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Abstract

In this thesis I present three separate studies on three different topics in General
Relativity.

The first study investigates the accuracy with which the mass and angular
momentum of a black hole can be determined by measurements of gravitational
waves from the hole, using a laser-interferometer gravitational-wave detector. The
black hole is assumed to have been strongly perturbed, perhaps by coalescence
with a binary companion, and the detector measures the waves produced by its
resulting vibration and ring-down. The uncertainties in the measured mass and
angular momentum arise from the unavoidable presence of noise in the detector.
It is found that the faster the hole rotates, the more accurate the measurements
will be, with the uncertainty in the angular momentum decreasing rapidly with
increasing rotation speed. It is also found that the errors in the mass and angular
momentum are highly correlated.

The second study is an analysis of the gravitational collapse of an infinitely long,
cylindrical dust shell. This analysis is expected to be helpful in understanding the
behavior during collapse of more realistic, finite-length bodies. It is found that the
collapse evolves into a naked singularity in finite time, as measured by a distant
observer or by one riding on the shell. Analytical expressions for the variables
describing the collapse are found at late times, near the singularity. The picture
is completed with a numerical simulation that follows the collapse from the start
until very close to the singularity. The singularity is found to be strong, in the
sense that an observer riding on the shell will be infinitely stretched in the direction
parallel to the symmetry axis, and infinitely compressed in the azimuthal direction.
The gravitational waves emitted from the collapse are also analyzed.

The last study focuses on a different kind of phenomenon, namely, the con-
sequences of the existence of closed timelike curves in a spacetime that contains
a wormhole. One might expect that the closed timelike curves would cause diffi-

culty for the initial value problem for systems that evolve in such a spacetime: a
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system with apparently well-posed initial conditions might have no self-consistent
solutions to its evolution equations. We study the simple case of a macroscopic,
classical particle with a hard-sphere potential (a “billiard ball”), and we focus
attention on initial conditions for which the evolution, if followed naively, is self-
inconsistent: the ball enters one mouth of the wormhole and then comes out of
the other mouth at an earlier time, then collides with its younger self, prevent-
ing itself from ever entering the first mouth . We find, surprisingly, that for all
such “dangerous” initial conditions, there are an infinite number of self-consistent
evolutionary solutions, involving a glancing collision and any number of wormhole
traversals. We also find that for many non-dangerous initial conditions, there also

exist an infinity of possible evolutions.
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When Einstein formulated his theory of General Relativity and found that it
predicted the existence of gravitational waves, he also found that for any astrophys-
ical situation the waves would be so extraordinarily weak that it seemed unlikely
they would ever be detected, much less be of observational importance. However,
the advance of technology and the remarkable ingenuity of experimental physicists
have created a series of gravity-wave detectors of increasing sensitivity, which make
the detection of such waves likely in the next decade.

Weber [1] pioneered the field with the first resonant-bar detectors. These de-
tectors have a very narrow band of high sensitivity, being tuned for a specific
frequency. More recently, laser-interferometer-based detectors have been devel-
oped. They have the advantage of having a relatively wide frequency band of
sensitivity, which makes them more useful as observational instruments [2]. The
sensitivity of these interferometric detectors has been continually improving, and
large-scale detectors of this type, those of the LIGO and VIRGO projects, are
expected to reach the sensitivity range necessary for detection of waves produced
by astrophysical sources.

In order to make optimal use of the LIGO/VIRGO measurements, it is im-
portant to understand the waveforms produced by the various possible sources.
Much work had been done previously on determining waveforms [2, 3], but the
prospects for actual detection have motivated many other more detailed analyses
and calculations, for a wider class of astronomical sources.

Once we are reasonably confident of the relationship between an astrophysical
phenomenon and the gravitational waves it emits, it becomes possible to estimate
how well a LIGO-type detector will be able to determine the parameters involved
in the phenomenon, and how its precision will depend on the actual values of the
parameters.

In Chapter 2 of this thesis I present a study of this type. In it, I focus on the
expected waveform emitted by a black hole after it has been strongly perturbed,

e.g., by coalescence with a binary companion. That waveform is known to be a
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superposition of so-called quasi-normal modes.

