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ABSTRACT

The matrix element Q" | jé| =%) is calculated. A similar
calculation for 4| jﬁl N) is compared with experiment, The
relationship of the Goldberger-Treiman relation to the bootstrap
principle is discussed. Approximate symmetry predictions for
the axial vector current are compared with the S-matrix calculations.
Implications of the bootstrap principle for equal time commutators

of hadron currents are discussed.
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I. INTRODUCTION

At present there are two basic approaches to the problem
of strong interactions. One approach is based on the properties of
scattering amplitudes (1), The other approach is based on the
properties of currents (2). For the scattering amplitude approach
there is a guiding principle, the bootstrap principle, which states
that all strongly interacting particles are composites of other
strongly interacting particles. Although no one has succeeded in
formulating the bootstrap principle in a general mathematical way
it is understood how to apply the principle in various specific
situations of interest; for example, to calculate the properties of
low-lying hadron states. For the approach based on currents, on
the other hand, there is no principle known at present which is
sufficiently general to enable one to calculate all properties of
hadrons. However, it does appear that hadron currents have simple
properties which can be formulated in a precise mathematical way.
Moreover, it is expected that the current approach will eventually
be extended so as to provide a complete solution of the hadron
problem.

The relation between the bootstrap principle and the
behavior of hadron currents has already been discussed in general
terms by Dashen and Frautschi (3). Their discussion was based on
an S-matrix theory of hadron currents which is originally due to
Chew, Goldberger, Low, and Nambu (4). By applying the bootstrap
principle to the S-matrix theory they obtained predictions for the
behavior of hadron currents which were generally in accord with
observation. In this thesis we will discuss in more detail certain

implications of the bootstrap theory for the hadron axial vector



current. From the experimehtal point of view the axial vector
current is interesting because of its connection with the weak inter-
actions. From the theoretical point of view there is added interest
due to the fact that there appears to be some kind of deep connection
between the axial vector current and the strong interaction properties
of hadrons. It is hoped that this study will be of some interest in
both of these connections.

Our calculations will pertain mainly fo matrix elements of
the axial vector current among baryon octet and decuplet states,

The principal tool we will employ in our study is the S-matrix theory
of currents. From the theoretical point of view the simplest place
among baryon octet and decuplet states in which to apply an S-matrix
theory of the axial vector current is to a calculation of the matrix
element (Q_!JSIE()}. |
In section II we illustrate in detail
how S-matrix theory can be used to calculate (Q | Jﬁ IEO >. This
matrix element is of interest in connection with Q~ leptonic decay
and the calculation is carried far enough to enable us to estimate

the 0 leptonic decay rate. A similar calculation for (A | Jﬁ | N
is also discussed and compared with experimental data on neutrino
production of pions,

One of the conjectured properties of the axial vector current
is that it is "partially conserved' (6,7). As a consequence of this
hypothesis there is a sort of universality relation between matrix
elements of the axial vector current and pseudoscalar meson
couplings. The relation between the axial vector coupling for neutron
B-decay and the NN coupling constant was first discovered by
Goldberger and Treiman (8) from another point of view. In section

Il we discuss the connection between the Goldberger-Treiman



relation and its generalizations and the bootstrap principle. We take
advantage of the reciprocal bootstrap relation between N and A (9)
to show that the Goldberger-Treiman relations for the N-N and N-A
transitions are consistent with S-matrix calculations of these tran-
sitions. We also show that when the S-matrix calculation is extended
to SU(3) then one obtains the SU(3) generalization of the Goldberger-
Treiman relation.

In section IV approximate symmetiry predictions for the axial
vector current are discussed, We show that the S-matrix calculations
of matrix elements of the axial vector current for B8- B8 and AIO-B8
transitions are generally consistent with the predictions of approxi-
mate symmetry. The theoretical reasons for the appearance of
approximate symmetries in S-matrix calculations are then discussed.
It is shown that the bootstrap principle implies that the equal time
commutator of two hadron currents is a current. The bootstrap
principle is then used to study the form of the algebra generated. It

is shown that it is consistent with the observed approximate symmetry.
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The matrix element (Q ] j‘: | 2 ) provides an example of a
matrix element of the axial vector current which can be treated in a
fairly simple way by S-matrix methods. The matrix element is of
interest in connection with @~ p-decay. Furthermore, it isa
convenient place in which to compare a dynamical calculation with
predicted properties of the axial vector current, In terms of Loreniz

invariants we have
-, A O _ g__ . 2 2 2 2
{Q | ]H' (O)I»: ) 73 Sino z’b(x[fl(}\ )6au+f2(>\ )k&YH+f3(>\ )kC(P}.l+f4()\ )ka‘kM]¢
(1)

where i is a Dirac spinor and z,ba is a Rarita-Schwinger spin 3/2
spinor (The absence of a \5 in the matrix element is a reflection of
the fact that z,l/a is odd under parity). The meaning of the momenta

is given in Table I. We will use the convention a . b = aobo -a- b,

-~

Table 1
Particle 4- Momentum Energy Mass
Q" P, M M
0
= P, E m
RN ‘ku = Pu - pu ko A

Our conventions for y-matrices and y's are explained in Appendix
A. Equation 1 tells us that the matrix element is characterized by
the four amplitudes fl, R | 4° These amplitudes are related to the



multipole amplitudes that are familiar in low energy nuclear physics.
For example fl is a linear combination of the E1, L1, M2 and
induced pseudoscalar amplitudes. In the following we will show how
to calculate the f's by using S-matrix methods,

Our approach to the problem of calculating (% | jé o™ ) will
b2 based on a study of the amplitude for 5 + 5 - % + = where o trans-
forms like an axial vector current. In particular we will find the f's
by looking at the residue of the ( pole in those amplitudes that lead to
an I=0 P3 /2 final state. In general, there are four amplitudes for
6 + = - ni& in a state of given isotopic spin, angular momentum, and
parity. Finding the residue of the O pole in the four amplitudes that
lead tothe I=0 P3 /2 final state will give us four relations for f
f

