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Abstract

I present a summary of the developments in wormhole physics. I then investi-
gate the (Euclidean time) decay of axion charge that occurs in a 3-sphere of constant
volume when there is a small charge violating operator perturbing the Hamiltonian.
I demonstrate that in the limit of large Euclidean time T', axion charge decays
like CT-!, where C depends only logarithmically on the coefficient of the charge-
violating operator. I apply this result to axionic wormholes, and argue that small
wormholes will destabilize large wormholes because of this charge decay. In another
model, I demonstrate the existence of wormhole solutions with topology S x S%x R.

I interpret these wormholes in terms of topological charge violation on flat R:.
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Chapter 1: Quantum Gravity

Einstein’s theory of gravity, General Relativity, is one of the great successes
of theoretical physics of the century. As a classical theory, it has withstood all
confrontations with experiment, and it has predicted a fabulously rich variety of
new phenomena (black holes) and new ways to view nature (relativistic cosmology)
that will both further our understanding of astrophysical phenomena and further
allow us to confirm its theoretical structure. And yet from a theoretical point of
view, it does have a major failing: It has resisted all attempts to be understood in
terms of quantum mechanics, another of the great achievements of twentieth-century
physics. Quantum mechanics is not just a physical theory; it is a framework into
which any fundamental theory of nature must be put. Gravity has so far resisted
this procedure.

What are the obstacles that we face when attempting to quantize gravity?
Quantum field theory is the currently reigning paradigm for special relativistic quan-
tum theory. The greatest successes of quantum field theory have been in pertur-
bative calculations, where one expands in a small perturbation about an exactly
solvable free field theory. Successful perturbation theories must, however, be renor-
malizable. This means that one can cancel any ultraviolet divergences in the theory
by adding some small finite number of counterterms to the Lagrangian. If one at-
tempts to formulate a perturbative theory of gravity, one soon realizes that it is
non-renormalizable.

Non-renormalizable theories are perfectly acceptable as descriptions of low-en-
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ergy physics — the canonical example being the 4-Fermi theory that describes the
weak interactions at low energy. Such theories, gravity included, have an intrinsic
mass scale at which the effective low-energy theory must break down. For the weak
interactions, this scale is ~100 GeV; in fact, we now know that weak interactions
are well described by the Weinberg-Salaam model, which is characterized by spon-
taneous symmetry breaking at about that scale. For gravity, this scale is known as
the Planck mass Mp = 10'° GeV. The non-renormalizability of gravity tells us that
there must be new physics at the Planck scale.

One approach to quantum gravity is to attempt to understand what the nature
of the Planck scale physics must be. The most successful attempts at this have been
in string theory. String theory is a quantum mechanical theory in which elementary
particles (gravitons included) are considered to be one-dimensional, “stringlike” ob-
jects rather than zero-dimensional pointlike objects. Because of the stringy nature
of gravitons, it appears as though scattering amplitudes become very weak at high
(Planck scale) energies, thus controlling the ultraviolet divergences that made quan-
tum gravity non-renormalizable. It may very well be that string theory, or some
improved version thereof, is the correct description of physics at the Planck scale.

Because the Planck energy scale is so high, however (almost 10*® times the en-
ergy that will be available at the SSC), we may never be able to test the Planck scale
predictions of string theory. Physics at the Planck scale may still have consequences
for measurable aspects of nature. String theory may be able to predict low-energy

physics such as particle spectra or coupling strengths. It may also provide the



only possible window into the wery early universe, when such energies may have
been present in the big bang. If “naked singularities” exist in nature, Planck scale
physics will almost certainly be necessary to understand their properties. Nonethe-
less, since string theory or any other theory that purports to explain what happens
at the Planck scale will be by definition new physics, it is unlikely that we will
be able to determine the nature of the new physics from our current theoretical
understanding.

It may prove useful then, to approach quantum gravity from the other end:
to attempt to understand the consequences of the fact that quantum mechanics
appears to be the correct fundamental description of nature, and the fact that
general relativity appears to be the correct low-energy theory of gravity. Our most
useful beacon in this attempt will simply be the correspondence principle: The
correct theory of nature must include general relativity in the classical, low-energy
limit. We can then hope to learn something about the correct theory by asking what
features this correspondence requires it to have. While this approach is unlikely to
lead to the fundamental “theory of everything,” we can at least hope that the
conclusions we draw are grounded in known physics. Unfortunately, even at this
simple level, we are confronted with difficulties that make our analysis uncertain
and our path fraught with peril.

There are several different approaches to studying low-energy quantum gravity.
One which I will mention here is the canonical approach. In this approach, we

construct a Hamiltonian for the gravitational field and attempt to construct wave
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functions as we do for the Schrédinger equation. We must immediately acknowledge
a serious conceptual problem: Because time itself is a dynamical variable in the
theory, the Hamiltonian is actually a constraint. For any state |¥), H|¥) = 0. Time
seems to have disappeared from the theory, at least time as we usually understand
it in quantum mechanics. In the classical theory, this is not a problem; we can
always talk about variables that are “clocks,” in that they have definite values that
are precisely correlated with the time parameter. In the quantum theory, these
variables become probabilistic, and thus the interpretation becomes unclear. This
is the “problem of time in quantum gravity.”

Another angle of attack is to study quantum mechanics in curved spacetime
backgrounds. We do not attempt to quantize the metric itself, except perhaps as low-
energy gravitons. We may learn a lot about quantum gravity, however, just from the
exercise of quantizing fields on arbitrary backgrounds. Already, qualitatively new
effects arise: Most important is the Hawking evaporation of black holes,! which

may lead to violations of quantum-mechanical coherence.

The Euclidean Path Integral

My own research relates to the study of the path integral for quantum grav-
ity. The path integral is a way of calculating quantum-mechanical amplitudes that
reproduces all the results of canonical quantization and has proved useful for a va-
riety of calculations in quantum mechanics and quantum field theory. If S [¢] is the

action functional for a theory, one can calculate the quantum-mechanical partition



function as follows:

Z = / Dee'slel,

which represents a sum over field configurations weighted by e¢**. We expect that in
the low-energy limit, one ought to be able to calculate amplitudes in quantum grav-
ity by performing a path integral over the metric as well as over any matter fields in
the theory. Even if it proves impossible to perform the full path integral, the path
integral formalism lends itself particularly well to making semiclassical approxima-
tions. In the classical (A — 0) limit, one finds that the path integral is dominated
by small fluctuations about classical solutions. For tunnelling processes, which are
classically forbidden, one can use the path integral to make small A approximations.

In this case, one makes an analytic continuation ¢ — —i7, so that

Zy = /D¢6_SE[¢],

where Sp is the “Euclidean action” for the theory, calculated using the analytic
continuation. Tunnelling processes are then represented by Euclidean classical solu-
tions, and their amplitudes can be calculated by integrating over small fluctuations
about these solutions. Even when calculating amplitudes for classically allowed
processes, the Euclidean path integral often proves useful because of its superior
convergence properties.

We now apply the path integral to gravity simply by extending the integration
to include the metric degrees of freedom. To do this fully would require a much

more thorough understanding of the space of geometries and the integration measure



6
than we have at present.! We will work, instead, in the semiclassical approximation,
considering only small fluctuations around classical solutions; indeed, we will always
leave the integration over small fluctuations as an unevaluated constant. In this
approximation, we can estimate the order of magnitude of quantum-mechanical
amplitudes as e~ where S is the classical Euclidean action of the solution.

In quantum gravity, the analytic continuation from Lorentzian to Euclidean
metrics is rather different than in field theory. In many cases, it may be impossible.
Nonetheless, it is as much a postulate as an approximation that quantities in Eu-
clidean quantum gravity can be calculated using a Euclidean path integral. Indeed,
there is some dispute as to how one should interpret the results of such calculations.
The principle I will use is as follows. Our goal is to calculate generalized expectation
values for quantum-mechanical operators. Such an expectation value is calculated

as shown:

(M) = / DgDé Me=Slo#],

where M is the operator in question, and the integration is over the metric and

matter field degrees of freedom. S is the full Euclidean gravitational action.

The Gravitational Action

Before we proceed to discuss what we can learn from this, I will say a few

words about the gravitational action. The action for pure general relativity with a

1 In two dimensions, much progress is being made on a more complete, non-perturbative evalua-

tion of this path integral, and this may bear some relevance to the physics of wormholes.[?]



cosmological constant is

— [ tey=a( L_
S—/d z+/ g<167rGR+A>.

