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ABSTRACT

The simiiarity groups for multicomponent, reacting gas mix-
tures with radiative energy transport are derived. The resulting rela-
tions are used to consider the feasibility of scaling for flow processes
with radiative energy transport under highly simplified conditions, Next
thé scaling parameters are derived for radiant energy emission from
isobaric and isothermal gases for arbitrary opacities and various
spectral line and molecular band models.

The radiative scaling properties for representative temperature
profiles for both collision-broadened and Doppler-broadened line pro-
files have been found for a spectral line belonging to a molecular vibra-
tion-rotational spectral band on the basis of exact numerical calculations,
Representative calculations are also given for radiant energy transfer
through non-isothermal, high-temperature air.

Scaling parameters for radiant energy emission from isobaric
but non-isothermal systems ave discussed for arbitrary opacities and
various spectral line and molecular band models under the restrictions
imposed on the allowed temperature profiles for dispersion and Doppler
lines by the Eddington-Barbier approximation. An examination is made
of the failure of the Eddington-Barbier approximation in radiative heat
transfer for line radiation.

The relative importance of thermal conduction and radiation in
heated air is specified through the use of the pertinent similarity group.
Finally, a procedure is given that may be used to obtain approximate

conlinuum opacily estimates in polyelecironic plasmas,
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I. INTRODUCTION

In Secs. I - IV, we consider the problem of similarity analysis
for reacting and radiating gases. We are interested in investigating
the possibility of reducing the physical scale of a given system {(H).
This reduction will ordinarily require a corresponding variation in
other physical parameters besides the spatial dimensions if we wish
to obtain a result from a small-scale system or model (M) that can be
related to the system H in a physically useful manner.

Similarity analysis of the Navier-Stokes differential equations
allows the determination of the dimensionless form of the equations,

as well as identification of the dimensionless groups that enter into

solution of particular problems. From the dimensionless equations and
the characteristic groups of parameters, scaling criteria, i.e., the con-
ditions for similar operation of the two systems H and M may be deter-
mined (1, 2). From the practical point of view, this analysis determines
the possibility of constructing scale models of large devices such as
rocket engines, atmospheric reentry vehicles, etc., and shows under
what conditions the experimental results on M may be used to find the
characteristics of H.

The procedure we use is a form of dimensional analysis which is
applicable whenever the basic differential equations are known explicitly
although their solutions are unknown. It is not enough merely to say that
the solution ought to depend upon certain physical parameters as such an
analysis will overlook the existence of dimensional constants., However,

the pure dimensional analysis only makes use of the existence of the
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various parameters whereas in a similarity analysis the manner is

| considered in Whiéh the dimensional quantities enter into the differ-
ential equations. f For the initial analysis we will consider the
following as dimecnsional dependent quantities: the length L, velocity v,

T!

density p, pressure p, viscosity coefficient U, external force f,

binary diffusion coefficient 'e-ij’ thermal diffusion coefficient D

time t, specific heat at constant volumec CV, specific hcat at constant
pressure cp, temperature T, thermal conductivity A We will
consider these quantities to be functions of the independent variables L.,
M, t and T (length, mass, time and temperature). From the 1l theorem
of dimensional analysis, it should be possible to construct 13 - 4 =9
independent dimensionless groups (for fixed i and j) corresponding to
the above basic quantilies and the four degrees of [reedom. We will see
in the next section that, in fact, non-dimensionalizing of the Navier-
Stokes equations results in exactly 9 independent dimensionless groups.
There may be more groups, of course, in the sense that there may be,
for example, more than one characteristic length L.; but we expect that
we will be unable to find any basically new quantities without introducing
a new concept into the Navier-Stokes equations (e.g., relativity). When
radiation terms are added to the conservation equations, the list of
dependent variables will be increased and new similarity groups will
result. This result will become clear from the analysis of Sec. Ll
Even after all of the pertinent groups are known, it will

ordinarily turn out that scaling is impossible, or perhaps possible only

T L . . .
In this work, the term ''similarity analysis'' means the discovery of
dimensionless groups by non-dimensionalizing the pertinent equations.
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under a very restrictive set of conditions. There are some notable
exceptions, howe\./er, where a certain amount of physical intuition may
be combined with the similarity analysis, yielding a result of practical
importance. Examples of these cases are given in Secs. IV and IX.

Sections V and VI deal, for isothermal and non-isothermal gases
respectively, with scaling parameters for radiant energy emission for
various spectral line and molecular band models. It appears that
simple scaling rules generally constitute a fair approximation for
dispersion lines in non-isothermal systems but that corresponding
relations apply to lines with a Doppler contour only in the transparent
gas regine. A solution to the radiant transfer equation for large
optical depths is found which is useful in obtaining an analytic definition
of an optically thick gas. The last part of Sec. VI includes studies of
radiant energy transfer through high-temperature, non-isothermal
air, a subject of current interest.

The applicability of the Eddington-Barbier approximation to the
determination of scaling parameters is studied in Sec. VII for a gas
with spectral line structure. Simple scaling rules may be obtained in
certain important cases. Sec. VIII investigates the failure of the
Eddington-Barbier approximation when a general non-isothermal gas
is investigated.

In Sec. IX one of the radiation similarity groups of Sec. IIl is
used to specify the relative importance of thermal conduction and
radiation in high temperature air. The diffusion or transparent gas
approximations are used where possible and typical problems of engi-
neering interest are given to demonstrate the use of the results of this

study.
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Finally, Sec. X gives the derivation of an approximate, semi-
analytical eXpres.sion for the spectral absorption coefficient in an
ionized, polyelectronic plasma. Only the bound-free and free-free
transitions are included. The result is applicable at high temperatures,
until line radiation becomes important. The data obtained from the
apf)rcximate expression is in good agreement with data obtained by

much more sophisticated means over much of the spectrum.



II. DETERMINATION OF SIMILARITY PARAMETERS

In this section we will non-dimensionalize the Navier-Stokes
equations and determine a set of suitable similarity groups. After
the nine quantities have been found, we will write them in standard
form; the groups pertaining to radiation problems are discussed in
the next section.

By far the most complicated situation to be considered is dif-
fusion in a multicomponent mixture. In particular, it will be necessary
to express the diffusion velocity of species i, Vi‘ in terms of the
binary diffusion coefficients which are to be characteristic quantities.
Before continuing With a discussion based on the Navier-Stokes con-
servation equations, we shall find a convenient formulation of the

diffusion velocity.

We will define the following quantities:

ﬁi = ini mass flux of species i,

p; = Yip partial density of species i in the mixture,

Yi mass fraction of species i,

Xi mole fraction of species i,

Wi " molecular weight of species i,

39.1j binary diffusion coefficient of species i and j.

The general diffusion equations in the near-equilibrium Chapman-

Enskog solution are, to the first approximation, given by (3)
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where Dij and D;r are the multico_rn‘ponent and thermal diffusion

coefficients respéctively and CT = total concentration. The quantity

—-
di is given by the expression

~ l‘ p—f)i pk}; 1
di:vxi+(Xi-Yi)V1np—Yi,_ e — (2)

k=1

where —f: is an external force/mass acting on species i.

The v equations indicated (for a v-component mixture) are not
independent as the diffusion velocity is defined with respect to the mass-
averaged velocity of the mixture. By definition, the mass fluxes of

each species are related through

Vv

z M, =0 (3)

i=1

Furthermore, the multicomponent diffusion coefficients are not only
functions of both p and T, but also of the composition of the mixture.
Therefore, they cannot be tabulated for a general case because the
very process of diffusion changes their values. We then must exhibit
the dependence of the .\_7: upon the quantities égij which are directly
proportional to 1/p and are a complicated function of T alone. Con-

sider the quantity 1\7[; where
—>' — T .
M,=M,+DVInT. (4)
i i i

It can be shown that (3)

Y. _ M! M!
W ( i PN =
XX, o \ W.X W.X. ) =d;, i=12,...,v (5)
1_] J 3 1 1

j#i
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where W is the mean molecular weight of the mixture. Then, re-

arran.ging the above, we find the following set of v independent

—
equations for the M'i:

S wooMo M
Zl pv)g.. (Xi W. - Xj W. ) = di, 1= 1’ 24’0 o e ,v-l, (6)
pio M 1
1%
Z M= 0. (7)
i=1

Equation 7 may be used to eliminate ML in the set eq. 6. Then —I\—/q

is given by

d1'/X1 12 s 1, v-1
dz/x2 A, o o . 2, v-1
M = dv—]./Xv—l v-1l,2 ° ° ° v-1,v-11 p (8)
1 - i
A11 A12 o o o Al,v—l W
A21 A22 . o o AZ,v—l
A, Moo,z ot 0 Ayua
whe re
Aii_ - X.W.Jg.. - W 39. s 1=1, Z,ooo;v_]-’ (9)
bl T Nt N vTiv
J#i
and
A, = = - L =12 vel, i# j 10
ij ~ W.8.. W_8, 2 L) =l > 17 ). (10)
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The solution for the other mass fluxes will be of the same form with

the column of .a’i/Xi substituted for the appropriate column of Ai1'°

o

In the subsequent discussion, the superscript * will ordinarily indi-
cate a reduced variable and a subscript o will indicate a standard

characteristic value. We define the reduced variables

W, = wi/wo, Vi =VL, X =X, Y =Y,
T T *
ég = = =
ij* aDij/ggo, Di Di /po‘ﬂo’ P P/PO .

The conditions Xﬂ= = X and Y* = Y are equivalent to a restric-
tion on our scaling to cases where we have initially similar concentra-
tions of the fluid components. The more general case is less useful
and is certainly much more complicated.

The quantity —a)iLo is (from eq. 2)

o v
pL % 5 Ptk ] (1)
P b
k=1

— Rk * ok % %
dL, =V X +(X;- ¥; Vi p _Yi_-_[

b3
Let £ = f/fo; the term in brackets in eq. 11 then becomes

x % — pip¥
{fopoll'o ( p fk _ pkf'k ) } .
- P P kel P

Hence, in order for a similar solution to exist to the Navier-Stokes
equations when the mass flux is introduced, it is necessary to have the
dimensionless group (fOpOLO/pO) constant. This is the first of the
nine similarity groups. Often we are only concerned with gravity as

an external force and the characteristic force per unit mass can be

taken as the gravitational acceleration g. The above group may then



be expressed in terms of more common dimensionless groups as

2
g L, /P, = Y M /Fr

where vy is the ratio of the specific heats at constant pressure and
volume, M is the Mach number, and Fr is the Froude numher. We
have now succeeded in expressing the quantity diLo in dimensionless

form. Let us define

v\ X
sl 3%k 1 .
Ay Z_Z % C w0 i=Lh2,..,vel,
o X WL 8. WS,
= i1 1] voiv
S LS R U R T T T
B owhsl we]
joij v oiv

Then, from eq. 8, we have the following expression for Vi

% % ' ¥
d,L /X AL, R
—_— sl e E
d,Lo/X; A2 RN 2, v-1
% % * W * 80
T - dv—lLo/Xv-l Av-l, 2 - e Av—l,v—l —_:O -97< 19- . (12)
! A* A¥ * w Py ©
11 12 <o 1, v-1
b x* %
A1 A22 SRR 2,v-1
* sk %
Av-l, 1 Av—l, 2 - v-l,v-1|

— -
We will have a similar expression for V{. Hence V; may be
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E
1 b

defined by eq. 12 and is a dimensionless function entirely in terms of

written as V; = (&O/Lo)paik*, where the el for instance, would be
reduced variables and the similarity group ngLO/pO,
From eq. 1 the thermal diffusion contribution to the total dif-

fusion velocity vi is given by V’iT where

0. V.lo - DIgIn T
1 1 1

or, if we let T* = T/TO,

t“|"‘a

— ¥ p b E3 & e 3
vI*._. 2y pr —1—\71nT"=(°)H"‘°
i p; o1t L0

(o]

The refore, for the most general case,

V.= (2 ) E?i* (13)

-3 — 4K 3% —
where Gi = G.1 + Hi . Equation 13 is the desired resuilt for Via For
a simple binary mixture,

8

"*_— _ __C_) _ sk e N
v, = Div1nYi_(L )( D V*In Y) ,

which is ©of the same form as eq. 13 if we let - Di*v*ln Yi*z E':;k .
Therefore, we conclude that the diffusion velocity is expressible as

a function of a characteristic binary diffusion coefficient and length

for the general multicomponent case as well as the binary mixture

case and, furthermore, that (for the purpose of the similarity analysis)
the functional form is the same in both cases. Now the Navier-Stokes

equations may be non-dimensionalized.
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A. Continuity Equation

The continuity equation for species i may be written as (2)

8y, W, Y, 1 &
5 - % LB% b Bx, (Y. V; o)

(14)

whére W is the mass rate production of species i per unit volume
(dpi/dt) and tensor notation is used. Let us define £ = tﬁio where

Uio is a characteristic frequency associated with the ith chemical
reaction (i.e., with the formation of species i), Wi/po = Wi/pYi =U. U

Then, using previous relationships,

Y], 4 v, . 37, 9, B[ G Y p ]
PR vl M ey B e I
ot o io 9x U. 1.7 p ox

£ ioT o 4

Similar solutions are possible if the groups DI and DII are kept in-

o0

variant, where these are Damkohler's groups I and II, defined by (4)

0= Y; LZ/AQOe. We actually have two different

II ioT o

Dy, = UioLQ/vo, D
types of DIIo as we have two different types of diffusion characterized

by 8.. and D.T .
ij, io

B. Momentum Equation

The general form of the equations for conservation of momentum

is (5)
fi i
ov, av. 3 0x, ov, v, -
—d by ) = lop _ 1 . i- 419 u(_g_-;-__l)
ot ini P Xj p 8xj p 8X£ 9x. Bxﬁ !
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Defining p = p/p,, we obtain

5 BV:
% 5 1 8(“ —a—_;k
LoVio aVj b VJ_ 3 Ps 1, ( Yo 2 x5
( v ) % Vi ® T 7 ( 2 ¥ P L v *
0 ot ; Bx[_ PVg P o o 3p 9x

We have the new groups M and Re (the Mach and Reynolds numbers)

where

C. Energy Equation

Assume that the heat flux vector 'Ef appearing in the general
equation for the conservation of énergy can be expressed in terms of a
thermal conductivity A and a term caused purely by the diffusion of
enthalpy. This is perhaps not the most general case but we will see

how it can easily be generalized to any situation, The energy equation

is (5)
d(pe) 8(pe) 0v, 3(1'2PV£"£) 3(‘12P"m) 1 vy
dt Jrvi ox. + pe 0x + ot +Vi ox. +_2_ PYeVye Bx
1 { i - k
: ov.
| 2 il
N op o §eom )
= pigvy + z Pl Vil T Bx, Ve 5%, vy

k=1

5 ,Bvi v, 5 : e 5 v
+ -9 lyv (—= + 3 ) E
0%, [p j\ox, Bxﬂ >} * 9x ()\ ox ) ox KP Ykhkvk, 2-) ’
J ] 2 i oot

(18)
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where e and hk are the total encrgy and the enthalpy for species k
. respectively, and we are again using tensor notation. We now define
>’ ES E .

h/cpo 0! €& e/CPOTO, = )\/)\O, f = f/g (again we assume
only gravitational external forces) We have chosen to use a charac-
teristic specific heat rather than energy; this of course is no restriction

