are independent of FA and F_.

Furthermore, since FA and Ff are arbitrary, it appears that by a suitably con-
trived definition of f we can arrange for the higher than one-loop contributions
to B and y to be as simple as we like. While this may be true, it is clear that

one must pay a price for any such simplicity in the form of a very complicated
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expression for the renormalized Green's functions in terms of the renormalized
parameters. We will return to this point in the context of the simple non-gauge
model in Section 4. Since we are restricting our analysis to F's and Z's which
are not functions of ¢/M,‘it follows from (2.3.8) and (2.3.11) that B and Yy have
no explicit dependence on ¢ and M.

A considerable simplification results if one sets all the F's equal to zero

in (2.3.7) through (2.3.12). This renormalization prescription is due to

't Hooft{32] and gives

M_ﬁa £ = B -2 ef , (2.3.13)
B = 2(£3.-1)Z . (2.3.14)
B3 Zey = 20E3-DZy , (2.3.15)

M d
LEdM ¢ = y+e , (2.3.16)
Y = faf ZAl , (2.3.17)

and

(B3421)2, = 2 £3; 2,0 . (2.3.18)

Equations (2.3.15) and (2.3.18), or (2.3.9) and (2.3.12) when F # 0, provide
constraints which may be used to check specific calculations, say in perturbation
theory.

An alternative method [16] to compute B and y is based on the renormalization
group equation (2.3.1) and is useful in higher orders if f and the field renor-
malization are defined in terms of specific Green's functions T(K). Consider,
for example, the two-point function in momentum space, T(z)(f,¢,M;p2). This is
just the inverted propagaﬁor in the shifted theory and may be used to define the

functions
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1t 0)=—= TP (g,0,0507) | , (2.3.19)
3(p*) p =0
H(f,t)= "1:.2' F(Z) (£,4,M;0) > » (2.3.20)
¢
where
t = n(e/M) . (2.3.21)

H and U depend on ¢ and M only through t because they are dimensionless functioms.
Also note that the two-point function of a massless theory, and its derivatives,
are in general infrared singular when computed in any finite order of perturbation
theory. To avoid these singularities, we evaluate (2.3.19) and (2.3.20) for
non-zero values of the field expectation ¢, which acts like a mass term in the
theory.

Takiﬁg into consideration the t dependence of H and U, their renormalization

group equations can be written [16]

Eat + B, + (i)?(fz} (g) =0 (2.3.22)

with

= L B
)_ - (Y) : (2.3.23)

If H and U are known for some range of t and f, for example by perturbative
computations, we can use (2.3.22) and (2.3.23) to determine B and y in terms
of H, U, and their t derivatives evaluated at some to.

Once B and y are known, the partial differential equations for H and U can

be solved for all t, in principle, as follows. Let F(f,t) be a dimensionless

function satisfying

-, + E(f)af + Ky (E)JF(E,8) =0 . (2.3.24)
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”

First determine the scale dependent " effective coupling” f(t) which satisfies

af/dt = §(B) , (2.3.25)
with the initial condition
£(0) = £. (2.3.26)

Then the solution of (2.3.24) is

, t
F(f,t) = F(f(t),O)exp[Kj dsY(F(s))1 , (2.3.27)
0

where F(x,0) represents the "initial data" of the partial differential system.
When computing in field theory, as long as £(t) is small, we may try using per-
turbation theory to determine F(x,0), B, and ¥. This will be our approach in
the following two sections (3. and 4.), where we use a straightforward generali-
zation of the above formalism in considering a theory with two coupling constants

and several fields, including spinors.

3. A SIMPLE MODEL

We now consider a simple model of interacting fermions and bosons, We will
investigate perturbatively, to the level of two-loop Feynman diagrams, a massless
field theory of a scalar (A), a pseudoscalar (B), and a Majorana spinor (¥). Since
the spinor is equal to its charge conjugate (i.e. Majorana) it has only two inde-
pendent components, and thus the model satisfies the simplest kinematic constraint
for being supersymmetric: it has equal numbers of Fermi and Bose degrees of freedom.
We will not inflexibly impose supersymmetry on the dynamics but instead we will

survey a range of Fermi-Bose relative interaction strengths.
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3.1 Definitions and Formal Considerations

The Lagrangian

- gy - fo
=3 (SA ) + 2 (33 ) + q;o 1)'2(4;0 - -}o(AO—J.YSBO)%’JO -

2 2.2
(AO +BO)
(3.1.1)
defines the dynamics of the model. The fields and coupling constants in (3.1.1)

, 2 . s . .
are unrenormalized. When £ this is the massless version of the simplest

0~ &
interacting supersymmetric model introduced by Wess and Zumino [12]. To
illuminate the meaning of supersymmetry here, we will perform a few formal

manipulations using canonical equal-time commutation relations for the fields

and the equations of motion derived from (3.1.1). These equations are:

= -1, 3 -1 2,52
Bhy =~V Yy g fBgtBYAy (3.1.2a)
OB, = +ig T dve b, - = £ (a%432)B (3.1.2b)
0 2 8 Yo M5 Yo T3 T’ %0 > -1
i/#w = gO(AO lYS O)‘r)o . (3.1.2C)

A theory with a symmetry relating fermions and bosons should have a charge,
necessarily fermion-like, which mixes the fields. This is true in the present

example. Consider the vector-spinor "supercurrent" given by [15]
= lafagmivgs ) v 20 s ty.3 )2 (3.1.3)
x YsBp) vy = 5 Y (Apmiv B, ’ e
and the corresponding spinor "supercharge"

Q jd X 5° . (3.1.4)

One easily derives the following equal-time charge/field commutators.
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(3 Q, 451 = q ¥, , (3.1.5a)
- . . 20 . 2
lqa Q, vl = -[L¥(AGtiy B lg - 5 (Agtiv BT (3.1.5¢)

In (3.1.5) we have introduced a Majorana spinor parameter, q. Note that Q
causes a nonlinear mixing of the fields.

These charge/field commutators can be understood more abstractly, and their
significance appreciated more complétely, by studying the full algebraic structure
which contains the Qa’ the generatorsof inhomogeneous Lorentz transformations,
and, in the massless theory, the generators of dilations and conformal trans-
formations [15]. A mathematical discussion of such graded Lie algebras is not
within the scope of this thesis. This deficit, however, is offset by a recent
review of the subject [35].

Given this charge operator which mixes the Fermi and Bose sectors, we would
have a true symmetry of the model if the operator were time-independent, or
equivalently if the supercurrent were conserved. Using the equations of motion

(3.1.2) we find.
S 2.2 _
3+J = 3 (gg=fy) (Ag*tBo) (AgFiy B v, - (3.1.6)

That is, when fo # gg, the supercurrent is not conserved, and in fact, the
symmetry is badly broken since there are no mass parameters on the right-hand
side of (3.1.6). The divergence is a "hard" operator in the sense that its
effects will not disappéar as smaller distances are probed. We will say more
about this later, in Section 4.

When £ the supercurrent is conserved and at least at this formal

_ .2
0~ %o
level, we have a true symmetry. This supersymmetry can actually be maintained
in the full quantum theory corresponding to (3.1.1) as discussed by Iliopoulos

and Zumino [15], who show that one can regularize and renormalize the theory
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in such a way that the supersymmetry Ward identities are maintained. We will
not discuss these general Ward identity arguments in what follows, since we
also wish t§ consider f0 # gé. Instead we will present explicit calcuiations
which illustrate the interplay between regularization, renormalization, and the
symmetry in a very concrete way.

Let us determine if the model (3.1.1) is stable with respect to shifting
the vacuum expectation value of the scalar field, (Shifting the pseudoscalar
requires minor modifications below.) In particular, we are interested in the
effects of radiative corrections on the stability of the model. As discussed

in Section 2.1, shifting A_ is accomplished by adding a source term JA, to the

0 0
Lagrangian, Note that this causes an additional divergence for the supercurrent
(3.1.3) which modifies (3.1.6) by adding the term i J wo to the right-hand side.
This additional operator term has a massive coefficient J, however, so we expect
some vestige of the supersymmetry to remain in short-distance phenomena, when
f0 = gg, even when the scalar alone is shifted. We will return to this point
in Section 4.

Following the general formalism of Section 2.1, the stability of the ground
state can be investigated through the aid of the "shifted theory" obtained from
(3.1.1) by substituting Ao(x) - Ao(x) -+ ¢0 into the original Lagrangian and

then removing the constant and linear terms in A The resulting Lagrangian is

o
1 2 1, .2, 1~ 3,22 1. 22
LlAg:Byplpsegl = 5 (0A ™+ FGBY ™ + 2(i3by) = 7 £59085- 7 £908)
g g ' £ £
0, - g - ) 2.2 o2 202
-3 bg¥gbg — 3 YolhgivsBylvg - 5 eghg@gtBy) - 5 (AgtBy) T .
(3.1.7)

The Feynman rules for this shifted theory involve massive propagators and tri-
linear boson vertices, as well as the quartic and Yukawa interactions contained

in (3.1.1). The rules are given in Fig. 1. Note that shifting the scalar alone
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- . . 2, s e
gives a scalar:pseudoscalar:fermion mass-squared ratio of 3f:f:2g" in the free
shifted propagators. This relation is altered by higher order radiative corrections.
Now we renormalize the model as outlined in Section 2.2. The renormalized

fields are defined by

_ 172
Ay =2y

1/2 1/2 1/2

A, By = 2078, 9p = 2,770, vy = 2%y, (3.1.8)

0

where we have chosen the same renormalization factor for all the Bose fields.
This can obviously be done for the massless theory due tc the chiral invariance

of (3.1.1) where scalar and pseudoscalar amplitudes are related by rotations [36].

Ys
It is also possible to choose ZA = ZB in the shifted theory since chiral symmetry

is only broken by "soft" dimensionful interactions. (We will need this explicitly
only to the one-loop level where it is easily verified.) Also note that AO and ¢O
get the same renormalization since ¢O = (AO). Finally, the bare coupling constants,

f0 and gy» are written as in (2.2.4).

Our perturbation analysis of this model will include two-loop diagrams, so

we explicitly write the expansions for the field renormalizations and coupling

constants to O(hz)-

2 2
—2¢ 2 h h h 3
z¢ =M {1+hF¢l+h F¢2+ . Z¢11+ . Z¢21 + ? quzz + 0(h™)]. (3.1.9)
z =M 2S[14nF _+h7F o+ L7+ B-2;: + E-2--z +omD]. (3.1.10)
P v1T T2t e fyant e fyar T 2 fy22 S e
£ = f2, = M°® [£+hF__+h’F_+ L2+ LR o®H 1. (3.1.11)
0 £ R E s AR Y. - 3.1
e 2 . n n? n? 3
gy = 82, =M [GHAF_HhF b D2+ T2y 3 Zypy ¥ O(I. (3.1.12)

As in (2.2.5) and (2.2.6), the powers of M multiplying these expansions are
chosen so the renormalized quantities have the same naive dimensions as in the

four dimensiomal theory.
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' 3.2 Radiative Corrections to Order h2

We now compute the radiative corrections to the scalar effectﬁve potential,
the scalar propagator, and the spinor propagator, up to and including all two-
loop diagrams in the shifted theory. We will not determine the corrections to
the propagators for arbitrary external momentum. It is sufficient for our
purposes to expand the renormalized inverse propagators (1PI two-point functions)

in powers of p, keeping only the first two terms as follows.

rP 620 = o2 @) - E@) + 06D . (3.2.1)
riz) (0,6) =3 S8 - T(6) + 0> . (3.2.2)

By considering these renormalized propagators we obtain enough information to
determine the 8 and y functions of the renormalization group for this model.
The renormalization group will then allow us to extend the direct perturbative
calculations over a wider range of shifts, ¢, as we shall see in Section 4. 1In
particular, we will be able to compute D,E,S,T, and V exactly as ¢ - 0.

It is clear one must consider additional functions besides V(¢) to obtain
all the renormalization group parameters to O(hz). To this order there are two
contributions (0(h) and O(hz)) to y¢, two contributions to yw, and two contri-
butions each to Bg and Bf, where these quantities are defined as in (2.3.2) and
(2.3.3) (also cf. Sectionm 4.1 below). Since no more than two of these eight
contributions can be determined from V(¢), for constant values of ¢, we must
compute other functions in the theory. Previous two-loop calculations within
the effective potential framework have obtained the extra information by con-
sidering TI'[¢(x)], where ¢(x) = ¢ + cex; that is, the effective action for non-
constant shifts of the scalar field [19]. We found it much more convenient to
directly consider the propagators in the shifted theory. Put another way, one

has two options: compute vacuum graphs for non-constant shifts of the fields; or
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calculate non-vacuum graphs for constant shifts. The second of these options
reduixes a more familiar type of calculation, in our opinion. Of course, either
option produces the same results for 8 and y. Note that the four functions
D(¢), S(¢), T(¢), and V(¢) [or E(¢)] provide eight independent pieces of infor-
mation to O(h) and O(hz). This is precisely what is needed to determine the
four renormalization group parameters to this order.

For convenience, we will break up the total contributions to O(hz) into
three terms, First, we give the pure counterterm contributions, These come
from diagrams with no explicit internal loops (hence the subscript "0"). Then
we give the contributions from one-loop diagrams (subscript "1"), and finally the
contributions from two-loop diagrams (subscript "2"). The "classical” contribution
to the effective potential, -L[¢], will be given first. Expressed in terms of

both unrenormalized and renormalized quantities, this is

2 1 4
M3 b

2¢e
M5V, (4)

|

il
é E + h(Ffl + 2fF¢l)

L2 2
+ h (’Ff2 + 2Ff1F¢1 + 2fF¢2 + fF¢1)

+-il( + 2£2.. )

Ze11 411

o

—_— + 2
+ (Zf21 + 2F¢lzfll ZFle¢ll + 2fZq521 + fF¢1Z¢11

[V}

h , 2
+ 8—2 (zf22 + zzfllzquLl + 2fZ¢22 + fchll)

+ O(h3)] . (3.2.3)

We have multiplied by the appropriate power of M, our mass scale, so that both
sides of (3.2.3) always have dimension 4, the naive dimension for V(¢) in four-
dimensional spacetime. Similar multiplications will be consistently made in this

section. . The renormalization program involves arranging the singular terms in €

)
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of (3.2.3) to cancel with contributions from the one- and two-loop diagrams.
Referring to the bilinear part of the Lagrangian (3.1.7), we can immediately

write down the pure counterterm contributions to D,E,S, and T. These are

¥2eD (4) = M%7, (3.2.4)
0 ¢
2¢e 2¢e -
WS () = Mz, (3.2.5)
2¢e _ 28
= + h[F + gF + l F. . ]
48 gl " By T2 &y
2 1 1 1
+ h[F 2 + Fgl(F¢l + 5 F¢l) + g(sz + > leF¢l -+ 5 F¢2 3 F )]
h g
* e [Zg1n T 8y T o Zonad
+3‘3[ +2 (B +EF )LF (2, +t2z.)
e Loyt o1 By T Fer) T E By Y5 2
1 1 1 1
T8y 3 T Y7 FprZe1n T3 %21 T 7 FerZenn)!

n? 1
;’i[zgzz 201y T 7 Zerr)

b

1 1.
* 8200 T 5 2y10%11 T 7 Ze22 T B 2
and

2¢e 2e 3
MUEN($) =Mz, S f

o (3.2.7)

2
%o
The expansions of (3.2.4) and (3.2.5) in powers of h were previously given in
(3.1.9) and (3.1.10). The expansion of the right-hand side of (3.2.7) in powers

of h is exactly the same as in (3.2.3). This follows from

2

[a¥

E(¢) = Vi) . (3.2.8)

3]

dé
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This last relation is most easily seen from the interpretation of V(¢) as- the
generating function of zero-momentum Green's functions, as discussed in Section 2.I1.
Because of (3.2.8) it is unnecessary to compute E(¢) given V(¢). Nevertheless,
in practice (3.2.8) allows one to check combinatoric and other factors if both
left- and right-hand sides are independently determined.

The first nontrivial radiative corrections to the effective potential are
given by the logarithm term in (2.1.26). This term must be generalized to include
fermions and extended to N dimensions to allow the implementation of our regulari-

zation scheme. Once this is done we have

2

2 2 2
, k° -3/2 £.4 k“ -1/2 £.6
M25v1(¢) = - %—szfgk [}n( 0 O) + %n ( 00 )

K’ 2

k2 2. 2
~&0%
- 2 (1/41*1:(1)) m(———f———)] (3.2.9)
K

These three contributions from the scalar, pseudoscalar, and spinor fields are
represented by the one-loop diagrams in Fig. 2. The third contribution comes
from the fermion loop, hence the relative minus sign. The factcr of two corresponds
to the two independent degrees of freedom of the Majorana spinor in four dimensions.
Two additional items in (3.2.9) require some explanation. The factor
1/4 Tr(1arises from the extension of the spinor to N dimensioms. "I" is the
unit matrix for the Dirac algebra in N dimensions, a somewhat obscure construct [31, 37].
Nevertheless, for complete generality we will allow the trace to vary with ¥ by

writing

14 Tr(D)= 1 + 1/2 (49K + 0((4-)2) (3.2.10)

with K a temporarily unspecified number (cf. (3.2.38) and the accompanying

discussion). We have also introduced in (3.2.9) the notation

Dk = h &k

2 13- N/2)

, O (3.2.11)
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where h = l/l6n2. This replaces the d4k/(2n)4 in (2.1.26) and other momentum

integrations. WN/Z and T(3 - N/2) are analytic near N = 4 and could be replaced
by any such énalytic functions [38]. All physical results will be unaffected by
this replacement so long as one consistently uses the same Dk for all momentum
integrations, which we will do. The particular factors used in (3.2.11) were
" chosen for numerical convenience. The quantity h = 1/16112 may be identified
with the previously introduced loop counting parameter of Sections 2.1 and 2.2
since each internal momentum loop in a diagram will now give precisely such a
factor.

The interpretation of the de in Dk which is necessary to evaluate the
integrals is provided in Appendix C, where we define the momentum integrals
relevant to our analysis. Performing the integration in (3.2.9) and expanding

in € = (4-N)/2 gives

2e, 4 2 2
M ho 3 £5%0) 3 %0\ 7T
2¢ 0)9 .21 3 3 oo} ¢ 2 070
> = — -= -4 = —_—— = _—
AN 5 2r0[s > (1+2)zn( 5 } 5 40 ( > )J
2 2
- K- RN f¢
121 3 3 (oo__e_oz oo)
tofo Teo T A Ring 2) 2’““( 2,]
4 1 3 3 22 e . 2,22
- 4 8 "z~ 32~ K + (1+Ke+ Eﬁ)ln(g0¢o) -3 in ‘gO¢OE]
... (3.2.12)

where the terms represented by the three dots (...) are discussed following (3.2.16).
Similarly, the one-loop corrections to the scalar and spincr propagators may

be obtained using the basic integral formula (C.8) in the appendix. The bottom two

diagrams in Fig. 3 contribute to E(é) in (3.2.1) but not to D(¢). The contribu-

tions to D(¢) of the top three diagrams in this figure are
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2
£ 3 f.4
2e _ .2 0 - . 070
M Dl(¢) =M"h z¢{2 [ e &n (————~—2 )]
f

2

£.9
0 00
+ 3 1 -¢€in ( 5 )]
2

1 2 . 2 2.2 £ ,.2,22
- go [E E-+ 3 - K +(1+Ke- Ee)Zn(gO¢o) ) in (g0¢oi]

+ ... . (3.2.13)

The one-loop contributions to the functions S(¢) and T(¢), defined in (3.2.2),

come from the diagrams in Fig. 4. These diagrams give

2e 2e 2 [l 2 > 2.2
M §l(¢) =M hzwgoj\e—ﬂ,mpo-l-zzn %

20 1 1 L
+(1 —€2n¢0)tl— 5 Il(ao,bo) 5 Il(aO,CO)T 7 (a0 bO)Iz(aO,bO)

+‘% (ao-co)Iz(aO,co)]

+ .. . : (3.2.14)
and
2e _ 2e 3 o 2 _
M Tl(¢) =M h ng0¢0 (1- ;Rn@o)[ll(ao,bo) Il(ao,co)]+... .
(3.2.15)

To simplify the answers in (3.2.14) and (3.2.15), we have defined
=3 = X 5
O go’ bo = 2 fOS cO il 2 fo ’ (3.2.10)

and used these parameters as arguments of the elementary functiomns Ii(x,y)

which are defined in Appendix A.
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The three dots (...) in (3.2.12-15) represent terms which are essentially
irrelevant to our two-loop analysis. In the limit ¢ + 0, these additional
terms produce finite contributions of order h2 to V,D,S, and T, but these finite
O(hz) contributions do not contain n ¢. Thus, to O(hz) these terms can be
absorbed into the finite counterterms Ffz’ ng, F¢2, and sz which are in
(3.2.3-7). There are powers of 2n ¢ in the three-dot terms, but these powers are
multiplied by €2 or higher powers of €, so they become important only when 0(h3)
(i.e., three-loop) effects are considered. The essential dynamical information
we need is contained in the singuiar and &n ¢ terms as explicitly written in
(3.2.12-15). In the remainder of this section we will use the three-dot notation
to represent quantities that are important only to three-loop calculations and
unimportant to two-loop quantities as explained above.

Having obtained all the 0(h) contributions, we now carry out the "infinite"
portion of the renormalization program to the one-loop level., We substitute
equations (3.1.9-12) into (3.2.12-15), expand the results in powers of h, and

finally require thet the singular ("1/e") terms to 0(h) cancel between V. and V

0 1’
DO and Dl’ S0 and Sl, and TO and Tl' This straightforward exercise gives
Z =7 = -g (3.2.17)
11 P11 > R
Z.. =5f+2fg -4 g (3.2.18)
f11 ? T
and
=33 19)
Zgll = 2 g 9 (3.2..1.91

with the finite renormalizations (Ffl’ etc,) unconstrained. These results

; . , . 2
provide the first scant evidence of supersymmetry. First, note that when f = g~,

zfll = 2¢g Zgll’ Second, note that Z¢1l and zwll are equal. This last equality

is to be expected when f = gz because both fields are members of the same
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supermultipiet [11, 15]. This equality of the field renormalization constants
can be maintained in higher ordersif £ = g2 and if we choose F¢l =bF¢l (cf. (3.2.20)
and (3.2.34) below, and the related discussion).

With the abové values for the Z's, we can explicitly write out the h expansion
of the one-loop contributions (3.2.12) through (3.2.15). Helpful in partially

simplifying the result are the properties of the Ii(x,Y) functions of Appendix A

9
and the renormalized version of (3.2.16), i.e., a =g°, b =3/2 f, ¢ = 1/2 f. We

obtain
2 hd> 3 £ £ 3f 4 2. . net
) eVl(qb) [(Sf 4g ) (2t~ 5% —9 +-—— (2n §-+ 9 2n 759 - 4z n g7] + 8 K
2y 3,,.22 . 4.6, 2 2 4t
+—8 (25f+5fg—20fg-8g)(——2-—z ———+4t-4t)
e
3 2 2 4, . f 3f
+ [lOf(F +fﬂ )—8g (2Fg1+gF¢l)~f(3f +fg " =4g ) (An §-+ 9in 5 )

5
+ l6g6£ng2](2t— %a + 8Kg3{2g3(%--2t) + 2Fg1+gF, -g3(1+2£ng“)]

61
s (3.2.20)
9 2

W () = h B+ 2 (£-8%) - g’in g - 2g°t] + hg’K

2 4,1 5 2t . 10

R R Ly
4, 2 2 (g2, .2, byain L
+ [2g fng~ - g(ZFgl+gF¢l) -3 (5f£7+fg"=4g ") 1+ (2t - = )

+ gK[ZgBCé - 2t) + 2F +gF, —233(1 + Qngz)}

gl ° 41

+ } s (3.2.21)
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Mzesl(cp) = hg’ [—“;—-2t+1 - % I,(a,b) - 3 I (a,0)+ ¢ 4 (a-b)1,(a, b)+ (a-0)1,(a,c) ]

+h wl +2gF g g [1,(a,)+1 (a,0)] + 5 g [1 (a,b)+T,,(a,0) ]

2,0.2 .2, 4 .3 L1
- g (5" + fg° - 4g ) [8 Iz(a,b) + 5 Iz(a,c)]

- g2 (58P -eg7-4g) [2 1,(b,a)+ 7 I5(c,)- 3 (ab),(a,b)- § (a-0)I, (a,0)1} -

2 2t

(%—2t)+2hg (—————+ 2t)+... , (3.2.22)
€

and

ST, (9) = hg 9[T (2,0)-1 (a,0)] + h’gs J;g2£11(a,b>- I,(a,0)]

+ (552-gt-0g ) 2 T, 0,0)- 3 Ty, 1h G-20) + ... . (3.2.23)

_ 2e . ,
In writing these results, we have expanded the M factors as series in £ and

have combined the powers of %n M with powers of 4n¢ to get the variable
=t & . (3.2.24)

This variable arises in an obvious way if we go back to the momentum integrals

for the one-loop diagrams and note that

Mzeka F(k) = ¢ e‘ZEtij F (ko) , (3.2.25)

k+§¢

where ; is now a dimensionless variable and F is an arbitrary function. Since

the propagators in the shifted theory have their masses always proportional to ¢,
the F(ﬁ¢) occurring in the diagrams'can always be factored into a power of ¢ times
a dimensionless function of k. Also, the expansion e—Zst = 1-2et + 0(€2> accounts

for the common occurrence of the combination (I-2et)/e¢ in (3.2.20-23).



39
. 2 e (2) (2)
The final order h” contributions to V(¢), PA , and P¢ come from the
two-loop diagrams shown in Figs. 5, 6, and 7. We have tabulated these diagrams
individually in Appendix D. Here we give the net contributions. The seven

diagrams in Fig. 5 give
2e. .. n¥t 1 4 2.3 2 2 L6
MUV, (9) = (—2-——é—+8t)[25f + 5£%g° - 20fg" - 8g ]
£

+ & - ayless® + 156287 - sagg® - 322° + 16%ng?

2.2 _ 458 (o —§-+ 92 <L )

3
- +
(5f £ >

+ KgZ (562 - 20£g° - Sg‘*)] + .. X (3.2.26)

The two-loop corrections to the scalar propagator are shown in Fig. 6. These

: . . . . . 2 .
thirty-five diagrams provide a net correction in the coefficient of p~ as given by

2

€ _ .2
M D2(¢) = h

4t

4 1 2
-g (2—E+8t)

2 4

rd w2 -2’ 1 2, + 2g%mg? - Rg*1 + ...\ .

(3.2.27)

Note the most singular Glz) contribution comes only from the diagrams with four
€

fermion propagators (diagrams 19, 20, 29, and 30) and among these there is some

scalar/pseudoscalar cancellation effect.

The graphs in Fig. 7 give the following contributions to the coefficients of

P and 1 in the low-momentum expansion of the fermion propagator (3.2.2).



w%s, () = - gt - 2L+ aeh)
€
22 1 2 _ 1. 1 4
+ h g (Z - 4t) g [Il(a,b)+Ll(a,C)—l - 2 h} - 2 g [Iz(a’b)+12(aac)]

M

2¢

2 2 4, . 1
+ (5f7+fg -4g )[%'Iz(a,b) + §'12(a,c)]

-
i

+ (5f2~fg2-4g4)52 IB(b,a)+-% 13(c,a)- g{a—b)14(a,b)— %(a—c)la(a,C)]£
!

4

+ ... . (3.2.28)

T, () = - vl —4) {3e%(T, (a,0) - I;Ga,0)]

+ (582-£g%-4g™) [%{B(b,a)--% I,(c,a)] + Z(gz—f%'~+ cee . (3.2.29)

J

Once again we have used the functions of Appendix A and the notation of (3.2.16).

This completes our list of the O(hz) radiative corrections.

The renormalization of the singular terms can now be completed by requiring

the O(h2/s) and O(hzlez) contributions separately cancel between VO, Vl’ and V,3

D Dl, and

O’

Z

Z

Z

Z

Z

Z

921

$22

£21

£22

p21

$22

DZ; SO’ Sl, and SZ; and T This gives

o’ Tl, and T2.
3 4 1.2 2. ot (3.2.30)
2 g 5 f7-g F¢l 2g Fgl Kg .
—g* , (3.2.31)
158358252k eg 44165542 (5e+e ), +ag (E-4g)F . Kg® (85 -22g7E+5E%)
f1l gl
(3.2.32)
: 2
2563+1562 %1585 -16g° , (3.2.33)
4 2 14
g -8 le—ZgFgl+ > Kgo s (3.2.34)
~g*, , (3.2.35)
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g1 ~ 5 8 -8fgre ) T 58 F > ©(3.2.36)

S
[l

and
5

Zg2s =3é7— g | . 0 (3.2.37)
Several comments regarding these results are now in order.

First, note that the t/e singulaf terms have completely cancelled between
the one- and two-loop 1/e contributions (e.g. Vl and V2). It is not necessary
to include t—dependént counterterms to effect this cancellation which is very
intimately related to the renormalizability and unitarity of the theory [21,30].
A t-dependent counterterm would correspond to a in Az piece in the Lagrangisn

and a theory with such a term in the Lagrangian is nonrenormalizable.

Second, the plethoré of Ii functions and all logarithms of the coupling
constants have also completely cancelled between one- and two-locp 1l/e contributions.
These functions, and the logarithms, arose in the individual diagrams as a result
of the masses acquired by the scalar, pseudoscalar, and spinor fields due to the
expectation value of the scalar. Their cancellation in the singular terms illus-
trates that the ultraviolet divergence structure cf a theory is unaffected by the
scalar field having an expectation value. This last fact has become a standard
part of physics folklore [23] and is a key ingredient in allowing the comstruction
of renormalizable models of the weak interaction [2]. We would have obtained the
same counterterms in (3.2.30-37) if the scalar field had no expectation value and
we had computed the proper n—~point functions at non-zerc momenta in the massless
theory.

Finally, we come to the issue of the supersymmetric limit of the theory. If
the scalar and spinor fields are both members of the same supermultiplet when
f= gz, we would expect Z, = Z,. ILf we choose F =F as required to have

¢ Y ¢1 12!

z¢=zw to 0(h), then we have complete agreement in the h2 contributions to Z@ and
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Zw except for one term. This one disagrzeing term gives

4

7 S’Kg ) (3.2.38)

021 ~ 4421
f=g

P11

We conclude that Tr(]) = 4, i.e., that K = 0, is the only choice for which
dimensional regularization preserves the supersymmetry of the model. Since we
know of no inconsistencies which arise in the present model and we wish_to
respect the supersymmetry when f = gz, we will take K = 0 in all the subsequent
analysis. Apparently this corresponds to maintaining the four-dimensional
equality of the Fermi and Bose degrees of freedom in the model when we continue
to N dimensions.
With this choice for K, we have a very impressive correlation of the

divergences Qf the theory when f = gz. Our explicit O(hz) results show that in

the supersymmetric limit we may consistently choose the F's to obtain

Z, =17 R 3.2.39
s v ( )
-3/2 ,
7 z , .2,
Zo s (3.2.40)
and
7. =722 (3.2.41)
c . . .2,

That is, there is actually only one renormalization needed in the supersymmetric
limit. This was argued on general grounds by Ilicpoulos and Zumino [15]. Note
that (3.2.39) and (3.2.40) imply the complete product of renormalization constants
in the Yukawa interaction goavowo is finite in the f = gz limit. In fact,

1/2 \
g Z 2 Z = . 2.
g g“vee - g (3.2.42)

Also, (3.2.41) implies the equality of the unrenormalized coupling constants,

fO = gg, whgn £ = gz.
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To conclude this section we list the complete renormalized contributions to
o(hz) for the effective potential, the scalar propagator, and the spinor propa-

gator in the shifted theory. (Tr(71)= 4.)

2
WPEV () = MPE(V () + V. (8) + V. (8))
0 1 2
4 f2 £ 2
- & ‘+h[(5f -4g") (2t- D+ I (@n S + 9in —)— 4g ing 4 [F2EF ]
+ —h—g‘L (2587+58 2572088 -8g%) 4t >+ 10£ (7, [P )= -8g> (2F T8
+ £(582+£g%-4g™) (n —g- + 9n %—) ~16g%ungZ-8283 20625 2 +485 g
6
+ 48g°l2e + F , (3.2.43)
_ 2
where sz = FL2 + ZFfl ol + 2fF¢2 + fF¢l + eee .

w2 () = M (@g () + Dy (3) + Dy (5))

_ 2 .. 2 2 2. 2
=1+ h{3 (f-g")-g " 4ng +F¢l 2gt]

9
+ n2 -4t2+[~§- (7£8242£g%-95 %) ~4g  ang®-2¢g (2F +eF ) ]c + F L ,
2j(_3.2.44)
where FDZ = F¢2 +...