170
4 _

The reason that we chose to study transitions toa » = state
rather than some other communicatihg state (e.g. a mn = state) is
that the amplitudes for transition to the w = state are by far the
simplest to calculate. This because one need only take into account
the % = channel in calculating the amplitude for 6 + & - x + 5, where-
as finding the amplitudes for transition to another state is necessarily
a multichannel problem. It is this circumstance that makes the calcu-
lation of ( Q| j‘:‘ }EO> a simple problem from the S-matrix theory
point of view,

An axial vector current can be split into a piece that trans-

forms like an axial vector and a piece that transforms like a

k k k JA
pseudoscalar; viz. J‘: = Jﬁl + ‘“é 72 where .IA JA —t*——-z-——
h S

and J§‘= k\) J‘:S . It will be convenient to calculate the matrix elements
of these pieces separately. Let us first consider the axial vector part,

If 9 transforms like an axial vector then we can make an angular



momentum and parity decomposition of the amplitude for 9+E- n+=
in terms of the polarization 3-vector. I will be convenient to use the
multipole decomposition given in Appendix B, The allowed transitions
and corresponding amplitudes are listed in Table II. The notation for
the amplitudes is analogous to the notation that is used by CGLN (4)

for pion photoproduction amplitudes.

Table II
Total Meson
Multipole Angular Angular
_Order Momentum Parity Momentum Awmplitude
j j+1/2 (-1)? j+1 M -
. =+
j i-12 (v j-1 Mo
j-1
. . i+l .
j j+1/2 (D77 ] . L]+
j j-1/2 ()it : E, L

From the table we see that the M 2 E 3 and L + amplitudes lead
1 1 1

toa P3 /2 final state. In the following we will assume that these
amplitudes also lead to an I= 0 final state. The residue of the O
pole in these amplitudes can be related to fl ,ee,1, by calculating

the Feynman amplitude corresponding to Figure 1 and using equations

B.5. The result for the residues in E +/q, L +/q, and M +/qk2 is
1 1 1



Figure |
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o= A [(1\/1+m)2-x2]1/2 foy M sz}
E J/6m M2 1 (M+m)2—x2 2
2 2.1/2
_ 1 T (M+m)® -] ky 2M(M+ m) k
vy = £ () 2 e L MK e (2)
L~ 78m 2 17k (M+m)2_)\§ 2" 'k, 3} Q

1 [(M+m)? -2 Y2 (fz
)

1 &g

where g is the x = Q  coupling constant. ¥ we define the n = Q
coupling as iy a z,ba qaa,b then (in the following kaon mass = 1):
2

2 __(M+m)2-1 ZYQ 3)
&g 167 3

It is evident from equations 2 that if we can calculate Ygs Y1 and

1’ fz, and f3.

Suppose we write h (W) = o0 & (W) where p. is a factor which
@ @4t @

YM then we can determine f

removes any singularities in @ + of kinematic origin. Then the only
1
singularities in h CI)(W) will be poles and branch cuts associated with

intermediate states for the three processes of Figure 2. This means
that the discontinuities in h ® will be determined by unitarity and
crossing symmetry; therefore we may hope to determine h é(W) by
combining unitarity and crossing symmetry with the use of dispersion
relations. K we neglect the effect of competing channels then the
phase of h (W) above the %= threshold will be equal to the I= 0

P, /2 » = phase shift (9). Let us define a function D(W):
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D(W) = (W - M)exp [ - —-j W %ﬁf aw']  (4)

where & isthe I=0 Pg /2 # = phase shift. D(W) is an analytic
function except for a cut running from W = m+1 to », Furthermore,
on this cut D(W) has a phase of -8, Therefore in the approximation
of neglecting compating channels the function D(W)h @(W) will be
analytic except for 'left hand" cuts; i.e., cuts associated with
intermediate states for the processes of Figures 2b and 2¢. There-
fore, if the function D(W)h cI)(W) beshaves suitably at infinity we can
write:

D(W")disc.[ hq)(W)]

a 1 '
hsW) = s / WiTW aw ()
1. h. cuts

where disc.[h (W)j is the discontinuity in h_(W). We will assume

@'
that this equatlon is correct as written without subtractions (this in
fact is the basic assumption of our approach), From eguations 4 and

5 we find that the residue of the O pole in h. W) is given by

D(W")disc[ th(W') ]
W'-W

Rc&“ivl‘r‘i‘ f

1. h, cuts

dwr . (6)

This formula will serve as the basis for our calculation of the residue
of the 0 pole in the multipole amplitudes.
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In principle one can find the value of h qa(w) on the left-hand
cuts from the amplitudes for the processes of Figure 2b and 2c.
Actually, however, we do not know these amplitudes and therefore
cannot in general calculate disc. [h @(W')] . Nevertheless comparison
with the theory of pion photoproduction (11) suggests that for the

purpose of calculating R_ it is not too bad an approximation to

@
determine disc. [h (W )] from the £ and A exchange diagrams

(Figure 3)(at least for small 3 ) In the Chew-Low effective range
type approximation (12) this amounts to taking

E L, G
disc.[———lj]=disc.[-}—-]=2ﬁi—é— b f( A )6(W W)
q q S22 oy
?
('7)

disc. [M1+] =0

where WA~2m m,, W = 2m- mT, f (f ) isthe w2 A(n=T)
strong coupling constant and G (GHZ) is the =7 (8%) zero

momentum transfer axial vector couplmg. We will assume as a
first approximation that disc. [ @ ] is given by the above simple
expressions. The success of theIChew— Low theory suggests that
this will give results which are not too bad for small >L2. We see

immediately from equation 7 that the residue of the Q0 pole in M +
1
is zero for small 7\2. In order to find the residues in E + and L N
1 1
we must know pp, py, and D(W) for W mear to M. For small
22 we can take pp and oy to be simply q 1. As for D(W) we see
from equation 4 that for W very near M D(W) is simply W-M,