The energy equation becomes

on the results.
vop e T T . oarg¥ « Blvy) =
(pocooio)a(pe) +(00P00)l>vﬂ QL%:?._)+pe J
p ot 0 - ijZ
R 3 1 % % % A
iy 25 ) (5 p v,vy) N (povo w 9(5P vyvy) . (l _— *) 8vy T
Po¥o 10 % )| Vi % 2P Veve! TS J
ot o - Ix. X
i k
v
" P S g wx % PV an®
_ * k4 0 o * ¥ < 8p  *
={Pogvyle vy +( T )z Prcfie, £ G, 1 ( L. ) N
k=1 *y
E
52 " 9vy
2 3 M * 5 x
pv - 8x . v w s OV ov. . 7
o o * * X £ J
} ) ® Vi T T % ’V“ i\ *® 3 )
L 9x ox, I X, ox
o) 4 ] 1
v
AT . o *= ¢ T 8 p . - g
00 o} ¥aT _ poooo _9 ¥ ek K
| Le ) ox, {k Bx, ! L° 9% [p zYkthk:’ZJ' a2
0 f] ! £ k=1

Multiplying eq. 19 through by Lo/povo gives the following dimension-

less groups:
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(2) pocpo o io o (d) M2 (2) HoVo
a 1 9% Yoo g p L
oo o o
() Solpoo @ Lo (h) k"T;’J
P, P, PoVoro
p v U. L p 8 g c. T R p
(c) 0 0 io o (£) oo (i) po o0 oo
P PV p v L
o) oo o0 o
Both (d) and (e) were derived before. We also see that
2 2
i Po  y(PoVor 2 UioLo y (PoVo:
(g) = ( = WMA/Re), (o) = (222 (
(POVOLO ) ) ) Py )

Py

v
o]

EY « ;P gL . U, L. .
), (0 = (2 ) (-5=2)( 222) = (DA /(En (D).
. LU o o}

o io
This leaves (a), (b), (h), and (i} unidentified. However, we note that
(i) = (a)/(DH) = (b)(DI)“ " Only three new parameters are obtained:

POCpOTO/PO’ Yo and KOTO/POVOLO" In more standard terminology

we have

. C

(e ) (Zelpee ) (g ) e2) < ZoSpne vt mmben)
0O O o © ©

o io

and
2
VO/Z

P - P Yoo
G )(2)(R) - <Fm - -

A final list of the nine independent dimensionless groups we have found

is



2
&) Sel 2.0 (g) F .o
(a) v, (d) 0 T TDT & FT, 0T gL
A io "k, 0
(b) Re, = oVo ko (e) Pr = CE, oMo () D _ LoYr, o (A)
ST T TN, Lkt =~ v,
2 2
S }J.O i.) M pOVO . (:t’ VO/Z
(c) Cijo ) poﬁijo ( o Yolo ) ) CpoTo:Yo

where the Schmidt number (Sc) = (DH)/(Re)(DI) replaces D and

I’
the Prandtl number (Pr) = (Sc)(Le) replaces Le. The indices k may
run from 1 to § where there are £ characteristic lengths and the
indices i and j may run from 1 to v for a v~-component mixture,
There are exactly (v +v)/2 independent Sc since Q 19
Furthermore, the multiplicity of the groups in the set (A) may
be even greater if other multiple characteristic V;alues exist, (e.g., we
could have more than one v, Or TO, etc.). Sometimes these additional
values are expressed in a form somewhat different from the quantities
given in (A). For instance for two different characteristic lengths we
must consider the two Reynolds numbers Rel PV, ol/l"L s
Re2 PoVo 02/” . One could just as well consider the quantities Re1
and LOI/LOZ’ which saves writing but may create the iliusion that we
have created a new type of similarity group given by Lol/I_l02 (which

may really be considered as the ratio of Re, and Rez). We will find

1
that throughout the literature we will run into many such varieties of
different appearing dimensionless groups and it must be realized that

they all are expressible as combinations of the members of the set (A)

utilizing, perhaps, different characteristic parameters.
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One important group of this type ig designated as DIII

(Damkohler's third similarity group). This is given by

Ditto, 1,k © AhioUioLk/vocp, olo

where Ahio is the characteristic heat per unit mass released in the

i reaction, and c o is the specific heat of the frozen mixture
under the characteristic conditions. It is hard to see at first that this
has any relation to the members of the set (A). However, in a reacting

mixture there are two types of characteristic specific heats, which

might be defined as: ¢ T = Ahio, and ¢

p, 0,170 c . Then by
E Bt ]

P,0,2 p,o
means analogous to those in the previous paragraph we can construct

the ratic c /

= Ah, /c T (which might be considered
P; 0,1 io’ 'p

c
P, 0, 2 yO0 ©

the ratio of two Prandtl numbers, i.e., it is directly related to the

similarity groups previously derived). Then itis seen that

DIIIo = (Cp, o, 1)(DI)/(Cp, o, 2)

or the group DIII has no new fundamental significance. However, it
will often be convenient to refer to this quantity when discussing scaling
problems where chemical reaction is present, Note that if the reaction
specific heat had been included in our original list of dimensional de-
pendent quantities, DIII would have naturally occurred as the tenth
similarity parameter during the analysis.

In the next section the same situation occurs when a radiation
heat flux is considered. This case is easily handled by defining a new

characteristic )\0 in a manner analogous to the above definition of a

new characteristic specific heat.
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It can be shown that for special cases it is quite convenient to

~ simplify the heat flux problem by defining
q=-(\+ xch)/VT

where )\ch is an effective thermal conductivity coefficient which in-
cludes the effects of chemical reaction (6), From egs. 1 and 18 )\ch

is given by

) v 4 % Eil
"ch‘z z - Dy Wy Wihs 37 - (20)
i=l j=1

Although the eXpress.ion has been validated approximately by experiment
(10) we gain nothing in our similarity analysis by introducing this expres-
sion into the energy equation. As seen previously the more complicated
expression for the enthalpy transport due to diffusion gave rise to no
new similarity groups. However, in special cases )\ch may be a useful

concept for scaling.
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III. SIMILARITY PARAMETERS FOR GAS MIXTURES
INCLUDING RADIATION TRANSPORT

To consider radiation effects, we want to exhibit separately
those parameters specifically relating to them., We must consider the
following cffccts:

1. Included in the pressure considered in the momentum and
energy equations is the internal force };a, the radiation force per unit
volume,

2. Included in the heat flux vector T:f is the contribution of the
radiation héat flux vector -E?ra’ the radiant energy per unit area per
second,

These two new quantities enter the conservation equations in a
manner analogous to quantities previously defined (i.e., pressure and
heat flux). It is therefore expected that the dimensionless quantities
that could arise from their introduction will still be of the form of
those in the set {A). Indeed we will see that such is the case. However,
in order to scale a radiative system we must know the precise depend-
ence of -f;a and Fra upon such variables as T, p, p, etc. It may
turn out then that in the formulation of T and F in terms of the
dependent variables, new quantities arise giving a series of new dimen-
sionless groups. In the three different radiation models we consider
below, two new important similarity groups arise in the first two models,
whereas only one appears in the last formulation.

From the conservation equations we can expect quantities analo-
gous to the Mach number and the Prandtl number to arise from the

introduction of the radiation. These would correspond to a new



-19-
PR ! s s
characleristlic pressure P, = Ira oL.o and a new characteristic thermal
) H]

conductivity \_ = F L /T . The new versions take the form
o ra,o o’ "o

2
pOVO ¢ U/HOTO
v.£ L F L °
o ra,o0 o ra,o o

However, it is useful to note that these quantities are strictly related

because

—=L= Fdv (21)

o
1t

L.v. T - spe ctral absorption coefficient/unit length,

c = velocity of light,
Fv dv = radiation flux with frequency between Vv and v + dv.
L define B = F/F dF = F dF ", k =k /k
et us define =F/ a0 OF =F_ , =ky o, p/kg
—_ sy — —
f =f/f ; noting that dF = F_ dv, it follows that
ra, o v
. F k
— — 3 1 de =2k
f =1 f :—53’—0——03 k dF . (22)
ra, o c "
Therefore, we may always choose
fra, o~ Fra, oko/C ’ (23)

At first sight it would appear that we have just interchanged the variable,

—_—

f, for another new variable, kL v. T’ and have not accomplished any-
H )

thing, However, when we attempt to develop an expression for F
ra, o

in terms of the independent variables, the parameter kL v T will appear
3 t
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in a new dimensionless group. Hence we would then have three groups

to consider. By expressing f 1in terms of kL and ?, we re-

v, T

duce the number of similarity groups to two in the general case.

The two groups defined above now become

pvzc c u T

o O EOO Q
v.F k L ' F L °
0" ra,0 0 O ra,0 o

Now the most general case of a radiating system will be con-
sidered, viz., the case of a gas with arbitrary opacity. Later, the

special cases of gases nearly transparent or opaque will be investigated.

A. Arbitrary Opacities

— e

The radiant flux at a location ;;1, F(xl), is computed in a man-
ner similar to that described in Ref. 3, p. 722 and Ref. 7, p. 380,
Figure 1 shows the geometric setup for calculating the radiant flux

emitted at ;;2 into the solid angle d§2 terminating at our point of

a—-

= I3 - %,

observation, ;1, The quantity, X5

— —

Fig. 1. Schematic diagram showing the definitions of X, X, X, and C.
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.;Z
falls off as (l/xlz)z,' irrespective of reabsorption. Then the total

The spectral intensity emitted at into the solid angle df2

spectral flux emitted in direction X T %, is
R  — x _ ['Xl'xzj )
v, T(XZ) L,v, T{ XZ) i X].Z 41TX2
12
where
dV2 = volume element at ;Z s
R® —> ., = spectral radiance of a black body at tempe rature
v, T(x,)
T(?;'Z)
Z‘rrhv'3 1

c? exp [hv/kT(;z)] -1

Including reabsorption, the expression for the spectral flux gains the

additional term

2 <
exp [—Sﬂ kL,v, T() df J ,

]

where we integrate along C in Fig., 1, The total flux at %, is then

1
given by'
— 0 ; 1 2 1
F(X)=Zg§R PRL IR ”{ J
1 Jody v T XZ) L,v, T(Xz) . 2 41TX122
. %12 K
X exp[-,go Ky, oy ] av, av . (24)

To write this equation in dimensionless form as a function only
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of reduced variables reguires the introduction of a similarity group
Bu =k L (25)

which is called the Bouguer nurnber‘.T It is essentially the ratio of two
characteristic lengths as k has the dimensions of (length)_l. However,
it will be convenient to consider this as a new group originating through
the introduction of a new parameter kL v, T into the original list of

variables in Secd. L Let us define k v o= v/vo

Krov,T” Ky v, 7/%
S 3
where Vv _ = kT _/h, 4V, = av, /L, x = x/LO:

L . k4T Bu -—>~‘< %* .
E ( ) F Fra, o = 2 ? g %k sk
eU /T -1
sk
'— 12 sk ES %k Sk %<
X exp | -S (Bu)ok d£ Al k dV dv , (26)
(o} R
or we can choose
k4TiBuo
ra, O - 3 2 ° (27)

h™c

The equation for F may be substituted into the previously given

a,o
expressions for the similarity groups vielding the quantities
2.3 2 ' 32

povchc c:opThc

3
y KT L k*r?

TPicrre Bouguer (1698-1756) was a French pioneer in radiation transfer
studies., The Bouguer number was named in the USSR (8, 9).

*From now on, a "k" without a subscript will be Boltzmann's constant.
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where we have used the fact that kOLO = Buo and is indepeundently held

constant, But the ratio of these two groups is

3 ::C(;_‘ ( ) 2<I> Re . (28)

Thercfore, if we consider ¢ to be a characteristic velocity, the two
radiation groups are not independent, and only one of them need be
consi(iered for a scaling process.

We further observe that the fact that ¢ acts as a characteristic
velocity leads to a severe restriction on the general scaling of a com-
bined radiation and flow fieldo As ¢ 1is a universal constant, we are
required to keep all characteristic velocities constant, i.e., scaling
is impossible with respect to velocity. However, the significance of
¢ as a characteristic velocity is probably related to the comparison of
the rate of radiation transport to the rate of convective energy transport.
For all practical purposes the radiation transport rate can be considered
infinite without a noticeable perturbation of the characteristics of the
flow field, The finite time required for radiation transport would be
important only for fluid flow velocities of the order of c. For non-
relativistic flow fields, the characteristic velocity ¢ can be ignored.

If this is done, the addition of .radiation to the scaling problem has intro-
duced only two types of dimensionless groups. |

The inabilify to reduce the energy flux équation to a simpler
form than eq. 26 means that, to a reasonable approximation, it will be

necessary to consider a continuum of Bouguer numbers corresponding
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to the continuous range of frequency. This results in a severely re-
strictive scalihg criterion which would be extremely difficult to satisfy.
An attempt to change the physical size of a given system, keeping Bu

constant, would require that kL v. T change according to eq. 25, i.e.,

(0]

kL, v, TOLO = constant, for all v . (29)

This requirement is the result of the fact that integrations over the
volume and the frequency in eq, 26 cannot be uncoupled. This is obvious
from the mathematical structure of eq. 26; physically it is a result of

the important and significant fact that the integral depends upon the

distribution of temperature throughout the entire region of interest;
therefore, in general, it is impossible to define a "mean linear absorp-
tion coefficient" that could be defined in terms of local conditions.
Therefore, for scaling in the general case of arbitrary opacities,
eq. 29 must hold. In the special cases considered below it will be
possible to define a mean absoprtion coefficient which can be tabulated.
If scaling is desired without change of temperature, it may be
possible to satisfy even the very restrictive condition, (Bu)0 = constant
for all frequencies. This will be demonstrated in Secs, VI - VIII

where specific expressions are assumed for k.

B. Diffusion Approximation

The diffusion approximation applies to a gas system which is
highly absorbing with respect to radiation. The continuous absorption
and emission of photons on a microscopic scale is analagous to the

diffusion of the photons through the gas. It is not surprising, therefore,



that this model yields quantities similar to those that would be derived
if the photons were considered billiard balls bouncing through the
medium, i.e., quantities analogous to those in the kinetic theory of
gases are obtained, After manipulation of eq. 24 the energy flux can

be expressed in the following form (10)

F=-\_VT (30)
ra
whe re
3
A = 311;>0'T
L, Ro
Here o is the Stefan-Boltzmann constant and the quantity EL Ro is
the Rosseland mean absorption coefficient which is defined by
_ S ( —aT ) v
kL, Ro~ (31)
7 e (B
0 )
where BS = the black body spectral steradiancy. (7).
The radiation similarity groups take the form
- ;
Pr' = Cpo“o/kra, o {(32)

where

A = ¢T> /&,
ra, o o/ o

and

BDu = kL’ ROLO °
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The diffusion approximation results in a specific equation for the radi-

ation force, viz. (10)
f=- (160T° /3c)VT (33)

which leads to

a4
fo-UTO/cLO, (34)

Using this, one constructs a parameter that is commonly found in the
literature

40’Ti/c

Ro= —a— (35)

P Vo/2
which, as previously indicated, is not independent of Pr'. This group
directly shows the relative energy per unit volume carried by the radi-
ation and the fluid flow under the characteristic conditions,

The quantity Bu is no longer a function of frequency and,

from eq. 31, it is determined only by local conditions. Therefore, if

the temperature dependence of _EL Ro is known and is a simple function
of T, it may be possible to scale the radiation field with respect to
tempe rature, impossible in the case of a gas with arbitrary opacity

(Sec., III, A).

C. Transparent Gases

The opposite extreme to the above is that of a nearly transparent
gas. By "nearly transparent" we mean that for all important frequencies,

k 1.<< 1, so that terms of the form [1 - exp (- k

L,v, T can be

L, v, 7%
expanded and set equal to kL v TX to a good approximation. The
H 2
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energy transfer by radiation is again characterized by a single linear
absorption coefficient, 1_<L P’ the Planck absorption coefficient,

defined by (10)

— T o
kPt "2 S‘ ke, v, T v (3¢)
cT 0

However, we have incorporated another simplification into the case of
a transparent gas. Reabsorption of the radiation in this case is neg-

lected; hence there will be no radiation pressure acting on the gas.

Therefore there will be no characteristic force associated with this
model. This condition is inherent in the model and is not an additional
assumption.