255 (9) = MPT (5, (8) + 81(0) + 5,(0))

= 1+h le g [l -2t- = Il(a,b)— %il(a,c)+ %(a—b)lz(a,b)+ %{a—c)lz(a,c)]

2} 2

- h"{gF l+2gx +g {I (a, b)+1 (a,c) l]— 5> 8 {I (a, b)+I (a,c)]

+ (582-£gP-s4g™ [—2— I,(b,2)+ Z 1,(ca)- —8-(a-b)14(a,b)- ']8'—(a—c)I4(a,c)] 2t
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where FS2 = sz b TN .
M2eT(9) = MP(T (6) + T ®) + T.8)
0 1 2
_ 3 1
= ¢<{g+h(F +ngl 2 F¢l) + hg [Il(a,b)—Il(a,c)]

+ 07825 3% (1 (a,b)-T, (a,0)] + (5£7-£87~4gM)[3 T,(b,2)- 3 T (c,a)]

+aghnp 2t + 0% F, (3.2.46)

(FM+%F¢1)+3(F +i7 7 o+ip _LF%y 4,

where F_. = F p2 2 ¢1 $1" 2 “¢2” 8 #1

+
T2 g2 Fgl
Note that we have exactly enough finite renormalizations at our disposal

(ng: Ffzs FqbZ’bwz) to zero FT.?.’ FSZ, FDZ, and sz.
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4. RENORMALIZATION GROUP ANALYSIS OF THE MODEL

Having computed the basic one- and two-loop radiative corrections to the
model in Section 3, we are now in a position to carry out the O(hz) renormalization
group “improvements" to the effective potential and the propagators in the shifted
theory. The analysis involves a straightforward generalization and application

of the results of Section 2.3.

4,1 The 8 and v Functions

First we determine the basic parameters which appear in the renormalization
group equations for the Green's functions. Recall the essential idea of the
renormalization group is to vary M, the mass scale, but keep the unrenormalized

quantities fixed. This gives

w4 = - - ( d d
NII,\Z IO 0 Es + \MEIZ f) Bf + (ME}Z g)a; fO . (4.1.1)
d . d d ) .
}'Ia-—ﬁ-go-—()— [:e+ (Ma_ﬁf>af+(Mal—Zg}ag_j g8, (4.1.2)
-
a . _ o Jod 172 1/2 (d ]
Mor Ay =0 = E&EM—zq) _]A +z, E‘IdMn , (4.1.3)
and
d . [a 12) 1/2 [La 7
MEE Vg = 0 [%gﬁ-zw Y + Zw {%dM -J . (4.1.4)

In the first two of these equations, we used

’] 8g . (4.1.5)

LOQ

wd e _d_.i" d_ . d
Mo = Moy t MdM(M>.a(i>+E§a_ﬁﬂaf+E{zﬁﬁ—
R b

We then used equatioms (3.1.11) and (3.1.12) to evaluate the partial derivatives
with respect to M, and finally we noted that all the Z's listed in Section 3.2

are independent of ¢/M. If we restrict our analysis to renormalization pre-
scriptions for which the "finite" rénormalization (F¢, Fw, Ff, and Fg) are also
independent gfi¢/M, we can drop the a(é/M) in (4.1.1) and (4.1.2), as we have done.



In the following we will always make this restriction. This also allows us to

write
1/2 1/2
Z )
Mar | z, €T AN ) o \#dm 8 °% \ %y g
(4.1.6)
where we used (3.1.9) and (3.1.10) to evaluate M3, Z and M5, Z .
M¢ MY
We now define the 8 and y functions by writing
£ = ng. + w28, + e(b, +hb. +h7b..) + O(h>) 4.1.7)
dM fl £2 £0 f1l £2 ’ T
and
wS A = [hy.. + 0y, + e(c, +he, +hPe..) + 0D)| A . (4.1.8)
au ° 61 2 60" Cp1T ™ Cu2

(As noted in Section 2.3, there are no higher powers of £ on the right-hand sides
of these equations.) Similar equations with the subscript changes £ - g and

¢ > ¥ are to be understood for g and ¥. Substituting these equations into (4.1.1)
through (4.1.4), using the definitions of the Z's and F's given by (3.1.9)

through (3.1.12), and equating all terms order by order in € and h, we determine
the B,Y,b, and ¢ functions in terms of the Z's and F's to O(hz). The results

are the analogues of equations (2.3.8), (2.3.9), (2.3.11), and (2.3.12) expanded

2 . .
to order h™, and can be compactly written using the operators

D = 2£3;+g3 , | (4.1.9)
Dy = by 3 F by Y , (4.1.10)
Dg = Bz 3+ B3, . (4.1.11)



We obtain

beO
el
el

e2

(D-—I)Ze22

and

DZX22

]

47

~-Ie s (4.1.12)
(D—I)Fel s (4.1.13)
(D_I)zell , (4.1.14)
(D—I)Ze21 - Dbzell - DBFel s (4.1.15)
= DBZell ’ (4.1.16)
1 s (4.1.17)
1/2 D FXl , (4.1.18)
1/2 D ZXll , (4.1.19)
1/2D 2 - l/Z(Db+2ch)ZXll - 1/2(D8+2YXl)FXl, (4.1.20)

X21

(D + 2v,,)Z . (4.1.21)

X1l

The subscripts in these equations are either (e,x) = (£,¢) or (e,x) = (g.,V¥),

in which cases the integer I is 2 or 1, respectively. The different integers

for the f and g equations come from the different mass dimensions of the bare

coupling comstants in N dimensions, as given by (3.1.11) and (3.1.12).

Inserting in the above relations the O(h) counterterms of (3.2.17-19) and

the O(hz) counterterms of (3.2.30-37), we obtain the following:

Bey

Bgl

Y52

2(5£2026g2-4g™) , (4.1.22)
3
3g s (4.1.23)
. (4.1.24)
xwl 3 - -
3. 22 _4 6 2 2
~60£7-208 g +45g "+64g7+4 (SE+EIF L +8 (E-bg )EF D Ty
(4.1.25)
2 2 4 2 .
g(£7-8fg"+g ) + 9g Fgl—DBrgl s (4.1.26)

el b - - (4.1.27)
£o43g"-2gF ) 1/2 DF
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and
= 2 4— F .- 1/2 b, F (4.1.28)
-Y':‘{;z & —<8 gl 8 ‘i’»’l ’ ede
where we now have
DB = 3g38g + 2(5f2+2fg2-4g4)8f_ . (4.1.29)

Note that equations (4.1.16) and (4.1.21) provide no additional informatiom,

but serve as consistency checks on the calculation. For example,

2 4 6

(-2)z 100£3+60£2g2-60£8 " -64g° = D (4.1.30)

£22 Ze1r o

as it should. The other three consistency relaticns are also satisfied by
the Z's of Section 3.2.

When we write the renormalization group equations for the effective potential
and the two-point functions, it will be convenient to use § and ¥ functions

defined in terms of the B's and y's in analogy to equation (2.3.23). These are

given by
h5f1+h23f2 3
B, = ——=——=5— +0(h")
£ 1omy -n%y
¢l $2
- on[s5e2r26g2-4g"] + h2[—6Of3—30f2g2+72g6+4(5f+g2)F£l
+8(£~4g2)gF .-D F._] + 0(h>) (4.1.31)
ggg}. Bfl s \Tsdoe
. _ b8 1+h28 2 3
By = o5 — tom)
L-hy  -h%y,,
= 3ng thl[g(e2-8£g2-2g") + 9g%F D F .1+ o) (4.1.32)

gl g gl”



2
hy,  +h7y ..
7, s Rt owd)
l-hY¢1_h y¢2
_ 2,.2, 2 4 3
= <-hg™+h"[- £"t4g ZgFgl 1/2 DSF¢1} + 0o(h7) , (4.1.33)
and 2
hy ,+h"y
~ _ Pl H2 3
{w = 5 + 0(h™)

l—hy¢l—n y¢2

2,2, 4 ; 3
~hg“+h"[3g —2gFgl—l/2 I%le} + 0(h™) . (4.1.34)

~

In order to complete our determination of the B's and the y's, or the B8's and
the ¥'s, we must specify the F's. Until the F's are specified we have not
completely defined the renormalized coupling comstants and fields. As we remarked
in Section 2.2, however, this does not mean the physics of the model is not yet
completely determined. If we are dealing with fixed, bare, unrenormalized
parameters, the physical content of the theory is also fixed. To illustrate the
variety of remormalization prescriptionswhich are possible, we will now discuss
three different definitions for the renormalized couplings and fields, and analyze
their corresponding'g'and Y functions.

First, we follow Coleman and Weinberg [16] in defining the renocrmalized
boson self-interaction strength by
'V

A
¢ lpem, e=0 . (4.1.35)

rh
]

o J
[a W

[N

While this definition is perfectly natural in the framework of the shifted theory
at low-momentum, it is certainly not unique. We could easily take a more general
linear combination of V and its first four derivatives to serve as a definition
of f; Note that we cannot set $ = 0 in (4.1.35) because of the infrared singu-

larities in the massless theory. FPut more directly, the fourth derivative of
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(3.2.43) is undefined as ¢ + 0 because of the powers of n(¢/M) appearing in
that expression. If we impose the definition (4.1.35) on eq. (3.2.43), the
0(h) term in that relation gives

2

= 4gtong? - §5-(zn.§-+ 9 gn %fa —<§ s5£2-4g"y . (4.1.36)

F__ +2fF 5

£1 ol

One slightly distasteful feature of this renormalization scheme is now visible.
The logarithms of the coupling constants which nicely cancelled between one- and
two-loop diagrams in V(¢), etc., have now been reinstated to O(hz) through the
finite one-loop renormalizations. We might hope that these logarithms would
again cancel in, say, the 8 and y functions, but this does not necessarily happen.

For example, suppose we also make the ''matural" definition

=M, e=0 . (4.1.37)
The order h term in (3.2.46) then gives

F _+gF

gl = g3[11(a,c)-ll(a,b)] , (4.1.38)

1
b1 T2 841

and the Ii functions which previously cancelled are also reintroduced producing

more logarithms of the coupling constants. If we impose the additional definitions

D (¢=M)

L[}
'_J
-

(4.1.39a)

e=0

S (¢=M)

=1 R (4.1.39b)
£=0

to fix the normalizations of the renmormalized fields, we obtain from the 0(h)

components in (3.2.44) and (3.2.45) the constraints

_ 2 .2 22
F¢l = ~’3 (f-g°) + g"ing , (4.1.40)



and
2

1
Fo=-8l1-51

vl (a,b)- % I,(@,e* —l'(a-b)Iz(a,b)+ -ll;(a-C)LIZ(a,c)] .

1 4

(4.1.41)
If we now insert the above F's into egqs. (4.1.31-34), we obtain B's and ¥'s in
which logarithms of the coupling constants are rampant in the O(hz) terms. There
is no cancellation Qf these logarithms.

In addition, there is a more undesirable feature of the definitions (4.1.35),
(6.1.37), and (4.1.39). With these definitions of £ and g, the limit f = g°
does not produce the supersymmetric version of the model. This can be seen either
by comparing Z¢, ZW’ Zg, and Zf to see if‘(3.2.39—4l) are satisfied, or by com-
paring the B and ¥ functions. For example, if Z, = Z to all orders in h, then

¢ Y
it follows trivially from (4.1.3), (4.1.4), and the definitions of the y's, that

to all orders in h. Similarly, if Zf = Z; when £ = gz, we must also have

Yo = Yy

Bf = Zng. These equalities do not hold if we use the above definitioms for £, g,

Z¢, and Zw.

2 s s .
when £ = g, by our renormalization prescription's definitions of these couplings.

Thus we have carelessly broken the supersymmetry, which we wanted

This defect of not respecting the supersymmetry when £ = g2 is simply over—
come. For instance, one can use the definition (4.1.35) and (4.1.39a2), and then

fix F . and le by requiring that 2gF _ = F_. and F¢ =F This satisfies all

gl gl f1 1 $1°
the supersymmetry constraints when f = gz. (It does not get rid of the logarithms
of the coupling constants in the B's and ¥'s, however.) Rather than pursue this
approach though, we will give up directly defining £, etc., in terms of the
propagators, the effective potential, and their derivatives at some value of the

shift ¢. We will now consider more implicit definitions of the renormalized

parameters which are chosen because they provide certain simplificatioms.



A renormalization prescription which is widely used in nonabelian gauge
theories consists of setting all the F's equal to zero. This prescription
originated with 't Heooft [32] and has been argued [39] to define a gauge invariant
coupliﬁg constant to all orders in h when used in a nonabelian model. In general,
this renormalization scheme respects internal symmetries in a field theory. This
property and the ease in implementing the prescription are two of the most im-
portant advantages of the method. Also important to our analysis is the fact
that the prescription gives ¢/M independenf counterterms [34]. If we set all the
F's equal to zero in (4.1.31-34), we indeed get Bf = ZgSg and Y¢ = Y¢ in the
limit £ = gz, so the supersymmetric theory is properly obtained with this
renormalization prescription.

Another interesting feature of this prescription is the direct relation of
g8 and y to the pole terms in the Z's. The form of the counterterms is such that
the operator D in (4.1.14-15) and (4.1.19-20) always reduces to a multiplicative
factor after all differentiations have been performed. In general when all the

F's are zeroed, we have

8 2§ Z

ej eil s (4.1.422)

and

., =3 Z . 4.1.42b
Yy =3 2441 s ( )

where j denotes the number of loops or powers of h multiplying the counterterms.

Eq. (4.1.42a) is correct for any coupling constant which is dimensionless in four
dimensions, e.g., a gauge coupling, and can be proved by taking (2.3.14), genera-
lizing it to an arbitrary number of such couplings, and considering the most general

polynomial in the coupling constants which can arise in Ze We will not give the

41"
4
general proof in detail.  One can easily check (4.1.42) against our explicit 8's,

Y's,band Z's.
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A disadvantage of 't Hooft's pfescription is that the coupling constants
are not known to be simply related to the Green's functions in the theory. In
the present model for example, f and g are not simply related to V and T, as
is the case in (4.1.35) and (4.1.37). This means the numerical evaluation of
specific Green's functions is made slightly more difficult.

For our last renormalization prescription, we will take one of a class of
prescriptions for which the O(hz) contributions to the gis and 7'8 are arranged
to vanish. One should note that this particular disappearance dces not mean
there are no order h2 corrections to any physical quantity within this class of
definitions of the coupling constants and fields. Indeed, the O(hz) corrections
to the effective potential, for example, are rather cocmplex (cf. the following
section, especially (4.2.19)). The vanishing of the O(hz) % and ? contributions
does mean that the renormalization group improvements to the Green's functions,
given the "raw' two-loop corrections, can be analytically (not just numerically)
carried out to O(hz) with relatively little additional effort than is required
to improve the Green's functions to O0(h) , given the raw ome-loop correctiomns.
The reasons for this are that the portions of the renormalization group analysis
which are hardest to carry through analytically are the exact determination of
the scale~dependent coupling constants and the integrations of the anomalous
dimensions, as called for in (2.3.25) and (2.3.27), say. Once these two objectives
are accomplished, the improved Green's functions are obtained just by substituting
scale~dependent coupling constants into the raw radiative corrections, and multi-
plying by now known factors (again cf. (2.3.27)).

Referring to (4.1.31-34), we infer the conditions that must be satisfied by
the class of renormalization prescriptions for which the O(hz) contributions

vanish to leave just the one-loop 8's and y's. These conditions are
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[D8—4(5f+g2>]Ffl(f,g) = 8(f—4g2)gFgl + 726%-308%8% 6083, . (4.1.43)

2 2 : |
Dg-9e’1F ; (F.e) = s(EP-aea’2gh) (4.1.44)
DBFél(f,gz) - 8g4-2f2-4gFgl , (4.1.45)
and
) 4
DBle(r,g) « = 6g —4gFgl , (4.1.46)

where DB is given in (4.1.29). The general solutions of these partial differential
equations are straightforward to obtain using the method of characteristics. It

is useful to define R = f/gz, and to let F, G, H, and I represent arbitrary

differentiable functions of the variable 36'(§§§I£Li) . Then if we define
7= ng+ lﬁ-zn R+ 4/5) + F (4.1.47)

25

the general solutions are given by

F . (f.g) = g° [;L-(R—l) - 3—%] (4.1.48)
glite 10 2 - > e
R
1/3 1/3
2 1 [R+4/5 (5u+19) (u~1)
F .(£,8) = 8 E——_( _ ) jd :]+G)
o1 25 \ R-L 1 urt/5) 43 (4.1.49)
R
1/3 1/3
2 14 (u=1)
F .(f,8) = g %:—-—- ( ) du _]+ H, (4.1.50)
p1 25 j; (u++/5>4,3
and
Foq(£,8) = g4 [Eé—ZR—SRz)F + (R-1)2/3(R+4/5)4/3-
2
180+122u+35u 3
I -1 du , 3:] . (4.1.51)
(‘ .f -1 23 a5y 73]

We now select one set of F's from this class by choosing F, G, H, and I
equal to zero. The final integrals in (4.1.49-51) can be evaluated by using the

information in Appendix B. The result is
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FiE.8) = 8 E -3 en-Fiw| (4.1.52)
- 2 14 '
"wl(f’g) =g E 35 J(R)] s (4.1.53)
and
P (£,8) = gt E4—2R—SR2)F - Ils' (196R%-53-191)
17
-+ @ (R+4/5)J(R)] . (4.1.54)

The function J(R) is defined aﬂd expressed in terms of elementary functions

in (B.5) and (B.6). The only feature of J(R) which we point out here is that
J(1) = 0. This implies the supersymmetry conditions (3.2.39-41) are satisfied
to O(hz) when £ = gz. That is, when £ = g2 we have F¢l = le and Ffl = ZgFgl.
Since this last renormalization prescription gives the simplest g and Y functionms,
we will discuss it first in the next section where we consider the solutions

of the renormalization group equations for the effective potential and the

propagators.

4,2 The Renormalization Group Equations and Their Solutions

The zero—mbmentum Green's functions in the shifted theory, and consequently
the effective potential, should satisfy renormalization group equations analogous
to those in Section 2.3, only generalized to include two types of coupling con-
stants and fields. If we divide by appropriate powers of ¢ to obtain dimensionless

functions of the variable t = &n(¢/M)(in the limit e - 0), these equations are

[- 3, +Bed, + 88,1 U(t) = - 47, U(E) , (4.2.1)
[- 2, + B + B o] D(t) = - 27, D(&) , (4.2.2)
[- o, + Bgde + 85,1 6(t) = - (Fy)6(0) (4.2.3)
-, + B+ E’gag] S(e) = - 27, S(©) , (4.2.4)
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where we have defined

[

Ue) = 8V(s)/s" , (4.2.5)

1]

G(t) T($)/¢ , (4.2.6)

and where § and ¥ are defined in (4.1.31-34).

One can verify thaf our explicit perturbative expressions of Section 3.2
satisfy these differential equations to O(hz) as t > 0. Indeed, the B's and
Y¥'s could have been determined by insisting that (4.2.1-4) be identically satis-
fied at t = 0, rather than by using the methods of the preceding section. Either
approach gives the same results, (4.1.31-34), which is hardly surprising since
both the above partial differential equations and the basic formulae of the
preceding section, (4.1.12-21), follow from the same elementary M-independence
of the unrenormalized quantities.

The next objective is to use our perturbative results and these partial
differential equations to obtain expressions for U,G,S, and D which are accurate
for t # 0. To accomplish this, we first require accurate initial data for the
partial differential system, say at t = 0. This initial data is provided by
the perturbative expressions(3.2.43-46) and should be reliable if f and g are
small enough. Next, we can integrate the system of equations if we have a good
approximation to the coefficients % and Y throughout the region of integratiom.
This we achieve by choosing a coupling constant "trajectory," {f(t), g(t) with
£(0) = £, g(0) = g} , where the t range is such that g(t) and f(t) remain small
enough for Eg(f,é), ?E(E,é), etc., to be well-approximated by the functions in
(4.1.31-34). The overall effect is to replace the approximations (3.2.43-46),
which require both small f and g and small lté to be reliable, by solutions of
(4.2.1-4) whose accuracﬁ depends only on f(£) and é(t) being small throughout

the range of t under consideration.
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The appropriate coupling constant trajectories are determined by solving

&
dt

dg
at

with the initial conditions

£(0)

With these trajectories, the

= B (t,8) . (4.2.7)
= 88 (f’g) 3 (4-2'8>
=f , g0 =g . (4.2.9)

solutions of the renormalization group equations are

t
U(f,g,t) = U(E(t),g(t),0) eXpEf ds A?q}(f(s),é(s)ﬂ . (4.2.10)
A ,
_t
G(f,g,t) = G(E(t),g(t),0) exp j ds 2*?¢<E(s>,§<s>) +?¢<E(s>,§<s>ﬂ ,
0 T(4.2.11)
_t
D(f,g,0) = DE®,E(0),0) exof [ ds 27, E)E6H | (4.2.12)
L A
and N
S(f,g,t) = S(E(t),g(t),0) exp j’ ds 2?¢<f<s>,§<s>{] . (4.2.13)
L
0

In general it is impossible to get closed form solutioms of (4.2.7) and

(4.2.8), or to analytically evaluate the exponentiated integrals in (4.2.10-13).

For the one-loop B's and ¥'s

of the previous section, however, the exact solutions

are obtainable. In addition, if we use the last renormalization prescription of

Section 4.1 in which the O(hz) terms in the 8's and ¥'s are zeroced, we have

B.(f,8) = 2n (5£2028g%-4g™) + 0(m7) , (4.2.14)

B (f.0) = 3hg> + 0(h>) , (4.2.15)
- . 2 3

7¢(f,g) = *(w(r,g) = - hg” +0(7) y (4.2.16)
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and with this renormalization prescription we can get closed form renormalization
group solutions to the two-loop level. The two~loop coupling constant trajectories
for this renormalization prescription are the same as in the one-loop case for any

prescription. We obtain

2
22 () = —E , (4.2.17)
1-6hgt
and
; 2. 6 _.2.-6
() = EZ(t) (5f+4gT)g” + 4(f-g7)g (t) . (4.2.18)

(s5e+4528° - 5(£-8D)2° (1)
We can also obtain the closed form solutions of egs. (4.2.10-13) if we further
specify our renormalization prescriptiom. Fdr simplicity, we not only adjust the
O(hz) contributions to the'g's and ¥'s to be zero, but we will also choose the

two-loop finite counterterms ng, ng, Féz’ and F so that the O(hz)t—independent

Y2

terms F in eqs. (3.2.43-46) all vanish. These O(hz) t-

vor Fppe Fgp» a0d Fyp

. 2

independent terms do not have any effect on the B's and Y's to O(hz), so for our
purposes it is unnecessary to determine what Ffz etc., actually must be in order
to achieve this cancellation. The determination of these t-independent terms
would require knowing the finite t-independent parts of the two-loop diagrams

in Figs. 5,6, and 7. (These parts are not given in Appendix D.) It suffices here

to know that these finite terms are higher transcendental functions of f and g

which are real analytic for small positive £ and gz.

With FV2 = FDZ = FT2 = FSZ = (0, we obtain
- 3. ,.=2 -4 E° F 3F
U(£,8,t) = {E- 5 h(5E°-4g )+ h 55 (2n 3 + 9 )
- 4h§42n §2 + thl(E,§)+ thFél(f,g)} -(l—6hg2t 2/3 R

(4.2.19)
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?(f,g,t) = {g+h[F (f,g)+ngl

=3+ 32 33 =2 1 210, 1 gra2ay 172
(4.2.20)
- =2 - - - -
D(f,8,0) = {1+ 2 n(E-3")-nz"eng” + 07, B, D)} -sng’0) M7,
(4.2.21)
and
=2 3= 1 =2 1z
S(f,8,8) = {1+ bF; (F,8)+ (-5 1,@, 2 H-31,G, 5D

+1@-2D,E, 2D+ 26 - 3 DL,GE, 3 D1}

. (1-6nge)t/? . (4.2.22)

The F and I functicns in these formulae are defined in (4.1.47-54) and Appendix B.
These results are fairly complex in structure, even in their region of validity
where ¥ and g are small, so we now point out and emphasize their more remarkable
features.

"The coupling constant trajectories (4.2.17) and (4.2.18) are the key to
understanding the results. As ¢ - 0, or t - = =, 52 monotonically decreases
from its initial value and goes to zero like 1/t. The scalar self-coupling £
also vanishes like 1/t in this limit if the initial f and g2 satisfy the constraint
St > —4g2. Given this constraint, both couplings disappear as t + - ®, so our
renormalization group solutions for the effective potential and the low-momentum
propagators in (4.2.19-22) should be valid for t < 0 if the initial £ and g2 are
small enough. In fact, if the perturbation series is an asymptotic series, the
solutions (4.2.19-22) become exact as ¢ >~ 0 for 5f > —432. If this is the case,

the ccefficient of ¢4 in the effective potential vanishes like 1/t as t + — =,
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As t increases from zero, the coupling constants ultimately grow in magnitude
and eventually the expressions in (4.2.17) and (4.2.13) diverge due to their poles
in t. UNear these poles the coupling constants are large, and so the perturbative
expreséions clearly cannot be trusted near these singularities in t. Depending on
the initial £ and gz, however, the range of positive t for which £ and gz are
still reasonably small, say < 0.1, may be quite substantial. The pole.in,g

obviously occurs at

1 26.319
: - = , (4.2.23)
g pole 6hgz g2

while the poles in the expression for f depend on the initial ratio f/gz; He. have

2.1/3_ _,2y1/3 9
te ole = ——li- and [5f+4gz] [2(§/§ )] -, if £ > g‘ ,  (4.2.24a)
P 6hg 6hg”[ 5E+4g”]
= ——lE only, Aif gz >f> - %-gz , (4.2.24b)
6hg
2.1 2 1
B N O 1 s WA 15 D it
4 2
if f < = g—g . (4.2.240)

For £ < - %-g , Wwe have poles for t both positive and negative and sa our

solutions (4.2.19-22) can only be valid over a finite range in t. Regardless of

the starting values for f and gz, if £ < —-% gz we cannot extrapolate our

renormalization group improved perturbative results to either t =+ » or t = =

. . , = =2
Figure 8 shows some coupling constant trajectories in the £, g plane and

is probably the most helpful diagram for visualizing the above remarks as well as

the following. When f = gz, we have f

gz for all t, a simple consequence of
the supersymmetry through the relation Ef = ZgEg. If £ > = %-gz, we have f/gz -1
as t - - « and all trajectories in the upper portion of Figure 8 become tangent

: . -2
to the straight-line, supersymmetric trajectory £ = g~ as ¢ - 0.
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The most interesiing effects occur when we start with £ # g2 and increase
t. The resulting trajectories diverge from the supersymmetric trajectory and
exhibit two distinct types of behavior, depending on f/gz. If f/g2 >1, £
remains positive and both‘f and g grow until the perturbative approximations

break down, i.e., until we get close to t = t « On the other hand, if

f pole
- 4/5 < f/g2 < 1, f either reaches some maximum along the trajectory and then
decreases, or else decreases monotonically as t becomes larger. In either case,
f eventually becomes negative when - 4/5 < f/g2 < 1. The trajectory finally
asymptotes from above to the straight line f=-4/5 gz, as shown in Figure 8.
This behavior poses two immediate questions. First, are the perturbative
expressions valid up to and including the point where f becomes negative, and
second, what are the physical effects of f's change of sign?
To aﬁswer the first question associated with - 4/5 < f/gz < 1, we see that
£t < to) and gz(t < to) are always smaller in magnitude than gz(to) where to
is the point where f(to) = Q0. If éz(to) is small enough then, cur perturbative
expressions should be valid for all t < tO’ and we can believe that f actually
vanishes and becomes negative with reasonable confidence. Note the zero in £
occurs when
_ [5e+4g2)3
6hg”[5i+4g°]

TR}
1/3 6hg2 ?

0 (4.2.25)

So we encounter the zero in f before t Also the value of

-2 .
g at tO is

g pole or t¢ pole’

2 2..1/3
éz(to) = g° [—Sﬁ—g&-] . (&.2.25)
4(g -£).

For any fixed ratio f/gze (- 4/5, 1), if gz is small enough then we believe £

is reached within the domain of validity of perturbation theory. For example, if

we set f/g2 = 0.999 in (4.2.26) then we have gz(to)/g2 = 13.1, an order of magnitude
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increase in the coupling. If g2 = 0.01 for this ratio, then éz(to) = 0,13,
which is probably mot too large for our perturbative answer to be accurate.
Note for this same initial ratio, we have tg = 23.9/g2, which does become rather
large for small g2. In general, the positive range of t for which we expect
our perturbative estimates to be accurate increases like l/gz.

Given that there are values of gz for which we can trust perturbative theory,
we can next discussvthe possible physical effects of the change in sign of £.
When f changes sign for small f and éz (or very nearly then because of the explicit
0(h) terms in (4.2.19)) the effective potential becomes negative and the origin
in ¢ is no longer a stable minimum. Due to the higher radiative corrections in
(4.2.19), V($) actually acquires an imaginary part when f becomes negative. The
imaginary part of V(¢), or U(t),is easily obtained from the analytic expression.

We get

Im U(t) = -6(= E())5m h E2(t) . (4.2.27)

The sign here follows from the "ie" prescription for the Feynman propagators

in the shifted theory. Similarly, G and S get imaginary parts when £ becomes
negative due to the logarithms in the Il and IZ functions.

In Figure 9 we have plotted Re U versus t for gz = (.01 and various values of
f/g2 as indicated. We conclude that ¢ = 0 is not the absolute stable minimum of

2

V(¢) when - 4/5 g2 < f < g" and g2 is small. We have no indication within our
perturbation theory calculation, however, that ¢ = 0 is nct the absolute minimum
when £ > gz. Thus the supersymmetric theory with f = gz seems to separate those
cases in which the semiclassical vacuuﬁ (4=0) of the model is stable from those
cases in which it is unstable.

When f < g2, two further possibilities arise. Either there is no ground

state at all for this case, or a nonperturbative spontaneous symmetry breaking of

sizeable magnitude takes place. In the second situation, the expectation of
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the scalar field in the ground state will be large and the mass spectrum of the
model will have a high threshold. We cannot say using perturbation theory which
possibility is actually realized. The value of t for the new potential minimum,
if there is one, must necessarily be so large that the coupling constants f and
éz are large enough for higher order radiative corrections to be comparable in
size to the one- and two-loop corrections given above. Perturbation theory to
any finite order will not be reliable if this is the case. The value of t needed
to reach the turn-over point in V(3), i.e. the edge of the abyss hinted at in
Figure 9, can actually be extremely large depending on f and gz. For f/g2 = 0.9
and g2 = 0.01 we have ty = 1682. Consequently there is a fantastic potential
barrier between ¢ = 0 and ¢ = g = M-e;682' = M010730'. Still, the requirement

of an absolute minimum for V(¢) guarantees that the model will undergo spontansous
breaking to a point with ¢ > ¢0.

If it were possible to calculate V(¢) when gz and f are large in magnitude,
we might actually find that none of our class of theories, even those with f > gz,
have a lower bound for V when t - «, or perhaps all undergo a spontaneous break-
down with ¢min very large. Such possibilities will always remain open as long
as we are limited to a perturbation theory calculation. The only conclusions we
can firmly draw here are that ¢ = 0 is definitely not the absolute minimum for
a range of parameters for the model (- 4/5 < f/g2 <1, g2 small), and at least
in perturbation theory there is no indication of the semiclassical vacuum
being unstable for f/g2 > 1.

To close this subsection, we should make a few comments about the unstable
nature of the supersymmetric trajectory as t increases. This is related to the

2 {(cf. (3.1.6)). If we were

"hard" divergence of the supercurrent when f # g
investigating short-distance effects or large momentum transfers in this model, we

would also use the renormalization group and introduce scale-dependent coupling
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coﬁstants f and é. These coupling constants would satisfy the same equations
(4.2.7) and {4.2.8) with the same Eqs as above, only now the variable t would

be the logarithm of a momentum transfer. Increasing t would correspond to
increaéing momentum transfers and probing shorter distances. If the divergence of
the supercurrent were ''soft," i.e., proportional to mass-like coupling constants,
the effects of the broken supersymmetry would die away at short-distances. In
particular, the breaking would not be apparent in the f and § trajectories and

we would have f= §2. (Note that this is really the case in the shifted theory
when £ = gz since in general we have the "soft" divergence i J wO’ cf. the second
paragraph following (3.1.6).) The actual hard divergence in the present case

when f # g2 causes a small deviation from unity in the ratio f/gz to be amplified

and to grow as t increases. One can see this effect in the trajectories in

Figure 8, or from the equation for §(t) = f(t)/gz(t). We have

%% = 10hz% (R-1) R+ 551 ) +omD . (4.2.28)

It is clear without solving this differential equation that a small deviation
from R = 1 will grow as t increases. In Figure 10 we have plotted R(t) for
various initial'R = R(0), with §2(0) = gz = 0.01 in each case. The figure nicely
illustrates the instability under discussion. The actual closed form solution

to (4.2.28) is easily obtained from (4.2.17) and (4.2.18).

