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ABSTRACT

A polarity-coincidence detector with biased polarity indicators
(biased hard limiters) is studied to determine the effects of the
blas on the detector output mean value, output variance, and output
signal-to-noise power ratio.

The mean value of the detector output is derived for the case
of Gaussian input signal and Gaussian input noise, with arbitrary
spectra for the signal and noise. The mean value 1s expressed as
a function of the Input signal-to-nolse power ratio, and as a function
of the biases in the input channel and the reference channel polarity
indicators. It is shown that the effect of bias is to introduce a
spurious component in Lhe oulput mean value.

The variance of the detector output is derived for the case of
Gaussilan input signal and Geussian input noise, with RC low-pass
spectra for signal and noise, for small input signal-to-noise power
ratios only. The varlance 1s expressed as a function of the biases
in the input channel and reference channel polarity indicators, and
as a function of the input signal-to-noise band-width ratio. It is
shown that the effect of bilas is to introduce a spurious component
in the output variance.

The output signal-to-noise power ratic (the square of the output
mean divided by the output variance) is derived for both an ideal
polarity-coincidence detector (no bias) and for a biased polarity-
coincidence detector. The output signal-to-noise power ratio is ex-

pressed as a function of the input signal-to-noise power ratio, the
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biases in the input channel and the reference channel polarity
indicators, and the input signal-to-nolse band-width ratio, for small
input signal-to-noise power ratios only.

It is shown that the output signal-to-noise power ratic of an
idesl polarity-coincidence detector is degraded from that of a
correlation detector. When the input signal-to-nolse band-width
ratioc is unity, the degradation is about 1.4 db. The degradation
increases to about 2.2 db. when the input signal-to-nolse band-width
ratio becomes either very small or very large. It is also shown that
the output signal-to-noise power ratio of a biased polarity-coinci-
dence detector is degraded from that of an ideal polarity-coincidence
detector. A simple expression for the degradation is presented.
Limits on the bilases are given, such that when the‘biases are smaller
than these limits, the degradation of the output signal-to-noise

power ratio is negligible.
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CHAPTER T

INTRODUCTTON

A cross-correlator is a device for implenmenting the mathemstical

operation of multiplying two quantities, Xl(t) and x_(t), and

o
integrating the product for a finite length of time, T. IT xl(t)
consists of a noise component and possibly a known signal component
and 1T xz(t} is proportional to the known signal component, then
the device i1s callcd a correlation detector.

It is well known that a correlation detector is optimum, in =
certailn sense, for detecting signals in the presence of noise,
Specifically, if the signal contains finite energy and if the noise
is white Gaussian, then a correlation detector is equivalent to a
matched-filter and also to a likelihood-ratio detector (1).

Because of its optimum properties, it is desirable to provide
various methods of implementing a correlation detector. Methods of
implementation can be divided Into two categeries - analog and
digital. A correlation detector is equivalent to a linear filter and
an analog implementation preserves this linearity. Since general and
powerful methods exist for the analysis of linear systems, it is
natural that analog implementations of the correlation detector have
been investigated extensively. On the other hand, a digitsl imple-
mentation is inherently non-linear and consequently only limited
investigations of digital implementations have been made. Neverthe-

less, for many applications, digital implementations have advantages



relative to analog methods, and in fact, their use 1s becoming
widespread.%

It is the purpose of this theslis to examine certaln properties
of an extremely simple form of digital correlation detection,
vtilizing only two levels of digitization, called polarity-coinci-
dence detection. A non-ideal polarity-coincildence detector, in
which the polarity-indicating devices have bias, is investigated.

An inherent characteristic common to all digital systems 1s that
continuous functions are quantized or "digitized". This quantization
is accomplished by dividing the domain of the function into a number
of intervals or "levels", each with an assigned number to character-
ize 1t. All values of the function in an interval are replaced by
the characterizing number assigned to that interval. The number of
divisions is called the level of digitization. Generally, a digital
system contains some sort of data storage apparatus or "memory". The
amount of memory required, the complexity of computation and, conse-
quently, the size of the system increase with the level of
digitization. Thus 1t i1s desireble to restrict the level of
digitization to as small a value as is consistent with the required

precision.

* If a general purpose digital computer programmed to calculate the
cross-correlation between two functions 1s included as an imple-
mentation, then indeed a large class of correlation calculations
has been implemented digltally.



At least two levels of digitization must be used 1f any of the
characteristics of the original function are to be preserved.
Usually, in two level digitizing, the function domain is divided into
its positive and negative parts and either the numbers +1 and -1
or +1 and O are assigned. It would seem at first glance that two
level digitization would deslroy so much of the character ol the
original function as to be useless in a digital implementation of a
correlation detector. 1In fact, however, the performance of a digital
correlation detector using two levels of digitization is degraded
hardly at all relative to the performance of a perfect correlation
detector.ae Moreover, the implementation of a two-level digital
cross-correlator is extremely simple, due to the Tact that the multi-
plication operation, by a simple artifice, can be replaced by an
addition operation. From the following table it is clear that
a*b =1 - 2(c +d), where + denotes addition modulo 2. Thus, in
this kind of digital system, multiplication can be replaced by

addition modulo 2 after a simple transformation 1s made.

* It should be noted that although the two-level digital correla-
tion detector has nearly optimum performance in the detection of
a single signal in the presencc of nolse, it nevertheless has
some limitations. Specifically, it is similar in its behavior in
some respects to that of an FM recelver with strong limiting
followed by a phase detector. E.G. the desired signal is sup-
pressed by a strong (undesired) signal component near in
frequency to the desired signal, due to the power normalizing
properties of the digitizing process. This phencmenon has been
examined by several investigators (2,3 and L4). See Appendix VII.



a +1 +1 -1 -1 c +1 +1 0 0
b +1 -1 +1 -1 d +1 0 +1 0]
a*b +1 -1 -1 +1 c + d O +1 +1 0

Because of 1ts simplicity and near optimum performance, there
io conglderable interest in the two-level digital correlation detec-
tor and a number of papers discussing it have appeared in the litera-
ture in recent years. Some of these will be discussed below. Two-
level digital crosgs-correlators have been constructed by several
investigators (5,6 and 7).

A block dizgram of a simple two-level digital correlation
detector is shown in Figure 1l.1. The two-level digitizers shown in
the figure are also variously known as ideal limiters, polarity
indicators, sign generators and zero-crossing generators. The
corresponding detector is variously called a two-level digital
correlation detector, an ideal limiting correlation detector, a
polarity-colncidence detector or a zero-crossing correlation detector.

In this thesis the term polarity~coincidence detector will be used.
Summary of Literature
Related to Polarity-Coincidence Detection

A review of the literature related to polarity-coincidence detec-

tion 1s given In Appendix VIL A brief summary is given here.
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There has been interest among statisticians for many years in
the evaluation of multi-dimensional Gaussisn integrals over regions
bounded by hyperplanes, planes, lines, etc. (8, 9, 10 and 11). Such
integrals have a direct relation to the problem of determining the
effects of two-level digitizing on the detection of signals in
Gaussian noise. This relation will be examined in detail in the body
of this thesis.

The properties of the auto-correlation function and the signal-
to-noise power ratio at the output of an idecal limiter% and at the
output of a band-pass limiter%%‘have been discussed in several
papers (12 through 19). Most of these have considered narrow-band
inputs consisting of sinusoidal signals in narrow-basnd Gasussian nolse.
A few have examined wide-band signals and noise. TFor a single
sinusoidal signal in narrow-band Gausslan nolse or for a very narrow-
band non-sinusoidal signal in narrow-band Gaussian noise, the degra-
dation in signal-to-noise power ratio and signal detectability at the
output of a band-pass limiter is approximately 1 db. For multiple

sinusoidal signals in Gaussian nolsge or for wide-band non-sinusoidal

*

An ideal limiter is a device whose output is +1 for positive in-
puts and -1 for negative inputs. (The value of the output when
the input is zero is usually not important. Often it is arbitrar-
ily set equal to zero.) Thus the ideal limiter is a two-level
digitizer of the polarity-indicator type.

%% A band-pass limiter is an ideal limiter followed by an ideal band-
pass filter. The band-pass limiter is intended to operate only
on narrow-band inputs and its band-pass filter has a pass-band
corresponding to the narrow-band input.



signals in Gaussian noise, the signal-to-noise power ratio and
signal detectability may be seriously degraded (6 db. or more).

The polarity-colncidence detector has been investigated for
lnputs consisting of a narrow-band Gaussian signal in narrow-band
Gaussian noise, the signal and noise having identically shaped
spcetra (20). The degradation in output signal-to-noisc power ratio
relative to a correlation detector (no limiting) is less than 1 db.
In the same paper (20), the performance of a polarity-coincidence
coherency ciletecﬂi:c>r7vc is compared with that of a correlation coherency

*H

detector (no limiting) for the same type of input as before -
Gaussian signal and Gaussian nolses, the noises having equal power
and identically shaped spectra. Again the degradation 1s less than
1 db. Additional papers discussing the performance of a polarity-
coherency detector relative to a correlation cocherency detector have
appeared recently (21,22).

For a more complete discussion of the above references and also

of related literature, see Appendix VII.

* The polarity-colncidence coherency detector is a correlation
coherency detector** in which the inputs have been ideally limited
before multiplication.

%% The correlation coherency detector is a cross-correlator whose
inputs are: sl(t) consisting of a noise component nl(t) and
possibly a signal component s(t); Xg(t) consisting of a nolsc

component nz(t) and possibly the same signal component s(t).



Description of the Aresa
of
Investigation Covered in this Thesis

Certain properties of a non-ideal polarity-coincidence detector,
in which the polarity indicators have bilas, are investigated. 1In sub-
sequent discussion, this non-idesal polarity-coincidence detector will
be called a bilased polarity-coincidence detector and will be denoted
by BPCD.

The behavior of the BPCD in response to a (Gaussian signal in the
presence of Gaussian nolse 1s examined. The following properties are
lnvestigated:

a. The effects of bias on the post-detection or output mean
value. No restrictions are imposed on the form of %he signal or
noilse spectrum and the mean value 1s derived for arbitrary input
slgnal-to-noise ratios.

b. The effects of bias on the post-detection or output variance.
A general expregsion is obtained for small input signal-to-noise
ratios. Numerical values are obtalned only for signals and noise
with RC low-pass spectra.

c. Using the post-detection or output signal-to-nolse power
ratio as a criterion of performance, the BPCD is compared with the
polarity-coincidence detector (no bias) and with the corrclation

detector (no limiting).
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CHAPTER II

THE POLARITY-COINCIDENCE DETECTOR WITH BIAS

It 1s impossible to construct a perfect limiter or polarity
indicator. Bilas exists in all physical devices, however refined their
design and construction may be. The sources of bilas in an actual
device may be varied. For example, in an electronic polarity indica-
tor employing tubes or transistors, the blas may arise from contact
potentials, Junction leakage currents, operating point drift, etc.

Since bias is inevitable, i1t is desirable to determine its effect
on the polarity-coincidence detector. To that end, this thesis pre-
sents the investigation of the effects of bias for certain types of
inputs and with certain assumptions to be described in the subsequent
development.

First, however, functional and mathemallical descriptlions of the
biased polarity-coincidence detector (BPCD) will be given.

A biased polarity indicator is a two-level digitizer which
divides the input function domain into two regions, x > b and
x < b, where b is the bias value, and which assigns the output
value v = +1 1o the first region and the output value y = -1 to
the second region. An ideal limiter or (unbiased) polarity indicator
is then a special case of the blased polarity indicator, with zero
bias.

A BPCD is a polarity-coincidence detector whose polarity indica-

tors have (not necessarily equal) bias. Thus a BPCD is a device which
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operates on two inputs, xl(t} and xZ(*;—,), First it digitizes the
two inputs at two levels. This is accomplished by a pair of biased
polarity indicators with bias values bl and bz, The outputs of
the polarity indicators, ¥y and Yy, are then multiplied. The
product, w, can have only the walues +1 and -1, since ¥, and
Yy have only the values +1 and —l.% Finally, the product, u(t),
is integrated for a finite length of time, T. The output of the
integrator is a real number, z. Since the integrand, wu(t), has
thc property %ui = 1, +then the output, =z, has the property
lz| =T

A block diagram of the BPCD is given in Figure 2.1. The trans-

Ter functions for the biased polarity indicators are shown inside the

blocks representing them. The transfer functions are:

+1L for x, > D,

0 Tor

%
i
b

}.Jv
0
o

-1 for x. <D

where 1 =1 or 2.

* The output of the polarity indicators when the input equals D
has been ignored, since the input equals b with probability
zero for all inputs considered in this thesis.
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In the remainder of this thesis, it will be assumed that:

xl(t) = s(l) + n(t) ("signal present"” case), where s
and n are the signal and noise

. . 2 2

with variances US and. o9,

respectively, or that

= n{t) ("signal absent"” case), and that

»
=
~~
ot
|

»
V]
N
o
S
]

so(t) = a-s(t), where so(t) is a locally avail-
able replica of s(t), a = Go/cé’
052 is the variance for s, and
082 is the variance for s.
The function xl(t) 1s the received stimulus and xz(t) is the
local reference signal.
The output, =z, 1is related to the outputs of the biased polarity

indicators by the equation

T T
z =fu(t)dt :fyl(t)yz(t)dt (2.1)

O

and the sguare of the output, zg, which will also be required for

subsequent developments, is

T T
z° =£{u(t)u(e)dtde_= [lyl(t)yz(t)yl(e)yz(e)dtde

(2.2)
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Expressions for the mean of z are derived in Chapter III and
expressions for the variance of 2z are derived in Chapter IV.
Expressions for the mean, variance and signal-to-nolse power ratio
for the output of an ldeal correlation detector (no limiting) are
derived in Chapter V, for purposes of comparison. Then expressions
for the post-detection or output signal-to-noise power ratio are
presented for the (unbiased) polarity-coincidence detector and for
the biased polarily-coincidence detector. Finally, using the post-
detection or output signal-to-nolse power ratio as a criterion of
performance, the biased polarity-coincidence detector, the (unbiased)
polarity-coinclidence detector and the correlation detector are compared.

A summary of results and conclusions 1s presented 1n Chapiter VI.
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CHAPTER IIT

THE MEAN VALUE CF THE OUTPUT OF A BIASED

POLARITY-COINCTDENCE DETECTOR

In this chapter expressions are derived for the mean value of

the BPCD output. First, general expressions will be derived and then

they will be specialized for Gausslan signal and noise inputs.

Before proceedlng wilith the development, a number of assumptions

will be stipulated which will be used throughout this chapter and,

in fact, will be assumed to apply'throughout the remainder of this

thesis except where specific statements to the contrary are made.

(A1)

(A2)

(a3)
(Ak)

(A5)

Asgumptions
The inputs are xl(t) = s(t) + n(t) ("signal present"
case) or xl(t) = n(t) ("signal absent" case), and
xz(t) = so(t).
n(t) and s(t) are sample functions from wide-sense
stationary random processes with variances ci and o: .
1} =0 and Pr{so(t) =b2} =0 .
so(t) is a locally available replica of s(t) . It is

Pris(t) + n(t) =1

identical to s(t) except possibly for amplitude;

s (t) =a-s(t) where a =0 /o_ and o® is the vari-
) o s 0 :

ance of s »

The s(t) and n(t) (and hence the so(t) and n(t) )

processes have statistically independent first order

distributions.



17

(A6) The density function for n(t) is even in n .
(fhus ZE{n} =0 .)
(AT) The density function for s(t) (and hence for so(t) )
is even in & (and 5, )- (Thus E{s} = E{s,} =0 .)
Addltional assumptions concerning n, s and SO will be made
at various stages later in the development. The assumptions given

above are consistent with all additional assumptions which are to be

made.

3.0 (QGeneral Expressions for the Mean Value of =.

Trom equation 2.1, the output of the BPCD is

T T
z = /u(‘b)dt = fyl(t)yg(t)dt .

The mean or expected value of =z 1s then

T T
W, = E{z} = E fu(‘t)dt = fE{u(t)}dt

fE{yl(t)yz(f)}dt .
o]

_){.
By assumption A2, E{yi(t)yz(t)} is time independent and can

be written E{ylyz} . Thus the mean of 2z is

* By assumption AZ, s and n have first and second order time

independent statistics. Thus Xy and x2 and hence Y1 and

Vo also have first and second order time independent statistics.
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T

b, = fE{:fl:fz}dt = TE{yy7,} . (3.0-1)
A .

E{yl;yz} is evaluated as follows: VY, = +1 when Xl(t) > by

and xz(t) >b. or when xl(t) < b, and xz(t) <b, . Similarly,

Z 1

¥1Y, = -1 when x,(%t) >b; and x,(t) <b, or when % (t) <Dy

and xz(t) >b, . Also, yjy, =0 when %, (t) =Db; or when

1

xz(t) = b2 . Upon introducing assumption Al, these conditions

become: y;y, = +1 when s(t) + n(t) >b;, and so(t) >b,_ or when

1 2

s(t) + n(t) <b; and so(t) <b Similarly, Y97, = -1 wvhen

2 ..
s(t) + n(t) > b, and so(t) <b, or when s(t) + n(t) <b; and
so_(t) >b, . Also, yy, =0 vhen s(t) + n(t) = b, or when
so(t) =D, .

E{ylyz} is then written, on introducing assumption A3, as
E{v;v,} = Pr{s+n >b,, s > b} + Pristn <by, 85, < b}
- Pris+n >by, s < b,} - Pris+n <Dy, s >b} .

Next, s 1s written in terms of 55 by introducing assumption
Ab. s = so/a, where a = O'O/O'S . Substituting this in the above
equation for E{ylyz} and also substituting the abbreviation
b3 = bl—so/a’ yields

E{y;7,) = Pr{n»> LEVEEN >Db,} + Pri{n <bg 8, < b}

- Pr{n > b 8, <b,} - Pr{n <bg s, > b,} .
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Replacing the right hand side by the corresponding probability

integrals yields

ee] oo @ b3
2v,) - | as, [ stmegan - [ s, [ etz an
b -

b2 b3 o

P2

b, b,
+ J[aso Jf g(n,so)dn - J/dsO-]/ g(n,so)dn
-0 - - ’33

where g(n,so) is the Joint probability density function for =n

and s . By assumption A5, n(t) and s(t) (and hence so(t) )
are eample functions from random processes with statistically inde-
pendent first order diétributions, so g(n,so) can be written
g(n,so) = f(n)h(so) where f(n) 1is the marginal density for n and

h(so) is the marginal density for s_ . The mean, written in terms

of f(n) and h(so), according to equation 3.0-1, is

. = TE{ry,}

T T ff(n)dn-

n)dn h(s )ds

S%w

+

bp [Py ®
/{[f(n)dn - j f(n)dn y h(s )ds .

'b3
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The integrals inside the braces can be simplified by the introduction

‘of assumption A6, as follows: Write

P3 v o b3
jf(n)dn "f f(n)dn = jf(n)dn +f f(n)dn
pir b3 -0 [o}
® b3
-/{.f(n)dn +‘/’ f(n)dn .

Since by assumption A6 f(n) is an even function, the first and third
integrals on the right side cancel and the right side becomes

P3

2 jf(n)dn' .

[e]

Substituting this result into the preceding equation for by, yields

M, = Tk {YIyZ}

b2 b3 - b3
- 27 »idsobf £(n)n(s_)dn -{2 dsO[ £(a)h(s,)dn .

Note that b3 is a function of' s .
Next, the noise and reference signals are normalized. The
following notatién is introduced in order to simplify the subsequent

equations:
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t = n/crn 5 ou(t). = onf(dnt) is the density function for t, the

I R . . *
normalized noise variate.

>
Il

so/do s v(A) = coh(coh) ig the density funmction for ) , the

normalized reference signal.

N = oﬁ/oﬁ = Gg/azci is the input signal-to-noise power ratio.

P = Gi + Ui is the total input power.

[

bl/J? 1s the normalized blas for the input polarity indiecator.

5, = bz/cb is the normalized bias for the reference signal polarity

indicator.

-y A is a limit of integration.

=3
}-J
I

—‘b3/0"n = (J?/cn)ﬁl + 1, 1s another limit of integration.

=3
oo
|

Equivalent expressions are ﬂa = JIHN 5 + My or

b,/0, - oMao, or b /o - A . Note that P/ = /I

*  (learly, here, t 1s not the time and u(t) is not the output
of the multiplier as they were previously. Because of the limited
number of symbols avallable, a certain amount of duplication will

occur in the notation. The context should make the meaning clear
in each case.
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In terms of this new notation, the preceding equation for by,

becomes

62 ﬂz 0 o)
u, = 27 fd}\ [ u(t)v(n)at + ZT[ dh[ u(t)v(ir)at . (3.0-2)
, - © 8

2 T

Note that ﬂg is a function of X . 1In the second term of the
above equation, the order of the limits on the second integral has
been reversed. To compensate for this, the sign preceding the term
has been made positive. This is done for future convenience.

The integrals in equation 3.0-2 will later be interpreted in
terms of volumes under the surface wu(t)v()) over the regions in the
A, t~plane indicated by the limits of integration.

In order to evaluate these integrals, several sets of conditions

on W, &l and 62 will be considered. These are listed below.

Case A. N =0. This is the "signal absent" case. o_ = 0. It

~

corresponds to the null hypothesis.

Case B« N # 0. This is the "signal present case. o £0. It

corresponds to the alternative hypothesis.

Bl.) 8, =8, =0. This is the unbiased or ideal polarity

indicator case.
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32.) 8, =0, b #£ 0. The input polarity indicator is ideal

but the reference signal polarity indicator has bias (or

the reference signal has a D.C. component).%

8, £ O, 5, = 0. The input polarity indicator has bias

(or the input stimulus has & D.C. component)* but the

reference signal polarity indicator is ideal.

Bh') 8y £0, 5, # 0. The polarity indicators both have bias
(or both the input stimulus and the reference signal have

D.C. components).

Case Co. N — ®. This is the noiseless case.

All the above cases, including cases A and €, cau be
obtained as limiting cases from case Bh' However, 1t is instructive

t0 examine them individually.

Case A. N =0

This is the case in which no signal is received. Tt will
correspond to the null hypothesis in subsequent discussions of

detection properties.

* It should be noted that a D.C. component in Xl or x2 is

equivalent to a bias of equal magnitude and opposite sign in the
corresponding polarity indicator. Thus the results of this
thesls are applicable to systems with inputs and references
having non-zero means as well as to systems with biased polarity
indicators.
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Since N =0, then § =b /o , T, =0 and T, =6 .

Denoting the mean for this case by Hy s equation 3.0-2 becomes

85 8, - o
b, = 2T d,\f u(t)v(r)dt + ZT[ dxf u(t)v(r)dt .
-0 o) 62 61

Since the limits of integration are now all constants (in equation
3.0-2 the limits on the inner integrals are functions of the
variable of integration for the outer integrals), the order of
integration can be interchanged directly. Thus

& (%2 m

b, = 2T f fv(x)dx -[ v(a)an xu(t)dt .
0 8

- 2
The integrals inside the braces can be simplified by the introduction
of assumption AT. Proceeding in az manner analogous to that used for
simplifying the equation for W, on page 20, by the evenness of

v(A) the quantity inside the braces becames

8o

. ] oo .

O

Substituting this result into the above equation for o vields

il %2
o=t [ e [ voom (3.0-3)
: o )

Note that since wu(t) and v()) are even functions, then b, 1is

odd in 61 and §

simultaneously.

5 individually but even in § and

1 a



For an ideal (unbiased) polarity-coincidence detector the mean
of the output should be zero when there is no signal present in
xl(t) , Since in that case there is no component in yi(t) which
is correlated with . yz(t) + Equation 3.0-3 gives the mean, u_ ,
of the BPCD output when no signal is present. In eguation 3.0-3
the wvalues 61 =0 and 62 = 0 correspond to an ldeal polarity-
coincidence detector and, for these values, the equation yilelds
Hy = 0 as is reguired.

Equation 3.0~3 shows that the effect of bias is to cause the
output to have a spurious non-zero mesn when no signal is present.
However, the non-zero mean occurs only if both polarity indicators
have blas. If elther one 1s ideal, then the mean is zero. This is
an ilmportant point, because in some systems the reference signal
polarity indlcator can be regarded as ideal. For example, if a
general purpose digital computer were to be programmed as a polarity-
coincidence detector, the sign of the reference signal would be
generated by the computer directly. To generate an analog reference
signal anc then pass it through a polarity indicator would be
superfluous. In such a case, since there is no polarity indicator
to introduce bias, the mean of the output would have the desirable
property of being zerc in the no signal case regardless of blas in

the input channel.

Case B. N # O

This is the case in which a signal is received. Tt will

correspond to the alternative hypothesis in subsequent discussions
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of detection properties.

5., = 52 = 0.

This is the "signal present" case for an ideal polarity-
coincidence detector. The results of this case will be used for
comparison with the results of the non-ideal cases.

Since 68, = 0 , then My =T = -/N\ . Denoting the mean in

this case by oo equation 3.0-2 becomes

o] ﬂl @ O
W = 2T jdx[ u{t)v(n)at + ar fdxf u(t)v(r)at
- fo! o] “1
- ZT(URl + URZ) ) (3.0-4)

where U
A

region A in the JA,t-plane. The regions Rl and R2 are shown

denotes the volume under the surface u(t)v(\) over the

in figure 3.0-1l. Note that ql is a function of ) .

As in Case A, the preceding equation can be further simplified
by introducing assumption AY. Since then both u and v are even
functions in their‘respective arguments, it follows that uv is
even In t and A simultaneously and hence is symmetric about the
origin in the ),t-plane. Aﬁ inspection of figure 3.0-1 reveals
that the regions Rl and R2 are mirror images in the origin.

Therefore, the first and second integrals of the above equation are

equal and
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Wy = hTeUn . (3.0-5)

An equivalent expression follows from the evenness of u(t) .

b = LLT-URq ’ (3.0-6)

2

where R3 also 1s shown in figure 3.0-1.

In the subsequent development, integrals representing the
volume under the surface u(t)v(r) over particular right triangular
regions of finite extent will occur frequently. Therefore, a nota-
tion for suech volumes will now be introduced.

Let U(p,yp) denote the volume under the surface u(t)v(:r)
over the right triangle with base of length p along the )-axis,
with acute vertex at the origin and with altitude of height ~p
parallel to the t-axis, in the first quadrant of the 3,t-plane,

as shown in figure 3.0-2. The integral representation for this

volume is

b YA
U(p,vp) = [dxf u(t)v{r)at . (3.0-7)
o] o]

When u and v are even functions, U is even in p and odd in v.

It is clear that the mean for Case B, as given by equation

1
3.0-6 can be expressed as a limiting value of U(p,vyp) .

by = Lpelim U(p, N 1) . (3.0-8)

p——)oo
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When N =0 , then by = O according to equation 3.0-8. This is
consistent with equation 3.0-3. Moreover, lim o= T , the

N—xo
maximum possible mean value.

Cases A (with 8, = 8, = 0) and B, provide the mean value for

an ideal polarity-coincidence detector. Case A (with 6., and/or

1
62 # 0) and the following cases provide the mean value for non-

ideal polarity-coincidence detectors.

Bye) 8 =0, 52,40.

This is the "signal present' case with an ideal input polarity
*
indicator but with a biased reference signal polarity indicator.
Since 51 = 0, then ﬂz = Th = -/M A . Denoﬁing the mean in this

case by o s equation 3.0-2 bhecomes

62 nl o o)
Mo = 2T [dx J u{t)v(A)dt + 27 f d}\f u(t)v(n)dt
-0 (o) 62 T’l
which can be written
o) Th 62 nl
by = 2T [dk fu(t)v(x)dt +f ax /u(t)v()\)dt
-0 o] o] [}
O O @ o]
+[ d}\f u(t)v(n)dt +j dxf u(t)v{())dt .
2 ° T

#* See footnote on page 23.
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The Tirst and last integrals are those which appear in equation

3.0-4 for . Clearly, the second and third integrals are equal.
My q

Thus
5% Ty
My = 1y + Iy Jf dx'jr u(t)v(n)at . (3.0-9)
0 o

By assumption A6, this can be written
o Ty

hy =y - kT f ax fu(t)v()\)dt . (3.0-10)
O O
Finally, by equation 3.0-7, substituting Ty = N,
My = iy = WU(e,, MW 6)) = py + ey (3.0-11)

where e, = —ET'U(ﬁz,Vﬁ 62). The mean Ko is even in §

the evenness of u and .

Y due to

Equation 3.0-11 shows that the mean for the non-ideal case with
8, =0 Dbut with 5, # 0 is the mean for the ideal case plus an

error term, ez. The error term is always negative arnd is even in

8§, The error term becomes zero for 52 =0 and for N = 0. This

2

ls consistent with the results of Cases A and Bl‘
The relative error is a useful indication of how serious the

error is. The relative error in the mean, b, 5 of a non-ideal

system 1s defined as



b, - |
z 1 (3.0-12)

where B is the mean for the ideal system.