Further if § behaves reasonably then the variation of the exponential
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Figure 3
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factor in equation 2 should be negligible for |W—M\_ < 1 Thus we
can set D(WA )/WA -M = D(WZ)/WZ"M = 1, Using these approxi-
mations and equation 7 we find that the residues of the Q0 pole in

E /qand L _/q are given by:
1 1"
A
e~ LT 7w P tileeme) )

The Chew-Low approximation is exact in the static limit.
Therefore, in comparing equations 2 with equation 8§ we will set
k = 0. In the limit k = 0 equations 2 give YE = YL in agreement

with equation 8. Further, comparison between the two equations

gives
EA ZA
) e -G e _ -G
- M 1 2= A 1 RETD A
fl(o) * 43t m+m, ( g, )(Gsine) * m+m.i( g )(Gsine):I ()

where 8- - and 8y 2T the unrationalized pseudoscalar coupling
constants. According to the bootstrap principle one can determine
the values of the various quantities appearing in this equation from
self-consistency. Here we will not be that ambitious. Since at this
point we are merely interested in evaluating the matrix element 1 we
will use the best estimates for the quantities appearing on the right
hand side of the equation fo evaluate the left hand side. The ratio's
(gﬂ_ EA/ g Q) and (gEEZ / gQ) can be estimated from calculations of the
mg §8B8 and TT'8-310B8 ::oupling Eatterns (13) to be 0.6 and 0. 03
respectively. As for GXA and GZ Cabbibo's theory (14) predicts
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-0.85 Gsing and 0.02Gsing. Substituting these values into equation
9 gives

1,0 ~ 1.2 . (10)

We cannot determine the amplitudes fz and f3 within the frame-
work of the Chew-Low approximation. However, we can obtain
expressions for the discontinuities in the multipole amplitudes which
parmit us to estimate f2 and f3 by evaluating the ¥ and A exchange
diagrams with the correct kinematics. The Feynman amplitude

corresponding to the diagrams of Figure 3 has the form

P | 2,— 1

1g GAC(«()\- )u[Y“'Ys(ﬁl_ gj.+mi)Y5]u'——"—'2"- (11)
u-m,

(The induced pseudoscalar term does not contribute since k- G = 0),

Expressing this in terms of center of mass variables and using

eguation B. 5 gives the following expressions for the "Born' multipole

amplitudes:

M I = e | -AQ () - BQ, (@) + S [Q, (@) - Q) i———G‘i*
L 1+JB—16WWJL 2@ - BQ, () + £ [Q,(a) - Qula)l} &’ mios
E g el AQy(@) + BQ, @) - 2¢1Q, (1) - Q@)

+2D[Qy@) - Q@) g gy, (12)
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(L Jp = g7 { (A-FIQ,@) + 5T3Qy0) + 20, 6)] + (-BF)Q; @)

Gi
D i A
-3l 2Q2(a) + Qo(a)]} & Gsing

1/2 1/2

@, +m)"/2 W_m,) (&, +m)Y/2 (W-m,)
L) - 1 — 2 T
where A= 172 = 173
2k(E 9* m) 2q(E 1+m)
q (E2+m)1/2 (E1+m)1/‘2
C= D=
(E1+m)1/2 (E2+m)1/2 k
(W-m,~2E.) (W+m,-2E.)(Eo+m) Y 28, +m) 1/ 2
E = —15— 1 2 F = _1_{_ 1 2 2 1
o 2(E2+m)1/2 (E1+m)1/2 K, 20k
2m2+2q k —Wz-m.2
0 0 i
and a=

2qk
The Qj are the usual Legendre functions of the second kind. The Q's
arise because in projecting out the multipole amplitudes we have

integrals of the form

1 Pj (%)

|

? z dX .
-1 [2m™-W -f-2(:10k0-2qu]-mi

2
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This integral has two short branch cuts along the real axis which
for small xz are located near W = + (2m-mi) as well as a cut along
the whole imaginary axis. According to our previous prescription
we can approximately calculate the residues of the ( pole in the
multipole amplitudes by substituting the discontinuities in the Born
amplitudes into equation 6 and integrating along the above cuts. We
cannot actually carry out this program, however, because we do not
know D(W). Nevertheless, it is expected that the most important
contribution will come from the nearby short cut. On this cut D(W)
can be approximated by simply W-M. Let us choose the kinematic
factors to be

1/2 1/2

Py T (E1+m) /qkz(E1+m)

Pp = 0L T 1/q (E1+m)1/2(E2+m)1/2 .

Then by approximate numerical evaluation of the integrals we find
that for xz ~ 0 the residues of the Q pole in the amplitudes
M /qkz, E /q, and L  /q are given by

1t 1 1"

YM.’::‘ O

Ye =~ YEdstatic (13)

~ (1.1
v D e,
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where (YE)static is the value given in equation 8. Although the
accuracy of our approximations is probably not great enough to tell
whether these equations are significant comparison of these

expressions with equations 2 gives

£,(0) ~ 0 Mmf,(0) ~ 0.5 . (14)

If the values of I, I, and f, do not vary much for 0 < s 1
then we can use the values that we have obtained for fl(()), fz(O), and
f3(0) to estimate the leptonic decay rates for the q (since the Q -x°
transition has AJ = 1, no-parity change, the axial vector contribution
will dominate the decay rate). If we use the values given by
Mathews (15) for the phase space integrals then we obtain the
predictions listed in Table II. It is interesting to point out that our

Table I
Rate Branching
Decay igg_g‘__l) Ratio
Q -=%+e 4+ 2. 10° ~ 20
0 -2%+ 0+ Y 1. 10° ~ 1%

calculation of Q Ileptonic decay is a sort of S-matrix analogue of the
usual calculations of Gamow~Teller transitions in nuclei. The
information on the ( '"wave-function" is contained in the D function,