Eq. (4.2.28) also has a constant trajectory solution given by R(t) = - 4/5,
which is apparently stable as t increases(cf. Figure 10). We know cf no symmetry
argument, or anything else, which suggests this solution will persist in all orders
of perturbaticn theory. In fact R = - 4/5 is not an exact solution to O(h?) if we
use 't Hooft's renormalization prescription which in general respects internal

symmetries. We will now discuss this and other features of 't Hooft's renormali-

, . 2y . . .
zation prescription to O(h”) in more detail.
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4.3 Other Renormalization Group Solutions Using 't Hooft's Prescription -

The B's and §'s using 't Hooft's renormalization prescription are given
by (4.1.31-34) with all the F's set equal to zero. The two-loop coupling constant
trajectories in this case are obtained by solving the coupled, nonlinear differ-

ential equations

SE - on[sE2+2fg -4z 1~ 207 [30E H1sE R 36801 (4.3.1)
and
<€ - 3hz° + hlg[E2-8Fg2-25"] . (4.3.2)

Alternatively, we can replace one of these equations with the differential
equation satisfied by R = f/gz, as we did in (4.2.28). This gives

dr

- - -— - -7 -
= 2hg? (R-1)[ (5%+4)~hg > (31R+38R+36)] . (4.3.3)

This last equation has only one constant solution, R(t) = 1, which corresponds
to the supersymmetric theory. As we remarked above, R=- %—is not a solution
to O(hz) when 't Hooft's renormalization prescription is used.

We cannot obtain closed form solutioms to (4.3.1-3) so we have integrated
the equations numerically. Before discussing these numerical solutions in complete
detail, however, we shall comment in general on the effects of the O(hz) terms in
the B's. If we limit our analysis to a range of f and g such that renormalization
group improved perturbation theory is an accurate approximation scheme, then we
can have only sﬁall quantitative changes in the 0(h) trajectories arising as a
result of the O(hz) terms in (4.3.1-3). In general, if the O(hz) terms are
Comparable in size to the O(h) terms and produce effects which alter the one-
loop results in a qualitative way, then a priori we would expect the three-
loop effects to be comparable to the two-loop, the four-loop to be comparable

to the three-loop, etc. Under these circumstances there would be no justification

in truncating the perturbation series at any finite order.
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As far as the qualitative behavior of the model is concerned then, all
we can reliably conclude in perturbation theory are results for which the 0(h)
g's of the preceding section give small f and é. This must be true of our
conclusions about the stability of the ground state of the model, so here we
cannot really improve on our interpretation given in Section 4.2. The O(hz)
terms in (4.3.1-3) are probably most useful in that they provide us with a rough
mathematical criterion for the reliability of perturbation theory: £ and g must
be such that the O(hz) terﬁs give quantitatively small corrections to the O(h)
terms.

To impart some feeling for the size of the O(hz) effects on the coupling
constant trajectories for small initial f and gz, consider g2 = 0.01. 1If the
initial f/g2 is 0.9, we have F(t) = 0 at t = 1682.9. This is a change of 0.07%
from the previous 0(h) value for this point, namely ty = 1681.7. 1If f/g2 is
increased to 0.999, the O(hz),change in the point where the f trajectory crosses
the axis is Ato = 2.4, This is a change of 0.1% in the value tO
by (4.2.17-18). 1If g2 = 0.01 and the initial ratio is less than but extremely close

= 2431.0 given

to 1, say to within one part in 107, both f and EZ grow so large along the tra-
jectory before the zero in f predicted by (4.2.17-18) is reached that the O(hz)
terms in (4.3.1-3) become comparable to the O(h) terms. For such values of £
and §2 (~10), we really must have a means of calculation other than canonical
perturbation theory in order to obtain reliable results.

Lacking such calculational wherewithal, we can only speculate on the behavior
of the trajectories and the effective potential for large £ and gz. To find a
guide in such speculation and to satisfy our curiosities, we investigated the
features of the full trajectories implied by (4.3.1-3), including large values of
f and §2. We will now discués these features as examples of possible nonperturbative

behavior and as an il]ustration of some simple mathematical techniques which would
D q

be of use in a more realistic situation.



The most striking feature of the trajectories resulting from (4.3.1).and

(4.3.2) is the occurrence of fixed points [40], or zeroes of §f and @é, at

(1/6h, 0)

R

(El,gi) (26.32, 0) , (4.3.4)

and

1]
[

(52;§§> (1/3h, 1/3h) = (52.64, 52.64) . (4.3.5)

Since the B's vanish to O(hz) at these points, it is clear that three-loop

effects here are important, and since the coupling constants are so large, there is
no reascn to doubt that higher-~loop graphs should also contribute significantly.
Nevertheless, for purposes c¢f illustration we will complete the analysis using

the §'s as given in (4.3.1) and (4.3.2).

The fixed points (4.3.4-3) have a decisive influence on the behavior of the
coupling constant trajectories for large f and é. This can be seen in Figure 11
where we have plotted the numerical solutions of the differential equations
(4.3.1) and (4.3.2). Near the origin (f and gz < 1), the 0(h) §3s control the
trajectories, but for larger f and § the fixed points on the éz = 0 axis and
on the supersymmetric boundary f= §2 dominate and essentially divide the coupling
constant plane into three regions. First, we can distinguish trajectories above
and below the supersymmetric trajectory which neatly joins the origin to the
point (fz, é;). Trajectories both above and below f = gz tend eventually to con-—
verge to the f = éz line. The initial behavior near the origin, however, is
first to diverge from the supersymmetric line. Only after sufficiently large
£ or g are reached do the trajectories begin to converge. Also, there is a second
partition of the coupling plane if §2 < 1/3h and £ > 0. Trajectories in this
region tend to converge first to the unique trajectory which connects the fixed

. = =2 = =2
points (fl, gl) and (fz, 82)-
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The overall directions of the trajectories as functions of t can be fairly
well understood by examining the stability of each fixed point. The origin
itself is aﬁ unstable fixed point of the differential equations as t increases
(cf. Figure 8). The fixed point (fl, gi) is stable with respect to deviationms
on the éz = Obaxis, but unstable with respect to perturbations away from the
axis. This is shown in mére detail by the trajectories in Figure 12. Finally,
the f£ixed point (fz, é;) is completely stable, as shown in Figure 13.

A precise technique for investigating the stability/instability of the
fixed points is to linearize the differential equations about each of the points,
and then tec determine the eigenvectors and eigenvalues of the resulting simul-
taneous linear equations. WNear the point given by (4.3.4), we define f = 1/6h + AE,

éz =0+ Aéz, and obtain

-2
diAg _ 1 =2
T 18 Ag s (4.3.6)
dAf 5 .= 1 =2
it = 3 AT R Ag . (4.3.7)

We have discarded terms of order(Af)z, (Aéz)z,and (Af)(Aéz). The solutions of

these equations are

05%(e) = ag20) /'8 , (4.3.8)
and
AE(e) = [AE(0) + 331- 852 0)1e73t3 - 531" 4320y &8 3.9y

The positive eigenvalue, 1/18, in (4.3.6) or (4.3.8) is responsible for the
instability of the fixed point for non-zero Aéz. On the other hand, the negative
exponential in (4.3.9) explains why the fixed point is stable if we are on the
aXis'Aé = 0, and why we rapidly coﬁverge toward the unique trajectory which

-9
leaves the fixed point if g~ # 0, as illustrated in Figure 12.



If we are near the fixed point given by (4.3.5), we define f = L + Af

3h
and 52 = é%-+ Aéz to obtain
-2
dog . _ 2 45?4+ ) , (4.3.10)
dt 3
A | _ 2 oouF _ o5a32 : N
at = 3 (28Af 25Ag7) . (4.3.11)

The solutions of these linearized equations are

1870 = & E© - 43712
- -2% [20E(0) - 25082(0)]e 2 & (4.3.12)
and
WEe) = 22 aE() - 252173
- 715 [2aE(0) - 25082(0)1e”2 & . (4.3.13)

Since both exponentials in these equations die out as t increases, the fixed

point is absolutely stable. The more rapid fall-off of the [AE(0) - Aéz(O)]

term accounts for the trajectories in Figure 13 first converging tec the f = §2
line, and then moving along this line toward the fixed point.
One can also approximate eq. (4.3.3) near the R = 1 solution. With R =
1 + AR, we have
4B - on g% aR[9-105h 371 + 0D . (4.3.14)

This implies that small perturbations from the supersymmetric line will grow in

9

7 1050 13.54, beyond which point the two-loop

magnitude unless we have §2

approximation (inappropriate as it may be) says the R = 1 line is stable. This
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return of stability to the R = 1 line for large éz, or for large t if §2(0)‘i 1,
is illustrated as well in Figures 14 and 15 where we have plotted the numerical
solutions of eq. (4.3.3). Each trajectory in this figure begins with EZ(O) = 0.1
and §(O) as indicated. If the initial ratios are less than 1 the trajectories
at first converge toward the R = - 4/5 line, thereby demonstrating the importance
of the O(h) g's-even for moderate sized coupling constants. When the O(hz) terms
in (4.3.3) take efféct, however, they very rapidly (as a function of t) move the
trajectories into the fixed point and onto the R = 1 line.

If the initial ratios are greater than 1, Figure 15 shows how the growth in

R is extremely rapid as t approaches t -{given by the second expression in

f pole
(4.2.24a)) from below. The O(hz) terms prevent the occurrence of the singularity
predictedvby the O(h)g's, and then cause the trajectories to converge back to
R = 1. [Note that the maximum R(t) apparently falls on a linear curve, as a
function of t, for all the trajectories in Figure 15. We leave it to the
interested reader to investigate this mathematical curiosity associated with
eq. (4.3.1-3).]

Now we consider the effects of the fixed points on the effective potential.
For discussion purposes we will take medium sized coupling constants, i.e., f and
gz ~ 1. The real and imaginary parts of U = 8V(¢)/¢4 are plotted in Figures 16-19
for gz = 1.0 and various initial ratios f/gz. We must point out that we have
hybridized 't Hooft's renormalization prescription in computing V(¢). We have
chosen the O(hz) finite counterterms so that FVZ = FT2 = FS2 = FDZ = 0 in
eqs. (3.2.43-46). This causes some modification of V{(¢) to O(hz) from what it

would be if we set F F F . = 0 as strictly required using 't Hooft's

£2 = Fgo T Fyo T Fyp

prescription, but as we have stressed before, the B's are unaffected to this order.
Since the goal here is to illustrate possible nonperturbative effects and not to
claim that the potential is precisely as plotted, there is no harm done by this

hybridization.
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The fixed points cause no change in the position of the absolute minimum
of V(¢) for f > gz. The origin is still the minimum since Re U(t) > 0 for all

2 . . . . : .
t >-« . If £ < g”, however, there is a qualitative change in the potential.

2

The effect of the fixed point (fz, gz

) is to raise Re U(t) above zero for large
enough t, suggesting that these theories may have ground states after all. For
£ sufficiently less than gz, the origin is only a local minimum of Re V(¢) since
Re U becomes negative (near t = 26) before the attractive fixed point forces it
to be positive again. This behavior implies a very large expectation for the
scalar field in the ground state, hence a sizeable nonperturbative spontaneous
symmetry breaking. WNot all cases with £ < g2 appear to have such breaking though.
If f/g2 is sufficiently close to 1, the O(hz) term in the ﬁqs may have enough
influence along the whole trajectory to prevent Re U from ever becoming negative.
For example, this is true for f/g2 = 0.999, when gz = 1.0, as shown in Figure 17.
Nevertheless it is still a very good approximation to say that the supersymmetric
trajectory separates theories for which ¢ = 0 is stable/unstabtle, even when we
make arbitrary use of 't Hooft's O(hz)g's for large couplings.

Also of interest is the imaginary part of V{¢), or Im U(t). In general,
the occurrence of an imaginary component for V(¢) indicates that the state {¢)
is unstable and cannot be maintained by a real external source or hermitian
interaction. Further, the sign of Im V(¢) is negative, allowing us to interpret
it as a decay rate per unit volume per unit time [23]. It is interesting in
this regard to note in Figures 18 and 19 that the imaginary part vanishes before
the absolute minimum of Re V(¢) is reached. For some f/g2 <1l, e.g., 0.994, an
imaginary part never develops. The fact that Re V($) becomes negative in these
latter cases is an effect due to the explicit O(h) term in V(¢) (cf. (3.2.43))

and not due to f becoming negative.
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To end our discussion of the O(hz) results using 't Hooft's renormalization
prescription, we now point out a fundamental objection to the E*s given by (4.3.1)
and (4.3.2). This objection alone may be sufficient reason to doubt whether the
O(hz) results give anything close to the actual behavior of the specific model for
large couplings and causes us to again emphasize that the discussion after (4.3.4)
is only an illustration of general nonperturbative possibilities for the behavior
of the effective potential.

Along the supersymmetric trajectory f = éz we have E} = 2g Eg = - 6§Zf¢ =
- 6§2”w . Therefore a zero in 8 implies a zero in ¥ in the supersymmetric
version of the model. However, it is well-known that a scale-invariant thecry
with no anomalous dimensions is a free field theory [41]. If the theory is
really noninteracting then, it is impossible to see how a sensible definition
of the coupling constant (which we suppose 't Hooft's definition is) can give
F=32 ~50 at the fized point!

Férrara, Iliopoulos, and Zumino [42] have used the fact that 3 ¢ ¥ in the
supersymmetric theory (which can be shown to be true to all orders in perturbation
theory) to argue as above that there can never be a zero in § for non-zero values
of the coupling constant. The occurrence of zeroes of § with £ = §2 >> 1 in

finite orders of perturbation theory is therefore one more motivation for develop-

ing nonperturbative analysis techniques.
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5, CONCLUSIONS

The objective of this thesis was to explicitly demonstrate witbin the context
of a simple model a particular dynamical feature which distinguishes supersymmetric
theories from their field theoretical neighbors. After reviewing some relevant
perturbation theory formalism, we completed a thorough low-momentum stability
analysis of the model to the level of two-loop Feynman diagrams. We computed the
effective potential as a function of the vacuum expectation value of the scalar
field ¢, and in addition, we calculated the first two terms in the low-momentum
expansions of the scalar and spinor propagators as functions of ¢.

After discussing different renormalization prescriptions, we used the renor-
malization group to extend our results over a wider range of ¢, in particular down
to ¢ = 0. Within the domain of applicability of renormalization group improved
perturbation theory, we then found that the supersymmetric version of the model
separates those versions for which ¢ = 0 from those versions for which ¢ # 0 in
the stable ground state. The supersymmetric case itself had no vacuum expectation
value for the scalar field.

Intuitively it is to be expected that some versions of the model should not
be acceptable field theories because they do not possess ground states or lower
bounds on their energy spectra. This is the case if there are no quantum corrections
and the classical theory has fO < 0. When quantum effects are included, however,
the criteria for an acceptable theory become more difficult to determine [43]. It
is consistent with our perturbative calculations that the supersymmetric theory
acts as the boundary between acceptable and unacceptable theories in the quantized
model,

Alternatively it is possible, and is vaguely suggested by the explicit O(hzfg's
in Section 4.3, that the supersymmetric theory may instead separate those theories

which do/do not undergo a large, nonperturbative symmetry breaking. By non-
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perturbative symmetry breaking we mean that the vacuum expectation of the scalar
field, and consequently the masses of the single particle states, would be extremely
1argé and incalculable using canonical perturbation theory to any éinite,order. In
this second situation some other boundary in the coupling constant space would dis-
tinguish the acceptable from the unacceptable (ground-state-less) thecories.

Given either of these two situations though, the supersymmetric theory would
separate two distinct classes of theories as far as stability or spontaneous
symmetry breaking are concerned. It is this feature of separating stable/unstable
classes of theories which we conjecture to be a general characteristic of super-
symmetic models. We will discuss this conjecture further in part II of this thesis
where we consider the role of the supersymmetric theory in a class of nonabelian

gauge theories.
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Appendix A: Parametric Integrals

In this appendix we list some parametric integrals which are useful in

evaluating the pole parts of the Feynman diagrams encountered in this thesis.

1
I,(a,0) = 1 +j dx in[ax+b(l-x)] = 222(8) = b tn(b) (A.1a)
0 a->

Il(a,a) =1 + in(a) . (A.1b)
1 2 2

I,(@,b) =j ax —2A= o o 52 (a,p) = 2R 28R InG/R) |y gy
0 [ax+b (1-x) ] (a-b)

Iz(a,a) = 1/(3a) . (A.2b)

I,(a,b) = 3_1,(a,b) = a-b-b gnéa/bj . (4.3a)

(a-b)
I,(2,a) = 1/(2a) . (A.3b)
2 2
IA(a,b) _ abzz(a’b) _a (5-2 £n(a/b));b -4ab(1+inla/b)) . (A.4a)
(a=b)
I,(a,a) = -1/(6a%) . (A.4b)

The contributions to the scalar propagator, and'the scalar effective potential,

involve only the equal-argument forms of these integrals. Diagrams contributing
to the spinor propagator in the shifted theory are more complicated in structure
and require the unequél—argument cases of the above, as can be seen in Appendices

C and D.
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We also note that a substantial simplification in some spinor quantities

occurs upon using the following relations among the integrals.

I,(a,b) = I;(b,a)
I,(a,b) = I,(b,a)
1 = al(a,b) + bi,(b,a)
aI4(b,a) + bI,(a,b) = - I,(ab) -

(A.6)

(A.7)

(A.8)

These relations are particularly helpful in determining the 8 and y functions

in the renormalization group analysis.
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Appendix B: More Integrals

. . . .. N2 . .
In finding a renormalization scheme which eliminated the O(h™) contributions
to the € and ¥ functions in Section 4.1, we found it necessary to consider

integrals of the form

X
J(x3a,b) =Jf du(u-l)a(u+4/5)b . (8.1)
1

By differentiating, one easily establishes the recursion relatious

b J(x;atl,b-1) + (a+1)J(x3a,b) = (x-1)%TL(x+4/5)° (B.2)
and

(a+b+2)J(x;a+1,b) + (9/5)(atl)I(x;a,b) = (x-l)a+l(x+4/5)b+l.
(8.3)

Eq. (B.3) immediately gives

J@sanl, ma-l) = 2= [G1)/ /917, (B.4)

for all a > 0.

The above are useful in explicitly evaluating the solutions of the partial
differential equations (4.1.43)through ¢.1.46)in the text, as given by &%.1.48)
through é.1.51). To completely determine the explicit solutions in terms of

elementary functions, one needs in addition the following special case of (B.1l).

J(R;1/3,-4/3) = ~(1/2)4n[ (5R+4)/9] - 3Z - (3/2)an[1-2Z]

+ V3 arctan [V3 Z/(Z+2)] , (B.5)

where Z = [(R—l)/(R+4/S)]l/3. This result, valid for R > 1, may also be used

/3 /3

for R < 1 if one makes the replacement (R-l)l = - (l—R)1 . Finally, in



gection 4.1 we used the function J(R) defined by

JR) =7 * J@®;1/3, ~4/3) . 3.6)

Note that J(1) = 0.
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Appendix C: A Sample Diagram

In this appendix we will illustrate the use of dimensional’regula;ization
by analyzing the two~loop Feynman diagram shown in Figure C-1. Eventually we
will restrict our evaluation to determining the first two terms in the expansion
of the diagram about zero momentum. This is all that is required in the effective
potential calculaticn of the main text and permits a substantial simplification
in the mathematics. We will begin, however, by considering arbitrary p. The

diagram is represented mathematically by the expression

D(psmy,my,my,m) = [ atkaa Gbrm )T (o) (d¥m))

« ABCDE , (C.1)
where we have used the definitions
AN = L 5.
4= 2_ 2 ’ (C.2a)
47
B = ._,_;LE__E , (€.2v)
(g+k) ~my
C= L s (C.2¢c)
kZ_mZ
2
D = —= , (©.2d)
kz—m2
3
E = 1 . {C.2e)

(p—k)z-mz
We have ignored all combinatoric and other trivial multiplicative factors in

writing (C.1). The continuation of the integral to N dimensional spacetime is

defined explicitly below.
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We will proceed by first decomposing the spinor structure of this fermion

" a commonplace technique. In

gelf-energy diagram into a set of "scalar graphs,
carrying out this task for the sample diagram and for the other diagrams in

Appendix D, we used the algebraic programming system REDUCE 2 [44]. This system
was also uéeful,in substituting the final expressions for the scalar graphs and

performing the summation of the various terms in the decompositions such as

(C.4) and (C.5). Lorentz covariance allows us to write

D(P;ml,mz,m3,m4) 16 l(p ’mlﬁm23m3’m4) + F (P ’ml’m » I m4) s (C.3)

where Fl and ¥, are easily recovered by tracing the origimal expression, i.e., Fl =

2
Tr(ﬁD)/4p2 and FZ = Tr(D)/4 . Taking these traces and expressing all momentum

products in terms of A,B,C,D, and E in (C.2), we obtain the scalar expressions

p%F, = f d"kd"q [-ABD+ACD+ABE-ADE+BCD-BDE

— mi—m%)ABCD +(mtmym - 4m2—pz)ABDE

+ (m2 §+pz) (ACDE+BCDE)

+ (4 m 2)(m4—m +o )ABCDE ] s (C.4)
7, = f Mg 2m, [ -ABDE+ACDE+BCDE + (4m§-m§)ABCDE 1 . (€.5)

The individual terms in (C.4) and (C.5) have the scalar graph topologies pictured
in Figure C-2. The solid lines in this figure represent scalar propagators with
masses m;, My, My, OF M, as determined from the analytic expression above.

In Figure C-2, graphs a, b, and g are clearly just products of one-loop
diagrams. The others are honest two-loop graphs, but note that d is a special
case (p=0) of ¢, and f is a special case (p=0) of e. Also, the last scalar graph,

h, is a linear combination of two type e graphs, and the lower loop of graph g is

a2 similar sum of two simpler one-loop graphs. Thus to evaluate (C.l), we must
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compute four scalar graphs: two with one loop and two with two loops. These

four graphs are given by

G, (my) - dek — (©.6a)
k" -m
N 1
G,(psm,,m,) = jd k 5 5 2 s (C.6b)
2 172 [ (kt+p) —mz][k -m- ]
1 2
N, N 1
GS(p;ml’mz’m3) = jd kal q 2 Y (C-7a)

[ (o) P21 [ (et) -m 2} [ -m,y ]

N, N 1
G,(p;m,,m,,m,,m, ) "‘_[dmkdlq 2 2.2 2 2 2.2 2
GTTRTET [ (i) 2o 1T -] [ (k) “m 1 g =) ]

(C.7b)

By considering these four scalar graphs separately, rather than directly attacking
(C.1) without decomposing it, we will have indirectly computed the relevant parts of
all the self-energy diagrams in Figures 6 and 7, as well as the vacuum diagrams of

Figure 5.

The first of the one-loop graphs, Gl’ is immediately evaluated by using the

basic formula [21]

dek 1 o iV2 (2 B2 2, 2, (N-2a) /2

2 r{a)

(C.8)
[K%+2p k-0 ]

This serves to define the continuation intc N dimensional spacetime. Since we

will eventually let N=4, we now set N= 4-2e to obtain

W'J/2 2.1~¢

¢, (m) = i (@) T(e)/ (1-e) . (C.9)

. . 2
The other one-loop graph, Gz, is nontrivial if evaluated for arbitrary p
and €. Combining denominators through the use of a parametric integral, we may

perform the momentum integration to get
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1

N/2p oy ‘[dx [x(l—x)(—p2)+xm§+(l—x)m§}—€ . (C.10)
0

Gz(p;ml,mz) = in

The final parameter integration produces higher transcendental functions when

evaluated for arbitrary pz, €, mi and mg. Explicitly, we have
. _ . N/2 T(e) -€/2, 1-e . . 1+
Gz(p,ml,mz) = ir 1o A (1+u) ,,ﬁ (e,1-e52-e5 =)
= 1
o .
1-¢ u
-u F (e,1-e32-<; prareey ) , (C.11)
21
2 2 2 4 4 4 2 2 22 22
= = - - 2 -
where A A(ml,mz,p ) my +m, +p Zmlm2 2m,p Zmzp and
/A - mi#m§+p2 VA + mi—mg—pz 1 9 2
u = 5 , V= 3 . Note that for ml > my, =P 2 0,
(=2p7) (=2p™) -
1Hu u . .
we have u > 0, v > 0, and 1 > =— > — > 0. The Gauss hypergeometric functions

utv = utv

F appearing in (C.1l) may also be written as incomplete beta functions [45].
21
Some simplification occurs when one mass vanishes or when the masses are equal.

Then
N/2 T(e) 2 2. -¢ 52
G, (p;m,0) = ir @ -p) C F  (e,l-e32-e; —2— ) , (C.12)
2 1-¢ 2 2
21 m -p
and
" - 2
6, psmm) = i 2 T() @) T F (=,133/2; p7/4w) (€.13)

21

From a practical standpoint, (C.11) is of little use for four dimensiocnal
theories. We ultimately want the Laurent expansion of the graph about e = O,
and for this the integral representation (C.10) is best suited.

The first two terms in the ¢ expansion of the parametric integral are easily

obtained as



2 2 2
. - oy r 220 M1 (M)
Gz(p,ml,mz) = T(e) (1 e/2 4+2n(m1 o) T 5 n 2}
m./
2
2 2
/A p /L
tTg im § T ) LICPI €14
ml —P+ j’

where A was defined after (C.11). The 0(82) term would be needed to obtain
the O(so) piece of graphs a, b, and g in Figure C-2. For p2 # 0, this term
involves dilogarithms[45]. However, since we are not interested in arbitrary
p2 in the body of the paper, we will not pursue this. ©Note that Gl and G2 are
singular at ¥ = 4, i.e., they have simple poles in &, thereby exemplifying the
general remarks of Section 2.2.

Now let us impose some simplifying restrictions on our evaluation of G2
above, and G3 and G4 below. For our stability analysis we only need consider
the p2 - 0 limit of these diagrams. In particular we need the 0(1) and O(pz)
terms in the graphs' low momentum expansions. A straightforward argument using

Lorentz covariance allows us to obtain the O(pz) term for G2, G3, and G4 from

the 0(1) contribution by simple mass differentiations. The result is
G = (1 +p> L)G, (0 - o(p” C.15
z(p’mlamz) - ( P ) 2 ( ’ml)mz) . (P ) * ( . )

where the linear operator L is given by

1 2 .2 .
L=z EA-N)amz + 2n7 amzj : (C.16)
1 1
G3 and G4 satisfy the same relation as G2 in (C.15)

The double-mass, one-lcop graph is easily evaluated at p2 = 0 for arbitrary €.

2.1-2¢ 2.1-2¢
N2 Ty  ®p - @)
l-¢ 2

ml—m

GZ(O;ml’mZ) = i . (C.17)

2
2
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Applying the differential mass operator L, we obtain

, N/2 Y _ _ " o
LGZ(O;ml,mZ) = 24T Fés)z 3 (¢ E%i)z E—-(mg)2 E]+(2—e)mim§ E%i) €—(m’z') El}.

N(l-e)(ml—mz)
(C.18)
Using the integrals defined in Appendix A, we can express the 0(1l/¢) and 0(1)

parts of G, fairly compactly as

2
. - . N/20 o2 20,1 2 2 2 2 4
Gz(p,ml,mz) =4ir 'T(e) |1+ (2 Il(ml,mz))+-5 Ep Iz(ml,m2)+ 0(e",p g} .

(C.19)

Once again, to obtain the 0(80) part of the diagrams in Figure C-2, we would
need the 0(&2) terms in the expansions of (C.17) and (C.18), which we have
not bothered writing in (C.19).

The two-loop graphs, G, and G4, are remarkably rich in structure. They

3
can be expressed, for arbitrary N, p, and masses, as generalized multivariable
hypergeometric functions [45], but for specific calculations invelving single
diagrams the explicit parametric integral representations obtained directly from
combining the denominators in (C.7) and performing the momentum integrations are
much more beneficial, as in the one-loop case. (The hypergeometric expressions
might be useful if one were to sum classes of diagrams before letting € - 0.)

We will carry out the parametric integral analysis relying on our previous
restriction to a low-momentum expansion. In addition, we will not evaluate the
parameter integrals for p = 0 and N arbitrary, but will obtain only the 0(1/32)
and 0(1/e) terms of the Laurent expansion about N = 4, These ¢ singularities
are all that are required for determining the renormalizatiocn group coupling
Constant trajectories and the anomalous dimensions to the two-loop level, as
explained in Section 4 of the text. Regarding the low-momentum exXpansions of

the diagrams, note that
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2 2 :

L)

G4(O;ml,m2,m3,m4) = C.20)
Thus ﬁo compute the O(l/ez) and 0(l/e) contributions to the O0(1l) and O(pz) terms
in the low-momentum expansions of both G3 and G4, it is necessary to consider
only G3(O;ml,m2,m3).

In four dimensions this diagram would be overall quadratically divergent
(i.e., proportiomal to Az, had we regulated with a momentum cutoff), and each
of the subintegrations would be logarithmically divergent. Because of the
quadratic divergence, a straightforward combination of the propagator denominators
would transfer ultraviolet divergences into ﬁhe parameter integrals. This is not
harmful, but bothersome, in that it complicates the evaluation of the parameter
integrals as expansions in €. As a useful working guideline, one should always
convert multiple integrals into no worse than logarithmically divergent integrals.
This enables one to immediately see the poles in ¢ and leaves parametric integrails
which can be expanded in positive powers of e. This conversion of the integrals
is accomplished through partial integration with respect to the internal loop

momenta, discarding the surface terms [21].

. N M M + U H
G, (03my,my,my) = —21’5 ey 2(82 /3q 2akz_/akz) .
[k - ][<k+Q) -m ][q ~m, ]
1 2 3
3G.(0;m, ,m,,m mz
3V 2237 1NN 1
) TRt ke T3 7 2., 2 2
" [k™-m ] [(k+q) -m ){q -m ]
1 2 3
+ ml*u+ m2
+omgeromg ) (C.21)
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S0 we have

2
m
- ™ (N N
G3(0’ml,m2’m3) - N=3 jd kd q

1
[°-021%[ (ere) 2om2 1Tq 3]

(C.22)

+ m, ~> m, T m <> m
1 2 1 3

This result is really just a consequence of naive dimensional analysis (or

Euler's theorem for a homogeneous function of degree N-3 in the squared masses),

and is true only because dimensional regularization does not introduce any additional

mass parameters, or surface terms. Hote also the interrelation of the various two-

loop graphs when p=0; G, is a linear combination of G4‘s where the latter have two

3
equal masses.

To compute each of the three terms on the right-hand side of (C.22), it is
convenient to use a second working guideline: always evaluate the most divergent
momentum subintegration first, again to help avoid singular parameter integrals.

Combining the second and third propagators and performing the q integration using

(C.8) gives

1
1

inN/zr(s)Jf dedek 5 A —
0 [k —ml] {x(l—x)(-k‘)+xm2+(1-x)m§

2
™
G3(0;ml,m2?m3) = s

+ ml+-> w, + ml<——> m3 . (C.23)

We can now combine the remaining denominators using

1
-1 b-1
1. _ T [, v (1=y)

A2 I'(a)T (b) [y.M(l—y)B]a+b ’

a,b >0 . (C.24)
0

The k momentum integration in (C.23) then gives



@272 2N reyr(2e)
7’m3) = = *
2 (N=3)T (1+e)

T

GS(O;ml

1 1

-l fo ax[x(1-x)]"¢ jo gy v (Ley) [1-yR] 2

+ m, <> m_, T m > m

1 2 1 3 ?
x(mi/nﬁ) + (1-%) <m§/m§>

(C.25)

where R = 1 =~
x(1-x)

This expression has all the poles in ¢ explicitly displayed in the
T'(e)I(2e) factor. The quantity in braces in (C.25) is finite as ¢ +~ O and can
be expanded in ¢ beginning with a term 0(l). One can write this using hyper-

geometric functions, for example

l’
_ T(1+s) 1wy 1 E . .
{...} = T(2+e) J[ dx[x(1-x)] 2F1(2,25,2+8,R) , (C.26)
0

but again the integral representation (C.25) is better for the purpose of

obtaining the epsilon expansion. We have, for ¢ > 0,

1 1
Cood = [ atxa-017 Ik e 91 (L=y) [1-yR] 2
0 0
1 1
= ] dx[x(1-x)1° j dy v5[ (1=yR) ™25 =26 (1-y)R (1-yR) "1 72¢]
0 0
1 |
= 1+c -2ef dx dy[en(l-yR) + —%:%% ] + 0¢e?)
0
. 1
= 1+c¢ -zaf ix (0)F 0(c?) . (C.27)

0
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The vy integration, to 0(g), is independent of R. The 0(52) term is not so
amenable and involves higher functions (dilogarithms). As stated above, we
will Ee content here to determine only the l/e2 and 1l/e terms in tﬁe expansion.
guch singular terms are what we have tabulated in Appendix D for other self-
energy and vacuum diagrams.

Our final answer is then

N
0, (0smp,my,my) = ~ HELCEIT 12y 1728, 02y 1722, 00y 17287 . f1rero (P )
(1-2¢) T(1+e)
)
N2 m§+m§+m§ 3(mi+m§+m§)
=7 " (l+e)e <- E -
2e 2e

2 2 2 2 2
ml in ml + m2 n m2 + m3 2n m
£

+

2 ]
3, ou)j ) (C.28)

To make the answer more compatible with our conventions in the main text and
Appendix D, we have inserted two extra powers of I'(l+e) in both the numerator
and denominator in the last line of (C.28).