When we perform our analytic continuation to a Euclidean metric, we obtain

1

I will henceforth stay in Euclidean space, and will refer to this just as .S, the action.
Now this action plus any matter contribution is sufficient for most calculations, but
Gibbons and Hawking found® that one must also include a term evaluated on the

boundary,

1
= ————— [ d&®2Vh(K - K°

where h is the determinant of the induced metric on the boundary, and K is the trace
of the second fundamental form of the boundary; K° is the same trace evaluated
with the boundary embedded in flat space. The Gibbons-Hawking boundary term is
necessary so that the action is properly additive when sewing together spacetimes.

The Euclidean action has a difficulty in that it is unbounded below. The action
can be made arbitrarily negative by multiplying the metric by a sufficiently large,
rapidly varying conformal factor. If we integrated over all such metrics, we could
in no meaningful sense define a convergent path integral. Hawking has proposed
that this divergence be controlled by rotating the conformal modes of the metric to
imaginary values; this is, however, a rather ad hoc prescription for obtaining finite
values. One should note, though, that the unboundedness of the Euclidean action

does not indicate the presence of classical solutions with arbitrarily low action.



8
Following the lead of Coleman[, I will simply assume that in the semiclassical
approximation the path integral is dominated by classical solutions of lowest action,

and I will ignore the negative conformal modes.
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Chapter 2: An Introduction to Wormhole Physics

We have seen how one can define a Euclidean path integral for quantum gravity,
and how one should use this to obtain semiclassical results. We would now like to see
if there are classical Euclidean solutions that can lead to interesting consequences for
physics. There are such solutions; I will discuss the solutions known as “wormholes”
and their implications for physics. Wormbholes are solutions to the classical Euclidean
equations of motion that connect otherwise disconnected flat spacetimes. One can
use the same solutions to connect distant regions of the same flat spacetime. One
can also consider “semiwormbhole” solutions made by cutting the wormhole solutions
in two at the throat, or midpoint, of the wormhole. We can interpret this solution as
connecting a flat spacetime to a very small “baby universe,” which is the boundary
at the wormbhole throat. It is this solution which we can immediately interpret as
a tunnelling process in which a baby universe either splits off or joins on to a flat
space. Both of these processes are classically forbidden — in fact, there are no
non-singular Lorentzian metrics that exhibit such topology change.!

What is the physical effect of such quantum-mechanical topology change? It
was originally thought!® that this would lead to quantum incoherence: pure states
would evolve into mixed states. We might expect this because the quantum state of a
disconnected baby universe will be fundamentally unobservable. Any such quantum

information would be summed over in a quantum density matrix on the flat space;

1One can actually get around this by expanding the class of allowed metrics.[5!
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thus a pure initial state would evolve to an impure final density matrix.

The Baby Universe Formalism

It was Coleman’s insight that this is not necessarily the casel”l. Coleman starts
by considering an effective field theory on distance scales larger than the wormhole
scale. The effect of a wormhole of given type “” will be to add a term to the
Lagrangian

Li(#,...)(al +a;) = LA,
where a;r and a, are creation and annihilation operators for baby universes. Only the
sum of these operators appears, since creation and annihilation of baby universes
are indistinguishable processes; they are both represented by the same Euclidean

solution. Because the A,’s all commute with each other, we can simultaneously

diagonalize them. In a given basis state |a),
Ajle) = ogle).

The alpha parameters are much like the theta angle in QCD: They become effective
corrections to the constants of nature. We have replaced the information loss of

quantum coherence with an indeterminacy of the fundamental physical constants.

The Bilocal Path Integral

I give here a more detailed presentation of the effect of wormholes? that is

based directly on the path integral. I will use this argument to derive perhaps the

2This discussion closely follows that of Klebanov, Susskind, and Banks/8] with some modifications

due to Preskill.[9]
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most dramatic result of wormhole physics: the “prediction” that the cosmological
constant is zeroll. We are able to predict this because although the constants of
nature are indeterminate, they can be thought of as random variables selected from
a probability distribution. This distribution is very strongly (in fact, infinitely)
peaked at A = 0.

We start by once again writing the expectation value of an observable
1 .
(M) = - / DgD¢ Me=Slo#A],

Here I have written explicitly the dependence of the action on the fundamental
constants, A, and the integration is over all allowed 4-geometries. Z is the same
path integral without the operator M inserted; since it is an unimportant (if infi-
nite) normalization constant, I will henceforth absorb it into (M). The geometries
we will include will have some number of large, flat, connected 4-geometries (“uni-
verses”) connected by wormholes. We would like to express this in terms of “ordinary

physics”; that is to say in terms of

1

<M)/\:"Z:

/ DgD¢ Me~Slo:N

where in this case, the path integral is on only a single large flat spacetime and we
do not include any wormbhole fluctuations. Z, is the partition function on a single
universe. In the low-energy limit, the effect of inserting a single wormhole into the

path integral will be to insert an operator of the form

/d$1d$2%0ijoi($1)oj($2)7
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where O,(z) are the elements of some basis of local gauge-invariant operators at z;
and we sum the repeated indices. Note that we have integrated over the coordinates
of the wormhole ends. We assume that the constants C;; are independent of position;
they will be when z, is distant from z,. For now we assume that the wormholes are
dilute, and therefore we can ignore corrections that we will get when z; approaches

z,. When we include an arbitrary number of wormholes, this sum (again in the

dilute gas approximation) will exponentiate; we write

<M> = /D9D¢Mexp (%C,'j/d$1dm2(’)i(x1)(’)j($2)) e—S[g,d);)\],

where the path integral is now over an arbitrary number of “universes” but not over

any wormhole fluctuations. We can now make use of the identity

exp(3C;,;ViV;) = /H dey, exp (—5(C7Y);;0505) exp(—ay V)
k

to rewrite
(M) = /D977¢ [T dawexp (—5(C7) ;) Melodl=eu [ di0uto),
k

where again the path integral is over multiple disconnected universes. Since
J d*zO,(z) is just one of the possible terms in the action, we see that it just shifts
the constants A in the exponent. We can rewrite the previous expression somewhat

elliptically as
(M) = /da /DgD<;$ exp (—%aTC_la) Me=Sloéirtal

Finally, we note that operators M observable in one universe depend only on values

of the fields in that universe. The integrations over the other universes are therefore
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independent of each other, and will exponentiate to give an expression in terms of

“ordinary” path integrals over a single universe,

(M) = /da exp (—1a’C~'a) exp |:/Dg 'D¢'e's[9"¢';A+°‘]] /’DgD¢ Me=Sladirta]
= [4aP@Q) 7o (M)

P(c) is defined to be the Gaussian exp (—1a?C~1a); Q(a) = eZr+a.

This result says that the expectation values of operators in the “Euclidean path
integral for everything” are given by an integral over a set of parameters o with a
given weight of expectation values of the operators calculated “normally,” but with
coupling constants shifted by the a-parameters. Put more simply, the constants of
nature have become random variables selected from a probability distribution that
is calculable, at least in principle. This randomness is not exactly something we can
measure: any and all experiments that ever have been or ever will be performed can
be collected into a single operator M on our universe. The coupling constants as
measured by these experiments will all be the same. The probability distribution for
coupling constants should instead be thought of as being a distribution of universes,
or of initial conditions for our universe. All we can do is to measure the value of o

in our universe,

The Constants of Nature

Since we cannot measure the « probability distribution, even in principle, how
can it affect physics? We might hope that the probability distribution will be peaked

at a particular value for a. If so, we expect that whatever coupling constants we
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measure in our universe will very likely lie at the selected value. We can then assess
our theory by calculating this probability distribution and comparing it with exper-
imental data. We can calculate this distribution, but our results will depend even
more strongly than before on the details of Euclidean quantum gravity. Nonetheless,
we can at least find out what this theory leads us to conclude.
We will find that the probability distribution is relatively unaffected by the

constants C;,

so I will not attempt to calculate them. I will calculate what I called
Zyio:
Zyo = /DquS 6—5(9,¢;A+a],
where the path integral is over a single universe.
We assume that this path integral is dominated by large, reasonably smooth
4-geometries; if so, we can integrate out all metric and field fluctuations at distance

scales much less than the size of the geometry. We will be left with a low-energy

effective action for the theory

S:/d‘*:c\/ﬁ A-ERy
167 ’

where A and G are the values of these couplings as shifted by the a’s and also as
renormalized to the longest distance scales, scales of order the size of the geometry.
Since the partition function will be dominated by classical solutions with the lowest
action, we need not include light matter fields in the low-energy effective action;
they will be at their classical ground state values. Terms depending on higher
derivatives of the metric will also be suppressed as we have integrated out all the

long wavelength fluctuations.
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It remains to solve the Euclidean field equations for this action. They are
R, =38rGAg,,.