So far we have only shown how to compute the axial vector
part of the matrix element 1. We will now briefly show how to

determine the pseudoscalar part. Let us consider the amplitude for
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ep + = - n+5 where ep transforms like a pseudoscalar.' The
angular momentum and parity decomposition of this amplitude is
given in Appendix C. For a final state of given isotopic spin,
angular momentum, and parity there is just one amplitude. Let
us denote the amplitude leading to the I=0 P3 /2 final state by
f(W). By calculating the Feynman amplitude corresponding to
Figure 1 and using equations C. 3 we find that the residue of the

Q pole in £(W)/gk is related to f4,..,04 by

2 21/2
1 T(MEm)™-2"] 12 2 2
Y_p = ok 5 {f1+(M—m)fz+—2—(M -m )f3+7\ f4}gQ. (15)

We see that £ 4 can in principle be determiéled from this equation if
fl’ f2’ and f3 are known as functions of \". Thus equations 2 and
15 constitute a complete set of equations for determining fl’ I | 4
The residue Yo can be calculated by using the same
method that was used to calculate Ygr YL and Y Let us write
h(W) = of(W) where p is a factor which removes the kinematic
singularities in f(W). Then by using the same arguments that led
to equation 6 we find that the residue of the O pole in H(W) is given

by

R =L l‘ D(W')disc. [ h(W")]
2mi W'-M
1. h, cuts

dw’ (16)

where disc.[h(W)] is the discontinuity in h(W), Just as was the case
for equation 5 we may approximately evaluate the integral over the

left hand cuts by calculating disc.[h(W)] from the ¥ and A exchange
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diagrams, The Feynman amplitude corresponding to the diagrams
of Figure 3 has the form

. G
i A 2 2 .2 1
12 [(m‘*‘mi)mm()x )-8 )][Y5(x$1‘ﬁ+mi)Y5] ;‘:‘;“2‘ )
i
where g is induced pseudoscalar form factor. Making use of
equations C.3 to project out the discontinuity in f(W) and keeping
only the contribution from the nearby short cut in equation 16 gives

the following expression for y_ in the limit >\,2 =0

-G

2 A
Y.~ 75— I (mm=) (18)

p= J/2m =g, b Gsing

Comparison of this expression with equation 15 gives
2 -GY
18, (0)+ (M- m)E, 0+ 5 (M- )£, (0)] = 4/3 g M+m £ <§->(Gsme)
i=p,% i ®Q0

(19)

This is numencally conmstent with equation 9 because the terms
(M- m)f and & (M -m )f are small,
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The problem of calculating the matrix element (a] ]l-l |N> is
very similar to the problem of calculating (¢’ |] ]:’ Y. Itis slightly

more complicated conceptually because the A occurs as a resonance
above N threshold rather than as a bound state., Furthermore,
inelastic effects are expected to be of some importance. If the
inelastic effects are neglected and the A is treated as a stable
particle then the details of calculatmg (AI] |N) are almost identical
to the details of calculating (Q° |] IH Ve The main difference is that
the discontinuity in the multipole amphtudes is calculated from the
nucleon exchange diagram (Figure 4) rather than from the Z and A
exchange diagrams. I the calculation is carried out in the way

described in the previous two sentences one obtains

fl(O) ~ 0.9 fz(O) ~ 0 Mmf3(0) ~0.1, (20)

These values can be used to provide information about the process
v + N = A+ 2, For example, the forward scattering amplitude is
dominated by the axial-vector contribution. In fact the invariant

differential cross section in the forward direction is approximately

given by
2
Gr2 S - M M + My 2 2
(0)_ T L 2( M ) 1£,0]°. (21)
- N A

An experimental measurement of do/dt near t = 0(17) gives fl(O) ~ .87.
in order to determine the differential cross section away from the
forward direction and the total cross section it is necessary to make
some assumption about the dependence of the f's on xz and to take
the vector contribution into account. A plausible way to take the >\2

dependence of the form factors into account is to assume
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Figure 4
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£.(0)

£, (A2) = (22)

kR
For n = 1 the form factors have a pole structure while for n = 2
they are like the empirical form factors appearing in electron
scattering experiments (16). If the values of Equation 20 are used
for the fi(O) and if the contribution of the vector current is estimated
by using the CVC hypothesis and photoproduction date (16) then we
obtain the total cross-sections shown in Figure 5. The curves we
have drawn correspond to n = 2. Some experimental measurements
(17) of the total cross-section are also shown. It is seen that the

experimental results suggest that M, is around 900 MeV. This

A

value is consistent with the measurements of the axial vector form

factor for v+ n -» p+ pu” (17).
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Figure 5. TOTAL CROSS SECTION FOR y+n——A"+p~
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OI, THE GOLDBERGER-TREIMAN RELATION -

The Goldberger-Treiman relation for neutron g-decay is

-G, o
sz( Gcossd ) = T; (1)

where g is the rationalized mNN coupling constant and f;l is the
pion decay amplitude. f;l is normalized so that the rate for

at o utey is given by (in units pion mass = 1):

fz -1
T = (—5_4%7 Gzcoszemfl (1- mi )2 (4—7;) . (2)
m

Experimentally the error in equation 1 is about 8%. If we generalize
equation 1 to the baryon octet then in the approximation of the eight-
fold way (which includes fﬂ = fK) we have that the F/D ratio for the
axial vector current should be the same as the F/D ratio for the
TT8§8B8 couplings., In fact Cabbibo's value of 0.30/0.95 (14) for the
F/D ratio for the axial vector current agrees well with the estimates
of F/D for the meson couplings.