Using (C.20) we obtain the singular terms for G4 from the above expression

£ .
or G3

: 2 2
N_2 1 3 Il(m »I.)
G4(O;ml’m29m3’m4) =7 T (l+€) - —i' -— .

+ O(l){ . (C.29)
2e 2e £

J

The O(pz)terms of these two-loop graphs are obtained exactly as in (C.153) by

applying the differential operator in (C.16).

N2 1
. = T . —
L G3(0,ml,m2,m3) ™ I7{(1+e) e T 0(1) . (C.30)
' J
Np.2 | 1,G5m)) |
LG (0sm,m,,m,m,) =7 (l+e)* (- ———— + 0(1), . (C.31)
4 127227374 oe (
J

Relations (A.1la) and (A.2a) were used to write these answers.
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Our last remaining task is to add the contributions of the various terms
on the right-hand sides of (C.4) and (C.5) to obtain the l/e2 and 1l/e parts of

our original fermion self-energy diagram. We find

- I.(2,4)-1,(3,4)
N2, 1 7 2.1 2 1 2|f"1°"™ i
F,o= I'"(1+e) os 5t e 22 (2 4)+I 3, %} E%l 7 Tp= 5 né&[; 3 3 :]

2

2
m m
-4—21(24) 31(34)+

2 1.2 1 2 2 N
by~ 5 my- msma Ez(z,a)ﬂz(s,ai!

1.(2,4)-1,(3 4)}
1 2 1 2 1 21 2 1 2 2 27 27 2
+ o Eml— 5 - 5 [2 my+ 5 m3—m;[ 72 J+ o,p7)> ,
2 3

(€.32)

and

| 2
W2 1 .3 1 " o .
Fy=m T (l+e) 2m, 5.2 * 2 T e E1(2’4)+11(3’4;_\ T e 62(2,4)+_2(3,4ﬂ

+}.‘Zm2_£m2_£m2—3fll(2 WO 2 L&D 2> 4)+0<1p>
e 17 92 $T g ;JL~ mz _ m2 2 mz _ m2 > ,
2 3 2 3

(C.33)

in

where 11(2,4) Il(mZ’mé)’ etc. Note that these expressions are completely symmetric

under the interchange m, ++m3. This is true of the sample diagram for arbitrary
external momentum p, and can most easily be seen from the original expression (C.1).

Finally, one can use (A.3a) and (A.4a) to take the limit W, - m, of these results.
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Appendix D: Two-Loop Diagrams

. 2
In this appendix we tabulate the low momentum expansions, to O(p~), of the
two—lbop diagrams appearing in Figures 5, 6, and 7 of the main text. These
graphs contribute to the effective potential, the 1PX scalar two-point function,

and the 1PT spinor two-point function as fcllcws. First we define V v

21> "22°
DZl’ etc. by the expansions
V,(9) = VyPy + V0P, + .. R (D.1)
2,2 . _ 2 2 - _
Tag @758) = pDypBy + P DpoFy = Epgfy = Eppfpt o ®©.2)
F(z)(p ¢) = $S,,P. + $S, P ~-T P -T P + .. . (D.3)
P2 ? 2171 2272 2171 2272
In these equations, Pl and P2 are polynomials in 1/ec and t as given by
2 2 o
Pl = 1/e” - 4t/e + 8t , ®.4a)
P2 =1/e - 4t , {D.4b)

where t = An(¢/M), and € = (4-N)/2 measures the deviation of the N dimensicnal
spacetime from four dimensions. The double dots (..) in the above represent

terms which are finite, as € + 0, and independent of t in that limit. (In (D.2)

and (D.3), the dots stand for terms of O(p3) as well.) We do not tabulate these
finite, t~independent terms because regardless of their value they do not contri-
bute to our renorﬁalization group functions, B and Y, when the latter are calculated
to O(hz). Also, we assumed these terms had been completely cancelled, in all the
renormalization prescriptions which we considered in the text, by a suitable

choice of the finite parts of the O(hz) counterterms. Thus, for our remormalization
prescriptions, these finite terms are unimportant. The coefficients of P, and

1

P2 for the various graphs are contained in Tables D-1, D-2, and D-3 below.
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A few comments are in order regarding the tables. First, we have multi-
9lied~V21’ V22, etc., by the appropriate power of our mass scale, M, and have
extracted a "natural" power of ¢, the scalar field shift, to enable us to
tabulaﬁe dimensionless quantities. Second, the measure we use in evaluating
the internal loop integrations in the diagrams is the same as explained in

Section 3 of the text, namely [38]

h N

Dk = dk s (D.5)
I (1+e)

WN/Z

where h is l/léﬂz. Third, the parameter X, appearing in the expansions of
diagrams which have an internal Yy matrix trace, is a convention dependent
quantity used in continuing the trace of the unit matrix away from four space-
time dimensions, as was also mentioned in Section 3. In N=4-2¢ dimensioms,

we define

Tr(1) = 4(1 + Ke + 0(c2)) ) ®.6)

7N/2

4

A common choice suggested by Clifford algebra in H(even) dimensions is Tr(7) =

4l - ¢ in 2 + 0(62)) [31,37]. Finally, the functioms I 13, and 14 appearing

l) 129
in Table D-3 are defined in Appendix A. In Table D-3, we have also used the
abbreviations a=g2, b=3£/2, and c=£/2. These are simply the lowest order spinor,

2
scalar, and pseudoscalar masses squared, in units of ¢ .



Table D-1

. Figure 5 Diagrams

piagran 8M2€V21/(h2¢4) 8M2€v22/(h2¢4)

3 | 3 :

1 2787 /4 277 [1-2n(3£/2)1/2

2 38372 3£3[2-2n (3£/2)~tn (£/2)1/2
3 3 -

3 3f7 /4 3f7[1-2n(£/2)1/2
3 3 .,

4 27£7/2 81£°[3-24n(3£/2)1/6

5 5f3/2 f3[15~6zn(3f/2)—4zn(f/2)}/2

[8))

g2[9£2-36£52-245"1/2

g2 12762-84£22-80g +48g 1 (g2)

+(72£g2-1882) in (3£/2)4K (9£2-36£22-245 1) /2

o212 asg 85172

IA
g2 [38%-4£2 24168 %168 20 (22)

+(8£g2-262) an (£/2)+K (£2-45g

Zigg®1/2
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Table D-2

Figure 6 Diagrams.

,
Diagram w2en_ /(%) w2/
21 | , 22
No.
2¢ 2.2 2e_ 2.2
M EZl/(h $7) M uzzl(-h o)
0 0
1 3 3
27£7/8 27£7[1-24n(3£/2)1/8
0 0
2 3 3 e
3£°/8 3£7[1-4n (3£/2)~n(£/2)1/8
0 0
3 3 3
3£°/8 3£ [1-2n(3£/2)-2n (£/2)1/8
|
0 0
4 3 3. .
3£7/8 3£7[1-20n(E/2)1/8
0 3£2/4
5 |
0 —27f3/4 |
0 L g2y
6
0 ~3£3/4
0 £2/12
? ' 3
0 -3£°/4
0 £2/4
8
0 ~3£3/4
i 0 0 g
-0 3 3 !
| 27£7/8 27£°[1-220(3£/2)1/8
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. 0 0
10 L 5
£2/4 £311-20n(£/2)1/4
0 0
11 5 ,
3£7/8 3£ [1-22n(3£/2)1/8
0 0
12
9g?[£%-2£¢%1/4 3g2[3£2-£42
-3(£2-2£g%) (4n (3£/2)-k/2)]/2
0 0
13 2.2 2 2.2 .2 .2 2
g“[£°-2£¢°1/4 g [ +fg - (f -2£g7) Wn(£/2)K/2)1/2
i 0 3f2/2
14 5
0 —2783/2
0 £2/6
15 ,
0 —3£3/2
0 £2/3
16
0 ...f3
2. 4
0 -[fg™+4g 1/2
17 2.2 2 2 .2 2
9g2£2/2 982 262 ~£20n (3£/2)+£ 2K/ 2]
0 -[£8%+45"1/6
18
g2£2/2 g?12ee2-£20n(£/2)+£ %K/ 2]
' 2
—g*/2 g1 (35/12)K/2+ an(g)]
19 ~
—g*112g%43£] ¥ T4g? (1-6an(g?) ) +K (12g2+3£)
+6£ (1-4n(3£/2)) ]
—
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—g4/2 ¥ [-(13/12)K/2+tn (g2) ]
20 4 4. 2
-g 'f —g ' [8g +2f (1-4n (£/2))+KE]
0 -3£2/2
21 3 3
27£7 /4 ~27£7[2n(3£/2)1/2
0 —2f2/3
22 3 3
3£7/2 =3£7[en(3£/2)+en(£/2)1/2
0 -£2/2
23 3 3
3£°/4 -3£7[An(£/2)1/2
0 3£2/8
24 3 3
27£7/8 27£7[3-24n(3£/2)1/8
0 £2/8
25 3 3
5£°/8 £ [15~64n(3£/2)~42n(£/2)1/8
0 ~3¢2
26 3 3
27772 27f7[1-2en(3£/2)1/2
0 —2£2/3
27
£3 £311-20n(£/2) ]
0 -£2/3
28 3 3
3£°/2 3£ [1-22n(3£/2)1/2
4 4 ] ?
25 -g _ g [ (5/3)-2K+40n(g)]/2
'84[682+(3f/2)] —g“[28g2+9f—24g2zn(g2)—6f£n(3f/2)

+K(12g2+3£) ]/2




Table D~2 cont.

gt g 1 (5/3)-2Hhin (e 1/2
30
g 162 (£/2) ] ~g*-12g2-38+26g %00 (a2)+26 20 (£/2)
K (1282+£)]/2
0 4g4
31 A A
~18fg —6£g* [1+3K—64n (3£/2) ]
0 4g%3
32 . i
—2fg 28g*[1-K-24n (£/2) ]
0 0
33 !
0 0 ‘
0 0
34
0 0
0 0 |
35
0 0 1
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Table D-3

Figure 7 Diagrams

piagram WS, /(%) s/ ()
e M2/ (h%s) M2ET_/ (m%s)
g1/ (R o Mology/he
_g*/4 (1/6)8" 121, (a,b)+(2b-72) L, (2, b)+ (2b-122)1, (b, 2)
1 +(b2—7ab+6a2)14(a,b)-(7/2)-K]
g/2 —(l/2)g5[2Il(a,b)+(2b—12a)13(b,a)-3-K]
~g*/4 /a8 (21, (a,0)+(20-32) T, (a,0)+ (2e-4a)1, (c,a)
2 +(c2—3ac+232)14(a,c)—(7/2)-K]
~g°/2 (/287 [-21, (2,0~ (2e-42) T 4 (c,a)+3+K]
0 (9/8)£%6% 11, (a,b)+21, (b, )+ (b-2) T, (2,b)]
\ ‘
0 ~(9/2)£%8°[1,(b,)]
0 (l/8)f2g2[12(a,b)+213(b,a}+(b—a)14(a,b)}
4
0 ~/2)£%° (1, (b,2)]
0 (1/4)f2g2[12(a,c)+213(c;a)+<c-a)14(a,c)]
5
0 £%8°11,(c,2)]
g8 (1/8)g4[211(a,b>+(b-7a)12(a,b)+12a13(a,b)
6 +6a(b-a)l4(bsa)_(5/2)]
g° —gs[ZIl(a,b)+3a13(a,b)—3]
/3 .(1/8)84{211(a,b)+(b+a)12(a,b)—éaIB(a,b)
7 : -Za(b—a)Ié(b,a)—(S/Z)]
0 o gllal(a,p)]
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~g*/8 (1/8)8" 121, (a,e)+(e-7a) L, (a,c)+12aL ; a, )
8 +6a(c—a)14(c,a)—(5/2)]
‘85 85[211(3,0)+3a13(a,c)—3]
~g*/8 (1/8)g" 21, (a,0)+ (c+a) T, (a,c)~4al , (a,c)
9 —2a(c—a)14(c,a)—(5/2)]
0 ~g’[al;(a,0)]
~g"/2 (/88" (41 (2,5)+2 (b-2) T, (a,b) ~4]
10¢
g ~(1/4)8’[8T (2,5) 6]
g /2 (1/4)g*[-21, (a,b)~2L, (a,0) - (b=a) L (a,b)
11 -(c-a)Iz(a,C>+4]
0 (1/4)g 4T, (a,b) =41, (a,¢)-2]
g'/2 (@/4)8* 121 (2,)-21, (2, )= (e-a) T, (a,0)
12 —(b—a)Iz(a,b)+4]
0 (1/48”[~41, (a,e)+4T, (a,b)~2]
~&*/2 (1/4)g‘*[411(a,c)+z (c-a)1, (a,c)~4]
13
g’ (1/4)g°[81, (a,¢)-10]
0 (3/8)fgz[blz(a,b)+2b13(b,a)+b(b—a)Ia(a,b)]
14
0 (3/8)£8” [~4bI 4 (b,2) ]
0 | (l/8)fg2[b12(a,c)+2b13 (c,a)+b(c-a) 1, (a,¢) ]
> 0 (1/8)£8° [4bT,(c,2)]
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(1/8)fg2[c12(a,b)+2c13(b,a)+c(b—a)IACa,b)]
16 |
(1/8)fg3[—4c13(b,a)]
(3/8)fg2[clz(a,c)+2c13(c,a)+c(c-a)I4(a,c)]
17
(3/8)fg3[4013(c,a)]
0
18
3fg3/2
0
19
fg3/2
0
20
fg3/2
0
21
-fz3/2
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Figure Captions

Feynman rules for the shifted theory.

One-loop diagrams contributing to the scalar field effective potential.
One-loop diagrams contributing to the scalar field propagator in the
shifted theory.

One-loop diagrams contributing to the spinor field propagator in the
shifted tﬁeory.

Two-loop diagrams contributing to the scalar field effective potential.
Two-loop diagrams contributing to the scalar field propagator in the
shifted theory.

Two-loop diagrams contributing to the spinor field propagator in the

shifted theory.

Coupling constant trajectories resulting from the O(h) E*s as given

in (4.2.14) and (4.2.15). The arvow directions indicate increasing t.
Real part of the effective potential (divided by ¢4/8), as given in
(4.2.19). All curves have initial (t=0) coupling constants gz= 0.1

and f as follows: curve 1, 0.2; 2, 0.15; 3,0.11; 4, 0.1; 5, 0.0999;

6, 0.09; 7, 0.08; 8, 0.0.

Coupling constant ratio (§=f/§2) trajectories resulting from the O(h)‘g's.
All curves have initial coupling constants g2=0.01 and R(0) shown in the
figure.

Coupling constant trajectories resulting from the O(hz)'ﬁ’s as given in
(4.3.1) and (4.3.2). TFixed points occur at (£,g%) = (0,0), (26.32,0),
and (52.64, 52.64), as represented in the figure by small dots.

Coupling constant trajectories near the fixed point (26.32, 0).

Coupling constant trajectories near the fixed point (52.64, 52.64).
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Fig. 15:
Fig. 16:
Fig. 17:
Fig. 18:
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Coupling constant ratio trajectories resulting from the O(hz) B's.
All curves have initial coupling constants g2 = 0.1 and R(0) (mostly
négative) shown in the figure.

Coupling constant ratio trajectories resulting from the O(hz) s,
All curves have initial coupling constants g2 = 0.1 and £ as follows:
curve 1, 0.5; 2, 0.2; 3, 0.15; 4, 0.12; 5, 0.11.

Real part of the effective potential (divided by ¢4/8) as discussed
in Section 4.3. All curves have initial coupling constants g2 = 1.0
and f as follows: curve 1, 5.0; 2, 1.2; 3, 1.0; 4, -1.0.

Same as in Fig. 16 only initial f are as follows: cuxve 1, 0.990;

2, 0.993; 3,0.996; 4, 0.999.

Imaginary part of the effective potential (divided by ¢4/8) as discussed
in Section 4.3. All curves have initial coupling constants gz = 1.0
and f as follows: curve 1, -4.0; 2, 0.0; 3, 0.9. Note the vertical
scale is negative.

Same as in Fig. 18 only initial f are as follows: curve 1, 0.989;

2, 0.990; 3, 0.991; 4, 0.992; 5, 0.993.
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Figure Captions

Fig. C-1: A sample two-loop fermion self-energy diagram.
Fig. C-2: The scalar graphs arising in the decomposition of the fermion

self-energy diagram.
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PART II

MODELS WITH LOCAL GAUGE SYMMETRY
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1. INTRODUCTION

Supersymmetric theories [1l] possess an aesthetic appeal unrivaled by any
other quantum field models. Unfortunately their beauty lies entirély_in the
realm of abstract theory, there is not yet one shred of experimental evidence
suggesting such theories play a role in nature. If supersymmetry has any con-
nection with reality it must be a broken symmetry. Can we find a "natural”
symmetry breaking mechanism which permits this connection to be made?

Our initial goal in computing radiative corrections to the effective poten-
tials for supersymmetric quantum field theories was to answer this question.

We wanted to determine if radiative corrections alone could hide the symmetry
[2] without the need for the explicit introduction into the Lagrangian of an ad
hoc dimensionful supersymmetrv "hiding" parameter. Numerous investigations
[3-10], including our own [10], indicate that this does not happen. There is
no purely radiatively induced spontaneous supersymmetry breaking, at least not
in the domain of perturbation theory.

We sought a fuller appreciation of this fact by considering simple gener-
alizations of the supersymmetric theories. We investigated models involving the
same fields as in the supersymmetric case, but without the supersymmetric con-
staints on the allowed interactions. Recently {[10] we presented the complete
details of this investigation for a simple non-gauge model using renormalization
group [11,12] improved perturbation theory to the two-loop level. Our objective
here is to give similar one~loop results and details of our investigations of
generalizations of supersymmetric gauge models. Thus, this is to be viewed as
a sequel to reference 10.

The situation is more complicated for these generalized gauge theories for
the simple reason that there are more possible types of interactions between the
fundamental fields of the models. ‘The coupling constant ratic space (i.e. the

space of all other couplings divided by the gauge coupling constant) is at least
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thfee;dimensional here as opposed to the one dimensional ratio space of the non-
gaﬁge model. Partly due to this complication we have been content to carry out

the analysis only to the level of oné—loop Feyﬁman diagrams. The tresults we have
found,. however, are a straightfbrward logical generalization of‘the results of ref~
erence 10.

We may summarize these results as follows. 1In all of the models considered,
the supersymmetric theory is represented by an unstable fixed point in the coup-
ling constant ratio space. If one looks at the renormalization group sliding
scale coupling constant ratios, then there is always some direction away from the
supersymmetric point in the ratio space such that a small deviation in this direc-
tion increases under a change in the mass scale. In this sense the supersymmetric
theories are always unstable under radiative corrections. Furthermore, if one
looks in the neighborhood of the supersymmetric point, he finds that the super-
symmetric theory is surrounded by regions in the coupling constant space that rep—
resent three geheral classes of theories. fhese threé classes may be distinguished
on the basis of the characteristics of their ground states (vacua).

For the first class of theories, the effective potential V [13] apparently
has no stable minima within the validity domain of perturbation theory. V becomes
negative for large expectation values of the fundamental {pseudo)scalar fields and
decreases without lower bound ﬁntil renormalization group improved perturbatiocn
theory is inapplicable. These theories must therefore either be nonsensical or
else subject to a nonperturbative vacuum formation [10,15]. The second class
consists of those models for which the potential hés a calculable minimum (or
minima) with nonzero field expectationé and with average energy density less than
that of the origin of field space. Tor these cases the true ground state of the
theory has radiatively induced breaking of some local gauge invariance and a
possible breaking of a global chiral invariance. Finallwv, for the third class

of theories the origin of field space is the absolute minimum of V. The gauge
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andséhiral symmetries for these models are unbroken in their vacua.

The supersymmetric theories situated between the above three classes also
reveal a peculiar phenomenon [3,5,7-9]. The effective potentials for these theo-
ries have degenerate minima in unbounded sets on the field space, sets>containing
the origin. = These minima are physically inequivalent and the gauge and chiral
symmetries, but’not the supersymmetry, may be spbntaneously broken in these vacua
with no\restriction from the effective potential on the mass scale involved in the
breaking. The group theoretic patterns of the breaking are also not uniquely de-
termined by V. These theories are not scale invariant, however, in the sense
that the anomalous dimensions of the fields and the coupling constant 8 functions
are not zero. It appears that to completely define the dynamics of these theories
one must independently specify the characteristics of the symmetry breaking in
addition to giving the bare parameters in the Lagrangian. We should take note,
though, that this peculiar effect could be eliminated if a nonperturbative su-
persymmetry breaking mechanism were at work.,

The contents and organization of the remainder of the thesis are as follows.
In Section 2 we discuss in a general way the relationships in perturbation theory
between vacuum stability and the behavior of the renormalization group effective
(or "sliding scéle") coupling conétants. We give some simple criteria which are
necessary when perturbation theory is'valid for the radiative production of minima
in the effective potential and then discuss supersymmetric theories in the light
of these criteria. These necessary conditions make it obvious that some super-
symmetric theories will not undergo purely radiative supersymmetry breaking, at
least in perturbation theory, and point out where more careful consideration is
required. We briefly review some literature wherein these more careful analyses
have Been given. Next we define in Section 3 the specific generalizations of
supersymmetric gauge models we will investigate. These.are generalizations of

supersymmetric electrodynamics [16] and a nonabelian gauge theory with SU(N)
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syﬁmétry [171. vThe SU(2) case is treated with some differences from the other
sﬁ(N)kmodels [18,19]. 1In addition to giving the generalized Lagrangians, we‘dis—
cuss ‘the fotmal equations of motion, the supercurrents and their diveggences, and
the formal transformation properties of the fields.

in Section 4 we discuss and compare the abelian model (S0(2)) and the simplest
nonabelian model (SU(2)). We compute the cne-loop renmormalization group parameters
and analyze both analytically and numerically the trajectories in the coupling con-
stant space, several of which are plotted in detail. The latter are also inter-
preted in terms of the stability of the ground state. Similar treatment is given
the other SU(N) models in Section 5. We discuss quite thoroughly the instability
of the supersymmetric point as an eigenvalue problem and present some results of
a numerical analysis of this problem. We also discuss the occurrence of non-
supersymmetric fixed points in the one-loop 8 functions, giving analytic results
for large N as well as numerical results for N=3, 4, 5, and 6. Some coupling con-
stant trajectories are plotted for the SU(3) model and interpreted in terms of
symmetry breaking.

Section 6 contains several remarks regarding the degenerate minima of the
supersymmetric theories and the related mass-scale and symmetry breaking pattern
ambiguitieé. We also comment on the finiteness of the one~loop corrections to V
for the SU(N) invariant supersymmetric models. Concluding remarks are given in
Section 7. Appendices A and B contain some mathematical relations of use in our
analysis of the SU(N) model. Appendices C and D provide a detailed technical dis-
cussion of the relevant one-loop diagrams needed to carry out the renormalization
group analysis of the SU(N) theory. In'particular, we have compared these one-
loop diagrams in two classes of gauges. TFor one of these classes, corresponding
tc the moncovariant gauge fixing term 8§(n.V) with n a Lorentz four—vector, we pre-

sent. an argument in Appendix C that the null-plane gauge limit n2+ 0 is ill-defined.
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2. ~ VACUUM STABILITY AND EFFECTIVE COUPtING CONSTANTS

We begin in this section by discussing the relationships between radiatively
induced symmetry breaking in perturbation theory and the behavior of the renorm-
alizatipn group effective coupling constants. We are interestedkhere only in
"massless" theories; that is, theories with Lagrangians which contain only quar-
tic (pseudo)scalar couplings (denoted generically by "f") and gauge or Yukawa
couplings (denoted by "g"). Renormalization group analysis involves replacing
these fixed coupling constants, which were defined at some definite mass scale, by
"gliding" coupling constants that are more appropriate for discussing changes over
a range of mass scales. For our purposes these effective couplings, f(t) and é(t),
are considered as functions of t=£n([¢i/[¢ol) where ¢ is a generic real (pseudo)
scalar field expectation value and ¢0 is an arbitrary nonzero reference point in
field space. We assume that all field components are being uniformly rescaled (i.e.
¢i/¢io=¢j/¢jo for all i and j such that ¢i0#o#¢j0).

Consider now the effective potential with lowest order quantum corrections due
to one-loop Feynman diagrams and with renormalization group improvements. These
one-loop alterations are generally sufficient to determine the effects of rédiative
corrections wheqever perturbation theory is applicable. (Reference 10 illustrates
some effects of higher order corrections.) The potential may ‘be written schemati-

cally as {2,14]
im0 2, =, =2 =4 1
V(¢) = ¢i¢j¢k¢l{f(t)Tijkl + ho[f (v),E(t)g (t),g (t)}Tijkl} E(t). (2.1)

In this expression we have omitted some numerical coefficients in the one-lo0p
correction term, indicatiﬁg only the powers of the generic coupling constants.

T0 is an internal symmetry group tensor which appears in the classical Lagrangian
andvTl is a similar tensor produced by the one-loop diagrams. (Cf. equation (6.24)

for a more explicit definition of Tl.) E{t) is a smoothly varying, strictly posi~-
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tivé function of t given by E(t}=exp{fgdé 4y(s)/(1-y(s))} where y = O<§2) is the
anoﬁalous dimension of the field ¢. Equation (2.1) is schematic in that it is to
be understood as a sum over all possible kinds of group invariant quartics made
from the ¢'s. 1In general, the anomalous dimensions of the (pseudo)scalar fields
differ, yi#yj. Also, we have assumed that the fields ¢i do not mix with one an-
other under radiative corrections. This assumption would be true if the @i'formed
an irreducible representation of the internal symmetry group, and will also be true
of the explicit examples considered later on. Finally we will assume ¢i¢j¢k¢lT§jkl
is always greater than or equal to zero for real ¢.

' To establish some general criteria for a purely radiative production of minima
in V(¢) away from ¢=0, with V(9)<V(0)=0, we will divide T0 and the associated f
into two types. The tensor TO tells us how the classical potential depends on di-
rections in field space. TFor some group tensors there are no directions for which
the classical potential vanishes and for any expectation ¢ the classical energy

density is O([¢|4). An example is Tg We will call such tensors

. =38,.6, ..
ik - %i3°k1
"positive definite interactions,” denote them by Pijkl’ and write the corresponding
couplings as EP' For other (independent) tensors, depending on the symmetry group

and the representaticns of the (pseudo)scalars, there ares some directions for which

the classical contributions to V vanish, but are never negative if the f's are all

|

positive. These we call "nonnegative (or neutral) interactions," and write them
g

as Nijkl with couplings EN' An example involving scalar (A) and pseudoscalar (B)

fields with two components each appears in the abelian gauge model in Sections 3

2 A . .
and 4, The interaction is (siinBj) where eij is the antisymmetric symbol on two
indices. Other examples appear in the nonabelian models in those sections. We

will henceforth be interested only in theories where»ng.

k1 can be unambiguously

d a ' i 5 . . d, N,
ecomposed as follows, where both ¢i¢j¢k@lPiJKl and ¢1¢3¢K¢lh1]kl are never less

than zero for real field expectation values.

- 0 = ' -
f(r\:)Tijkl = fP(t)Pijkl + fN(t)Nijkl' (2.2)
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(Again we have used an abbreviated notation: a sum of such internal symmetry group
tensors is understood on the right-hand side.)
If a classical potential involved, say, one Nijkl’

set of field configurations that give the same energy density (zero) as the origin.

there would be a noncompact

This follows from choosing the direction of ¢ such that ¢i¢j =0 and then

1M1
uniformly rescaling ¢i+k¢i, where 0<A<w, QOne should understand, however, that only
very special conditions allow for just one Nijkl and no Pijkl in renormalizable
quantum field theories. 1In general a neutral interaction in the classical approx-
imation will produce through radiative corrections a positive definite interaction.
If this positive definite interaction arises as a divergence (say a pole term when
using dimensiocnal regularization) then renormalizability requires just such a pos-
itive definite counterterm among the clagssical couplings. As an example, consider
a simpie model of a two component scalar (A) and a two component pseudoscalar (B)
interacting via the neutral gquartic interaction mentioned above, (siinBj)z. At
the one-loop level this interaction produces l/e divergences in the A1A1+A

1Al’ the

AJA>A A, and the A A A A amplitudes such that an (A§+A counterterm is needed

172 7172 272 7272
to renormalize the theory. We will say more about models with only neutral inter-
actions below, ig the context of supersymmetric theories. The name we have given
these tensors is appropriate considering they allow directions in the field space
which are "neutrally stable" as far as classical energy densities are concerned.

Given the above decomposition, eqqation (2.2), we can easily determine a nec-
essary (but not sufficient) condition for radiatively induced spontaneous symmetry
breaking to occur in perturbation theory. We simply ask under what circumstances

the potential given by (2.1) can possibly become negative for ¢#0 with all [£| and

l§2l<<l. We conclude that:

Perturbative spontaneQus symmetry breaking can occur only if

EITHER some f(t)<0, OR all EP(t)SO(hfg)OEO(hQQ), for some t. (2.3)
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Clearly in the second clause of this statement, it is only necessary that all pos-
' . . =2
itive definite couplings become of the same order as the largest hivor the largest
. 1 .
4 . ~ .o ; : : s u
hg. Similarly, a sufficient (but unnecessary) condition for symmetry breaking is

‘as foiles.

Radiatively induced symmetry breaking will occur if all fP(t)<O
with some IEP]>>O(hf% amiO(héa) for a range of t. (2.4)

Most often however, when this sufficient criterion is met it is not possible to
find a ground state for the theory using perturbative methods (an example of this
is givén in reference 10), since V(¢) frequently appears unbounded below as [¢[
becomes large. 1In the rest of this section we will discuss supersymmetric theories
in view of the criteria given in (2.3~4).

We immediately mote that the first logical altermative in (2.3) and the suffi-
cient condition (2.4) are completely irrelevant for supersymmetric theories. The
symmetry of these theories requires certain dynamical comstraints between the
fermion-boson coupling constants and ﬁhe boson self-couplings [1]. in particular
all quartic (pseudo)scalar coupling constants are equal to the absolute squares of
various gauge or Yukawa couplings, so we may write fa=§§. Thus Ea can never become
negative in supersymmetric theories. This goes a long way toward eliminating the
possibility of perturbative breakdown for supersymmetric models. 1In this regard
it is worth noting that every example of radiatively induced breaking considered
in reference 14 involved f(t) that were negative for some values of t.

Next we further conclude that supersymmetric theories involving only positive
definite interactiéns can never satisfy the second logical alternative in (2.3).
This follows upon observing that all fermion-boson couplings, éa, in these theories
are accompanied by quartic couplings fa=§§. 1f 6nly %P's appear in the theory,
while it is possible that:for‘some of these couplings we have fa=§§=0(h§:), say, we
Pb=éi' This leads us to the following necessary

condition for radiative breakdown in a supersymmetric theory.

cannot have all fP= o(thf:)) since f
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{Radiatively induced symmetry breaking can occur in perturbation

|theory for a supersymmetric model only if the model contains at (2.5)
least one neutral,coupling,AfN=§§.

It is appropriate here to point oﬁt that the simplest non-gauge supersymmetric mod-
el, considered in reference 10 for example, has only one coupling E=§2 and that
particular £ corresponds to a positive definite interaction. The necessary condi-
btions given in (2.3) are never satisfied for this model, or any other supersymme-
tric model containing only EP's, so radiatively induced breaking cannot occur in
a perturbative sense for these theories. Reference 10 pursued the matter a little
farther by calculating the two-loop corrections to the simplest model and by using
the renormalization group to improve V{¢) to the two-loop level. One objective in
that analysis was to see if the two-loop corrections gave even the slightest hint
of a nonperturbative supersymmetry breaking mechanism. No such hint appeared. The
two-loop improved potential was positive definite for the supersymmetric thecry
even when the effective coupling constant became quite 1érge.

The necessary condition (2.5) is satisfied in all supersymmetric gauge theo-
ries [1]. TFor some of these theories it happens that only neutral couplings are

involved, with a complete absence of P terms even after radiative eorrections.

1jk1
The models considered in Sections 3-6 below are of this type. These are the most
natural supersymmetric theories to examine for radiatively induced breaking. Note
that the logic which led to (2.5) not only tells us what supersymmetric theories
are candidates for radiatively induced breakdown, but also tells us where in field
space a perturbative breaking can possibly occur. The only allowed values of ¢
which can give a spontaneous perturbative breakdown are those close to at least one

neutral interaction minimum: that is, ¢=¢Mf6¢ with ¢, ¢, -9 =0 for at

i el 1l 1kl

least one Ni' and 8¢ small. This follows from observing that for any other expec-—

jkl

tation value, all the neutral interactions produce the same potential effects as

positive definite interactions.
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F:After constructing the above line of reasoning and after completing the re-
norﬁaliiation group analysis to be presented in Sections 4 and 5, but before com-
pleting a careful investigation of thé‘interestihg neutral zeroes of V(¢) for’the
most géneral {unextended[1l]) supersymmetric gauge theory, we became awafe of a paper
by W. Lang [5] in which the necessary careful investigations are made. His analysis
is a comprehensiﬁe treatment of the one-loop corrections to V(¢). (Renormalization
group imprcvements are not explicitly made, but this should not affect the results.)
Lang concludes that one-loop radiative corrections to V(¢) always leave the absolute
minima of V at those points in field space which pfeserve supersymmetry. He also
criticizes some apparently invalid formal arguments that this happens to all higher
orders in perturbation theory [3,7]. Thus while it is possible for the minimal
energy density field configurations to produce a breaking of gauge and chiral in-
variance, the purely radiative b%eakdown of supersymmetry within the realm of per-
turbation theory does not happen [20]. We will say more about the breaking of
gauge invariance in supersymmetric theories in Section 6.