For the present case, the relstive error, P is

u(s.,, VN
(278 &) (3.0-13)

pz"‘

€2
EE lin U(p,¥N p)

e

Ps is even in 62, due to the evenness of u and v. Thus the

error depends only on the magnitude of the biss 1n the reference

signal polarity indicator and not on the sign of the bias.

B3.) 8, #£ 0, 6, = 0.

This 1s the "signal present” case with an ildeal reference signal

*
polarity indicator but with a bilased input polarity indicator.

Since 62 = 0, equation 3.0~2 becomes
¢] ﬂ‘a fos) o
Hy = ETI d)xfu(t)v()\)dt+2']3 f d}\f u(t)v(n)dat ,
-0 o] o} ﬂz

(3-0-1k)
where My is the mean for Case B3o Upon making the transformation

% — -} and introducing the evenness assumptions A6 ard A7, the first

integral of equation 3.0-14 becomes

x ©See footnote on page 23.
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i3

2T [d)\ b/u(t)v(h)dt

where 17 = (VB/o_ )8, - Ty. Substituting this into equation 3.0-1k

yields
© ’ﬂ3 0
by = 21*/ ]u(t)dt +f u(t)at y v(n)dx
o (o g
w
= 2T f f u(t)v(n)dtdn . (3.0-15)
o} T]Z

The limits on the inner integral are ﬂz = (V?/oh)al + “l and
ﬂs = (VP/Un)él - M- Since u(t) Ls even, then the inner integral

is even in 61. Therefore, is even in §

“3 l‘
A Torm which does not reveal the evenness in “3 g0 obviously

but which is more convenient for subsequent developments follows:

Equation 3.0-14 can be rewritten

- O T]l o} ﬂz
My = 2T fd)Lj u(t)v(N)dat + fdk [ u(t)v(n)dt
- CC (o) -0 Tll

T

+ T a) fu(ﬁ)v(x)dt + 7&)\ ]O u(t)v(n)dt
(e}

Mg ° Ty
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The first and last integrals are those which appear in equation

3.0-4 for by e Thus

o] nZ © nz
My = Hyp 2T -]’dk J( u(t)v(r)at -~J’dx J( u(t)v{r)dt
= Ty ° M
=t oeg (3.0-16)
where
o N o T
ey = 2T _[éx J( u(t)v(n)dt -‘f’dx j/ u(t)v(n)at .
~® Ty %y

Note that Ty and N, are functions of .
Equation 3.0-16 shows that the mean for the non-ideal case with

6§, =0 Dbut with 5y £ 0 1is the mean for the ideal case plus an

2

error term, e Since is even in 51 and since by is

3* Hy

independent of 61, then e_ 1is even in 61, The error in MS

3
depends only on the magnitude of the bias in the input polarity
indicator and not on the sign of the bias.

The relative error 1s, according to equation 3.0-12,
Py = ea/ty . (3.0-17)

3 1

Bh.) 8, £ 0, 5, £ 0.

Since e is even in 61, then p3 is even in §

This is the "signal present"” case with both biased input and
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: *
bilased reference signal polarity indicators. Equation 3.0-2 can

"be rewritten
62 nZ

O
by = aT .j’dx + j’ da
-0 o)

which in turn can be written

+

ORL\?

e] (0] ©
+f62 dxf [dxf u(t)v(n)dt

(¢]
° o o My

o L My 8 8 T2 o

L T
un:zwfd)\j+fdxf+fdh[+[dx +fd)\f
e} (o] (0] T\Z

-0 0O = T'l ’nl 62

@ h o 0

o} 0
+ / d)\f +[dx/+fd>\[ u(t)v(n)dt
8, 'ql o M, ©° T,

where Qu is the mean for Case Bh' The first and last integrals

are those which appear in equation 3.0-4 for My e The third and
sixth integrals are those which appear in the error term part of
equation 3.0-9 for b Thus their sum equals e, = p, - w. The
second and seventh integrals are those which appear in the error term

part of equation 3.0-16 for bge Thus their sum equals e3 = Mg =y

Therefore,

* gSee foobnote on page 23.
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W, =Ky F eyt egt hT-I(al, 62)

- hm.
“2 + }.{.3 Ml + 4T I(alj 52)

=y + e (3.0-18)
where
ey =€+ g+ Lr-1(s,, 8,)
and
o My
I(Bl, 52) = j( an )[ u(t)v(n)dat .
o i

Equation 3.0-18 shows that the mean for the most general non-
ideal case with 6, # 0 and 5, #£0 is the mean for the ideal case
plus an error term, S The error term, ey consists of a part
which depends on 51 only and is identical to the error term when

8, £ 0 but 8, =0, a part which depends on §, only and is

2
identical to the error term when &, £0 but 8, =0, and a part
which depends on both §; and 8,- The mean, y, and the error,

e,, &reeven in. §, and &, simultaneously (i.e.

ph(él,éz) = “u(’él"éz) ) but not in 8, and 3, individually.
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The relative error is, according to eguation 3.0-12,

oy =/

(3.0-19)

Since e, is even in 51 and 62 simultaneocusly, then p, s also.

COther Cases as

Limiting Cases of (Case B&

Case A. N =0

In this case,

Ty =&

Ho = C and = C. Thus,

H3

b,
=41f ax
8]

8

)

My

O%

Case B. N £ 0.

Bl.) 6 =6, =0. 1In

Also, I(al,ﬁz) = 0. Thus,
should.
=0, -

B,.) 5, £ 0.

o.

&9

“3 = “l and 1(61,62)
as it should.

B3.) 6, £ 0, 5, = 0.

Therefore, from equation 3.0-18,

Casge C.

and ﬂl = 0, Therefore,

i = 0
from equation 3.0-18,

u(t)v(r)dt = ko, @s 1t should.

this case, “2 = “1 and Ho = p3 = e
from equation 3.0-18, b, = K> 8as it
In this case, Mo = Ty &0 that
Thus, from equation 3.0-18, Wy, = W

In this case, Ho = 1y and I(élgég) =0

by, = u3 as it should.

N — oo,

In deriving the expressions for Cases A and B, the noise
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Varj.ate, n, was normalized by dividing it by O," For the present

case, it will be necessary to use some other normalization, because

this is the noiseless case and N — « may correspond to o, 0.

A new variate, s will now be introduced which is related to n

in the same way that 5, is related to s. In the probability

statements on page 18, the expressions s = (os/co)so and

n = (Gn/cro)no are substituted for s and n. n_ 1is & noise

variate identical to n except possibly for smplitude. It has

variance gcf, the same as s_. The probability relations become
E{ylyz} = Pr{xo > by, 8 > bZ} + Pr{xo <b

1 5 <Py

Pr{x  >b,, 8, <b,} - Pr{x  <b, 8, > by}

where x = (o8, + on )/c,. E{y;y,} can be written

]
<
oo
g
o
—d
|

= Pr{s_ > a-b-n /N, s >1D,]

+ Pris_ < a-bl—no/lﬁ, s, < b}

Pr{s, > a:b;-u [, s  <b,}

Pr{so < a-bl-no/ufﬁ, 8 >b2}
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In the limit as N - o,

E{y,5,} = Pr{s_ >aby, s >b,} + Pri{s  <a-by, s, <b,]

- Pri{s_ >a-b;, s <b,} - Pris < a0y, s > D}
by
When a-b, = b2(6l 2 8y, sluce lim §) = —= Y, then
N0 s
© b2 a -bl
b, =T Jr h(so)dso + jﬁh(so)dso - J( h(so)dsO .
a-bl - b2

The preceding equation can be written

a-bl

p,=T|1l-2 ‘jf h(so)dso ’
bZ

On substituting A = so/co, this becomes
b, /o
p,o=T|1-2 f v())dx .
%o

But ag N — o, él-z bl/J§ *'bl/cs. Therefore,

5

uwzr_r'l-z/v(x)dx .

8,
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‘(61 < 62), a similar argument leads to the result

Whep a-bl < bz,
62 -
M, =T |1 -2 jf v{n)ax .
51

Finally, then,
max(él,éz)
p,=T|1-2 J[‘ v(d)dx . (3.0-20)
min(él,éz)
This result is valld whether N — « due to o, - 0 or to
o, . However, 1if o, - @ then 61 - 0 and the limits of inte-
gration become min(O,BZ) and max(O,&Z). This result could have
been derived as a limiting case from case BH but the result would not
have revealed the behavior when N - = due to Gn - 0.
From equation 3.0-20, it is clear that in the ideal case vhere

6, = &, = 0, the mean value is Mg = T. This value is the maximum

1 2
possible value for the output =z and hence is the maximum possible
value for the mean of =z.

The expressions derived above for the BPCD output mean value
show that whenever a signal 1s present in the input, then bias in
elther channel alcne or in both channels simultaneously causes a
spurious component to bhe present in the output mean value. If no
signal is present in the input, then blas in either channel alone
will not cause the presence of a spurious component in the mean - in
the absence of a signal, a spurlous component in the mean occurs only

if there is bias in both the input and reference channels simultane-

ously.
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Since the output mean value is the output "signal™, the
presence of a spurious component lncreases the chance of making an
error in deciding if a signal is present or not. Therefore, the
presence of a spurious component In the output mean value has s
degrading effect on the BPCD. For a more complete discussion, see
Chapter V.

The various forms of the mean of the BPCD output derived above
will be used in Section 3.1 to obtain expressions for the output

mean value when the noise in the input channel is (Gaussian.

3.1 The Mean Value When the Noise is (Gaussian.

In addltion to the aséumptions introduced previocusly
(assumptions Al through A7), it will now be assumed that the noise,
n(t), 1is a sample function from a stationary Gaussian random process
with zero mean and with variance 02. This assumption will be in
force for the remainder of Chapter III.

(A3-1) n(t) 1is a sample function from a stationary random

process with density function

f(n) =

2 2
exp(n /ch) .
ZﬂOh

Upon making the transformation t = n/oh, the density function for

t Dbecomes in this case

1.2
1 egt .
e

u(t) =
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When this expression for u(t) is substituted in the equations of

section 3.0, the following results are obtained: From equation 3.0-2,

%2 1Mz o | My
l _.J-_—tz l _ltz
u, = 2T f —— e 2" aty v(A)an - ot — e 2" gty v())dn .
¥2x ¥2n
-0 Q 62 [e)
But
T
j = -%—tzdt $ Erf(n./72)
—— 3 =% X 3
/2n 2
(o]
where
2 TR
Erf(x) = = )[.e—J dy
’/_T{ (o
Thus
8, -
b, =T /v(x)Erf(nZ/le)dx - T f V(A)Erf('nz/wf‘z)d)\ . (3.1-1)
-0 52

Note that ﬂz is a function of A.

Case A. N =0

From equation 3.0-~3,

5 &
1 -3t8
My = Ly / v(a)an | —— e 2% at
4 ¥2n

)
2 .
aomes(oy/ /) [ van (3.1-2)
o]

il
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Case B. N £0

Bj.) & = 8, =0. In this case, T, =T;. Thus, from equation
3.1-1,
(¢} 0
by =T fv(x)Erf(ﬂl/fi)dx - T fv(x)Erf(nl/v/E)dx : (3.1-3)
-0 O

Note that ﬂl is a function of ).

At this point it will again be convenient to interpret the pre-
ceding integrals as volumes under the surface u(t)v()) where u(t)
is now defined by assumption A3-1.

Iet W(p,vyp) denote the volume under the surface v()\)—;—'_-—e-%t
an

over the right triangle with base of length p along the )-axis,
with acute vertex at the origin and with alt{itude of height +vp
parallel to the t-axis, in the first quadrant of the J,t-plane, as
shown in figure 3.0~2. The integral representation for this volume

is

P YA

2
fd)\[ v(n) 2 e"%JG at
¥2n

(¢] (o]

W(p,vyp)

p .
%f v(\)Exf (va/¥2)ax . (3.1-1)

(o]

When v 1is an even function, W is even in p and odd in v.
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From equation 3.0-8 it is clear that the mean for Case Bl with

Gausslan noise can be expressed as avlimiting value of W(p,yp).

w = 4Telim W(p, N p) . (3.1-5)

p——NX)

BZ') 8, =0, 8, £ 0. Equation 3.0-11 continues to be valid:

Ho = 1y + &, 5 (3.1-6)

where e2 is now

e, = -hT-w(sz,Jﬁ 5,) .

From equation 3.0-13, the relative error is

W(6,, /¥ 8,)

= = e 1=
Py = €a/iy T o) (3.1-7)

P

B3') 8 £ 0, 5, = 0. Equation 3.0-16 continues to be valid:

Mg = By +eg ) (3.1-8)

where e is now

3
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-

o]
ey =T j v() | Bre(n,/v2) - Er£(n,/72)|an

- T fv(x) Erf(nz/ﬁ) - Erf(nl/ﬁ) an .

From equation 3.0-17, the relative error is

ps = 83/”1 (3-1"9)

where e3 and “1 are the appropriate expressions for the

Gaussian noise case, as just glven.

BM') 8¢ £ 0, 8, # 0. Equation 3.0-18 continues to be valid:

]...LL" = H:L + ez‘l_ 3 (3-1-10)

where e, =e, + eg+ thI(&l,éz) and I(&l,éz) is now
82

Hopsp) =4 [ vO|sez(n/ ) - mez(ny/vm)|an

As before, the relative error is =€ but with the
| P = Syt

expressions for 84 and B appropriate to the Gaussian noise case.

Case C. N - «

Since this is the zero noise case (or the infinite signal in

‘finite noise case), the form of the noise distribution has no effect
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on the mean value of the system output. Thus equation 3.0-20 is
unchanged.
max(él,éz)
b, =Tl - 3 f v{n)ax . (3.1-11)
min(8,,6,)
This result can be derived directly from equation 3.0-20, since the
distribution of the noise variate does not appear in that equation
either explicitly or implicitly.

The properties attributed to the mean and relative error in the
various cases of section 3.0 (evenness in 8, or &, etc.) have
not been affected by the assumption of Gaussian noise. Therefore a
discussion of these properties has not been repeated here.

The expressions derived above for the mean value of the BPCD
output Vill be used ir the next section to obtain expressions for the

output mean value vwhen both the signal and noise are Gaussian.

3.2 The Mean Value When the Signal and Nolse Both are Gaussian.

In this section the effects of bias on the mean value of the
cutput of a polarity-coincidence detector are considered for inputs
consisting of Gauséian signal and Gaussian noise. Therefore, in
addition to the assumptions introduced previously (assumptions Al
through A7 and assumption A3-1l), it will now be assumed that the
signal, s(t), 1s a sample function from s stationary Gaussian ran-
dom process with zero mean and with variance og. This assumption

will be in force only in the present section.
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(A3-2) so(t) is a sample function from a stationary random

process with density function

1 2,. 2
h(so) = ;%%r;; exp(so/ddo) .
Assumption A3-2 is specified in terms of 8, rather than s, since
it is 5, which 1s used in the subsequent equations. s and S,
have ldentical distributions except for their variances which are
related by the expression a = co/cs.

Upon making the transformation ) = so/co, the density function

for A Yecomes in this case

ey - LB
12x

When this expression for v{A) is substituted in the equations of

section 3.1, the following results are obtained:

From equation 3.1-1,

.2 ¥,
A Erf(nz/&)dx - T/ S ErI(T] /f)a)\ .
5 (3.2-1)

*]

Case A, N =0

From equation 3.1-2,
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6
= 2T-Erf(s.,/4/2) /2 = e-%xzd)\
o] 1 ) Jé—j;
or
My = T-Brf(s,/vV2) Erf(s,/v2) : (3.2-2)

The remarks following equation 3.0-3 apply also to equation 3.2-2.
Before proceeding with the case N #£ 0, it will be convenient

to ilntroduce a new volume integralf Let V(p,yp) denote the volume

under the standard bivariate normal surface with zero correlstion,

1 --g—t2 —%xg , . . .
P e e ; over the right triangular region of integration with
base of length p along the )-axis, with acute vertex at the origin
and with altitude of height wvp parallel to the t-axis, in the
first quadrant. This 1s the same region of integration as was dis-
cussed in sections 3.0 and 3.1 and as was shown in figure 3.0-2.
Since this volume integral will be used extensively in subsequent
developments, the region of integration is shown agsin for conveni-

ence in figure 3.2-1.

The integral representation for V(p,yp) is

YA >

P 1.2

_l-.-t _ﬁ.}\
fd)\/ez e ™ 4t
o o)

1%
1,2
- } ’/'e-gh Erf(y)/v2)dr . (3.2-3)
©

I
NIP
A

(o, "ﬁl)

2" 24

=
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Figure 3.2-1"
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This integral is one of the multivariate Gaussian integrals
with linear boundaries of integration whose importance to the
analysis of the BPCD was mentionéd in the summary of related litera-
ture in Chapter I. This integral is important in statistics.
Consequently, a thorough investigation of its properties along with
tabulations of its values can be found in the literature (1).

V(p,vp) and V(yp,p) are tabulated in tables ITI and IV of
the reference cited sbove (1). Both functions are tabulated only for
values of +v between zero and one. Values of V(p,yp) with vy >1
can be obtained from the table for V(yp,p) with ¢ <y <1 as
follows: Let q = vyp, v =1/y. Then V(vq,q) = V(p,vp). When
v >1, then O0<v<21 and values of V(vq,q) for this range of
y are tabulated. Similarly, velues of V(yp,p) for vy > 1 can be
found from values of V{(p,vp) with O <~y < 1.

A detailed discussion of the properties of V(p,vyp), based
essentially on that found in the reference cited above (1), is given
in Appendix I. For later convenience, the simplest properties are

described below without proof.

V(p,vp) = V(-p,~vD) (v1)
7(o,vp) = -V(-p,yp) = ~-V(p,=-vypP) (va)
v(0,v0) = V(p,0p) =0 (v3)
Lim v(p,vp) = 3 " (y) (vh)

P—KD
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These preoperties are trivial consequences of the defining equation.
The integral, V(p,vp), has not been evaluated in closed form
in terms of the elementary functions or even in terms of a finite
nuniber of terms of higher functions. The integral can be evaluated
approximately in closed form when p and v are restricted to
certaln regions in the p,vy~plane. Moreover, by replacing the error
function in the integrand by an approximating function, the integral
can be evaluated 1n closed form for all values of p and vy with a
result which differs from the exact value by a small and calculable
amount. (I am indebted to Benedict Freedman for suggesting the
approximating function method. In a private communication, he
described a specific approximating function which mskes it possible
to evaluate the above integral in clqsed form with extremely small

error., See Appendix TT.)

Case B, N £0

Bl.) 51 = 62 = 0. In eguation 3.1-5, W(p,Jﬁp) becomes

v(p,/Np). Thus,

“’l = li-T‘lim. V(P,m P) *
P—)m

By property vh of v(p,yp) stated on page 49, this is

b = %} san” T (/) ) (3.2-4)



B2-) & =0, 6o # 0. From equation 3.1-6,

it

o = bp + €, ’ (3.2-5)

where now

[1]
fl

- v(5,, ¥Ns.,) .
From equation 3.1-7 and the result just stated,
= —Zﬁ‘f(ﬁz,méz)/’can_l(-/ﬁ) . (3.2-6)

P2

33.) 8, £ 0, 8, = 0. From equation 3.0-16,

H3=“'l+e3 2

where now
© L 2 2 T 2 .2
1
e = 2L an [ BN gy _ [an [ BT gy
3 a1
“o My o T -

Upon transforming to polar coordinates with A\ = recos ¢ and

t = resin 8, +this eguation becomes
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T —— ~r?
e3 == re 2 drdd - re 2 drde

A B

where the regions of integration A and B are shown in figure
3.2=2. Clearly, the integrand is a function only of the radial dis-
ﬁance from the origin and is invariant under a rotation. Therefore,
1f the reglons A and B of figure 3.2-2 are replaced by the

regions A' and B' of figure 3.2-3, the equation is still valid.

1.8 Ll
ey = % ’/]’ re 2 3rap - J({'re 27 ardo
A'

B!
Moreover, the integrand is invariant under a reflection in the

¢-axis of figure 3.2-3. Thus, that part of the second integral
corresponding to the region in B' below the dotted line ¢ = -VN £
cancels the first integral; +that part of the second integral
corresponding to the region between the (-axis and the dotted line

E = -/N ¢t 1is equal to that part of the second integral corresponding
to the region between the solid line ¢ = % ¢ and the ¢t-axis.

Therefore, after returning to rectangular coordinates,

5 AE 1.2 .2
(e} o]

But this 1s the defining integral for V(ﬁl,Jﬁ 61). Therefore,

Hy =k +eg (3.2-7)
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where

e, = -MT-V(al,m 5) . (3.2-8)

From equation 3.1-9 and the result just stated,

05 = -2V (8, al)/tan'l(ﬁ.f) . (3.2-9)

It should be ncted that equation 3.2-7 for 63 is identical to

equation 3.2-5 for e_, with substituted for 850

2 &1

Bh') 61 % o, 52 #£ 0. The method used to evaluate the integrals

for case 33 will be used repeatedly for case B), - This method makes
use of the fact that, when expressed in polar coordinates, the
integrand is invariant under rotation. Thus the integral ower any
right triangle, T, of the form shown in figure 3.2-4, with acute
vertex at the origin, can be rotated into a triangle of the form

shown in figure 3.2-1, the integrand being invariant under such a

rotation. Thus

1,22
}2? j/ e 3(NH ) gig, V(v,vp) .
i

Similarly, the triangle T in figure 3.2-5 can be rotated into the
dotted triangle, the integrand being invariant under the rotation.
1.4

By the evenness of e'§t the integral ovwer the dotted triangle is
J ’

the same ag the integral over the mirror image in the j-axls of the
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dotted triangle. Thus, this integral is also equal to V(p,vp).

The preceding argument has shown that the integral of

2.2
1 -5(0%t7)

5 over any right triangle with acute angle at the origin

has the value V(p,yp) where ©p 18 the length of the side adjacent
to the origin and +vp 1s the length of the side opposite the origin.

From equation 3.0-18,

IJ-;+ = p’z + H3 - “'l + AT.I(él) 62) (3‘2-10)
where now
5 Ty
T(6.,6.) == a -%(K2+t2)dt (3.2-11)
1205 = E-T-E A e . . o=
) ﬂl

In order to facilitate the evaluation of this integral, case Bh
will be subdivided into several cases. First, some notation will be
introduced. TFor the significance of the notation, refer to figure
3.2-6. This is the figure corresponding to case 1) below, but the
notation and its significance will be the same for all the cases
below. The region.of integration is a parallelogram, with vertical

sides consisting of the +t-axis and the verticle line ) = § and

2)
with slant sides consisting of the line t = ﬂl = -/ % and the line
t =1, = Y11 & + Ty, as shown in figure 3.2-6. The vertex at the
intersection of )\ = 62 with t = ﬂz is denoted by the coordinates
(6,,%,). The intersection of the line t = A/ with t = M, is

denoted by the coordinates (xo,to).
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Simple algebraic manipulations establish the following

relations:

>
It

. W/ (T+N) 8, .

o+
1}

o YL ) 81 .

ct
1t

o = céy, Where c = JIHN (61/62) - N .

The distance between the lines + = and t =T is
T >

2 .2
ko+to = 61.
The distance between the points (Ao,to) and (62,t2) is

D =as, were @ = (1/6)¥(s,-c6,)" + (5,00)% = JI (5,/6,) = .

The +t-axis intercept, it’ of the line t ﬂz ie

YI4N 8. .

The )-axis intercept, 1 of the line 1 is

JI) /N 61 .

1l
=
oo

)\J

Case Bh ig subdivided as follows:

v
Q
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i.) 0 < Ay S 8, S YT+ /N 61; For the significance of this

inequality, refer to figure 3.2-6. It means that the order of the
points on the line t =1, is 1, (xo,to), (52,t2), ix from
left to right. The region of integration is subdivided into four

triangles of type T, as shown in Tigure 3.2-6. The following table

Presents the quantities related to these triangles.

Triangle Base Altitude/Base J[]r
No p v T
1 6, M (s, &)
STy
5
2 8o c f(éz,céz)
3 8y d v(6,,46,)
I 5, N V(8,9 6y)
= IJ'J_ - p_3
Note that for the conditions imposcd on 61 and 62 by the in-

equality at the beginning of this subdivision, ¢ and d are
positive.
From equations 3.2-10 and 3.2-11, using the results tabulated

above,

W, = by + uT-v(al,dal) + AT-V(az,céz)
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The subdivisions of case BA remaining to be considered are:

61 =z 0
ii.) 0= < JI)/N 8, < 8, )
1ii.) 0 <6, <A, < ST N) /N N ,
iv.) 5, < 0=, < Y(I+N) /0 &y s
61 <0

v.) JLE)/T 6 < A, <0 < &, P

A
A

vi.) JTHN)/F 6, = A, < 6, <0 )

vit.) &, < V{TAD/N 8, <1, <0 ,

in

A
O

viti.) STA)/N 6, = P

These subdivisions of case B represent various permutations of the
L

order in which the points i, (xo,to), i, and (62,t2) occur on

A

the line t = ng. By methods analogous to that used for subdivision
i.) above, it can be shown that the expression derived above for N

holds for all eight subdivisions. Thus, for case B),

“h = Hl + hT-V(ﬁl,dSl) + uT‘V(éZ’CBZ)
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or

By =Bt ey 5 (3.2-12)
vhere

e, = MT-V(ﬁl,d5l) + MT-V(az,caz) . (3.2-13)
with

c = Y1 (61/62) - N
and

d = /LW (5,/6;) -

The relative error, o), = eu/u1 is

hrev(s, ,a6,) + 4T-v(6,,,c6.,)
o = 2x e 0 22 (3.2-14)

tan_l(Vﬁ)

The remarks following eguation 3.0-18 apply also to equation 3.2-12.

and 6'.

In addition, note that ), and py are symmetric in 61 >

I.E., €,(8),8,) =€,(8,,8)) and ) (8,6,) = p(8,,67) -

For purposes of tabulating and plotting, the form
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e, = HT-V(él,[JTIﬁ k—#ﬁ]al) + AT-V(kél,[VTEN —vﬁﬂkal) (3.2-15)

will be used, vhere k = 62/61. The parameter k is introduced
because tabulating and plotting is considerably simplified as a
éonsequence. The simplifications are obtained as follows:

Since eu<51’52) = 84(62’61)’ the plane §; = éz(k = 1) in the
61,62, &) -space is a plane of symmetry. Moreover, since
v(p,vp) = V(-p,-yp), 1t follows that e)(5,,5,) = ey, (~815-5,),
g0 that for fixed k, N is even in 61 (since when k is fixed,
a change in the sign of &, 1implies a change in the sign of 6?).
Thus, the e)-axis (the line 8 =8, =0 in the 61,62,eh-space)
is an axis of symmetry. The point 61,62,eu has a mirror image
-61,—62,eu in this axis whiech is the value for eh(_él"62>' Since
eh<5l’62) = 84(62’61) by the first symmetry and eh(éz’él) =
= eh('éz’_él) by the second symmetry, it follows that

eh(él’ﬁz) = eh(_éz’-él)’ 50 that the plane 5. = -6l(k = -1) is also

2

a plane oI gymmetry. The symmetry relations are shown in figure
3.2-7.
It is clear from the symuetry relations that ey for all

values of 61 and k can be obtained from the values for

0 < 61, -6i < 52 < 61 or equlvalently, from the values for
-1l <k <1, 51 2 0. This is the shaded region in figure 3.2-7.
Of course, all the preceding symmetry statements sbout e, are

is independent of &, and

alsc valid for K, and o) since 1

By

62-
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Case C, N - o

: 1,2
In equation 3.1-11, v()) becomes S Thus,
/2%
o= T—T-Erf[max(el,éz)/&] + T-Erflmin(s,, 52)/J§] . (3.2-16)

The properties attributed to the mean and relative error in the

various cases of sectlon 3.0 (evenness in 51 and § etc.) have

2)
not been affected by the assumption of Gaussian signal and Gaussian
noige. In particular, the remarks at the end of section 3.0 apply
also to Section 3.2 (and 3.1). Therefore, a discussion of these
properties has not beeﬁ repeated here. However, the assumption of
Gaussian signal and Gaussian noise results in some additional prop-
erties (e.g. “h(él’éz) = “h(az’ﬁl)) which have been mentioned as
they occur in the preceding discussion.

The expressions derivea above Tor the mean value of the BPCD
output will be used in Chapter V to examine the performance of the
BPCD as a detector.

The mean value for the BPCD output was examined also for the
case when the input signal is sinusoldal and the input noise is
Gaussian. Again, the integrals could not be evaluated in closed
form in terms of the well known functions. The integrals were
evaluated approximately by substituting an approximating function
for the error funcﬁion factor in the integrand of the integral

expressions for the ocutput mean.
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Since the other factors in the integrand are not the same in
7this‘case as they are in the Gaussian signal and Gaussian noise case,
it is natural that the approximating funetion for the error function
factor in the integrand must be different also in order to make the
approximate integral evaluable. Although the analysis for this case
is straightforward, it is extremely involved due to the complexity
of the approximating function which is required. Since the variance
for the sinusoidal signal case is not treated in this thesis, the
complicated analysis for the mean for the sinusoidal signal case will
not be presented here. The variance and mean for sinusoidal signal

and Gaussian noise will be treated in a future report.
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SUMMARY

For convenience, the results of Chapter IIT are summarized

below.