It has been pointed out (7) that the Goldberger-Treiman
relation follows from the assumption that the form factor for the
mafrix element of the divergence of the axial vector current satisfies
an unsubtracted dispersion relation in xz and that this dispersion
relation is dominated by the lowest lying pseudoscalar meson state.
The actual behavior of the divergence of the axial vector current

should of course follow from the bootstrap principle. In this section
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we will make use of the S-matrix theory of currents to study the zero
momentum transfer behavior of the divergence of the hadron axial
vector current. In particular we will take advantage of the reciprocal
bootstrap relationship between the baryon octet and decuplet (9, 18) to
calculate ratios of the zero momentum transfer form factors for
octet-octet and octet-decuplet transitions.

Let us consider the matrix element of the divergence of the
axial vector current between N and A. This matrix element may be
written in the form

A . 1,..2 _.2 2
<A|zsu;;Ll [Ny = 1[f1+(MA-mN)f2+—2-(MA -MN)f3+x £,] ;paka¢ (3)
where the f's are defined as in equation IL 1. The form factor here

can be calculated by using the S-matrix methods described in the last
section. For example, by using the same methods that were used to
derive equation II, 13 we find that in the limit )\2 =0

2
2M g -G
[£ '(0)+(MA—mN)f2(O)+—%(M N)f (0)]__ 3 i +m§)m ( ﬂfN)(Gcoie)

(4)

where g A is related to the mAN coupling constant vy A by

2
2 (MA + mN) -1 9
SA 167 Yo oo
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By comparison if one assumes that the form factor for (A| BHJS | N

is dominated by the pion pole then one obtains

,
1,0+ (M, ~m )y O3 (M2 - m2)E, (0)] = f-zAf-T-T : (5)

If we express vy A in terms of g A and use the Goldberger-Treiman

relation (equation 1) for f;rl equation 5 becomes

2m

[t 0)+ (M, -my gt (014 5(M2 - miE, O = /2 { +mN(g NN)(GCOSB)}

In order for this to agree with equation 4 we must have

g€ &
ra(2o) = (2
TNN A
or
M, 2
2 1 ,.77A7 2
g =5 G S - ©)

This is exactly the equation for gi that is obtained by Chew and
Low (12) and is in agreement with experiment. Thus, we see that
equation 5 is consistent with the bootstrap theory.

The considerations of the last paragraph may be summarized
in the following way: the two Goldberger-Treiman relations, equations
1 and 5, tell us that at )\2 = 0 the ratio of the form factors for the
matrix elements of the divergence of the axial vector current is equal

to the ratio of the corresponding strong coupling constants; however,
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this is just what is obtained from the S-matrix theory‘ of currents.
The reason for this result is easy to see. The matrix element of
the divergence of the axial vector current between N and N or A
and N has the same form as the pion coupling., Thus, the P-wave
amplitudes for X + N -» 17 + N, where X is coupled to the divergence
of the axial vector current, have the same crossing relations in the
static approximation as the P-wave pion-nucleon scattering amplitudes.
Since we expect that the static approximation will be fairly good for
)\2 = 0 we see immediately that the ratio of the NN and AN form
factors at }\2 = 0 is equal to the ratio of the mNN and mAN coupling
constants,

In deriving equation 4 we calculated the residue of the A
pole in the amplitude for X + N - ¢ + N in terms of the residue of
the N pole in the amplitude for X+ N ~» i + N, However, we might
just as well have calculated the residue of the N pole in terms of the
residue of the A pole. To see how this would go consider the
amplitude for X + N -» m + N where the final 7N isinan I=1/2
P1 /2 final state. The residue of the N pole in this amplitude can
be calculated by a formula similar to equation IL. 12, The main
difference is that the D function will be defined in terms of the
I=1/2 P1 /2 nN phase shift, If the discontinuity in the amplitude
on the left hand cut due to the mN intermediate state is approximated
by a "pseudopole' due to A exchange and if the linear approximation

for the D function is made then we find that:

-G my (M, +my) g
A)4/2 N(A)

A m (7)
+ 3 (M2 - m)1,(0)].
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This differs from equation 4 by only a factor of 8/9. Thus, we see
that there is a sort of reciprocal bootstrap relationship between
(-G p/Geoss) and [£;(0)+ (M, - m)t,(0)+3 (M2 - m2)i5(0)1.

Let us now consider what happens when this reciprocal
bootstrap relationship is extended to SU(3). In SU(3) the ratio of
KlOBB axial vector couplings is fixed while for the ESBS axial
vector couplings we can have an F type coupling and a D type
coupling, Thus, there will be one independent form factor for
(Aypl auJ‘&[ Bg) and two independent form factors for (Bg| auJﬁlBQ .
The generalization of equation 4 may be obtained in a straightforward
way by considering the amplitude for X + B8 > Tg B8 where the
final g+ B8 isina P3 /2 decuplet state. If one makes use of the

bootstrap condition for the strong coupling constants one finds that

[£;(0)+(M-m)t, 0+ 3(M*-m*)ig(0)] = 1one [V'2/3 g+ /6/5 g1 (8)

where gp and gp are defined so that the matrix element of the
(1)

octet axial vector current gu

by

is for zero momentum transfer given

(Al gfj);m - (¢ +d

ABiSF+9ARi8p) UA Y, Y5 Up

where f, 5. and d, . are defined in Gell-Mann's paper (32). The
left hand side is normalized so that one multiplies by the appropriate
SU(3) Clebsh-Gordan coefficient to get the form factor for the

transition. Equation 8 will agree with the SU(3) generalization of



29

equation 5 if gn/g is equal to the F/D ratio for the rr8§8B8
coupling constants. The SU(3) generalization of equation 7 is
complicated by the fact that the octet representation occurs twice

in the decomposition of 8 x 8 and therefore we have a coupled two-
channel problem, In the static limit this problem is identical to

the problem of magnetic dipole couplings studied by Dashen (18).

He showed that if the reciprocal bootstrap relationship is to exist
then F/D ratio for the magnetic couplings must equal the F/D ratio
for the m 8E8B8 couplings, For our problem this means that gF/ gp
equals ¥/D for the m 8E8B8 couplings, However, this is just what
the SU(3) generalization of equation 1 predicts!