These modes are damped sinusoids whose frequencies and damping times have
been accurately computed and depend solely on the black hole’s mass M and an-
gular momentum J = M?2a. Since we know this dependence, a precise observation
of such a waveform would allow us to determine both the mass and the angular
momentum of the black hole.

Any such measurement of M and J will be plagued by the detectors’ noise. The
purpose of Chapter 2 of this thesis is to determine, for the planned LIGO/VIRGO
detectors, the errors introduced into the measured values M and J by the noise,
and the correlation of those errors. In this analysis I have assumed (with some
justification) that the waveform will be dominated by a single quasi-normal mode:
the quadrupolar mode that is least strongly damped. I then evaluated the expected
errors and correlations introduced by the detectors’ noise into the measured values
of the mode’s frequency and damping time, and from those I inferred the errors
and correlation of M and J.

Qualitatively, my results predict that the faster the black hole rotates, the
more precise the measured values of M and J will be. I also found that for slowly
rotating holes the mass is better determined than the angular momentum, but as
the rotation gets faster, the uncertainty in the angular momentum decreases more
rapidly, becoming better determined than the mass beyond a rotation parameter
of a &~ 0.8. (The fastest that any hole can rotate is @ = 1.) I also found that for
all rotational speeds, the errors in M and J are very highly correlated.

Recently Finn [4] has argued that one should use a different method from mine
to compute the values of a signal’s parameters, and at first Finn’s choice of method
appeared to give different results from mine. (My method is based on the Wiener
optimal filter, with the overall amplitude of the wave factored out of the analysis;
Finn advocates a variant of the well-known maximume-likelihood method.)

In an addendum to the published paper that forms the main body of Chapter

2, I analyze Finn’s maximum-likelihood method and prove that for my problem,
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it is mathematically precisely equivalent to the Wiener method that I used, and it

produces identical results.

One of the methods currently being pursued to obtain a better understanding
of the waveforms emitted by strongly gravitating objects is numerical simulations
on computers. The high nonlinearity of Einstein’s equations makes it impossible
to obtain even approximate analytical solutions in almost any situation that is not
highly symmetric and highly idealized. On the other hand, the exact numerical
solution of a realistic problem is enormously complicated and resource-intensive,
computationally. Nevertheless, numerical simulations have been advancing rapidly
in recent years, especially because of advances in computer technology, thereby
making it possible to attack previously unsolvable problems.

Axially symmetric (2+1-dimensional) numerical simulations have been applied,
in recent years, to the study of the gravitational collapse of bodies with shapes
different from the analytically tractable, spherical case; see, e.g., [6, 7]. By these
simulations it is possible to study not only the gravitational waves that are emitted,
but also the way the collapse itself evolves, whether and under what conditions
an event horizon forms, and whether the collapse evolves toward a singularity or
is halted eventually by the physical properties of the collapsing matter, such as
pressure and angular momentum.

Although these 2+1-dimensional numerical simulations are advancing very rap-
idly (and 3+1-dimensional simulations are now being initiated), they still are far
from giving a complete understanding of the above issues in gravitational collapse.
In the quest for deeper understanding, there is a need for studies of simpler physical
models that can give insight to guide the 2+1- and 3+1-dimensional simulations.

In Chapter 3, I present a study of this kind, in which the gravitational collapse
of an infinitely long, cylindrical shell of pressureless matter is analyzed. It has
long been known that such a collapse produces a naked singularity [5], but nobody
has previously studied the nature of the singularity or the evolution into it or

the gravitational waves emitted by the collapse. My model is simple enough that
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analytical solutions are obtained for the late stages of the collapse, and then a
1+1-dimensional numerical simulation completes the picture of the evolution from
the initial state to the final singularity.