Section 3.0. The General Case.

Case A. N =0

Tals 1s the "signal absent’ case, corresponding to the null

hypothesis.
! 82
g = Lp j’ u{t)dt J[ v(Z)dx . (3.0-3)
Q O

The mean, Hey is even in 8¢ and b5 gimultaneously but odd in
89 individually and in 52 individuslly. Ideally, the mean of the
output should te zero when N = 0. The effect of bias is to cause a
spurious non-zero component in the mean of the output. However, for
the spurious component to be present, there must be bias in both the
input channel and the reference channel. If the bias is zero in

elther channel, then there 1s no spurious component present.

Case B. N £0

This iz the "signal present'" case, corresponding to the
alternstive hypothesis.

B &, = &, = 0.

1" "1 2

This is the ideal polarity-coincidence detector for N # O.
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w = 4r-lim U(p, /W p) ) (3.0-8)
p——m
where U(p,vp) is defined irn section 3.0. The mean increases

monotonically with N, and lim B = T.

N—

By 8 =0, &, # 0.

This is the "signal present' case when the reference polarity

indicator has bias.

“'2 = “'l + ez s (3'0_11)

where

-4 U(p, M D) .

[¢]
It

Bias in the reference channel causes a spurious term to appear

in the output mean value. This spurious or error term, e is even

2)

in 52 and is always negative, thus degrading the mean Tfrom the

ideal value.

By 8y £ 0, 5, = O.

-1

This is the "signal present”" case when the Input polarity

indicator has bias.

oy = Hl + 63 2 (3'0"16)

~
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where
o Mo o Tz
e, = 2T [d}\ f u(t)v(n)at —jdk /u(t)V(k)d’G .
- nl C ﬂl

Bias in the input channel causes a spurious term to appear in

the output mean value. This spurious or error term is even in 51.

B), - 8, #0, 6, #0.

This is the "signal present” case when the input and reference

polarity indieators both have bias.

Hy =B + O ) (3.0-18)
where
eh = 62 + 53 + l}'T‘I(Slyéz)
and
% T
1(51,62) =/ dx/ u(t)v(n)dt .
o Ty

Bias in both the input and reference channels causes a spurlous
term to appear in the output mean velue. This spurious or error term

is even in 51 and 52 simultaneously but not individually.
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Cage C. N - o«

This 1s the infinite signal-to-nolse ratio case.

max(él,éz)

p,o=T|1-2 v{\)dx . (3.0-20)
min(al,éz)

In the ideal case wvhen 61 = 62 = 0, ‘then Mo = T, which is

the maxtimum value that the output mean value can have.

Section 3.1. The Gaussian Noise Case.

There are no essential differences between the Gaussian noise
case of section 3.1 and the more general case of section 3.0. Since
the noise distribution has now been specified, the expressions for

M, for the various cases become

Case A. N =0

8
Hy = ZT-Erf(al/Ji) [ v(an)dx . (3.1-2)
O
Case B. N £0
By- 8 = &, = 0.
|.J.:L = )-I-T‘lim W(P,‘/ﬁ P) 3 (3‘1—5)
p—aoo

where W(p,vyp) is defined in section 3.1.
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Hy = 1y + €, ’ (3.1-6)
where
e, = -hT-W(éz,Vﬁ 62)
B 5l;éo, 8, = 0
}.1.3 = p,l + 93 o (3'1_8)
where
, [®)
ey =T )(v(k){?rf(&z/fi) - Erf(&l/Jﬁ)}dx
- T /v(x)[Erf(az/Jé) - Erf(@l/fé)]dy\
©
B+ 8 £0, 5, £ 0.
My =

b+ ey s (3.1-10)

where

ey =€y +eg+ MT-I(&l,sz)
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and
o |

I(6),8,) =% J( V(X)[ﬁrf(ﬂ,/J§> - Erf(ﬂl/Jﬁj]dx
O

Case Co N — o

For this case, eqguation 3.0-20, given above, is unchanged.

Section 3.2. The Gaussian Signal and Gaussian Noise Case.

In this case, all of the properties stated above for the
general case remain valid and, due to the specification of the
signal and nolse distributions, additicnal properties arise. These
are described below as they occur.

Case A. N 0]

it

T-Erf(gl/JE)-Erf(sz/JE) . (3.2-2)

N~
(@)
"

Case B. N £0

17 02
by g N ~L () . (3.2-4)
By 6, =0, & # 0.
Mo =B 85 (3.2-5)

" with
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e, = -_uT-v(az,fﬁ 85) B

where V(p,vyp) 1is defined in section 3.2.

Boe 6 £0, 6, =0.

3 2

g = F ey s (3.2-7)
with

ey = - uT-v(ﬁl,Jﬁ 5,) .

The expressions for the mean in cases B2 and B, are ldentical

3

except that in one case the variable is § and in the other case it

2

is 61-

By. & £0, &, #0.

W, = H ot e s (3.2-12)
with

ey, = b1v(8,48)) + bT-V(8,,c8,)
where |

c = /LW (5y/6,) - N .
and

d = VTN (8,/8) - il
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The error, ey is symmetric in 61 and 52. I.e.,
64(61762) = eh(ﬁz’al)‘ The e, axis in the §;,6,,€),-space 15 an

axls of symmetry. The 6, = §, Dplane (k = 1) in the

Fal
4

61,62,e4-space is a plane of symmetry. The 61 = -52 plane in the

61,62,e4-space is a plane of symmetry.

Case Co N - @

Mg = T = T+Erflmax(s,, 52)/1&] + T-Erf[min(6,, 52)/1/'2'] . (3.2-16)

In general, Gaussian signal and Geussian noise or not, bias in
the input or reference polarity indicators causes g spurious compon-
ent in the BPCD output mean value. When a signal is present, bias in
either chanmel is sufficient to cause a spurious component. When no
signal is present, there is a spuriocus component only if bias is

present in both channels.

REFERENCE
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Normal Distribution Function and Related Functions; 1959.
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CHAPTER IV

THE VARIANCE OF THE OUTPUT OF A BIASED

POLARITY~COINCIDENCE DETECTOR

In this chapter expressions are derived for the variance of the
BPCD ocutput for various conditions of the input. First, the expected
value of a quantity which is required in the derivation of the
variance will be investigated. This quantity is the product of the
multiplier output, u(t) at time 1+ (see figure 2.1), with itself
at a different time, 6. The eupected value of this quantlty will
be denoted for the present simply as E.

In section 4.0, general expressions for E are derived, subject
only to the restrictions imposed by the assumptions of the previous
chapter (assumptions Al through A7) and by six new assumptions to be
introduced in this chapter. In this general form, E 1is expressed
in terms of integrals which cannot be further reduced. In section
L,1 the Gaussian signal and Gaussian noise assumptions are intro-
duced. The expressions for E are not simplified significantly as a
consequence (except for the cuse N = 0). The resulting integrals
cannot be evaluated in closed form, and approximate methods of
evaluating them are shown to be extremely complicated. Consequently,
only the case for N = 0, which is fairly tractable, is examined.

Tt is argued that this case suffices for ascertaining the performance
of the BPCD for small input signal-to-noise ratios. In sectioh k.2,
the expressions for E obtained in seétion k.1 are used to derive

expressions for the variance of the BPCD output, when N =0. In
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section 4.3 an analysis is presented of the errors which result from
.the introduction of various approximations in evaluating cs, when

N = 0.

Assumptions

(48) pr{s(t) + n(t) =1by, s(8) +n(6) =by} =0 and
Pr{so(t) = b2’ 50(0) = bZ} =0, where t and 6 are two
different times.

(A9) The s(t) and n(t) (and hence the so(t) and n(t))
processes have statistically independent second order
distributions.

(A10) The joint density function for n(t) and n(e) is
symmetric in n(t) =n; and n(8) = ny-

(A1l) The joint density function for s(t) and s(0) is
sympetric in s8(t) = s; and s(8) = By (Hence, the
joint density function for so(t) and so(e) is
symmetric in so(t) =8 ; end So(e) = soj.)

(Al2) The joint density function for n(t) and n(6) is even
in a(t) =n; and n(o) = n, simultaneously but not
individually. T.e., £(ng,n,) = £(-n;,-n,) but
f(ni,nj) # f(ni,ngj) and f(ni,nj) £ f(—ni,nj), where
f(ni,nj) is the joint density function for n, and n.

(A13) The joint density function for s(t) and s(8) is even
iﬁ s(t) = s; and s(8) = 5 simultaneously but not
individually. (Hence, the joint density function for

so(t) and so(e) is even in so(t) =s; and
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sO(S) = 853 simultaneously but not individually.)

‘ *
.0 General Expressions for the Expected Value of u(t)u(9)

From equation 2.2, the output squared of the BPCD is

TT T T
22 [ ] u(t)u(e)atas = [ f 7 (07,007 (O)y (e)atae

The expected value of 22 is then

T T T T
E{zz} =R /[u(t)u(@)dtde =[fE{u(t)u(e)}dtd9
(o o] O O
Qr
T T
(%) - [ [ B (0,00, (o)r,(0)Javag

For convenience, the notation yi(t) = ¥q3

’ yz(t) = Joys

yl(e) = Y3 yz(e) = Yp; will be used. Thus, the subscript i
indicates the time t and the subscript j indicates the time 0.

- When a quantity appears with the subscript 1,] it indicates eilther
i or bj may be uéed. E.g., yli,j may be either 14 or ylj'

When the subscript 1,J appears in an expression more than once, it

* u(t) is here the output of the multiplier at time t, as dis-
tinguished from the distribution of the random variate, t, to
be introduced later. :
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means that either - 1 or J may be used, but the same choice must

‘be used throughout the expression. E.g.,

yli,iji,j may be
either Y11¥5 OF ylijJ'
In terms of this notation,
T T
2
MZ}=[IEWn%¥u%ﬁ%% . (k.o-1)
0o

Since the varlance of the output, GS, is related to’

2 z 2 2 .
E{z"} by o, = E{z"} - {u,}7, the central problem of deriving an
expression for the variance is to evaluate the integral representing

E{yliyziyljyzj}. The evaluation is accomplished as follows:

y,; = +1 vhen xl(t) >b,, ¥y =-1 when xl(t) <b;
Y1y = +1 when xl(e) > D, Vi3 = -1 when xl(e) <b,. And
Yoy =+l when Xz(t) >boy Yy =-1 when xz(t) < b
Vo = +1 when X2(e) > D, Yoy = -1 vhen xz(e) <b,. Also,
¥y =0 vwhen xl(t) = by, Y13 = 0 when xl(e) =by3 Yoy =0

when Xz(t) = b Yoy = O when xz(e) =b,. (For the meaning of
X and XZ’

refer to figure 2.1.)
Upon introducing assumption Al (see Chapter III), these condi-

tions become: yli,j = +1 When Si,j + ni,j > bl’ T4 j = -1 when

2

Si,j + ni,j <'bl. And yZi,j = +1 when Soi,j > bz, YZi,j =

when Soi,j <'b2T Also, yli,j = O when Si,j + ni,j =,bl and

yZi,j = 0 wvhen Soi,j = bz.
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Next, thevnor@alized_biases defined in Chapter III are intro-
" duced. :51 = bl/¥§ = bl/cn¥11ﬁ and ‘&, = bz/qo = bz/aas, where

a = co/cs. (The introduction ofvassumption A2 is implied by the
introduction of the normalized biases.) The conditions given above
describe the boundaries of the regiong where y1 and y, are +1
and -l1. On the boundaries, ¥ and y, are zero. With the

normalized blases, the boundary expressions become:
s +n Z2b, =0 JIN 3§ i)
. s {3 3P =0, 1

or, after introducing assumption A4 relating s and 8o

3
AV

1, 2 O 8y - 8y g = o /I &y (0 /0 )8

from which
>
ni,'/cn /W 5y - K Soi,j/cb .
> > .
So1,j 2P2 O Po1,3/% 2 P2/% - &, . i1)

Next, the normalized nolse and signal variates defined in

Chapter III are introduced. t = n/oh, A = so/co. The boundary

expressions become:

c*.
ANV
AV
on

i,d

N 61.-1@ Moy oA
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or
> >
P15 2Tai,s 3 M, 28 ’
where
Ty, j = VLA &) -/F M3

The region corresponding to +1 is obtained by choosing the >
sign, -1 Dby choosing the < sign and O by choosing the = sign.
On introducing assumption A3 and the new assumption A8, E can

be written

E{Yy391 3953705} =Py = Pg - Py + By - D + B

b

F Py = Pg T Pt Pyt iy 7 Pyp P57 Py,
- P15+ Pig s (4.0-2)

Where

ke
-
I

Pr{%i > b8, XJ > 62, ti > My tj > nzj}

Py = Brlly > 6y Ay < by by > Mp, b > My)



— PI‘{)\

= Pr{xi
= Pr{xi

= Priy

Pr{xi

= Pri)y

= Pr{ki

= Pr{xi

= Pf{)\i

= Pr{)\,

A
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< 62',

Ty = Mags
b > Moo
By > Tayo
Ty > Mgy
B > Moy
By < Mgy
By < Mgy
By < Mgy
Ty < Mgy
b < gy
by < Mgy
By < Mgy

by < Mo

£y > )
) < Ty}
£y < Ny}
t. < nzj}

d

tj < nzj}
tj > ﬂzj}
£y > Tyy)
t, >

37 Tyl

t. >
J

t., < M.
J nZJ}

t, < M.,
J nEJ}
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A typical integral representing the above probability

expression is

D =4{éxijrdxjjfdtijfdtj w(xi,xj ti,tj)

where w(xi,xj,ti,tj) is the joint density function for 1, Ay

ti and tj and the limits are chosen according to the appropriate
set of inequalities in Py through P16 By assumption A9, n and
s (and hence t and 1)) are sample Functions from random processes
with statistically independent second order distributions, so
W(Ai,xj,ti,tj) can be written w(xi,xj,ti,tj) = u(ti,tj)v(xi,xj)

where u(ti,tj) is the marginal density for +t, and tj and

i

V(Ki,Kj) is the marginal density for Ki and xj. The above

integral, written in terms of u(ti,tj) and v(xi,xj), is

;p:]ﬁﬁj%(ﬁﬁ%)‘fmﬁjhc%,%)mﬁ d% .

By introducing assumption AlO that u(ti,tj) = u(tj,ti) and
assumption A1l that v(xi,xj) = v(xj,xi), a number of relations can
be established between the preceding sixteen probabllity expressions.
These relations are obtained by applying the transformations
ti - tj, tj - ti and Ai - Aj’ Xj - ki to the above integral with
the various limits of integration as indicated by the probability

expressions P through p as follows:
1 16’
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© 62 © w
.PZ) b, = [ dig fv(ki,}\j) [ dtif u(ti,tj)dtj dxj .
o 7 Llag Ty

On substituting ti - tj’ tj - ti and Ki - Kj’ xj - ki and

using the symmetric properties of v(xi,hj) and u(ti,tj), noting

that due to the transformation, T, - oy 8nd Mgy = My, the

result is
62 <« (=53 for)
P, =[dki[ v(xi,)\j) f dt, [ u(ti,tj)dtj d;\j
- b5 Mot T2

But the limits on this integral correspond to p Therefore,

3"

By the preceding method, relations can be found in exactly the same

fashion for:

95) P = P
Dg) Dg = Pqyq

pg) Pg = P,
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Pyy) . P1y = P15

Substituting these relations into equation 4.0-2 yields

B4V g9017 058 = Py - @y + Py - B0 + Zpg + 2P,

(4.0-3)
- @Pg *+ Py3 - DRy, * Pig

By introducing assumption A12 that u(ti,tj) = u(-'ti,-tj) and

assumption Al3 that v(xi,xj) = v(-hi,-xj), additional relatlons can
be established between the p's. These relations are obtained by

applying the transformations ti — -ti, uj - -tj and Xi - -xi,

XJ - -KJ to the typical integral, with appropriate limits, as follows:

o« o0 o« <]

py) Py(8y58,) =f dxif v(hgsy) f dti[ u(ty,ty)dty fday

b5 by M2y M

On substituting ti — —ti, tj - —tj and ki - -xi, Kj - -hj

and using the evenness properties of u and v, with the notation

“31,3 = Y140 6 * i hi j’ the result 1s
M35
But 31 3(61) = nZi,j('él)' Therefore,
“hy  -b Mop (=8)  Mpy(-8p)

p(8,,6,) = fdxi (v(xi,)\j) f dtif ulty, b )dt,(dr,
-0 -0 .

-0
-0



8l

The limits on this integral correspond to pl6(—6l,-62).

‘Therefore,

By the preceding method, relations can be found in exactly the same

fashion for:

and from the previocusly derived relation hetween plh and plS’

1}

Plh(él’ﬁz) Pz('él)'éz) .

Pn) pl3(6l:52) = Pu(-él)—éa)

and from the previously derived relation hetween Pg and Pyos

.p8(611 62) = ps(-élJ-éz)

Pg) P11(87,85) = pe(=64,-8,) )

and from the previously derived relation between Pg and byqs



P7) PlO({’l’ 62) = P7(—61J‘52)
and from the previously derived relation between ;p7 and SNY

p?(alJéz) = p7('61)—62) .

Substituting these relations in equation %.0-3 yields
B{y37q 3959558 = [21(8585) + 2y (=87,-8,) ]
- 2[p,(8y,8,) + Py(-81,-65) 1 + [0y, (8158,) + 2y (-87,-8,)]
- 2[p5(81,8,) + p5(-81,-8,) I+ [pg(6y,8,) + pgl-81,-65)]
+ [po(8),8,) + po(-87,-8,)] , (L.0-4)

where the terms in Pg and p7 can be replaced by

[pg(8158,) + pg(-81,-6,)1 = 2p£(8,8,)

ana

@7(61262) + 97('61)”62)1 = 2.97(611 62)
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if it is convenient to do sc.
From the result just derived, it is clear that E{yliylijiij}

is even in &, and 82 similtaneously but not individually.

1
I.e., E(él’éz) = E(_ﬁl,-éz), but E(él,éz) % E(-ﬁl;ﬁz) and
Equation 4.0-4 provides the general expression for

E{yiiyljyziyzj}’ subject only to the assumptions Al through Al3.

Bach term, ©p, 1s an integral of the Iorm

fdxifv(xi,xj) jtifu(ti,tj)dtj d)\j

with limits as indicated by the inequalities in the table of
probabilities following equation 4.0-2. These integrals cannot be
further reduced without making some assumptions about the specific
nature of u and wv. ZEven when u and v are assumed to be
Gaussian density functions, the integrals cannoct be evaluated in
closed form in terms of elementary functions or even in terms of the
well known higher functions. Approximate methods of evaluating them
will be discussed later. For the present, a special case will be
examined for which the expression for E and also the integrals in

the expression are significantly simplified.

N=20

This is the "signal absent case, which corresponds to the null

hypothesis in subsequent discussions of deteetion properties.
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For this case, additicnal relatiocns exist between Py and p),
and between p6 and p7. To obtain the relation between pl and
Py» the transformation A 'y A a_xj is applied to Py - Since

J

in this case, = 51, then

Nag = Ty
- 2] fas) oo} @
Py (8158,) =fdxifv(xi,xj) fdtifu(ti,tj)dtj ah;
b by & 4

Upon introducing the transformation and the evemness of v in Ki

and Kj implied by assumption A3, this integral becomes

-6, -8 - -
pl(al,az) = J( dny ‘J( -v(xi,xj) —/‘dti—/’u(ti,tj)dtj dxj .
- - 8 &

But the limits on this integrsl correspond to pu(51,~62) wWhen

W = 0. Therefore,

o, (8),8,) = (6),-6,) when W =0

To obtain the relation between Pg and p7, the transforma-

tion Ai - kj’ xj - Xi is applied to Pg»

o 62

© 61
Pg =_jrdxi Jf-v(ki’hj) jrdti ‘[ﬁ(ti,tj)dtj dxj
& 61 -0

-0
z
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Upon introducing the transformation and the symmetry of v in Ki

and xj. implied by assumption All, this integral becomes

8

2 @ ® 51
P = j( dyy v(xi,xj) j(‘dt J{'u(t t )dt, de
-0 52 61 -0 _

But the limits on this integral correspond to p., when N = O.

7

Therefore,

PT = Pg when N = 0.

When these relations are substituted into equation 4.0-4, the

result 1s
B{y ;7137557250 = [P1(81,85) + py(-81,-6,)
- 20p5(81,65) + p5(-81,-8,)1 + 2[pg(81,6,) + Pg(-61,-6,)]
(k.0-5)
when N = O.

The integrals representing the individual p's will now be re~
duced to simpler forms. First, some notation will be introduced.

Two integrals will appear repeatedly. They are:
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Hg(h,k;r)

o

Hg(h,k;r) = defg(X,y;r)dy (4.0-6)
h

k

where r 1s a parameter of the integrand, g(x,y;r).

¥, (n/42)

h
¢q(h/#§)= zbqu(x)dx . (&.0-7)
o}
The apparently awkwarc argument, h/J? , Wwill seem less awkward
when the assumption is made that q(i) is the density function for
a standard normal distribution. Then ¢q‘x) becomes the error
function, Erf(x).

The function Hg(h,k;r) will be interpreted later as the volume
under the surface g(x,y;r) over the region in the x,y-plane to the
right of the vertical line x =h and above the horizontal line
v = k, as shown in figure 4.0-1. The properties of H are dis-
cussed in Appendix IIT for the special case when g(x,y;r) is the
density function for a standard bivariate normal distribution with
correlation coefficient r. FHowever, the properties of H which are
required for the remainder of the present section are identical té
the corresponding properties discussed in Appendix ITI, since a suf-
ficient condition for their validity is that g(x,ys;r) be a density

function symmetric in x and y and even simultaneously in x and



50

,L/'—'K_\

Figure L.0-1

~S—x=A
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y - & condlition satisfied by the standard bivariate normal density
function of Appendix III. Therefore, in the remainder of this
section, statements about H will be referred to the corresponding
derivation in Appendix IIT.

The individual ©p's are reduced as follows:

[es]

fdxif v()\i,}\j;r)d)\j[ dt.lf u(ti,tj;p)dtj
82

52 61 61

) Py

= 1,(8958730)H (6, 6557)

vhere the parameter p. introduced into the density fumction u and
the parameter r dntroduced into the density function v will be

interpreted later as the correlation coefficients for these two

densities.
PZ) w 62 [} ©
D, =f dry [v()\i,}\j;r)d}\j[ dtifu(ti,tj;p)d‘tj

r le2]

¢ 2] «©
= Hu(sl,él;p) [ g fv()\i,}\j;r)d)\j -[ v(}\i,}\j;r)d)\j

-0

- O

= H,(81,8;5p) / v(n AN - B (85, 8,5T)
L8

5 .

(502 6159) | #0Lot,(6,/ /D)) - K, (55, 6,57) J ,
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where v(\,) is the marginal density for A

feel
vOy) = [ v0yapsman,
-0
pS) ® © © 6l
P =f dkif vhg s hgsT)an, fdti fu(ti,tj;p)dtj
b2 % oo
ool <o [++]
- f at; fu(ti,tj;p)dtj-[ u(ty,b,50)dtyp | B (6,,6,7)
s 8,

u(ty )at, - B,(81,8;50) | H (8,,8,57)

i
T8

= %{l - ¢u(6l/'/§)} - Hu(él.»ﬁlip) HV(GZ’ 5251')

where u(ti) is the marginal density for t,.

&)

u(ti) = ’[-u(ti’tj5p)dti .

o
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Dy)
6 5,

Pg =,[. dxi -[§(xi,xj;r)d)j /( aty /[.u(ti’tjgp)dtj

- 00
w
=f dt, u(ti,‘tj;p)dtj -f u(ti,tj;p)dtj
)

1 61

§—8

o0 o

xj dny fv(xi,xj;r)dxj —f V(Ai,xj;r)dxj
ey - 0

21 -y, (8/72)3 - B (8),8)50) | %\ B2 - 4,(6,/72)]) - E (6,,8,57)

The preceding expressions for P15 pz, and Py can be

D
=5
further simplified by a result presented in Appendix ITT. According

to property pT7 of Appendix IIT,
Hy(-B,-ksT) = B (B,k57) + & y, (0/72) + & y, (k/72) ;

where in this case, the subscript g on ¢ corresponds to the
marginal density of g in either variate. (Due to the assumption
of wide-sense stationarity, A2, the marginal densitiés of g in both

variates are identical.)
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@ [e]

a(x) =fg(x,y)dy or q(y) =fg(x,:r)dx .

-C0 —co

Substituting h =k = 61 or 62, whichever is appropriate, into

the expressions for Py DPos p5 and Pg yields

Pl('élJ'éz) [Hu(51}613p) + ¢u(51/J§)]

x[HV(éz,GZ;r) + mv(GZ/Jﬁ)]

o, + 9, [, + 4,1 ’

where Hu=Hu(61,6l;p), i |

v = B (6,58557), 4, = ,(8,/2) and

"bv = flrv(ﬁz/‘fé)‘

it

P (6y5-8,) =H [E_+ 4,1

py(~8y505) = [H, + g0,
PZ('ﬁlafsz) =[H, +4,) 5 - g 4,0, ’
ps(-81,-8,) = 3 - gy, -EIE +¢1
and
bg(-6306) =B -4 4, ~BI[E-Bv, -0] -
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Substituting the above expressions for the p's 1in equation

4.,0-5 yields
E{yliyljyziyzj} =1 = 2(y, + ¥,) + by p, + T6HHE

- h(m, + H)) + 8(H 4, + H,)

or

- - - -
E{ylijlijiyzj; = [hHu + 24, 1] [MHv + 24, 1] .

(%.0-8)

Equation 4.0-8 provides the genersl expression for
E{yiiyiijiyzj} when N =0 - the "signal absent" case - subject
only to the assumptions Al through A13. This result will be used in

the next section to derive E and hence 02 when the signal and

noise are Gaussian and N = 0.

b1 E{yliyijyziyzj} when the Signal and Noise Both are Gaussian.

In this section the effects of bias on E{yii are

V157217 2 }
consldered for inputs conslsting of Gaussian signal and Gaussian
noise. Therefore, in addition to the assumptions introduced previ-
ously (assumptions Al through Al3), it will now be assumed that the
noise, n(t), is a sample function from a stationary Gaussian

. : : . 2 .
random process with zero mean, with variance a, s and with

correlation coefficient p(T), where 1 is the time difference,



96

8 - t and that the signal, s(t), is a sample function from &
statlionary Gaussian random process with zero mean, with variance
US, and with correlation coefficient »(7).

(Ak-1) n(t) is a semple function from a stationary random

process with second order density function

L n?-anin.+n?
f(ni,nj) = ———— ©XD |- J_J
z 2 2 2
eron~/l— o 20, (1-p%)
where n, = n(t), ny = n(e), and p =p(1) with

T=06 - t; and so(t)‘ is a sample function from a

stationary random process with second order density

function

1 5012—2rsoiso.+so.2
h(soi,soj) = —————— exp| - J_OJ

2f_2 2., 2

2n0-/l-1 207 (1-r")

o o
vhere 5, = so(t), 803 = so(e), and r =r(T1) with
T =0~ t.

Assumption Al-1 is_specified in terms of 8 rather than g, since
it is 8, which is used in the subseqguent equations. The random
variables s and S, have ildentical distributions except for their
variances which are related by the expression a = GO/GS.

Upon making the transformation t. = ni/cn, t, = nj/oh and

J
Ay = Soi/co’ Kj = Soj/co’ the density functions for t;, t, and

Ki’ xj become in this case
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| 1 tom2pt b 45
u(ti,tj;p) = ———— exp]|- ' J _J (4.1-1)

Zﬁé-pz 2(1-p°)

and

2 a
1 Xi—eriAj+kj

1
[¢)
&
]
.

V(Ao hysT) = -
2nvl-T 2(1-r7)

Substitution of these functions into the integral expressions
for the terms of equation 4.0-4, the general equaticn for E, yields
no significant simplifications. The integrals representing the
various terms in E (twelve in all) can be written in terms of
integrals of the product of a quadratic exponential funetion with
the H function defined in the previous section. A typical integral

of the type which occurs is

o ©
Dy =f dxi[ v(xi,xj;r)ﬂu(m 8-/ 2, VIFR 8- )\J;p)dxj
5 %2
where according to assumption Ak-1 of this section, v(xi,xj;r) is
an exponential function with a quadratic exponent.
The Freedman approximation function, by which approximate values
of V(p,yp) were obtained for use in Chapter III (see Appendixes II
and V), can be used to evaluate these integrals approximately in
terms of the H and { functions defined in the previous section,
when u(ti,tj;p) and v(hi,xjgr) are normal density functions.