In summary we can say that S-matrix calculations of matrix
elements of the divergence of the axial vector current for octet-octet
and octet-decuplet transitions are in essential agreement with the
Goldberger-Treiman relations for the SU(3) symmetric case,
Further, it appesars that the Goldberger-Treziman relation for the
N-A transition is good in real life, Whether the Goldberger-Treiman
relations are good in real life for the strangeness-changing transitions
is not clear at present because of uncertainties in the values of the
strong coupling constants.
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IVv. APPROXIMATE SYMMETRY

In the previous two sections we calculated the ratios of
various matrix elements of the axial-vector current by making use
of the bootstrap principle. One can also obfain predictions for these
ratios from approximate symmetry schemes, In this section we will
discuss the relation between these two approachs, We will concen-
trate on the static (19) and collinear (20) SU(6) approximate symmetry
schemes since it appears that these are the most successful,

If we assume that the octet and decuplet baryon states belong
to the 56 representation of SU (6)S then we obtain predictions for the
matrix elements of the Gamow-Teller operator between the 56
states (21). Because of SU(3) symmetry we can summarize the
[SU®)] S predictions in the following way: (a) the F/D ratio for
Gamow-Teller matrix elements between octet states is 2/3; (b) the
amplitude for the Gamow-Teller transition A+Sz = % - n SZ =-% is
2/5 G A Prediction (a) is in accord with the result obtained by
applying the bootstrap principle to the SU(3) symmetric static
model (3). In our previous notation the Gamow-Teller amplitude
for A+Sz =—;— - nSZ =-% is G//2 coss /2/3 f1(0). Thus, prediction

(b) gives

o/3 Ga

_ +
fl(O) = 75 _G—E—(S_S-—G for A - n. (1)

This differs from the result of our S-matrix calculation by 7%.
From SU(3) symmetry we have that (0~ - EO)G T.= -/3 tansg (A+—>nb T
so that SU(6)S predicts that
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- GA )
GecosH

fl(O) =—g ( for o~ - =" . 2)

This differs from the S-matrix result (equation IL 10) by 10%. I is
interesting that our S-matrix calculations of the amplitudes for

2" - nand o7 - &° follow the SU(3) pattern. This suggests that
the generalization of the Cabbibo theory (14) to decuplet-octet
transitions will agree with observation. A test of this idea should
be possible soon when the relative rates of Yl* and A production
by neutrinos are measured. Overall, we can say that the SU(6)S
predictions are in close numerical agreement with the S-matrix
calculations in the SU(3) symmetric case and that there is a corre-
spondence even in the broken symmetry case.

The SU(6)W symmetry gives the SU(6)S predictions plus
the prediction that the maguetic quadrupole amplitude for A - N is
zero (22). One can show that the magnetic quadrupole amplitude is
proportional to the amplitude f2 of section II (see for example
equation II. 2). Thus, SU(6)W predicts that fz = 0, This, however,
is in agreement with the results of our S-matrix calculation (equations
II. 14 and II, 20).

The close correspondence between the results of our S-matrix
calculations and the predictions of approximate symmetry leads us
naturally to try to understand why the dynamical calculations should
give results which approximately respect a symmetry, in particular
SU(6)S and SU(G)W . At first sight it seems remarkable that our
calculations should agree with SU(6) predictions because we have not
explicitly taken into account vector mesons. However, it can be argued
that inclusion of vector mesons would not greatly change the pattern of

our results (23). Thus, it is perhaps not surprising that our calcu-
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lations would yield approximate SU(6) symmetry. One‘can, for
example, cite some calculations of Cutkosky (24) which show that
in some simple bootstrap models self-consistency of degenerate
supermultiplets = requires that the couplings respect a symmetry
group, Since the input to our calculations was an approximately
degenerate baryon SU(6) 56 supermultiplet and, effectively, an
approximately degenerate meson SU(6) 35 supermultiplet we might
expect the results to approximately respect SU(6). The validity of
the particular symmetries SU(6)S and SU (6)W would require, in
addition to approximately degenerate supermultiplets, some special
conditions on the S-matrix. For the SU(6)W symmetry these
conditions are probably satisfied in our approximate calculations
because we have considered only single particle intermediate states
in the three channels (25). As for SU(6)S it is not clear whether
sufficient conditions for its validity are satisfied.

The theoretical foundations for the appearance of approximate
symmetries in our calculations can also be approached from the point
of view of current commutation relations. It has been shown by Dashen
and Gell- Mann (26) and Lee (27) that current algebras can give rise to
hadron symmetries provided certain conditions are satisfied; for
example, that the sum over intermediate states in the matrix element
of the commutator converges rapidly. It has subsequently been pointed
out by Dashen and Frautschi (28) that as a consequence of the bootstrap
principle the prospects for correlating a current algebra with an
approximate symmetry are quite favorable, at least for low-lying
hadron states. Below we will show that the bootstrap principle also
implies that the currents form an algebra and that the algebra is such
that it can explain the SU(G)S and SU(6)W symmetries of the baryon 56,
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In order to get a hold on the commutator of two currents in
an S-matrix theory we must have some way of representing the
commutator in terms of a scattering amplitude. A clue as to how
this might be done is provided by Heisenberg's original derivation
of the commutation relation [x,p] =i (29). He noted that in order to
be consistent with the correspondence principle the amplitude for the
scattering of light by an oscillator must behave in a certain way. For
example, the amplitude for the forward scattering of light by an atom
should, according to the correspondence principle, approach the

classical Thomson value Z 2/ m, as the frequency of the light becomes
e
large in comparison with the binding energy. He then showed that the

amplitude for the scattering of light will behave in the right way if a
certain sum rule for the absorptive part of the forward scattering
amplitude (the Thomas-Reiche-Kukn sum rule) is satisfied and that
this sum rule is implied by the relation [x,p] = i. By analogy we

are led to consider the scattering amplitude for ei +a - ej + b, where

a and b are hadron states and 8- and 8° are coupled to the currents

i' and j’

, in connection with current commutation relations. As a
matter of fact Fubini (30) has shown that the content of current commu-
tation relations can be expressed in terms of a sum rule for the
absorptive part of these amplitudes. Furthermore, each sum rule
is equivalent to a certain statement about the high-energy behavior of
the scattering amplitude (31). In discussing the high-energy behavior
of these amplitudes we do not have the correspondence principle as a
guide; however, we do have the bootstrap principle.