For a solution of these equations,

S = -—A/d‘*z\/_ = —AV,

where V, is the 4-volume of spacetime. The path integral will therefore be dominated

by the classical solution of maximum volume. This solution is a 4-sphere with

3
Y= e

giving the minimum action

- 8G2A°

So in our approximation,

Zy,, = Kex 3
Mo = P 8GR0 A () |
where £ is an unevaluated functional determinant, and I have made explicit the «

dependence of Newton’s constant and the cosmological constant. The determinant

is uninteresting® and will be dropped. Our (unnormalized) probability distribution,
exp(—1C1a?)Z,  ,e%r4e,

clearly has an infinitely strong peak as G?A — 0; our hopes have been fulfilled and

we expect that in the observable universe it is overwhelmingly (infinitely!) likely

3As long as it is real and positive. There is some dispute[lo’ll] on this point.
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that G2A = 0. The theory has made a successful “prediction”: The cosmological
constant is zero.

Consider now the situation as A — 0. The some probability distribution im-
plies that the constant G~! will typically be at its maximum possible value as a
function of the a’s. If it could, in fact, become infinite, then the theory would have
made an unsuccessful prediction: that Newton’s constant is zero. In the dilute gas
approximation for the wormhole insertions, the shifts in constants are linear in the
o’s. Since all values of a are integrated over, the distribution will indeed be peaked
at G7! = co. We will see that it is when the o’s get large, however, that is exactly
when the dilute gas approximation breaks down. It is quite plausible that short-
range interactions between the wormhole ends will cause G~! to be bounded above.
We hypothesize, then, that this is the case: G~!(a) has a well-defined maximum
as the a’s run over all possible values. Our probability distribution, then, will be

infinitely strongly peaked at the mazimum value of G='(«) where A(a) = 0%,

The Large Wormhole Problem, and its Solution

At this point we should examine one of the underlying assumptions of this
analysis: that wormholes exist at a fixed scale and therefore their effects can be
incorporated into an effective field theory on longer scales. It is true that the action
of a wormbhole of size L, is of order L2 M3 — so larger wermholes will be strongly
suppressed by e~°. Recall, however, that such effects go into the constants C;; and
therefore into the function P(«), which is unimportant in determining the peak

of the probability distribution. The important effects come into the function Q(«),
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that is, from the requirement that G~! is maximized at A = 0. It is this requirement
that will determine the density of large wormholes.

In fact, under the assumptions we have made so far, wormholes of any given
size will be dense on the background spacetimel'?, After effects of “small worm-
holes” have been taken into account, the a parameters for large wormholes will still
contribute linearly to G=! in the dilute gas approximation. If G! is to be bounded
above, then the dilute gas approximation must break down, and at the maximum
of G!, large wormholes must necessarily be dense. This argument holds for worm-
holes of any size, and so we have predicted that wormholes will be dense even on
macroscopic scales. This is in accord neither with our observations of low-energy
physics, nor indeed with the whole framework we have developed for discussing the
effects of wormholes.

If we are not to discard the wormhole formalism entirely, we must confront
this difficulty head-on. I will examine the “large wormhole problem” more closely
in the context of a resolution to this problem proposed by Coleman and Leel'3,
In their proposal there is a further assumption added to the ones we have already
made. They assume that the only wormhole configurations one should consider are
classical solutions supported by a globally conserved charge. There is some support
for this belief: Most or all of the wormhole solutions that have been constructed

do have some kind of charge that supports the wormhole throat.* Indeed, the

4Some authors have claimed to exhibit wormhole solutions that are not supported by any global

charge.[14’15] They usually do this by allowing imaginary values for fields in the theory.
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way wormbhole solutions are typically constructed is to require specifically that they
dominate amplitudes between states of definite global charge.

If wormholes carry some global charge, then the operators they induce in the
effective field theory will transform non-trivially under the associated global sym-
metry. An individual wormhole, therefore, can not induce any terms proportional
to the operator 1 (or the operator R, for that matter). This means that there will
be no corrections to A or G7! in the dilute gas approximation.® All corrections will
be at least quadratic in . We can think of such corrections as coming from the
effects of pairs of wormhole insertions of opposite charge. Let us write the constant

A as renormalized by wormholes of sizes L; as

A=Ay blegPL7*. (2.1)

The o’s have been adjusted to absorb factors of e=® that would otherwise appear
in the C;;’s in P(a). We have written only the contributions that are lowest order

in a. We can write corrections to G~1 similarly:
-1 _ -1 272
G =G, + E ¢;log|PL7*.
B

Now the b;’s will, in fact, be positive, as the leading second-order contribution to
the ground state energy is negative.l'3 We can also write these corrections in terms
of the density of wormholes on the background spacetime. Since this density is

important for a number of reasons, I will now calculate it somewhat carefully.

SThere will, of course, be contributions from ordinary renormalization after we integrate out

wormholes. These will still have the same form that I will discuss.
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When considering physics at fixed «, we can count the number of wormhole
insertions by counting the number of factors of o that appear in amplitudes. In
particular, if the index ¢ represents one particular type of wormhole, we count factors

of a; to count insertions of type ¢ wormhole. Let us expand Z, ., in powers of o;:

Lyia = ZCNafV.
N

Note that the constants Cy will, of course, depend on the other a’s, but not on «;.

Then the “mean number of ;’s”, that is, the mean number of type : wormholes, is

(V)

(3

1 o, 07y,
Mo Mo 0

In our case we estimate

3
Zyyo = €Xp (m) )

SO

(V)

7

o 07, 3(G-1)? 3G~ 9G1
Zyre 0o, | 8A? 4N Oa,

1

Since the 4-volume V, = ﬁA—z, the density is given by

-1
(N;) JA N QGAaiaG ’
Jo;

(3

v, Doy
and since we will be considering A — 0%, we obtain

(N,) __0A
Yy o da;

Il

which, if we use our expansion of A, Equation (2.1), is

(Vi)

v

= b;jey|*Li*.
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We can define a fractional density v; to be the fraction of the total volume

taken up by wormhole ends of type 7. The “end” of a wormhole of scale L, takes up
a volume ~L}, so

(V)

Vi = "‘Vj‘L? = b;|a

il*

We can now write

A=Ay yL7

7

and
=Gt ) Bl

where §; = ¢; /b,.

In order that G=! not be driven to infinity, there must be some sort of inter-
action between wormhole ends. We can attempt to account for such an interaction
by putting a constraint on the wormhole densities. Clearly, the dilute gas approxi-
mation for wormholes of type ¢ will break down when v; ~ 1. Let us propose that
the interaction has the effect of constraining v; to be less than or equal to 1. Then

the peak of our distribution for the a’s will be where

Y Lt = A,

and

Z B,v;L7* = (a maximum).

Under the constraint, we can increase G=! the most by making the v,’s as large as

possible for the largest wormholes, since contributions to A go as L7*, and contri-
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butions to G~ go as L7 2. This, in somewhat more explicit form than given earlier,
is the large wormhole problem.

The assumption that wormholes are supported by a conserved global charge,
however, will lead us to a resolution of this problem. In the forthcoming discussion
we will, on occasion, make further assumptions that are not necessarily justified.
This argument, then, should really be thought of as showing that the large wormhole
problem is avoidable, not that it is always avoided. The basic concept is very simple:
the smallest wormholes remove the charge that supports larger wormholes. In other
words, the small wormholes induce charge-violating operators that will destroy the
large wormhole solutions. Let us investigate the conditions for small wormholes to
destabilize large ones.

We assume that the small wormhole insertions on the large wormhole are un-
correlated, and that the large wormhole is destabilized when the mean square charge
fluctuation induced by the small wormholes is equal to the charge on the large one.
If L, is the size of the large wormhole under consideration, then this wormhole is

stable if

L 4
Yoy (—f) ¢ < g (2.2)
Li<L, :

We now need the relation between the charge of a wormhole and its size. We
will use results for wormhole solutions found in a theory of a complex scalar field

with a global U(1) invariance. For this case,

C\MEL? for L, < m™!
CoMEL;/m  for L; > m™,

where m is the mass of the scalar field and C, , are constants that we will ignore. We
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make the approximation that one of these two formulas always holds true, depending

on whether L, is less than or greater than m™'. We can then insert (2.3) in (2.2) to

find
L2
Z v;m2L? + Z I/,iL—; <1 for L; >m™! (2.4a)
Li<m—1 m—1 <Li<L1 ¢
>y <1 for Ly <m L (2.4b)
L,<L,

In Equation (2.4a), all the coefficients of the v;’s are greater than 1, so using (2.4b)
in its place will only weaken the constraint on the v;’s — any conclusions drawn
from Equation (b) will also hold for Equation (a). In addition, whether or not there
is a maximum stable wormhole size, we can extend the sum in Equation (b) to be a
sum over all wormhole sizes, which leads only to an insignificant error in a constant
factor.