Unfortunately, however, this method has a number of serious limita-

tions. First, the number of integrals which must be evaluated is
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Impractically large. This is due to the fact that the Freedman
function has two distinct functional forﬁs depending on the sign of
the argument of the error function which it is approximating. Thus,
when the Freedman function is substituted for the error function in
the integrand of the integral for H, four distinct cases arise,
depending on the relation between the varisbles and the parameter in
the argument of H. Four distinct representations for H result,
agaln depending on the relation hetween the varisbles and the parame-
ter in the argument of H. Fach of these representations is in terms
of error functions and quadratic expomential functions, both of which
have complicated arguments. In order to proceed, the error functions
must be replaced by their Freedman function equiﬁalents. Again, new
distinct cases must he considered, depending on the signs of the
arguments of the error functions. The total number of distinct forms
is now flfteen. These forms are expressed in terms of quadratic
exponential functions with very complicated arguments. Seven of the
forms have three terms and eight of the forms have six terms. This
is a total of sixty-nine terms. By the steps Jjust described, the
integrands of each of the twelve p Integrals can he reduced
approximately to sixty-nine fterms of quadratic exponential functions.
These can be integrated over limits of the type which occur in the p
integrals in terms of the H sand ¢ functions. However, since
there are twelve p dIntegrals to be evaluated, each with sixty-nine
terms, the total number of integral terms to be evaluated is eight-

hundred twenty-eight - indeed an impractical number!
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A second limitation now appears. A simple analysis of the
error in E due to the errors of spproximation, such as the analysis
in Appendix II for the approximation to V(p,vp), is not possible.
Although the error in the approximation to the H function is quite
small, and the error in the individual terms of the p integrals
due to replacing the H function by its approximating function is
not very large, nevertheless the error in the sum of the series of
eight~-hundred twenty-elght terms may be large compared with the sum
itself, since in the sum the number of subtractions and additions are
about equal. It would require an exhaustive error analysis to
estimate the relative error of the sum.

The third limitation is that the final expressions for the pl's
in terms of the H and ¢ functions have arguments in which r and
p enter in a very complicated manner. Ultimately, it will be
necessary to iﬁtegrate twice in time, in order to obtaln expressions
for E{za} and hence ci. Since r and p are functions of the
time difference, it seems extremely unlikely that the time integrals
could be evaluated.

The most seriocus of the three limitations in using the Freedman
approximation function method is the multiplicity of forms which
result from the two distinet forms which the Freedman function has -
one for pogitive arguments of the error function to be approximatéd,
and one for negative arguments. A considerable effort was expended
in attempting to find satisfactory approximating functions which do
not have this limitation. Surprisingly simple functions were found

which can be substituted fof the error function in integrals of the
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types for V{(p,yp) and Hg(h,k;r)' with only a small resulting error.
For example, the function ae.x where a 1g an appropriately chosen
constant, is a suitable approximation to Erf(x) in the integral for
V(p,yp), with a maximum resulting error of about 0.125. Unfortun-
ately, this error represents a relative error of about 0.5, which is
much too large for the applications in this thesis. The approxima-
tlon a+x 1s a little too coarse. The function ae-%bxz, where

a and b are agppropriately chosen constants, produces a much

smaller error than a+x vwhen substituted for Erf(x) in the inte-

grals for V or H. However, it, like the Freedman function, must
2

assume a different form (namely —ae-%bx ) for negative =x. As a
consequence, it suffers from the same limitations as the Freedman
function as regards the number of distinct cases and the resuliing
number of terms in the integrals. Wo satisfactory approximating
functions were found for the evaluation of the p integrals.

In view of the limitations assoclated with the approximating
function method of evaluating the p integrals, other methods were
investigated. The most promising appears to be the following: The
P integrals are integrals with a product of two blvariate density
Tunctions for the integrand, over regions with linear boundaries.
When the distributions corresponding to these two density functions
are both gtanderd biveriate normal distributions, these integrals'

have the form whose importance was mentioned in the summary of related

literature in Chapter I. A typical such integral is
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o

dhjf dti/ dtJV(xi,xjsr)u(ti,tj;w ’

o0
2 Moy Mas

B =I Iy
8

where u and Vv are standard normal bivariate density functions

®
&
agd nZi and nZJ are linear in ki and Xj respectively.
Integrals of this type have been studied extensively by statisticians
(1,2,3 and 4). For these integrals there always exists a linear
transformation such that in the transformed space the limits of
integration are all constant (here the transformation is N oo s

Ay T Eg By - YIaN xg - N X by AR %, - il X,; ‘then the
limits become © - », -o - -, 62 - 62, nZi - 61, an - 61).
Under such transformations, the integrand becomes a quadrivariate
normal density function.

Kendall (1, above) has shown that the resulting integral can be
expanded in a two dimensional power series in r and o, with
coefficients which are generallized tetrachoric functions. These
tetrachoric functions are expressible as finite series of Hermite
polyncmials.

In order to obtailn E{za}, this two-dimensional power series
would be integratedrterm by term twice in time until the remainder
were sufficiently small to make the error in neglecting it acceptablc.
Thus, it would be necessary to integrate polynomials in r and ¢
twice with respect to time, where r and p are functions of the
time difference, 7. If the forms of r and p are suitably
chosen (e.g. if r and o correspond to RC low-pass spectra for

signal and noise), these integrals can be evaluated. Since the
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serles converges rather slowly except for small r and p, it
would probably be desirable to evaluate fhe general integral term in
closed form, provide this functional form as part of the information
stored in a computer memory, and have the computer calculate the sum
of as many terms of the integral series as are necessary for the
precision required.

Because the tetrachoric series method involves extensive numer-
ical calculations, it will not be developed further in thils thesis.
The method will be developed and presented in the future as a separate
report. Instead, a simplified analysis wlll be given here which is
valid only in a restricted sense. In order to proceed with the
development of +the simrlified analysis, several new assumptions and
restrictions will be introduced. However, arguments will he
presented which indicate that even with these restrictions, a sub-
stantial knowledge of the behavior of the BPCD is acquired.

The first restriction to be introduced is that the signal-to-
noise power ratio, N, is small with respect to unity. When N is
small, then E{zz}, the expected value of the BPCD output, will be
due almost entirely to the nolse. Therefore for small I, the
N =0 wvalue of E{zz} can be used with negligible error. It will
be argued later that as the signal-to-noise power ratio increases,
the detection guality of a BPCD improves or at least does not
deteriorate. Thus, the N = O case constitutes a lower bound on the

detection properties of a BPCD.



N =0

Equation 4.0-8, which is the general expression for
E{yiiyijyziyaj} when N =0, is given in terms of the H and
functions defined in section 4.0. The first step in analyzing the
N. =0 case for Qaussian signal and (Gaussian noise, then, 1s to find
expressions for H and ¢ wvhen the integrands in the defining
integrals are normal density functioms.

when g(x,y;r) is a standard bivariate normal density function
with correlation coefficient r, then Hg(h,k;r) as defined by

equation 4.0~6 is denoted by L(h,k;r) and has the equation

m_ s 1 XZ-ery+y2
L(h,k;r) =’I.dx_j’————-—~— exp|~ ——————— | dy .
h k

2afl-r’ B(l—rz) (4.1-2)

This integral is one of the multivariate Gausslan integrals with
linear boundaries of integration whose Ilmportance to the analysis of
the BPCD was mentioned in the summary of related literature in
Chapter I. This integral 1s important in statistics. Consequently,
a thorough investigation of 1ts properties along with tabulations of
its values can be found in the literature ().

L(h,k;r) and L(h,k;-r) are tabulated in tables I and II of
reference 4. Both functions are tabulated only for positive values
of h' and k, since functional values of 1L for negative values of
h and/or k can be obtained from functional values of L for posi-
tive h and %k, as shown in Appendix IIT.

A detailed discussion of the properties of L(h,k;r), based

essentially on that found in reference L, is given in Appendix III.
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For later convenience, the simplest properties are listed below

-without proof.

L(h,ksr) = L(k,h;T) (p1)

1
b

0 if h+k 20
L(h,k;-1)=

L{h,k;0) = [1 - Erf(h/42)] [1 - Erf(k//2)] (p2)

-5(Erf(h/¥2) + Erf(x//2)] if h+k <0 (p3)

: {%[1 - Brf(h/¥2)] if k <h,
L(h,k;1) =

"

£#[1 - Brf(k/V/2)] if k= h w4)
L(-hyk37) = ~L(n,k;-r) + (1 - Ere(s/VE)] (p5)
L(h,-k;r) = -L(h,k;-r) + {1 - Exf(n/42)] (p6)

L(-h,-k;r) = L(h,k;r) = 3[Erf(b/¥2) + Erf(x/¥2)] (p7)

L(0,0;r) = % + %E sin_l(r) (p8)
| L(m;k3r) = L(h:“’sl") =0 (P9)
L(-@,k;r) = 3[1 - Erf(k/v2)] (p10)

L(h,-o3r) = 3[1 - Erf(n/42)] (p11)
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An epproximate evaluation of the integral for IL(h,k;r) when
h and %k are equal and are small 1s examined in Appendix IV.
When q(x) is & standard normal density function, then

¢q(h/¥§) as defined by equation 4.0-7 becomes

On substituting u = X/JE, thls becomes

2
by = Jf .% e™ qu = Erf(h/vZ) . (4.1-3)

Therefore, when q(x) 1s the standard normal density function,
¢q(h/¥§) equals the error function, Erf(h/+2), whose properties
are well known and will not be reviewed here.

Using the preceding results, if equations 4.1-1 are substituted

in equation 4.0-8, then
E{y) 37 375703 = (M08, 6y30) + 2Br£(s,/72) - 1]

x [4L(6,5, 6,57) + 2Erf(52/v§) - 1] .
(b.1-4)
Tn Appendix III a relation between L(h,hi;r) and V(p,yp) is derived
and presented in property pl3, where V(p,yp) is the function defined
in Appendix I and used extensively in Chapter III. If this relation,
pl3 of Appendix III, is substituted in the preceding egquation, the

result is
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. B - 2 . -1

{SV(azﬂjlz; 2) + = sin~ (rﬁ .

(k.1-5)
The value of the factor
F(p;x) =|8v(p \/ ) o+ 2 sin-l(x)
? PNTE P 7t
is of interest for the values x =1, O and -1.
F(p,1) =1 (£1)
F(p,0) = 8V(p,p) (Note that O < 8v(p,p) <1 for all 7p.)
(£2)
F(p,-1) = 2:Erf(|p|/¥2) - 1 (£3)

These valucs give some idca of the way in which the factor F varies
with the correlation x. Of course, O < |E| £1 always, so
0 < |F(p,x)| <1 for all p and x.

8 ahd 62 Small

1

Next, it will be assumed that &1 and 62 are smell compared

with unity. The restrietion to small 61 and 52 does nat
constitute a practical limitation, since a system is indeed poorly

designed if the normalized biases are not small (i.e. if the actual
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biases are not small compared with the input amplitudes). Further, it
will be assumed that \/%éé and \/%%%. are not much larger than unity
for any value of T in the interval 0 < 7 < T. The implications of
this last assumption with respect to the types of systems which
satisfy it will be discussed later. These two assumpticns suffice for
approximating V(p,yp) by v (p,vp) as defined by equation A2.0-1
of Appendix II. If v is not very much greater than unity and if p
is smail compared with unity, then Vo is a good approximation to V.
If the VO approximation is substituted for V in equation

4.1-5, from equation A2.0-1, the result is

Gk |2 i -1
E{Jli'fljJZiij} = ’;é [61 _'L+p + 5in (P)}

x[ég\/%ié + sin-l(ri} . (4.1-6)

This result will be used in the next section to obtain E{zz} and 02.

4,2 The Variance of the BPCD Output

The expected value of 22 is, from equation 4.0-1,
T T
2
o 7o

In the following development, the expression for E given by
equation 4.1-6 will be used, and E will be denoted by
E{ﬁl,GB;T(T),p(T)} to emphasize the dependence on the parameters

8y5 8o r(t) and p(T). Since r and p are both functions of
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-
il

8 - t, it will be convenient to make the transformation

-
i

-1, A=86+1t. The preceding integral then becomes

E{ZZ} =% ‘[£{61)523T(T)JP(T)}de dr
R

where the new region of integration, R, is shown in figure h,2-1.
Since both r(7) and p(7) are even functions for real processes,
the integral can be btaken over the right half of R and multiplied

by 2.

. T 2T-7
33 - [ar [ mleepmnemin
e

Since )\ does not appear in the integrand, the integral with respect

t0 A can be taken immediately. Thus,

T
2 -
B{z"} = zf(T - 1)8(6y,b5m(r),p(r) laT
o
On substituting from equation 4.1-6, this becomes

T
2 8 .22 1- 1-
E{z"} = = 6162J(T—T) =0 =L qr

a

T T
8 l-r . -1 8 . =L . -1
+ = 62 j/(T-T) TZ% sin ~(p)dT + ;?JiT-T)51n (p)sin ~(r)dm
o

© (4.2-1)
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27

Figure o1
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The last term in equation 4.2-1'represents E{ZZ} when
61 = 52 =.O, i.e. for a perfect polarity~coincidence detector. The
first term will be shown later to be ug, the square of the output
mean value for N = 0. Since all four terms are positive, it follows
that E{zz} and c: for a BPCD both are larger than for a perfect
polarity-coincidence detector (subject to the assumptions and
restrictions introduced above).

In order to proceed further in the development of an expression
for the variance, 1t will be necessary to make additional assumptions.

These assumptions will be consistent with the assumption most

.l—r
1l+r

unity for any value of T 1in the interval O < 7 < T, and in fact

recently introduced that \

]};9
and \\l+p are not much larger than

the new assumptions to be introduced will supercede this assumption.
Therefore, before further specializing the problem, & brief discussion
will be given of some of the types of systems which satisfy the condi-

tions of this previous assumption.

1-x

In the first place, the quantity T

s, where -1 <x<1, can
be greater than unity only if =x 1s negative; it becomes much larger

than unity only as x approaches =-1. Therefore, the condition on

. i;g and %;% is equivalent to the assumption that r(t) and

o(T) both stay well away from -1 for all values of T 1in the
interval O =< 7 < T. Three examples follow - two for which the
assumption is valid and one for which it is mnot valid.,

Example 1) A signal (or noise) which has an RC low-pass spectrum has

-7/
the correlation coefficient  r(7) =e S, where Ty is the
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correlation duration constant. C(learly, in this case r(7) is never

. 1= . .
negative, so i:% is less than unity for all 1.

Example 2) A signal with a rectangular spectrum has the correlation

coefficient r(r) = [sin(2aF1]/(2#F7), where F 1is the (one sided)

spectral width in cps. The first minimum in r(1) occurs for

2aF1= L4.49, ror which r(T) = -0.217. All subsequent minima have
1z

even smaller magnitudes, so that T?% is never larger than 1.25

for any .

Example 3) A signal with a rectangular band-pass spectrum has the
correlation coefficient =(7) = [COS(zﬂfCT)][Sin(Zﬁ%T]/(Zﬁ%T), where
fc is the center frequency and B is the band-width. The first

minimum cceurs for 2 1= x, for which r(r) = -sin(% %—»«g'§~).
C

1T B/f_ is 0001%, say, then r(7) = ~0.999983, and %i% = %3,
Thus, in order that both p and +vp be small, it would be necessary
that p be small compared to 1/343 = 0.00292. If p does not
satisfy this condition, then Vb of Appendix II is not a good approx-
imation to V and the equations developed above are not valid. This
condition limits pn 1o undesirably small values.

Probably, the argument could be Justifled that in the region
where [sin(zﬁgT)]/(Zn%T) 1s not small (i.e. in the region where
r(t) is not almost zero), the oscillation of the factor cos(Zﬁch)
prevents any significant contribution to the integral., If l/B is

small compared with the integration interval, T, then r(v) will be

small in magnitude over most of the reglon of integration. In such a
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case, the substitution r(7v) = 0 over the whole region of integration
probably would not introduce & significant error in the integral, and
the approximation of V Dby VO would 5till be valid. Nevertheless,
the preceding discussion indicates the care which rmust be employed in
applylng the assumptions if the results are to be wvalid.

The problem remains to evaluate the integrals of equation 4.2-1.
In order to accomplish the integration, it will be assumed that both
the signal and the nolse have RC low-pass spectra but not necessarily
with the same correlation duration constant. Notice that if the
signal and noise both have RC low-pass spectra, then the restrictions

, l-r 1- ey
imposed earlier on \{11§ and "I:% are met (see example 1, above)

80 that the approximation of V by VO is still wvslid. The

C s “lrl/m _lTl/Tn
correlation coefficients are r(t) =e and p(T) = e )
where Tq ig the signal correlation duration constant and T is the
nolse correlation duration constant. Furthermore, it will be assumed
that both Tg and T, are very small compared with the integration
duration, T. This is equlvalent to the assumption that the band-
width of thé integrator, regarded as a low-pass filter, is very small
compared with both the signal band-width and the noise band-width.
Such an assumption is satisfled by a large class of communication
systems. 1In fact, when the slgnal-to-noise power ratio, N, is very
small, then T muet be made very large in order to detect the signél.
Therefore, as N - 0, the assumption is satisfied by most systems

which have a value of T large enough to assure satisfactory

detection.
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The new assumptions introduced will now be summarized for

emphasis.

(Ak.2-1)

(ak,2-2)

(Ak.2-3)

The input signal-to-noise power ratio is much less than
unity (N << 1). In this case, E{zz} is approximately
equal to the value of E{zg} when N =0, and the

N =0 value will be used in place of E{z°}.

The normalized biases are small with respect to unity
(51 << 1, 52 << 1).

Both the signal and the noise have RC low-pass spectra,

but not necessarily with equal correlation duration

||/, e/,

constants (r(1) = e— , plT) =e , where
Ty ie the correlation duration constant for the signal
and T is the correlation duration constant for the
noise). Also, both duration constants are very small
with respect to the integration interval T(7 << T,

T, < T)

Assumptions Alk.2-1 end Ak,.2-2 were introduced in deriving

equation 4.2-1. Assumption Al.2-3 will now be applied in turn to each

of the four integrals in equation 4.2-1.

First Integral

The first integral is

T

8 .22 1-¢ [l-r

D [ 2 e . e
0]
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By assumption A4.2—3, Ty and T both are small with respect to T.
Therefore, both r and p are almost zero except for values of
near the origin relative toc T. Thus, V/%%é and \/giég are nearly
equal to 1 except for values of néar the origin relative to T
(see figure 4.2-2). The contribution to the integral of the small
region near the origin where these two functions are not essentially

unlty is negligible. Therefore,

T
~8 .22
1= 5 818, f('l‘-'r)d'r
% o

FProm equation 3.2-2 of Chapter IIT, when N = O and the signal

and the noise are both Gaussian, then the BPCD output mean value is
uy = T-‘Erf(ﬁl/fé) -Erf(zsz/&) .

The error function can be expanded in a power series whose coefficients
g0 to zero with altérnating signs. Therefore, the error in using only
a Tinite number of terms of this series 1s less in magnitude than the
first term neglected. From equation 590 of Dwight (5), the first two

terms of the series are: Erf(x) = E x(1 - £ + ++.). Consequently,

Vx 3
Erf(h/'/é) = h\/:-i‘
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with an error smaller in magnitude than h3/3J§§ and with the sign
of the error the same as the sign of h. Substituting this approxima-
tion in the above eguation for Ko yields
2
Ho =7 T 86
with a relative error less than 5562/36, vhich is indeed small when
61 and 52 are small,

From this result it follows thst

™ = U_O (lL.Z-B)

Second Integral

The second integral is

Tat) [E22 sia7t
(T~) Trp gin (r)dr .

8
I,==%9%
i

OMN——

Tn/TS < 1

In this case, tThe same arguments as were used in cobtaining an
expression for Il show that %ig is essentlally unity for wvalues
of 7T 80 small that sin-l(r) and (T-7) have changed hardly at all
from their T =0 values. The contribution to the integral of the

small region near'the origin where /%i% is not essentially unity is

negligible, Therefore,
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it

8 .2 -1
I, =5 8] (TfT) sin  (r)dr .

O%"a

But since 7, << T, then r(r) is essentially zero for small values
of 1 for which (T-T) has not changed significantly from its

T =0 wvalue. The contribution to the integral of the region where r
and hence sin’l(r) are essentially zero is negligible (see figure
L.2-3). Therefore, (T-v) can be replaced by T with negligible

error and

T
~8 2 , =1
I, =;—2. 51Tf sin ~(r)dr
o]

__8 2 L =1 -'T/Ts 5
== 6] T sin (e Jar .

O‘R\l—ﬂ

It is shown in Appendix VI that sin-l(e-x) is approximated very

%G-SX: with a relative error in the

well by the function e = +
approximation which nowhere exceeds 0.07. gubstlituting this approxi-

mating function in the above equation yields

8 2 T "'T/'T -5'r/'rS
Iy = Z 8 T f ) ar
0
~ 8.8 2 .
= _15_2— 5, T T s since T/'rS > 1 o
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Tn/TS > 1

This case is.less interesting from a practical point of view than
the Tn/TS << 1 case because it implies that the noise band-width is
much less than the signal band-width. Such a situation is encountered
only infrequently in practice. However, the integral which results
would have to be evaluated anyway, since the same integral occurs
when IB; the next integral, is evaluated for the Tn/TS << 1l case,

Since in all cases it is assumed that T and T, are both mich
less than T, +then the function (T-1) has not changed significantly
by the time sin_l(r) has gone esséntially to zero, so it can be
replaced by T with negligible error in the integral. Since now
Ty < T sin-l(r) will be essentially zero when T/Tn is still
quite small relative to unity (see figure 4.2-4). TIn Appendix VI it
is shown that for O < x =1, +the functlion \ﬁé_ is an excellent

o N-e7®

approximation to \/ < 2 with a relative error nowhere exceeding
l+e”

0.04 in magnitude. Therefore, on substituting this approximation, as

well as the one given above for sin_l(e—x),

Lk fd— @7y

The integral to be evaluated here is of the form

aT

-
J( v e du .
o

=
ne
Io:

L\J

ﬁl“
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This integral can be evaluated by a repeated integration by parts

and is

L 2 pee (- AT ey

ava

In the above expression, aT is either T/TS or 5T/TS, both of

which are very large. Thus, Erf(vaT) © 1 and +af e 2% = 0, so

I= L « Substituting this result in the equation above for T

2ava

2)

with appropriate choices for the comnstant a, ylelds

{T
IZ = —3'0 6]2- T‘TS ‘;E ©
J['[I; n

I2 has the extra factor VTS7Tn when Th/TS >> 1, vwhich it does not
have when Tn/TS << 1. Otherwise, it is unchanged (except for a ratio
of about 2 between the numerical coefficients; this ratio has negligi-

ble effect when compared with ¥¢S7Tn).

General Case. Tn/TS Unrestricted.

In this case, as before, (T-7) can be replaced by T without

significant error in the integral. However, since T and Ty ey

be of the same order of magnitude, neither of the trancendental
functions in the integrand dominates the other in its contribution to

the integral (see figure %.2-5). The function 1 - 0.85 e is
==
l-e

l+e

shown in Appendix VI to be an excellent approximation to for

x =21, with a relative error which nowhere exceeds 0.02 in magnitude.
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Substituting this approximation, as well as the ones for

-x
sin—l(e—x) and [ 178 z vhen x <1, in the equation for I, yields
lie °
8 2 m T/Tn fT/Ts 4 _ST/TS
I, = ;E 6 T -f = (e + Ze Yar
o

T
-T/T -T/T -5T/T
+f<1-o.sse Ne " T+ge  Sar| .
T

(4.2-}4)

n
These integrals are of Lypes which have been integrated in deriving
the preceding expressions for IZ' Using those results with appropri-

ate modifications to accomodate -the new constants, and setting

Tn/TS =, ylelds

1 [RJErT(Vy) L1 Erf(-/B—"?)}
2 J§ 10 JE?

8 .2
/ ZATe |+ @ -ABEY I e
b1

- 985 (. oy 1 O emSY

e 1y 145y
Iz = for all wvalues of Ty

end T (for all values
of v),

§—-62 T {1+ i--) for 7 <71, (v <<1)

21" 10 n s MY ’

8 .2 1 1 4, 2.5

S Ny e ) (h.2-5)

¥y 1075

for T > T, (y > 1) .
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Clearly, the cases derived previously for Tn/Ts << 1 and for
.Tn/Ts >> 1 are limiting cases as vy - O and v - @ of the general
eguation just derived.

A plot of K2 = IZ/§§ 65 T Ty @5 a function of vy 1s presented
in figure 4.2-6. TFrom tgis plot, it appears that a rough estimste of
I, can be obtained by using the v << 1 form for values of

Y = Tn/TS < 0.4 and the vy > 1 form for values of v 2 0.4, The

maximum relative error resulting from this crude approximation is

0.25 at vy = 0.k,

Third Integral

The third integral is

This integral is identical to I2 with Tn and Tg everywhere
interchanged, and with §l replaced by 62. Therefore, the equations

and properties derived above for I, and the plot in figure k.2-6

2
; . 8 .2 o s
for K, are valid for K3 = 13/—— 6y T T if in them:

is
2
Tt

5
replaced by 62, g 18 replaced by T Th 1s replaced by Tg?

and v 1s replaced by )\ where ) = Ts/Tn'
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[ \[_xfErf(ﬁ) 1 Erf(/50) 1

0085 ?\ -)\. l 5)\. -57\-
L- e (l—+xe + l+5)\ )_‘
for all wvalues of T and T

n 2]

(for all values of A);

I =§-§5 TT(1+

3 ) for Ty << T, (A < 1),

L.2-6
T T o

for T, > T, (A > 1) .

- All remarks about I2 apply to I3 also, after an appropriate inter-

change of symbols, as described above.

Fourth Integral

The fourth integral is

8 - -
I, =5 (T-7) sin l(p) sin l(r)dT .

O;ﬁl—E
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Since both Tq and T, are small with respect to T, then r and
p, and hence sin-l(r) and sin-l(p), are small for all values of
T except for values near the origin relative to T, Therefore, the
contribution to the integral for values of T for which (7-T1) has
changed appreciably from its 1 =0 wvalue is negligible, and (T-r7)

can be replaged by T without a significant error in the integral.

T
8 =1 -1
I, =—5T (Sll’l (p) sin ~(r)ar .
T 0
If the approximation function e > + %e-5x is introduced for
Sin-l(x), this integral becomes
T
5 -7/, -st/m =t/ -5/ 7
Iy == T J[(e + Be ) (e + Ze Yar .
T o

Since T >> ™ and T >> Ty the contribution of the upper limit,

T, +to this integral is negligible and
1 1 1
Ty *F oy sl
or equivalently
T _ 8 T {(1 +-%—) — + F [——E—— + l——]}
I L s 20/ T+x % S I45x 0 M5

The limiting value as & - O 1in the first expression 1s

1.65 §§ T Ty or as A - O in the second expression is 1.65 §§ T Ty *
3 _ 7
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The limiting value as vy = « 1in the first expression, or as A - o
in the second expression, is zero. A plot of Kh = Ih/§§ T T, 8as a
function of v (and of Kh = IA/§E T T, @s a function of A is
presented in figure %.2-T. "

A word of caution is in order at this point. vy or A caaonot be
varied independently of Ty Or T . In all cases, both Ty and T
are small relative to T. Thus if vy - 0, then T mist go to zero,
since Tg must remain bounded as required by Ty << T. Conversely,
if v - =, +then Tg must go to zero, since T must remain bounded
as required by T <<vT. Iikewise, if A - O, then T, Must go to
zero and if )\ - «, then T must go to zero. Therefore, the
limiting value of Ih as yv-0 oras )- O 1s actually zero, since
T and T, appear as factors in the two limiting expressions for Ih
above. That such is the case is obvious from the defining integral.

-/ -1/T

For as T, or T, -0, then sin—l(e ) or sin-l(e %) goes
t0 zero except at T = 0. Thus the integrand is everywhere zero in
the limit except at v =0, and the integral is zero.

All the integrals appearing in the expression for E{zz} have

now been evaluated and E{zz} is written simply as

2
= ) » )" . o= .
E{z"} = I; + I, +Ig+ I (4.2-8)
In each‘of these integrals, it was necessary to introduce approxima-
tions in order to make the integration possible. A discussion of the

consequent errors will be postponed until the end of this chapter.
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The equations for the variance will now be stated. The variance

of the BPCD output, =z, is 02 = E{zz} - pé. But it was shown in the

discussion of the integral I, that pg = Il. Therefore,

02 = I2 + I3 + Ih' To emphasize the dependence on the biases and the

1

integration interval, this will be written

2 — * 2 m 2
o, = Te8yJ, + L-aZ-J?) + TeJ), 5 (4.2-9)

vhere JZ’ J% and Jh are constants for a particular class of

signal and noise, given by

N 1
%\/—-;‘; Bre(fy) |, 1 Erf(f5y)
10 iy

3 1., - -
Jf[“z"fs] S R R e

J085 vy v L Sy | -5
e (l+'\() ¢ *1 [l+5'y e )

-
with v = Tn/TS ’

i

\/if‘ Erf(/3) , 1 Er(s5%)
2 ¥y 10 5y

8 . 1 - -5
J3 :{—E Té] X + (1 ~\/;-)(e Ay %6 e b}‘)
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and

8 1 1 1
Ju-;zTn (l+§6)ﬂ7+§[ﬁ+w5

-t

or equivalently

8 1, 1 4|1 1
WTTE T (““éa)mﬂ“é{m*m] :

From equation b,2-9 it appears that the blaseg affect the
variance independently of each othef. Since the biases are squared in
equation %4.2-9, the sign of the bias has no effect on the variance.