In the rest of this thesis, we will accept the stability of supersymmetry at
the one-loop level. Our remaining discussion will be about the neighborhood of the
supersymmetric point in the éffective coupling constant ratio space, and about the
partitioning of this neighborhood into regions of vacuum stability or instability.
Technically the discussion is a study of the renormalization group for gauge theo-
ries with several coupling constants. We continue in the next section by defining

the models under investigation.
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3,.‘ MODEL DEFINITIONS AND FORMAL PROPERTIES

| We will investigate gene;alizations of supersymmetric electrodynamics [16}
and a supersymmetric nonabelién gauge theory based on the group SUMN) [17]. In
this séctioh we explicitly define the generalizations to be made by adding certain
interactions to ;he’previously supersymmetric Lagrangians. These additional inter-
actions will include the quartic (pseudo)scalar group tensor structures that appear
in the supersymmetric models, so among other things we are removing all f=g2 con~
straints. We will also discuss formally the supercurrent divergence, using the
equations of motion, and the field transformation laws. All the models we consider
are massless from the very beginning with the exception of the abelian theory. For
this theory we have included mass terms in the bare Lagrangian, in a non-supersym-
metric way, to give some feeling for the effects of explicit, yet soft supersymmetry
breaking.

The abelian gauge theory involves a single real vector Vu, a Majorana spinor

A, a complex scalar A, a complex pseudoscalar B, and a complex Majoréna spinor ¥.
We will choose a basis where the complex fields are represented by their real and
imaginary parts which we denote by Al’ A2, Bl’ Bz, wl’ and wz. The Lagrangian for

the model is then given by

_1 Yy _ 2,2 Uoy _ 252 T iadN oo
Lso(2y * 2{(DUA)1(D ;- m Ay +(0 B), (O"B) - m B + b (1B9) | ijuj}

1 1- 2

1. w1 f. et

SR P G R Ly - (e AB) T - gR (Y gR) ey
£, 2 209

1 3.1)
5% (Ai+Bi) . ( J

In this expression Lfix is a gauge fixing term which is needed to completely define
the quantum theoty but which may be ignored in writing the classical equations of

motion. (Cf. Appendix C for explicit Lf. ) F =3V -3V is the usual electro-
v ix vV opv o ovou

u

magnetic field strength and eij='%{(—l)3—(—l)l} is the antisymmetric symbol on two
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indicés’(i,j=l,2). The gauge covariant derivative for the charged fields is
(Du)..=6..8 -ee,., V. . (3.2)

We may think of (3:.1) as the simplest generalization permitting a supersymmetric
1imit of thée radiatively broken scalar electrodynamics model of S. Coleman and E.

Weinberg [2]. This "superlimit" is achieved by setting
g=e, f=e , f1 =0, andm=M . (3.3)

Note that in this limit (with m=0 as well) the model contains no positive definite

interactions as defined in Section 2.

Suppressing a few indices, the classical equations of motion for this model

are

(0%+ m2)A + £(A.€.B) (c.B) + gh(e.y) + = fl(A2+ 3%)A

- = 0, (3.4)
(0% n)B + £(B.e.8) (2.8 + gh(e.iyg)) + ¢ £+ BHB = 0, (3.5)
v ~ .};'— ar 3 =

3 F\)u + e{A.e.DUA + B.;.DUB - zlw.a.(u¢] 0, (3.6)
idx - g(A+iYSB).€.w : = 0, (3;7)
(ip - Wy + g[e.(A+iYSB)]X = 0. (3.8)

These equations can be used to verify the conservation of a spinor-vector super-
current in the superlimit (3.3). The explicit form of this current is easily found
either by analogy with those supercurrents given in reference 1, or by using the

general formalism of reference 21. Consider the gauge invariant spinor-vector

p =3 w8

= s YMA +ig(A.e.3)qu5A +iﬁ(A—1YSB).Yuw - M(A+1Y5B)'Yuw . (3.9)

Each term on the right-hand side may be roughly identified as the "square root' of

a term in the Lagrangian (3.1), multiplied by the appropriate spinor (A or ¥) to
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form a gauge invariant quantity. A straightforward computation using (3.4-8) gives
3.0 = (=) [A.c.BA + B.e.BB - F ey Y ]A

+ L (ge)o B (atiy.B) ..y
2 cB 57/
. 2. .

+i(f-g )(A.E.B)(B—lYSA).E.w
i 2, .2 . sl 2 .

- g-fl(A + B )(A+1Y5B).w +i(M - m }(A+1Y5B).¢ . (3.10)

The only minor subtlety encountered in deriving this result is the use of the iden-

tity
_]; boe : H i [ =
Z(w-c-vuu)‘{ X+ () .ed (XYSw)'est = 0. (3.11)

This is easily proved using the Majorana constraints on A and §, and the appropri-
ate Fierz relation for trilinear spinor products [22].

In the superlimit, the right-hand side of (3.10) vanishes,.sc at this formal
level we have a comnserved spinor current. This pu is the Necether current found by

making the following infinitesimal transformations on the fields.

SA = qv , (3.12)
8B = Eiysxp , (3.13)
sy = -(ip + ™M) (A+iYSB)q s (3.14)
o = - o FP-g (A By Sha (3.15)
6V, = i'c{yux : (3.16)

The parameter q is a spacetime constant Majorana spimor. Under these transforma-
tions the Lagrangian (3.1) changes only by a total spacetime divergence, in the
limit (3.3), as may be directly verified by a tedious calculation. This of course

1s equivalent to the statement that there exists a conserved current for the
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classical system in the superlimit.

| The quantized supersymmetric theory is subject to certain relations among its
amplitudes induced by the transformations (3.12-16). These supersymmetric Ward
identities are discussed in reference 21, for example, but will not be comnsidered
here since we also want to investigate the model without taking the superlimit (3.3).

We only note that the spinor supercharge,
5
Q = [f&xp, , (3.17)

may be identified as the square root of the momentum in the quantized theory, in
the sense that when anticommuted with itself a gauge covariant translation operator
is obtained.

It is evident from the form of LSO(Z) that a more general Lagrangian could
easily be written involving more arbitrary couplings. To keep the number of inde-
pendent coupling constants within reason, however, we have made the scalar and
pseudoscalar couplings symmetrical. Since there is a definite symmetry group under-
lying this particular choice for the scalar/pseudoscalar coupling ratios, namely
the group of chiral rotations, we do not expect that radiative corrections will re-
normalize these ratios. This expectation is explicitly confirmed to the one-loop
level in the next sectiocn. The fermion mass term in (3.1) does break the chiral
symmetry, but it is too soft to affect the divergent part of either the quartic,
Yukawa, and gauge coupling constant renormalizations, or the wave function renorm-
alizations. We shall also use chiral symmetry in reducing the number of arbitrary
coupling constants in the nonabelian model, which we now define.

The particular nonabelian model which we investigate involves a real vector Vu,
real scalar and pseudoscalar fields A and B, and a Dirac spinor ¥. All fields will
trahsform as the adjoint representation of the gauge group which we take to be SU(N).
The generalization to an arbitrary simple group is trivial in the following formal

analysis. (The explicit ome-loop results given in Section 5, however, are quite
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Specific to SU(N).) As a convenience we will represent the fields using group
matrices. Our notation and conventions regarding these are given in Appendices A
and B. These appendices also give the explicit details related to the chiral invar-
jance which we will impose on our generalization of the supersymmetric theory. The

generalization is defined by the following Lagrangian.

L = r{(D &) (D"4) + (0 B) (D"B) + 2¢iBy - 2

o uv 2
SU(N) WE o+ E[AB]

_ _ 2. 2.2,
~2gyTativB,u] ~2d0{a+iy By} - £5(a% B )2}

2 1
ot 2 2y (TwAR 2, i_F N 2 2.2
AtZLTr(A YTr(37) (TrAB) "] (6 £ -3 13,{Tr(A + B7)]
+ LfiX + Lghost . (3.18)
Some comments are necessary. LfiX and Lghost are the gauge fixing and accompanying

ghost field (if necessary) terms as given in Appendix C. Our normalizations in

Appendices A and B account for various factors of 2 in (3.18). The coefficients of
N 2.2 . . . . s

the Tr{A ') and (TrA”)  interactions were chosen to simplify the coefficients of the

group tensors appearing in the Feynman rules which are tabulated in Appendix D.

The covariant derivatives in the above Lagrangian are all of the same form since

all fields are in the adjoint representation.
DF = 3 F + ielV ,F1, (3.19)
u u B

where F is a field matrix. Also, we have defined the covariant field strength in

the usual way as
= = 5 -— i . . 2
F 3.V, = 3V, F ielv V] (3.20)

Finally, the interaction prefixed by f., may not be obvious (cf. Appendix A), but it

2

is necessary to carry through the renormalization program to the one-loop level.
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The special case of SU(2) deserves some additional remarks. For this group
the anticommutator term (prefixed by d) is absent so we may trivially set d=0.

More importantly, the tensor structures prefixed by f, f fz, and f_. are not in-

3

dependent for SU(2), and in fact give only two such tensors. The f and fz tensors

coincide, as do the fl and f3 tensors. We will therefore set f2=f3=0 in discussing

15

the SU(2) model. 1In terms of the number of independent (massless) coupling con-
stants, the abelian model and the nonabelian SU(2) theory are equivalent and may
be renormalization group analyzed with some similarities. They are both discussed
and compared in Section 4. The effective quartic coupling constant space is two
dimensional for these models. |

For the SU(N > 3) models, the quarﬁic coupling constant space is four dimen-
sional with three possible gauge and Yukawa interactions. No more interactions are
permitted if we insist the overall global symmetry of the model is SO(Z)XSU(N), as
discussed ip Appendix A. Alsa, radiative corrections and renormalizability require
that all four of the quartic couplings be present, save for very excéptional cir-
cumstances. These special circumstances occur in the superlimit of the model. The

superlimit is achieved here by setting
g=e, f=e , £, =£f,=£f_, =0, and d = 0 . (3.21)

As in the massless abelian model, the superlimit produces a theory without positive
definite interactions. We also note that one can comsistently set d=0 in the model,
even though the other conditions of the superlimit are not met, and not have this
Yukawa coupling arise radiatively (cf. Appendix A). We will so eliminate d in the
Trest of this section, and will only restore it for a brief space in Section 5.

Now consider the classical equations of motion for the nonabelian models. For

the field matrices these are

p%a + £[[A,B1,B] - gl¥ou]l = S, (3.22)
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‘ DB+ f{[B,A],A] - 8[1#,1“.’51”] = SB s (3.23)
\) ——
DF_ + ] i W, =
D& v e([A»lDuA] + [B, DUB] + {P,KMW}) 0 ’ . (3.24)
By - glatiy Byl = 0 (3.25)
We have defined the following sources for the scalar and pseudoscalar fields.
-1 2, 2 2
SA = -3 flA Tr(A"™+ B7) - 2f2(A TrB~ - B TrAB)
-2faa+BB)d_d AT (3.26)
2 "3%a"b “a b’ xab xcd'c ‘ :
SB = SA(A++B) . (3.27)

In the supersymmetric limit these sources vanish and the matrix equations of motion

have a simple, compact form. Also recall that for the SU(2) model, f2=f3=0, so for
this case the equations are much like the abelian theory.
The spinor supercurrent has a form analogous to (3.9). It is
= 1 QB . g i 1 5
pu 2Tr{§0a8F yuw + 1g[A,B}yUY5¢ iB(a 175B)yu¢4 , (3.28)

and again in the quantized theory is a gauge invariant operator whose charge may be
identified as the square root of the momentum operator. The conservation of pu in

the superlimit (3.21) is evident in
3.p = 2(e-g)Tr{([A,BA] + [B,¥B] - i[V,v 1y}
- 2(5-gM)Tr{[4,B]y, [A+iv B,0])
+ ZiTr{(SA+iYSSB)w} . | (3.29)
In computing (3.29) it is necessary to use the equations of motiom, the identity
Te{ [0,y Iy - [0.01 + [hygulvgel = 0, (3.30)

and the Bianchi relation for the covariant field strength
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D Fg, + DGF  +DF = 0 . (3.31)

Note also that (3.30) is valid for any Dirac spinor, as well as Majorana spinors.
Finally, let us write down the changes in the field matrices under an infin-

itesimal supersymmetry transformation.

sA = ” , (3.32)
§B = Eiyszp , (3.33)
50 = < { 2o P _ i5[A,Bly. + iB(Atiy.BYlq (3.34)
2 aS o 3 5 -~ 5 N -
V. o= —Eyuw . (3.35)

Once again, the Lagrangian changes by a total divergence under the transformations
(3.32-35) when (3.21) holds.

This concludes our definitions of the models and our discussion of their for-
mal structure. In the next section we begin the renormalization group study of the
models. We remind the reader that the Feynman rules for the nonabelian theory are
given in Appendix D. The rules for the abelian model are not given, but are very

straightforward to obtain.
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4. ~RENORMALIZATION GROUP ANALYSIS OF THE SO(2) AND SU(2) MODELS

In this section we carry out the renormalization group analysis of the abelian
and the simplest nonabelian models, whose gauge groups are respectively S0(2) and
sU(2). This analysis is done to the level of one-loop radiative corrections, which
we have computed in two gauge classes as discussed in Appendices C and D for the
SU(N) model. Whenever we encounter gauge dependént quantities in this section,
however, we shall give results for the covariant gauges. The renormalization group
parameters are defined in the usual way, in particular our conventions below agree
with those of Sections 2.2-2.3, reference 10.

A straightforward computation of the divergences of the relevant self-energy
and vertex correction diagrams (shown in Figure 1) gives the one-loop renormaliza-

tion group parameters for the abelian model. The result is

L a2 2 .2 (4.1)
Yy TV < (3e” ~ ae 2gH)h
2 4.2)
Yy = (-ae” -g7)h s (4.2)
y. = -2g°h , (4.3)
A
- a2 (4.4)
Yy = ~2e"h s
(4.5
BC!. = ZQ‘YV s 4 )
2 .
B, = 2e’h , (4.6)
2 _ 362 4.7
Bg = g(5¢” - 3e")h ,
8, = 4EQ2f + £ - 3¢” + 280, (4.8)
2 2 )
Be = 4[3f7 + £f, +3¢° (3e -£) -2 (6g - £f)]h , (4.9)
£, , ty 1
_ , |
3 - 2[(-3e + 2g% + £ + £om” - 4e 21 1h , (4.10)
and m
2.2 )
8 = 2M("3e + g )h o (4.11)



The physical effects of these parameters, as far as vacuum stability is concerned,

are implicit in the renormalization group equation for the effective potential.

[M3M+seae+sgag+5faf+5f 3¢ +Ba8a+6 X 2+BM3M+YAA.aAfyBB.SB] V(A,B) = 0. (4.12)
171 m m

M is the arbitrary mass scale (denoted by ]¢0] in Section 2) and (B)A is the expec~-
tation value of the (pseudo)scalar. Given the B's and y's, this latter equation

can be analyzed by standard means, about which we will say more later.

The parameters for the nonabelian SU(2) model are given by a computation only

slightly less straightforward than the abelian case. We tabulate the necessary
diagrams in Appendix D, in the context of the more general model with an SU(N) gauge

group. (Recall the d=f2=f3=0 limit of Section 3 for the SU(2) case.) The resulting

B's and v's are

2 2 2
v, = g = (6e” = 20e” - 4gD)h, o (4.13)
Yy 7 (-20e” - 285m0, : (4.14)
1 2 :
v, =703 -weh (4.15)
2
Yy = (1 - a)e™h s {4.16)
- 4.17
3
B, = ~4e’h , (4.18)
B, = ~4g3e? - 285, (4.19)
2 2 4 .
Bf = 2[f(3f + Zfl + 8g" - 12¢") - 3e ' ]h , (4.20)
and
B = 2[f, (5 £ + 4F + 8g% - 12e%) + 12(£2 + 3e" - 4gM)In . (4.21)

1
For the covariant gauges considered the nonabelian model has a ghost (n), hence

equation (4.15), and accompanying this is an umnmistakable gauge dependence in the
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vector field's anomalous dimension Yy The physical significance.of the above pa-
raméters is implicit in renormalization group partial differential equations exactly
1ike (4.12),.only note that here we have no independent mass parameters (B 2=BM=O).

Actually, the physical significance of all these parameters is not completely
obvious due to the gauge (i.e. o) dependence of some of them. Indeed the effective
potential V(A,B)‘is itself gauge dependent, a point first emphasized by R. Jackiw
[23]. For a full discussion of this point, we refer the reader to the literature
[24-26]. It is clear that a physical effect, such as a particle's mass, ought to
be gauge independent. Thus it should neot matter what gauge we choose to carry out
the analysis of physical phenomena. At any rate we shall choose the Landau gauge,
o=0, for the rest of the discussion in this section. This gauge provides some tech-
nical simplifications. For example, it has the virtue of not being renormalized,

a statement equivalent to Ba(u=0)=0, so that the o variable disappears from the
renormalization group differential equations. Also note that most of our following
conclusions about the stability/instability of the vacuum really only depend on the
sign of the effective (pseudo)scalar couplings. These couplings are gauge invar-
iant at the one-loop level (and to higher orders if defined properly) because of
the o independence of (4.8-9) and (4.20-21).

Now let us return to the effective poténtial and make a few variable changes
that will facilitate the renormalization group analysis. We want to know the be-
havior of V(A,B) as we uniformly rescale the magnitudes of A and B with all ratios
of field cémponents fixed. So, consider V along fixed directions in the field space

as we vary the radius of the field hypersphere given by
22 = atesr . (4.22)
. i i

Although the general case causes little additional complication, we will now use a
result peculiar to our models that follows from the chiral (A«»B) invariance of the

unshifted, massless theory. Namely,
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F'YA _ Y, = ¥ - (4.23)
Definipg the function U by

V(a,B) = 0*UA,B) | (4.24)
and observing that U is dimensionless so that

2
[MaM + MaM + 2m7) ) + A.aA + B.BB] U = o, (4.25)

m
we can rewrite (4.,12) in terms of U. (0=0)

[(l—Y)M8M+Be3e+Bng+sfaf+B‘

| 2
g 3¢ F(B ,=2ym )3 +(B=yM)3 H4y] U = 0 . (4.26)
171 m m

Since U is dimensionless we can take it to be a function of dimensionless variables

as follows.

[am}
it

U(A/¢3B/¢;t;eﬁg’f’f}_,u?v) 3 (4'27>
where

Lo/t , u = m%/p% , and v = M/6 . (4.28)

T
1]

Equation (4.26) then becomes

oY o v o o n v v _ ,

[ -Bt + Bese + sgag + Sfof + eflafl + suau + Dvcv + 4y 1 U 0. (4.29)
Here we also defined

Yoo .l~ N N2 v ;_m _ n

BU - 2 (6 2 2Ym ) s EV = d)(BM YM) ] (4‘30)

¢ m
and introduced the notation
v 1
(Anything) = g (Anything) . (4.31)

As far as the one-loop O(h) analysis is concerned, however, (4.31) is irrelevant.
The left- and right-hand sides differ by terms of O(hz) if "Anything" is 0(k). So

we will drop.all tildes in the following. Also, as far as one-loop quantities go
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we have
8 = 2[(-6e” + 4g® + £ + L (4.32)
2 2 '
BV = (-9¢” + 4g7)vh , (4.33)

for the abelian model when evaluated in the Landdu gauge. For the SU(Z2) model we
have 8u=8v=0, since u=v=0,
The partial differential equation (4.29) is solved by the usual method of char-

acteristics [27]. The solution is

U(a/9,B/95t5e,8,f,£,,u,v) = U(A/9,B/6;0;e(t),g(t),E(t),E, (£),ale),v()).

.exp[4fgdsy(s)] s {4.34)
vhere the effective coupling constants e(t), g(t), ... are solutions of the "tra-
jectory" equations

de(t) _ T * -
it = Be with e(0) = e , etc. (4.35)

For our purposes, of course, the B's and v's and the initial data U(A/¢,B/¢30;...)
will be approximated by their perturbation theory expressions to the one-loop level.
Consistency requires that the effective couplings be small over all t for which this
approximation is used. This then allows one to determine what regions of field
space are ''perturbatively calculable" by analyzing the effective coupling constant
trajectories. We next carry out this analysis.

- The effective‘gauge and Yukawa coupling constants are easily obtained to the
one-loop level. The solutions of their trajectory equations are

2

22 (0) - e : | (4.36)
1-be ht
R 2
2w = Fwl : 1, (4.37)

g*+(e?-g%) (1-be’ne) /P

where the parameters a and b are given for the abelian and nonabelian models as
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follows.
S0(2): a=10, b=4. (4.38)
Su(2): a=16, b=-8. (4.39)

These solutions illustrate some well-known differences [28] between abélian and
ponabelian theories. The sign of b indicates that, were the gauge coupling the

only interaction in the theory, the calculable régions of field space would be small
¢ (t+ ==) for the abelian model and large ¢ (t+ +o) for the nonabelian theory, since
Ez(t) + 0 in these regions. Corresponding statements can be made for Green's func-
tions in momentum space, with the rough physical interpretation that the abelian
theory decouples in the infrared while the nonabelian decouples in the ultraviolet
momentum regime. The presence of Yukawa and quartic interactions, however, compli-
cates this simple picture for these models.

For example, in the SU(2) case the effective Yukawa ccupling diminishes for
large t like t—3 if the initial ratio gz/e2 is less than one. In this case the
Yukawa interaction becomes negligible compared to the gauge coupling (§2/52$1/t2)'
On the other hand, if gz/e2 is greater than one, thé Yukawa coupling grows larger
as t increases and dominates the gauge interaction. Because of the pole in (4.37)
for positive t, the renormalization group improved perturbation theory breaks down
in terms of the effective Yukawa coupling as t continues to increase. Similar state-
ments can be made for the abelian model. Note that for both models the unique in-
itial condition g2=e2 gives éz(t)=52(t) for all t. This initial condition is nat-
urally encountered in the superlimits of the models, to which we now turn.

It is easiestbto study the superlimit, and the solutions of the trajectory
equations in general, by considering the coupling constant ratio space. This is
because in the one-loop approximation the effective gauge coupling is independent
of the other interactions and may be explicitly determined as a funétion of t, as

in (4.36). We then simplify the differential equations for the other interactions

‘e . - o T2 , .
if we isolate the dependence on this known function e (t). To do this we define
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the effective coupling ratios
=2 =2 . 3 -2 - -2
G(t) = g (t)/e"(t) , F(r) = £(t)/e"(t) , and F (0) = E (0)/e7(e) . (4 .40)

In terms of these variables the trajectory equations become

dG -2

i BG = 10he (t)G(G—l) . (4.41)
9 g = 4haZ(E)F(2F + F. + 2G - 4

at F e ( 1 G - 4) , (4.42)
dF, . B = éh—z(t) F.(F, + F + 2G - 4) + 3p2 - 1262 4
ye 7 e [F, (F) - 4) - 126° + 9] , (4.43)

for the abelian model, while they are

ic . ... =2 L ,

S =8, = lene (ele ~ 1) (4. 44)
9F 5 = 2mE%(t) [F(3F + 2F, + 8C - 8) - 3] (4.45)
dt F 1 ’ ‘
dF. . . =2 7 } 2 2

Si= g = M3 (O [F (L7, + 47 + 86 - 8) + 2208 - 46° + 3], (4.46)

1

for the SU(2) model. Also, for the abelian theory the effective mass equations

(4.32-33) become

S8 omE%(6)[(F + Fy + 4G - )T - 46V] , (4.47)
oo - 9 . (4.48)

In terms of the ratio variables the superlimits for both models require
G(0) =1, F(O) =1, and Fl(O) =0 . (4.49)

These particular initial ratios do not change with t since at this point in the
ratio space we have 8G=BF=BF =, Thus the one-loop renormalizations preserve the

1
coupling constant constraints of the superlimit. This is also true of the effective

. . 22 2 - . .
mass variables. Setting m =M, or u=v , we have Bu=2v8v in the superlimit, so that

a(t)=§2(t) for all t.
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" Mathematically the supersymmetric theory corresponds to a fixed point of the
differential equations (4.41-46). This mathematical distinction is the visible
hallmark of all types of symmetry in quantum field theories when viewed using the
renormalization group. If the symmetry is genuine for the quantum theﬁry, the fixed
point will persist in all higher orders of perturbation theory. Indeed if the fixed
point were "attractive," it would be possible for the symmetry to be broken in some
regions of field (or momentum) space, and to emerge clearly but slowly (logarith-
mically here) into view as asymptotic values for the fields (or momenta) are inves-
tigated. To pursue this it is necessary to study the neighborhood of the symmetric
point in the ratio space. Before considering the (G,F,Fl) space, however, let us
look more closely at the effective mass parameters.

In particular consider the effective masses in the supersymmetric limit of the
abelian theory. Equation (4.48) is easily solved when G(t)=1. The effective mass

in this case is
T(e) = fa - setne)t (4.50)

This illustrates one commonly expected effect of such explicit mass terms in the
Lagrangian. Their effective magnitude increases as t - - «», The corresponding
"obvious" statemént in momentum space is that mass effecté become important in low-
momentum regimes. .Also, as higher t regions are investigated, the effective mass
v(t) appears to become negligible relative to, say, the gauge coupling. Unfortun-
ately, in the present model the gauge coupling increases with t and eventually per-
turbation theory breaks down so that nothing is determinable as t - «, including
the éffects of such explicit mass terms. A theory which is calculable as t + «,
i.e. a model where all effective couplings diminish like the SU(2) gauge coupling,
would allow a more definitive statement. In all such (t » = computable) theories
known to us, the effective masses conform to this naively expected behavior and

become negligible for large enough t. However, here we would like to emphasize
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tha;:in view of expressions such as (4.47-48) the behaﬁior of the effective masses
{s sometimes not consistent with naive intuitioﬁ and should be carefully investi-
gated. - To simplify the remaining discussion in this section, we will consider only
thekmassless limit of the abelian model (3.1). If symmetry breaking océurs then,
it will be a purely radiatively induced effect.

Let us now return to the Yukawa and quartic coupling ratio space for the mass-
less theories. The instability of the supersymmetric point with respect to small
variations in G and increases in t is clearly visible in equations (4.41) and (4.44),
as well as the explicit sclutions for é(t). If G>1, then G(t) continues to increase
with t, while if G<1, G(t) falls to zero as t rises. As t decreases, however, the
g2=e2 plane is attractively stable, so we will consider variations in the other
coupling constants. To do this we linearize the trajectory equations around the

superlimit. We write
G=1+AG, F=1+ AF , and Fl = 0 + AF, . (4.51)

The first order equations in the variations are then

(AG ) AG
m_:%*__._é_ AF | = M IAF . ‘ (4.52)
4he” (t) dt AFl {AFl

where the stability matrices for the two models under comnsideration are

5/20 0 4 0 0
M(so(2)) = |2 2 1 , M@Gu@) = |4 3 1| . (4.53)
-24 6 -1 -48 12 2

The supersymmetric point would be absolutely stable under variations in G, F, and
Fl and (decreases) increases in t if all the eigenvalues of M were (positive) nega-
tive. For both models, however, one eigenvalue is negative and two are positive.

The eigenvalues (vi) and unnormalized eigenvectors (gi) are as follows.
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S0(2): vy g = 1+/33 vy = 5/2
b3
2
0 ] 1
Bl o = [3+/33] ., gy = l4] . : (4.54)
> 9+/33 0 :
SU(2): v, = 6 s Vo = -1, vy = 4,
0 0 1
e.o= |1, &.=111, &, = |4 . (4.55)
1 3 L A 3 0

Thus the supersymmetric theory is radiatively unstable under small variations in

the Yukawa/gauge and quartic/gauge coupling ratios. Only extremely rare points

(i.e. a set of [volume] measure zero) will converge toc the (G,F,Fl)=(1,l,0) fixed
point in the ratio spéce as t increases or decreases. This means that if the super-
symmetry is explicitly broken in the dimensionless coupling constants at some par-
ticular mass scale, it will not (save for the zero measure set) be reccvered at
either asymptotically large or small mass scales. This can be contrasted with the
simple massless non-gauge model of reference 10, wherein the supersymmetric theory
was an attractive fixed pcint, as t + - =, for a large portion of the ceoupling pa-
rameter space.

From our point of view, the more interesting implications of this radiative
instability of the supersymmetric theory involve the structure of the ground states
of the various theories represented by the trajectories in the coupling ratio space.
The directions of the eigenvectors in (4.54~55) provide some of the clues to under-
standing this structure. The rest are provided by the classical potential energy
terms in the Lagrangians (3.1) and (3.18), for SU(2), considered as functions of
spacetime constant field configuratioms. For both the abelian and nonabelian medels

in this section, the potential can be written as

e1a%e? - am (4.56)

ra )

i z 2.2
VO(A,B) = I fl(A‘ + B7) +
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where A2=A and A.B=A.B,+A B +A.B

T1717272 7373

for which the classical theory has a

2 . 2 2. 2
+A2 and A.B—A1B1+A2B2 for S0(2), while A —A1+A2+A

for SU(2). The allowed values of f and £

2
3

|l XS

1
groundystate with VO bounded from below are easily determined. 1In the terminology

of Section 2, f is a neutral coupling providing no energy density for the field con-
figurations A#0=B, A=0#B, and A=B#0. The fl term is a positive definite interactiocn,

however, so VO will not have a lower bound is f1 is negative regardless of £. On
the other hand, if £ is negative it is pbssible for the fl term to insure a lower
bound, at least for some ratios of f/fl. The critical ratio is determined by taking
A2=BZ#O=A.B. If £ is negative there.is no lower bound for f1<-3f. The regions with
classically stable ground states are indicated in Figures 2 and 3, in terms of the
ratio variables. Combining this classical stability analysis with the information
contained in the eigenvalues and eigenvectors in (4.54-55), we are led to some in-~
teresting conclusions about the vacua of the quantum field theories surrounding the
supersymmetric point.

For simplicity, consider a theory in the neighborhood of the supersymmetric
point with a small component in one of the eigenvector directions. TFor such a theory

we have

AG

AF = 8.&, T, (4.57)
where § is a small quantity, positive or negative. For other values of t the linear

approximation (4.52) gives

AG(s) } v.s
AF(s) = i
AFl(s)J

where ds=4h€2(t)dt, or

s = —‘% En(l—bezht) . (4.59)



As s increases the trajectory moves away from the superlimit in the direction of
¢g£. For essentially half of these possible directions, the trajectory will be pen-
etrating intp the classically unstable regions of Figures 2 and 3. Unless the non-
1ineaf effects in (4.41-46) act to alter the course of such trajectories, they will
continue to move into the unstable regions and the effective potential will become
negative, indicating thatvthe ground state of the theory, if it exists, will have
ponzerc expectation values of the (pseudo)scalar fields and an accompanying spontan-—
eous breakdown of gauge invariance.

We can be more quantitative by writing down the renormalization group improved

potential to lowest order. To the one-loop level we have

v(a,B) = (0] 37 F (0 3D % £ F(0) (4787 (4. ;)71 +hE(£)0(1,6,F,F; T}E(D)
(4.60)

where E(t)=exp(4fgdsy(s)) is a slowly varying function, and O{l,G(t),F(t),Fl(t)}
. represents the particular tensor structures that arise due to the one-loop correc-
tions to V (cf.(6.24)). As stated in general in Section 2, fhese one-loopkterms are
potentially important whenever Fl(t)’ the only positive definite coupling here, is
of order hg%t)<<l in the domain of perturbation theory we are considering. (Note
that G and F are always of order 1 in the neighborhood of the supersymmetric point.)
This condition holds in the very immediate vicinity of the supersymmetric point, so
the O[l,G,F,Fl} terﬁ should be carefully considered there. However, if the trajec—
tories in the supersymmetric neighborhood move far enough into the classically un-
stable region, i.e. Fl(t)<0 and IFl(t)[>>O(hézﬁﬁ), then the 0[1,...] terms can be
neglected and the potential will be negative for some field expectations by virtue
of the first term alone in equation (4.60).

The onl& way to determine if the coupling trajectories actually do sufficiently
penetrate into the unstabie région so that the 0[l,...] terms are unimportant is
to numerically integrate equatioms (4.41-46). We have done this and find the fol-

lowing to. be true. A trajectory in the neighborhood of the supersymmetric point
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Will.éufficiently penetrate the unstable region as s increases if the initial point
has'a component along one of the eigenvectors that project into the unstable region.
In general, the nonlinear effects in (4.41—46) db not alter the stability conclu-
gions ﬁhat we would infer just from considering the linearized equations (4.52) and
the stability regions for the classical theory. ‘We know this to be true for the

neighborhoods of the supersymmetric point for the S0(2) and SU(2) models of this
section, and for many of the SU(N) models of the next section. There are essentially
two distinctive features which cause this to be true for the supersymmetric models
and which distinguish these theories from the models of, say, reference 1l4.