Let us consider the amplitude for Gi +a - ej + b where a
and b are single-particle states and ei and ej are coupled to the

currents j1 and j]. If the invariant amplitudes obey unsubtracted
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dispersion relat1ons in s for fixed t then the scattering amplitude

for the process 6" +a - OJ + b will be given by:

<92|JJ(0)In><nIJ(0)|p1 3

—(2”) z 2E 1+E1 E (Bn_kl—rgl)
| | @
(py| 7' 0)[m) n|'(0) [ py) 4
- wy - By + B 6(En+152'31)}”

The notation is explained in Table IV, The right-hand side of

Table IV
Particle 4-momentum 3-momentum Energy
P1 21 1
b Py ) By
h ! %1 !
]
8 % > “

equation 4 can be related to the commutator of ji and ;ij if the
denominator of the two terms in brackets is the same for all n.
One way of doing this is to let the energies Wy and Wy 8O to
infinity while keeping k1 and k2 fixed. Another way is to keep
all the particles on their mass shell and let the momenta By and
By 80 to infinity, Taking either of these limits T becomes

1/ Wy X i] where
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.. ik, -« x . .
x=Te ? 7 sl )yl 1M, FO1]ppa* (5)

We now wish to argue that Xij behaves like a self-consistent current.
Consider the amplitude for ei + N - ej + N+ K Wy is
very large then we expect that most of the amplitude for this process
will come from emission of the pion from the initial or final nucleon
(see Figure 6). For example the amplitude corresponding to emission

from an initial nucleon line is proportional to

1
2
(p; - @" - m

2 .

On the other hand the amplitude for emission from an intermediate

state is proportional to

- 12 5 X (terms linear in pn)
(b, - 9" - m

whare P, is typically on the order of Py + kl’ I the sum over
intermediate states in equation 4 converges then we can pick some
mass M such that the contribution to the sum from intermediate
states with m, > M is negligible. Further, if the convergence is

uniform then we can pick one M for all w Because of the behavior

1.
of the form factors it is likely that the convergence is uniform,
Therefore, we conclude that as wy > the ratio of the amplitude

for emission from an initial or final nucleonto the amplitude for
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g g}
.
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g' g}
AN-T- -

N N

Figure 6. Some typical mechanisms for pion emission
from an initial or final nucleon.
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Figure 7. Some contributions to the unitarity
condition for a current,
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emission from an intermediate state goes like 1/ Wy By comparing
the diagrams for emission of a pion from the initial or final nucleon
with the unitarity cond1t1on for a current (Figure 7) we see that the
unitarity condition for o' + N - eJ + N + n will approach the unitarity
condition for the matrix element (N|j|Nm) as wy = . Alittle
thought shows that a similar conclusion will be likely to hold for
arbitrary hadron states a and b. Since the self-consistent currents
in a bootstrap theory are defined by the unltarlty condition the above
arguments lead us to the conclusion that X 1 defines a self-consistent
current,

Having shown that the equal time commutator of two hadron
currents is a hadron current let us see if we can guess what algebra
is generated. If we consiser the matrix elements of the commutator
[ji( x,0), j%(O)] of two vector currents between hadron states then
we find that they behave like the matrix elements of a vector current.
Now the number of vector currents is probably severely limited by
the bootstrap principle. In fact calculations with the static model (3)
suggest that there are only nine possible vector currents corresponding
to the baryon current plus the octet of vector currents observed in weak
and electromagnetic interactions. H these nine currents are the only
possible vector currents then the commutator [ ji( X, 0), j(j)(O)] will
automatically be determined for every case except when it corre-
sponds to I=0 Y=0, Approximate calculation of the amplitude for
ot + B56 ] + B56 suggests that the commutator of two octet currents
corresponding to I=0 Y = 0 is the hypercharge current. Therefore

for the commutator of two octet vector currents we would have

3)(x,0), 3] = ity 15(0)6°) (6)
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where the fijk are the SU(3) structure constants (32). Equation 6

is just the algebra of vector currents proposed by Gell-Mann (2),
Similar arguments can be put forward to show how algebras involving
axial-vector, scalar, and tensor currents can arise. The above
discussion is, of course, not a derivation of the current algebra but
is only intended to make plausible the fact the bootstrap principle

can lead to the algebras which have been correlated with the
approximate symmetry.

The above arguments were based on the assumption that
the invariant amplitudes for ol+a - eJ + b satisfy unsubtracted
dispersion relations in s for t fixed. If this assumption is not true
then the amplitude for ei +a - aj + b cannot be written in form of
equation 4, We see no reason to believe, however, that the Low
amplitudes Tiiv will not continue to behave in the same way with
respect to, for example, pion emission as the full amplitude. I
this is true then one could construct the commutator independently
of whether or not there are subtractions. These ideas, in fact,
might be used to prove that there are no no-trivial terms in equation
8 involving gradients of &-functions.