The last term of equation 4.2-9, T-J),, 1s the variance for a
perfect polarity-coincidence detector - i.e. a BPCD with zero bias in
both channels.

The ratio JZ/Jh as a function of v {or J3/Jh as a function
of ) is shown in figure 4.2-8. Because of the 1/v (or 1/i)
dependence for small v (or ), the Ig (or J3) term may not be
negligible with respect to Jh when the noise band-width is small
with respect to the signal band-width {or signal band-width is small
with respect to the noise band-width) even though 8, (or 52) is
small.

To avold any possible confusion as to the range of validity of
the preceding expféssion for the variance, the assumptions and
restrictions’will be re-stated here:

1) The signal is absent; N = O,
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2) The (normalized) biases, 5, and 8,5 are small with respect to
unity.

3) The signal and noise have RC low-pass gpectra, with correlation
duration constants Ty and T, which are small with respect to
the integration interval, T. Equivalently, the integrator band~
width 1s small with respect to the signal and noise band-widths.

It seems reasonable to suppose that a departure from the last
assumption - RC low-pass spectra - would not result in a gross change
in the constants Jz, J3 and Jh if, for this new class of signals

and noise, the time domain equivalent of band-width is used for T

and T in the expressions for JZ’ J3 and Jh above.

The properties of fhe variance Jjust derived, in combination with
the properties of the mean value derived in Chapter IIT, will be used

in the next chapter to examine the behavior of the BPCD as a

detector,

4,3 Error Analysis

In deriving the preceding eguations for the variance, approxims-
tions were repeatedly introduced in order to make the asnalysis
tractable. ZFach of these approximations adds an error to the finsl
result. It i1s the purpcse of‘this section to determine the magnitude
of the accurulative error in the approximations. Each of the
integrals - I

I I, and I& - will be considered separately.

2’ 3

First, however, some properties of relative errors must be examined.

lJ

a) If an integral has an integrand which does not change sign in the

region of integration, and if a factor of the integrand is replaced
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by an approximating function, then the magnitude of the relative
error for the resulting approximate integral is less than or equal to
the maximum value of the magnitude of the relative error for the
approximating function substituted in the integrand. This relation

is derived as follows: By definition,

or
£f =1 = pf B

where f d1is the factor in the integrand to be approximated, fo is
the aspproximating function and p 1s the relative error in the

*
approximation. Then,

IO—I=fpfg s

where T =J{fg, IO =Jffog end g represcents the factore in the
integrand which are not replaced by an spproximating function. The

relative error of approximation for the integral is

*  Note that in this context p denotes the relative error, rather
than the noise correlation coefficient.
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I - X
o = o)
I I
fpfg
g
and
|} ofe]
\pI] = .
|[£g]
But

Vforel = 1 Jote s [ocl = | [ toles - f lolee
JpE

where A 1s the region of integration in which p is positive and

B 1is the region of integration in which o is negative. Then

prfgl < flp\fg + flpifg .
A B

Iet l ‘ be the largest value of the magnitude of in the region
Pln p

of integration. Then

fotal = lol,,| [ el + loly| [se
. B

B>¥ﬁ

If fg does not change sign in the region of integration, then



_ 136
prgl = lely [fg +ffg = Iplmffg .
A B

Therefore,

logl < lol, - (4.3-1)

b) If two factors in a function are replaced by approximating

functions, and if the relative error for each of these approximations
individually is small with respect to unity, then the relative error
due to the combined spproximation is very nearly equal to the sum of
the individual relative errors. This relation is derived as follows:

The relative error for the combined approximation is

fogo - fg

fg

where f and g are the two factors to be approximsted and fo and

g, are the corresponding approximating functions. But

f - 7f f
p. = or . 1+ p;
T £ £ T
and
g, - & go
p_ = or—-—=l+p 3
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where p. and p, are the individual relative errors. Thus,
= (1 + p ) (1 + -1= + + .
p=( +0)(1+0p,) Pp Pyt PrP,
If p. and Pq are small with respect to unity, then

Tty o (. 3-2)

kel
1

c) If g 1is the reciprocal of f, if f is replaced by an
approximating functioﬁ fo and 1f the relative error, Pps in this
approximation is small with respect to unity, then the relative error
pg for the resulting approximation g, is very nearly equal to ~ppe
This relation is derived as follows: Since g = 1/f, +hen

11 St
- g, -8 T, T ) £ £, - T :
£ e 1 1 1, ’
T f (4.3-3)

since when p, 1s small with respect to unity, then f_ = f and £
can he replaced by f in the denominator of the last expression on
the right above with negligible error.

a) If fo is an approximsting function for I with relative error
Po? if fl is an approximgting function for fo with relative erra
P15 and if 6 'is small with respect to unity, then fl is an
approximating function for f with relative error p = 0o * P1°

This relation is derived as follows: The relative error of f, as an

1
approximating function for £ is
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il

from which

Thus,
L+ o)f - £ -F% f,
0 = - + o — (4. 3-k)
T £ £

since when Po is small with respect to unity, then fo = f and fo

can be substituted for f 1in the denominator of the right hand term
of the last expression above with negligible errox.

The relations derived above for relative errors will now be used
to determine the effects of the combined approximastions which were

introduced into the equations for Il, I I, sand Ih'

2’ 3

Il)

The first approximation made in order to evaluate Il’ as well
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as the first approximation made in order to evaluate 12 and 13,
was the substitution of V_ for V in equation 4,1-5 1o obtain
equation 4,1-6. According to equation A2.0-3 of Appendix IT, the
relative error due to the approximation of V by Vb is less than

1-py42 2
1+p)5 or (1+ l+r)62 ?

ge, where in the present case, ¢ = (1 +
whichever 1is appropriate. Since neither » nor p 1is negative for
any value of T, then € g 2 §§ or 2 ag , Whichever is appropriate.
In elther case, € 1is small. Tt will be assumed henceforth that

both §, and 62 are less than 0.l in magnitude. This is a

1
reasongble assumption, since it is quite easy to comstruct practical
polarity indicators whose bias does not exceed 10% of the input level
and in fact, a polarity'indicator with larger bias would be considered
to be poorly designed. If the biases are less than 0.1 in magnitude,
then - ¢ < 0.02 in both cases, and the relative error due to the
approximation is less than 0.01.

By property b) for relative errors, derived above, the relative

error in the integrand of Il due to the substitution of

L-r
v (51’\/1+ 8,) for V(él’\/l+p 8) and of V,(8,4/T 85) for

v(& ) is equal to the sum of the individual relative errors,

1+r
each of which is less than 0.0l in this case. Therefore, the relative
error in the integrand due to this approximation is less than 0.02.

By property a) for relative errors, derived above, the relative
error in the integral due to this approximation, then, is less than

0.02 since the integrand is always positive in the region of

integration.



140

The next and final approximation used in evaluating Il was to

approximate the transcendental functlons in the integrand by a

constant - the number 1. If x = T/max(TS,T ) _and

1-e * : l—e—X/a
a = min(TS,Tn)/max(Ts,Tn), then e and 112:275 are the two

transcendental factors in the integrand. These two functions are

sketched roughly in figure 4.3-1l. Since these two functions are

factors of the integrand both with values everywhere between zero and
one, and since they were both replaced by the number 1, it is clear
that the largest possible value of the parameter a (namely, a = 1

or Ty = Tn), which results in the smallest possible values for the

. 1l-e " o .
funection I:;:§7§ ;» leads to the largest possible error for fixed

T/max(TS,Tn). Thus, for the largest possible error, the product of

-X
the two factors is 1S . But this function is easily shown to be
l+e
e . tanh (x/2) .
-X
l+e

From equation 4.2-2, on making the transformation x = T/b, where

b = maX(TS,Tn) and in this case equals mln(Ts,Tn) =Ty = T the
equation for Il becomes
T/b
=2 %2 (T - bx) tanh(x/2)dx
1 nZ 172 ’
o

and the error due to replacing tanh(x/z) by the number 1 is



11

Agk“mbvxme\e PEXTI JOI

o]

O+T
B Nopwe %

e-T

w\xl

T-C* 4 9InITg

Uﬂ.l

24T

S-T

JO yogeyg ysnoy




k2

/b /b
o :'§§ 6%62 b J[ (T-bx)ax -~ b J[-(T-bx)tauh(sz)dx
n a J
T/b
= §§ 5§6§'b J[ (T-bx) [1 - tanh(x/2)7] ax .
£
)

This integral cannot be integrated easily (if at all) in terms

of well known functions., However, the integral

T/b
E ='§§ élégab Tl - tanh(x/2)Jax ;

vwhich can be ilntegrated. directly, is a bound for t. £t <E, since

T -bx <T for all x in the region of integration. Performing the

integration ylelds

E = §§ 875, {7° - 2m loglcosh(T/2b) 1)

T2 - 2Tb log

[eT/Zb . e—T/Eb}

s

or, since T i1s much greater than @b,



T/2b
g2 8 22 1% | am 10g &

2 "1%

it 2
~8 2.2
= =5 6765°2Tb log(2)

k14
~ 2.2
=1.13 876, T .

Thus, ¢ < 1.13 6562 To. But ¢ 1is the largest error which can
ocecur. If Tg # T, then the error is smaller. Therefore, the errom
e, Tor the approximation is bounded by e = 1.13 ﬁiag Th.

The relative error in the approximation is

0 ==
T
Substituting the upper bound just derived for e, along with the

*
expression for I, from equation L.2-3," vyields
p < 2.78 b/T = 2.78 maX(TS,Tn)/T .

It will be assumed henceforth that T/maX(TS;Th) > 100, i.e.

that the signal and noise band~-widths are at least 100 times +the

*¥  The expression for I, in equation 4.2-3 is, of course, the
approximate expression for I,, whose relative error is to be
found. The equation for the "relative error, in order to be pre-
cise, must have the exact expression for I, in its denominator.
However, 1f the approximate expression is very nearly equal to the
exact expression as it is in this case, then the substitution of

the approximate expression for the exact expression does not
introduce & significant error in o.
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integrator band-width. This is an assumption satisfied by many
practical systems. Then, o < 0.0278.

By property d) for relative errors, derived above, the relative
error for the approximation Jjust discussed adds to the relative error
for the previous approximation. Therefore, the total relative error

for I, 1is bounded by

1

oy <0.0K8 . | (. 3-5)

The actual error in Il due tb the approximations is then

L 22 2 6

bounded by e; < 0.048 -5 5162 7% < 2 x 107 TZ, since < 0.1
T

il
and 62 < O.1. It was shown 1n the sectlon in which the approximate
expression for Il was derived that an approximate expression for
pg when 61 and 62 are small 1s the same as that for I, and
that the relative error for the approximation to Ho is less than
5562/36. By property b) of relative errors, derived above, the
relative error for the approximation to ug is then less than

%g 6562, and the actual error is then less than

since 61 < 0.1 and 62 < 0.1. Thus the error in the approximation
for pg ic completely negligible with respect to the error in the
approximations for Il’ and the actual error in the equation

Il - pg = 0, which 1s used in obtaining the variance, is due
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entirely to the error in the approximation for Il. It i1s then,

2.2 L2

-6 2
e, < 0.02 676, T < 2x 107 T (k.3-6)

when and 62 are less than 0.1.

ul
Since the function Il - gg is approximstely zero, the concept

of relative error is meaningless for 1t.

I)
2

The first approximation made in order to evaluate I2 was the

substitution of Vb for V in equation 4.1-5 to obtain equation

4.,1-6. It has been shown in the dlscussion of the error for Il that

the relative error due to this approximation is less than 0.01 vwhen

8¢ is less than 0.l.
The next approximation made was the substitution of the function
¥x/2 for 0 <x <1
f(x) =

(r - O.85-e'x) for 1 «x

in place of the function J{l-e'x)/(l+e-x). It is shown in Appendix
VI that the relative error for this approximation nowhere excceds 0.0k,

Next the approximation (e™ + %e-5x) was made for sin‘l(e_x).
It is shown in Appendix VI that the relative error due to this

approximation is everywhere less than 0.07.
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Then the constant T was substituted for the funetion (T-17).

The error in the integral due to this substitution is

T i
e = | Teg(r)dr - | (T-7)g(r)dr
|

T
='I’T g(r)dr ’

where g(r) represents all the factors in the integrand except for
(T~7).

This integral can be integrated, but the result is complicated
and is not easily interpreted. However, a simple bound can be found

for this integral. The integrand is

: —T/TS . -5T/TS

ww(r) = 2(x/r ) S rde | e
-/
where the function f}x) was de;ined gbove. The function ‘% e
-7/T =57/T
is greater than (e 54 ze ®) for all positive 1. The
~7/T

function (1 - 0.8 e %) is greater than f(T/Tn) for all
positive 7, and will be used when + < O.k. The function 7 2t
1s greater than f(T/Tn) for all positive «, and will be used

when +v = O.k. Thus, for

vy < 0.k

i W/ -1/,

@ e e
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—T/T
On integrating and neglecting terms in %— € S, since T >> Tg?

this becomes

n 2 N 2 n 2
€ =3 T4 1- 0‘8(l+y) =3 T5 *

vy = 0.k T
' ' -/
T X s
S ﬁf’r\E(g) e dr
2 n
. T \a _T/Ts 1
On integrating and neglecting terms in (?fJ e where a = 5
8
~or 3/2, since T >> T this becomes
T2 TZ
ex(HY2.3 8152
A
The rclative error is
8 .2 '
p =3 61 8/12 .
b1
From figure 4.2-6, for vy < 0.4 a good spproximation to I, is
8
1.1 3 55 TTS, and for «v = 0.4 & good approximation to IZ is
7
& 21y x 0.626/+vy . Therefore
ﬂZ 17 's Y ?

For vy < O.h

p 1.5 1 /T <0.015 R

since TS/T < 0.01, and

For vy = 0.4

p < 2.5 7 /T < 0.025 )

since TS/T < 0.01. Thus, for all vy
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p < 00025 -

The final approximatlion made in obtaining an expresslon for I2
was to neglect the terms due to the upper limit of integration, T,
in the second Ilntegral of equation L4.2-4.  In the integrated form, the

neglected terms are

For vy > 1

The magnitude of the positive term is less than

-yr/7 - -100y

l.1l e < l.dl e 5 ®8ince T = lOOTn. The magnitude of the

negative term is also less than 1.1 e_lOOY.

Thus, the magnitude of
the sum of the positive and negative terms is less than

-100y -100y

1.1l e . [el <l.dl e

For ¥ s 1

The neglected terms can be rewrltten

. W I Ly . I Loy
T v T ”Y
- X S 1l 5y 8
e = 0.85 Toy e +T5 Tioy e
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-1/
The magnitude of the positive term is less than 1.1 e 8

]
£ 1.1 7100 <y x 107

, gince T/'rS > 100, The magnitude of the
negative terms is also less than 4 x lo-hh‘ Thus, the magnitude of
the sum of the positive and negative terms is less than

Ll Ll

b x 1077 - Je] sk x1077,

The relative error is
8 2
p =5 8 Ty e/l‘2 .
e

From figure 4.2-6, for vy = 1, a good approximation to I, is

O.626-§§ ﬁi TTS/JT, and for v <1 a good approximtion to
i .
I, is 1.1 §— 62 iy Therefore
2 * n‘al s° ’
For y =1
- 100y
glele 7 x lO_lm
0.626/4y

which is entirely negligible.

Tor vy = 1

p=shx 107

which is also entirely negligible.
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According to the properties of relative errors developed
earlier, the total relative error for all the approximations made in
chtalning an expression for I8 is the sum of the individual errors.

Thus,

p, < 0.01 + 0.0k + 0.07 + 0.025

or

o, < 0.145 ‘ (&.3-7)

The first and last error terms in the preceding sum of errors
decrease to zero as 61 decreases in magnitude. Thus, by restricting
consideration to systems with sufficlently small |5l|, the relative

error in I2 can be reduced to 0.1l.

13)

I, 1s identical to I, if 1, end T are interchanged,

3 !
is replaced by 52, and vy 18 replaced by )\ in the expression for

Iz. Therefore, the relative error for I, is also no larger than

3

0.145 and can also be reduced to 0.1l by restricting consideration
to systems with sufficiently small lazl.

p3 < 0,145 (h.3—8)
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ILL)
The first approximation made in order to evaluate IA was the
substitution of the constant T for the funetion (T-t). The error

due to this substitution is

z RAN RURAP
e = [ Tsin (e ) sin (e YT
o]
T .
-t/ ~7/T
~’[ (T-7) sin l(e %y sin l(e ®yar .
o]
. R =X , =1, -x .
Since 3 e ls greater than sin (e ) Tor all positive X, then
T
2 -T/T —T/T
e < Cg} JrT e % S ar
o]
7t 2 2N 2
= ("é) Teq (l+,\() ]
i oL
where terms in e 5 % have been neglected, since T >> Tg

and T The relative error due to this substitution is
8
Ps e/l
bie

2T

i 8 - | 1 1+
< (E) Er'i¥§ /<1.05 + & {i?%? + ?:%} .
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This function is less than 1.5 7_/T for all v. Therefore,
p = 0.015, since /T <0.0L.

The next approximation was to replace the function sin-l(e_x)
by the function e + % e"”*, Tt is shown in Appendix VI that the.
relative error in this approximation is less than 0,07 in magnitude
for all positive x. Since the function sin-l(e_x) appears twice as
a factor in the integrand of Ih’ the relative error due to this'
approximation is less than 0.1k,

The final approximation made in order to evaluate I4 was to
neglect the contribution of the terms due to the upper limit of

integration, T. In the integrated form, the neglected terms are

T
- = (L+y) -5 %; (1+y)
. 1 e n + E_ 1 e n
n\ l+y 20 14wy
T T
- (1+5v) - (y+5)
% l e n + l e n
155y Y+5 *

Each of these terms corresponds to a term in IA’ The ccefficients

of the exponentials are identical to the corresponding terms in I

-T/'r][l

Ll...
Fach of the exponentizls is less than e which in turn is less

100

than e <k x 10—44, since T/TIl > 100. Therefore,

e = b x 10-hu-1h and

|
p <k x10 h s

which is entirely negligible.
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According to the properties of relative errors presented earlier,
the relative error for Ib, due to all the approximations is the sum
of the individual relative errors. Thus,

P = 0.015 + 0.14

oxr

p, < 0.155 . (%.3-9)
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SUMMARY
The variance of the output of a BPCD is

2 2 2
o, = T 61-J2 + T 62-J3 + T Jh R

8, 1is the input channel bias (normalized), 5, 1is the

reference channel bias (normalized), T 1s the integration interval,

where

and J 33 and 34 are constants for particular signal and noise

2)
correlation durations (or band-widths), given by equations 4.2-10.

The above expression for the variance is valid only if the
gsignal is absent from the input channel, the biases are less than one~
tenth of the input and reference levels, and the signal and noise both
have RC low-pass spectra with band-widths more than one-hundred times
the integrator band-width.

The relative errors in each of the variance terms of the above
equation are less than 0.15. 1In addition, a constant (non-relative)
error exists in the above equation, due to the approximate cancella-
tion* of two terms, I

0.0z 6%62 TZ.

1 and. pi. This constant error is less than

* Originglly, the expression for E{zz} coptalned four integrals.
In the discussion of the first integral, I., it was shown with-
in the accuracy_established by the approximations that the square
of the mean, Bos is %qpal to this integra%. Thus, in obtaining
the variance from E{z 1 Dby subtracting -, these two terms
cancel. However, since they are only approXimately equal, the
error 1n their difference remains to be taken into account.
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It should be stfessed that the errors given are upper bounds on
the actual errors, and in many situations the actual errors will be
significantly less. In any case, these errors are small enough that
the detection properties derived for a BPCD in the next chapter will
te meaningfuli.

Moreover, the assumptlion of RC low-pass spectrs for the signal
and nolse 1s probably ﬁot valid in a real system, since an RC low-pass
spectrum implies that the signal or noise has not passed through any
multi-pole networks. Even if all the networks in both the transmission
and reception ends of a system were single-pole RC networks - s
gituation which does not occur in nature - thelr cascaded effect
would not be equivalent'to a single-pole RC network. Consequently,
the assumption that the signal and nolse have RC low-pass spectra is
at best an approximstion. Since the numerical values of Jg, J3 and
Jh depend thrcugh their defining integrals on the functional form of
the signal correlation and noise correlation, which in turn depend on
the functional form of the signal and noise spectra, the results
presented above would he only approximate for real systems even if

the integrale were evaluated exactly. The errors due to the approxl-

mate evaluation of the integrals then assume less significance.
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CHAPTER V

THE DETECTION PROPERTIES
of a

BIASED POLARITY~-COINCIDENCE DETECTOR
In this chapter the behavior of & BPCD as a detector is
examined. First, the mean and variance of the output for an ideal
correlation detector (no limiters in the input and reference
channels) will be derived for purposes of comparison. Then, using
the output signal-to-noise power ratic as a criterion of performance,
the BPCD, the (unbiased) polarity-coincidence detector and the ideal

correlation detector will be discussed and compared.

5.0 The Mean and Variance for an Ideal Correlation Detector.

The properties of an ideal correlation detector are well
known. However, since the analysis of an ideal correlation
detector is straightforward and not very involved, it will be
presented here for completeness. TIn the following analysis it
will be assumed that the signal and noise are sample functions
from wide-sense stationary independent Gaussian random processes
with RC low-pass spectra. (See assumptions Al through Al3, A3-1,
A3-2, Ak-1, Ak.2-1, Ak.2-2 and A4, 2-3 made previously.) A block

diagram of a correlation detector is given in figure 5.0-1.
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The Meen Value of the Outputb.

The mean value of 2z is

T T
W, = E{z} =E Ju(t)dt = fE{u(t)}d't
T O o}
- fE{xl(t)xz(t)}dt . (5.0-1) -
o}

By asssumption AZ of Chapter III, s, 5, and n have wide~sense
stationary distributions. Therefore, X and x5 have wide-sense
stationary distributions and E{xl(t)xz(t)} is time independent and

can be written E{xlxz . Thus,

)

. = TE{xx, . (5.0-2)

By assumption Al of Chapter IIT, E{xlxz} is

E{x,x,} = E{(sin)s } = E{ss_} + E{s n} .

By assumption Ak of Chapter ITI, s, = a's, where a = co/ds, and

by assumption A5 of Chapter III, s, and n are statistically

independent. Moreover, by assumption A6 of Chapter III, E{n} =0

and by assumption A7 of Chapter III, E{s} 0. Therefore,

E{xlxz} = E{sso} = aoE{sz} = acg . (5.0-3)

1f
Q
Q
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Finally, then,
b, = T*0_ 0, . (5.0-4)

The Variance of the Output.

The expected value of z2 is

T T
E{z°} = B /]u(t)u(e)dtde - [[ E{u(t)u(e) Jatds .
° ° (5.0-5)
Upon introducing the subscript 1 to indicate the time varisble ¢
and the subscript J to indicate the time variable 6, Ef{u(t)u(e)}

can be written

Efu(t)u(e)]} = E{uiuj} = E{XliXZinjXZJ} .

By assumption Al of Chapter III, this is

It

E{uiuj} E{(si+ni)soi(sj+nj)soj}

]

E{Soisojsisj} + E{soisojsinj}

+ E{soiscjsjni} + E{soisojninj} .
Since 5, = a8 and Ef{n} = 0 and since by assumptlon A9 of
Chapter IV, s and n have statistically independent second order

distributions, then
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E[uiuj} - a® E{s?sg} + aZ'E{sisj} E{ninj} . (5.0-6)

The seccnd term on the right hand side of the above equation can
be written immediately in terms of the signal auto-correlation func-
tion and the noise auto-correlation function. The first term can be
expanded &s follows: It is well known thatif ¢, Y CB and ¢

are real random variables with a joint CGausslan distribution and with

zZero means, then
B{t 60040, = Bl 8,0BlE 50,3 + Bl 6 53R L)

+ E{Clgu}E{§2§3} .

By assumption Al-1 of Chapter TV, both the signal and noise have

second order Gaussian distributions with zero means. Then Si’ 8:5

Sj and sj,\ regarded as four random variables, have a fourth order

Gaussian distribution with zero means. Therefore,

2.2 2 2 2
E{sisj =-E{Si}E[sj} + 2 E {sisj} .
Thus,
2 o Bae 2 _2 2
E{uiuj} = a E{si}E{sj} + 23" E {sisj} + 8 E{sisj}E{ninj}

2 b 2 .2 2 A
a” o  + 2a RS(G—t) +a Rs(e-t)Rn(e-t)

’

(5.0-7)
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where Rs(e-t) = Gzr(e-t) and Rn(e—t) = cﬁp(e-t) are the auto-

correlation functicns for the signal and fbr the noise. Upon sub-
stituting the equivalent expressions for Rs and Rn in terms of
r and p, this equation becomes

a 222
]

2 2 2
E{uiuj} =00, + 200 (8-t) + g o r(6-t)p(e-t) .

o}

Finally, then,

T
E{z%) = T%%° + 2 o%0° H r%(o-t)dtds
o 8 [OR )
¢]
1

22
+ao, ﬂ r(e-t)p(6-t)dtde .
s

(5.0-8)

'Physical Interpretation

Before proceeding with the derivation of the variance for the
ideal correlation detector, the physical meaning of the components
in the output of the detector as expressed in the above equations
will be discussed, and its implications for the BPCD will be examined.

First, it 1s clear that the amplitude, 9, of the reference
signal has no effect on the properties of the detector, since 1t
appears as a factor to the éirst power in the expression for the
mean and as a factor to the second power in each of the terms in the
expression for the variance.

The mean, glven by equation 5.0~4, represents the D.C. component

of the detector output. If the output, =z, exceeds a pre-established
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threshold, it is assumed that a signal is present and that the
threshold has been exceeded due to the D.C. component caused by the
signal's presence. Thus, by is called the "output signel". The
quotation marks are employed because by, 1s a real number and not &
signal in time in the usual sense.

E{zz}, given by equation 5.0-8, has three terms or components.
The first ﬁerm on the right hand side of equation 5.0-8 is the square
of M, and represents the "output signal power. .

The third term on the right hand side of equation 5.0-8 is the
fluctuation term due to the input nolse, and is proportionsl to the
Input nolse power, oi. It should be stressed that the output of the
detector for a single detection attempt, consisting of an integration
of the function XX, .for a period of length T, 1s a single fixed
real number - not a function of time - and thus is a fixed constant
for any particular detection attempt. The fluctuations in this
"constant" output are due to uncertainties in the input. I.e., the
value of z 1s not known before the detection attempt is made,
because n(t) is an unknown sample function from a random process.
Thus, z 1s a random variable and if the detection attempt is made
repeatedly, assuming a new noise sample function‘for each repetition,
then the a-posteriori value of =z presented by the detector at the
end of the integration interval T will [luctuate from one detection
attempt to the next. These fluctuations in the a-posteriori values
of 2z are usually referred to as the "output noise'.

In applications, the detection attempt may be made repeatedly

in the presence of a single noise sample function varying randomly



164

through sll time, as in a pulsed radar system. However, the
frequency with which the detection attempf is repeated is usually
small compared with the noise band-width, and consequently the
correlation between the nolse samples from one detection attempt to
the next is small, so that the a-posteriori knowledge of earlier
detector outputs gives no a~priori correlation knowledge of the next
detector output.

Discusslon of the second term on the right hand side of equation
5.0-3 is presented last because in a certain sense, tobbe made clear
below, this term is spurious. This term is the fluctuation term due
to the random nature of the signal, and in many sppllcations the
signal is not really random.

In those cases where the signal actually is random, the dis-
cussion given above for the fluctuations due to the input noise
applies also to the fluctuations due 1o the input signal. Since s(t)
is an unknown sample function from a random process, s(t) causes
another component of randomness to appear in z in addition to the
randomness due to n(t). Thus, as the detection attempt is made
repeatedly, assumlng a new signal sample function for each repetition,
the a-posteriori value of 2z after the detection attempt will contain
additional fluctuations due to the randomness of s(t). These fluc-
tuations are repr_esented by the second term on the right hand side of
equation 5.0-8 and are proportional to the input signal power, 02.
Therefore, when W = oi/oi is sufficiently small, the "output noise"
is due almost entirely to the input noise and the fluctuations due to

the signal can be neglected.
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A gystem in which the signal is a sample function from a random
process could be obtained, for examplé, by selecting a section of
duration T from the output of a random noise generator, to be used
both for the reference signal and for the signal 40 be transmitted
through a noisy channel to the detector. After waitlng s sufficiently
long time to assure independence of the next sample (for some pro-
cesses, the next sample will not be independent no matter how long
the waiting period), another section of duration T would be
selected from the output of the same random nolge generator, to be
used again for both the reference and transmitted signals. An
alternative method would be to use a new ldentical but statistically
independentlnoise generator for each new sample of duration T, to
be used hoth as transmitted and reference signal. With this method,
the consecutive signals are independent regardless of the waiting
period between transmissions.