For the case of the transparent gas, the divergence of the radi-
ation flux, which would be the quantity appearing in the energy conser-

vation equation, is given by (10)

—»_ _ 4__
Ve F _§ €, v = 40T K oy (37

where

O
€, = 411'kL’ v, TBv o

It is again seen that the divergence of the radiation flux depends only
upon local conditions and the refore scaling with respect to temperature
is theoretically possible, as in the case of the diffusion approximation,
- Specifically we must keep the radiation Prandtl number constant.

Introducing the usual reduced variables into eq. 37, we find

F .
s et ra, o ~ 4 %4 %4
V ¥ (-——]-:-;— = 40"T0k_OT k , (38)
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or we may choose Fra, o 28
= ¢ Tk L | (39)
ra, o oo o’

The previously derived similarity group becomes

CEop'o
cT ok L

00 o
Furthermore, this is the only similarity parameter that arises when
the transparent gas assumption is valid.

Again a somewhat different group is common in the literature.

This is ordinarily denoted by I' where

4—
r = o-TokL,Pﬂ,oLo (40)
o p v T °

&}
O O po O

It is easily verified that I' is related to the basic quantities we have
found by multiplying I' by Reoo The I' may be thought of as repre-
senting the ratio of the radiative energy loss, from the system per unit
area, to the rate of convective enthalpy transport per unit area, evalu-
ated under the characteristic conditions, The parameter I' plays an
important role, for instance, in problems of stellar turbulence (11).
Still another similarity group is sometimes associated with the

case of a radiating gas. This is the so-called Boltzmann number, Bo,

where
O'Tz TO
Bo=‘:IVC = 5o (41)
o 0 po o)

To summarize the three radiation cases considered, the scaling

criteria are the following:
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A, Arbitrary opacities

The groups

2 3.3
PVSC h
4.4 L, T @Y
yok TO o

must be kept constant. Scaling with respect to T 1is impossible.

B. Diffusion approximation

The groups

must be kept constant.

C. Transparent gas
The single group

G
UTO kI_‘, PL, oLo

ro: pve T
0 0 po o

must be kept constant.
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IVv. EXAMPLES OF SCALING PROBLEMS

Let us identify by the subscripts H and M a large-scale

system and the model, respectively. Furthermore, let

denote the scaling paramester for the physical variable .

A. Scaling of Flow in Transparent Gas for Gas Burner

Suppose it is desired to build a model of a large gas burner and
determine its operating characteristics. Assume that the flow velocities
are small, i.e., the kinetic energy in the flow field is negligible com-
pared to the enthalpy transport. Then the two groups M and ¢ of the
set (A) may be neglected. The remaining seven groups plus I’ i‘nust

be held constant. Temperature will not be scaled, i.e., n. =1,

T

We now éhoose as independent variables the quantities To’ Lo’
po, and Vo and will try to express the similarify criteria in terms of
Dy g, n s and npo This is seen to be possible from Sec, I where it
was assumed that all our variables could be expressed in terms of four
independent quantities.

If the flame mixture had a constant composition we could assumec
that the quantities u, A, and 'p!)ij are all proportional to Tl/2 and
independent of p. For a reacting mixture we may have a composition
change and this simple dependence is no longer valid for the cases of

p and A, However, it can be assumed that the deviation from this law

will be small unless ionization takes place (12). Then it is not a bad
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assumption to set nﬁ =n, =n ')gij = n}r/z =1. Assume k is

p L,v, T

proportional to p, =n

o =3 o
There will be an appreciable region of non-equilibrium in the

flame. From classical chemical kinetics (5)

ac, n va
i _ " r
5t - VT VK il (C;) (42)
j=1

where V', v" are the pertinent stoichiometric coefficients, kf is the

reaction rate constant, and C is the molar concentration. The order

of the reaction is defined by

n

-

a (43)
j=1

Therefore at constant temperature, eq. 42 may be written in a reduced

form as
S(P:.‘/W;‘g) YUiOPO N " : n e . - po (9
at:-.: w_ ) = (Vi - vi)kf [H (pJ/W_] )J("’W“O) . (44)

j=1

it is now apparent that the ratio of characteristic frequencies is given
by Ny ='n(§—1 for D =Ny, = 1.

In the following statement of similarity criteria, we assume
that the flame is characterized by a single reaction which may be con-
sidered to go to completion, i.e., the recombination kinetic equation
may be ignored. In such a manner, we are free to change the pressure

(density) over a wide range without affecting the total heat released

during the reaction. This is, of course, a physically realistic assumption.
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All the quantities appearing in the similarity groups to be con-
sidered have been expressed in terms of our four independent variables.

The non-trivial scaling conditions become

1’lRe =T nPnVnL ’
o 6-1 -1

nDI 1= nan nco,
=1l=n n—1

nI—‘ - - L V' Q

6 = ls
Oy = 0
and
o -1/2
np =np o

Hence scaling is possible only for the unrealistic case of a first order
chemical reaction. Also gas injection velocities must be scaled down

and the density increased as the square root of the scaling.

B. Scaling of Flow in Transparent Gas for Uncoupled Radiative and

Convective Energy Transport

Consider the same problem as above with the additional condition
that the radiation constitutes only a small perturbation on the flow field,
It may be important to require invariance of the chemical composition
profile and of the absolute value of the radiant enecrgy emission rate per
’unit area of reaction front. In this case, it is pertinent to demand invari-

ance of the Bouguer numbers, rather than I'. The new condition is
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nBu_=1 :npNL .

Together with the constancy of Re and DI this condition may be satis-

fied for

Hence if the size of the system is to be reduced, the operating pressure
must be increased proportionally. Scaling is possible only for the im-

portant case of second-order, Overall rate processes,
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V. SCALING PARA_METERS FOR RADIANT ENERGY EMISSION FROM
- ISOBARIC AND ISOTHERMAL SYSTEMS FOR ARBITRARY OPACITIES
AND VARIOUS SPECTRAL LINE AND MOLECULAR BAND MODELS

For isothermal systems at the temperature T, the emitted

steradiancy may be calculated from the equation

B(T) = -11;5 RZ [1 - ex:p(—PwX)] do .

The results of these calculations are summarized in Table la for selected
spectral line shapes and in Table 1b for selected vibration-rotation band
models.,

From the data listed in Tables la and 1b, we may draw the follow-
ing important conclusions:

1, For transparent gases, the steradiancy is directly proportional
to pL. irrespective of the spectral line contour or of the band
model.

2. The important scaling parameter is pL at all optical depths for
isolated Doppler-broadened lines, and for all band models in
which the spectral line structure is effectively smeared out.

3. The steradiancy is proportional to m at moderate to large
optical depths (a) for isolated, collision-broadened lines, (b) for
isolated lines with combined collision and Doppler broadening
falling in the "square-root region" of the curves of growth., Also
for statistical distributions of the lines described under (a) and

(b) JpZL is the important scaling parameter.



(°=8ed Juimol[oy uo s9JON)

(eg¥~-¢) “(8%-¢) °sbm

o [ 10y [ >> X d

Buruoproaq
MJIB]}G ISPI0-]1SILY

T JO senyea T[B 10}

I93UeD 9UI[ oYl IRDU INOJUOD
ou1lf @y3 jo juapuadepur Iy
ayeuw 03 9fIe ATJuUS1d1iyInNs SI
X,d °I9Uym ymold Jo s9AIND

Sutuopeoaq

9-% 911 oy} yo ,uoifaux poo.Huo.Hmst: *d dA\ .

(se€-%) "PH ™ e 107 T >>X d .19 zo1ddo poulquiod

, 3 ~
(11-%) ‘(01-%) "sbA T<< (X, @) W | (11" 9d) wf = (x,d) uIfh

(8-7) b oot Td Sutueproiq

I>X,d *Aa 121ddo(g exnd

dx q 10} (62-%) 'PA (£/2) < (q22/XS) *ANQ\ v SutuspeoIq

(82-%) "b> (1/2) > (quz/XS) ,._AAQ uots1IToo 2and

q JUB}SUOD IOj

(62-%) ‘b (4/7) < (qu2/XS) *qa\/ " Suruepeoaq|

- (8Z-%) °ba (2/7) > (q1Z/X8S) %Qa su1l TRangeu sind

goand1q Io0
(s)uoryenby orseg

SUOT}IPUO) PA1}DTIISOY

Aoueipey 22Ul 9y} jo
Aouejsuon) $9INSSY UYOTUM
(T) yaBuoT [BOLIIPWODD
pue (d) Ajrsus( Fo uoljoung

INOJU0 dUL]
pawnssy

sIeyjTwy Tewxsyjos] ‘sadeyg sur [erloadg po3oalag I0f soIny Sul[eds UolEBIPRY

“e] oqeI




~0
cowmioAa jtun 1ad suoa3oa[e Jo IdqUINU = *u

_ sSutuapeoiq xa(ddoq @1nd Yimw SUIL resioads B 10y I93USD SULL SYJ JB JUSIOIFFS0D uonydiosqge

re110eds 9Yj JOo oN[BA WNWUIXBW = ,d f(y-wad ut) Lulf Teajoads e Jo YIpuWA-FIRY-TUISS uotszadstp
= q f(y-souwrje-5 _wo ut) aury ?.Sum%m e j0 uonpdrosqe pejeadagul = ¢(sowrje-~uwd ut) ydop
1eosnydo = X X.Tmoﬂhm-ﬁugu ut) ™ IaquUnu SABM O3 I Jue101jjo00 uolldiosqe Texjoeds = Mg

(L °32¥) ‘696l
¢ sggepy ‘Suipeey ‘oD Jurysiiqnd Aorsom ~uosIppy ‘Iouudd °S °S Aq sO13TAISSTWUY SBD
pue Adoosorjoodg 1B[NOS[OW SAHRINUEND 00q 2y} 03} IS9fa1 siaquinu sInd1y pue uoijyenbr

*S3SIXO

fytreuotjzodoad ou yinoyire I pud d jo umorjouny palyroads Sy} Aq poutwaalep st Louripel
oul] oy3 Jo AdUE]STOD ‘YSLISSE Jnoyitm [ pue d Jo uollouny peaiytoads =Yg o3 reuotyzod
-oxd A1102xtp st LouetpeI 2ULT O3 JBY} OI® OTpUL MS1I93s® UR YJlm PoIFruspl s oT1TIUEny

(penurjuo)) B[ SIqBL

(2)

(Q)

()

$S910N



M TI® 103 [ >> Xanm

s[epow pueq I9Yyjo [[®

saull Texjoads Surnqril

9-% 311 -uoo juejiodwIl {2 I0J T 8 3 €
I 12 1037 tmouad jo uruspeodq
pue (8I1-11) °*bm soAInNd 9y} JO uUoidax jooi-osenbs T, 9N uotstoo pue ro1ddoq@
@lnw ow.—m T >> @\vﬁm peulquIco gl
1 s 2 soul] TEI310ods Jo U0}
pue (81I-11) "PH pue 1 >>X,d « Td -NQLIISTP TB21ISIIe]S
. . seui] pousdpeoIq
(8-%) “(811-T1) "sba suou Td -zo1ddo( Jo uwon
(8-%) “(8T1-11) *sba 1 >> Axw\um.m.g m [[eaojiI>X d V.AAQ -NgiIisip [es1)sijels

- Luﬂ., {qu

MMONH :W .wL I << bhm\ Xg) Wm.\z saul| pauspeolq
0Z1-11) *bA 1>> (qee/Xs) | T -UOTISI[IOD JO UOT}
(e0zI-1I) *ba 1 VVA._A@\NMV pue 1 >> AQhN\Nm.v H N T1d -nqII}sip [ed13siiel}s

‘bos 3o (¢HI-11) *PE

110 poIBaWIsS 9INJONILS
July TRUCIIRIOT ‘0  (My/XD)

JuB}SUOD §,19TnH = D
.vw (my/XD0D) ﬂﬁ\/

%

(6¥-11) *bm oﬁ%d 1d 1opouwr 2ulf
(0¢-11) *ba ™ e I0f I>>X d L 1d Surdderzeso 3snl
(92-11) *(52-T0) "sb suou d epowt
(92-11) “(g2-11) *sbH 1>> (my/XD) Td xoq senfueloox

Bl ©[q®L Ut PRSI SE
suotnyenbo arqeoirdde

LouetprRI pukRq [BI01 92U} o.ﬁcﬁ.ﬁmwwv
yomm soUll Tex1d9ds Y3 jo [[e I0j
sorydde inojuoo sul] pawinsse 9Oy}

(BT °219B1 29°8)
soui] rexjoads pejejost
103 s3[nsax afqeorjdde

‘sout] [BI3oods
Surddeiisac-uou

(s)uorgenbyg otseg SUOTITPUOT) DAIDTIILSOY Aoueipey purg °uj} o 1°9POIN pueg
Aduelsuony s0INSSY YDTUM pawinssy
(1) qaSuar 1eO1IIoOWORD)
pue (d) Aitsus( jo uolduUN g
SI9)TWI [RWISYJOS] ‘S[PPO PueRg UOII2}0I-UOTIRIGIA PI109[3g 10] SOINY Sutrredg uOHBIPRY ‘Gl STYBL-




-38-

*Jutusproaq

a91ddo@ sand yjm sury Hmhaomﬂm ® IO} T2JUSD SUIT I3 Je m JO enfea WNWIXeW = ,J

Q

¥,
B3

ZTEU Ul) S9Ulf Hm.Bqum aYl JO YIPTM-FTBY-1tIas uolsaadsip = ¢

il

.A _wid ut) saurf [ex3oods yo Juroeds uesw

xﬁsmoﬁﬁwnmnﬁo s«vﬂoﬂﬂﬁ.ﬂm%ﬂmoﬂmﬁmum9.38
Sumnqrajuoo souil TRI303ds oyj Jo yoea 1oy uoppdiosqe porexdojqur oyl Jo SnTEA JUBISUOD = S
mAH,Eo u1) pueq qompﬁoanﬁoﬂdhﬁ.\y B JO YIPIM OATIIDIIFO = Oy

iTmoﬁﬁm-N _wId ui) pueq uoHeloI-uoleIqla B yo uonijdiosqe peyealSejur = o

{(sowrje~wio ut) yadep teo13do = ¥

{(, sourge-~_ WO UI) M JIoqUINU ©ABM oY} J8 JUSIOLyFood uonpdiosqe rexyoods = g

1- 1-
(L °F2¥) “6S6l
‘*ssey ‘Buipeoy ‘o0 Sumysiiqng AS[SOM -UOSIPPY ‘Iouusg 'S °S Aq SOINIAISSTWIE Sen
pue Adooso1309dg IBINOSION OAIJBILJUENY M0Og 9Y3 03} I9JoI sxoquuinu o2indiy pue uorgenbry

°s3s51%2 AjrrRuoiirod

-oxd ordwts ou ySnoyire 7 pue d jo coﬂucﬂﬁ poirtoods oyl Aq POUILIID}SP ST AouBIpEr
pueq oy} Jo ADUB)ISUCD S1I9)s® Jnoylm ] pur d yo uoldouny patyroeds oyj o3 reuorirod
~oxd Ay30911p st Aoueipea pPuRqg 9y} ey} 9JeDIPUL MSLISISE UE YIIM PRIJTIUSPl sonljuenyy

(penunuon) q1 91qeT

(@)

()

(®)

1s930N



-39-

VI. RADIATIVE SCALING PROPERTIES FOR REPRESENTATIVE
TEMPERATURE PROFILES

The integral of 'eq. 24 for the spectral steradiancy Bv is the

formal solution to the linear, first-order differential equation

dBv

)
:1“'7 =Lk, (B, - B) (45)
S

whe re s = s/L0 is the distance along the line of sight, and LO is a
characteristic length of the system. Equation 45 has been integrated
numerically by means of a fourth order Runga-Kutta method for repre-
sentative temperature profiles, The temperature profiles are repre-

sented by the expressions

T

3}

=]