We thus derive the constraint

o<l (2.5)

We now wish to learn what this constraint implies. Let us first assume that the
constants f; are unity, or at least independent of .6 The maximum of G~ will lie
on the boundary of the constraint, so

=

g

6{13] analyzes the extent to which this assumption can be relaxed.
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The v;’s can now be treated as giving a probability distribution for wormhole sizes;

we want to maximize (L~2), given (L™*) = A,. If we define z = L2, then
(®)* = (@%) — ((z = (2))?) = A, ~ Var(a),

so we maximize (z) by minimizing the variance of z. The variance is minimized
when the distribution is concentrated at a particular value. Since (L7*) = A, then
we expect that wormholes will be dense on one scale only: Ly, = A, Y4 This is the
Coleman-Lee large wormhole suppression mechanism.

One might ask at this point why we did not propose the constraint (2.5) in the
first place. After all, it seems perfectly reasonable that interactions between large
and small wormholes would result in a requirement that the “total density” of all
sizes of wormholes is less than 1. One reason that this is perhaps not as reasonable
as it first appears is that it seems difficult to understand in terms of an effective
field theory in which the small wormholes are already integrated out. Coleman goes
further and states that it makes no sense at all, since putting large wormholes on
the background makes more, rather than less, space for small wormholes. Even if
one does not accept this viewpoint, however, Polchinski has shown['®l that directly
applying the excluded volume constraint (2.5) does not evade the large wormhole
problem. The reason is that the densities v; that would appear in such a constraint
are “unrenormalized” densities defined on a short distance scale. If one applies such
a constraint, he finds that effects at long distance scales are determined by densities
which, when properly renormalized both by the effects of wormholes and ordinary

field theory, obey the constraint that »; ., < 1 — from which we obtained the
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large wormhole problem. It seems, however, that the Coleman and Lee derivation
concerns the long-distance variables, and should not fall prey to this pitfall.

We have now derived most of the main results of the wormhole formalism. We
would still like to put the Coleman and Lee wormhole suppression on a somewhat
firmer effective field theory footing; I will discuss this in the next chapter. After
that, I will describe my investigation of the possibility that wormholes of a somewhat
different topology contribute to low-energy physics. The reader should now have a
background in the ideas that underlie the investigations described in the next two

chapters.
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Chapter 3: Axion Charge Decay and

Wormbhole Destabilization

Introduction

I have introduced the physics of wormholes and their effects in the low en-
ergy limit of quantum gravity. We have discovered that there exists a potential
problem with very large wormholes becoming important, in contradiction with ex-
periment.' The proposal of Coleman and Lee that small wormholes destabilize
large wormholes!'®] seems to provide an acceptable solution to this problem. In
particular, it seems to be consistent with an effective field theory understanding
of wormhole destabilization. In Reference [17], they explicitly demonstrated this
consistency for the case of a massive scalar field. After reviewing their results, I
will perform a similar calculation® for the case of the axion (a massless particle),
showing that the mass gap is not essential for sufficiently rapid charge decay.

The calculation in Reference [17] improved upon the estimates made in [13]
by calculating, for a U(1) global charge, the rate of charge decay that is due to the
introduction of charge-violating operators. They did this calculation in the theory of
a massive complex scalar field. They reached the perhaps surprising conclusion that
the charge decay in Euclidean space goes like e=2™T  after a time delay that depends
logarithmically on the charge-violating coupling. This means that wormholes much

larger than the inverse particle mass will be destabilized because the charge that

I This work was published in Reference (18].
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would support them decays too quickly. I will not rederive this result, but T will

say something about how it was obtained. Coleman and Lee work in a theory with

L =Ly + L}, where
Loy = 0"p*0, — m2ep*ip (3.1)
and

‘CI — m2M2—n2n/2(,(/)n + ¢*n) (32)

¥ is a complex scalar field, and M is a mass that parameterizes the strength of
the interaction. First, they do an operator derivation of their result, in which they

calculate the leading behavior for large time of the quantity
e_HTIN>Oa

where |N), is a state of definite charge, N, and H is the perturbed Hamiltonian.

They find that the charge density of the state for large time is given by

p(T) = p(0)e~>™T=T0), (3.3)
where
_2—n_ p(0)
T, = = In U (3.4)

They then do an instanton calculation, which leads to the same result for large T,
but also predicts that for 7' < T, the charge density is approximately constant
before beginning its exponential decay. Finally, they add gravity into the instanton
calculation; the resulting solution does not have any wormhole throat, as the charge

decays away too quickly. I will now investigate the situation for the case of the axion.
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After performing an operator-based calculation similar to the one of Coleman and

Lee, I discuss the conditions for wormhole destabilization.

Axionic Wormholes

Does rapid decay of charge in Euclidean space also occur for the axion? In the
massive case, the rapid decay is due to the fact that under Euclidean time evolution
with e=H7T | the states of lowest energy rapidly dominate. Such rapid decay for the
axion seems unlikely at first glance: The axion is massless, and thus there seems
to be no penalty for large axion charges. However, when discussing wormbholes,
we must consider what happens in a finite volume, and then there is an increasing
minimum energy for increasing axion charge.

Let us start with the theory of an axion field, 8, with a decay constant f, and
with £ = %Bﬁa“ﬁ. We wish to find the minimum energy configuration for a given
charge in a finite volume V' (for simplicity, just a 3-sphere). The charge is given
by Q = [ d®z f?6, and the energy is given by E = [ &z ’;—2 (02 + (60)2) Since
any spatial variation of # increases E without affecting @, the minimum energy
configuration for a given charge will be spatially constant. Replacing integrals with
factors of the volume, we find that Q = Vf29, and F = Vf2—292, so K = %
This is a very different relation than that for the massive case (there E = mQ),
but it may lead to similar decay. Ignoring details of the interaction, the decay

rate can be roughly approximated by assuming that the rate for decay is given by

the difference in energy between states of charge @ and states of charge Q — 1.

1
Ldecay

That is to say, we expect ~ % = 1—,%—2— This decay rate will be sufficient
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to destabilize axionic wormholes, if in order of magnitude, Ly, < L,. For the

& L2 yields 1\_}27 & 1 as the condition for

. . 2 Q
W e ~—, SO
axionic wormhole, L ~ o7 S L T

2

decay
axionic wormholes to be destabilized. This conclusion seems reassuring: Axionic
wormbholes will be destabilized for reasonable values of the decay constant. I will

investigate this further, however, to see what the effect of the interaction is and just

how this decay takes place.

Operator Analysis

Let us start with a theory with £ = Ly + £;, where £, = %26“05“0, and
Ly = Af"cos(nf). L is the effective interaction that would result from integrating
out the effects of charge n wormholes in the theory. We want to calculate the
Euclidean time evolution

eHTINY, = D~ e 5T [s)(s|N),, (3.5)

where |N), is the eigenstate of the free Hamiltonian with charge N, and the sum is
over eigenstates of the exact Hamiltonian. In perturbation theory, calculating the
exact eigenstate for the “corresponding” free eigenstate with an adiabatic method

yields
0

|s) = ilqonw% T exp [——z/ dteetHI(t)] 1s)o, (3.6)

-0

where H(t) is the interaction Hamiltonian in the interaction picture.
Working in the large T' limit, we need only consider the lowest-energy states
of a given charge at a given order in perturbation theory. This means that only

the constant mode of the field is relevant, so H, = %Vf2é2, H; = —VAf™cos(nf).
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Notice that this is just ordinary quantum mechanics on a circle, where H, is the
Hamiltonian for a free particle on the circle. The “momentum?” of the particle is the
axion charge, and is quantized (because we are on a circle). To calculate o{N|s),
we first notice that cos(nf) = 1 (e™ + =) = 1(b!" 4 b"), where bt = € is a
raising operator for ), the charge operator. Given any function of @, b'f(Q) =
f(@ — 1)bt. Using this commutation relation, we can explicitly evaluate the time-
ordered exponential to any given order in perturbation theory. Noting that only the

creation operators in H; will contribute to the matrix element, we find that

. Qn—n2
_me’22v)°2 tbfn_

H(t) = eHol e~ Hot — (3.7)
Evaluating the order r contribution to 4(N|s), we find that
VZfANTIT (B +1-1)
ol NIN —nr) = ( n2 ) T (1) (3.8)

Using Stirling’s approximation for the factorial and the gamma functions, set-

ting ¢ = Y327, and defining eMF = e Ev—nrT(N — nr|N),, we find

F=(l—g)yzpeny_ UEMA=2) o (1 —2)(1~20),

nn
1+z 2 Na? (39)
+ " ln(1+x)—(1—:c)ln(l—x)+2(1—a:)—;ln2—Q—VFT.