First, the supersymmetric point is positioned directly on thé classical sta-
bility boundary, so the linear effects alone immediately drive some trajectories
into the unstable region. Second, the global behavior of the trajectories is very
smeoth without regions of large trajectory curvature except for neighborhoods of
other fixed points in the ratio space. In the present examples, the other non-
supersymmetric fixed points are not positioned so that they can "push" or "pull"
out of the classically unstable region those effective coupling trajectories which
originate near the supersymmetric fixed point and enter this region.

We can determine these other fixed points very easily by finding all the roots
of the B functions in (4.41-46). Trom (4.41) and (4.44) we only need consider G=0
and G=1. Tor G=0 there are no simultaneous real roots of (4.42-43) or (4.45-46),
however, so we can further restrict the search for fixed points to the g2=e2 plane.
In this plane the fixed points for the abelian model are the intersections of the

straight lines
F=0, o0orF=1- %ﬁF s ; (4.61)

and the ellipse‘defined by all real F and Fl such that

2 2 Ln o 2
3F + FFl + Fl LFl 3. (4.62)
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These root curves are drawn in Figure 2. Similarly the fixed points for the SU(2)
model are the intersections of either branch of the hyperbola obtained by setting

B,=0 in (4.45), that is

VF2+9

o =F.zx
F o= 1= 1 > (4.63)
3

and the ellipse given by all real points for which

12F2 + 4FF1 +

w|~

F

=12 . (4.64)

| el

These root curves are drawn in Figure 3. The four fixed points for the S0{(2) and
SU(2) medels (including the superlimit) are alsoc shown in Figures 2 and 3 (by dots).

Numerically these fixed points are

(GFF D000y fimea = (B10) 5 (1,0,3) 4 (1,0,-1) , (1,-3/5,16/5) 5  (4.65)
and points
12 =m=% .
<G’F’Fl)SU(2) fixed = (1,£1,0) , (1,t¢7/15,.+:—-7— 7/15) . (4.66)

points

Note that the SU(2) one-loop fixed points are symmetrically distributed with respect
to the origin in the G=1 plane.

Since there are no real fixed points outside the G=1 plane, trajectories start-
ing as in (4.57) with gi=g3 will continue moving smoothly into the stable/unstable
regions as s increases if § is positive/negative. For either the S0(2) or SU(2)
theories this means the effective potential will continqe to become more and more
negative for increasing ¢ if 8<0, while V will stay positive for increasing ¢ if
§>0. Theories corresponding to 8<0 thus do not appear to have any ground states at
all, at least within the domain of perturbation theory.

For theories which start as in (4.57) with £i=£ similar statements can be

1,2°
made, The relevant effects can be seen in Figures 4 and 5, wherein we have plotted

several global trajectories which were numerically integrated over ranges in t sub-

stantial enough for the nonlinear effects of (4.42-43) and (4.45-46) to be evident.
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The directions of the eigenvectors in the G=1 plane and the signs of the correspon-
ding-eigenvalues of the stébility matrices for the non-supersymmetric fixed point;‘
can be fairly,well determined from Figﬁres 6 aﬁd 7 which show trajécéories in the
plane aﬁd,near these fixed points. We have plotted in Figures 6a-6d trajectories
for all four of the neighborhoods of the S0(2) fixed points in (4.65).  TFor the SU(2)
model's fixed points, hoﬁever, we have only sketched the neighborhoods for the super-—
symmetric point (1,1,0) in Figure 7a, and the point (l,/77I§,12//16§) in Figure 7b.
The behavior of trajectories near the points (1,-1,0) and (1,—%7713;—12//I6§) can be
determined from Figures 7a and 7b, respectively, by a "reflection:" Ilet (F,Fl) -
(-F,«Fl)‘and t » -t {(corresponding to a reversgl of the arrow directioms on the tra-
jectories). This type of reflected behavior is evident in Figure 5. Note that
since the fixed plane G=1 is itself unstable against increases in t, it is not cer-
tain that all trajectories which begin purely in the plane will remain there for all
t. Higher order (two-loop, say) effects will undoubtedly force some trajectories
‘out of the plane and allow the one-loop instability to take effect. However, the
scale at which these higher order corrections influence the trajectories is O(eét)
compared to O(ezt) for the cne-loop effects. By making e2 small enough, we can dis-
cuss theories for which trajectories stay "in" the plane Ior sufficient t ranges to
behave as the one-loop trajectories of Figureé 4-7.

What can we say about the ground states of theories represented by the various
trajectories in the G=1 plane? First note that the fixed point in Figure 6d and
the "reflected" image of the point in Figure 7b are attractive as t increases. Also:
these points lie well within the classically unstable regions. Trajectories con-
verging onto these points therefore have éffgctive potentials (4.60) which become
very negative for large ¢.‘ Only a nonberturbative mechanism can come to the rescue
of these theories and account for the formation of their ground states. An educated
guess based on the one-loop results would be that these theories actually do not

have lower bounds for the energy density V(A,B), and thus are examples of physically
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and mathematically unacceptable theories. Adding this to the behavior of trajec-
tories moving below the G=1 plane (cf. eigenvector 53), we conclude that roughly
nalf of the theories in the neighborhocd of the supersymmetric point‘arg of such
character, with V(A,B) apparently unbounded below.

Next cohsider trajectorieé such as those labeled "A" in Figures 6a and 7a.
VAlong these the effective couplings move into the classically stable regions for
large ¢, with ]F1E>>h521ncases where perturbation theory is reliable. For small
$, however, these trajectories enter the unstable region. Thus theories correspon-
ding to these effective couplings are stable for t>0, but undergo radiatively in-
duced gauge symmetry breaking in the t<0 region. To be completely honest we should
note that the very small ¢ region (t - - «) is not within the grasp of perturbation
theory since some effective coupling (gauge and/or quartic) grows large, and so it
is likely that nonperturbative effects play an important role. Nevertheless, a best
guess would be that V(A,R) remains bounded below in the small ¢ region (essentially
becausevgb4 looks hard to overcome as ¢ - 0) and that these are mathematically con-
sistent spontaneously broken gauge theories.

Finally; consider trajectories such as these labelled "B'" in Figures 6a and 7a.
‘These trajectories do not penetrate the classical regions of unstable ground states,
but they come close enough to Fl=0 that the second logical possibility of our nec-
essary condition for radiatively induced symmetry breaking (2.3) could be satisfied
(for moderately small ez). That is, the potential V(A,B) can become negative (or
at least vanish and hence become degenerate with the origin of field space) for A
and/or B#0 through the effects of the one-loop terms in (4.60) since these trajec-
tories have Fl(t)=0(h52(ﬁ). The supersymmetric fixed points in Figures 6a and 7a
may be viewed as (stationmary) trajectories of this type. We will no:t investigate
this last type of trajectory any further, except for the supersymmetric theory it-
self., We will add some remarks about the supersymmetric theory in Section 6. Since

the supersymmetric case allows the spontaneous breaking of gauge invariance, it is
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likely that some other of these "B" trajectories also represent radiatively broken
gauge theories. Rather than pursuing this, let us move on to consider the SU(N > 3)

models defined in Section 3.

5. RENORMALIZATION GROUP ANALYSIS OF THE SU(N>3) MODELS

We now extend the analysis cf the preceding section to include the SU(N > 3)
models defined by the Lagrangian (3.18). The one-loop renormalization group param-—
eters are obtained from the divergent parts of the proper self-energies and vertex
corrections as tabulated inkAppendix D. The lowest order anoﬁalous dimensions for

the scalar, pseudoscalar, spinor, and vector fields are given by

2
2
T, = Vg [Ne (3-a)- 2\;0--0( )d 1h , [6‘\Ie2-2‘\1g2—2( )d ]h , (5.1)
2 N2 2 2 2-4‘ 2 ]
Y$ = [~Noe -Ng -( )d 1h s  [3Ne -Ng N Yd"ln s (5.2)

1 2 2 -
Yy = E(l—a)Ne h , 2Ne'h s (5.3)

where the first/second terms on the right-hand side apply to the covariant/non-
covariant gauges as defined in the appendices. (Note the curious equality of y's
in the two gauges when a=-3.) The noncovariant gauges are ghost-free while in the

covariant gauges we have a ghost n whose anomalous dimension is

=(3 —a)Nezh . : (5.4)

-i:lt—-'

Yﬂ =

As in Section 4, we will henceforth work in the Landau gauge where u=0. We note
again that this gauge is not renormalized, i.e. Ba=2aYV’ and that the effective coup-
ling constant trajectories to the one-loop level are determined by gauge invariant

8 functions.

The one-loop trajectory equations for the gauge and Yukawa couplings are

de(t) _ . =3 .
TR = B 2Ne™h , (3.5



160

- 2
dg(t) - - = a2 s 2 N =4, =2 -
It Bg 2g[-3Ne” + 2Ng~ + 2(—Er—0d 1, (5.6)
and
- 2
dd(t) - - 0Fr_ -2 =2 5N -4 =2 -
it Sd 2d[-3Ne” + 2Ng +_(—§—~Dd in . ‘ (5.7)

Note that if either of the two possible Yukawa couplings are omitted at t=0, say,
they do not appear when the mass scale changes since Bg,d =~ g,d. This is in agree-
ment with the charge conjugation symmetry argument given in Appendix A. Also note
that to lowest order in this model, the g/d ratio ("F/D") is independent of t since
ésd = 388. This is a result of a complete cancellation of the scalar and pseudo-
scalar contributions to the pole part of the one-particle-irreducible (pseudo)scalar-
spinor-spinor vertex. In general such a cancellation will not happen in higher or-
ders of perturbation theory.

The solutions of (5.5-7) are as easily obtained as (4.36) and (4.37). To sim-
plify these solutions and the quartic coupling B8 functions given below, we define

the ratios
=2 -2 - -2 - -2
b(t) = d (t)/e () , F2<t) = fz(t)/e (£) , and F3(t) = f3(t)/e () . (5.8

We also keep the ratic definitions of equation (4.40). In terms of these ratios we

have the solutions

2

Ez(t) = '——‘*e—z—— s (5.9)
1+4Ne " ht
and :
2
G(e) = T 5 2 ] (-1
(I4+R)g +[e "= (14+R) g 1 [1+4Ne"ht]
where
Noob. d° N2t D(t)
R =G5 5 =650 (5.1
w2 gz W2 G(t)

is independent of t. TFrom (5.9) we see that as far as the gauge coupling is con-
cerned, the SU(N) model is perturbatively calcuiable in the large t regime exactly

like the SU(2) case in Section 4. But, also like the SU(2) case, the Yukawa and
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quartic couplings do not necessarily become small with increasing t. Before pur-
suing this, however, we will eliminate one excessive degree of freedom by setting
d=D=R=0 for the rest of this section.

The Yukawa trajectory in the ratio space has a simple behavior at the one-loop
level and can be obtained in closed form as in (5.10). The quartic coupling ratiocs
however are more disgustingly complicated than the S0(2) and SU(2) models, essen-—
tially because the quartic ratio space is four dimensional.- This is evident in the

trajectory equations which we now give for D=0.

dG(t _2
"H’t('“)' = B, = 8Ne hG(G-1) . (5.12)
dECE) _ g = 43 h{F[NF+F, +5F +C§E:§)F +ONG-2N]42F, [F.+ oF 5
at F R AT NI+2F, [F )+ {F51-NGT 7 (5.13)
e 2 2o R
18 2 g -4z n{F g +(N ~2)F (s 4)F, +2NG-2N] + 6F°
F 5 3
dt 1
2
2 . N4, 2 2
+3F, [2NF+(N"=2)F,] + 6(=5)F; - 246" + 18} . (5.14)
4Fy(8) _ g = 42%n{F, [-NE4F Ty +r oveen - L
—s T hy = 2LTHETETATD 27N kM 2
dt 2
e *4 2.3y (5.15)
2
N
ng(t> =g_ = 452h{p3[pl +(M)F +2NG-2N ]+ -—F{F+2’i‘3} \IG2+ —-N} (5.16)
at F3

Confronted by the morass of quartic couplings on the right-hand side of (5.13-16),
it is somewhat consoling to see the superlimit defined in (3.21) is a fixed point.
Thus

=8, =8 =g, =8 = 0 when (G,F,F
1 2 3

1:F9sFy) = (1,1,0,0,0) , (5.17)

and the one-loop radiative corrections respect the supersymmetry.

Also note that in the superlimit all coupling constants decrease monotonically
as t increases, and all couplings become larger as t becomes more negative. {(In
fact, the one—loop approximation diverges at t = —l/(éNeZh}.) This means that field

space hyperspheres of large radii (¢2>>M2) are within the domain of validity of
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perturbation theory for the supersymmetric theory. The "shape" of the renormal-
jzation group improved V(A,B) can be calculated apparently to arbitrary accuracy

as t = o, In this limit it becomes simply

=2 2
V(ALB) | sy (ns2) - e  (t)Tr({A,B]DE(L) , (5.18)
supé?iimit e

where the normalization factor E(t)=exp[fgds %%é%%sﬂ contains the only remnant of
information from smaller t values. For asymptotically small values (t + -%), the
higher order corrections become large and a priori the shape of the effective poten-
tial could be substantially altered. Similar statements can be made about the mass-
less supersymmetric abelian theory in Section 4, only the t - = and t + - limits
are interchanged from the present case.

Next let us follow the order of developments of Section 4 and examine the in-
stability of the supersymmetric fixed point in the ratio space. It is clear from
(5.12) that the G=1 hyperplane is unstable against increases in t in exactly the
same way as the simpler models of the last section (cf. (4.41) and (4.44)). The
other ratio equations (5.13-16) can be investigated by linearization with the var-

iations defined as in (4.51) and as follows.

F2 =0 + AFZ and F3 = 0 + AF3 . (5.19)

The resulting first order equations are

(4G ) (AG )
AF AF
A
%—— F = MSTD) AFy , (5.20)
S | arF AF
2 2
AF3 J AF3 J

where s= %-Kn(l+4Ne2ht), as in (4.59), and the stability matrix is

2N§o 0 0 0
' 0 2N 1 5 (N2~6)/N
M(sU(M)) =| =48] 12 N 68 O . (5.21)
4 -1 0 -N 1
-2N| N/2 O 0 N/2
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The eigenvalue and eigenvector projecting out of the G=1 hyperplane are trivially

found. These are

1

4
B = IN F_ = . 292
Vg 2N and £ oy . (5.22)

(Ccf. Vq and 53 in (4.54-55}.) The other four eigenvectors all lie in the G=1 hyper-
plane and are to be determined by analyzing the 4x4 submatrix indicated in (5.21).
We have not obtained analytic expressions for these other eigenvectors or their
eigenvalues as functions of N. We have determined that there are always threes pos-

itive eigenvalues and ore negative eigenvalue for this submatrix, for any N>3. This

can be seen in part from the determinant and trace of M(SU(N)). These are

Tr M(SUN))

9N/2 , (5.23)

DetM(ST () O P-d) . (5.24)

The last of these, along with the known positive eigenvalue in (5.22), implies that
either one or three of the eigenvalues of the 4x4 submatrix are negative. 3By play-
ing with the characteristic equation, one can show that there is only one negative
eigenvalue.

So the situation regarding the instability of the supersymmetric point as t
increases or decreases is exactly the same as in the SO(2) and SU(2) models of the
last section. There is only one eigenvector along which we converge into the super-
symmetric fixed point as t increases. Any deviation from this one ray and we will
diverge away from the superlimit in the directions of the other (four) eigenvectors
as t > =. Changing N here has no qualitative effect on the stability of the super-
symmetric fixed point. This distinguishes this supersymmetric theory from quartic
coupling fizxed points of many other models [29,30] where the stability of the fixed -
points depends on N.

We have numerically computed the eigenvectors and eigenvalues of (5.21) for

N=23, 4, ..., 50. The results are given in Tables 1-4 for SU(3-6). Note that
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the eigenvectors in the Tables are normalized and real, but are not orthogonal.
Their inner products are given in thevtables in matrix form: Ei'gj for i,j=1-5.
(In the tables the eigenvectors are denoted by V(I) or V(J), and the ordering of
the labels differs from that of the text, cf. (5.22).) Also note that the eigen-
vector given by (5.22) occurs in the tables {always the third entry) and is ;nde—
pendent of N, as it should be.

Some special cases of the eigenvalue problem can be handled analytically. For
example, the characteristic equation for SU(3) reveals that v, ”l is an exact eigen-

value (appearing as 0.999999 in Table 1). This characteristic equation is
. .
Det [M(SU(3)) - vl ] = (6-v)(v-l)(2v“—13v2—30v+45) . (5.25)

The unnormalized eigenvector for v=1 is £=(0,1,3,-1,-3), which appears as the fourth
entry in Table 1 (allowing us to conclude that the numerical accuracy of the tables
is approximately one part in 106). The large N limit of the eigenvalue problem can

also be solved analytically if terms of O(N) are kept and terms of O(10) are neg-

lected. The stability matrix in this limit is
anlo o o o0 )
0 28 0 0 N
M(SU(N>>10))= | O 0 N 6N O + 0(10) . (5.26)
, 0 0 0 -N 0
(=28 | N/2 0O 0 N/2

The large N eigenvectors and eigenvalues are given by (5.22), and, for the bxd

submatrix, by

. 5+/17.
V=N, vy, = O ?)N + 010 , (5.27)
0 0 )
0 0 +/IT
g =11 g3 |s gy, o | +o@om . (5.28)
0 -1 0 i
0 t~0 J /I7J

As we remarked previously, four of the five eigenvalues are positive with only v,<0.
2
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The consequences of the radiative instability of the supersymmetric point are
essentially the same for the SU(N>3) models as for the S0(2) and SU(2) theories, so
far as the ground states of these theories are éoncerned. As in Section 4, let us
consider the allowed values of the couplings F, Fl’ FZ’ and F, for which the class-

3

ical potential is bounded below. The classical potential here is

=L _
V4,8 = (¢ £y

2

£,) [T w2512+ f3Tr[(A2+B2) 21
2 2 2 2
+ 25, [(vea”) (1287 - (TraB) °) - frr(a.B]? . (5.29)

Determining the constraints for all four of the quartic couplings such that VO(A,B)EQ
as A2+B2 + o ig somewhat involved and we have not obtained analytic results for a}l
N. The essential source of our difficulty is that the scalar and pseudoscalar fields
are a redugible representation of the global chiral symmetry group SO(2)xSU(N).

Were the representation irreducible, there would be only two independent quartic
couplings representing tensors like the first two in (5.29). If this were the case
the analysis of this section would be exactly like that of Section 4. Unfortunately
this is not the case, and we will be content here to give only the conditions on fl
and f3 which are necessary for classical stability. Sufficient conditions on all
four couplings are trivially found, but we have not determined necessary and suf-

ficient conditions on £, £

fz, and f, for arbitrary SU(N).

1’ 3
Consider any one of the three sets of classical field values for which both the

f and f2 interactions wvanish.

A#0=B,A=0#B,0rA=B#0. (5.30)

These are the neutrally stable directions in field sﬁace for the sum of the last two
group temsors in {(5.29). It is clear that f1 and f3 must satisfy some positivity
condition independent of fvand fz if the potential is to have a lower'bound because
the first two temsor structures in VO are each positive definite. This positivity

condition can be found by simultanecusly diagonmalizing A and B, since these matrices
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commute when (5.30) holds. The mathematics is the same regardless of which of the
three configurations in (5.30) is under consideration, so we will look at A#0=B.

penoting the diagonalized matrix by Aij = aiSij (i,j=1,2,..,N), we have
' 2,2 4
L0= = .
v, (4#0=8) x(ziai) + <():iai) , (5.31)

where A= fl/6 - f3/N_and «=f,. To minimize this, we first need to find the direc-
tion in thezﬁvfield space which minimizes VO on a given hypersphere of radius ¢2=
zZiai. In addition, we must impose the condition that A be traceless, ziai=0.
Introducing two Lagrange multipliers, o and B, to maintain these fixed radius and
trace constraints, the minimization conditions are

1 4 2 _ 42
0 _ 5%}'[ Z’A¢4 + K(Ziai) + q(zziai -¢) + Bziai i

4Ka§ + éaaj + B . (5.32)

The (at most) three distinct solutions of this cubic equation satisfy a(l)+a(2)+

+a(3)=0. If these solutions appear on the diagonal of the (diagonalized) A matrix
Nl’ Nz, and N3 times, respectively, then it is a trivial matter to solve for a(l),‘
a(2), and a(3) in terms of Nl’ Nz, and N3=N—N1—N2 by using the trace and fixed radi-
us constraints. The resulting classical potential at this extremum is then a mod-

erately complicated function of N, and N,, for fixed N.

1 27

This function of Nl and N2 has been minimized by L.-F. Li [35] in the context
of a simpler model of spontaneous gauge symmetry breaking, and we refer the reader
to that article for more complete details. We will be content here to give the re-~

sults. The minimum of V, on the hypersphere depends on N and the sign of £ (This

0 3°

mathematical problem is also discussed in reference 14, §IV-A.) On the hypersphere

of radius ¢2 we have

1 4 Ia 4 . .
Vo (4#0=B,min) = ':'i? o[ g— £+ £y ] if £,0 and N is odd , (5.33a)
(N7-1)
-1 éz‘[ LN if £,>0 and N is even (5.33b)
4N 7 6 71 3~ s
o . 2
1 4. N ¢ (N-2) . . .
=an el %‘Ll ?ﬁjzy‘fg ] if £,<0 for any N . (5.33¢)
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The quantities in brackets on the right-hand side of (5.33) must be greater than

or equal to zero if the classical potential is to be bounded below. Thus we obtain
the desired peositivity conditions on fl and f3. We now explicitly write out these

necessary positivity conditions for SU(3-6), to aid in interpreting Tables 1-4, and

for the limit of large N, to interpret (5.27-28) in terms of vacuum stability.

The ciassical potential energy density (5.29) is bounded below only if

\
{fl +E 20 for SU(3) J (534
( N
£, 2 01f £520
or for SU(4) s (5.34b)
\ £+ 213 > 0 4if £ 2 0 |
52, + £4 2 0 if £, >0
or for SU(5) , (5.34¢)
27 . .
fl + To 3 > 0 if f3 <0 J
r A
£, > 0if f330
or for SU(6) s (5.34d)
6 ,
| f1 T TSy 2 04f £5 20 ,
fl > 0 if t3 >0
or for SU(N>>10) |. (5.34e)
L fl + 6f3 > 0 if f3 <0

Note that condition (5.34a) is actually very easy to obtain for SU(3) because of the
simplifying relation‘(TrAz)2 = 2(TrA4). (This does not hold for SU(N > 4).) 4As in
the S0(2) and SU(2) thgories of Section 4, the supersymmetric SU(N) theory is posi-
tioned precisely upon the boundary separating classically stable and classically un-

stable ground states.
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Now let us combine this information with the eigenvalues and eigenvectors in
Tables 1-4 and in (5.27-28). We see that approximately half of the eigenvectors
have components that would cause effective coupling trajectories in the quantum
theory which initiate in the tgi directions (* as appropriate) to penetrate the
classically unstable regions as determined by (5.34). (Recall (4.57) and the re-
lated discussion.) It is also clear that —55 in (5.22) points into an unstable
region not given in (5.34) since f becomes negative with all the other quartic coup-
lings zero. Usually the penetration into the unstable regions proceeds farther as
¢ (or t) increases, the only exceptional case corresponding to the one negative eig-

envalue in each of the tatles and in (5.27), i.e. v For this case the F's move

9
away from the supersymmetric point as ¢ decreases.

The reader can easily determine for himself whether an eigenvector projects
into the classically stable/unstable region according to (5.34). However, we would
like to point out some of the more interesting features of the vectors. First note
that V(4) in the SU(3) table, corresponding to the éxact eigenvalue v=i (cf. (5.25)),
lies exac?ly within the stability boundary surface given by (5.34a), thereby main-
taining in this linear approximation the neutral stability of the supersymmetric
theory. Second,vfor SU(/—G) this fourth eigenvector is not neutrally stable, but
instead points into an unstable region feor both +V(4) and -V(4). All the other eig-
envectors change from the classically stable to the unstable regions (or vice versa)
when their overall signs are changed. Finally note that in the limit of very large
N, the vector +£3 in (5;28) lies within the stability surface of (5.34e) [it actually
approaches the boundaryvsurface from the stable region as N - « ], and so lies the
vector -54 [it moves into the surface from the unstable region as N = « }.

Once again, the only ﬁay we have of determining if an effective coupling trajec-
tory starting along one of the (%) eigenvector directions continues to plunge into
an unstable region, say, is to numerically integrate the fully nonlinear cocupled

equations (5.13-16). As in the abelian and SU(2) models of Section 4, the deciding



169

factors which determine if a trajectory moves very far into or out of the unstable
regions are the location and character of other fixed points of the ome-loop ratio
equations (5.12-16).

For the SO(2) and SU(2) theories, we could analytically determine a1l the fixed
points of the one-loop equations, as given in (4565-66). We have not been able to
carry out the same analytic treatment for the SU(N>3) models for arbitrary N. We
have, however, made numerical root searches and considered the behavior of the equa-
tions in the large N limit which we will now briefly discuss. Numerical searches
for simultaneous zeroes of (5.13-16) only need to consider G=0 or 1 since these are
the only fixed points of (5.12). Table 5 gives some results of such a numerical
searéh for the groups SU(3-6). We have not found any simultaneous zeroes of (5.13-16)
in the G=0 hyperplane either for these groups or for any larger values of N. Appar-
ently, there are no such zeroes. In the G=1 hyperplane, however, there are many
roots as is evident in the table.

Note one interesting characteristic of these roots for G=1. If (l,F,Fl,Fz,F3)
is a fixed point, then so is (l,—F,—Fl,—Fz,—FB). This fact can easily be demon-
strated using the original equations (5.13-16). Thus the fixed points occur in pairs
in the G=1 plane. We previously encountered this effect for the SU(2) model of the

last section. Also note that (G,F,F F3)=(l,i9/10,;3/10,t1/10,tl/10) are exact

172
one~loop fixed points for SU(3).

Next comsider the behavior of equations (5.13-16) in the limit of very large N.
In particular let us examine these equations for fixed points that remain finite as
N + «, Thus we assume G, F, Fl’ FZ’ F3 are no larger than 0(1l), and not O(N), for
large N. Such fixed points would be "close" to the supersymmetric fixed point and
thereby exert the most influence on the behavior of the effective coupling trajec-
tories in the neighborhood of the superlimit. With this assumption we find several
roots of the coupling constant ratio B's. First, neglecting terms of 0(1/N) we find

that

| ) _
@F,FLFF) = (1,1,0,0,00 ,  (Lis0,057) (5.35a,b)
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appear to be consistent zeroes of (5.12-16) as N » =. (Of course (5.35a) is exact
for any N.) 1In fact (5.35b) is a close approximation even for moderate N (210).
The second entries in Table 5 for each group are the aétual small N limits of these
two zeroes, considered as functions of N. Neglecting terms of 0(1/N), it appears
that there are two zeroes in the G=0 plane. These are (0,0,0,0,3/5) and (0,0,0,0,1).
For any finite N, however, these roots really turn out to be complex zeroes which
only approach the real axes as N -+ «,

If we include terms out to O(l/Nz), we find in addition to the above the fol-
lowing zeroes which include roots that are very close to the supersymmetric point

in the limit of large N.

(€ F.F,FHFy) = (LexSx S0z 2y o+ oam) (5.362)
- N L N—.
4 6 _ 2 _ !/
(l9ili _23-— Eyi ’{I”: iz) + O(l/NS) . (5.36b)
N ) N

Note here that (Fland F2) F and F3 are (odd) even functions of 1/N. As N - =, these
last zeroes are apparently squeezed into the superlimit. The presence of such fixed
points so close to the supersymmetric point and so near the classical‘stability
boundary given by (5.34e) obécures.the'Conclusions that may be drawn concerning the
stability of the quantum vacuum in these cases: one should carefully inspect the
explicit one-loop corrections to V(A,B). This we have not done, even though the
large N limit promises some special analytic advantages {31]. We leave this as an
incompleted exercise for the interested reader.

For small or intermediate values of N (510) we have not found any fixed points
so close to the supersymmetric point or of such characte; as to alter much the ground
state stability conclusions that one would infer from the directions of the eigen-
vectors and the signs of the eigenvalues given in, say, Tables 1-4. The story here
is almost identical to the S0(2) and SU{(2) cases. TFor example, consider the global
trajectories indicated in Figures 8-15 for the case of SU(3). These trajectories

are initialized at t=0 to lie along the eigenvectors in the G=1 hyperplane as given
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in Table 1. 1In Figure 8, the trajectories are initially in the +vV(1) direction,

where V(1) is the first eigenvector in Table 1. All quartic couplings continue to
grow as we move out in t except for FZ’ which becomes negative. Becéusg the posi-
tive definite couplings Fl and F3 are so much larger in magnitude than Fz,

it is clear that the effective potential remains positive for large expectations

however,

of the fields. This case does not appear to undergo radiatively induced symmetry
breaking., ‘

In Figure 9, the trajectory starts out in the -V(1) direction and the'positive
definitd' couplings quickly become substantially negative for very large values of
t. F also becomes negative. Therefore, this theory does not appear to have any
ground state. As we have said previously, however, there may be a nonperturbative
mechanism establishing ground states for these models. For the present such a mech-
anism resides in the realm of uninhibited speculation.

Figures 10 and 11 show the behavior of trajectories initisiized along *V(2),
respectively. Since v, < 0 for this eigenvector, we must go to smaller ¢'s (nega-
tive t's) in order to escape from the supersymmetric fixed point's neighborhood.

As £ becomes negative, however, the gauge coupling increases and eventually the one-
loop approximatiqn diverges (at t > -150 since we took an initial ez=52(0)=0.09).
Consequently we cannot really compute the behavior of V(A,B) near the origim, but
the natural guess is that the potential is bounded below and a spontaneous break-
down occurs for small ¢ when we begin in the -V(2) directionm.

Other global trajectory behavior is shown in Figures 12-15. The only effect
we wish to point out here is that the neutral stability of the eigenvector V(4) in
Table 1 is apparently destroyed as we move away from the supersymmetric point. The
effective couplings Fl and F3 swerve into the classically stable region and the ef-
fective potential becomes positive. Up to this point we have avoided locking in
detail at the explicit one-loop corréections tc the shape of V(A,B), as indicated in

(2.1) and (4.60). We will remedy this to some extent in the next section, where

we look more closely at degenerate minima of V in the superlimit of the SU(N) model.,



172

6. AMBIGUITIES IN THE SUPERSYMMETRIC THEORY

The supersymmetric versiops of the models defined and-discussed in Sections 3-5
have effective potentials with physically inequivalent but energetically degenerate
minima. These minima all correspond to theories with unbroken supersymmetry but may
represent theorigs with broken gauge symmetries. The mass scales and symmetry break-
ing patterns of these broken gauge theories are not unambiguously determined by the
effective action. This peculiar facet of these supersymmetric models is not well-
understood [3,71. It suggests that one must specify the gauge symmetry breaking size
and pattern in order to remove all ambiguities in the definitions of the models.

To discover the nature of these ambiguities for the supersymmetric theories,
consider the tree approximation to the effective potentiél for the SU(N) model.

(Radiative corrections will be dealt with later.) We have

2(_

+

~xabAaBb)(£xchch) i (6.1)

e

V.(A,B) = —ezTrfA B]2 = ;-e
0 bl L b 2

a non-negative interaction which achieves its minima if and only if [A,B]=O. Clearly
if A and B‘are field matrix configurations which commute, then AlA and sz do alsc,
for any values of hl and AZ. - Thus there is an infinite (unbounded) set of field
configurations which are continuously connected by such rescalings and which are all
degenerate. The minima of VO are situated along neutrally stable rays in the field
space. This is picturesquely shown in Figure 16, where we plot VO(AI’BZ) and sup-
press other field components.

These degenerate minima do not correspond to physically equivalent vacua as is
the case for the usual Higgs potential (also sketched in Figure 16). For the usual
Higgs situation, the continuous circle of minima shown in the figure are related by
a simple gauge transformation (i.e. a rotatiom). The polar angle variable param-
eterizing these rotations represents the "massless" degree of freedom (Goldstone

boson) absorbed by the quantized vector field as it becomes massive. Translations

along the noncompact rays in the supersymmetric theory also correspond to massless
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posons, but these are not absorbed by vector fields. To quantify this picture, we
will work out the zeroeth order mass spectra and symmetry breaking patterns induced
by (pseudo)scalar vacuum expectations minimizing (6.1).