*_qm _
(Tm’X— TO)(l - iS 1| }y + TO’ m=1,2,4, (4:6)

The specified temperature profiles are sketched in Fig. 2.
For local thermodynamic equilibrium, we find for diatomic

emitters, to the harmonic-oscillator and rigid-rotator approximation,
the following relation for collision broadening:
2 _ W T To3 /2
ky, = 8 2.2 Au-*.@kkT ) b (T> [1- eXp(ﬂloTQ/T)]gu
T VO o 0

24, 2 -1
XIL - exp(-bv k)] [exp(-E, AT {1 + [(v-v ) HolT /T)1}
(47)
Here Vo is the frequency at the center of the emitted spectral line;

A is the Einstein coefficient for spontaneous emission for the

u-—>{
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transition producing the given spectrgl line; 8, is the statistical
weight of the upper energy level involved in the transition; p/kT0
represents the number of molecules per unit volumes at the pressure

p and at the reference temperature TO with k denoting the Boltzmann
constant; o, = th/kTO where B is the appropriate rotational constant
for the rigid rotator; bo is the spectral line semi-half-width at the
pressure p and at the reference temperature T _ and we have as-
sumed that b = bd‘/To/T at the constant pressure p; u, = hve/kTO
where Ve represents the normal vibration frequency of the diatomic
molecule (harmonic oscillator); E, = energy of the lower state above
the zero~-point energy,

For Doppler-broadened lines, we find

2 . /2, T_.5/2
_ C D in 2 o
kv - 81TV?) Au—>E 8y (kTO-) b];’ 0( T ) (-T_) [1—exp(—uoTo/T)]
Vv 2 To -
X[l-exp(-hvo/kT)] [ exp{—E? /kT)] exp [—(ln 2)(b ) = (438)
’ : D, o -

where the Doppler half-width under reference conditions is given by

 2kT 1ln 2 . 1/2
b = k————-—-—-———o ) v
D,o 2 o’
mec

Numerical integration of eq. 45 using eqs. 46, 47, and 48 yields
values for the emitted steradiancy. These values are shown in Figs. 3,
4, and 5 for the R3{(v=0, J=3=v=1, J=4) line of HF, For
this line in case of dispersion broadening, bo/c = 0.132p cm-1
(p in atmos) whereas for Doppler-broadening we have used bo/c =
5.85 X 10—3 cm-l. The reference optical depth is defined as Ty =

,’5
(Lo/"bo)) kv, Odv (kv, 0> absorption coefficient evaluated at To),
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v

b
Bv o % is the spectral steradiancy at s = 2, and Bs* represents the
» . .
: "
integrated steradiancy at s = 2 for the entire line.

Reference to Fig. 5 shows that Doppier and dispersion broaden-
ing produce the same total steradiancy BS* for the case under con-
sideration for large values of T_ provided that b_ .. . =

) o} o, dispersion

Zbo,Doppler’ i.e., for p = 0.1 atm.

A, Dispersion-Broadened Line

Examination of Fig, 3 shows that the R3 line of HF retains a
typical dispersion contour until T becomes greater than about 10,
when self-reversal becomes important. Hence T, = 10 may be said
to define the upper limit of the transparent gas regime. From Fig. 5
it is seen that the pressure and length dependence of the steradiancy
for T <10 is

By P L, (49)

i.e,, it is the same as for an isothermal transparent gas, In general,
Ty = 10 corresponds to a small physical length for a strong spectral
line, For the R3 1line of HF, the value of Lo at 'TO,= 10 is about
0.015 cm.

The center of the line is essentially completely self-absorbed

for T,=100. Figure 5 shows that 7_ S 100

B .« pOL R (50)

s* e}

which is the same as for the Eddington-Barbier approximation or for

the isothermal case for large optical depths. For a strong line, the
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transition to the regime described by eq. 50 occurs at a small physi-
cal length (= 0.15 cm for R3 line of HF), In Sec. VI, D below, the

lower boundary of this regime will be found analytically.

- B. Doppler-Broadened Line

The plot in Fig. 4 shows that self-reversal for the Doppler-
broadened line becomes important for 'Toz 5. However, reference to
Fig. 5 indicates that eq. 49 remains valid up to T 10 which, at
p = 0.1 atmos., corresponds to L0 = 0,007 cm for the R3 line of HF,
For larger values of T however, the Doppler-broadened line does
not approxirmate the behavior of the dispersion-broadened line, i.e.,
B does not become simply proportional tu a power ol LO. Rather,

B

§*

becomes a weaker and weaker function of T, as saturation is
approached.

The more complicated behavior of the Doppler-broadened line
compared to the dispersion broadened line is the result of the fact that
the Doppler line half-width increases with temperature while the dis-
persion line half-width decreases with temperature at constant pres-
sure. Hence, viewing a Doppler-broadened system at s* = 2, the

radiation emitted from the higher temperature regions is "seen" at

all optical depths since this radiation is not extensively reabsorbed,

C. Solution to the Radiant Transfer Equation for Liarge Optical Depths

We nuw derive a solution to the radiation transfer equation for
large optical depths when scattering may be ignored. The basic radi-

ation transfer equati'on may be written
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dB,

E
ds

o]
= -t,B, +1,B (51)

where t = L k,. Foran optically thick gas, we expect the B, will

be nearly equal to BS, We shall now find an iterative solution to

eq. 51 which to the first order yields

O
dBv dBv
kT #* °
ds ds

Substituting this relation into eq. 51 and iterating {see Appendix B)

we obtain, to the third order in 1/t

o 2.0 o)
B BO 1 dBv . 1 d Bv dBv dln tv ;
Bv T * 7 %y % %
v ds tv ds ds ds
3,0 250 o .2 o
1 dBv d Bv dlntv dBvdlntv dBv dlntv 27
- _3- *2 -3 2 9 = B3 *2 + 2 %:( e > }"
tv L ds ds ds ds ds ds ds

(52)

The solution takes a more useful form if we make the following
substitutions: let 6 = uoT/To and X, = - 9’/tv {where the prime

indicates differentiation with respect to s ). Equation 52 becomes

now
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din B J d1nB)\2 4 dln B a%n BY
B, =B 1+[________de jx + (’ do ) Tz Tam T z
‘ o' de
Q 2 o)
(dlnB (dlnt ) XZ +[em dlnBv+ g" d7ln BV
de v | g3~ db 02 aol
3 o} o) o) 2 o}
+d1nBv+(d1nB \)3+3dlnBv(9£ dlnBv+dlnBv )
e de : a6 o'2 do 402
o) o) 2 o)
_S(dlnBv>2 dlntv> _3dlntv(§: dlnBv+d1nBv>
i do do e,2 do dBZ
d 1n B® dlint, dlnt .d 1n BS dint,
_ v (9" 3+2( )( X3 .
de 2 db do y

61
(53)
In the following discussion we will be concerned with rotation-

vibration spectra and will assume E£ =0 (i.e., transitions occur

to the ground state) and hvo/kTo =u (which is nearly true for vibra-

tion-rotation transitions). These assumptions are actually not essential .

in the analysis. Now

BIC::—TQ———__ {54)
u”/e
e ¥ -1

(55)

whcre

In order to simplify the calculations, we now assume that
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exp (hvo/kT) = exp (ui/e) >>1 (56)
in the temperature and frequency regions of interest. Then egs. 54 and
55 become

B2 = C ex (—uz/e) (57

v 3 o) ’
and y
u_3/2
o] 1

t, = TO(T) 1+ 61"7110 * (58)

We again choose the temperature profile

8 =u[10 - 9(s™- 1)™] (59)

<

b sk
corresponding to T = 300°K at s =2 and Tm 3000°K at s =1,

ax

Substituting eqs. 57 and 59 into eq. 53, we obtain the steradiancy at
dc
the line center received at s = 2 (i.e., at the point of observation).

The result is

__o | 1 {m-1 1 2
B ~BVO;1+XV +!1-a;( e

R o

|

+[1-.5_(.@_9:I51_+%)+;12((rn_-1>___<rnfﬂxgog, (60)

L o 81lm
o
It is apparent that, after N iterations,
R o B n
B, =B, ZJ a X, (61)
o} o o
n=0
where .
- 1°
a '—1 - O "—') ° (62)
n u

TO(T}:’)E of order (Tl];) .
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Hence an upper limit for B, is

o]
0 BS
-
Bv - B,‘C: Z XI,J - 1-XO 3 XVO <1 3 (63)
o o~ o v
n=0 o
where x, = 9u0m/TO 0

O

The values of Bv at the line center are listed in Table 2 for
the R3 line of HF as calcg_lated by numerical integration of eq. 45
compared with those calculated by eqs. 60 and 63,

The prediction derived from eq. 63 that B, depends, in the

; o}
totally absorbing region, mainly upon the ratio m/’ro (i.e., upon x

)

14

is substantiated by the data of Table 2 (see, in particular, the values
for m/T_ =1/500 = 2/1000 and m/T = 2/500 = 4/1000). Therefore,
the steeper the temperatiure profile near the point of observation,

the greater is the required thickness of the system to give the same
intensity of radiation.

The soclution found here is uscful whenever optically thick gases
are considered. Specifically, we shall use it for deriving the diffusion
approximation {Appendix A), evaluating the Eddington-Barbier approxi~
mation in the limit of an optically thick gas {Sec. VIII, B), and for the
determination of the lower bound for the Jp—zl: dependence of the

steradiancy of a pressure broadened spectral line (Sec. VI, D).

D. Determination of the Lower Bound for the ysz Dependence of the

=

Steradiancy of a Pressure-BDroadened Line

For a pressure-broadened, strong spectral line and a repre-

sentative temperature profile, the steradiancy is proportional to pZL

O O

for all but relatively small characteristic lengths. It is obviously of
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interest to determine a general criterion for the applicability of this
type of p-L dependénce in order to facilitate‘ consideration of various
spectral lines and temperature profiles, From representative numeri-
cal calculations, it was found (see Sec. VI, A) thatthe steradiancy be-
comes proportional to V piLo at the same time that the line center
displays total absorption. This has been noted previously for iso-
thermal systems (13). We now use the solution to the radiant transfer
equation, derived in the previous section, to define the condition for the
center of a spectral line to correspond to a large optical depth where
eq. 61 is valid.

It is apparent that, as N— o, the series given by eq. 61 has a
radius of convergence R = LT However, we may now obtain a conser-~
vative estimate of the lower bound of the region of pZL dependence
of the steradiancy by setting

R=1=9um/T ,
0 Oﬂ.b

i, e., we assume that the line center is totally absorbed for x, < R
o]
or T >T, . Actually, we would expect that the real lower bound may
Ib

be somewhat lower as the a, in eq. 6l really are less than unity.

Reference to Fig. 5 indicates that for m =1, T, 2100, From eq. 64
Ib
we find the value 7_ = 179 for the lower bound, which is in agreement
b

with our rough cstimatc.
Consider a temperature profile which behaves similar to the one

considered above and, near the point of observation, is given by

"If 2 ineq. 61=1, then R=1.
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ll| . >:< m
G =a-As -1) (65)
o
rather than by eq. 59. Here a, A, and m are arbitrary constants
*

adjusted so that at T = TO, s = 2 = the point of observation. Then,

(see eq. 64)

T = kuom . (66)
°1p

Once To,eb is known, we may determine the least value of ZLO
(the physical width of the radiating system) for which BS>=< o JE“
for any given vibration-rotation .1ine of a diatomic molecule. k Con-
versely, if the physical system is gi%fen, one may find the minimum
matrix elements {or Einstein coefficients) for which BS* = Vrp_ZL_ in a
given spectral band. In such a way one may determine if the total
steradiancy of a system of isolated pressure-broadened spectral lines
is proportional to mo The detailed behavior of the temperature

profile is needed only near the point of observation,

The preceding statements are, of course, still based on the

assumead truth of the observation that the start of the region of JpZL

dependence on BS

E

E. Radiant Energy Transfer from High-temperature, non-isothermal,
Air

Recent calculations by Breene and Nardone (14) of the spectral

absorption coefficient of high temperature air have been used to

T “eCA_,,8.0, P - -1 (-hvo _\
Specifically, 7_ = L L J l-l - exp(-u ) {1 - exp\
o o] BWZVCZ)kTO bo o J kTO )

and the absorption of the line center are concurrent.

-

J :
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determine the radiant energy emitted from a non-isothermal air svstem,
For the computing machine calculations, the spectral data for p =1 atm
and T = 3000°, 4000°, 60000 and 9000 °K served as input data; for |
intermediate temperatures, logarithmic interpolation was used to ob-
tain the values of the absorption coefficient, The data were obtained
from Figs, 43, 44, 46, and 49 of Ref. 14 by interpolating between the
appropriate density valucs and dividing by the geometric factor of 1. 8.
Figure 6 shows the values of kv that were used as input data in the
IBM 7090 program for T = 4000°, 6000°, and 9000 °K, reference to

Fig. 6 shows that a large degree of spectral resolution was retaianed.

4

1. Calculations for a Parabolic Temperature Profile
In the following analysis a parabolic temperature profile (see
eq. 46 with m = 2) was used with the temperature range extending

from 3000° to 9000 °K. The temperature protile is given by

T=T(s) (67)

e

where s = s/so and 5, is the physical width of the system. Hence

the optical depth is given by

- ° ! * %
T, =S kv(T) ds = so‘g‘ kv(s } ds ~ (68)

o) o

The function 'Tv/s0 is shown in Fig. 7 for the specified temperature
profile, From Fig. 7, the optical depth for any frequency or phys.ical
width of the radiating air system may be determined.

In the isothermal case, the gas would be considered transparent

for T<0.3. It is to be expected that, for the non-isothermal case, the
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limiting value of 7 should not differ greatly from this value. As may
be seen in Fig. 7, T, has maxima at w = 46, 500 and 49, 500 cm
The effects of increasing s, are, therefore, first apparent at these
wave numbers. For s, = 60 cm, the value of T, at w = 46, 500 and
49, 500 cm—l is about 0.4, which 1'.’s close to the expected value for
‘transition from the 'transparer.xt gas region,' Figure 8 shows the value
of the spectral steradiancy emitted from hot air for s, = 2 cm and

60 em. Az expected, the spectral distributions are generally similar
wif_h_ some differenceé oécurring near o = 46, 500 and 49, SOOA cm_l,
Furthermore, the integrated steradiances from 53000 cm-1 to

56, 000 crn-1 are .0.450 watt/cmz and 13; 3 watt/crn2 for s, = 2 cm

and 60 cm, respectively, i.e., roughly in the expected ratio of 1:30

for transparent gases. The most important contributors to the spectral
structure shown in Fig. 8 are, for 5000 cﬁ_1< w < 12, 500 cm™!, the
filrst p_osi_tive system of NZ; for 23,000 crn“1 < w< 32, O0.0 lcm-l, the
first negative system of N;; for 40,000 cm—l < w< 53,000 cm_l, the
gamma system of NO,

In Fig, 9, the high frequency values of Bv(O) for so = 2000 cm
are con’;ras‘ted with.lOOO Bv(O) for s, = 2 cm for the specified tempera-
ture éroﬁle. If the gas were transparent, these curves would coincide,
as is actually_ the case for wave numbers less than about 30,000 .cm—l.
The strong. absorption bands at higher frequencies are produced by the
strong NO gamrlna system which is of primary importance in the éooler

gas regions. The integrated steradiancy for the wavenumber region

from 5000 cm”™* to 56,000 cm ™} is 345 watt/cm®, i.e.
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w6 =
[B(0), = = 2000 cm1/[B(0), s_ = 2 cm] = 345/0. 450 = 789,

It is interesting to compare the exact calculations of B(0) with
an estimate obtained using the Planck mean absorption coefficient and

computing B(0) from the expression
p g8

B(0) =%y py (U/v)—fzs (69)

o]

where EL ot denotes again the Planck mean absorption coefficient and

—Tg is an appropriate average temperature of the gas. We take
.Tg = 7500 = 1000 OK, since we expect the higher temperatures to be
weighted more heavily for transparent gases and the parabolic tempera-

ture profile. Using appropriate data from Ref. 15, we find that
4

kL, pe = 1X 10

agreement with the result derived from exact calculations, viz.,

crn-1 T and B(0)/ s, = 0.57 = 50%, which is in fair

B(0)/s _ = 0. 225,

2. Calculations for a Reentry Vehicle

The heated gas behind the shock wave in the stagnation region
of a reentry vehicle may be considered to be isothermal if the thermal
layer thickness is small and non-equilibrium effects are unimportant.
In this case, radiant energy transfer calculations are easily performed

since k is constant along the optical path. However, the thickness '

TAt 8000 OK, a préssure of 1 atm corresponds to p/pDz 10_7/4 (see

Ref, 16). Logarithmic interpolation between calculated values (15)
at T = §000°K gi?rcs EL,PE =1,0 %1074 cm"l.. Because TiL,PP.
vuries strongly with temperature, the use of this value of kL PI

in the calculations of B(0) can only be expected to provide an order-

of -magnitude estimate.
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of the thermal layer (= d..) is proportional to the square root of the

T
vehicle nose radius whereas the shock detachment distance (= ds) is
directly proportional to the nose radius. It is therefore to be expected
that, even for rather low reentry velocities, the non-isothermal tem-
perature profile of the heated air will become important for sufficiently
small nose radii.