To find the “charge” of e=#T|N),, one finds the value of z that maximizes F ;

for large T' this should dominate the sum. Ignoring contributions down by 1 /T, we

find

v f? 2 rnt2 (1+n)
NT —InV*f /\+—n——lnN—

d—2n)

T =

1
Inn-14+—]. (3.10)
n
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Or in other words, the charge for large T is:

Q(T) B Vf2 I N(l+n)/'n,,n(1—2n)/nel/n—1 _ kvf2
N — NT V2 fnt2 T NT

(3.11)

We now see that there are both similarities and differences between the case
of axion charge and that of U(1) charge in the massive case. In the case of axion
charge, as in the massive case, the coupling constant appears only logarithmically,
and so has relatively little effect. However, in the case of axion charge, the decay is
like T rather than e~7. Charge decay in the axion case is therefore much slower,
and this may significantly affect our conclusions about whether the charge decay is
sufficient to destabilize large wormholes. In addition, the coupling constant affects
the overall decay rate, not just the “delay time” for an exponential decay to take

effect.

‘Wormbhole Destabilization

Does the axion charge decay succeed in destabilizing large wormholes? In the
semiclassical domain, this question can presumably be answered with certainty only
by finding out whether the Euclidean equations of motion with a charge-violating
interaction still support a wormhole solution. Nonetheless, if we adopt a reasonable
criterion for destabilization, I can estimate what ranges of the parameters will result
in the desired solution to the large wormhole problem.

Assume that a wormbhole is destabilized when the charge is reduced to + of its
initial value in 11—0 the radius of the wormhole. If this time satisfies the “large 7

condition, then we can calculate whether or not large wormholes are destabilized for
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particular choices of the parameters. (Note that the large T' approximation should
be good whenever the charge is a small fraction of the initial charge, which is exactly

our condition.) The axionic wormhole charge-size relation is1®-21l:

L2 Q

SR, A 3.12
v ar ] (3.12)

This relation simplifies the condition for wormhole destabilization, which becomes:

20k < % (3.13)

(where k is the logarithm in Equation 3.11).

To simplify this relation still further, we can use the axionic wormhole charge-
size relation (3.12) for small wormholes of charge @ = n. (When these wormholes are
integrated out, they give rise to the charge-violating interaction.) Since the coupling
A has mass dimension 4 — n, A = AM*~" where X is a dimensionless constant and
M is the inverse width of the small wormhole throat. Note that M is related to n
(or, @) by Equation 3.12. To discover whether the condition 3.13 will be satisfied,
let us look at large wormholes ten times the size of the small wormholes, which are
in turn ten times the Planck length in radius. For f = Mp,, n = 6800, and the
condition is —29(In(X) + 450,000) < 1, which will be satisfied for very small values
of X. For the same wormhole sizes, the smallest n can be is 1. This corresponds to
f= g—ggé (see Equation 3.12), which gives 260 — 29 111(5\) < 6800; this inequality will
also be satisfied for reasonable values of X. Note also that when n and f are fixed,
k ~(2—4)InL+C, and so if wormholes of a given size are destabilized, wormholes

of all larger sizes are also destabilized. (I should point out that when 7 is small, the
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+2 V2

parameter in which we expand, A%, will not necessarily be small, but then we

should not be surprised if the charge decays rapidly.)

Conclusion

I have demonstrated that for a large class of axion theories, small wormholes
seem to destabilize all wormholes of a larger size successfully, assuming a sensible
criterion for destabilization. Note that there was no real guarantee that this would
work (although an order-of-magnitude calculation suggests that it will). Physics
in systems with a mass gap often has large, qualitative differences from physics
in systems with massless particles. The Coleman and Lee mechanism may have
seemed to depend on the mass gap for charged states, and yet a minor modification
of their scheme makes it applicable, almost step by step, to the massless axion.
In some sense, this is because in a finite volume there is an effective “mass gap”
for creation of axion charge. For almost any form of conserved charge, there will
be an energy cost for increasing that charge in a finite volume. One would expect
that an analysis similar to the one in this paper would show that any form of
wormbhole supported by such a charge would be destabilized by weak charge-violating
operators. It therefore seems reasonable that the Coleman and Lee mechanism for
evading the large wormhole problem would apply to any type of wormhole supported

by a conserved global charge.



33

Chapter 4: S! x S? Wormbholes

Introduction

One of the factors driving the development of the wormhole formalism has been
the existence of classical wormhole solutions to the Euclidean equations of motion
for gravity and matter. A wormhole solution is typically defined as a solution that
is asymptotic to two distinct flat spacetimes. A configuration of wormhole topology
that is not a solution to the equations of motion is less convincing evidence of
topology change than is a classical solution, as the classical solution may give the
dominant contribution to some quantum-mechanical amplitude in the semiclassical
limit. Since this is our justification for considering classical solutions, it is reasonable
to ask to which quantum-mechanical amplitudes a proposed wormhole solution will
give the dominant contribution.

One could propose that the dominant contribution is to an amplitude for the
creation or annihilation of a baby universe. Since this process is expected to be
unobservable for low-energy processes on a background spacetime, one suspects
that this is not a measurable amplitude, and therefore not a physically relevant
calculation. One can instead require, however, that the wormhole mediate some
process that otherwise could not take place in the underlying field theory. In a field
theory with some conserved global charge, we expect that charge violation is just
such a process.

The first wormhole solutions found by Giddings and Strominger'® carried flux
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associated with a three-index antisymmetric tensor field, or axion. These wormholes
thus violated a conserved axion charge. Lee showed?® how to represent this in terms

of a massless scalar field dual to the three-index tensor,

led
H,,= ew)‘aa a.

The effect of wormholes can then be represented by operators that violate the sym-
metry @ — a + c. In order to find the solutions for the scalar field, or for the more
general case of a complex scalar field with a U(1) global symmetry,?!! one must
constrain the initial and final states to be states of definite charge. This can result
in certain terms in the equations of motion changing signs, the net result being that
the solutions for the three-index tensor theory are identical to the solutions for the
dual scalar field theory, which would not be the case if the equations of motion were
applied naively.

Wormbhole solutions have also been found in 3-dimensional® electromagnetism
by Hosoya and Ogura;?? these solutions carry magnetic flux down the worm-
hole throat. These solutions are really the direct 3-dimensional analog of the 4-
dimensional Giddings-Strominger axionic wormholes. In both cases, the charge that
supports the wormhole throat is topologically conserved. This means that the cur-
rent conservation equation is an identity when expressed in terms of the gauge

potential. In three dimensions, the magnetic flux current is

A v
7 =¢"F,,.

1T will write “n-dimensional” to refer to n-dimensional Euclidean spacetime, with n — 1 space

dimensions and one Euclidean time dimension.
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The flux conservation equation, d,j* = 0, is an identity when F' is written in terms
of the gauge potential: F,, =9,A, —0,4,.

The effects of these wormholes!®¥! will be similar to the effects of any finite-action
monopole solutions that may exist in the theory. In a three-dimensional theory, a
monopole solution can be thought of as an instanton that mediates processes that
violate magnetic flux. We can express the effect of such flux violation in terms of a
scalar field dual to F', just as in the four-dimensional case, we express the effects of
axion charge violation in terms of a scalar field dual to H.

In this chapter, we? attempt to generalize the magnetic wormhole to four-di-
mensional electromagnetism. In four dimensions, we still have magnetic flux conser-
vation, in that magnetic flux lines cannot end. (On a spatial slice, V-B = 0.) Loops
of magnetic flux can, however, shrink to nothing. We will avoid this in our worm-
hole solutions by giving the wormholes the topology S? x S! x R, so that magnetic
flux on the two-sphere can wind around the circle. We will also put a topologically
conserved charge on the S, namely, the winding number for a periodic scalar field.