Since the minima of VO(A,B) satisfy [A,B]=0, we may simultaneousl? diagonglize

the field expectation matrices by a unitary transformation. So we write

a, 6 O b, 0 O
ot a, 0 . { ot by 0 -

<A>=10 0 ag . , <B> =10 0 b3 . . (6.2)
e e . aN } { bN

The only constraints on the a, and bi are from the hermiticity and tracelessness of

A and B.
_ _ *
a; = a; s bi,— bi , ‘ (6.3a)
= =y
Lag = 0= [, . (6.3b)

There are no other constraints on the diagonalized field expectations, so we have
2(N-1) massive parameters for the SU(N) invariant theory. Now, to determine what
vector field components become massive, we consider the vector field mass matrix as

is easily read off from (3.18). The relevant term is
20my .2 u U
Tr(VuMlv ) = -e Tr([vu,<A>]{V ,<A>] + [Vu,<B>][V ,<B>1) . (6.4)

Writing the vector field matrix as

Y

Vo Va1 o
Vo= | Vg Vi - , (6.5)
L. V“NNJ

with the hermiticity and trace constraints

Vv .=V .  and ).V _ =0 : (6.6)
uij uii ipid



we obtain
Tr(v V) = 2T [(a,a)? + (b.-b ) T(Rev. . Rev’. . + Imv _ Imv' ) . (6.7)
wl 1371 ] i3 uij i3 i i3

Thus the N-1 independent diagonal field components Vuii remain massless, while the
other N(N-1) vector fields develop masses depending on the N(N-1)/2 combinations of
(pseudo)scalar field expectations (ai—aj)2+(bi—bj)2. Note that both the real and
imaginary components of Vuij acquire the same mass, so real massive vgctor fields
always occur in degénerate pairs.

The allowed symmetry breaking patterns are obvious from (6.7) and are most
simply expressed by listing the subgroups of SU(N) which retain massless gauge fields.
Apparently there is a good deal of freedom in choosing the pattern on the basis of
the degenerate minima of (6.1). 1If all (ai—aj)2+(bi—bj)2 # 0 for i # j, we complete~-
1y break down the gauge group into abelian factors:

SU(N) - U(l) x U(1) x U(1) x ... x U(D) . ' (6.8)

(N-1 factors)
On the other hand, the "least" breaking (save for ai=bi=0 for all i) occurs when

«..=a = —aN/(N—l), and similarly for bi' Then 2(N-1) of the vectors acquire

41787 N-1
(equal) masses and Nz—l—Z(N—l) = [(N-1)2—1]+l remain massless. Hence

SU(N) > Su(N-1) = U(1) . (6.9)
There are in addition many intermediate breakings such as occur when a;=...ma # 0

and all other a's and b's vanish, where m<N. Then we have

Su(N) -> SU(N-m) x U(1) x U(1) x ... x U(1) . (6.10)

(N-m factors)
More complicated breakdowns are also permitted. For example, for SU(4) the following
patterns are all possible.

SU(4) > SU(3) x UL s
SU(2) x SU(2) ,
sU(2) x UL x Uy ,
(1) x U() =z u(l) . (6.11)
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The main peint to be emphasized concerning these symmetry breaking patterns is that
the effective potential given in (6.1) does not select any one in preference to the
others., TFurthermore, the absolute sizes as well‘as most ratios for‘the>masses are
coﬁpleﬁely undetermined by VO. Even more fascinating is the fact that radiative
corrections do not seem to change these two results. Before saying more about higher
order corrections to V, let us.first see that even though the gauge symmetry may be
broken by the minima of VO, the supersymmetry remains intact.

To understand this, consider the (pseudo)scalar and fermion mass matrices.

These are given by

' 2 (A}, _ _.2 2 2 e .
Tr{ (A B)'WO'[B)] = -e“Tr([<B>,A]” + [<A>,B]" + [<A>,B][A,<B>] + [A,<B>][<A>,B]),
(6.12)
Tr[¥ My, U1 = elr (Y[<A+iy B>,0]) . (6.13)

Employing a notation analogous to (6.5) for A, B, and ¢, we can write these as

Iy 2 rA\ _ 2 ! - - '2 7
Tr{ (A B).MO.LBJ] = o Jyslagma By~ b AT (6.14)

I TRUARTIE S AR (CE N R S DET (6.15)

Note that we have hermiticity and trace conditions analogous to (6.6) for A and B,

* * -
A..=A,., , B.. =3B..,

.. - ),A,, =0 =
ij ji ij ji “i74i

Y.B.. » (6.16) .
1 11

but only the trace constraint for the Dirac spinor

Libgg = 0= Lyvyy - (6.17)

From (6.14) we deduce that the linear combination

b,. =

14 i , (6.18)

(ai—aj)Bij - ‘bi—bj>Ai
//w 2 2
(ai-aj) + (bi—bj)

with either (ai—aj) # 0 or (bi-bj) # 0, represents two real spin zeroc fields (Re¢ij
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, 2 2
and Iméij) with masses e {(ai—aj) + (bi—bj)z]. Thus the massive spin ome and spin
zero fields occur in degenerate levels of four fields (two pairs each). Similarly
the YS rotated spinors

iv.6../2 :
- 5743 ;
Wij e Vij , (6.19)
with

-1 ai-aj }

8 = cos

15 , (6.20)

{ .
2, 2
\/ (ai-—aj) + (bi_bj)

represent Dirac spinors (hence two Majorana spinors) of mass ef/(ai~aj)2+ (bi-bj)z,
i.e. the same mass as the above vector and spin zero fields. These Dirac spinors
also occur in degenerate pairs of Wij and in (hence four Majorana spinors at this
mass level). Consequently, by choosing the appropriate basis set of fields, we have

shown that

= = = 2
M Ml/2 MC ) (6.21)

for the zeroceth order masses obtained at any of the minima of (6.1).

The gist of these zeroeth order mass matrix comsiderations for the spin 0, 1/2,
and 1 fields is that the massive particle states of the theory may always be grouped
into supersymmetric multiplets, no matter which of the minima of (6.1) that we choose.
These supermultiplets may be conveniently described by giving the physical spin con-

2 2 2
tent at each mass level as follows. At mij=(ai—aj) +(bi—bj)- > 0, we have two mas—
sive irreducible supermultiplets consisting of one real vector, two Majorana spinors,

and one real spin zero field:

1 1

2 _ 2 . .2
1/2 1/2 + 1/2 1/2 at mi = (a;-a) +(by=b)" > 0 (6.22)
0 0

In addition, everything remaining msssless, excluding those Goldstone boson "angles"

absorbed by the above massive vectors, may also be decomposed into a sum of two
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massless irreducible supermultiplets of spin (1/2,1) and (0,0,1/2):

5
1 + 1/2 at m'?', =0 . A (6.23)

1/2 0 0 +J

The two massless Majorana fields may be combined into a single Dirac field for the
present model, as was done in writing (3.18). An exhaustive listing of all possible
masslesé and massive irreducible supermultiplets may be found in the literature,
along with rules for deccmposing products-of such multiplets [1,32,33]. Here we
will simply accept the fact that the above sets of fields which we have shown to be
mass degenerate in lowest order are indeed irreducible representations of the super-
symmetry algebra.

Next let us consider the effects of lowest order radiative corrections on V{(A,B).
A general expression for the explicit one-loop corrections to V in the Landau gauge
is [2]

1 28, 4., M
Vi(AB) =T h [ (=) T2 )M n Ti-e) (6.24)
M

where Mi are the eigenvalues of the zeroeth order mass matrices induced by the ex-

ol

pectation values <A> and <B>, s, are the spins of the real (or Majorana) particle
states at these mass levels (si= 0, 1/2, or 1), M is the rencrmalization mass scale,
and ¢, are constants which depend on the specific renormalization prescription [10].
In particular, we may choose all the Ci=0’ In general, to obtain (6.24) we must
renormalize the coupling constants and the fields (hence alsc the expectations of
the fields <A>, <B>) and thereby make the one-loop correcti§ns to V finite by can-

celing the O0(h) divergence

h 283 4
Vone—loop pole part  4e zi(-) (1+2s My . | (6.25)

Here £ is the change in spacetime dimension used to regulate the theory.
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These one-loop finite corrections and pole parts reveal two remarkable features
for the SU(N) supersymmetric theory. First, for (pseudo)scalar expectation values
which are minima of (6.1), the one-loop corrections vanish. This occurs because at
each degenerate nonzero mass level, Mi, the sums of spin dependent coefficients in
(6.24-25) are precisely zero. From (6.22) we have

2s 2

i _ _ - _ o 5
L) T(I#2s.) = 2[1 - 2x2 43] = 0 at mi >0 . (6.26)

So supersymmetric rays in field space which minimize the tree potential, VO’ are
free of radiative corrections at the one-loop level. It has in fact been shown by
several authors that these supersymmetry preserving minima of_VO are uncorrected to
all orders in perturbation theory [3,7,8]. Also, it has been argued formally to all
orders [7] and demonstrated explicitly to the one-loop level [5] that there are mno
supersymmetry breaking minima in V(A,B) for "massless' supersymmetric gauge theo-
~ ries. The gauge symmetry breaking ambiguities which we previously discussed to
zeroeth order therefore séem to be present in the theory even after radiative cor-
rections are considered. The only unexplored possibility for resolving these ambi-
guities dynamically, without introducing mass parameters in L by hand, is by nonper-
turbative supersymmetry breaking mechanisms, about which we know essentially nothing.

The second remarkable feature of the one-loop corrections is that the pole term
in (6.25) vanishes, even if the (pseudo)scalar expectations do not minimize VO and
are such that the supersymmetry is broken. The easiest way to see this effect is
not to directly evaluate (6.25), but instead to look at the 0(h) counterterms ob-—
tained from renormalizing the coupling constant and fields in the tree potential
(6.1). The pole part of these counterterms is easily expressed in terms of the one-
loop renormalization group parameters. It is

0(h) pole part

: : : 2
V |counterterm in| . }.(3 /e + Ty + yB)(~e2Tr[A,B]—) . (6.27)
Landau gauge e & :

where all quantities are now renormalized and where the anomalous dimensions Ya.B
B -2
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are evaluated in the Landau gauge. TFor the theory to be one-loop renormalizable,
the singular term given by (6.25) must be cancelled by the above counterterm. How-

ever, in the SU{N) model we have from (5.1) and (5.5)
B /e = —ZNezh = -(y, + v )l . ' (6.28)
e : A B’ ja=0 -
Thus (6.27) vanishes. Renormalizability permits us to conclude

= Q
vone—loop pole part 0 . (6.29)

This may also be directly verified from the definition (6.25) and the explicit ex-
pressions for the mass matrices for arbitrar - <A> znd «<B>, if one does not wish to
invoke renormalizability.

We emphasize that (6.29) is not always true for supersymmetric theories. It
fails to hold for the non-gauge model investigated in reference 10, and it fails for
the abelian gauge model of Sections 3 and 4. This is easily verified insofar as
(6.28) is not true for these other models. In this regard it is worth noting that
a completely general criterion for the absence of a pole term in the one-loop cor-
rection to the effective potential for‘a renormalizable field theory whose classical

potential has the generic form Vo=z¢1¢2¢3¢4 is that
Be = TEOp ittty Ty (6-39)

The Landau gauge is to ke used in evaluating all radiative corrections relevant to
this expression. TFor theories in which all masses are generated by one-loop radia-
tive effects, the criterion (6.30) guarantees that the vacuum self-energy is finite
to 0(h) when evaluated using dimensional regularization.

To close this section, we would like to mention a techniczl detail relevant to
the vanishing of'Vl for supersymmetry preserving (pseudo)scalar expectation values.
If this result is to cbtain when usiﬁg dimensional regularization, it appears nec-

essary to use Tr(/)=4 where | is the unit matrix of the Dirac matrices. It is
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possible to generalize this trace in defining the theory in N dimensions, but only
Tr(1)=4 seems tc permit the superlimit (3.21) to be enforced in the face of higher
order corrections [10]. We must use this value of the trace in order to write (6.24)

if we require that all the c be equal.

7. CONCLUSIONS

The overall purpose of this analysis was to generalize and extend the results
of reference 10 to include a class of theories with local gauge invariance. We
used renormalization group methods to. investigate the effects of radiative correc-
tions on the stability of the quantum ground states for several model gauge theo-
ries, focusing our attention on the coupling constant neighborhoods of the super-
symmetric limits of the models. These neighborhoods could all be partitioned into
three classes. Class . one contained theories which did not have ground states, in
perturbation theory, and were either mathematically and physically nonsensical, or
else examples of gauge theories spontaneously 'Eroken at an enormous mass scale
established by a nonperturbative mechanism. Intuitively, the first alternative
seems more likely. Class two consisted of theories with apparently stable minima
with finite, nonzero ground state expectations of the (pseudo)scalar fields and
corresponding nonzero masses for some vector fields. Finally, models represented
by class three were completely unbroken gauge theories.

The supersymmetric theories located between these three classes permitted an
arbitrary gauge symmetry breaking mass scale and allowed a variety of group theo-
retic symmetry breaking patterns. The situation is somewhat reminiscent of a sys-
tem with a critical point surrounded by regions in the thermodynamic parameters
representing different phases. The supersymmetry itself is not spontaneously broken
by first order radiative gffects.

If one were to pursue the question of radiatively induced breakdown for super-

symmetric theories, there are two obvious paths to follow. The first would involve
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nonpérturbative dynamical breaking mechanisms, a route which is not yet cleared
of conceptual obstacles. The second, more straightforward investigation would con-
sist of perturbatively analyzing extended supersymmetric models (cf.‘{ZQ}). The
presence of spin 2 fields in such theories raises very interesting questions and

possibilities. We believe both these paths deserve further exploratiom.
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Appendix A: Invariants

When we introduced a generalization of the SU(N) supersymmetric
model iﬁ Section 3, we reduced the number of possible independent coup-
ling constants by imposing a "chiral' invariance on the generalized
Lagrangian. In this appendix we will sketch the systematics for
finding all the independent invariants of this model.

The global SU(N) invariance of the model is manifest if one
writes all fields as matrices and then writes the Lagrangian as a
trace. A global SU(N) transformation is then a similarity trans-
formation on the field matrices and leaves the Lagrahgian invariant.
Local SU(N) gauge invariance is achieved by coupling to the gauge
field in the usual way, as was done in Section 3. Explicitly, we

will write the field matrices as

b = 1%, (4.1)
a.a

- .2

v, = VT (4.2)

A = A7, (A.3)

B = BZT?, (A.4)

The N2—1 Ta matrices in these expressions are a fundamental
representation of SU(N) (cf. Appendix B for our conventions
regarding Ta). For completeness, let us also record here the
local SU(N) gauge transformations of these fields.

’w<x> b (x)

A (x) w(x) efieuxx) A(x) e+ieuxx). (A.5)

B(x) | B(x)
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{ - A <
v (x) wix) e 1eu.\;;)(

p Vu(x) - % ax)eie“KX).v (A.6)

U

We define the local gauge parameter matrix w(x) = Tauﬁ(x), in
analogy with the field matrices.

We next define a global chiral transformation as the follbwing

unitary mapping y.

-1 iys'—g 1
udu = e U o, (A.7)
iy-' '-9-
Wl o =Te 02, (A.8)
uvuu'l = 4V, (A.9)
A\,~1 / cos 6 sin 8)\/A \
M(B/u ~ \-sin 8 cos 8 (B)' (4.10)

With these transformation rules, it is straightforward to list
all invariant interactions with dimensionless (in 4 spacétime dimen-
sions) coupling constants which involve spinors. These are the
usual gauge coupling as given in Section 3 and the two types of

Yukawa coupling given by

i

Tr (PLA+iy B, 0]) = i £ cEa(Ab+inBb)¢°, (A.11)

I
(ST
joR

— - b
Tr (B{A+17B, D) 7 (%41 80" (A.12)

We will refer to these as "F" and'D" couplings, respectively.
The f and d symbols are defined in (B.3) and (B.4) below. The

scalsr and pseudoscalar gauge couplings are also invariant under



the chiral transformation as one can easily verify. However, it is
slightly more difficult to obtain all the quartic invariants in-
volving A and B. To find these quartic terms, we interpret (A.10)

as an SO(2) rotation of a two component matrix field 04 where

®q A
(qoz = B . (A.13)

We then wish to write interactions involving four powers of o
which are invariant under the combined global symmetry group
S0(2) x SUN). (The S0(2) chiral rotations will not be gauged in
our model, i.e. they will not be made a local invariance by
including interactions with an axial vector field.)

The only invariants under SU(N) which involve four ©'s are

Tr(@i@jwkaé) (A.14a)

and

N
Tr(miaj) Tr(mkwéj. (A.14p)

We must contract the indices on these two tensors in such a way
as to obtain SO(2) invariants. There are only two independent
tensors we can use to perform these contractions, Gij and 513'
€ij is the totally antisymmetric symbol on two indices and 513
is the Kronecker delta. Writing all possible four index tensors

involving ¢'s and 6's and contracting with i,j,k, and ¢ in (A.14),

we find four indepeﬁdent invariants under S0(2) x SU(N). These are
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5ij§k& Tr(mi¢jok¢&) = Tr{@“+B")71 , | (A.15)
, 3 2
’ 2 _2.,.2
GijﬁkL Tr(oi¢5)Tr(@k¢&) = {Tr(A"+BT) 17, (A.17)

2Tr(A2)Tr(B2) - 2{Tr(AB)}2. (A.18)

€k Tr(@i¢ﬁ)Tr(@k¢4)

Tracing the fundamental matrices implicit in these expressions,

we can write these invariants in component form as follows.

2 .22, _ ,,a,b An,by ,CAd codyr 1 1
Tr{ (A%+B“)°} = (&%A° + B*B”) (4"A" + BB {550,p0%a* 39, apd5cqls (A-19)

\ 2, _ ,a,b.cd . 1
Tr{[A,B]°} = A“A"B"B {- % fxacfxbd3, (A.20)
‘ )
(e a%:8%)3% = %P + B%8®) (% + BB . (16,6 4 (A.21)
) o
21r (A2 1r 8%) - 2{1r (aB) 12 = (a%APBCBY) - (35, 6,4 36, .0,4)- (A.22)

From these expressions one can select any four linearly independent
combinations. We found those selected in Section 3 to be the most
convenient for the diagram rules in the model. (Cf. Appendix D)
Finally we remind the reader that one can write a generalized
Lagrangian without the D coupling of (A.12) and not have this term
arise as a consequence of radiative effects. This follows, for
example, from requiring the Lagrangian to be invariant under the

discrete symmetry transformation:

o -

-1 9
UVMU + Vﬂ . (A.24)
Ay,-1 _ _ A -
U(B)k = (B) . (A.25)
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C is the charge conjugation matrix and ¢,f8 are Dirac spinor indices.
(Our ¥ matrix conventions are those given in Bjorken and Drell £361.)

Under this transformation we have

¥Tr ("zﬁ[A + ifyBB,w])L’—l +Tr (PLA + inB,;b]), (A.26)

1

UTr (P{A +iy58,$})k_ -Tr (3{A +iy58,$}). (A.27)

A1l other interactions in the SU(N) model of Section 2 are in-
variant under Y. (Note that by changing the sign on the right-
hand side of (A.25), one could reverse the signs in (A.26-27) and

hence one could also write a consistent model without the F coupling.)

Note: p.187 omitted due to typing error.
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Appendix B: F and D Relations

For the nonabelian SU(N) gauge model discussed in the text,
all fields belong to the adjoint representation of the group and
consequently most closéd—loOp Feynman diagrams involve traces of
so-called F and D matrices (defined below in (B.6-7)). In this
appendix we will give several F and D trace relations which are
necessary to determine the group tensor structure and weight factors
for the one~loop diagrams encountered in our discussion of the SU(N)
model. 1In évaluating these traces, we employed the diagrammatic
methods of P, Cvitanovié [37].

Let {T?: a = 1,...,N2—1} be a set of traceless hermitian N x N
matrices representing the algebra of SU(N). Our conventions are

such that these fundamental matrices satisfy

Tr(T®) =0 , (B.1)
a_b 1
Tr (T T )= 35 6ab s (B.2)
[T, 707 = 1 fabCTc , (B.3)
a by _ 1 c
(17,7} =5 8,1+ d,, T - (B.4)

The £/d symbols are real and totally antiéymmetric/symmetric in

their indices. Using (B.3-4) we can write

TP = 2= 6 1+ %(d, +1 £, )T°.

1
2N "ab abce abc (B.5)

We can also use (B.1-4) to express f and d in terms of traces.



189

b . : _ a_ b c c,..b.a
(r )ac i fabc 2T (T°T T - T T°7T). _ (B.6)

i
|

b a_b_c c.b_a
(D )ac dabc 2Tr (T°T° T + T T T). (B.7)

These expressions define the F and D matrices as indicated. In
addition to (B.6~7) we require the completeness relation for

the T matrices.

a - 1 -1 5.
(T 3Ty = 208,84 = § 0350k, (B.8)

This expression may be used to project an arbitrary NxN matrix
onto the subspace of traceless matrices. Using (B.1-8) one can
systematically derive all the relations which follow.

Before listing the trace relations we observe that F and D
transform as the adjoint representation of the algebra, so we have

. C
i fabC(F )ij , (B.9)

]

‘a _b
[F*,F0 5

. c N
i fabc(D )ij . (B.10)

]

‘a _Db
[F%,0°];

The commutator of two D's is also a useful quantity. It is

2

3 P - c _ 2 _
[p%,D ]ij =i fabc(F )ij N(éiaéjb aibéja). (B.11)

Considering the form of the interactions in our SU(N) model, it is

convenient toc obtain from this last relation the result

dxacdxbd + dxaddxbc = deabdxcd - (fxacfxbd'+ fxadfxbc)
+ 2266 -8 5 -8 8 (B.12)
N*""ab cd ac bd ad bc’’ :

When the left-hand side of this expression occurred in the traces
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below (Appendix D included) it was eliminated in favor of the

terms on the right-hand side since those terms are the tensors

which appear in the unrenormalized scalar-scalar-pseudoscalar-

pseudoscalar vertex

We now list the

Tr (F2F°)
Tr (F2DP)
Tr(Dan)

Tr (FFPFS)

Tr (D*FPF%)

Tr (02 D°F°%)

Tr (02 DPDC%)

Tr ([F®,F° JFCF
Tr({Fa,Eb}FCFd)

e (DPFPFCFY)

a.,.b.c.d

Te (DD F'F ) = 3

a. b

rr (F2DPFC Y

F'D)

T (D2DPDF YD) =

d) _

of the SU(N) gauge model.

trace relations used in the one-loop analysis.

= N 6ab ’

= O 3

ol ol

2N

= (==

2
2N

)i fabc ?

dabc ’

xabfxcd

25_.6 5

b &5 .0

acOpa* %2a%c

)

xabdxcd+ cd+

(d + f

xabfxcd xabdxcd

-5 6
ac

5 6. )+X

ad bc’ 4 d

pOcd bd ~ xab%xcd

2
N“-4
) = ¢ )
4y,

xadfxbc xab xcd ’

_ 1 - A
(dxabdxcd fxabfxcd)+ 2macébd Oadébc)’

2.
N“-12y4 ¢

7t 4N xab xcd

[ws

N .
4 xabdxcd‘+l(

la . £ o -d_ £

+ .
N' " xbc xad xac xbd’’

(B.13)
(B.14)
(B. 15)
(B.186)
(B.17)
(B.18)
(B.19)
(B.20)
(B.21)

(B.22)

(B.23)

(B.25)
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.2 2
a . b,yc.dy _ (N'-32 N ~-12 L
Tr({D ,D7}DDT) = \ 2N )dxabdxcd + 2( NZ >5ab50d
+ ﬁﬁfiﬁ>(5 5, 4+ 8. B ) +E(s._ £+ f._ £ )
\ ND ac bd ad bc N "xac xbd xad xbe’’
(B.26)
: 2
a bqcd, _ (N -8 _ 4 _ -
Tr ([D",D"ID"D7) = C_ﬁﬁ->fxabfxcd .Nz(aacﬁbd 6ad6bc)‘ (B.27)

Two other useful combinations of traces are

a_b_c.d bra,c dy _ N
Te(D"FF'D + DFF'D) = 5 dxabdxcd’ (B.28)

1 (0*FFPDY + DPrCF®p? + F20p°pPrY 4+ FPpCp2rd)

2
= Nd_.d__ . - (X=%\e

““xab xed Cw ) Pxactxoa T feaafxne’ (B.29)

We will use the above traces to obtain the tensor structures and
weight factors for several specific diagram topologies in

Appendix D.
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Appendix C: Noncovariant Gauges

The purpose of this appendix is to present some techniéal
details for gauge theories quantized in a class of noncovariant
gauges. In particular, we will discuss the one-loop Yang-Mills
vector self-energy in gauges characferized by the constraint
n-Va = 0, with n# a fixed Lorentz vector. We will show that as
far as this self-energy is concerned the light-like or null-plane
gauges corresponding to n2 = 0 do not exist as finite limits of
n2 < 0 gauges. At various points we also make comparisons with the
corresponding quantities obtained in a class of covariant gauges.

The constraint n-Va = 0 will be imposed by first adding to the
usual Yang-Mills Lagrangian the gauge fixing term £fix==-§% n-vn.v>,
To obtain n.-V® = 0 we must also let o - 0. (Cf. (C.11) and the
following discussion.) Writing only the pure Yang~Mills contribu-

tion, the quantum dynamics for the system are then given by

(N ~ concovariant gauges)

~_dlpa uv 1 . e}
SN 4Fqua 55 D vV a-v R . (C.1)

where sz is the gauge covariant field strength

_ a abc b..c
Fuv = ayvv - auvu - ef Vuvv . (c.2)

The particular gauge fixing term above does not require the
introduction of a ghost field, essentially because Sfix does not
involve derivatives of'VZ. For comparison purposes we note that

a class of covariant gauges is obtained by adding



193

]

£

ix ‘53 (3-v*) (3-v®), in which case the quantized Yang-Mills

theory is described by (C ~ covariant gauges)

- 33 <a-v?)(a.va)

(C.3)

-,n
+ a“na @7 - efabcvun ).

In this expression na is the Faddeev- Popov ghost [38], discovered
by Feynman [39], which propagates like a scalar but satisfies Fermi
statistics. A very clear exposition discussing the motivation for
and particular forms of (C.1-3) can be found in reference 40.

From £ one easily obtains the Feynman rules for the theory.

N
In particular the free propagator for the vector is

. .N,ab _ . AN
1Auv (q) = aab lApv(Q)

q = e (n.q)% FV
and its inverse is
2
Y@ = @a,-a%g,) - 3 nm, - (c.5)

Similarly the free propagator obtained frem £ is

C ab

-i6 q.q .
_ . AC _ "ap v
(@ = 8, 14) (@) = 2 [gyv g £ - a)} (C.6)

with the inverse

c,-1 N 2 , _ 1 _
Apv (@) = (quqy q guv) 5 quqv . (C.7)
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It will also be useful for us to know the Ward identities for
these gauges, or at least the simplest of these relations among
the Green's functions [41,42,43]. For the noncovariant gauges
these identities follow immediately upon making a variable change
in the form of a linear gauge transformation on the functional
integration variable of the following representation of the gen-

erating functional.

ZEJ] = ZO-J sz exp[ijd4z(£Nﬁ-szg>]. (C.8)

Z0 is a normalization constant. The measure SVZ is invariant
under the infinitesimal gauge transformation defined by
vE - v® 4 (D W = v + 3 o - er?PYPE, (C.9)
K M K H H H
and Z[J] is unaffected by any such redefinition of the internal
integration variable. Furthermore, since F oY s gauge invariant

ur-a
and u?(z) is an arbitrary function, we obtain the functional

equation
. hY)
1nvax ¥} 1 .a abc b
n + 3H52 (x) b 0—— }z[JJ . (C.10)
{ o H 5JZ(X) x4 5J (x)

The relations among the Green's functions implied by this equation
are obtained by taking functional derivatives with respect to J
and evaluating at J = O,

Taking one functional derivative of (C.10), setting J = O,

and transforming the Green's functions into momentum space gives
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14

M@ - - Ho | (c.11)

A in this equation is the completely radiatively corrected non-
covariant propagator for the unrenormalized vector field (with
the Kronecker delta for the internal symmetry indices omitted).
Regularizing and.renormalizing the theory in a gauge invariant
way such that (C.1l1) also holds for renormalized quantities gives

us the relation

ZV = Za, (C.12)
where
1
VZ(unrenormalized) = Z% . Vi(renormalized), (C.13)
o (unrenormalized) = Za « o (renormalized). (C.14)

When o - 0, the gauge fixing term in (C.1l) eliminates all
contributions to the functional integral in (C.8) except those
field configurations for which n-Va = 0. This effect is more pre-
cisely revealed in (C.11), where the right-~hand side vanishes
when o = 0.

We may rewrite (C.11) as

N = - 24
a Apu(Q) a0, (C.15)
. s s . -1
Denoting all the radiative corrections to A y as Hﬁv,
-1 ~ o nunv
Apy(Q) = (quqv a’g, ) + 1, (C.18)

wy o Hy

the simple Ward identity (C.15) reduces to

q”nﬁv - 0. (C.17)
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Thus we can explicitly write out the Lorentz tensor structure of ﬂﬁ

2
- -q? tlqg -n 2Nq -n. L)
M, = (q,9,- 978, )0 (a,- 0, LY (a, - n, q> (C.18)

We may also reconstruct AUV in terms of the Lorentz scalars
Hl and ﬂz.
2
-1 { Eq a,n —(n q,+q,n )n: qu1+ +1, ]+ n,n, 4 T,
uv

= e T Ly
q”[1+1, [ (n- q) (1+11;+11)) - n %q IIZI ’

ad,
- (C.19)
(n-q)

Note that ny{'--}uv = 0 in this expression.

Higher functional derivatives of (C.10) yield all the other
Ward identities. Rather than writing out the most general such
identity we will be content to give the result of taking two func-

tional derivatives, which in coordinate space is

in-3, v
Zn (VPO V@) = et ey (v 5V, @)

£2°95% (x-2) (VE (1) V) (2)) . (C.20)

The brackets denote a functional average weighted with

.p L4 Lo . . .
exp(i| d Z£N), i.e. a ''covariant time-ordered vacuum-expectation-
value." A gauge invariant regularization and renormalization scheme

preserving this relation among the renormalized quantities implies

7 =-Z:-L—- . (C.21)

< roj
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where we have used (C.12) and defined
e (unrenormalized) = Ze-e (renormalized). (C.22)

From (C.12) and (C.21) we conclude that there is only one inde-
pendent renormalization which need be made in these noncovariant
gauges (for the pure gauge theory). A very important practical
result of this observation is that the various renormalization
group parameters of the theory are related in these gauges. In
particular from (C.21) we conclude

.Be = _e‘yv} (0.23)

where vy is the anomalous dimension of the vector field. Hence
in principle one can determine the sliding scale coupling constant
trajectory (i.e. solve'%% = Be) after having computed only the

vector self-energy (from which v__ is obtainable) and avoid directly

\%
calculating the vector-vector~vector vertex corrections. Note
that in these noncovariant gauges both Be and yV are gauge in-
variant quantities.

As a final remark about the functional equation (C.10), we note
that one can find a solution for Z[J] in the special case where

Jg(x) = p“Ja(x) with pﬂ a fixed, position independent vector.

Suppressing spacetime indices and integrations, this solution is

2
= * i—a_ —-E— ——!‘——— L] b b w
2lp, 3,1 = % exp{X TR I ICAE ), (C.24)
Of course, one must be careful in defining (n-b)-l. It should

satisfy’(n'b)-l(p‘b)-= 0 if n‘p = 0. Note further that p“ = n“
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produces the result

ZCnuJa] = Zo'expi——— Jd Z n J (z) n, b(z)}. (C.25)

Unfortuhately, such solutions involving vector sources JZ with
position independent orientation are not very useful. (C.25)
does serve one purpose: it reveals precisely how trivial are the
Green's functions involving only expectations of n.v® (in particular,
they all vanish when o = 0).

Ward identities for tﬁe covariant gauges defined by (C.3) are
more involved due to the presence of the ghost field and we refer
the reader to the recent literature for their derivation [41,42,43].
The essential technical point involved in these "haunted' gauges
is the use of nonlinear (w= a{v], a functioqal of VZ) gauge trans-
formations as variable changes in the functional integral repre-
senting Z[J] with the result that the product of SVZ and
f&nﬁnf

n+-d in (C.10) is replaced by 1 and C 6] is sandwiched between
6J

expEifd4z b“naT(Dun)a] is unchanged. The net effect is that

7Z[LJ] and the last two terms in that equation. AG[ ]Z[J] evaluated
at J = 0 is the ghost field propagator. Also note that (C.23) is
definitely not true in the covariant gauges. yv is an explicit ¢
(and hence gauge) dependent quantity in the theory as defined by
(C.3), whereas Be is gauge invariant.