In the following representative calculations, we have chosen
a stagnation pressure of 1 atm and a stagnation enthalpy of 10, 000
cal/g, corresponding to an equilibrium temperature for the shocked
air of 8550 °K. These conditions apply to a reentry vehicle at about
30, 000 ft/sec at an altitude of 100, 000 ft. The wall temperature of
the reentry vehicle was chosen to be 2000 °K.,

Figure 10 shows the temperature profile used in the numerical
calculations of the emitted radiation., It is based upon calculations for
the stagnation region of a reentry vehicle nsing the real gas properties
of air (17). The radiant energy transfer to the missile wall has been
calculated using again the data of Breene and Nardone (14). The results
are shown in Fig, 11 which gives the spectral steradiancy emitted in
a direction toward the wall, Also shown are the data of Fig. 8 for a
parabolic temperature profile and a geometrical thickness of Sg = 2 cm
multiplied by 0,075 for the purpose of comparison. Calculation of
the optical depth again indicates that the maximum values of T, occur
at w = 46,500 and 49, 500 cm™t where T, = TX 107> for the tempera-
ture profile of Fig. 10. Since the air is optically thin at all of the

frequencies considered, the steradiancy is obtained from the integral
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Bv(s) =S‘okav ds . (70)

It is then appaient that the absolute value of the steradiancy incident

on the wall is equal to the incident on the shock front, assuming that

the radiant energy from the wall itself may be neglected. Furthermore,
because of the transparency of the heated air, we may assume that
B,(0,8) = B (0, 0)/cos @ where 0 is the angle of the incident radiation
measured with respect to the normal to the wall, Hence the flux to the
wall becomes

B (0,0)
FV(O) =5 / —E(-)—s——e—- cos 6 dQ = ZTTBV(O, 0) (71)
/2

and F(0) = ZWSBV(O,O) dv .

Our calculations give a value for the integrated steradiancy from
5000 to 56, 000 cmn L of 3,03 X 10”% watt/om?, or the total radiant heat
delivered to the wall is F(0) = 0.19 watt/cm2 = 0,116 Btu/ﬂ:2 sec. Under
the given reentry conditions, the total heat flux to the wall due to thermal

conduction (17) is about 4000 Btu/ftz sec,
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VII. SCALING PARAMETERS FOR RADIANT ENERGY
EMISSION FROM ISOBARIC BUT NON-ISOTHERMAL
SYSTEMS IN THE EDDINGTON-BARBIER APPROXIMA TICON

One of the cla_ssical approaches to the theoretical calculation
of radiant energy emission from non-isothermal systems is exemplified
by the Lundblad series development for the solar photosphere (Ref. 11,
pp. 109-115, 382-384) (18,19).

The spectral steradiancy at the frequency Vv and at the optical
depth T, = 0, corresponding to the geometrical length s = 0, in the
direction B' (see Fig. 12), is given by the relation

@ =
BV(O,G') :§ BS(’TV)% exp[—'rv sec 0' J}(sec e') d’rv

(o]
(o8] S 1
= g' Bs(s)‘ {exp ( f ky (s") ds’ l} ky (s)ds  (72)
Yo . ~0 ) _ H

where BS is the blackbody steradiancy for local thermodynamic
equilibrium at the optical depth T, = COS G'SS kL, v(s') ds' corre-
sponding to the geometric length s, along th: beam of the emitting
system, for a spectral linear absorption coefficient k, = kL, ve
If Bg('rv) is developed in a (Lundblad) power series in T,

viz. ,

X .

BS(‘TV) = Z ai'ri , _ (73)
i=0

then
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—

. oo .
B, (0,6') :Z aicosle’(‘ ve Vdy =
0 ‘LJO

a.i! cos'’ (74)
1

o[>78

where the substitution y =T  sec 6' has been used, Comparison of

eqs. 73 and 74 shows that

"W _ n0 _ e s o=
BV(O,G ) = BV(T } for a.= 0 if i= 2, (75)

T =cosH'
v

i.e., if only the first two terms are used (Eddington-Barbier approxi-
mation) in the power series given in eq, 73. The physical interpreta-
tion of eq. 75 is the following: the spectral steradiancy at T, = 0,
observed at an angle ©', for a non-iséthermal system is identically

equal to the numerical value of the spectral blackbody steradiancy

o] : - t :
BV(T’TV=COS El') at t:e optical depth T, = cos 9' or at the geometrical
length defined by |\ kL v ds' = 1,} provided only two terms are used in

./O 3

the power series expansion shown in eq, 73.
It is interesting to considcr the possible temperature profiles

for selected spectral line shapes that are consistent with the statements

s
BO('T)za +a,T =a_ +a,cos B'SI k (s') ds!
vy o v

1Ty T3 7% .
= B(0) + [BS(TTv:COSe,) - B:(O)}S:kv(s') ds'  (76)
and
gs k (s')ds' =1, (77)

TNote that s 1is measured along the direction 8' shown in Fig. 12.
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We assume a monotone variation of T and T, with s (and thus also

of 7  with T) and we impose the boundary condition T = T0 at

T, =8 = 0. Differentiation of eq. 76 with respect to T yields the

differential equation

2h®v* 1 exp(hv/kT)
1 ¢ kT? [ exp(hv /kT)-1] 2

, ds 1
{cos e')kv(T)_&_T = 2

(78)

It is now possible to specify kv(T) for various spectral line profiles
belonging to various assumed atomic or molecular emitters. We may
then integrate eq. 78 in order to find- s as a function of T. Finally,
eq. 77 may be used to obtain the proper value of s, and hence of T,
for which B (0,8') = B) (T for 3"skv(s') ds' = 1),

In the analysis presented ci>n eqs. 72 to 78, it has been assumed
that the quantities a, are independent of T, For an emitting system
with structure, this statement can be true only spectrally, i.e., a

different value of a; must be chosen at a different frequency for any

specified temperature dependence on geometrical length, The impli-

cations of this fact may be clarified by referring to the schematic dia-
gram shown in Fig., 13. The temperature profile must, of course, be
independent of frequency in any physically meaningful problem. How-
ever, the physical location s and the temperature T at which eq, 77
is satisfied is strongly dependent on frequency. In the near line wing
at the frequency Vo + Avl, the integral condition of eq. 77 will be met
for small values of s and T; on the other hand, in the far wings of
spectral lines where v = Vs + sz, much larger values of s, and

hence of T, are required (compare; Fig. 13). In other words, the
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(s,T) at Y+ Ay, for

{s,T) at ’6‘+A”1 for
S
[ kyls)ds’=1
0

W, e — p— it st bl sttt e

Fig. 13, Schematic diagram showing the relation between tem-.
perature T and distance s for a specified angle 6,
The values of s and T required to satisfy eq. 77 are
shown for the representative frequencies vy + Lvy in the
near wing and vy +Av, in the far wing of a line,
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contributions to BV(O, 0') calculated according to eq. 75 arise from
regions of different temperature at different locations for different
frequencies in such a way that the far line wings will make relatively
larger contributions since they may be "seen” at greater geometrical
depths and, correspo.ﬁdingly, at higher temperatures,

| Since a; may vary with frequency, it will prove to be convenient
to introduce a frequency dependence for a; deliberately in such a way

as to allow a universal representation of a reduced distance variable

{(which is a function of v) as a function of T,

A. 1Isolated Spectral Lines Belonging to Diatomic Emitters with

Collision Broadening

From eqs. 78 and 47 we obtain the following differential equation

{aftcr approximating v in eq. 78 by vo)'.

ds = G _}?2 (39) 1/2  exp (-—hvo/kT) exp (Eﬂ/kT)
cos 0! ay T 1 - exp(-hvo/kT)]3 11 - exp(—uoTo/T)J
(v -v )=
X [1 + —-2-——-9—-— dT (79)
b2T /T)
where : 6
2,2 kT v
_ 167"h o )
¢ = =20 > (80)
c'k P T g A

o oy u—i{

l, The Limiting Case hvo/kT << 1, uOTO/T << 1, (th—EE)/kT <<1

For hvo/kT << 1, uOTO/T <1, (hvo—Eﬂ)/kT <<1, eq. 79 becomes,

after integration hetween the limits ¢ = 0 at T = T0 and s, T,
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1 1 .
s cosG‘Bl (T9/2_ TZ/Z) + coﬁze' (Tll/z— Tlol/z) ! (61)
where '
g = 2 Olbg/2)
9 uo(hvo/kTO)‘?’TZ/Z—
(82)
gl = 2 alb,/ay) YoV )2
Iy v /kT)3T9/2 Pa
o] 0 0

The Limiting Case hvo/kT >> 1, uOTO/T >> 1

For hv /kT >>1, u T /T >>1, and with z= (hv _-E y/kT

eq. 79 becomes

b hv -E, 1/2 v-v 2
G e ( 0 !Z) z-3/Ze-z[1 +( o)
o i b,

ds < - cos 0 3y kT -
e}
hv -E -
o £ -1
X~ 2 J az . (83)

Integrating again from s =0 to T =T_ and z =z = (hvo-E )/kTo

z, we find now that

to s,
b_ hvo-Eﬂ.\l/Z b, b -E,. 3/2 v-v . 2
. 1 o~ e NI . R S —— JS——
{(cos 8')s G,alTo( T } 11+G’Toa ( T (b )IZ
o 1 o
(84)
where
Z.3/2 -z 2 .5/2 -z
Il = - Z e dz, IZ. = - z e dz. (85)
LY A . ZO

(o]

In order to evaluate I1 and IZ’ it is convenient to write the identity
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Z

Z -n -z T e °© n - 3 5
."5 Z e dz:-g Z e dz+ngﬂ znezdz for n:-z-or—?:,
Ya Y oo “ oo
o)
(86)

where the second integral appearing on the right-hand side of eq. 86 is
negligibly small compared to the first for zZ much larger than =z.

But

(= -3/2 -z e ? 1 (
- - - 2 — _——
g z e dz ZT—Z (=) {1

(87)

where I‘(-lz) is the complete gamma function of argument —12 and
I’Z(-lz—) is the incomplete gamma function of z of argument —1?: .
Making use of the notation of Pearson (20), the preceding expression
may be rewritten in the form

- Sz 2"3/27 %, - z{‘j_: . \/77[1 - 1(\/—%—5 - 0. 5)]} , (88)

0

With the available tables of the incomplete I'-function (20), which gives
values to seven significant figures, eq. 88 can only be evaluated for

z <Y, For z> 9, the integrals may be evaluated either numerically
or else by using a simple approximation procedure.

Integrating by parts twice yields the expression

z J

o o) 00 oo Z

Z .p -z -n -z n(? -n ~Z Czn 2% n —z . -
- z e dz =2z e + - z e “dz 1} -—-Z() z e dz)dz.
(o 0]

(89)

For sufficiently large values of z, eq. 89 reduces to
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(% n -z z Te ”
- z e  dz® ———r (90)
‘Soo [1Hn/2z)]
or, in somewhat cruder approximation
Z on -z -n -z
- S‘ z e dz= z e °, (91)

oo

Results obtained by using eqs. 90 and 91, and also by using
eq. 88 together with tabulated values of the incomplete gamma function
(20), are plotted in Figs. 14a and 14b, These data, together with
cqs. 84, 35 and 86 yicld the desired temperature profile. For
th/kR<1,the dependence of T on s is easily computed by using
eq. 81,

Reference to eqs. 81 and 84 shows that the temperature profile
depends on the frequency. At the line center, however, B' = 0. There-
fore s may be computed as a universal function of T for hvo/kTO<< 1.
Similarly, for hvo/kT0 >> 1, the second term in eq. 84 vanishes and
(cos 05/ ab_/aT | (th—Eﬂ)/kTo] 1/2 b= I, which hae been plotted
in Figs. 14a and 14b for the special cases 2, =@ and z = 20§ in
Figs. 15a to 15c, the corresponding temperature profiles are shown for
z =20, T, =300°K

In the line wings, the first terms of eqs. 81 and 84 become
negligibly small. Hence reduced temperature profiles are again

determined in terms of easily computed quantities or in terms of IZ.
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Fig. 15a. A plot of the first approximation to I {seeeq. 9) as a
function of T and =z (for z, =20, T = 300 °K, E, =0).
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—Z a
The contribution of the term e 0303/2 to L] is nagligibly

small,
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Fig. 15c, A plot of the first approximation to {see eq, 91) as a
g Pp _

function of T and z (for z, =20, T =300 oK, E, =0).