We will then discuss the effects of such wormholes. We believe that while
insertions of the usual S x R wormholes appear as pointlike operators at low energy,
the effects of S* x $2x R wormholes will appear as looplike operators. We will discuss

the consequences of this.

Solutions

We construct our wormholes in a theory that includes the electromagnetic field

2This chapter is part of a forthcoming collaboration with John Preskill.
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and a massless periodic scalar field (which we will call the axion) coupled to gravity.
We want to construct a Euclidean solution with topology S* x S% x R. The periodic
scalar has a topological charge associated with it, the winding number on the S!.
For the electromagnetic field, magnetic flux on the two-sphere is conserved; this
conservation law is topological both in the sense that the current conservation law
is an identity, and in the sense that the flux is a topological invariant of the two-
sphere if charged fields are added to the theory.®

The Euclidean action for this theory is given by

1 v? 1
-_ d4 ———— P 72 4 ac_.) = uv )\O'F F
S / m\/gl: 167TGR+ 29 ap,@ v +462g g urt ve
Here v is the axion symmetry-breaking scale; © is a periodic scalar field with period
2r. Now the simplest possible ansatz for a wormhole solution with the desired
features will have a Euclidean Kantowski-Sachs geometry:124 each spatial slice will

be homogeneous and characterized by the radius of the two-sphere, the radius of

the circle, and the topological charges associated with each. The metric for this is
ds® = N*(7)dr? + a®(7)di® + b2(7)d02,

where [ is a periodic coordinate with period 1, and d)? is the solid angle element
on 5%, dQ? = d6? +sin?0 d¢?. By reparameterizing 7, we can set the lapse function
N?(7) to any strictly positive function; for the time being we set it to unity. The

quantities a and b are the radii of the circle and the two-sphere, respectively.

3This results in the Dirac quantization condition for the magnetic monopole.
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We want to solve our field equations for this ansatz. The field equation for ©
is

au[ﬂguyaue] = 0

We impose the restriction that © is a function of [ and 7 only, and that derivatives

of © are functions of 7 only:
O = T(T)l + To(r).

Since © must have an integral winding number on the circle, it must satisfy the

boundary conditions

o(l,7)=0(+1,7) —27n,

and thus

O = 2xnl 4+ Ty(7).

We are considering the case n # 0, and in this case, Ty(7) must be constant to avoid
off-diagonal terms in the energy-momentum tensor. We eliminate constant T} by
shifting ©, so

O = 27nl.

For the electromagnetic field there is a field equation and a Bianchi identity:

O [VgF*]=0 and F,, ,+F

pv,p vp,u

+F,,,=0.

Since we are looking for a purely magnetic solution, F% = 0; therefore,

0,[\/GF*] = Suly/5F™) = 0.
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We see that the field equation is automatically satisfied. In fact, we want to have a
homogeneous magnetic field on the two-sphere. In the coordinate basis,* our ansatz
is
&(r)

— 7’ sin 4.
s

Foy = —Fyp =

The Bianchi identity gives 0, Fy4 = 0, and thus ®(7) = ®,, a constant. @, is the
conserved magnetic flux on the two-sphere.

The conservation laws allowed us to solve the matter field equations quite di-

rectly; the only non-trivial equations are Einstein’s equations. Einstein’s equations

are

R, —39,R= 87GT,,.

For our field content, the energy-momentum tensor is
1 04 o o
T, = v2[8u@81,® - %gwg"‘ﬁaa@aﬁG] + g[g ﬁFwFﬂu — igwg B g Fo\Fg,l,

where we have included the metric explicitly,. When we substitute our ansatz for
the metric and the solutions to the matter equations, Einstein’s equations reduce to

the following three equations:

2ab B 1 Q @

Gt E RS e (4.1a)
2 ¥ 1 @, Q
TR TR e (4.1b)
a b ab Q,  Q,
—+E+ZL-Z;=—F s (4.1c)

4The coordinate-basis components of F' are not simply the electric and magnetic fields, as would

be the case in an orthonormal basis.



39

where we define () = £(), and we set @, = 87G(27?n?v?) and Q, = 87 G (#j:—%)
1 and @, are always positive. Note that Equation (4.1a) is a constraint equation
for the system of second-order differential equations defined by the other two; one
can easily verify that it is conserved by Equations (b) and (c). Equations (b) and
(c) are redundant; either can be eliminated without loss of generality. We would
now like to find a solution to these equations. We cannot actually solve these
equations analytically; instead, some numerical results will be given. Before we do
that, however, there is still much that can be said about these equations.

We would like find out whether wormhole solutions exist, and indeed, what
exactly we mean by a wormhole solution. Uunlike the case where the topology is
S3 x R, there will not be any asymptotically Euclidean solutions with topology
5% x S* x R. First, the ansatz itself cannot be asymptotic to R?, since the topology
forbids it. Second, while there are configurations asymptotic to flat R® x St (i.e.,
a — constant, b — 7 + constant), a simple argument shows that these cannot be
solutions: Since the circle goes to a constant radius, the energy density that is due
to the winding of the scalar goes to a non-zero constant, and thus the curvature
cannot go to zero as it must for a flat solution. So what do we mean by a wormhole?
In our case, we will define a wormhole solution to be a solution such that a) there
exists a small “throat” where both of the radii attain a minimum value, and b) some
distance outside the throat both radii become much larger than they are near the
throat, and are “almost” of the form « = constant, b = 7 4 constant . We intend to

demonstrate the existence of such solutions.
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The first thing we must determine is whether a wormhole throat can form. The
condition that we are at a wormhole throat (for a particular value of 7) is that
¢=b=0 and i, b>0. \Is this consistent with the equations? Setting @ and b to
zero, from the constraint Equation (4.1a) we find a relation between a and b at the

throat:
Qi 1 @,

a? b2 b4

(4.2)
Using this relation and Equation (4.1b) we find that

b_Q

b a?
at the throat, so b will always be greater than zero. Finally, using the previous two
relations, at the throat,

3, _ 2

bt b2

4
a
We thus require @Q,/b? > 2/3 so that & is positive at the throat. Note also that

Equation (4.2) implicitly requires that ),/ < 1 at the throat. At the throat,

then, Q,/b? is a free parameter, which must satisfy

and one can calculate all other quantities from this (and of course, from @, and
Q,).

Before we go on, let us consider the case @, = 0. In Euclidean space, the
Kantowski-Sachs ansatz we have given is equivalent to static, spherically symmetric

spacetime with periodically identified time, where the Kantowski-Sachs Euclidean
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time becomes the radial coordinate of the spherically symmetric case. For Q, = 0,
the solution to these equations is well known: it is the Euclidean magnetic Reissner-

Nordstrém solution.?®] These solutions, of course, seem nothing like wormholes, but

there is, in fact, a solution with a “throat”:

b=b, = /Q,,

a = aycosh(7/by).
The constant radius of the two-sphere is equal to the horizon radius of the extreme
Reissner-Nordstrém black hole. This solution is not even close to being asymptotic
to a flat background; therefore, we will ignore it and concentrate on @Q, > 0.

In the general case, (),, @, > 0, we were unable to obtain analytic solutions. We

did obtain some results by numerically integrating the system of ordinary differential
equations (4.1). We need only use Equations (4.1a) and (b), which give a first-order

differential equation for a(7) and a second-order differential equation for b(7):

da _ab(1 & Qi @
d7~2[}< ) (4.3a)

& b1 ¥ Q Q
F‘§<"‘_—+_“_>' (4.3b)

We found numerical solutions by performing integrations with initial conditions

set to values appropriate for a wormhole throat:

_ 2_0Q
b(0) = b, (§<b—g<1>
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Note that 5(0) is set to a small, non-zero value €. This is necessary, because when
b = 0, Equation (4.1a) merely imposes the constraint (4.2) without fixing &. Setting
btoeat T =0 does set a(0) to (nearly) zero with a(0) and b(0) as given. We
set € small enough that computer test runs with the opposite sign for € showed no
significant difference. In general, Equation (4.3a) will be undefined whenever b goes
through zero. The integration package seemed to handle this without significant
difficulty. This package® implements a Runge-Kutta algorithm of order 4(5) with
adaptive step sizing. Graphs of some of the results are displayed in Figures 1-3 at
the end of this chapter.

What are some of the general features of the solutions that we can see from the
numerical results? Note first that we only need calculate solutions for fixed values
of @; and @,, here set to 1. We can do this because if we have a pair of functions
a(7) and b(7) which is a solution to Equations (4.1) for any particular values of Q,
and @),, there is a corresponding solution with (21 = A2Q),, Q2 = A2Q), given by

a(7) = A Aya(7/A,)
5(7') = Ab(7/A,).
The qualitative features of the solutions thus depend only on the parameter Q,/b2.