We conclude by pointing out that whatever the algebra is the
bootstrap principle implies that it must be consistent with the approxi-
mate symmetry of the low-lying hadron states., Consider the
commutator of the time-component of a vector and space-component
of an axial vector current. This will have a term coupling like y vg¢
to the baryon octet. Now by using the methods of section II, one finds
that because of the reciprocal bootstrap the ratios of the couplings
among octet states is fixed. Furthermore, it is not hard to show that
the ratios are such that the algebra projected on the baryon 56 is

consistent with the approximate symmetry.
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V. CONCLUDING REMARKS

We have shown that S-matrix calculations for matrix ele-
ments of the axial vector current between baryon octet and decuplet
states are consistent with certain predicted properties of the axial
vector current. It should be noted that our demonstration of con-
sistency has been carried out on two levels. On the lowest level we
showed that the S-matrix calculations of the matrix elements were
numerically close to what was predicted by the properties in question.
On a higher level we showed that if the predicted property is ex-
pressed in terms of the behavior of an operator then the operator
behaves in the S-matrix theory at least approximately as predicted.
In the case of the Goldberger-Treiman relation the operator was the
divergence of the axial vector current, while in the case of approxi-
mate symmetry the operator was the equal time commutator of two

currents,
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APPENDIX A

The yu are the ordinary Dirac matrices. A familiar

0 g 1 G
’Y =
¢ 0| O o -1

Our Vg is defined as iYOYnyYz' The Dirac spinors ¢ satisfy

representation is

<
il

Py = my

where g = P, - They are normalized so that ¢y = 1 where

Y = ll/+ Yor- Interms of Pauli spinors x

..[E-f-m]l/z(l_'__’%wi_:’_[)(]
Y=L 3m Erm 0

where o = Yo - The Rarita~-Schwinger spinors z,bu satisfy

Pov, = My,
Yu¥, =0
Py =0
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They are normalized so that {Euz,b L= -1, Let us define 4-vector

spinors :
p §H

E =¢ ©
:H MX

where (1) = 1//°2 [-1, -i, 0, 0], (0) = [0, 0, E/M, P/M],
e(-1) = 1//2[1, -1, 6, 0], Then z,'/“ will be given by

=

1/2 a- P “u

_+E+M ~ o~
by ==y d Qg o )
A useful result is
PP
—_— 2 2 Y 1
Loy =[-8 +% +5(y. P -y P )
Spinsp‘v 3uv3M2 3 'vipu MV

+ % (YMY\) - YVY“)] P+M .
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APPENDIX B

In the center-of-mass system the differential cross section
for 5 + B- m + B where 8 is an axial vector particle may be

written:

-d 2
a‘% = q/k|XfGXi! (B. 1)

where x is a Pouli spinor, q and k are the meson and boson 3-

momenta, and

G=io. qc-eG1+io-eG-kG2+io-q0-kq-e G3

+iq.e G, +i0-qo-kk-e Gy +ik-e Gy . (B.2)

We may express G in terms of the multipole amplitudes by using

the appropriate projection operators:

G =-20{L;'(1 #j+o-Lie-k+ Li(j- o- L)ic.k
]'—"-

- E;.“(l +i+0. Lq)e (& xLy) - E]T(j -0 Lq)e-(kak) (B. 3)

- ;_I(G-Q)(]'-G-Lq)ie-Lk-M3+1(0-q)(1+j+o-Lq)ie-Lk}Pj(q-k)

where Lq = -i(q x 3 q), L, = ~-i(k x ak), and Pj are the Legendre
polynomials, Carrying out the operations indicated in A. 3 and
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comparing with A, 2 gives the following expressions for the Gi:

< . + ot - _—
Gy = 2 {[ G+ 2)MJ. +Ef+ (G- DM + EJ.}PJ.(X)}
=1
G, = Z {(j + 1)M’Jf Pl 00+ jM'j P]z_l(x)}
j=0

Gy = }:i {(E‘*]i + M'; + E'j - M‘J.)P%' (x)}

j=1
(B. 4)
— oo - + _ + T T wm 34 .
Gy = ) {CE}- MPPY 60+ OG- EDPY ()
=1
. O?‘ - - + ? |
Gg=-Gy - xGg+ § {(L]- L2}
=0

= _ - T T pr -1, pr
Gg = G, xGy + S: {Lj P].+1(X) Lj Pj—l(X)JL
j=0

where X = cosd., The inversion formulae are
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1
-1 | ] j
Mj+ = 305D '[.1dx{_G1Pj+1(X) + GZPj(X) + Gq T3

P.(x) - P.+2(X}

1 P. ,(x) - P.(x)
1 ) ) j-2 J
M;i' "7 f_ldx{%P j-100 - GgPy(x) - Gy~ }

{ .l . Pj(x)—P:i Lo®)
Ej+ = 565T) f_ 1dx{G1Pj+1(x) - GZPJ.(X) - Gy (§+2) ST

Pj-l(X) - Pj+1(x)
2j+ 1 }

-G 4(j+ 1)

o PL,®- P
E =97 ..[_1dX{G1Pj-1(X) - GZP].(X) + G3(J—1) 5T

.
(B. 5)
.G Pj—l(x) B Pj+1(X)}
Hgd 2j + 1

1
1
Lj+ =3 J:.ldx{(Gl + xGg + G5)Pj+1 + (G2 + XG4 + GG)Pj}

1 ‘1 -
L_=5 | 1deL(G1+ xG

; i + G5)P]._1 + (G'2 + XG4 + Gﬁ)Pj}.

3
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APPENDIX C

Let us write the center-of-mass differential cross-section

for X + B - w + B where X is a pseudoscalar particle as

do _ A A
I5 = A/k X, [f; + 0.9 ook f,] X

IZ
dg

Because of conservation of angular momentum and parity there is
just one amplitude for a given total angular momentum and orbital
angular momentum of the w. Let us denote the partial wave a,riipli-
tudes corresponding to orbital angular momentum g , total angular

momentum £ * 1/2 by fz 4+ Then we will have

co

£o=N £, Py 0 - Z £, Pl (%

N

1 .

=0 L=2
C.2
= - 1

f2 ‘>—“‘1 (£, -1) Py (0

,@ -

These equations can be inverted to give
1
-1 r

=% | [P (N+5,P 0 4 ¢ 3
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