-7
The contribution of the term e

o_-3/2 )
z, to I.1 is
negligibly small,
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Determination of Steradiancy B1B(0,0) for hvo/kTo >> 1,
uOTO/T >> 1

If a-temperature profile is specified which differs from I1 or

IZ by at most a constant factor, then the steradiancy B(0, 0) may be

calculated for suitable frequency regions. From eq. 75 it is apparent
that

co
B(0, 8) = Y BT, _.os gt @V s (92)
Jy )

0 . _ . .
where BV(TTvzcos 8') is the blackbody steradiancy at that location

where 'Tv/cos 8' = 1. According to eq. 76,

- -
0O [& P " ]
a LBV(TT‘}:COS o) - Bv(lo)J/ cos 8", (93)

Let us consider the temperature profile (cos B')s = Llll, where the

characteristic length L1 is a constant. Close to the line center,

eqs. 84 and 93 lead to the relation

h -E, /2

)
BO( ——}%g—‘) T _cos e'. (94)

-BoT,) = Lb (
v T'TV=COS o) ~B(T,) = L, 2,

Next we introduce eq. 94 into eq. 92 and integrate from v,~Av, to

v0+AvC, where Avc is sufficiently small to justify use of the first

term only in eq. 84. In this manner we obtain

YotV o QT hv _-E, 1/2 '
o !
‘_\ Bv(TT =Ccos 6')dv 2 L bo( kT ) AVCCOS o (95)
vo--AvC v o

1

where BS(TO) has been neglected. The contribution of the term in

eq. 86, which has been neglected in eq. 95, is close to (Av_/b )Z.
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Let us now consider a temperature profile (cos 0')s = LZIZ
and investigate only the contribution of the wings in eq. 84. Then,
proceeding as before,

o hv -1 . 3/2 V-V 2

G

U o + 1 o
Bv(TT =cos 9') - L boTo kT b cos 8 +Bv(To)'
v 2 o o
(96)
Introducing eq. 96 into eq. 92, we obtain the following integral
v _+AvY
A7 Tror )av = £3p2T ( o %t ')S/ZCOS o
JL +av v T =cos o' 2 kT .
e} W '

AvY /b .

gﬂ iR ( b ) ( boo)' (97)

where BE(TO) has been neglected. T The integration limit towards the

center, v0:+Avw, must be chosen sufficiently large so that the first

term in eq. 84 is negligibly small. The upper limit, vV + Av:_,

must be consistent with the restriction that 'TV = cos 0' for allA vV,

Clearly the basic relation given in eq. 75 can only hold provided

T = T s where T is the highest temperature of the
7 ,=C0s 0 max max

system, i.e., the value of Avi' is determined by the expression

AvY BS(Tma )L kT =~ 3/2-1/2
b, [ Gb_T cos—'(hv E, oo (98)

Hence eq. 97 becomes

T O(T ) may be neglected ordinarily unless T = constant or cos 8'=0,
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~hv -E; . 3/2
-2 0 .2 o 4
2 B9 N Jdv == = b"T | —— cos 0!
v HAv V 'rv—cose 3 L2 o) OK T0 )

| BO(T kT, \3/27 J/z A 3
X;[GTbcos o (ot —E, ) J bvo ) E - (99)

From eqs., 95 and 99 we may now determiine the scaling param-
eters for the steradiancy. Since AVC o bO for a fixed ratio of the
second term {which has been neglected} relative to the first term in

eq. 84, we find

v +Av
* o ¢ o) Po ‘
B (TT - cos e,) dv S (100)
vO—Avc 1
and
v +Avu
0 w4 u
ZSIV A Bv(TTV:COS e,) dv <p, L2 for Avw << Avw . (101)
o W

The result given in eq. 101 is identical with the scaling param-
eter obtained for the wings of isothermal collision-broadened lines,
This conclusion is consistent with Thomson's approximate considera-

tions (21).

B. Isolated Spectral Lines Belonging to Diatomic Emitters with Doppler

Broadening
From eqs., 78 and 48 we find that

ds _%®p,0_¢( ) ( )1/2 it i
= ¥
a,cos ' \m 1n2 T [1—exp(—hvo/kT)] 13
exp(E, /KT) "oy 2 o]
x — explln 2)[ 55o) T (oz)

[1-exp(-u T,/ T)]
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where @ is given by eq. 80.

1. The Limiting Case hvo/kT << 1, uOTO/T << 1, (hvo—Eﬂ)/kT << 1

Equation 102 becomes now

Gb

ds = au cose’ khv ) (-rrlnz) k ) exp ,F(lnz)(

-

) JdT

(103)

We define the region near the line center by the condition that

the exponential term may be replaced by unity. In this case

(cos 8')s = G" [(T/TO)H/2 - 1J (104)
where .
o2 GbD,OTO ( ] .)1/2 kTO)B ..
-1 u 3, Tin2 . hvo,

When the exponent is sufficiently large, the following approxi-

mation may be used:

- L V-V 27 13/2 A
' T 0 O |
{cos B')s = B" 3exp{ (In 2) o J -—3 exp[ln 2) ) — g
| ka’ o> kT bD o T J
(105)
where
@.H:GbD:O Tk 1 J1/2 kTo‘ 3-bD,O.2
uoallnz o\ rwin2 ) hvo) v—vo)

2. The Limiting Case hvo/kT >>1, uoTo/T >>1

Integration of eq. 102 yields the expression
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Gb T . 1/2 rhv D v-v . 213/2
n. - __D,o" 0 ( 1 o £ o
(cos 8)s =—7 ) [kT - w7 - (ma (g )
1 o 0! D, o
W -
X ]'- g w_S/Ze_W de (106)
. WO

where

hvo E!Z Vv Z“TO
W :[k'r g - n 2(5—) T -
o} o} D,o

For w> 0, we may proceed as with the collision-broadened lines and
the integral
w
I’Z = -5 W_S/Ze—W dw (107)
w
o
may be evaluated by using the methods of Sec. VII, A(2).
Having assumed hvo/kTo >>1, the frequency region for w <0

occurs far out in the line wings and contributes relatively.little to the

total steradiancy.

3. Determination of Steradiancy B(0,6) for hvo/kT >> 1,

uOTO/T >> 1, (hv -E,;)/kT >>1

The frequency dependence of ds/dT given in eq. 106 does not
permit us to choouse al(v) in such a way that a reduced distance-tem-
perature profile can be constructed. The difficulty is caused by the
- occurrence of a product of frequency- and temperature dependent terms
in the exponential.

Near the line center, we may, however, calculate the radiant

1
flux since the integral 12 is determined almost entirely by its upper
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limit w__ . (correspondingto T =T_.
min ,

)} provided that w - w__. S 2.
max [a]

min

This property of the integral has been discussed in Section VII, A(2).

Introducing the additional restrictions

In 2 << ———
bD, ° kTo
and (108}
, v—vo.)Z TO
{In 2) << 1,
ka, 0’ Tmax
ed. 106 becomes
. Gbpy T, \ ! >1/2 hv -E, >3/21u 109)
al(cos 6" \wln2 kT0 2
where
z
n_ -5/2 -z _ -
I, = S‘OO z e " dz, z=(hv_ Eﬂ)/kT ,

and 7 is independent of v.
The inequalities in eq. 108 become, for typical fundamental

vibration-rotation bands of diatomic molecules,

(

v-vo 2
) << 30
bD,o

and
(v-vo. 2 Tm %
<< 1,4 ax .
bD,o) To

Hence, for large values of Tmax /To’ the correct integral is obtained

for a frequency range that may be appreciably larger than b On

D, o’

the other hand, for systems with small temperature gradients, we have
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obtained a temperature profile that is appreciable only very close to the

line center,

For the temperature profile s(cos 6') = L3Iz, we find, after

integrating aver the frequency range 'vo- AVD to vo-I-AvD (compare

eq. 95), that

AYo VD 6by T, 1 1/2,hv -E,3/2
‘S B ( ydv = 2 20 O (.___0___._
v ' 1 =cos 8’ L Tin 2 kT .
v _=Av v 3 o}
o) D
X (cos e’)JAvD, (110)

In general, the integral represents only the contributions arising from
a narrow frequency range near the line center. Since it is reasonable
to assume that AvD is proportional to bD o2 the radiancy for this

3

frequency range near the line center is inversely proportional to

pOL3.

C. Gray Body
With

kV(T) =k = constant,

integration of eq., 78 leads to the expression

3 -
w_ 1 2hv { 1 i 1 J
s(cos ') = A% CZ | exp(hv/KT)-1 exp(hv/kTo)—l ° _(1]‘1)

1

In certain regions of frequency and temperature, eq. 111 reduces

to a universal relation between s and T,
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1. The Special Case hv/kTO << 1

Equation 111 now reduces to

210}2
s(cos 8') = —— 5 (T - TO) . (112)
a.kc
1
Hence, for
s{cos 8') = L(T - T.) (113)

egs. 92 and 93 lead to

2 2 -
S B (0, 6) dv :5 BO(T Jdv + —25 (v3 - v3)(cos 0Y), (114)
v v'To - 2 1

v v 3L kc
1 1
VZ N _1
and if T >> T, then 5 B,(0,8)dv < (pOL) ; the scaling parameter
v
is po—lj . L

2. The Special Case hv/kTo >>1, hv/kT <<1

In eq. 112, T replaces (T - TO) and the preceding results apply.

3. The Special Case hv/kTo >>1, hv/kT >> 1

In this case there is no s-T curve which is independent of v.
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VIII. APPLICATION OF THE EDDINGTON-BARBIER APPROXIMATION
TO DISPERSION- AND DOPPLER-BROADENED SPECTRAL LINE S
FOR AN ARBITRARY TEMPERATURE PROFILE

We have seen in Section VI that the adoption of the Eddington-
Barbier (EB) approximation is equivalent to specifying a particular
temperature profile through a gas, e.g. the profiles shown in Figs.
15-2a,b, ¢ for the Lorentz-broadened lines. We now calculate the error
in the radiant energy transfer which results from using the EB approxi-
mation with a temperature profile other than the one required theoreti-
cally. In thc discussion below, we consider the temperature profile
given by eq. 46, Numerical calculations will again be performed for the
R3 line in the vibration-rotation spectrum of HF, The angle 0' defined
in Fig. 12 will be taken equal to zero so that the statement of the ED
approximation is the following: the spectral steradiancy emitted at
s = 2L is approxiﬁately equal to the black body steradiancy evaluated

at s =5 where
2L

o]
r :S_ K (s)ds=1. (115)
8

A, Evaluation of the Spectral Steradiancy Using the Eddington-Barbier

Approximation

Elementary arguments show that two types of profiles are to be
expected. For sufficiently small optical depths, s< LD at the line
cenler; therefore, the spectral profile of the emitted line will be a maxi-
mum at the line center and may become undefined in the line wings since

the value of s required in eq, 115 actually becomes less than zero. For
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sufficiently large optical depths, s> Lo at the line center and the

_ emission profile will peak in the line wings at a frequency determined
by the requirement specified in eq. 115, At this frequency peak, the

EB approximation implies that jthe steradiancy will be equnal to the black
body steradiancy evaluated at the maximum temperature in the tem-
perature profile, a physically unreasonable result,

Although the qualitative shapes of the spectral line are similar
to the exact contours given in Figs. 3 and 4, it is apparent that the EB
approximation can be valid only in isolated spectral regions and can not
give accurate results over the whole spectral range. In Figs., 16 to 19
the line shapes are shown as calculated both by using exact formulas and
by using the EB approximation for dispersion- and Doppler-broadened
lines for various values of 'TO. The total steradiancies (B/Zbo) found
by integrating over frequency for the spectral lines shown in Figs. 16
to 18 are listed in Table 3. It is seen that, in general, the EB approxi-
mation is not a useful procedure for calculating accurately the total

stcradiancy of spectral lines for typical temperature profiles.

B. The Limit of Optically Thick or Optically Thin Systems

The Eddington-Barbier approximation was developed for astro-
physical applications., It was not intended for use in optically thin gases
and, in fact, is undefined in that limit. However, we now show that the
EB approximation is valid for the large optical depths which may be

encountered at the centers of a spectral lines.
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Equation 52 may be rewritten as

| . . dB®  ra®B®  aB® Ak, ~
B =B®--L L v 4 v
v v kv ds kZ _ dsz ds ds
v
L r&BS  @®BS dmk, dB d®Ink aB®  dlnk .2~
. LA P v v LA v ( v) +
ki ) ds3 dSZ ds ds dsZ ds ds
(116)

This equation is useful for large optical depths and leads directly to the
diffusion approximation (see Appendix A). For large optical depths,
the condition defined by eq. 115 will be satisfied for s only slightly

less than ZLO, or

s = 2L - As (117)

where As 1is small. For sufficiently opaque gases, Bc:) and k may

be expanded in appropriate Taylor series. Thus

ok
4 Vv
kv(s) = Kv(ZLo) + (s - ZLO)ﬂé—é— +... (118)
2L
8]
and
o o] BB: Asz BZB?) l
BO(r=1) = BP(2L ) - As —2 + 88 +... (119)
v v % lan_ %8s’ a1

Neglecting third order terms in As, we obtain from eqs, 115, 117,

and 118 the following results:

dln k
1,1 2
As—k + > s FAY -2
v
and
o01nk .
Agl= L (1+1 VASZ)D,_ 1 ’
kZ k ds Y, 2
v k
v v
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where the terms are evaluated at s = ZLOn Substituting the above re-

lations into eq. 119, we obtain

200 Q
BBO ¢ B dB dln k -
o (o) 1 12 1 1 v v Vo
— = . . ——— + -
BV(T 1) Bv kv 53 { > ) ——k‘%‘; 332 s s T oeoo {(120)

where terms on the rightl-hand side are evaluated at s = 2Lo° To first
order in l/kv, eq. 120 agrees with eq. 116; however, the second order
term is lower thé.n that of eq. 116 by a factor of (1/2)‘, We may con-
clude that as a gas becomes optically thick, the EB approximation be-
comes valid for any temperature profile and spectral absorption coef-
ficient, |

It is interesting to compare the results of the EB approximation
fo‘r the steradiancy at the line center with those calculated by other

mea

n
W)
;
(o)
ko]
-
(¢
)
0]
ja]
-+
[¢]
[o B}
=
=}
-3
W)
[
0]
[\

. in Sec, VI (C). The new results are
given in Table 4. It can be seen that the EB approximation i. 'ess
accurate than the method used in the previous section and that the
results derived from the EB approximation are too low, as predicted
by eq. 120.

We know from the analysis of Sec. VII that the EB approximation

is exact for a temperature profile such that the Lunblad series, eq. 73,

is terminated after two terms, i, e.
o s '
Bv(s) =a_  * a1§ k, ds. . {121)

In order for eq. 120 to reduce to eq. 116 it is necessary that the third

term vanish, or
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9°“B 9B° 9 lnk
1% Vv

> T s 55 - (122)

One may easily check that eq. 121 is a solution to eq, 122. If an additional
term is kept in the Lunblad series, one may determine that eq. 122 is

not satisfied so that the second order term remains, but the third

order term in eq. 116 vanishes. It is apparent that if n terms are kept
in the Lunblad series, the analysis leading to eq. 120 will yield equations
for the steradiancy accurate through the nth term for a general tempera-
ture profile, TIFurthermore these equations will have the same terms in
the expansion as does eq. 116, the exact solution, even past the nth

term except for a numerical factor. These conclusions are proved in

Appendix B.
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IX. RELATIVE IMPORTANCE OF THERMAL CONDUCTION AND
RADIATION FOR ENERGY TRANSPORT IN STATIONARY
HEATED AIR

Rather than employing Lhe dimensionless groups of radiation
gas dynamics derived in Sec. III, we may estimate directly the ratio of
conductive to radiative energy transport in heated air in order to gain
some insight into the conditions under which radiative energy transport
becomes importaﬁt in stationary systems. This procedure is used in
the following computations., It should be noted that the results are
directly applicable to flow problems with radiant energy transport
only in the Rosseland (diff\ision) limit since, in this case, the radiative
and conductive heat transfer coefficients are additive. In the trans-
parent gas limit, the important similarity group I' (which measures
the ratio of radiative energy loss from the system per unit surface area
to the free stream rate of enthalpy transport per unit area) is the more

meaningful parameter in gas-dynamic studies.

A. Heat Transfer Parameters

In the diffusion approximation, the ratio of heat transfcr by

thermal conduction to heat transfer by radiation is given by the relation

0 =—FP—— (123)
U 1eer’T
L, Ro
for transparent gases, this ratio is
0= {1 LE(\/T) (124)
40Tk

1,P!
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Here M = coefficiznt of thermal conductivity, o = Stefan-Boltzmann

constant, T = absolute temperature, ﬂ'L Ro = Rosseland mean free
2 .

path, L = characteristic length, VT = typical temperature gradient,
and —EL, ps = Planck mcan absorption coefficient.