We performed numerical integrations that started at the wormhole throat with
various values for the free parameter ),/b3. When Q, /b2 is very close to 1, we find a

wormhole-like solution, where a starts to rise very rapidly for a time, and then levels

off, seeming to approach a constant. The S? radius b starts out fairly flat, then goes

5The RungeKutta.m package supplied with Mathematica 1.2 was used.
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to a regime in which b is nearly 1. If we continue to integrate to much larger values
of 7, a will reach a maximum and start decreasing, eventually collapsing to zero,
while b increases rapidly to infinity. When Q,/b3 is not close to 1, this “nearly flat”
behavior never begins; instead, a just reaches a maximum and then collapses while
b diverges — the only difference is that this happens much sooner, never allowing

the solution to reach a nearly flat regime.

Wormbhole Insertions and Topological Charge

We would like to understand what relevance these wormhole solutions have
for a theory of quantum gravity. In particular, we would like to know what kind of
effects this type of wormhole will have on low-energy physics in flat, four-dimensional
spacetime. In order to determine this, we need to understand how these wormhole
geometries of ST x S§% x R topology can attach to flat R*.

The answer to this question is actually suggested by the solutions themselves.
The metric given (in our ansatz) by a(r) = constant and b(7) = 7 is flat; flat B3 x S!
has this metric with 7 € [0,00). If we consider the subset of this space given by
T € [0, 'rf], we have flat B® x S, where B® is the three-dimensional ball. There
are B® x 5! subsets of R* that consist of a loop in spacetime with a neighborhood
around it. The geometry of these subsets very nearly approximates that of the flat
B? x S described above, at least in the limit where the loop (the S*) is long and
straight on the scale of the ball around it. After excising such a region from the
background, there is a boundary left with topology 5% x S, to which we can attach

the S? x ST boundary of the flat B3 x S we have constructed, or any other geometry
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that approximates this near the boundary. Our wormhole solutions almost match
this geometry in the ¢ & 0, b = 1 regime. It should then be possible the perturb the
geometries of the wormhole solution and the background spacetime in such a way
that they can be patched together on the S* x S? boundary. The geometry formed
this way is almost a classical solution, and may in fact closely approximate an exact
solution to the equations of motion that connects two large, flat 4-geometries with
an S§* x S? throat.

The ansatz we have made is inconsistent with such a solution; this is why we
needed to resort to the approximate patching procedure. This also means, however,
that some features of the solutions we have found may mislead us in determining
properties of the actual solution. For example, the solution we have found may
have instabilities that merely indicate that there is an exact, stable solution nearby.
Presumably, if we patch our wormhole solution to a solution for the fields in a flat
background in a region where both solutions are still reasonably accurate, we can
avoid such problems.

What happens in the background when a solution of this type is attached?
From the point of view of the background spacetime, the wormhole end appears as
a small neighborhood around a closed curve C. As we follow the loop around, we
find that the scalar field winds n times. If we look at a three-dimensional slice that
intersects the loop, we see magnetic flux coming out; or if our three-dimensional slice
contains the loop, it changes the magnetic flux, as follows. Consider the magnetic

flux lines in the background “time”-slice before and after the slice in which our
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loop sits. Since the magnetic flux from the loop changes sign between the “before”
and “after” slices, we find that the insertion of the wormhole end creates a loop of
magnetic flux in the background. Thus the effect of inserting the wormhole end will
be similar to the effect of insertions of an “’t Hooft loop” operator.l?8l The ’t Hooft
loop, B(C), is the analog in one extra dimension of the flux creation operator ¢(x)
described in [23] and [26]. Its action on a state (i.e., a time slice) is to perform a
singular gauge transformation that has a non-zero winding number along a curve
that links the loop. In the path integral, an insertion of B(C) means that one
integrates over gauge field configurations such that C is the world line of a Dirac
monopole singularity of the gauge field. There is no particular conservation law
that forbids the formation of loops of magnetic flux. But recall that we also have
axion winding number as we follow the loop around: The wormhole insertion creates
a loop of flux with axion winding number. We now show that this “flux winding
number” is topologically conserved.

Consider a loop of flux that winds in the manner described above. The axion
winding number is given by

2mrn = fV@-dl,
¢

where the line integral is along the loop. If we multiply this by the flux, we have

27rn<I>=/B-dafV@-dl:/d%B-V@.
c

This is a conserved charge, because B - VO = J°, where

A Auv
J =R, 5.0,



46
and J* is an identically conserved current. So “flux winding” as we have defined it
is a topologically conserved charge.

Unfortunately, it also happens to be zero! Note that because of flux conser-
vation, B - VO = V . (B0O), so our charge is equal to the integral of BO over the
two-sphere at infinity. Since there are no monopoles in the theory, this will be zero.
It should have been clear from the start that if the field © is continuous everywhere,
the winding number around any contractible loop, and therefore any loop in R2, is
zero. This points the way to making this charge non-trivial: We must allow singu-
larities in ©. This is perfectly natural if © is actually the field of a complex scalar

field ¢; the singularities of @ are simply zeros of ¢.

Low Energy Effects

We would now like to understand the nature of the low-energy effects of allowing
these wormholes in the theory. As the insertions are qualitatively different from
those of traditional S wormholes, we will generalize the bilocal action formalism
for looplike wormhole insertions.

We suppose that a wormhole connects a curve C; and a curve C, in a background

4-geometry. The effects of this wormhole can be represented by

Z CabBa(Cl)Bb(C2)a
ab

where B,(C) is some set of gauge-invariant operators that depend on fields along
C. For C; distant from C,, we can absorb any dependence of this insertion on C,

or C, into the B’s; then the C,;’s can be treated as constant in the dilute gas
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approximation. Following identical arguments to the pointlike case, there exists an
a parameter for B,(C), which gives terms of the effective action
$ = Sy + A(a) /’DC B,(C),
where we have generalized to non-linear o dependence; the contribution to the action
is a path integral over loop space.

This contribution looks very different from the contributions we had from tra-
ditional wormholes. It almost looks as though we have a contribution to an effective
string field theory, rather than to an ordinary local field theory. This does not mean,
however, that we cannot interpret this in terms of more prosaic physics.

Consider ordinary quantum electrodynamics, and the low-energy effective field
theory that results from integrating out the electron. Instead of using field theory
for the electron, however, we use a first-quantized formalism where one integrates

over the path of the electron. The Euclidean action for this is § = S, + S, where
1
— dB o
SO / z (4:62 F )
Sy = m/dl—i/Audx“,
where the integrals for S,; are along the path of the electron. The path integral for

the partition function is

Z = /DCDAe‘S,

where C is the path of the electron. Let us integrate out electrons, including an
arbitrary number of non-interacting electrons on closed paths. This path integral

exponentiates, giving

7 = /DA exp — (S’O —/DCexp(i]{Aud:c“ ~m/dl)> .
¢ c
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This is just the same form as derived for wormhole insertions, because we have just
added a term to the action that is a path integral over loops of an operator that
depends on values of fields on the loop. Consider just the electromagnetic coupling
term. For the electron, this term gives the Wilson loop, exp(¢ § A, dz"), but for the
wormhole, one will get the ’t Hooft loop, as we have discussed. This is the analogous
operator for a magnetic monopole. While it is not entirely clear how to impose the
constraint that the wormhole insertion winds around a zero of the scalar field, it
seems that the effects of wormholes will be similar to the effects of integrating out
magnetic monopoles.

The effective Lagrangian obtained from integrating out electrons®”l is well
known. To lowest order,®

6S = a(F?)? + b(FF)?,

where a and b are calculable (but irrelevant for our purpose) constants, and £’ w =

€00 F?°. The Maxwell equations derived from this action are

0,F* = 8ad,(F?F*) + 8b0,(FFF*)

o9, F*" = 0.
Thus the virtual electrons create an effective source term for F'**; the Bianchi iden-
tity, of course, remains unchanged.

One ought to be able to learn the effects of including monopoles by dualizing

the above derivation, i.e., letting F « E. This does not change the contribution

6We do not include interactions with derivatives of F, as we assume that we are at very low

frequencies but moderate field strengths.
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to the action, but it should change the Maxwell equations, giving a source to F'
instead of F'. Deriving the Maxwell equations in the usual way will not give this;
it is necessary to vary the action with respect to a dual potential B, such that
FW = 9,B, — 0,B,. This does seem to be the correct thing to do, as we expect
the interaction term for the monopole to be g,, § B,dz*. Nonetheless, it would be
better to avoid the dual potential altogether.