In many systems, the signal is not a random function. Although
it may have been selected originally from a set of sample functions of
a random process, once selected, the identical sample function is used
for all future signals and reference functions. 7In the case that the
signal has been selected by some means other than & random choice
from a set of sample functions (e.g. if the signal is specified
arbltrarily by a functional form such as s(t) = sinawt), it can still
be regarded as a sample function selected at random from a set of
sample functions of a random process. (E.g. the function s(t) = sinwt

can be regarded as having been selected from the set of sample

functions sin(wt + @), where ¢ is a random variable uniformly
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distributed between O and 2x).

In fhis case, where the signal and reference gre inveriant from
one detection attempt to the next, some modifications of the pre-
ceding remarks about = and E[zz} are required. Ia order to make
these modifications, it will be necessary to review the steps taken
in deriving the expressions for , and E{zz}.

Of the equations derived earlier in this section for the mean
value of 2z, equation 5.0-1 is still valid when s and 8, are not
random variables but equation 5.0-2 is no longer valid. It becomes

instead

T
= { i . -
M, = IE{Xlxzjdt . (5.0 9)
o
Since 8 and So are now non-random, equation 5.0-3 becomes

E{x x,} = a-s” , (5.0-10)

and equation 5.0-4 becomes

T

1 2, \as
b, =8|z ‘}(s (t)at . (5.0-11)

e}

The quantity inside the brackets of the gbove equation is the

finite time average of sz(t) over the interval T. ZILet



167

denote the finite time average of T(t) over the interval T. The
ergodic theorem asserts that if f(t) 1is a sample function from a

strict sense stationary random process, +then

lim Ap(T) = E{f|1} with probability 1, (5.0-12)
Mo
where I 1s the element from the Borel field of invariant sets in
the sample space** which contains f(t), and E{f|I} is the
conditional expectation of f given I. If the only invariant sets
of the sample space are:those with probability O and 1, +then the
process is called ergedic and lim.Af(T) = E{f} with probability 1.
If f(t) is s sample func$;Zn from a stationary process, and if
g(t) = ¢{f(t)} 1is a function of f£(t), then g(t) is a sample

function from a staticnary process also. Moreover, if the f process

*R%

is ergodic, then the g process is ergodic also.

* It is assumed that f 1is a measurable function of t.

¥ The invariant sets in the sample space are those which under a

translation in + differ from their image by at most a set
which may depend on t %but which has probability O for each %.

*¥¥%  In order that the ergodic theorem hold for g, g as well as T
must be a measurable function of +t.
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Most statlonary processes encountered in applications are
ergodic; Thqse stationary processes which are not ergodic can be
decomposed into component processes which are ergodic. Thus, there is
no loss of generality for practical purposes in assuming that the
signal process is ergodic. 1In fact, it will be assumed lster that the

signal process is stationary Gaussian with auto-correlation function

S RIVEN

RS(T) = e » It can be shown that this process is indeed ergodic.
It will be assumed for the present case, whefe s(t) is not a
random function, that nevertheless s(t) was obtained originally by
sampling from a strict-sense statlonary ergodic random process. The
present case differs from the case analyzed previocusly, then, only
in that a new sample function for the signal and reference is not
obtained for each new transmission and detection attempt. The same
sample function, once obtained, is used for all transmissions and
detection attempts.
Since s(t) is a sample function from an ergodic process,
then sz(t) is a sample functlon from an ergodic process also, and

by eguation 5.0-12.

T
. 1 2 a2 2
lim |= s“(t)at| = B{s"} = o (with probability 1),
T @ T ! : s

where cz is the variance of the process from which s(t) was

origlnally selected. Therefore, from equation 5.0-11,

T ragt = Teo g (with probability 1), (5.0-13)
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which is equal to the expression for b, obtained for the previous
case with s(t) random. No attempt will be made in this thesis to
analyze the error in this approximation. However, the error should
be very small if it is assumed that T is large with respect to the
duration time for dependence, Ty for the signal process.

Within the precision of the approximation, then, the mean of the
detector output is independent of whether the signal is a random
function or not, so long as the signal has been selected from the
sample functions of an ergodic process.

Of the equations derived earlier in this section for E{zz},
equations 5.0-5 and 5.0-6 are still valid but equations 5.0-T7 and
5.0-8 are not. gince Si and sj are now non-random, egquation
5.0-6 becomes

2
a’ s

8

Feo
o

2
E{uiuj} + a sisjE{ninj}

2.2
= a 8,8,
i

2 2 -
jta siszn(e—t) . (5.0-1k)
Note that the term-corresponding to the second term of equation
5.0-7 or the second term of equation 5.0~8 is missing in equation
5.,0-1%. This term represents the output fluctuation due to the
randomness of the signal, and it is natural that it should vanish

when the signal is non-random.

Equation 5.0-8 now becoumes,
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_ T 7 T
B{z%} = &°1° %fsz(t)dt % [sz(e)de
(0] — o]
T
+ af jf s(t)s(e)Rn(e—t)dtde . (5.0-15)
o]

The first term of this equation is identical to ug, as given by
equaticn 5.0-11l. By an argument similar to but considerably more com-
plicated than the one used for obtaining the approximate equality
between M, for the non-random slgnal case and K, Tor the random
signal case, it can be shown that the second term in the above
equation is approximately equal to the third term of equation 5.0-8,
the equation for E{zg} in the random signal case. Again the
approximation should be good if it is assumed that T is large with
respect to Tge

It is clear now that the D.C. component of E{zz} is exactly
equal to ps in both cases. This was to be expected, of course.
Moreover, within the precision of the approximation, the fluctuation
term in E{zz} due to the input noise 1s independent of whether the
signal 1s random or not, so long as the signal has been selected from
the sample functlons of an ergodic process. The only essential
difference between E{zz} when s(t) is random and when s(t) is
non-random is the presence of a fluctuation term due to the signal
randomness in the former case which is absent in the latter case.
When the signal-to-noise power ratio i1s small, even this difference

vanishes.
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The corresponding analysis for the BPCD is much more complicated
than and‘not nearly so stralghtforward as that for the ideal
correlation detector. Nevertheless, it can be carried through and
the ergodic property of the input signal process can be used to show
that the same sort of approximate eqguality exists between the BPCD
means for random and non-random signals and between the BPCD output
fluctuations due to the input noise for random and non-random signals.
The fluctuation term due to signal randomness dild not appear in the
equations for the BPCD output variance derived in Chapter IV because
it was assumed there that the input signal-to~-noise power ratio is
ZETO.

The preéeding lengthy digression was presented in oxder to
establish the approximate equallty between certain output parameters
of & detector when the input signal is a random function and the same
parameters when the input signal is a non-random function. All of the
analysis preceding the digression and all of the subsequent analysis
assumes that the signal 1s random. This is a convenience in carrying
out the analysis. However, many systems utilize non-random signals.
Therefore, 1t was necessary to establish these equalities.

The derivation of the variance for the ideal correlation detector
is now continued. Since 05 = E{zz} - “2 , then by equation 5.0-k4

and equation 5.0-8,

o 207" [[ r?(0-t)atae + o [[ r(8-t) p(6-t)dtds .
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By transforming coordinates to T = 8-t, A = 6+%t, this

integral becomes

L\)

J]( T (T)dxdT + % g_a lyfr(T Jp(T)drdT 5

where the reglon of .integration, R, 1is shown in figure 5.0-2.
Since r(T) and p(T) are both even in T, the whole integral

1s equal to Uwice its value over the right hand half of R. Thus,

T 27-1 T 2T-T
2 2 2 2 2 2
o = 20°0, de f r(r)dr + o o, [d”r[ r(t)p(r)dr .
o T o T

Since the integrand is independent of A, +the integration with

respect to ) can be taken lmmediately.

402 2 j/(T T)r (v)dr + 202 2 (T-T)r(T)p(T)ar

O H

-|7l/7
By assumption A4.2-3 of Chapter IV, r =e s and
-{rl/7y
p =€ , Wwhere the correlation duration constants, g and
T,” 8re both small with respect to T. Then
T T
-21/T -7/
o2 = ho%e® J((ILT)e a7 + 20207 JK(T—T)G a+ ,
z Cc’s on

1 L
where T = l/(;;-+ ;—) = TSTn/(TS + Tn).
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Z7

Figure 5.0-2
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The preceding integrals can be integrated directly. The

result is
T q° -2T/ T
2 2.2 8 s s
g, = ucocs — - (1-e )
-T/7
2.2 2 o)
+ 200 (TT - T (1-e ) .

Since both T and T, are small with respect to T, then T is
also small with respect to T, bhecause T is less than either Tq
or T . The quantlity inside the parantheses in each term above is

slightly less than unity. .Thus,

a 2.z g 2
o, = BUOGSTS [&-QTS/é} + ZGoGnTo [T-ETO} ’

where ¢ and ¢ are slightly less than unity. If it is assumed
here, as 1t was in Chapter IV, that T and T, B&re both less than
0.01lT, then

2m 22 22
G, = 2GOGSTTS + 2o IT, ’

with a relative error in the approximation less than 0.0Cl.
[p] <0.01 . (5.0-16)

Upon introducing the notation N = Ui/di and vy = Tn/Ts, this

equation becomes
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Gj = ZGiﬁiTTs {N + T%?] , (5.0-17)
with a relative error less than 0.01 if Ts and T both are less
than 0.01T.

The term in this equation with N as a factor is the fluctuation
term due to the random nature of the signal. According to the dis-
cussion presented earlier in this section, if the system is one in
which the signal is not random, then the fluctuation term due to
signal randomness vanishes. If the signal is random but the input
signal-to-noise power ratio, N, 1is small relatiw to y/(l+y) then
the signal fluctuation term is negliglble. Since the variance
expressions derived in Chapter IV for the BPCD are for the case that
N =0, it will be assumed here that N is small relative to v/(1l+y)
if the signal is random. This is a reasonable restriction to make,
since the purpose in presenting the output paremeters of the ideal
correlation detector is to compare them with those derived earlier
for the BPCD. Thus, whether or not the signal is random, the
variance contalins only the second term, which 1s the fluctuation term

due to the input noise randomness.
of = aololrr (7L) , (5.0-18)

if the signal_is'non—randam or if N is small relative to v/(l+y).
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The "output signal-to-noise power ratio" is defined by

2, 2
Ny = #/0, - (5.0-19)

where No denotes the output signal-to-noise power ratio. From
equations 5.0-4 and 5.0-18 for the ideal correlation detector, for

s(t) non-random or N << y/+y), this is

N

{

o = &N % (T+v) /vy (5.0-20)

<]

N -rf— (1+2)
S

where A= g/Tn. When y = A =1, i.e. when the noise and signal

have identical correlation functions except for amplitude, then

5.1 The "Output Signal-to-Noise Power Ratio" for an Ideal Polarity-

Coincidence Detector.

The mean for the output of an ideal (no bias) polarity-coinci-

dence detector is given by equation 3.2-4 of Chapter III. It is

pl = % tan-l(x/ﬁ)
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The variance for the ideal polarity-coincidence detector when N =0
is obtained from equation L4.2-9 of Chapter IV by setting 61 and 62

equal to zero. It is

2 8 1 1 11 1
o =TI == I (1+§6)m+§[m+x:§] :
(5.1-1)
Although this expression 1s valid only when N =0, +the value of

02 for small N will not differ significantly from it. ‘Therefore,

equation 5.1-1 will be used also for N small. When N is small,

the expression above for the output mean 1s approximately

2T .
“’]_ =—]'[_ Vﬁ . (5‘1-2)
Substituting equations 5.1-1 and 5.1-2 in equation 5.0-19 yields for

the output sigﬁal—to-noise power ratio

Nozé‘v%/ (1+%)%+%[ﬁ+%} . (5.1-3)
Thus, the output signal-to-noise power ratic for the ideal
polarity-coincidence detector is proportional to the input signal-
to-nolse power ratio, Jjust as 1t is for the ideal correlaticn
detector. 1In fact, the ideal polarity coincidence detector has an
output signal-to-noise power ratio identical to that of the ideal

correlation detector except for a degradation factor.
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No(zep) = Mo (cp) | (5-1-4)

where A 1s the degradation factor, PCD denotes a polarity-
coincidence detector and CD denotes a correlation detector. The

degradation factor is

A = T T N > (5.1-5)

or, since vy = 1/1,

1
1 1 1] 1 1 .
(1+v) {(1 v TR T2 [m * m}}

Note that A is symmetric in vy and \. Therefore, only values of

(5.1-6)

v (or 1)) greater than 1 need be considered, since A for values
of vy (or ) smaller than 1 can be obtained from A for values
of ~v (or \) greater than 1 by using the relation v = 1/x.

When v = A =1, 1.e. when the nolse and signal have identical
correlation functions except for amplitude, then 'A = 1/1.383 = 0.723~
a degradation of 1.4 db. As vy (or \) goes to zero or infinity,

A goes to 1/1.65 = 0.606 - a degradation of 2.2 db.

A plot of the degradation factor is presented in figure 5.1-1.
Note that accofding to equation 5.0-17, as v —» 0 (or as ) — «) the
term with N 1s no longer negligible even for N small with respect

to 1. TIn order that this term be negligible; N must be small with



179

T-T°G om3Td

@od ' J0J ‘v faogomd TOTYBPRIZSQ

N\\N\MN =\« OsS7s hw,N\Q\Nn.\N
pe , o=
|

T
&0

ZFo




180

respect to vy/(1l+y). This fact must be born in mind in using the curve
in figure 5.1-1. For a fixed N, small with respect to 1, only
that part of the curve where y/(l+y) is large with respect to W
(or equivalently, where T%X is small with respect to l/N) is waliq,
unless the signal is non-random in which case the whole curve is valid.
Thus, parts of the curve for T%? < 1 (or 14+)x = 1) may not be
valid, depending on the value of N, and on whether or not the signal
is random. Of course, A can be obtained directly from equations
5.0-4, 5.0-17, 5.1-1 and 5.1-2 for any vy and any N << 1, even when
the value indicated by the curve in figure 5.1-1 is not valid.

It should be noted that equations 5.1-5 and 5.1-6 are only
approximate. It will be assumed that N 1s sufficiently small
(say N <0.01 T}? if the signal is random) that the error in
equation 5.0-18 due to neglecting the effects of signal fluctuations
is negligible when compared with the error made in evaluating cg in
Chapter IV. It wlll also be assumed that N 1s sufficiently small
(say N < 0.1) that the error in equation 5.1-2 is negligible when
compared with the error made in evaluating cz in Chapter IV. Then
the.only significant errors are those expressed by equation 4.3-9 of
Chapter IV and equation 5.0-16 of the present chapter. According to
equation 4.3-9 of Chapter IV, the relative error in equation 4.2-9
of Chapter IV expressing GS for the polarity-coincidence detector
is less than 0.155 and according to equation 5.0-16, the relative
error in equation 5.0-18 expressing 02 Tor the correlation detector

is less than 0.01. Thus, by the properties of relative errors

derived in Chapter IV, the relative error for the approximaste
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degradation given in equation 5.1-5 or 5.1-6 is less than 0.165,

An examinatiocn of the approximating function used in Chapter IV
which leads to the error in equation 4.2-9 reveals that the error is
in the direction of yilelding a larger value for 02 than the actual

value. This results in an expression for N which is smsller

o(PCD)
than the actual value. Thus the error in equation 4.2-9 results in
a value of A which is smaller than the actual value; the value of
A  given by equation 5.1-5 or 5.1-6 is depressed from the actual

value by an amount between O and 15.5% due to this error. Simil-
arly, the error in equation 5.0-18 results in a value of Gi which
is larger than the actual value, with the result that the expression

for N is smaller than the actual value. Thus the error in

o(CD)
equation 5.0-18 results in a value of A which is larger than the
actual value; the value of A given by equation 5.1-5 or 5.1-6 is
elevated from the actual value by an amount between O and 1% due to

this error. Therefore, 0.99A < A = 1.18A, where A, 1is the true

t
degradation and A 1s the approximate degradation given by equation
5.1-5 or 5.1-6. The upper and lower bounds on Ay established by
this inequality are indicated 1n figure 5.1-1 by the dotted curves.
Similar results for particular cases of polarity-coincidence

detectors have appeared in the literature. For example, Faran and
Hills (1) examined the behavior of a polarity-coincidence detector
for Gaussian signal and Gaussian noise, with identical narrow-band RC
vand-pass spectra (correlation function r(T) = e—d%‘T\.cosabw, where

_Q%/Zﬂ is the half band-width and ab/Bn is the center frequency),

for the case where N is small. Thus, they examined a system
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corresponding to the one above for vy = A = 1, but with an RC band-
pass spectrum instead of an RC low-pass spectrum. They found the
degradation in performance of the polarity-colncidence detector
relative to the correlation detector to be 0.859.

In evaluating the variance both for the polarity-coincidence
detector and for the correlation detector, Faran and Hills made
simplifying approximations of a nature similar to some of the ones
made 1n this thesis - namely, replacement of the function T-1 by the
constant T. However, they did not analyze the error resuliting fram
this approximation.

Since the difference between the degradation found by Faran and
Hills and the degrzdation found above is of the same order of magni-
tude as the possible error, and since the Faran and Hills value is
for a band-pass spectrum whereas the value derived above is for a

low-pass spectrum, the two values are in good agreement.

5.2 The "Output Signal-to-Noise Ratlo" for a Biased Polarity-

Coincidence Detector.

The mean value of the output of a biased polarity-coincidence
detector wita (normalized) biases 61 in the input channel and 62

in the reference charmel is given by equation 3.2-12. It is

Wy = by + €, ’

where
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2T -1
b === tan (+/7) R

Il

ey = hrev(sy,d8,) + MT-V(sz,csz)

with

[
il

VI (8,/6,) - N R

o
H

I (62/61) - N .

When N 1is small, is approximately

Hp

b = %E A
The power series for tan-lx has terms of decreasing magnitude with
alternating signs. Therefore, the error in neglecting all terms past
the n-1°F 15 less than the n" term in magnitude. Thus, since
the first two terms of the power series for tan'lx are X and
—x3/3 when |x{ <-1, +then the error in the preceding approximation
is less than (Jﬁ)3/3 and the relative error is less than N/3. It
will be assumed that N < 0.1. Then the relative error ls less than
0.033.

The function V which appesars in e), is discussed in Chapter
IIT and Appendixes T and TI. Since 1t was assumed in Chapter IV

that § and _52 both are less than 0.1 1in magnitude, and since it

1

is now assumed that N < 0.1, then 8, < 0.1 and cb, < 0.1.
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Therefore, (l+dz)5i and (l+c2)52 “are both less than 0.02 and

according to equations A2.0-1 and A2.0-3 of Appendix 1T, the functions

1 2 1 2
Yo dél and = c&z

are good approximations to V(al,dal) and V(sz,cs with relative

2)
error less than 0.Cl. Thus the output measn value is approximately

2T T . .2 T 2
= N+ = dal + = chy

by =
=2 {2 - (8] + 62)14F + 2/I3F 5,5, :
Since 8¢ and 62 are less than 0.l and N = 0.1, this is
approximately
by, = by ot 506, = =8 [+ 65,1 (5.2-1)

According to equation 5.2-1, the effect of bias in the input
and reference polarity indicators when N 1is small is to add a

spurious D.C. component, %E 515 to the detector output. At first

2)
thought, it might be supposed that this spurious component could be
determined by a measurement and then subtracted from the output for
subsequent detection attempts. However, this may not be possible.

First of all, the output of the detector is a random variable.

Therefore, in order to determine the magnitude of the bias effect it
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would be necessary to average the results of repeated measurements of
the detector output, the number of repetitions being large enough to
reduce the variance of the averaged output to a value small compared
with the averaged output. But the physical sources of the biases
(transistor junction leakage current, contact potentials, supply
voltage variations, etc.) may not be time statlonary. They may
change with temperature, operating age of the device or other factors.
Thus the biases in the polarity indicators may drift in z random
fashion, and as a consequence the D.C. component of the detector
output may drift in a random fashion. If the value of the D.C.
component changes significantly during the averaging period, the
average will not be a good estimate and subtracting it from the
detector output will not reduce the spurious D.C. component to zero.
of course,vif the biases are stationary in time, then 1t is
possible to measure the spurious D.C. component in the output and
then remove it from subsequent observations of the output. However,
in such & case it is more effective to remove the bilases at the
polarity'indicators* because removing them at the indicators will
eliminate the term in the variance due to bias as well as the spurlous

D.C. component.

%  If the bias in a polarity indicator is time invariant, it is
always possible to measure it and then remove it by the simple
technique of adding an equal D.C. component to the indicator
input.
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In order to treat the effects of the spurious D.C. component on
the detector when the bilases are not time statlonary requires a
knowledge of the time varying characteristics of the biases - usually
statistical in nature. Instead of entering into such a complicated
investigation here, it will be assumed that the maximum values of the
biases are sufficiently small that the spurious D.C. component is
negligible with respect to the D.C. component in the output due to
the signal. Such a condition is a reasonable one to impose, because
even if the statistics of the spurious term are known, in order to use
the system effectively as a detector the D.C. component in the output
due to the signal must be large compared with any fluctuating terms.

According to this assumption, then, 8,8, << /. It should be
noted that this condition rather than the noise level may set the
lower bound on the detectable signal level.

From equation 5.2-1 it is clear that 1f one of the biases is
zero,% then there is no effect on the output mean from the other bias.

Whether one of the blases is zero or not, because of the assump-
tion made above, the effect of the biases on the mean is negligible

and

m o= T, (5.2-2)

* For a discussion of the type of system in which 52 is zero, see
page Z2.
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with a relative error in the approximation less than 0.033, if
6, or &, are zero or if 8.8, << N < 0.3 (N <0.1).
The variance for the bilased polarity-coincidence detector when

N =0 is given by equation 4.2-9. It is

2 2 2
9 = T'él'JZ - T.62.J3 + T.Jq ; (5.2-3)
where
L [ [Erfw WL Erf(ﬁ?)}
2\z2 10
. e
8 -
J2=:éTS +(l-~/3’2-)(eV+—e5Y)
0.85 , v -y, 1 5y |.-5v
T Te (l+y DR ol I v o )
with v = Tn/TS’
J3 = Jz with T substituted for Tg and A substituted for

v, Where )\ = TS/Tn = l/y,

and

7 -8 T S 1
h"-ﬁ—Z'Tn T TN TR | Ty Ty

or equivalently, the same expression wilth g substituted for - n

and )\ substituted for v.
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Although equation 5.2-3 is vallid only when N = 0O, the value of
62 for small N will not differ significantly from it. Therefore,
equation 5.2-3 will be used also for N small.

The ratio J,/J) (and also JS/JH) is plotted in figure 4.2-8.
Since 61 and 52 are less than 0.1, 1t can be seen from this
curve that for values of vy =1 the term in 05 with J, as a
factor is negligible compared with the term with JA as a factor.

2

Likewise, for values of A =2 1 +the term in o, with J, as a

3
factor is negligible compared with the term with Ju as a factor.

Therefore:
For v =1
cg = T-SS'J3 + T.JH
and for A =1
02 = T-&i-JZ + TeJ), .

Since vy = 1 corresponds to ) <1 and since ) =1 corres-
ponds to y < 1, these two expressions suffice for the whole range
from - to +» for both y and A. Moreover, the second expression
can be obtained from the first by the substitution of 61 for 62,

v for A\, g for T and T, for 7. Therefore, an examination

of
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e}
I

2
Tebged , + Ted) 5 (5.2-4)

3

v

valid for v = 1, reveals the behavior of 02 for all values of vy
and A.

The relative error in J3 and JM both is less than 0.155.
Therefore, the relative error in cg as expressed by equation 5.2-4
is less than 0.155.

According to equation 5.2-4 and the remarks preceding it, the
effect of bias in the input and reference polarity indicators is to
add a spurious term to the output variance.

Substituting equations 5.2-2 and 5.2-4 in equation 5.0-19 yields

for the output signal-to-noise power ratio

2 ()

N =
b2 (/N + K, (V)

(o}

(5.2-5)

for v =1 (or A <1l), where K3(h) = J3{x)/§§ 7, 1s plotted in
figure 4.2-6 and Ku(x) = Ju(x)/gg T, 1is plott:d in figure 4.2-7.
When vy = 1, the same expressiog applies, but with 51 substituted
for 505 Y substituted for A, 7. substituted for 7_ and T

n 5] ]

substituted for T Thus,

T
= G
N = (5.2-6)

5K (V) /v + 16, ()

for y <1 {or \=1), vhere Kz(y) = JZ(Y)/§§ T, 1is also plotted
‘ 7
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in figure L4.2-6 and X (v) = Jh(y)/ﬁ-z- 7, 1s also plotted in
figure 4.2-7. i

Since the relative error in the mean as expressed by equation
5.2-2 is less than 0.033 and since the relative error in the
variance as expressed by equation 5.2-4 is less than 0.155, then
the relative error in NO as expressed by equation 5.2-5 or 5.2-6 is
less than 0.221. (Note that the mean appears squared in equations
5.2-5 and 5.2-6. Thus the contribution to the relative error due to
approximating the mean is doubled.)

Equations 5.2-5 and 5.2-6 show that the output signal-to-noise
power ratio for the biased polarity-coincidence detector 1s propor-
tional to the input sigﬁal—to-noise power ratic, just as it 1s for the
ideal correlation detector. In fact, the biased polarity-colncidence
detector has an output signal-to-noise power ratio identical to that

of the ideal correlation detector except for a degradation factor.

NO(DPCD) - ANo(CD) ’ (5.2-7)
where A 1is the degradation factor. The discussion of the effects
of bias on the output signal-to-noise power ratio can be more conveni-
ently presented in terms of the reciprocal degradation factor,

T = l/A. Then,

1

No(mpep) = gy

, (5.2-8)
BPCD) fo(cn)
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where F(BPCD) is given by

(l+x)’K4(x) + 6§K3(A)/h for v =1
F(BPCD) - -~
.
(l-l—-"{) LKLl‘(Y) + 6]2_}(2(\()/\{ for Y <1
] (5.2-9)

The first term on the right hand side of the above equation,
(l+h)Ku(k) or (l+y)K4(y), is the reciprocal deéradation factor for
the ideal polarity-coincidence detector discussed in section 5.1.

The maximum value of ﬁhe ratio K”(K)/KB(A) for a1l vy =1
(i.e. for all ) £ 1) is smaller thaen 1.50 and the minimum value is
larger than 1.15. Therefore an approximate idea of the behavior of
' can be obtained by setting Kg(x) = Kk(x)/l.S (or Kz(y) =

Ku(y)/l.E in the second form). Thus, approximately

(1+K)K4(h)[} + 62/1-5k] for y =1
F(BPCD) B
(1+Y)K4(Y)[l + 65/1.5y] for v <1
z
{1+ 52/1.5x for v =1
= Tipopy X
1+ 5°/1.5y for yv <1
(5.2-10)
where F(PCD) is the reciprocal degradation factor for the PCD,

where PCD denotes polarity-colncidence detector and BPCD denotes
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blased polarity-coincidence detector. The factor 1.5 which appears
in the denominator of the second term of the various forms of
equation 5.2-10 is the asymptotic ratio KM(Y)/KZ(Y) as vy - O.

This particular number was chosen because it gives to equation

5.2-10 the asymptotically correct form when vy - O and when v - ®,

The error of approximstion for equation 5.2-10 is

2
8 1
e = T(pep) 7~ {i—s' - v J/Ju]

where vy =)\, & = by I = J3(h) and J), and K, are functions
of A if y =1, andwhere y =y, 8§ =8y, J = Jz(y) and J),
and Kh are functions of vy 1if vy < 1. The relative error is

2

1-1.5v/3,
o =6 | ——p—

l-5v+62

Since ¢, and §, both are less than C.1,

1 2
1-:L.5vJ/JLL
0 < 0.01| —m—m— .
1.5v

An examingtion of figure 4 ,2-8 which presents a plot of J/Jh as a
function of A or +v indlcates that the relative error is less than
0.003. Thus equation 5.2-10 is an excellent approximstion to
equation 5.2-9.

Equatlion 5.2-10 indicates that when 1 < vy < 0.15/52 or when
_65/0.15 <y <1, the relative error from neglecting the spuriocus term

1s less than O.l. Thus,
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Tlapop) = T(pepy  TOT 52/0.15 <y < 0.15/85
(5.2-11)
with a relative error less than O.l.
The conditions on 61 and 62 such that the degradation in
performance of the BPCD is not significantly worse then for a FPCD

can now be specified. They are:

For n=1 (y<1)

55 must be less than O.l5/x if the degradation in performance
of the BPCD is to be no more than 10% relative to the PCD (i.e. in

<N <N

order that O.9NO( This case corresponds

PCD) o(BPCD) o(PCD))’
to the case where the noise band-width 1s greater than the signal band-
width and is the case commonly encountered in practice. In this case,

bias in the reference channel is not significant but bilas in the

input channel, if sufficiently large, can cause a degradation in the
performance of the detector.