Now let us consider in the noncovariant gauges the one-loop

contribution to nhv resulting from the self-coupling of the vector.

m,, (1 loop) = S o o (C.26)
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The first of these diagrams gives zero contribution when

dimensionally regularized, so to &(#) we have

My, = se2c, [Dk[g® (k) - g (kr2a) %+ gH%(a-1) P14 (10 -

. ng5(2k+q)”- gav(k+2q)y+-gvv(q-k)éjagé(k+q),

(c.27)
CV is a group invariant given by
Cvaab = facdfbcd' (C.28a)
CV[SU(N)] = N. (C.28b)
The evaluation of (C.27) requires us to perform four distinct
integrations which we may write as
. 2 1 2 2 3 4
= - 3 Q
iy, 3e CV[IMV LI LS SR Iuvj, (C.29)
and where we have defined the I;v integrals as follows:
1t = [Dk(2k+q), (2k+a) AN () A0 (kba) (C.30)
(1Y 7 vaG ]
2 _ _ N Gp _
I, = [Dk 2(2k+q) &), (AL (k+a) (4-K) . (€.31)
= Jok 240 (0 (a-k) A0 (k) (a-K) . (C.32)
1 uy o~ N 0 ' '
4 _ N _1.3 O AN o)
L ok -2)8)  (k+a) (a-K)7 4, () (k+20) 7. (C.33)

To completely define the integrals we must specify how to handle
the singularities in the integrand at k2 = 0 and n-k = 0 (and of
course (k+q)2 = 0 and n-(k+q) = 0). For the first of these we take

the usual Feynman prescription, J§ - 01
k k“+10

, but for the second we
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take a principal value E44] E%E — PCE%E . The latter prescription
enables us to maintain unitarity in these gauges [45]. |
We will evaluate the integrals Iiv only for the case ¢ = 0

in order to have some algebraic relief. In the general case (« # 0)
a gauge invariant quantity should be independent of both « and nu,
but for our specific case (o = 0) gauge invariant means independent
of nu. We should also stress in advance of the computation that it
is not a priori permissible to set n2 = 0 in the propagator (C.4)

and expect consistent results as the outcome of radiative corrections

1 5 can give 4% and hence cancel
(n-k) n

explicit factors of n2 appearing in a numerator.

because a lcop integral involving

The Ward identity (C.17) should hold order by Qrder in the loop
expansion and indeed we have explicitly verified that the sum of
integréls in (C.29), when evaluated using dimensional regularization,
does satisfy this identity. To simplify the present discussion we
will accept this identity as true and restrict the evaluation of the

I integrals to a determination of 11“ and n#1t nY. This is sufficient

524 H HY

information to obtain H1 and H2 in (C.18) to the one-~loop level.
First we will evaluate the divergence or pole part of the self-

energy. Table C-1, and its supplement, contains an overly complete

set of momentum integrals' pole terms needed to evaluate the ultra-

violet divergence in Hﬁv(l loop). The results for the individual

v

functions I;u‘and nuIlun are given in Table C-2, along with the

total contribution to Hu# and'n“ﬂpvnv. These two Lorentz invariants
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may be used to reconstruct the ni and Hé functions defined in

(C.18) as follows.

) n‘uHuvnu H‘f
Hl(l loop) = 3 5o ]
I (n-q) q
(C.34)
_h 2
=< €Cy - (- ) + 6(e)
H v M
_ 3(n-q)> n,,n 0,
My (1 loop) = —= Pl 3~ T3
2[(n°q" - (n-a)”] | n%q" - (n-q) 3q
(C.35)
_ h 2 , 0
=<-e CV (0) + 6(e ).
In these results and in the Tables, we have defined h = hz and
16m
€ = é%E (the deviation from 4 dimensional spacetime). We have also
used the measure Dk = —ﬁ%%—g———— in the Tables.
T'(1+¢)

Several comments are now in order. First, in (C.34) and (C.35)
"G(eO)" represents terms which are finite as ¢ =» 0. Thus we see
that Hz(l loop) is finite in four dimensional spacetime. Were this
not true, the theory would not be (one-loop) renormalizable. The

% pole term in Hl can be cancelled by the wave function renormal-

ization, since such a renormalization produces a counterterm

- 2
(ZV-l) (quq - q a, ) Vl+C9(h )—l(q a,-d 4y ). (C.36)

A pole in Hé, on the other hand, cannot be remcved by a renormal-

ization of the quantities appearing in the Lagrangian £N because
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the Lorentz tensor structure prefixing H2 in (C.18) does not appear
in £N. Iwae had beenkprepared to accept without argument the
(one~1loop) renormalizability of the theory in these gauges, we
would have been able to compute all divefgences in the (one-1loop)
self-energy just by calculating nulzvnv in Table C-2.

This brings us to our second remark. If we were to consider the
self-energy divergence in the light-like gauges, we might naively
try setting n2 = 0 in the propagator (C.4) before performing any
loop integrations. For the ultraviolet divergences this would give

2
= _l’_l.. eZC n_(B._gl—

us n“H vnv(naive n2=0) 5 , instead of

1 € '

7 v, 2 _h 2 =11 2 . et e , .
n Hﬁvn (n” - 0) = < e CV E'ﬁ‘(n g)“] which we get just by taking the
limit of the result in Table C-2. Now what happens to H“ if we

naively evaluate integrals after setting n2 = 0? Referring to

(C.34-35) we see that no matter how DJ‘ changes, given the above
naive value of n“npvnv, we lose on one or both of the following.
Either Hé develops a pole in ¢, and renormalizability is lost, or the

2 h 2

pole term in Hl is altered (to 3¢ © Cv), and z and Be change

vi Yy
value. Inasmuch as Be should be an intrinsic, gauge independent
quantity characterizing the theory, the second alternative is as
unacceptable as the first is undesirable. We conclude that setting
n2 = 0 before performing loop integrations is not permissible in the
theory as written. Below we will argue further against the use of
light-like gauges by considering them as limits of n2 # 0 gauges and

looking at the behavior of the ultraviolet finite contributions to

2
II as n - 0.
[y
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‘Returning to (C.34), we can now read off what the one-loop

wave function renormalization in (C.36) should be in order to make

L _11 2 .
Hl finite as ¢ » 0. We get Zy1 = 3 e Cv. Now using the well-
known fact that yv(l loop) = hzv1 we can determine Be to one loop
using (C.23).
g, = - 2 ey n + em®), (€.37)

e
the Gross-Wilczek-Politzer result [28,29].

It is instructive to comparé the computation of the self-
energy in the noncovariant gauges above with the computation in the
covariant gauges defined by £C. To compute Hﬁv in these covariant
gauges one must make two changes in the above. First, replace AF
in (C.27) with ﬁp given by (C.6). This leads us to evaluate four
basic integrals exactly like those in (C.30-33), only with AF re-
placed by AF. We have tabulated the relevant pole parts of these
integrals in Table C-3. Second, one must add to the one-loop diagrams

in (C.26) the ghost contribution given by

27T _ 1 o2c_ . pGhost
[ ¢ 2 vV uv
-
5 (a+k) k)
1
= % e“Cy, <-2[Dk —— (C.38)
v { k“ (q+k)

The pole part of this diagram is also given in Table C-3, along with
the total sum of the one-loop contributions to ”ﬁv in these gauges.
The analogue in these covariant gauges of the non-covariant

Ward identity (C.15) is that q“Ar;U(Q) = -C%)qzqv. This implies



that (C.12) and (C.17) are also valid relations in these gauges

. . . 2
- ((C.21) is not wvalid here). Thus we can write nﬁv = (quqv—q guv)n‘
Referring to Table C-3, it is clear that the ghost contribution is

crucially needed to maintain (C.17) since qngSOSt qv # 0,

As the final subject of discussion in this appendix, let us
consider the finite part of nﬁv in the noncovariant gauges. By
"finite part"” we mean the limit of Hyv(l loop) as ¢ = 0 after the
wave function renormalization has been made and the % ternm cancelled.
Suppose we now try defining the light-like gauges n2 = 0 as limits
of tﬁe n2 # 0 gauges. This would give a consistent (renormalizable;
correct Re) set of rencrmalizations to Hﬁv since the % terms in
Table C-2 are well~behaved with acceptable limits as n2 - 0. However,
what happens to the finite part of I&v as n2 vanishes? If the finite
part has a limit and does not diverge then we would conclude that
the light-~1like gauges have a well-defined meaning. This is not the
case. The finite part of Hﬁv diverges like an(nz) as n2 - 0. There
are also én(nz) divergences, but here we will look only at the most
singular behavior,

Since the % pole has heen subtracted, we can go directly tc four
spacetime dimensions to evaluate the finite part. Once this is done,

we find that the most singular contribution to II as n2 vanishes,

p’
is due to the integral

1
kz(k+q)z n-k

1= [ a*
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‘ 2
We will evaluate this integral for n2 <0, 9° <0 and n-q # 0.

We have not fully investigated the structure of the self-energy

2
for positive n” and q2, let alone as a function of complex n2, q2
and n-q.
Either by using Feynman parameters or by using a Fourier
representation for P(E%E), the abcve integral can be reduced to
sinh_l( xn-d )
2 2
i’ﬁ J&(l—x)n q
I= -2iw“J dx 7C.40)
2
0 J iz(n-q)z + x(1-x)n q2
Making the variable change 0 = sinh * ( x n-d ) ,
Jx(1~x)n2q2
we obtain
2 .°® 9
e 6 d ,
I nea J . {C.41)

o (1 + hsinhze)

with h = nzqz/(n-q)z. A simple geometrical construction immediately
shows that I diverges like &nz(h) as N goes to zero,. For com-
pleteness, however, we give the following steps leading to a simple
series representation for I.

2 x

; - - 8ir” f GRL
n.q d 2 - I + N cosh 289
air® 1 L
in nez
TS e ev—— ?
n-qg n 0 (z+a) (z+b) (C.42)
4in2 1

= n-q n(b__a) EF(a) - F(b)]
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We have let z = e_ze‘and defined
1
2
F(t) =f dz 222, (C.43)
0
(2) - - % (n-2%2 /T-R] . (c.44)
Note that
n 2
I 6(h™)
fa\ —a
\b) n-0 | , 5 (C.45)
; ;ﬁ + &6(h™)
Now we have
1+t
r -
F(t) = | dz *’n(z t)
“t
x
2 2 k7
- 3l (1+e) - 0T (D] ¢ T —1;-% [1- g |1 (€48
k=

which nicely displays the singularity at t = 0 in the second term.

Also note that 1im F(t) = 0. Thus we finally have
t >

2 2 2

1 - 2 102 [-ﬂ—-z-] + 6(nd), (C.47)
4(n-q)

when n2 - 0 with qz < 0 and n-q # 0 fixed.

We now return to the expression (C.29) for Bﬁv and sort out the
coefficient of I in Hﬁé and n-MT'n. We find that the coefficient of I
in n-[I-n is proportional to n as nz'—é 0, so this invariant does not

have a &nz(nz) singularity. For Hﬁt, however, the coefficient of I
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. . 2
is -8ie thq2n~q/w2 and we have ,

T 2 2
g;‘(l loop, renormalized) ‘5”* —4e2Cth2&n2[;E-g-§ + &(4n n2).
n“-0 Lé(n.q)

(C.48)
Referring to (C.34-35), this implies that

Hl (1 loop, renormalized) — —H2 (1 loop, renormalized)

9 w nzqz
- 2e Cyh tn” | —=— 1 . (C.49)
4(n-q)

The renormalized self-energy does not have a finite limit as n2 - 0.

In our view the above éhértcomings of the light-like gauges
are serious enough to make this class of noncovariant gauges un-
acceptable for calculations. It may be possible to remedy the
situation by a minor change in AF for these gauges, e.g. by replacing
n2

(n-k)
the necessary correction. Also, since physical quantities are gauge

as n2 -» 0 by a suitable distribution, but we have not found

invariant and cannot depend on nu, they should have no diseases as
n2 vanishes. Unfortunately we know of no analytic method of effic-~
iently calculating gauge invariant quantities without using gauge

dependent propagators at intermediate steps in the computation.
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Table C-1
Pole Parts
h o= 12 , € = - N , Dk = h k.
2 2 N/2
167 ™ T(1+¢)
Integral Ultraviolet Pole Part

1 . h

[Pk ————y i= -1

k (k+q) €
Dk _Z-EE—-— i3 (-%aq)

) - -9
kK™ (k+q)”~ € M
kgku h /1 : 1 2

Jox kz(k+q)2 i 349 " 134 quv)
ka 1, i L (—2 —;%\

(k+q) "n-k € n

1 . h / 1

ka 5 5 i P . K-Z —§>

(k+q) " (n-k) n

K h /o n- (n-q)>

[k _k i= - (Zq —5 - 2n I }

(qugn-k € n K n /

k

A h 1 n-q
Dk 9 i = . (2q - - 4n —=
- ‘(k+q)2(n'k)2 € H o p= H n4>
Dk ufy h | [2 _ RPN (@)’
J 2 e B\Bw 2 4

(k+q) " (n-k) n n

- -n B-aY/ _Il_fl)n-m
z(qu b n2>\qv % 02 n2f

(k+a)? n-k

|
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k k 2 2 q,qd
fok- Ly i f2g, P gnpn (2D - o BV
(k+q) " (n-k) - H n n . n
q\
+4(na, +qpn) -—-—4}
2 _ L \2 2
ok ——F——p g (32 )
(k+q)~ (n*k) n n
k 2n
ke ———y I P YO ™y
' (k+Q)“n-k(n- (k+a))~ n
j'Dk kukv i—ll . {’_2_(‘:r _ n,unv\n'q + zquqv
= \ 2 2 e 3\Puv 2, 4 2
(k+q) " n-k(n- (k+q)) n n nn-q
- on ReaN/, -, e\ 1
2<q“ o, n2)\qv n, n2/n2n q’
k2 h n-q\
JDk 3 5 i (4 ey,
(k+9)“n-k(n: (&+q)) n
k s
ok ' i {(s,, - gy 23 - Zuty)
J 2 . ) )
(k+a) 2 (n-%) 2 (n+ (k+q)) € W n 6
2
[ g 2 | 1% ©
k+) " (n-k) " (n- (k+q))
4 2
k ho, 2 _ 4(-q)
[k 5 P 3 | Y% (q 2 ) !
(k+q) " (n+k)" (n- (k+q)) n 3n
k n
. .h
[ok ——E— | i£ - (5)
kK (k+q)” n-k , n
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: k k nn
k™ (k+q) ™ (n-k) n K n
k k . n
Py - 1
[Dk — uv | B (2 ey 1
k“<k+q)2n-kn.(k+q) € < 02 uv) 2

m
It is helpful to note that products of the.form (n%k> (n,(§+q))

can always be expressed as a series of factors (_%_>E+m—r<_l_\

and

4--m=-s S
(L) ( 1 ) . This fact allows us to deduce the

\n-q/ n- (k+q)
following supplement to Table C-1, wherein we have discarded some

integrals which regulate to zero.

Table C~1 supplement

o - kg I L, —
(k+a) " n*k n- (kx+q) q (k+a)” n-k
k 1 k
Joe . = aag fox —5—
(k+q) " n "k n- (k+q) a k+q) ' n-k
k k&, 1 . k k
Jox 5 = gq JDE —H—
(x+q)“n-k n- (k+q) 4 (k+q)“n -k
kukv kukv
Dis 2 2 = ok 7 2
(k+q) " (n+-k) " n- (k+q) (k+q) "n-k(n- (k+q))
kukv
+neq [Dk 2 2 2
&+ " (n-kK)"(n- (k+q))




Table C-2

Noncovariant Self-energy Pole Parts

Function Ultraviolet Pole Part
Au d (-2, 160 )%
L € 3 3~ 2 )
[ R h22 (2.2 2
n I“Vn iz 3 Kn q (n-q) >
2 h 2 (n- )2
o 38 (—16q' 16429 )
u 2
n
n‘u'I2 v 0
uy
3 2 (40 g2, 32 (m-9)%)
7 € \3 3 n2 y
g3 v
n qu 0
4y 2 (n-q) 2>
I 1B (48«:1 16 <23
H n
w4 v
n I#vn 0
K b, 20 . 1142
Hu (1 loop) z e Cy 11q
7 v h 2. 117 2 2 _ 2
n n“v(l loop)n R R (n-q) )




Table C-3

Covariant Self-energy Pole Parts

Function Ultraviolet Pole Part
Ilu i;—1 qz(-e + 6o - 4&2)
I3 €
4 2
quliqu i= @ (-3 + a - 3a)
2u B g2 - 15, 11 2
u 2 vV _f_}. 4 _1 1 2
unvq 1€Q(2a+2a)
ok i g2 (18 - 207
U €
3 VU .h 4 _ L A2
q Iuvq 1€ q (5 200 + o)
T : B qz(—a + 6o - 5&2)
U €
po4 v h 4. s . o, _3 2
q Iuvq iz a (-5 + 2«¢ 5 O )
Ghost H .h 2
1 u iz q (1
H.Ghost v .h 41
q qu q iz a ()
I h 2 /13 _ 3 2
H,U. (1 loop) < e CV ( 5 2&) q
K v E e C._. 4
a nw(l loop)a c v (0) a
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Appendix D: One-Loop Diagrams in the SU(N) Model

In this appendix we tabulate the ultraviolet pole pafts of
various one-loop self-energy and vertex correction diagrams for
the nonabelian gauge theory with SU(N) symmetry described in
Section 5 of the main text. We begin by listing the Feynman rules
for the model in Table D-1. The rules are given for two classes
of gauges: covariant and noncovariant, both of which we discussed
in an introductory way in Appendix C. 1In the subsequent tables,
we separate the total contribution of each diagram into two pieces:
the internal symmetry factors and the momentum integral ultraviolet
pole parts. The latter of these in general depend on the gauge if
vector propagators appear in the loop integrations, so we have
listed two values (covariant and noncovariant) in those cases where
it is appropriate. Also, we have lumped coupling constants together
with the internal symmetry factors and combinatoric weights with the
pole parts. (The first of these two choices introduces a few
awkward minus signs in the tables.) The reader should note the
amusing agreement between many noncovariant and covariant pole parts
when o = -3.

The notation and conventions used in the tables are as follows.
Cur metric is (+-~-), the Dirac matrices are thé same as Bjorken
and Dre211 [36], and the fijk and dijk symbols have the standard

definitions (cf. Appendix B). We define h = h 5 and let € = 4-N

16w 2
where N here is the dimension of spacetime used in the dimensional

regularization procedure [46].
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In préparing Tables D-2 and D-3, we have omitted a few diagrams
whicé\identically vanish when dimensionally regularized; For example
_"_QAZi__= 0= gz_ . Also, we did not tabulate the pole parts of
the vectér—vector—vector or scalar-scalar-vector vertices in Table
D-3 since they provide no additional information as far as the re-
normalization group parameters (B's and y's) are concerned.

In the following table we will consider only one of several
possible four-point vertices, namely the scalar-scalar-pseudoscalar-
pseudoscalar vertex., When decomposed into independent group tensors
this four-point fungtion gives enough data to compute ﬁf, Bfl, sz,
and st’ given the self-energies in Table D-2. In Table D~4 we have
drawn only one diagram of a given topology and indicated the rele-
vant permutations, along with their relative signs, in a separate

column.
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Table 1

THE GROUF IS SUC 3 )

THE STABILITY MATRIX FOR THIS GROUF I8...

4 6,000000 0.G00000 0.000000 0.000000 0,000000
{ 0.,000000 64000000 1.,000000 T5.000000 1.000000
{ -48.,000000 12.000000 3.000000 18.,000000 0.,000000
{ 4.000000 =1.,0000C0 0.060000 -3.,000000 1.006000
{ ~6.000000 1.500000 0.,000000 0.000000 1,500000

THE REAL FARTS OF THE EIGENVALUES ARE...

8.,020448 -2.,5995%91 6.,000000 0:.999999 1.079144
THE IMAGINARY FARTS OF THE EIGENVALUES ARE...

0.,000000 0.000000 0.000000 0.000000 0.000000

THE REAL FARTS OF THE EIGENVECTORS ARE...

¢ 0.000000 > 0.000000 ) « 0.242536 ) | 0,000000 ) . ( 0.000000
¢ -0,421216 ¥ ( 0.105056 ) ( 0.970142 ) «( 0.,223407 3y ( -0.174304
( ~0,%90128% » <« 0.926853 ) « -0.000000 3 ( 0.670819 » =0.738649
¢ 0.029429 ) ( -0.358370 ) ( 0.000000 ) ¢« -0.,223407 )} <« 0.195029
¢ =0.0946899 ) ( -0.038439 ) ( =0.000000 » ( -0.,470821 ) « 0.4621248
THE IMAGINARY PARTS OF THE EIGENVECTORS ARE..s
( 0.,000000 3 ( 0.000000 ) ( 0.000000 ) «( 0.0000060 ) 0.000000
< 0.000000 » ( 0.000000 > «( 0.000000 » ( 0.000000 > ( ¢.000000
¢ 0.000000 > ( 0.000000 ) ¢ 0.000000 ) ( 0.000000 » ( 0000060
< 0,000000 3 ( 0.000000 ) <« 0,000000 )y « 0.000000 ) 0.000000
¢ 0.000000 > « 0.000000 ) ( 0.000000 > ( 0.000000 ) ( 0.000000
THE INNER FRODUCT (U{I).V(J)) MATRIX ISe.s
( 1.000000 - =0.886435 - ~0.408639 =0.4640348 0.6847135
< ~0,886435 1,000000 0,101219 0.7T1162 -0.796722
( -0.,4084639 0.1019192 1,0000060 0.216931 ~0.,16%9100
{ ~0.640348 0.751162 0.216931 1.000000 -0.994844
{ 0,684715 -0.796722 ~0.169100 ~0.994846 1.000000
DETERMINANT = ~135.00
TRACE = 13.50

W vl

D v R N

D R 4
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Table 2

THE GROUP IS SU( 4 )
THE STARILITY MATRIX FOR THIS GROUP IS...
¢ 8,000000 0,000000 0.000000 0,000000
¢ 0.000000 8.000000 1.000000 5.000000
¢ ~48,000000 12.000000 4.000000 24,000000
¢ 4.000000 -1.,000000 0.000000 ~4.000000
¢ -8,000000 2,000000 0.000000 0.000000
THE REAL PARTS OF THE EIGENVALUES ARE...
10,105414 ~2,725260 8.000000 0.958042
THE IMAGINARY PARTS OF THE EIGENVALUES ARE...
0.000000 0.000000 0.000000 0.000000
THE REAL FARTS OF THE EIGENVECTORS ARE. ..
¢ 0.000000 ) ¢ 0.000000 ) ( 0.242536 ) ( 0.000600
( -0.491136 ) ¢  0.068510 ) (  0.970142 ) (  0.425540
(  -0.842213 ) (  0.938893 ) (  0.000000 ) (  0.,298248
¢ 0.026227 ) (  =0.336471 5 (  0.000000 ) ( =0.250573
( =0,121187 ) ( =0,023932 ) (  =0.000000 ) ( =0,816809
THE IMAGINARY PARTS OF THE EIGENVECTORS ARE...
€ 0.000000 ) € 0.000000 ) ¢  0.000000 ) (  0.000000
¢ 0.000000 3 (  0.000000 ) (  0.,000000 > (  0,000000
( 0.000000 ) <  0.000000 ) (  0,000000 3 ¢  0.000000
¢ 0.000000 ) {  0.000000 % (  0.000000 ) (  0.000000
¢ 0.000000 ) ¢ 0.000000 ) (  0.000000 ) (  0.,000000
THE INNER FRODUCT (V(I).VU(J)) MATRIX IS...
¢ 1.000000 -0.849098 * —0, 476472 -0.373736
( -0.849098 1.000000 0.066464 0.412035
¢ -0.476472 0.066464 1.000000 0.412835
( ~0.373736 0.413035 0.412835 1.000000
¢ 0.784198 -0.923777 0.065721 -0.434712
DETERMINANT = ~768.00
TRACE = 18.00

R

N s N

~ s~

NN N, A

0.000000
2.500000
0.,000000
1.000000
2.,000000

2,46461804

0.000000

0.,000000
0.,067744
~0.97462564
0.020362
0.204725

0.000000
0.,000000
0.000000
0.000000
0.000000

0.784198
~0.923777
0.065721
=0,434712
1.000000

L

P RV R s

A A e et
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Table 3

THE GROUP IS SUC 5 )
THE STABILITY MATRIX FOR THIS GROUP IS...
< 10.000000 0.,000000 0,000000
¢ 0,000000 10.000000 1.000000
¢ ~48,000000 12,000000 5,000000
¢ 4,000000 -1.000000 0,000000
¢ -10.000000 2.500000 0,000000
THE REAL FARTS OF THE EIGENVALUES ARE...
12.,238902 -4,788001 10.000000
THE IMAGINARY PARTS OF THE EIGENVALUES ARE...
0.,000000 0.000000 0,000000
THE REAL FARTS OF THE EIGENVECTORS ARE...
¢ ~0.000000 ) ( 0.000000 ) ¢ 0.2425364
¢ 0.554252 ) ( 0.051837 ) <« 0.970142
¢ 0.819750 > ¢ 0.942952 ) -0, 000000
¢ -0.023898 )y ( -0.328388 ) ( 0.000000
¢ 0.142278 ) ( -0.017782 » « -0.,000000
THE IMAGINARY PARTS OF THE EIGENVECTORS ARE...
¢ 0.000000 ) ( 0.000000 ) ( “0.000000
¢ 0.000000 ) ¢ 0.000000 » ¢ 0.000000
¢ 0,000000 ) ¢ 0.000000 ) ( 0.000000
¢ 0,000000 » ¢ 0.000000 ) ( 0.000000
¢ 0.000000 ) ¢ 0.,000000 ) ¢« 0.000000
THE INNER FRODUCT (V(I). V(D)) MATRIX IS...
( 1.000000 0.807033 0.537704
¢ 0.807033 1.000000 0.050289
¢ 0.537704 0,050289 1,000000
¢ -0.320243 " ~0,318286 -0.,439142
¢ ~0.750431 -0.,932663 0.071975
LETERMINANT = ~-2625,00
TRACE = 22,50

N N "

N

A~ N

PN e e e e

0.000000
S5.0000060
30.000000
~5.000000
0.000000

1.,148389

0.,000000

0.000000
~0.452608
=0.,223807

0.209797

0.8372548

0.000000
0.000000
0.,000000
0,000000
0.,000000

. =0.320243

-0.318286
~0.439142
1,000000
0.299864

D

— s

P N e e

A~ AN A

0.,000000
3.800000
0.000000
1,000000
2.500000

3.200710

0.000000

-

0.000000
0.,074190
~0.988392
0.006542
0.132415

0.000000
0.000000
0.000000
0.000000
0,000000

=0.,750431
~0.932663
0.0719735
0.2998464
1,000000

W N W e
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Table 4

THE GROUF IS SUC 6 )
THE STASILITY MATRIX FOR THIS GROUP IS...
¢ 12.000000 0.000000 0,000000 0,000000
¢ 0.,000000 12.,000000 1,000000 5,000000
¢ ~48,000000 12,000000 46+000000 36.000000
¢ 4,000000 -1.000000 0.000000 -6.,000000
¢ -12,000000 2.0000C0 0.,000000 0.000000
THE REAL PARTS OF THE EIGENVALUES ARE...
14,407109 -5,826579 12,000000 1.354824
THE IMAGINARY FPARTS OF THE EIGENVALUES ARE...
0,000000 0.,000000 0.000000 0. 000000
THE REAL FARTS OF THE EICENVECTORS ARE.s.,
« 0,000000 ) ¢ 0.000000 ) ¢ 0.242536 ) ¢ 0.,000000
(  ~0,40%680 ¥ ( 0.,041988 ) 0.970143 ) (  =0.,464933
{  ~0.77594% ) « 0.944879 > « 0,000000 ) (  =0,182201
¢ 0,022019 3 <  =0.324404 ) (  =0.000000 ) 0.178487
¢ =0.160342 ) ( -0.,014271 ) 0.,000000 ) ¢ 0.847811
THE IMAGINARY FARTS OF THE EIGENVECTORS ARE...
{ 0.,000000 ) ¢ 0.000000 ) ¢ 0.,000000 ) ¢ 0.000000
( 0.000000 ) ¢ 0.,000000 ) ¢ 0.,000000 3 (¢ 0.000000
¢ 0.000000 ) ¢ 0.000000 ) ¢ 0,000000 ) ¢ 0.000000
¢ 0,000000 > ¢« 0.000000 ) ¢ 0.000000 ) ( 0.000000
< 0.000000 ) ( 0.000000 ) ¢ 0.000000 ) ¢ £.000000
THE INNER PRODUCT (U{I).VU(J)) MATRIX IS.e.
¢ 1,000000 -0,763631 ° ~-0.551474 0.292829
( ~0.763631 1,000000 0.040734 ~0.261680
( -0.,591476 0.040734 1,000000 ~0,451051
{ 0.292829 ~0.241680 ~-0,451051 1,000000
( -0,712192 0.937321 -0,0646847 =0,234200
DETERMINANT = -6912,00

TRACE =

27.00

D v

N N N N

P ]

o~ N

0.000000
5.000000
0.000000
1.,000000
3.000000

5.064647

84000000

0.000000
-0,048904
0,992583
=0.,002821
-0.,100120

0.,000000
0.000000
0.000000
0.000000
0.000000

-0.712192
0.937321
-0.064847
~-0,234200
1,000000
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Table 5

(G,F,Fl,Fz,FB) Simultaneous Zeroes of the Cne-loop 8's

SU(3) ( 1.0 , *1.0 , 0.0 , 0.0 , 0.0

( 1.0 , +1.23693 , ¥0.46101 , 7F0.13661 , £0.21280

( 1.0 , +1.03928 , F1.05397 , £0.06105 , :0.38016

( 1.0 , *0.9 , 0.3 , 0.1 , +0.3
SU(4) ( 1.0 , *1.0 , 0.0 , 0.0 , 0.0

( 1.0 , +1.22394 , F0.45059 , F0.11660 , =50.27011
Su(5) : ( 1.0 , *1.0 , 0.0 0.0 0.0

( 1.0 , +1.21127 , ¥0.31041 , ¥0.10291 £0.31289
SU(6) : ¢ 1.0 , *1.0 , 0.0 , 0.0 0.0

( 1.0 , +1.20105 ¥ 0.10490 $0.09273 3 0.34574

N N N N
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Figure Captions

Fig. 1: One-loop self-energy and vertex corrections for the abelian model. The

symbol/field connections are: ----, A; .... , Bj

s Y3 meme s A3
A Vu. Perﬁutations of individual’diagrams are omitted, and correc-
tions to the (pseudo)scalar-vector vertices are not shown.

Fig. 2: The effective quartic coupling constant (ratio) plane for the abelian
model. The shaded line separates classically stable/unstable theories
as indicated. The root curves of the one-loop BF and SFl are indicated
and the fixed points of these functions are shown as dots (cf.(4.653)).
The signs of BF and 3Fl in the various regions partitioned by the root
curves are also indicated.

Fig. 3: The effective quartic coupling constant (ratio) plane for the SU(2)
model. The shaded line separates classically stable/unstable theories
as indicated. The root curves of the one-loop BF and SF] are indicated

and the fixed points of these functions are shown as dots (cf.(4.66)).

The signs of B_ and BF in the various regions partitioned by the root
1

curves are also indicated.

F

Fig. 4: Behavior of trajectories in the G=i plane for the S0(2) model. The arrows
indicate increasing t. The four fixed points of the one-~locp equations
(4.42-43) are shown as dots.

Fig. 5: Behavior of trajectories in the G=1 plane for the SU(2) model. The arrows
indicate increasing t. The four fixed points of the one-loocp equations
(4.45—46) are shown as dots.

Fig. 6a: Behavior of trajectories near the S0(2) supersymmetric fixed point
(G,F,Fl)=(l,l,0). Trajectories labeled A and B are discussed in the text.

Fig. 6b: Behavior of trajectories near the SO0(2) fixed point (G,F,Fl)=(l,0,3).

Fig. 6c: Behavior of trajectories near the S0(2) fixed point (G,F,Fl)=(l,—3/5,16/5).

Fig. 6d: Behavior of trajectories near the S0(2) fixed point (G,F,Fl)=(l,0,-l).
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Fig. 7a: Behavior of trajectories near the SU(2) supersymmetric fixed point
(G,F,Fl)=(l,l,0). Trajectories labeled A and B are discussed in the text.

Fig. 7b: Behavior of trajectories near the SU(2) fixed point (G,F,Fl)é(l,/77fg,
12/7/105).

Fig. 8: Global (large lt‘) behavior of coupling constant trajectories which were
initialized {t=0) in the direction of +V(1), the first eigenvector in
Table 1.

Fig. 9: Global behavior of coupling constant trajectories which were initizlized
in the direction of -V(1).

Fig. 10: Global behavior of coupling constant trajectories which were initialized
in the directiom of +V(2).

Fig. 11: Global behavior of coupling constant trajectories which were initialized
in the direction of -V(2).

Fig. 12: Global behavior of coupling constant trajectories which were initialized
in the direction of +V(4).

Fig. 13: Global behavior of coupling constant trajectories which were initialized
in the direction of -V(4).

Fig. 1l4: Global behavior of coupling constant trajectories which were initialized
in the direction of +V(5).

Fig. 15: Global behavior of coupling constant trajectories which were initializedv
in the direction of -V(5).

Fig. 16: The supersymmetric theory's classical potential (as a function only of

A, and B2) and a more typical potential encountered in the Higgs mechanism.
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s F
-3 Classically Stable
Ground States if
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