For another viewpoint on the low-energy effects of S* x S? wormholes, recall that
our first interpretation of the wormhole-induced operator was as one that created
or destroyed a loop of magnetic flux that encircles the zero of a scalar field. This
can be given a more concrete realization in a theory with vortex solutions. Consider
the simplest theory with bosonic superconducting cosmic strings.l?®) This theory
has two independent U(1) gauge fields A, and R,, and two complex scalar fields o
and ¢ that are minimally coupled to A and R, respectively. The scalar potential
is such that ¢ has a vacuum expectation value, but o does not. Thus the R gauge
symmetry is realized in the Higgs phase, and the A symmetry is realized in the
Coulomb phase. The scalar potential also has the property that at the core of
a Nielsen-Olesen vortex of the R symmetry, ¢ has a non-zero expectation value.
Since o carries the charge of the unbroken gauge field A,, the o condensate at
the core of the string causes it to be a superconductor. Loops of this string carry
persistent currents that are characterized by the winding number of the o field
around the loop. There exist static solutions to the field equations of this theory

known as “springs”?’! or “vortons,”B% that consist of a loop of superconducting
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string prevented from collapsing by a persistent current and the magnetic field that
it generates.

If we identify the F),, of our wormhole solution with the field strength of the
R, gauge field, and identify the O field of our wormhole solution with the phase of
o, then these vortons are carriers of exactly the topological charge we defined. The
theories certainly do not match exactly, but in the limit where the radius of the
two-sphere boundary of the wormhole is much less than the radius of the core of
the string, we might expect that the wormhole solution can successfully patch on to
the vorton solution. In this case, the wormhole insertion induces an operator that
creates or destroys a vorton. Since the vorton is quantum-mechanically unstable,
the charge is not strictly conserved, but if the vorton lifetime is sufficiently long,
the wormhole may be the most important contribution to its decay. The wormhole
contribution to the theory could then be described in terms of an effective local field
that describes the vorton degrees of freedom, even though this hides somewhat the
non-local nature of the wormhole insertions.

At this point we can further address the question of which configurations dom-
inate the path integral. We have postulated the existence of solutions which, for a
fixed value of the squared charges @, and @,, can be patched to the background
spacetime along an arbitrarily long curve C by adjusting the parameter Q,/b2 at the
wormbhole throat. In searching for the lowest action classical solution contributing to
a given process, however, we cannot fix the parameters at the throat — we can only

fix parameters on the background. For example, if we are looking for the leading
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contribution to a process which carries away a fixed magnetic flux with a fixed scalar
winding number, we should include only the lowest action solution for fixed @, and
Q,. We expect that this will have a circular wormhole solution of some fixed length;
this is analogous to the stable static vorton solution with similar parameters. We
could also imagine actually searching for processes which annihilate a vorton of a
given size as well as charge, the dominant contribution to which will be given by a
wormbhole of the appropriate size. The correct wormhole solution always depends

on the amplitude under consideration.

Conclusions

We have constructed wormbhole solutions of topology $2? x S! x R in a theory
with electromagnetic fields and periodic scalar fields. While not exactly realistic,
this theory is a simple example of a theory with topologically conserved charges
on both the two-sphere and the circle. These wormhole solutions do not fit the
paradigm of having S® x R topology and asymptotic flatness in both directions.

Nonetheless, we see that these wormholes may be sensibly interpreted in terms
of effective 't Hooft loop operators (or monopole loops) on the background spacetime.
There are still a number of loose ends, though. For example, it is an unproven
hypothesis that the asymptotically flat solutions suggested by this work actually
exist. Even if they do, they may not contribute to the Euclidean path integral in
the simple form suggested.

Another issue concerns the Coleman-Lee solution to the large wormhole prob-

lem.'¥ Although these wormholes are indeed supported by a conserved charge, it
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is not obvious how this charge can be “drained away” by smaller wormholes. This
might be easiest to see in terms of a field operator that creates or destroys vortons.
But in this case, the global, topological aspects of the conserved charge seem to be
lost.

While these wormholes seem to lie on a somewhat looser foundation than the
traditional ones, they may have important things to tell us. If they do make an im-
portant contribution to the path integral, they further reinforce the supposition that
no global symmetries are safe in quantum gravity, not even topological symmetries

on subspaces of the background spacetime.
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Figure 2: a(7) (solid) and b(7) (dashed) for Q; = @, =1 and Q, /b3 = 0.8.

The figure does not show it, but b goes to infinity where a goes to zero.
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Figure 3: a(7) (top) and b(7) (bottom) for Q; = @, = 1 and Q,/b% = 0.999.

The maximum value of a increases dramatically as Q, /5% — 1.
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Chapter 5: Summary

As physical theories go, the wormhole calculus is a somewhat ambiguous cre-
ation. Its fundamental impulses are conservative — one does not attempt to derive
new physics, but merely explores the consequences of the physics we have, gen-
eral relativity and quantum mechanics. To go very far with this input, however,
one is frequently forced to make somewhat dubious suppositions or approximations.
Nonetheless, the reward for this speculation is rich: We come to the conclusion that
the constants of nature are random variables.

Insofar as wormholes represent Planck scale physics, they seem to make no
measurable predictions. But, if the results of Reference [4] are correct, there is a
strong prediction that the cosmological constant is zero. While it seems unlikely, !
one may even be able to predict other fundamental constants. If not, though, the
randomness inherent in the wormhole formalism may make it impossible to predict
anything at all.

There is a some possibility of making direct experimental contact with wormhole
physics. The Coleman and Lee large wormhole suppression mechanism predicts
that wormholes are dense at a scale set by the bare cosmological constant. If low-
energy supersymmetry is a correct theory of nature, then the bare cosmological
constant will not be too far above the electroweak symmetry-breaking scale. This
means that for interactions at energies at or above this scale, one could no longer
consider the wormhole insertions to be pointlike operators. I do not know, however,

what their effects would be. If there are weak scale wormholes, one might expect
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dramatic effects at particle accelerators such as the SSC. In my opinion, however,
the current limits on such effects as quantum-mechanical incoherence and baryon-
number violation are likely to rule out such accessible wormholes.

Given this, what is the likelihood that experimental physics will help to con-
firm or refute the theory of wormholes? The most important avenue of approach
will be the search for predictions of the constants of nature. Much of the interest in
wormbhole physics arose with the prediction that the cosmological constant is zero.
Indeed, the wormbhole theory seems to be the best explanation for this puzzling fact,
although alternative attacks on this problem abound.PY The only other prediction
of the wormhole calculus is a failure. Because f,,p contributes to physics only via
instanton effects, which fall off rapidly at short distances, the dependence of New-

ton’s constant on Oy is calculable.*d

Unfortunately, this leads to the prediction
that 6,0p = 7, in contradiction with experiment.!

Given the mixed record of wormhole physics, why should one spend any time on
it at all? I believe that there are a number of reasons. To the extent that wormhole
physics is an honest prediction of quantum gravity, it is important to study it as
far as it will go. Even if it is not, we learn something about the assumptions we
must make and the nature of the Euclidean path integral. It will pay, in the end, to

attempt to strengthen the arguments used in deriving the wormhole path integral.

This way we can learn about the definite consequences of quantum mechanics and

IThis is not the final death of wormhole physics. This incorrect prediction may result from a

failure of chiral perturbation theory, rather than from a failure of the wormhole formalism.
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gravity.

Another reason is simply that the wormhole solution to the cosmological con-
stant problem is one of the better available solutions to this problem. If we want
to keep the baby, it is important to find out what is lurking in the bath water.
Finally, the study of certain aspects of the wormhole formalism has taught us some
interesting things about ordinary quantum field theory. We have learned, for exam-
ple, how very weak, high-dimension, charge-violating operators can lead to dramatic
effects in Euclidean space. The charge decay is much more rapid than one might
have expected. We have also learned much about the nature of topologically con-
served quantities in quantum field theory and how they can be violated by terms
in the effective Lagrangian. In effective field theory, topological symmetries turn
out to be much more like ordinary global symmetries than like anything else. The
quantum-mechanical relationship between a theory and its classically equivalent dual
formulation has also been clarified. Even if the assumptions and predictions of the
wormhole formalism are eventually shown to be incorrect, the theory of wormholes

is an important addition to theoretical physics.
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