For v = 1(\ < 1)

62 must be less than O.lB/y if the degradation in performance

of the BPCD 1is to be no more than 10% relative to the PCD (i.e. in

order that O0.9N <N This case corresponds

o(pcp) = No(mpep) = Yo(rep)’-
+o the case where the noise band-width is smaller than the signal
band-width and is not commonly encountered in practice. In this case,
bias in the input chamnel, if sufficiently large, can cause a
degradation in the performance of the detector.

Thus, the degradation in performance of a biased polarity-
coincidence detector relative to an ideal polarity-coincidence

.2
detector is negligible when &, < 0.15/n for the A =1 case and
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when 62 < O.lS/y ‘for the v =1 case, and has risen to approximately
3 do. when ai = 1.5/, for the ) =1 case and when 52 = 1.5/y
for the v > 1 case.

Equations 5.2-5 and 5.2-6 are subject to the restriction
l&lézl << /N, and equations 5.2-7 through 5.2-11 are subject to the
restrictions lélézl << M and N << vy/(l+y). If these restrictions
are not met, the output signal-to-noise ratio for the BPCD can be
obtained from the unrestricted* equations for the mean and variance
(equations 3.2-12 and 4.2-9) and the result for the BPCD can be
compared with the unrestricted result for the €D and the PCD.

A physical explanation for the relation between the BPCD
variance and the vy = Tn/TS ratio follows: Consider the case where
vy >> 1. Then the noise band-width is much smaller than the signal
band-width and a section of the noise sample function and signal
sample function might have outputs from the polarity indicators as
illustrated in figures 5.2-1 and 5.2-2. 1In figure 5.2-1, the input
channel has no bias but the reference channel has negative bilas.
Thus, the reference channel polarity indicator output will be positive
more often than negative. Therefore, during a positive cycle of the
noise, the integral of the product of the polarity indicator outputs
will grow from zero as indicated. When the noise goes through a

negative cycle, the integral starts to decay back to zeroc. Such

*  Tote that in the unrestricted equations, it is still assumed that
K << 1.
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oscillations will continue through each positive and negative cycle
of the noise until the end of the integration period. Since the
termination of integration at the end of the perliod T is independent
of the times at which the noise changes sign, the integrator output
can have any value between the limits shown. The result is a large
variance in the output.

On the other hand, when the input channel has negative bias
but the reference channel does not have bias, the input channel
polarity indicator output will be positive for longer periods of
time than negative. However, since‘the output of the reference
channel polarity indicator ls now positive and negative for about
equal periods of time, the integral of the product of the polarity
indicator outputs does not grow and decay as it dld for the cuse
discussed above. Thereflfore, the output has a smaller variance, as
shown by figure 5.2-2.

When  >> 1, the signal band-width is much smaller than the
noige band-width. Then a section of the nolse sample function and
signal sample function might have cutputs from the polarity indicators
as illustrated in figures 5.2-3 and 5.2-4. In figure 5.2-3, the input
channel has no bias but the reference channel has negative bias.

Thus, the reference channel pblarity indicator output will be pesitive
Tor longer periods of time than negative. However, since the output
of the input channel polarity indicator is positive and negative for
about equal periods of time, the integral of the product of the
polarity indlcator outputs does not grow and decay, and the variance

is small.
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On the other hand, when the input channel has negative bias but
the reference channel has no bias, the input channel polarity indicator
output will be positive more often than negative. Therefore, during
a positive cyele of the reference signal, the integral of the product
of the polarity indicator outputs will grow from zero as indicated.
When the reference signal goes through a negative cycle, the integral
starts to decay back to zero. Such oscillations will continue through
each positive and negative cycle of the reference signal until the
end of the integration period. Since the termination of integration
is independent of the times at which the reference signal changes
aign, the integrator output caan have any value between the limits
shown. The result is again a large variance in the output.

The results of sections 5.0, 5.1 and 5.2, as expressed by
equations 5.0-20, 5.1-4 and 5.2-10, indicate that for a fixed input
signal~to-noise power ratio, in the case of the three detectors
examined and subject to the assumptions and restrictions introduced
in deriving the above egquatiocns, the output signal-to-noise power
ratio is largest for an ildeal correlation detector, next largest for
an ldeal polarity-coincidence detector, and smallest for a bilased
polarity-coincidenee detector. This result 1s not unexpected. Thus,
if output signal-to-noise ratlio is used as a criterion for the
quality of a detector, then the ordering of the detectors according
to decreasing quality is CD, PCD and BPCD.

It should be noted, however, that even though the BPCD is
inferior to the PCD as a detector, and the PCD is inferior to the

CD as a detector, the degradation in performance 1s not very serious.
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For a PCD, the degradation relative to the CD is between 1.4 db.
and 2.2 db., depending on the input signal-to-noise band-width
ratic. For a BPCD, the degradation relative to the PCD is
negligible, so long as the biases are not too large. (See the
conditions on 61 and 52 for negligible degradation as discussed

on page 193.)
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SUMMARY

Section 5.0 The Correlation Detector.

The output signal-to-noise power ratio is

N = J_ZN ‘?{; (1)) (5.0-20)

. - - . A . - =
if the signal is non-random or if N << if@ A Ts/Tn and

A% =l/}\: 'Tn/‘TS .

Section 5.1 The Ideal Polarity-Coincidence Detector.

The output signal-to~-noise power ratio is

T 1
NO - -J’ZTN Tr; K)_J)\.; (501-3)

if N «< 1. The properties of the funection KH(X) are discussed in
Chapter IV.
No for a PCD has the same form as for a CD except for a degra-

dation factor.

No(pen) = 2" Mo(cp) (5.2-4)

where A 1is the degradation factor.

A = 1/(1K, (0) = 1/ (2v)K, (v) (5.1-5)
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The degradation is smallest when A =+vy =1 (i.e. when the signal-
to-noise band-width ratio is unity). For this case, A = 0.723 -

a degradation of 1.k db. The degradation is largest when ) (or v)
goes to0 zero or to infinity (i.e. when the signal-to-noise band-width
ratio goes to zero or to infinity). In this case, A goes to 0.606 -

a degradation of 2.2 db.

Section 5.2 The Biased Polarity-Coincidence TDetector.

The output signal-to-noise power ratio is:

For v = 1
T
G (5.2-5)
N = 5.2-5
ek (0/n + k()
or For » =1
AE) /vy
8
’ (5.2-6)

N, -
82K, ()/y + Ky ()

if N <1 and &5, << M.
NO for a BPCD has the same form as for a CD except for a

degradation factor.

1

= 0 I .2-8
LN =on)) T(mpo)  ©(CD) (5-2-8)
where F(BPCD). is the reciprocal degradstion factor.

. 1+ 52/1.5 A for y=1
r(1313013) = I'(pcp) )1 + 5:21/1.5 Y, for A=l

(5.2-10)
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where F(PCD) ig the reciprocsl degradation factor for a PCD.
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CHAPTER VI

SUMMARY, CONCLUSIONS AND GENERALIZATIONS

6.0 Sumary

| Bias in the polarity indicators of a polarity-coincidence
detector introduces spurious components into the mean and varlance of
the detector's output. These spurious components exist both when a

signal 1s present and when a signal 1s agbsent.

The Mean Value

Expressions for the mean value of the output of the biased
polarity-coincidence detector are presented in equations 3.2-12 and
3.2-13 for the case that the signal and noise are sample functions
from stationary Gaussian rendom processes with zero means, the
processes being statistically independent to the first order. These

equallons are reproduced here.

o=y te , (3.2-12)

where My is the detector output mean value, Y is the mean value
when neither the input nor the reference channel has bias in its
polarity indicator, and e 1is the spurious component. W is given

by equation 3.2-4.

b =2t GR) (3.2-1)
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where T is the integration period for the detector and
I = ci/ci is the input signal-to-noise power ratio. The spurlous

component, e, 1s given by equation 3.2-13.
e = )—LT-V(ﬁl,dél) + hToV(&Z,caz) (3.2-13)

where 51 and 52 are the bilases in the input channel and the
reference charnel respectively (normalized by the input r.m.s. value
and the reference r.m.s. value respectively), c = VI (61/62)-Jﬁ s

d = YT (62/61)—Jﬁ , and V is an integral of the bivariate
standard normal denslty function with zero correlation over a particu-
lar triangular region. The V function 1s discussed extensively in

section 3.2 and in Appendixes I and II.

T™e Varlance

Approximate expressions for the variance of'the output of a
biased polarity-coincidence detector for the particular case that
N = O (the signal sbsent case) are presented in equations 4.2-9
and 4.2-10. These equations are reproduced below. They are subject
to the following assumptions and restrictions: The signal and nolse
are sample functions from stationary Gaussian random processes with
zero means, the processes being statistically independent to the
second order. Both the signal and noilse have RC low-pass spectra

-lrl/mg

with normalized correlation functions r(T) = e for the

-7/,

signal\and o(1) = e for the nolse. The correlation duration
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constants, T, and T,» are both much less than T. The normalized

blases, 61 and 52 are both much less than 1.

2 ‘e 2 » L4 2 .
O = Teby T, + Teb5 T

2 + T.J)-l' > (4-2"9)

3

where Jz, J3 and J& are constants depending only on Ty and Ty

given by

;ﬁ Erf(#) , 1 Erf(/5y)
2\a 10
7 /5

where =
v =1/

J3 1s identical to J, with vy replaced by A\ = /vy =

TS/Tn and with T replaced by T,

and

g —§._. (l+_].'_)i+}. _.._.l__..+_J;..
L = Z " 20’ T+y © 2 |T#5y © ¥+5

or equivalently,
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Jh is given by the same expression with v replaced by A

and with T replaced by Ty

The first and second terms on the right hand side of equation 4.2-7
above are spurious components due to the bias, and the third tem
represents the variance for an ideal (no bias) polarity-coincidence
detector. The blases affect the variance independently and the
effect is independent of the signs of the biases.

Equation 4.2-7 is an approximate expression for the varlance.
If 51 and 52 are both less than 0.1 and if Ty and T, are
both less than .0.01lT, then the relative error in each of the terms
of equation 4.2-9 1s less than 0.155 and the relative error in the
entire expression 1ls less than 0.155.

‘s 8 8
The quantities K, = JB/;E T K3 - J3/ﬂ2 T, and
K, =d /§— 7 (or in the second form, X, =J /§_ T ) are plotted
4 L 2 m s Ky " 2"

in figures 4.2-6 and 4.2-7.

Ideal Correlation Detector
For purposes éf comparison, the output mean and variance for an
ideal correlation detector (CD) are presented by equations 5.0-k
and 5.0-17 for the same assumptions and restrictions as were imposed
on the expressions for the mean and variance of a biased polarity-
coincidence detector (BPCD) in the above paragraphs. Thus, the
output signal-to-noise power ratio, which i1s the square of the output

mean divided by the output variance, is obtained directly from these
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two equations, which are reproduced below.

(5.0-))

and

(5.0-17)

@]
N
It
Do
Q
O o
Q
V]
H
-3
4]
| |
=
+
[ —

Equation 5.0-17 is approximate. The relative error in the approxima-

tion 1s less than 0.01 both are less than O0.01T.

if Tg and T
If an additionel restriction is imposed - namely that either N

is small with respect to +v/(l+y), or that the signal is non-random,

then the expression for the output signal-to-noise power ratio is

considerably simplified.

No(CD) - %N %—

It becomes

(L+v) /v

(1+2) . (5.0-20)

Output Signal-to-Nolse Ratio for an Tdeal

Polarity-Colncidence Detector

The output signal-to-noise power ratio for an ideal polarityQ

coincidence detector (PCD) (no bias) is presented by equation

5.1-3 for the same assumptions and restrictions as were introduced
in the paragraphs above dealing with the mean and variance of a BPCD,

with one additional assumption. It is assumed that the lnput signal-
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to~-nolse power ratio, N, 1s small with respect to 1 and that
consequently the variance is unaffected by the presence of the signal

so that it equals the variance when N = O.

No(sep) =+ G00 (5.1-3)

Fquation 5.1-3 is approximate. The relative error, which is compli-
cated, 1s discussed thoroughly in section 5.1.

The ocutput signal-to-noise power ratio for a PCD 1s propor-
tional to N if N << 1, Just as it is for a CD 1if either

N << Yo or the signal is non-random. Thus
g} b4
Y+

No(pep) = 2(pep)o(cn) ’ (5.1-k)
where A(PCD) is the performance degradation factor.

Bepepy = 1/ (10K, (M) (5.1-5)
or

Mepopy = L/ (1+v)K, (v) (5.1-6)

wﬁen N << 1 and either N K i%? or the signal is non-random.
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A plot of the degradation factor for the PCD in this case is
.presented in figure 5.1-1. The bounds on the error in the expression
for the degradation are also presented in figure 5.1-1.

This result agrees, within the limits of the errors of
approximation, with the expression obtained by Faran and Hills (1)

for a similar detector in the case when v = )\ = 1.

Output Signal-to-Noise Ratio for a Blased

Polarity-Coincidence Detector

The output signal-to-noise powér ratio, which is the square of
the output mean divided by the output variance, is obtained for the
biased polarity-coincidence detector directly from equations 3.2-12
and 4.2-9 gbove, and is subject to the assumptions and restrictions
introduced in the paragraphs above dealing with the BPCD mean and
variance, with the additional assumption that N << 1 and that con-
sequently the variance is unaffected by the presence of the signal so
that it equals the variance when N = O.

If it is assumed in addition that 5162 << Jﬁ, then the
expression for the output signal~-to-noise power ratio is considerably

simplified. Tt becomes:

For yv=21
T
%N'(;;)
No(spcD) = s OV + K, (1) (5.2-5)

and
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For »= 1

%N‘(%;)/Y
No(srep) = (5.2-6)
6K, (Y)/y + K, (v)

These equations are apprcximate, with a relative error of approxima-

are less than 0.1 and

tlon less than 0.221 when él and 62 s

and T, are less than 0.01T.

The output signal-to~noise power ratioc for g BPCD 1is propor-
tional to N 1f N << 1 and 4,6, << %, Jjust as it is for a CD
1f either N << y/(1+y) or the signal is non-random.

Thus,

1

No(BPeD) = - No(ep) ’ (5.2-8)
(BPCD)
vhere F(BPCD) = l/A(BPCD) is the reciprocal degradation factor.
It is
1+ 85/1.5y for =1
Tespep) = Tepep) % (5.2-10)
1+ 52/1.5x for y=z1
where

Cpeny = l/A(PCD)

is the reciprocal degradation fzctor for an ideal polarity-coincidence

detector.
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Equation 5.2-10 is an approximate equation, with a relative

error no larger than 0.1 for any Yy Oor )\, so long as &, and

1

5, are less than 0.003 and T = 100 msx (Ts,Tn).

Bias in the polarity indicators causes a spurious term to be

added to the factor F(BPCD)' When ¥ « 1, << /N and

8 65
N << i%? or the signal is non-rendom, then in order that the

spurious term in T( be no larger than 10% of F( , it is

BPCD)

necessary and sufficient that:

PCD)

For ) =1 5§ be less than 0.15/)
For vy =1 52 be less than 0.15/vy .

6.1 Conclusiouns

SubJject to assumptions and restrictions which are stated at

the end of this section, the following statements are valid:

Polarity-Coincidence Detector

The output signal-to-noise power ratio of a polarity-coincidence

detector is degraded from that of an ideal correlation detector by
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about 1.4 db. when the input signal-to-noise band-width ratio is
unity. The degradation increases to about 2.2 db. when the input
signal-to-noise band-width ratio becomes elther wvery small or very
large.

Thus, ideal limiting of the input stimulus and reference signal
before correlating does not seriously degrade the output signal-to-

noise ratio of a correlation detector.

Biased Polarity-Coincidence Detector

The presence of bias in the polarity indicators of a polarity-
coincidence detector introduces spurious components in both the mean
and the variance of the detector output. These spurious components
cause a degradation in detector output signal-to-noise power ratio
relative to the ideal (no bias) polarity-coincidence detector.

In order that the degradation in output signal-to-noise power
ratio relative to the ideal polarity-coincidence detector be less

than 10% (0.05 db.) it is necessary and sufficient that:

For ) =1 532_ < 0.15/3
2
For vy =1 by < 0.15/+ 5

where )\ = Ts/qh,' v =1/, Ts and T, &re the signal correlation
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duration and noise correlation duration constants respectively, 61
is the (normalized) bias in the input channel polarity indicator and
5, is the (norma;ized) bias in the reference channel polarity
indicator.

The detectors, listed in order of decreasing quality according
to the criterion of output signal-to-noise power ratioc are - the
ideal correlation detector, the ideal polarity-colncidence detector
and the biased polarity-coincidence detector. Ilowever, thc degradations
in performance for the PCD relative to the CD and for the BICD relative
to the PCD are not very serious. (1.4 db. to 2.2 db. for the PCD
relative to the CD, according to equations 5.1-4 and 5.1-5, and
negligible forbthe BPCD relative to the PCD if the conditions stated

on page 193 for and §, are satisfied.)

&

Assumptions and Restrictions

The signal and noise are sample functions from stationary
Gaussian random processes with zero means which are statistically
independent to the second order. Both the signal and noise have

RC low-pass spectra with normalized correlation functions
-]/ =|wl/

® for the signal and p(7) =e n

r(s) =e for the noise.

The correlation duration constants, Ty and T,» 8re both much less
than the integration period, T, of the correlator. The normalized

biases, &1 and by aTe both much less than 1. The input

signal-to-noise power ratio is either much less than v/ (l+y),
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where v = Tn/TS, or the signal is non-random. N 1s much less than
1. 6162 is much less than M. For N <« 1, the variance of the

detector output is independent of N.

6.2 Generalizations

| Conceptuslly, the problem of analyzing the effects of bias in a
polarity~-coincidence detector is strailghtforward. The mean of the
output of the detector (for the type of signal and noise considered
in this thesis) is expressed in an uncomplicated wéy in terms of =
function, V(p,vyp), which is tabulated in the literature and whose
properties are simple enough that the effects of bias on the mean are
quite easily interpreted. The variance is expressed in terms of
several probability integrals which have simple meaning. However,
these integrals cannot be evaluated in closed form even in the special
case of RC low-pass Gaussian signal and noise considered in this thesis.
Therefore, simplifying assumptions were introduced in order to make
the analysis tractable. These assumptions limit the generality of
the resulis considerably. Specifically, the validity of the results
of this thesis has been demonstrated only for the case of small input
signal-to~-noise ratios. In particular, the validity of the ranking,
according to the output signal-to-noise power ratio, of the three
detectors examined in this thesis has been demonstrated only for the
case of small input signal-to-noise ratios.

It is reasonable, according to one's intultlion, to suppose theat

this ranking of the detectors is preserved when the input signal-to-
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noise ratio is not small. It would seem tc be surprising 1f the
‘ideal correlation detector were not superior to the ideal polarity-
coincidence detector and if the ideal polarity-coincidence detector
were not superior to the blased polarity-coincidence detector in the
general case. Caution must be exercised, however, in making such
conjectures - for it is known that in some cases the ideal polarity-
colncidence detector has a larger output signal-to-noise ratio than
the ideal correlation detector. For, example, Davenport (2) has
shown that the output signal-to-noise ratic of a band-pass limiter

is larger than the input signal-to-noise ratio for large input signal-
to-noise ratios. (This does not imply, however, that at large signal-
to-noise ratios the ideal polarity-coincidence detector 1ls superior
to the ideal correlation detector in any other sense than in the
signal-to-noise ratio sense. TFor example, in the statistical
hypothesis testing sense, the polarity-coincidence detector is
Pprobably inferior to the ideal correlation detector at all signal-to-
noise ratios, at least for Caussian signals and noise.)

A method for analyzing the output variance when the input signal-
to-noise ratio ig not reetricited to small values is outlined in
Chapter IV of this thesis. It empioys & power serles expansion of
the integrator input correlation function in terms of the detector
input signal and noise correlation functions, with coefficients of

the series in terms of tetrachoric series of Hermite polynomials.



219

An analysis of the output variance according to this method will be
the subject of a future report. This analysis will provide the
answer to the validity of the results of thigs thesgis Ffor values of
the input signal-to-noise ratio which are not small.

There is one area in which generalization seems fairly safe.
The output variance of a bilased polarity-coincidence detector, for RC
low-pass Gaussian signal and noise with small input signal-to-noise
ratio, as given by equation 4.2-9 is

2 2 2
g, = T 6, JZ + T'62 J

3 + T‘JL].

where JZ’ J., and Jh are constants depending only on the signal and
J

noise correlation functions. The signal and noise correlation

functions enter into the expressions for J

J and Jbr in the

2’ 3
Integrands of the integrals which define these constants., If low-pass
spectra other than the RC type are considered, the detailed structure
of the integrands in the definlng expressions for Jz’ J3 and J&
will of course be altered - but the gross structure will still
correspond to the low—pass character of the signesl and noise spectra.
Thﬁs, the integrals may be expected to suffer only minor changes in
value if the signal and noise band-widths are unchanged. Therefore,
qualitative properties of the detector as presented in this thesis

should hold for (aussian signal and nolse with low-pass spectra more

general than the RC type.
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APPENDIX T

PROPERTIES OF V(p,yb)

The function V(p,yp) 1is defined by

Y YA
o) = [a [ 20)acar (a1-1)
o} o)
p E
where z(x) = — e is the density function for the standard
{2n
normal variate. A related functiod 1s
™ A
V(rp,0) = f a j dz(t)as (a1-2)
/6] 5

The following properties of V(p,yp) and V(yp,p) are easily
derived from the definitions:

V(yp,p) = V(g,vq) where q =yp and v = 1/y. This equation
results from direct substitution in equation Al-2. Thus, functional
values for ¢ > 1 can be obtained from the twin function for values
of v < 1.

By making the transformations ¢y - -y and t - -t as required

and by making use of the evenness of z()) and z(%), the following

relations are derived:

V(psvp) = V(-P,~P) (v1)

V(p,yp) = -V(-p,yP) = -V(p,-7P) (v2)
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Thus, functional values for negative p and vy can be obtained
from functional values for positive p and v.

It is obvious from the definitions that

v(0,v0) = v(p,0p) =0 (v3)

Relations corresponding to vl, v2 and v3 can be found for
V(yp,p) by using the identity V(yp,p) = V(g,vq) with g = yp
and v = l/Y'

Additional properties become apparent alter equatioas Al-1l and

41-2 are written in polar coordinates. ILet A = r-cosf, t = r-sin@.

Then
B p/cosb
1 -%r
V(p,yp) = == as r-e dr
o) o)
B 2
2
—l =
- % f(l-e B/eos 0y (a1-3)
an
0

where f3 = tan—l(y), and

5 yp/cos6 5
1 -&r
V(yp,P) = 5= fdej ree = d8
o o

A

1
l!—-‘

[av]

T

8

22, 2
f(l_e—%r p7/eos"y g (a1-14)
(o]

where & = tan"l(l/y).



From equation Al-3,

p
. 1 -1
lim V(p,7P) = % -/’de = 3= tan " (y)
i S 5
From equation Al-L,
&
lim V(yp,p) = %; ere for 1 #£0
i S 5
=0 for ‘Y‘:O
or
1 -1
lim v(yp,p) = 5 tan (L/y) for y #£0
p—-)OD
=0 for y=20

On introducing the well known identity
tan-l(l/r) = /2 - tan-l(y)

the preceding equation can be written

(vh)



, 1 -1,. "
1im V(yp,p) = 3= tan™ (1/y) (v5)
o

for ;é 0
1 1
= l/)-i- - -2—-3_[ tan (T‘)
=0 for y=0 .

It is obvious from the dcefinitions that

2]
Lin V(z,70) - f 2(\an - 3me2 ([pl//2)  , (v6)
| 3
and
lim v(yp,p) =0 . (vT)
Yoo

V(p,yp) and V(yp,p) can be interpreted as the volumes under
the standard bivariate normzl surface with zero correlation, over the
reglons 1in the y,t-plane as shown in figures Al-l and Al-2.

A plot of v(p,yp), with vy as a parameter, is presented in
figure Al-3. This plot is based on the approximations for v(p,vyp)

derived in Appendix IT.
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Figure Al-1

Figure Al-2
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APPENDIX IT

APPROXIMATE EVALUATIONS
OF THE
INTEGRAL  V(p,vp)

The integral V(p,yp) can be evaluated approximately in
closed form in several different ways. The integral to be evaluated

is
P YA

1.2 1.2
v(p,vp) ::é_ﬂ jdk] BV BT gy .

The triangle over which the integration takes place is shown in

Figure A2-1.

A2.0 p and vyp small Compared with Unity.

If the exponent of the integrand when )\ =p and +t = vyp 1is
denoted by e (i.e. 1if (l+'y2)p2 =€), then the following
inequalities hold for all ,t in the region of integration, R :

2 .2 N
0 < %(tZ + kz) < ge; thus O < l—e_-jé.(t ) < 1-¢7E¢
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Figure A2-1
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But 1-e 2% < ke for all non-negative ¢ . Therefore,

112,54
0 < l-e E(b 17 < %e . Upon integrating, this inequality becomes
P
1
O_S'EE J(
o}

or

A

" Bl a? 1 e 1
e e ? dts—-—[dxfdt
2x 2
O 8] 0

b
< 1
dr jr at - EE-/‘GR
o

Ok“‘\?ﬁ

L 1ol
0 <z 15 - V(o) < 3¢ 5= 55 .

From this expression it is clear that %; 1%— is a good

approximation to V(p,yp) when & 1s small compared with unity.

2
N
vo(pryp) = 5= 45 (A2.0-1)

is an approximation to V(p,yp) with error
e =V (p,vp) - V(p,yp) < 3e-V (p;1D) . (42.0-2)
For e small compared with unity (i.e. for (l+72)p2 << 1), +the

error is small relative to VO and V. Then the rclative error is

approximately
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VO’ is substituted for V in the denominator, since the difference

between VO- and V 1is small compared with V. Thus, from eguation

A2.0-1,

ne

e
m
.

(A2.0-3)

A2.1 v Small Compared with Unity.

By transforming to polar coordinates, additional approximations
to V(p,yp) can be found which are precise when vy is small com-

pared with wnity. Iet A = recosB, + = r-sinB. Then

p/cose

/['de ree = dr
o}

o

NlH
=)

v(p,vyp)

B
L2, 2
- 8
J{-(l—e 2p"/cos )de ,

o

2

where B = tan 'l(r).
The fellowing lnequalities hold for all 8 in the range of

integration: 1 < l/cosze = l/coszﬁ = l+72 . Thus

s 2 o2 2 12 2
0 < o"EP/cos"B _ -5p"(1+y") _ -zp7/cose _ 3"

12

n L2, 2 L2 2
0 < 1-e"3F < 1.7%P /cos™ < 1-" 2P (Q+y ). Upon integrating,

these inequalities become

1.4 1 2 2
= (1) [t ()] = [i(e,e)| =k (e T ) gan ()|
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When ¢ 1is small compared with unity, the upper and lower
) 1 -5p -1 ) .
bounds are nearly equal and == (1-e Yten ~(y) 1is a good approxi-
nmation to V(p,yp).

= “#0%) o] -tp" 1-1
v (:72) = 5z (1-e7% )tan™ (y) ;% (1-e73P ) (A2.1-1)

for small y 1s an approximation to V(p,yp) with error

e = vy (,70) - V(2;7p) (a2.1-2)
12 5 2 2
o] =2 (¢ - I NNy

I
m%d

> for small y .

For vy small compared with unity, the error is small relative
to Vl and V. Then the relative error is approximately
p = (Vy - v)/v’l .
Vi is substituted for V in the denominator, since the difference
between Vl and V 1s small compared with V. Thus, from

equations A2.1-1 and A2.1-2,
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e a L. 2_a L pA
lpl 2™ (1R V) /(1-c7F ) L
I R - e 2
2% e /(1P ) < % for a1l p.  (A2.1-3)

The preceding approximate expression for ¢ 1s small for all

values of p, so long as 7y i1s small.

Az.2 y - o,

The integral can be eveluated exactly in the limit as y goes

to infinity.

IP‘ = 2 IP‘ <

3 2
- _L
limV(P:TP)=—Jé—ﬁfdkfe?(t+ =%'—ﬁfezkd7ufegtdt
Y—-—)CD A 4
(A2.2-1)
or

L e (Jp|/v2 ) )

v, (p,@p) =3

AZ2.3 p Small Compared with Unity.

When p is small compared with unity, the exponential factor of
the integrand with exponent —%?\2 is nearly unity. If this factlor

is replaced by unity, the integral can be evaluated in closed form.