~ Values of _[L, Ro 2nd T{L’ py bave been obtained from the data
listed in Ref. 22 where only the continuum contribu’cionsJr to the spectral
absorption coefficient of air were used. The coellicients of therinal
conductivity for temperatures below 2eV were taken from the work of
Peng and Pindroh (23), who used a shielded coulomb potential for
electron-ion interactions. These estimates for A are considered to
be more accurate than those derived éarlier by Hansen (24). For tem-
peratures of 2eV and higher, the thermal conductivity of the electron
gas is the dominant contribution to the total thermal conductivity. The

coefficient of thermal conductivity was assumed to be given by the

formula (25)
80k3(2k/mn)1/2T5/26T

A=
meZ In [9k4T4’/4e6rrEZPe(1+'z')]

TThe method of Seaton [ M. J. Seaton, Thermal inelastic collision pro-

cesses, Rev. Mod. Phys. 30, 979-989 (1958)] which has been discussed
also by Zhigulev, et al. [ V. N. Zhigulev, Ye. A. Romishevskii, and

V. K, Vertushkin, Role of radiation in modern gas dynamics, AIAA J. 1,
1473-1485 (1963) translated from Inzhenernii Zhurnal l, 60-83 (1961
has been shown to give results that do not differ greatly from those cal-
culated by using a simple, approximate procedure described in Sec. X.
At elevated temperatures and low densities, the line radiation becomes
important and cannot properly be neglected.,
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where k = Boltzmann's constant, T = absolute temperafure, 6T =
transport coefficient calculated numerically as a function of z in
Ref, 25,.’- e = electronic charge, z = mean ion charge = Zniz?;/ij 0.z,
Pe = electron partial pressure, and n, = concentration of particles with
charge z.. The expression for X\ applies in the presence of D, C,
current in a completely ionized gas. For partially ionized gases, cor-
rections to the Spitzer and Harm relation may be found in Ref, 26 but

these can be shown to be unimportant for our purposes.

Numerically, the equation for X\ becomes

2. 465 x 10%95/2 5.
M= —5r 3 % (125)
- 2.401 X107 07 | cm-sec K
Z loglo[ g p— J
z" m(l+z)N

where 0 = temperature in eV, m= mean particle charge = Znizi/Z}ni,
and N = particle concentration = 5 X 1019 p/po (where p is the mass
density and p_ =1.293 X 1073 g/cm3), If an electric field builds up
sufficiently to restrain the flow of electric current, the values of \
from eq. 125 should be multiplied by 0.4. Values of N for air, as cal-
culated from eq. 125 {(for T = 2eV) and taken fro_m Ref. 23 (for T < 2eV)
are shown in Fig. 20 as a function of temperature and density. In many
practically important problems, eq. 125 is known to yield values for the
total thermal conductivity that‘are good to within about a factor of two.

In Table 5 are listed the values used for \, £ , and k

L, Ro L, Pt
and the parameters a, and azL/'VT calculated from eqs, 123 and 124,

TThe coefficient 6T is obtained by interpolation from Table IIT of Ref. 25.
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Table 5. Heat Transfer Parameters for High-Temperature Air

0 loglo(p/po) )\T TL, Roi a, kL, Pﬂs TL, PI aZL./VT
V) (erg/em”  (em) {em ) {em) (cm®/°K)
secPK)
1 2,307 5570 2.67° . 1, -7
0 3,007 RN A 2,5t 7670
0.7 -1 3.17%3 5137 3073 33T 7t
2 1,609+ 0*> 5,079 "% 5,97 g.67%
-3 1.076™ 0t 2.271% 5.07% 1,27 1472
-4 12811 0t 2 et 3,077 3,376 4 37!
1 5.2 7,071 9,87 2 5.0 -8
0 2.14% 1,4 3,275 "1™ w7
Lo -1 1,92125 : :2 z,o:g : :Z 1.4:2 : :Z
-2 2.45 .03 8.6 2.5 1.
-3 2.697° 8.07% 7,177 3,57° 2.9™ -3
-4 2,207 1,370 36710 1 476 715 -2
1 2. 5070 2.17% 3,172 2.2%2 4,573 1 o710
0 2.0270 5,37 1,673 1.7 5,972 1,877
- -1 1°33i;6 1.01; 3,5:3 990:; 1,1+Z 2.3:2
-2 9, 64 5.57% 4,6 1,072 1,0 1,
-3 7.371° 2.5 7.879  ,.37% 4 373 -3
-4 6,537 8.0 2.2710 4,576 5 ™5 ;. .73
1 2. 5617 2,773 1.67r 3,572 5973 o g7H
0 1,5547 7 1.47! 1,973 1.4%! "2 43710
5.0 -1 1.04iz7 6,2+2 208:j :; 25 1.o:i
-2 Te 37 N 4.5 o ° 3.2
-3 5. 4470 1.9 4,879 -4 31670
4 4,376 AN SEL Y "6 5,313 5474
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T ¥

Table 5 (Continued)

0 1°guﬂP/Po)( A L,Ro ¢ ki pg fy py @L/VT
ev reg/cm- 7 ! 0o
ZegoK) (cm) (cn~)  (cm) (cm?/°K)
1 1.31278 4,073 6.972 . 7%2 3 773 71
0 7.3277 1.7 9.17% 1 0™ 107t 1.8710
oo - 4.6677 9.0 1.17° 2,07} N
) -2 3,20"7 5,072 1,477 4,073 2 -7
-3 2.3677 4.0 1,279 7,070 1.4™ .20
-4 1.86077  3.8%® 1.07'! 9,077 1.17 5.0t
1 3,9378 073 3,572 2 5,673 10711
0 1.70278 07l 567t s, 2,071 1.6710
150 -1 1.0567® Tt o5 0 02 1.2 637?
-2 7.4177 2173 2,278 1,073 1.0™ 3677
+7 15 -10 -5 15 -5
-3 5. 67 L9 1, . 1 2.7
-4 4,597 0T 9712 57T g3t g73
+ - - - -
1 5, 4078 1,772 8,473 1,172 9,173 7.5712
0 2.9278 8.0t -5 5,070 2, 2710
20,0 -1 1.87878  6.0% 5,377 2372 4.3t g 78
| -2 1.36578 5 o*3 -9 "4 5373 4977
-3 1.07178 5,07 5,771l 3076 3,376 5 475
-4 8,767 7 2,177 1,1712 3,078 3,317 4,473
3

Note: p = air density, p_=1.293 X10"

3 .
g/cm . Superscripts denote
multiplication by the corresponding power of ten.
TFor T =0,7and 1,0eV, \ was found from the data of Ref. 23;
for T> 1.0eV, X\ was calculated from eq. 125,

*values of TL Ro Were obtained from Fig. 12 of Ref, 22.

§Valu es of k

L.py Were obtained from Fig. 11 of Ref. 22.
3
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The dependence of a, on temperature and density is shown in Fig. 21

1

The initial rise of a, with temperature is caused by the rapid decrease

1

with temperature of TL Ro’ However, as is shown in Fig. 12 of Ref. 22,

EL Ro increases sharply at temperatures above 10eV at high densities
2
and at somewhat lower temperatures for lower densities; hence 0.1

decreases above a well-defined temperature (see Fig. 21). The increase

in { occurs as a result of the shift in the maximum of k
L, Ro v, L

(the spectral linear absorption coefficient) toward higher frequencies
(i.e., away from the maximum of the Rosseland weighting function).
This shift results from bound-free contributions of nitrogen and oxygen
ions. Thus the peak of the spectral absorption coefficient of nitrogen

occurs at hv/kT= 6.0 and 10,0 for kT =5 and 10eV, respectively,

at a number density of 1017 cm~3u The maximum of the Rosseland

weighting function occurs at hv/kT = 3.83.

The variation of aZL/VT with temperature and density is
shown in Fig, 22, The Planck mean absorption coefficient rises at low
temperatures which, when combined with the (1/T4) factor in eq. 124,

causes a downward trend in a,, At high temperatures, de-

2 ki Py

creases sharply and, therefore, the parameter a, tends to increase.

B. Representative Applications of the Heat Transfer Parameters to

Problcms of Engineering Intcrcst

. - - - (T -1y .,
The numerical values of EL, Ro and ﬂ'L,Pﬂ [— (kL,PE) J in
Table 5 determine the validity of the diffusion or transparent gas
approximations. If L is a characteristic length of the system, the

condition TL Ro << L implies that the diffusion approximation is
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applicable; similarly, the condition 7 >> 1. indicates the validity

L, P!
of the transparent gas approximation. It is of some interest to consider
the relative importance of radiant energy transfer in various regimes

of gas dynamics.

L= 0.0l cm. This value for L is of the order of magnitude of

the wall boundary layer thickness in a shock tube from 1 to 100p. sec
after the passage of the shock front; alternatively, I. applies to the
thermal layer thickness formed on a fast (velocity = 35,000~40, 000

ft/sec, p/pO = 1 to 10) atmospheric entry vehicle. For density ratfios

of 1 to 10 and temperatures below 2eV, 7 varies from 0,02 to

L, Ro

1.1 X 103 cm and TL Pl varies from 4,5 X 10-3 to 25 cm., The diffusion

approximation is therefore not valid whereas the transparent gas approxi-
mation applies only at the lower temperatures. Assuming a temperature
drop of 1_0, OOOOK across the thermal layer, Fig. 22 shows that 0.2

varies from 40 to 500 (corresponding to T = 1leV, p/p0 =10 or 1), i.e.,
radiation energy transfer is relatively unimportant. Under more ex-
treme conditions (p/pO =10, T = 2eV), a,= 0.02, but the transparent

2

gas approximation now begins to beccme invalid since —IL py = 4, 5X10°

b

3

cm.

L=0,1-1,0 cm. This estimate for L is of the order of mag-

nitude of the thermal layer thickness on an atmospheric entry vehicle
at high altitudes (altitude = 100, 000 ft, velocity = 35, 000 ft/sec,
p'/pof- 10—1). The gas is transparent, s >> 1, and radiation heating
is relatively unimportant.

L = 1,0-1000 cmn. This range of values for L corresponds to
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typical vehicle dimensions. For T = 0. 7eV, p/po =0.1, L =10 cm,
VT = 103 OK/c:m, it is found that o, =1.1X 10—Z and the transparent

gas approximation is valid. In Lhis case, radiation losses are more

important than conduction losses.

L = 105—104 cm. These lengths correspond to characteristic

diameters of initial fireballs of nuclear bombs. Taking T = 10eV,

I, Ro = 2 °m,
5

and, therefore, the gas is optically thick. Also a, =1.1 X110~ and,

p/po =0,1 and L = 104 cm, we find from Table 5 that 1

for this reason, conductive heating is completely negligible inside the

fireball.

L> 104 cm. The next range of interest is mainly of astro-

physical importance (we use air estimates since the continuum radiation
in heated plasmas is not very sensitive to chemical composition). The
values of TL, Ro for air as found in Table 5 for low densities and

T = 20eV will give an idea of some phenomena that may be important.
We find YL’ Ro = 100 miles and a; << 1 so that, as is well known, the

diffusion approximation is valid for the atmospheres of stars and con-

ductive energy transport is of lesser importance.
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X. AN APPROXIMATE SEMI-ANALYTICAL EXPRESSION
FOR THE SPECTRAL ABSORPTION COEFFICIENT IN AN
IONIZED, POLYELECTRONIC PLASMA

Approximate expressions for the Rosseland and Planck mean
freg paths associated with the continuum radiation in ionized plasmas
have been derived by Menzel and Pekeris (27) and by Pappert and
Penner (28). The last-named authors followed a procedure described
by Raizer (29, 30). The method of calculation introduced by Raizer
(29, 30) and used by Pappert and Penner (28) differs from that employed
in the earlier work of Menzel and Pekeris (27) by including only two
representative m times ionized atoms instead of approximating the
sum over the ions by an integral. The physical reasons for the use of
this approximation may be made plausible by referring to the schematic
diagram shown in Fig. 23 where the concentration of m-ions (i.e.,
of m times ionized atoms) is shown as a function of temperature. We
note that there will be temperatures T at which the plasma composition
is well described by the presence of two ionic constituents that are
present in equal concentrations. Since all physical observables are
expected to vary continuously with temperature, we expect that the
use of the assumption that only two m-ions are present in equal concen-
trations for all values of T must lead to a good prediction of electron
concentration at all temperatures. The use of this idea, together with
the introduction of several supplementary simplifications due to Raizer,
has been shown previously (28) to lead to results that agree, within about

a factor of two, with the best available numerical computations for
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Fig. 23, Schematic diagram showing the concentration of
m~ions, Nm, as a function of temperature, T.
At the points A, B, C, D, etc., the plasma com-
position is well described by the presence of two
m~ions that are present in equal concentrations,
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Rosseland and Planck mean free paths (15). On the othei‘ hand, it is
knovar that the errors introduced by neglecting line radiation are oi
the same magnitude as or larger than, the previously noted discre-
pancies resulting from the use of highly simplified computational pro-
ced_ures, particularly at elevated temperatures and low densities.,

For this reason, it appears justified to avoid the labor involved in ob-
taining a complete solution to the Saha equation and to utilize again
the approximatioﬁ of two m-ions present in equal concentrations. We

shall then show that the resulting estimates for the spectral absorption

coefficients also agree, well within afactor of two over most of the

frequency range, with the best available numerical computations.

A, Theoretical Considerations

In the following discussion we shall deviate from the analysis
of Pappert and Penner (28) by considering the corrections required
through proper introduction of statistical weight factors, which were

not treated in an entirely consistent manner by Raizer (29, 30).

1. Degree of Ionization and Planck and Rosseland Mean Free Paths

The Saha equation for equilibrium between the concentrations
. i . .
Nm and N]:n_]_1 of m-~ and (m+l)-ions”, respectively, may be written
in the form

N

N e

88t I |
mi N - m+1)e3/2exp(- =) (126)
m gm J

TPrivate communication from Dr. J. C. Stewart of General Dynamics/
Astronautics, San Diego, California.
t

An m-ion is an m times ionized atom.
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where Ne denotes the electron concentration;

-12

2mm (1.6 X 10 ~%). 3/2
Al = ( s ~ 3.0 %102 em3-ev3/2

h
- N _ 1 .

(me = electron mass, h = Planck's constant); €0 By 4y7 and g, are

the statistical weights for thc clectron, the (m+l)-ion, and thc m-ion,

respectively; 0 represents the energy-equivalent of the temperature

in eV (in this section, all energies are expressed in electron volts);

Im denotes the ionization potential of the m-ion. Raizer (29, 30) and

Pappert and Penner (28) set = 2 and / =1 whereas the
p Be 8+l y

Bm
used the Unsold approximation gegm+1/gm =1 in the opacity formulae.
Actually the use of the assumption gegmﬂ/gm =1 leads to a somewhat
more satisfactory prediction of the average degree of ionization ™

than the statement gegmﬂ/gm = 2, as may be seen by reference to

Fig. 24. In any case, a consistent approximation procedure requires
the use of the same estimates for gcgmﬂ/gm everywhere.

If we employ the assumption gegm-l-l/gm =1 everywhere, then
the value of A = 2A' appearing in the formulas of Pappert and Penner
(28) for the Rosseland and Planck mean free paths should be divided by
the factor 2 and, accordingly, all of the mean free path estimates
should also be divided by a factor of two. Representative results plotted
in Fig. 25 show that the data, obtained by introducing the specified
change into the MR method of Ref. 28 for the Rosseland mean free.path,
still agree well With Armstrong's results, and that the approximate

computations tend to be somewhat too low. However, with A = 2A'

replaced by A', the MR method leads to a larger deviation from
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Fig. 24. The average number of electrons per atom {m) as a
function of the number density N(cm~3) at various
temperatures, The dashed curve refers to results
derived from eq. 126 with g_.g,,41/8. = 1i the dot-
dash curve (which has been given previously) refers
to gagmﬂ/gm = 2; the solid curve is based on
Armstrong's data (15).
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Fig., 25. The Rosseland mean free path (in c¢m) as a function of

number density {in cm~3) for nitrogen at 5 eV. The
symbols {A), (R), and (MR) identify results obtained by
Armstrong (A) and derived from the Raizer (R) and
modified Raizer (MR) mz=thod of Pappert and Penner,

‘respectively., In the (R) and {MR) plots, we have used

consistently the approximation gegmﬂ/gm =1, The
theoretical formulae for the (R) and (MR) plots are
given in Ref, 28,
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Armstrong's results for the Planck mean free path, as may be seen in

Fig. 26.

