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Allright. There’s some code here, and it does stuff.

rrEchelon.py Takes a matrix and returns its reduced row echelon form.
getSyms.py Uses a couple of generators to find the 48 symmetries of a

cubic crystal. It dumps them out to S.pkl.
S.pkl List of numpy matrices, each one corresponding to a point

group symmetry of a cubic crystal
fcc?NN.py Little code that spits out the constraints on the components

of the ?NN force constant tensor for an FCC crystal.
fcc.py Spits out constraints for 1-8NN. Add more NN by adding

their one of their vectors to the list, V.

mat2vec.py This is the interesting one.

Some pair of atoms in a crystal is ‘connected’ by some vector. The connection is made mathematically with a force
constant tensor. We’ll talk 3D from here on out. Without knowing any better, we write:

F =

 F11 F12 F13

F12 F22 F23

F13 F32 F33

 (1)

And you can see that we have 9 degrees of freedom (DOF). It seems likely that some of the magical symmetries of
the crystal will reduce the DOF. We can look into this by taking one of the 3× 3 representations of the point group
symmetries, Ss, and applying it to the F , requiring that F remain unchanged. That looks like so:

Ss =

 Ss
11 Ss

12 Ss
13

Ss
21 Ss

22 Ss
23

Ss
31 Ss

32 Ss
33

 (2)

ST
s FSs = F (3)

That equation, is rather intimidating, so we rewrite it thusly:

ST
s F − FS−1

s = 0 (4)

This looks a lot like the oh so familiar Lyapunov Equation:

AX + XB = C (5)

where A, B, C and X are all square matrices of dimension N . So let us consider it. It is clear that all the terms on
the left-hand side of the equation are linear in the components of X, thus, their sum must be linear in the components
of X. This means that we may rewrite the equation as follows:

Mx + b = 0 (6)

where M is a N2 ×N2 matrix, and y and b are N2-vectors. The order in which you choose to map the components
of the matrix X into the vector x is arbitrary; however, once you choose an order, you must be consistent. Let’s just
show one example... you could write:

x =



x11

x12

x13

x21

x22

x23

x31

x32

x33


(7)
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Which would imply the same ordering for b, where the components would be given by −Cij .
Let’s construct the matrix Z ≡ AX + XB. For the 3x3 case, we have:

Z =

 A11X11 + A12X21 + A13X31 A11X12 + A12X22 + A13X32 A11X13 + A12X23 + A13X33

A21X11 + A22X21 + A23X31 A21X12 + A22X22 + A23X32 A21X13 + A22X23 + A23X33

A31X11 + A32X21 + A33X31 A31X12 + A32X22 + A33X32 A31X13 + A32X23 + A33X33

 +

 X11B11 + X12B21 + X13B31 X11B12 + X12B22 + X13B32 X11B13 + X12B23 + X13B33

X21B11 + X22B21 + X23B31 X21B12 + X22B22 + X23B32 X21B13 + X22B23 + X23B33

X31B11 + X32B21 + X33B31 X31B12 + X32B22 + X33B32 X31B13 + X32B23 + X33B33

 (8)

We see that Z12 depends on the 1st row of A, the 2nd column of X, the 1st row of X, and the 2nd column of B. More
generally:

Zij =
∑

k

AikXkj + BkjXik (9)

Because of our choice of mapping from X to x, the Zij tells you what row in M you are dealing with. The indices on
the variables Xkj or Xik tell you which column in M . All that is left is to add the Aik and Bkj into the slots in M ,
so given. This is difficult to show explitily, howevere, this is the best I got:

M =


M11 M12 . . . M19

M21 M22 . . . M29

...
...

. . .
...

M91 M92 . . . M99

←

{Z11, X11} {Z11, X12} . . . {Z11, X33}
{Z21, X11} {Z21, X12} . . . {Z21, X33}

...
...

. . .
...

{Z33, X11} {Z33, X12} . . . {Z33, X33}

 (10)

The left and center of the equation are M and the components of M . The thing on the right is supposed to indicate
that any time you have Zij on the left in Eq. 9, and an Xmn next to one of the coefficients Apq or Brt on the right,
you add that coefficient at the slot marked {ZijXmn} in M . The problem AX + XB = C has now been reduced to
Mx + b = 0, which linear algebra tells us how to solve.

For our particular case, we wish to find the constraints on the components of F . Simply take A→ ST
s , B → S−1

s ,
X → F in Eq. 5, and C = 0 and then put M into reduced row echelon form. Reading off the rows gives you the
constraints on the components of F . For exmpample, you may end up with somthing that looks like this:

xx xy xz yx yy yz zx zy zz
[ 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 1. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 0. 0. 0. -1.]
[ 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 1. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 1. 0.]

Which we can rewrite like so:

xy = 0
xz = 0

yx = 0
yy -zz = 0

yz = 0
zx = 0

zy = 0

We see, then, that there are two DOF. Both yy = zz, and xx may be varied independently This particular force
constant tensor is axially symmetric.

If there are n symmetry elements, Ss, that can transform your bond vector back onto itself, you simply stack up
the n Ms, and find the reduced row echelon form of M :

M =


M1

M2

...
Mn

 (11)