Erf(x)dx

D . 73/1/'2'

1 /2
7. (p, =— [ &= /2 )an = =
73(p ¥p) — { mrf (yA/Y/2 )dr

ﬁIH
.':‘\
..§
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This integral can be evalusted by a contour integration in the
complex plane. However, it appears in a small table of error func-
tion integrals assembled by Middleton (1), so the derivation will not
be given here. The result is

2 2

Vo(0,7D) = —E= Ert(yp/v2 ) - == (1-eTET P
2 242 2ny

(A2.3-1)

A vound on the error is found as follows: For all ) in the range

of integration, the inequality

1.0
< 1-¢7%P

is wvalid. Thus the error is

1 j? - /5
e = — (1-e7=" )aErf(yn/V2)dn
Ven 4

"

l p _.g-.pz -
—_ f(l-e =¥ VgErL (yA/VZ)ax
Y2 “o

R
(1-e7%P )7, (2, vP)

A

A

(0%/2)V, (p,y0)  for emsll b.
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For p small compared with unity, the error is small relative

to V3 and V. Then the relative error is approximately
= - 1 .
o= (Vg - V)/Vy

V3 is substituted for V in the denominator, since the @ifference

between V3 and V is small compared with V. Thus, from equation

A2.3-2,

p = pz/z for small p. (A2.3-3)

AZ-L" P - @,

The limit of V as p - « is derived in Appendix I. In the

limit, the intégral can be evaluated in closed form. It is

lim V(p,yp) = -12'-; tan—l(r) . (A2.4-1)
P
The preceding results provide good approximaticns for V when
P and y are restricted to certain regions of the p,y-plane (v
and yp small, y small, p small, p-= and y-o). In the next
section, no restrictions will be placed on p and y. An approxl-

mation to V- which is good for all values of p and ¢y 1is found.
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AZ2.5 The Approximating Funetion Method

In Appendix V it is shown that the Freedman approximation

function is an excellent approxzimstion %o ¢(t)

= §Ere(t/V2).
The Freedman approximstion funetion is
L-l_ -%(O¢Z+Bt)] for t =0
5| 1-e
¢a<t> - - (A2.5-1)
-5 l—e-%(omz'at)} for t <0

vhere @ = 0.72 and B = 1.58.

If this expression is substituted for Erf(yr/V2)

in the
equation

V(p,vP) =

al-

2

P

_132
fe 2h Lprf(n/¥2)ar
[e]

the result is

1 7 302 -%(Oﬁy‘2>\2+ﬁ*rk)
V(P y2) = — B Zi1-e an
e
(o]

wnere consideration is restricted to non-negative

Yp. To consider
only non-negative +yp is sufficiently general, since V for nega-
tive yp can be obtained from V for positive yp wusing the
properties of V given in Appendix I

Performing the indicated
integration,
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' 2, 2 (p-n)/o g
V5 (0, 7p) = %L-Erf(p/fz) - <_27 h /20" 1 f . ,
7w,
where ¢ = (A-p)/o, u = -5T/2(1+OWZ) = = UZBT/Z and © = l/Jl+aY2 .

Finally, then

l. 2/20'2 . -
Vs (p;vp) = (Erf(p/v2) - cet [Erf =y + Err(u/afé)} .

ov/2
(A2.5-2)
The error is bounded in magnitude as follows:
.
1 -nZ 1 -
lel]=|— [e"% 9. () - $ErL(4/42)) dr
V2
O
? 2
1 -5\ n .
< = fe 221 () - sEre(/4E) [an
a
zm ),
Let € be any bound on ¢a(yﬂ) - $Erf(y)/¥2) | . Then
r 2
1 - .
le] = € — er 2% an = geEre(p/V2) . (a2.5-3)
V2x

o]

It is shown in Appendix V that ]@a(t) - $Erf(t/V/2)| is less than

0.0016 for all +. Therefore,

le] < 0.0008 Erf(p/+¥Z) < 0.0008 . (A2.5-4)
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According to equation 4.3-1 of Chapter IV, when the integrand
of an integral does not change sign in the region of integration,
then the relative error for the integral due to substituting an
approximating function for a factor in the integrand has a magnitude
which is smaller than - or at most equal to - the maximum magnitude
of the relative error for the approximating function. The integrand
in the integral for V(p,yp) does not change sign in the region of
integration. Moreover, it is shown in Appendix V that the relative
error due to approximating HErf(t/¥Z) by (Pa(t) has a maximum
magnitude of 0.0l. Therefore, the relative error for the approxima-

tion Vs(p,yp) is no greater than 0.0l in magnitude.

|p| <0.01 - (42.5-5)
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- APPENDIX IIT

PROPERTIES OF L{h,k;r)

The function L(h,ksr) is defined by
[+<] oo
toise) = [ o [voney (83-1)
h k

where v(x,y;r) 1s the standard bivariate normal density function

with correlation coefficient r.

1 xz-zrxy+y2
v(%,y37) = —=—— exp|- = :

Zﬁ#l-rz Z(l-rz)

~ Upon setting w = (y—rx)/-v’l-r2 ,» equation A3-1 becomes

L(h,k;7) =-f-dx j/ z (x)z(w)dw 5 (a3-2)
h 3(x)

where Jj(x) = (k-rx)/#l—r2 and z(x) is the density function for

the standard normal variate.

i
pA (X) = R

(9]
.

3|
A

The inner integral can be written



z(w)dw
3(x) -

1
~—
N
=
g'

S
O\ﬂ »
[Ny
N
2
g

il

-?—»:[l - Erf{j (x)/ﬁ}}

Thus, eguation A3~2 can be wrltten

[es]

L(h,k;r) =fZ(X) -%[1 - Erf{j(X)/f?}de

h

[o2]
1 . . e
= E\:l - Erf(h/w@)jl- %fz(x)Erf —;E—I—‘i{-— y dx
h 1/21/1-1"2
(A3-3)
The density function v(x,ys;r) is symmetric in x and y, and
is even in x and Yy simultanecusly but not individuslly. I.e.,
v(x,ysr) = v(y,x5r) and v(x,y;r) = v(-x,-y3r), but
v(x,yir) £ v(-x,y:;r) and v(x,yir) £ v(x,-yir). Using these proper-
ties of v and applying the transformations x - -x, ¥ - -y and

X -y, ¥y - X as required, it is easily shown that the following

properties are valid for L{(h,k;r).

L(h,k3r) = L(k,a3r) (p1)

i

L(h,k;0) % [1 - Erf(h/-/é)} I:l - Erf(k/-/é)} (p2)
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_ 0 if h+k = 0O
L(h,k;-1) = (p3)
-—El—EErf(h/w/'Z') + Erf(k/fé)} if h+k <0
B 7
5|1 - Erf(n/V/2)| if Xk < h,
L(h,k;1) ” ' (o)
- .
5|1 - Brf(k/V2)| if k= h
L(-h,k57) = -L(h,k;-r) + g[l - Erf(k/ié)T (25)
L(h,-k;r) = -L{h,k;-r) +-%[l - Brf(h/V2) (p6)
J

L(~h,-k;r) = L{h,k;r) + %[Erf(h/fé) + Erf(k/*/g):l {(pT)

Thus, functional values for negative

h and/or k can be obtained
from functional values for positive

h and k.
1 -
L(0,03r) = It %E sin l(r) (p8)
L(x,k3r) = L(h,»;r) =0 (»9)
) ™ 7
L{-=,k;7) = 5|1 - Brf(k/42) (p10)
r §
L{h,-=;7) = 3|1 - Erf(n/+2)

(p11)
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The following property, which relates L(h,k;r) to V(p,vyp),

the function discussed in Chapter IIT and Appendix I, is not obvious

and will be derived.

k-rh -
r .y k,h rk (p12)

1/1—1'2 1/1-1'2

L(h,k;r) = v|h,

+ E -E[Erf(h/J' + Erf(k/v2) ] + 5= sin” (r) s

where V(a,b) = V(a{g)a) is the function defined in Appendix I.

When h =k,

L(h,h;r) = 2v(h, 4+—= h) + % .

ol -

L , -1
- Erf(h/v2) + Z= sin (r)
(p13)

The derivation of property pl2 follows: The region of integra-
tion, R, Tfor the integral of equation A3-2 is the shaded region in
the x,w-plane shown in Figure A3-1. This region can be synthesized

as follows:

R = right half-plane - R; - R2 - R3 - Rh - R5 - R6 - R7, where

Rl through R, are shown in Figure A3~1l. This can be written

R:th—Rl'kR4+R5_R8*R9 s

where R8 R + R3 + Rh + R5 and R9 = RM + R + R6 + R

p) 1
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Triangles R4 and R are right triangles, each with an acute

P

vertex at the origin. Rl can be regarded as the limiting case as p

goes’ to infinity of a right triangle with an acute vertex at the

r

1/1-1'2

side opposite the origin of length p. RS can be regarded as the

origin and with side adjacent to the origin of length P and

limiting case as vy goes to infinity of a right triangle with acute
vertex at the origln and with side adjacent to the orlgln of length
k and side opposite the origin of length k. R9 can be regarded
as the limiting case as v goes to infinity of a right triangle with
an acute vertsx at the origin and with side adjacent to the origin of
length h and side opposite the origin of lengthk +vyh. Thus, Rl,
all are right triangles of the type T dis-

R)-l" R R8 and R ES

5’ 9
cussed in section 3.2, page 54. It is shown there that the double
integral of z(x)z(w) over any triangle of type T 1is equal to
v(p,yp), where D 1s the length of the side adjacent to the origin
and yp 1s the length of the side opposite the origin. Since the
integral over the first quadrant is clearly equal to L(0,03;0), then
the integral over the right half-plane is equal to 21.{0,0;0). There-
fore, on introducing various limiting values for V(p,yp) and
L(h,k;r) as needed from Appendix I and ITT,

1 1 -1 T

L(h,k;r) = 2L(0,050) -  + 3= tan

- %; Erf(h/V2)

l—r2

- & B (//2)+ v(n, =22

' l—r2 l~r



2l 5

. -1 - s 1
Since tan L = sin l(r) and L(0,0;0) = ﬁ, finally,

1-r

L(h,k;r) = V[h,k“rg] + v[k,h“ﬂ;}
l-r l-r

+ % -EL; Erf(h/v2) + Erf(k/1/2)j|+ —;—& sin™ (x) )

as was to be proved.
To make the proof complete, it would be necessary Lo consider

other wvalues of h,k and r for which the relative location of the
k-1x

.l-rz

pointe of intersection of the line w = with the line normal

to 1t through the origin, with the w-axis, and with the line x =h
occur in a different order than is shown in Figure A3-1. However,
the proofs for these other cases are similar to the one just given.
Therefore,: they will be omitted.

L(h,k;r) can be interpreted as the volume under the standard
bivariate normal surface with correlation coefficient r, over the
region in the x,y-plane as shown in Figure A3-2, as well as the
volume under the sitandard bivariate normal surface with zero correla-
tion coefficient over the region in the x,w-plane as shown in

Figure A3-1.
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AFPENDIX IV

APPROXIMATE EVALUATIONS
OF THE
INTEGRAL L(h,h;r)

The relation derived between L(h,h;r) and V(p,vp) in
Appendix ITT together with the approxlmation equations derived for
V(p,vyp) 1n Appendix II can be used for obtaining approximations for

L(k,h3r). From property pl3 of Appendix III,

L(h,h;r) = zv(h,\/%—;—i h) + %‘ - % Erf{h/V2) + %;r sin™M(z) .

From equation A2.0-1 of Appendix II, when p and +vp are hoth

small, then

1 yp®
v(p,vp) = 5= 5
.1 e
with an error smaller in magnitude than e EE-X%— where

€ = (l+y2)p2, and with the sign of the error the same as the sign
of vy. Moreover, Erf(h/#ﬁ) can be expressed 1n a power series with
alternating signs in the terms. Therefore, the error in using only a
Tinite number of terms of this series 1s less in magnitude than th¢

first term neglected. Thus, from equation 590 of Dwight (1),

3Erf(h/v2) T h/¥Zx
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o]
with an error smaller in magnitude than h3/6J2ﬁ and with the sign
of the error the same as the sign of h.
From these considerations, it follows that when h and \/Z = h

are both small compared with unity, then

~ 1 - 2 1 1 . =1
L(h,hjr) = E}‘/iEE h™ + 1 - n/v2x + Zo sin (r) (abk-1)

with an error smaller in magnitude than

%(l + %i%)hz + h3/6J} .
Clearly, the error‘is small for small h, so long as r is not
near in value to -1, Dbecause if r is not near in value to -1
then %i% will not be much larger than unity and the error term for
the V approximation will not be large.

The preceding approximate expression for L(h,h;r) is valid
only for small h and for r not foo near in valve to -l. An
approximate expression valid for all h and all r can be obtained,
of course, merely by substltuting for Vv from equation AZ.5-6 of
Appendix IT, and for Erf(h/vZ) from equation A5-2 from Appendix V.

The result is much more complicated than the one given above in

equation Ak-1.

REFERENCE

1. Dwight, H.: Tables of Integrals and other Mathematical Data,
Macmillan, HNew York, p. 1293 1947,
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APPENDIX V

AN APPROXIMATING FUNCTTION
FOR
THE ERROR FUNCTTON

In equation Al-1, which defines the function V(p,yp), the
inner integral can be written 2Erf(y)/+v2). Thus, the equation can

be written

D
V(p,yp) =% | z(0)-Erf(yn/V2)axr , (A5-1)
©
1 -é\g
where z(A) = ;;: e % is the density function for the standard
an

normal variate.

This integral cannot be evaluated in terms of the elementary
functions or even in terms of the well known higher functions.
Extensive tables of V(p,yp) and V(yp,p) have been published by
the National Bureau of Standards (1). These tables are discussed in
Section 3.2 of Chapter ITI of this thesis. Even though tables of Vv
are available, it would be convenient to have a fairly simple func-
tional representation for V 1n order to apply the results of
Chapter TIT to the detection properties of a BECD. I am indebted to
Benedict Freedman who, In a private communication, suggested an
approximating function for the error function which when substituted
for Erf(yﬁ/fﬁ) in the above equation makes it possible to evaluate
the integral quite simply. The evaluation of V(p,yp} using this

approximation function is presented in Appendix II.
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The Freedman approximation function is

r L, 2
l—e-a(wt +Bt)] for t = O

G (t) ={ (45-2)
1_8-%:(%2-&)}

Wi

for t <0 ,

where a = 0.72 and B = 1.38. According to Freedman, these values
of ¢ and £ are the optimum values with two deéimal places for
minimizing the maximum magnitude of the error due to the approxima-
tion. He further states that new optimum values of « and B
obtained by increasing the number of decimal places do not result
in a significant reduction.in the maximum magnitude of the error.

A tabulation of the error, e, and the relative error, g, for
the approximation is given in table A5-1. For +t = 0.5, the values
of Qa(t) and %Erf(t//f) were calculated from available tables of
the error function and of the exponential function. However, for
v £ 0.5, the values calculated from the available tables of the
error function and the exponential function were not precilse enough.
Thus, for + < 0.5, +the values presented in the table vere calcula-
ted from the power series expansion of the error function and of the
exponential function.

From the table, it is apparent that the relative error has a

maximum magnitude of 0.01.

lp] = 0.01 . (A5-3)
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The error, e, and the relati&e error, g, are plotted in
figure A5-1. The curves for e and p show plainly that the points
tabulated in table A5-1 arc taken at rather coarse intervals.
Nevertheless, the curves are reasonably accurate representations of
the behavior of e and p. In particular, there are not any
unnoticed gross departures from the curves in between the computed
points. That thilis is true can be established by examining the first
and second derivatives of e, both of which can be written in closed
form. Thelr zeros occur approximately at the places suggested by the
curve for e. I there were any marked departures of the actual
values of e from those indicated by the curve, there would have to
be some zeros not shown by the curve in either the first or seccond
derivative of e. Since there are none, 1t is reasonable to conclude
that the curve is a good replica of e.

In the applications of this thesis, it is the relative error
which is important rather than the actual error. Therefore, slightly
gifferent values for o and B might be used in order to minimize
the maximum magnitude of the relative error. However, to find the
optimum values of o and B analytically reguires the solution of
a fairly complicated transcendental equation involving extensive
numerical calculations. Since‘the maximum magnltude of p is
sufficiently small for the purposes of this thesis if the above
values of « and P are used, these calculations were not carried

out.
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APPENDIX VI

SOME APPROXTIMATING FUNCTIONS

In this appendix approxlmating functions are presented for

1-e™*

sin-l(e-x) and —
l+e

A6.0 sin-l(e_x)

The function e > + %e-5x is a good approximation to
sin-l(e—x) for all positive x. These two fumctions are tabulated
in table A6.0-1. The error and the relative error for the approxima-
tion are also tabulated in table A6.0-1. 7The two functions,
sin-l(e-x) and e 4 %0—53, arc plotted in figure A6.C-1 for
values of x between O and 2.5. The relative error for the
approximation is plotted in figure A6.0-2. From the curve in figure
A6.0-2 it is clear that the maximum magnitude of the relative error

for this approximation is 0.07.
-X -5% ~” . =1, =X
e + ze * sin" " (e7) for x =20 s (A6.0-1)

with a relative error which nowhere exceeds 0.07 1n magnitude.

The value % for the coefficient and 5 for the exponential
multiplier were chosen for computational convenience. ‘The choice of
slightly different values for these two constants would reduce the

maximum magnitude of the relative error, but the computational com-

plexity would be increased considerably.
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A6.L I :
1l+e

The function +vx%/2 1is a good approximation to

X
1-e for

-X

l+e
0 <£x <1, These two functions are tabulated in table A6.1-1. The
error and relatlive error for the approximation are also tabulated in

-X
table A6.1-1. The two functions,, [==2

~ and +vx/2, are plotted
l+e

in figure A6.1-1 for values of x between O and 1. The relative

error for the approximation is plotted in figure A6.1-2. From the

curve in figure A6.1-2, it is clear that the maximum magnitude of the

relative error for this approximation is 0.0k for O < x < 1.

-X -
V%72 = \ll'e_x for 0 <x <1, (A6.1-1)
l+e

with a relative error which nowhere exceeds 0.04 in magnitude.
-X
l-e

1+e”
for 1 < x. These two functions are tabulated in table A6.1-2. The

The function 1 - 0.85e™" 1is a good approximation to

X

error and relative error for the approximation are also tabulated in
-
l-e

l+e
plotted in figure A6.1-3 for wvalues of x between 1 and 2.5. The

table A6.1-2, The two functions, and 1 - 0.85¢"%, are

relative error for the approximation is plotted in figure A6.1-L4,
From the curve in figure A6.1-L it is clear that the maxlimum magnitude

of the relative error for this approximation is 0.02 for 1 < x.

-X
X~ l-e

l+e

1- 0.85"

for 1 < x, (A6.1-2)

with a relative error which nowhere exceeds 0.02 in magnitude.
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From equations A6.1-1 and A6.1:2 it follows that

f(x) = l-e:i for all =x, (46.1-3)
l+e
where
¥§7§ for 0 <x <1
£(x) = (46.1-1)
1 - 0.85¢7° for 1 < x,

with a relative error which nowhere exceeds 0.0k,
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APPENDIX VII

SURVEY OF THE LITERATURE
RELATED TO POLARITY-COINCIDENCE
DETECTION

There is a distinet lack of agreement in the literature on the
terminology to be used for various types of correlation devices.
Therefore, in order to make the subsequent discussion of the litera-
ture gelf-consistent, the following terminology is introduced.

A cross-correlator is a device which implements the mathematical
operation of multiplying two inputs,’ xl(t) and xz(t), and
integrating the product for a finite lenglh of Lime, T. The cross-
correlator is called by various names depending on the form of the

two inputs.

Correlation Detector

xl(t) consists of a noise component n(t) and possibly a known
signal component s(t). xz(t) = k»s(t) is proportional to s(t).
In this case the device is called a matched-signal cross-correlation

detector, shortened to "correlation detector" and denoted by CD.

Correlation Coherency Detector

xl(t) consists of a noise component nl(t) and possibly a
signal componcnt s(%t). xz(t) consists of a noise component nzﬁt)
and the same signal component as appears in xl(t) - the component
s(t) -~ which appears in xz(t) if and only if it appears in
xl(t}. In this case the device 1s called a cross-correlation

coherency detector, shortened to "correlation coherency detector" and
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dencted by CCD.

Auto-Correlator

x,(t) and x,(t) are equal (except possibly for a shift in
1 2
time). In this case the device is called an "auto-correlator,"

denoted by AC.

Polarity-Coincidence Detector and Polarity-Coincidence Coherency

Detector

If the two inputs are passed through ideal polarity indilcators
(ideal limiters) before multiplication, new names are applied to the
devices. The correlation detector is then called a "polarity-coinci-
dence detector," denoted by PCD. The correlation coherency detector
is then called a "polarity-coincidence coherency detector,'" denoted
by PCCD. The auto-correlator is then called a "polarity-coincidence
auto-correlator,” denoted by PCAC.

In addition, a device called a "band-pass limiter" is often dis-
cussed in the literature. A band-pass limiter is an ideal limiter
(polarity indicator) followed by an ideal band-pass filter.

In discussing the literature related to polarity-coincidence
detection, the terminology introduced above will be used, even though

it may not correspond to that found in the literature belng discussed.

Tdeal Limiting

The earliest work on the effects of two-level digitizing on
random processes seems to have been done by J. H. Van Vlieck in 1943

(1). He examined the effects of ideal limiting on the auto-correlation
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function of a Gaussian process. The principal result is the sgo-called
arc-sine lawv. It relates the oubtput auto-correlation function of the
ideal limiter +to the input auto-correlation funcfion, if the input

is Gaussian, by the extremely simple equation: R(7) = % sin_l[r(w)]
where r(7) 1is the auto-correlation function for the input process
and R(7) is the auto-correlation function for the output process.
Using the arc-sine relationship, Van Vleck cbtained the output spec-

tra for various inputs with low-pass and band-pass gpectra.

Bend-Pass Limiters

Van Vleck's work for the case of band-pass limiters was extended
by Davenport (2, 1953) and McFadden (3, 1956). Using the character-
istic function method of Rice, Davenport derived the output auto-
correlation function for an oddsymmetry power-law device with =
sinusoidal signal plus narrow-band Gaussian nolse input. The resulting
expression is a double series in the harmonics of the signal and the
gignal and noise Iintermodulation terms. Davenport examined the
behavior of the band-pass limiter by considering only the fundamental
frequency term in the case of the power-law device with zero exponent.
He found for small iﬁput signal-to~nolse power ratics, N <« 1, that
the output signal-to-nolse power ratio, N, is reduced by the
factor w/4 (1 db.), and for large input signal-to-noise power
ratios, N >> 1, that N, 1s increased by a factor of 2 (3 db.).
McFadden examined the same problem but restricted consideration to
N <« 1. By so doing, he was able to obtain the output asuto-correla-

tion function as a simple power series, whose flrst term is the same
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ag8 Van Vleck's arc-sine term and whose higher order terms serve as
correction terms when a sinusoidai signal with amplitude small
relative to the noise amplitude is present.

Blachman (4, 1953) examined the same problem by applying Rice's
direct method. He found the signal-to-noise power ratio at the
output of an arbitrary power-law device in the spectral region of the
mth harmonic of the input sinusoid. By imposing the conditions for
an odd symmetry zero-order power-law device and setting m =1, he
obtained the following expression for NO for a band-pass limiter:

: [T (311) - I, (#0)7°
IO= )

hel- il () - 1, (V)17

wvhere N is the input signal-to~noise power ratio and NO is the
output signal~to-noise power ratio, valid for all N. IO 1s the
Ressel function of second kind and zero order and Il is the Bessel
function of second kind and first order. This expression agrees
with Davenport's result when N goes to zero or to infinity.

Jones (5, 1963) extended Davenport's result to the case of two
sinusoidal signals in the presence of narrow-band Gaussian nolse.
Using Davenport's method, he derived the auto-correlation function at
the output of an ideal limiter as a triple series with integrals of
Bessel functions as coefficients. He then considered the effect of
passing the output‘throﬁgh an ideal band-pass filter and obtained an
expression for the output signal-to-noise power ratic of an ideal
band-pass limiter. The prineipal result is that 1f one signal is

much stronger than both the noise and the other signal, then its
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output signal-to-noise power ratio is increased by a factor of 2
relative to its input signal-to-noise power ratio (Just as it would
be if the weak signal were not present), whereas the output signal-
to-noise power ratio of the weak signal is decreased by a factor of
2 relative to its input signal-to-nolse power ratio. I.e., the
strong signal has suppressed the weak signal. However, if both sig-
nals are weak relative to the noise, then their output signal-to-noise
power ratios are hoth decreased by a factor of n/h_ relative to their
input signal-to-noise power ratios (just as the output signal-to-noise
power ratio of a single signal which is weak relative to the nolse is
decreased by a factor of wx/l). Rubin and Kemen (6, 1963) examined &
somewhat different problem. They considered two sinusoidal signals
separated in frequency, each centered in a narrow band of Gaussian
noise, and derived the signal-to-noise power ratios for both signals
at the output of an ideal double band-pass limiter consisting of an
ideal limiter followed by an ideal band-pass filter with two pass-
bands, each centered at one of the sinusoidal frequencies. The
results are similar to those obtained by Jones (5, above) but are
modified slightly, because +he +two sinusoidal signals in this case
lie in non-contiguous nolse bands.

cahn (7, 1961) examined the band-pass limiter from a point of
view entirely different from that of the investigators cited above.’
He restricted consideration to the case of small input signal-to-noise
ratios and represented the signal by symmetric and anti-symmetric
side-bands of a strong carrier (the noise or a strong interfering

sinuscidal component). By so doing, he obtained extremely simple
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expressions for the output signal-to-noise or interference first
'order statistics. He obtalned specific expressions in the case of
inputs consisting of two sinuscidal signals, a sinusoidal signal and
strong Gaussian noise, a sinuscidal signal and a strong non-Gaussian
noilse or interference, and a wide-band signal in the presence of a
strong noise of arbitrary (wide or narrow) band-width. (The other
investigations cited above are restricted to sinusoldal signals in
narrow-band Gaussian noise.)

Manasse, Price and Lerner (8, 1958) investigated the effect of a
band-pass limiter on signal detectability. They assumed that
Davenport's result (2, above) holds for an arbitrary signal (not
necessarily sinusoidal) in the presence of narrow-band Gaussian noise
so long as the signal band-width is narrow relative to the nolse bhand-
width and the input signal-to-noise ratio is small. They then
obtained criteria for the band-pass limiter output signal detecta-
bility in terms of the output signal energy and output noise power.
By comparing this result with the signal detectability when there is
no 1iﬁiting, they obtained an expression for the degradation in signal
detectability due to band-pass limiting. They evaluated the degrada-
tion numerically for three cases: Rectangular noise spectrum - with
e degradation of 1.16 (0.7 db.), Gaussian shaped noise spectrum -
with a degradation of 1.118 (0.5 db.) and an optically shaped noise
spectrum - with a degradation of 1.059 (0.3 db.). Moreover, they
made the interesting discovery that the degradation can be made to go

10 zero by the local addition of a noise whose spectral density in
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the original pass-band is smell relative to the spectral density of
the original noise but whose band-width is so great that its total

pover is large relative to the original noise power.

Polarity-Colncidence Devices

Faran and Hills (9, 1952) compared the performsnce of the
polarity-coincidence detector (PCD) with that of the ideal correlation
detector (CD) (no limiting) and also compared the performance of the
polarity-coincidence coherency detector (PCCD) With that of the ideal
correlation coherency detector (CCD) (no limiting) for a Gaussian
signal in the presence of Gaussian noise, signal and nolse having
identically shaped RC band-pass spectra, for the case of small input
signal-to-noise ratics. TFor both the PCD and the PCCD the degradation
in performasnce relative to the 1ldeal detector is 0.7 db.

Wolff, Thomas and Williams (10, 1962) compared the performance of
the polarity-coincidence coherency detector with that of the correla-
tion coherency detector and also with that of a Neyman-Pearson
detector,.for a general class of signal and noise inputs, but with
the additional assumption that the inputs are sampled at the Nyquist
rate and that the i#puts are statlstically independent. They investi-
gated the degradation in detection probability for a fixed type T
error (false detection probability). For a Gaussian signal and noise
with small input signal-to-noise ratio, as the sample size goes to
infinity, the degradation of the PCCD relative to the CCD 1is 2.47
(4 db.) and relative to the Neyman-Pearson detector is 5.0 (7 db.).

The increase in degradation over that found by Faran and Hills appears



to be due primarily to sampling.

Ekre (11, 1963) compared the polarity-coincidence ccherency
detector with the ldeal correlation coherency detector both with
sampling and without sampling, for Gaussian signal and noise with
identically shaped spectra and small input signal-to-nolse ratics.

He obtained numerical values Tor the degradation in output signal-to-
noise ratio for three types of input spectra: RC low-pass, RC band-
rass and rectangular low-pass. His results show that a considerably
higher sampling rate than is required by the Nyguist criterion must
be used in order to assure a small cegradation. A degradation of

1O db. is common for a sampling rate in the order of the Nyquist rate.
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