2, Theoretical Calculation of Spectral Absorption Coefficients

The following expression may be derived readily for the total
linear absorption coelflicient km(x) associated with the bound-free
contribution for an m-ion and the free-free contribution from an

(m+1)-ion:

k_(x) = alg g, /g N, (m#) %0 Sexp(-x IF_(x) . (127)

where
26 e 10712 2 7, 3 %10 Bem?- (ev)E, x = B
a = 3{3 Ch - ° m e E] X = 6 2
Im
le = —é—— ° (128)

Here Nm is the number density (cm‘3) of m-ions in the grouﬁd stad:e;r
For atoms and ions more complicated than those treated here, the
labor involved is increased because of the necessity of estimating the
ionization potentials of the contributing ions. Since the hydrogenic
approximation has been made for the excited states, the frequency-

dependent factor is given by
-3 S‘ -3 1m-
Fm(x) = x [lemu n exp(—-———n2 ) + 1] . (129)

The first term in the brackets represents the bound-free contribution
while the second term represents the free-free contribution to the ab-

sorption coefficient. In an ionized gas containing m-ions with

TFor all practical purposes, N, equals thc total numbcr of m-ions
per unit volume, -
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density (in em~3) for nitrogen at 5 eV,
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Fig. 26. The Planck mean free path {in cm) as a function of number

The symbols {A),

(R), and {MR) identify results obtained Armstrong (A)
and derived from the Raizer (R) and modified Raizex {MR)

method of Pappert and Penner, respectively.

In the (R)

and (MR) plots, we have used consistently the approximation

BeBm+

ormuﬁlllae for the

A complete discussion of the theoretical
(R) and (MR) curves is given in Ref. 28.
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m =0, 1, 2, ..., the total continuum absorption coefficient is finally

obtained by summing the contributions made by the separate m-ions.

Thus,
. _ k{x) _ -2 N 2
k'(x) = I-exp(-x) ~ ad /_L Nm(gegm+1/gm)(m+l) eXp(—le)Fm(X)
m

(130)
where k'(x) denotes the spectral absorption coefficient with the induced
emission term excluded.

Menzel and Pekeris (27) and Raizer (30) have performed an ap-
proximate evaluation for the radiation mean free paths by utilizing the
fact that configuration splitting of the an degenerate hydrogenic levels
makes plausible the replacement of the sum over n, which occurs in

eqs. 129 and 130, by an integration, i.e.,

" lem = CX - -
Z -3 eXP(;‘i‘ )"Jo of dy =e- 1, x <, (13D

whence

-3 x
o
F (x)®=x “e” for x<x1 . (132)

Thus, for the case in which the energy of the incident photon is less than
the ionization potcnti.al of the m-ion, the frequency dependent factor
Fm(x) is a universal function of x,

For x> X it is assumed that the dominant role is played_ by

the ground level n = 1. Therefore,

-3 y
Fm(x) o= lemx exp (xlm), x > Xl (133)
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In view of egs. 132 and 133, we may use the following approximate

representation for Fm(x):

(134)

Hence
N\ 2
[exp(x)]L Nm(gegmﬂ/gm)(mﬂ) exp(-xlm) for x < X
1 . a m
ki(x) = 02,3 (135)

— 5 | .
22-' Nm(gegmﬂ/gm)‘mﬂ) X0 for x = Xy
m

In order to obtain an explicit relation for k'(x), it is now neces~-
sary to evaluate the sums over the m-ions. A rigorous evaluation of
these sums requires the determination of Nm with proper allowance

for each of the equilibria
N= N te . (136)

Instead of solving the complete set of simultaneous Saha equations, we
estimate the average degree of ionization m from eq. 126 written in

the form

' 3/2
A [geg‘n‘1+(1/2)/g“rﬁ - (1/2)]9

Nm

- (137)

IEI-(]./Z) =0 1n

In accord with our earlier discussion and with the method of Pappert
and Penner (28), we regard eq. 137 to be consistent with the Saha

equation in the sense that the hypothetical ion species corresponding
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to m=m +(1/2) and m =m - (1/2) are equal in number. Using eq. 126,

it is now possible to rewrite one of the sums occurring in eq. 135 as

y 2 Nm 2
Z N_(g_8,,41/8, mt) exp(-x, ) = ;'—;g-nﬁ ) N glmtD .
m m

(138)

Furthermore, since

N

No+ra/2) " Nm-q/2 7 2 ¢ (139)

only the two terms m =m- (3/2) and m =m - (1/2) contribute to the

sums in the first of the eqs. 135 and in eq. 138, We find the following

results for the sums occurring in eq. 135:

N _ 2 _ Nm 2
£ Nen'Eetmn/Edlm ) Texploxy ) = Z N (mH)
m m

2
N™m — 2,1
o (m™+5) for x<x ,

A,e372 4 11‘1[11

2—
N™'m —-,1.2

= {(m+=)” for x < x< :
2A'9372 2 lml X’lrnZ

(140)

Y 2. ny= . 102
ZLNm(gcgmﬂ/gm)(mﬂ) % = N(m +~?:) lel for lel <x< lez’
m

N - 1.2 _ . 3.2
=N [(m+’2) le1+ (m +3) lez]

for x> Xlrnz' {141)
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Here N is thc total number density per cm3 and my = m- (1 2),

m, = m + {1/2), and we have made the assumption gegmﬂ/gm =1 in

eq. 141, It should be noted that x < X1y, Corresponds physically to

1
v <1z . 1/2 *1m, SES MmO m-/2) B <154 a/zy 20d
x> xh“z to hv > I= +0/2)° Thus we obtain the following expressions
for the spectral absorption coefficient
2 -
( N"m ,=2,1
37> (m +Z) exp(x) for X<X1m s
A'0 1
Nem =12 ] -, 1.2 \
K (x) = { (m+ 1) 2 [exp(x)] + N(m+3)%  for x  <x<x
02,3 < SAlg3/2 p) 2" Flm, lm,
- 1.2 - . 3,2
k N [(m+-z) lel + (m+-z) xlmz:l for x > lez .

1m

(142)

The assumption /g =1 affects only the terms in eq. 142
Be8m+11/8m Yy

which do not contain A'. Actual calculations of this ratio for poly-

electronic atoms may be performed easily for the ground electronic

state and indicate that gegmﬂ/gm may be smaller or larger than unity

by as much as factors of about 1/3 to about 3 and that an average value

of unity is not an unreasonable choice.
In order to complete the semi-analytical representation for

k'(x), it is now necessary to specify m in terms of 8 and N. An

implicit representation for m is given through the RaizZer approximation

specified in eq. 137. Equations 142 and 137 permit ready calculation of
k'{x) to the hydrogénic, modified Raizer, representation for all values

of 6 and N.Reference to eqs. 142 and 137 shows that k', for fixed

values of N and 6, increases as y73 exp (hv/0) until v = Iz}_n—(l/Z)/h;

]

2
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— - 1 - . . ) .
for Im- (1/2)< hv < Im+ (1/2)° k' is given by the sum of two terms,
one of which increases as v ° exp (hv/6) and the other of which de-

-3, .. _ T i 3
creases as Vv ~; finally, for v > Im+(1/2)/h, k' becomes inversely
proportional to v3. This simplified form for k'(x) is the direct result
of the approximation that the number density of ionized atoms has been
assumed to be vanishingly small except for the m-ions characterized by

m=m :l:(l/Z).

B, Comparison Between the Approximate and Numerical Results

Representative plots of k(x = hv/0) = k'(x)[1 - exp(-x)], i.e.,
of the spectral absorption coefficient with the induced emission term
included, as a function of v are shown in Fig., 27 for nitrogen at 5 eV,
-3

10eV and 20eV for a number density of 1017 cm T; k(x} is shown in

Fig. 28 as a function of v for 6 =10eV and for number densities of

1017, 1019

and 1021 cm—3. In constructing the plots shown in Figs. 27
and 28, we have used the calculated values for m based on Armstrong's
data (15).

Figure 29 shows the values of k'(x) = k(x)[1 - exp(-x)] -1 calcu-
lated from eq. 142 with values of m taken from Ref. 15. Also shown
in Fig, 29 are Armétrong's {15) more accurate calculations, Armstrong
did not use the method of Se::ﬂ:onT but employed screened hydrogenic
cross sections, made full allowance for LS term splitting, for the cor-
rect ionization potentials, and for an approximate plasma interaction

effe’c:‘c.:t

¥ See footnote on p.9?

¥ The author wishes to thank Dr. Armstrong for furnishing a precise
categorization of the assumptions nsed in his caleulations.,
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Fig. 28. A simplified representation for the sFectraL absorption
coefficient of nitrogen at 10 ¢V for 1017, 1019 and 102
atoms per cm”,
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| k’(x) FROM EQ142 FOR N=5.23x]0'"¢cm™
AND 6 =5eV — R . >

. .,
. l

651k’ (x) FROM ARMSTRONG'S DATA / | _
FOR N=10""cm®>AND 6=10eV —/

T T N A A B B B T T =TT

!
- k’(x)y FROM ARMSTRONG'S ﬁ
DATA FOR N=5.23x107e¢m3 |

AND 8 = 5eV

N k‘(x) FROM EQ.142
N FOR N=10"cm™®

|65 L Lol ! T R
| 10] 100
hv (eV)—
Fig, 29. The spectral absorption coefficient, without the induced emission

term, for nitrogen as calculated from cq. 142 and, using the

best available methods, as calculated by Armstrong.(,}S) for
B=5eV, N= 5,23 X10’17 cm-3 and 6 = 10 eV, N = 10! cra” 3,
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Reference tuo Fig., 29 shows that significanl discrepancies occur
only for photon energies which are sufficiently large to ionize the nitro-
gen ion in its ground state because the hydrogenic model is then no
longer a reasonable approximation and because statistical weight factors
influence the results. T On the other hand, over most of the spectral
range, the approximate treatment provides a good representation of the
spectral absorption coefficient. Hence we conclude that the highly
simplified procedure which we have employed provides an adequate
representation for thermodynamic function and opacities of plasmas

containing polyelectronic atoms,

TAs was indicated previously in this discussion, we have avoided the
complications associated with the statistical weight factors in terms
not containing A' by setting gegmﬂ/gm arbitrarily equal to unity.



-126-

Appendix A

The Diffusion Approximation

Consider a radiating layer of gas as pictured in Fig. A-1,

X S
! P

o

Fig. A-l. A cross section of a radiating gas layer is
shown defining the distances x and s and
the angle 6.

We calculate the total radiant flux in the x direction, which was chosen
so that near the point of observation, O, VT = BT/E)X. For a highly

absorbing gas, eq. 116 gives

. 1 BT aZBﬁ 8B d Ink, -
B =B° -2 2+ ——-{ - +...
v v kv 0s kg 832 Os ds |

whe re all quantities are evaluated at the point of observation, O. DBut,

near this point,

8- 9
55 = cos ¢} = (A1)
and hence
.  0BS __ 2,r8’B) 8B, dlnk, -
BV.':Bv—cos G—E— o + 5 l— =~ B e J (A2)
k ~oBx

v
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The spectral flux is given by the expression

-

F =

; B cos 6 df . (A3)

[

Q

Substituting eq. A2 into eq. A3 and integrating we obtain

= 4 8B3
Fy = 3% B (A4)
since cos 0 = cos39 =0 and cosze = 2/3. Thus
o
F o= 4 an aT
v 3k aT ox °?
v
or
F=-\_VT {A5)
ra
if o
N " 4n andV 166T>
ra ) 3k, 0T - "3-'1{'"
L,R0

as indicated in Sec. III, (B). The first correctionterm to the diffusion
approximation formula given in eq. A5 may be found from the third

order term in eq. 116, The first correction term is

3,0 2,0 o .2 0 | -
 4r an_3dBvd1nkv_dBv d'inkv_}-ZdBv(dlnkv.‘ZJV3T
5k3 8T3 dTZ dT dT de aT dT

Hence, the Navier-Stokes form of the heat flux is only good to the second

order.
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Appendix B

Solution to the Radiant Energy Transfer
Equation Using the Lunblad Scriecs Expansion

We derived eq. 116, the solution to the radiant energy equation

for large optical lengths, using the iterative procedure

B =B, - *, B, =B (B1)

where the subscript i indicates the ith order solution. Let us deter-

mine the form of the solution if

n_—]

o N '.i.

Bv = ‘_f_/ a7 (B2)
i=0

i.e., we approximate Bs by n terms in the Lunblad series (see

Sec. VII), From eq. Bl it follows that

n-1
- iy i
B, = ) (- bart . (53)
yA S
i=0

After n-1 iterations wez have

n-1
\ - Y N S - ) :
B, = ), l-1 Jipi-y) oy iEcD.. . (iont2) ]a.'rl . (B4)
% T 2 n-1 i
n .75 - T (-7)

However, it is now seen that further iteration will not change B from

the value BV as all the coefficients of form
n

i(i-1) eoo (i-n+2){i-ntl) ...

will vanish. Therefore, eq. B4 is the exact solution to the heat transfer

equation when B: is given by the Lunblad series. For n terms kept
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in the Lunblad series, the exact solution will contain only n terms.

We may conclude that in an expansion of the form of eq. 120 for a general
temperature profile, the first n terms will be correct but the ntl and
successive terms will in general be incorrect,

Furthermore, if the jth term in eq. 116 is set equal to zero,

a jth order differential equation results which may be reduced to an
equation which determines (to within certain constants) the tempe rature
profile. It is easily seen that the analysis leading to eq. 120, when
additional terms in the Lunblad series are used, will also yield a jth
order differential equation when the jth term is set equal to zero,
When the Lunblad series is exact to the (j—l)th order, the jth term
must vanish in both the exact solution and the solution of the type pre-
sented in eq. 120, This results in two jth order differential equations
having the same solution, Hence they must be the same to within a
constant factor., Therefore the jth and successive terms are the same
in both types of solutions to within a constant factor.

Equation B4 may also be derived combining eq. B2 with the
general solution to the radiant transfer equation (eq. 51). Below we
look at the special case considered in Sec. VII, viz. an infinitely thick
medium. The solution to the radiant transfer equation may be written

: T 1
B (r)e” - B_(0) =S BO(t"e” ar' (B5)
o _

S
where T is the optical length (7 =§ kvds)o Letting 7T — - o0, we
obtain, in analogy with eq. 74,

n-1

B, (0) = Z ai(-l)i il (B6)
1=0
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having kept n terms in the Lunblad series. The alternating sign of
each term results from having chosen T and s in the same direction;
the analysis of Sec. VI assumed T and the direction of radiant energy
transfer to be in opposite directions. It is easily seen that eq. R4
reduces to eq. B6 for T =0,

It is now possible to demonstrate that the condition

o]

B, (0)= B

(T = 1), (B7)
which was applied in Sec. VIII for a general temperature profile is

valid only for large optical depths. Starting with eq. 131, we have

. 9B°  2°B°
Bv('r) = B (T) - 57 + 872 - v . (B8)

We may expand B‘c: in a Taylor series about an optical length, t,

resulting in the equation

o) 2,0
(’7‘—1:)2 9 Bv

21 2 “ 000

BO(t) = B® 8B, +
°(t) = BO(T) - (T-t) 5=

(B9)
oT

We see that BV(O) will equal BS(t), independent of the choice of tem-

perature profile, only if

(-t) =1
(-t)2 = 21
(—t)3 =31

these conditions are mutually exclusive. For large n

(-t) = ()P = nje >>1,

where e is the basgc of the natural logarithms. Equation B7 will be wvalid
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~only for large optical depths where the high order terms in Eq. B8 are
negligible,
A symbolic derivation of eq. B8 is obtained by writing the heat

transfer equation, eq. Bl, as

9 -
1+5:)B, =B, . (B10)

Therefore

B =(1+’a‘?) B . (B11)

Expansion of the operator results in eq., B8,
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