My analysis gives information about the way the collapse evolves and the time
required for the complete evolution and how the collapse time depends on the
cylinder’s mass per unit length. I also confirm the prediction that the collapse
produces a naked singularity, which is one of the issues of greatest interest in the
2+1-dimensional simulations of prolate collapse: Will naked singularities also be
formed for finite-length, elongated bodies; and if so, what will be their character?
Recent results [6, 7] suggest that naked singularities will form in the finite-length
case when the body is made of dust and has vanishing rotation, and that the
singularities extend along the symmetry axis from the body’s interior into its vac-
uum exterior — and most intriguingly, that the singularity in the vacuum exterior
might causally precede that in the interior or be spacelike with respect to it. This
last property, if true, would suggest that the vacuum part of the naked singularity
might still occur if the body’s dust is given a tiny amount of pressure and rotation.
These issues of the existence and nature of the singularity in the vacuum exterior
of a finite-length, highly elongated body cannot be probed by my analysis of an
idealized, infinite dust cylinder. However, my analysis may give useful insight into
the central, matter-endowed region of the finite-length body, the nature of the sin-
gularity to be expected in the central region, and the burst of gravitational waves
to be expected.

My analysis of the infinite dust cylinder shows that the singularity formed by
the collapse is strong, in the sense that an observer riding on the dust shell as
it collapses will become infinitely stretched parallel to the symmetry axis, and
infinitely compressed azimuthally.

Finally, I have computed the shape of the gravitational waves emitted during
the collapse. I found that the gravitational-wave strain rises continuously from

zero to a maximum near the moment at which the unknown effects that are due
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to the singularity formation dominate. The waves’ stretch and squeeze are in the
opposite direction to those of the singularity: The waves would stretch a detector

along the azimuthal direction and squeeze it parallel to the symmetry axis.

The theory of General Relativity is enormously rich; in addition to the extraor-
dinary solutions represented by black holes and spacetime singularities, it permits
solutions that pose a series of questions about causality. Such is the case of clas-
sical, Lorentzian wormholes [9], which are solutions that connect separate regions
of spacetime through a short throat.

It has been shown [10, 11] that according to classical general relativity theory, if
traversable wormbholes can exist, then generically they will produce closed, timelike
curves, e.g., by one wormhole mouth moving relative to the other and thereby
creating a “time difference” between them. (By a time difference is meant the
property that if one travels through the wormhole, one emerges from the second
mouth at a time that is different from one’s entry into the first mouth, as measured
in any relevant, external reference frame.) Once such a time difference has grown
large enough to give rise to closed, timelike curves, the evolution of any system
that encounters those curves will depend not only on events in the system’s past,
but also on some events in its future. This would, in principle, allow the type
of science-fiction, time-travel paradoxes in which an observer travels into the past
and prevents himself from entering the wormhole (perhaps by killing his younger
self). Such paradoxes, of course, would mean that the initial-value problem might
not be well posed, since there would seem to be no self-consistent solutions to the
system’s evolutionary equations.

Several researchers have studied this problem in recent years [12, 13], and sur-
prisingly, we have all found that at least within the realm of classical physics, for
every system that has been analyzed, there are always self-consistent solutions in
the presence of closed, timelike curves. (Of course, the systems that have been
analyzed are all very simple.)

Chapter 4 of this thesis presents the results of one of these studies, which I
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have carried out in collaboration with Kip Thorne and Gunnar Klinkhammer. *

In this study we examine the case of a simple and well-defined system, that of a
“billiard ball” (a macroscopic body with a hard-sphere potential) that moves and
self-collides in a spacetime that is flat except for a wormhole. The wormhole’s two
spherical mouths are connected by an infinitesimally long throat, and are at rest
relative to each other and have a fixed time difference.

It is easy to conceive of an initial “dangerous” trajectory for the ball, in which
it enters one mouth and comes out from the other mouth earlier, only to knock
its younger self off its original trajectory, thereby preventing its younger self from
entering the wormhole in the first place. This is an evolutionary problem with
well-posed initial conditions, which at first sign seems to have no self-consistent,
evolutionary solutions.

In our investigation we find that dangerous initial data of this sort are peculiar,
not because they give rise to no self-consistent, evolutionary solutions, but rather
because they actually give rise to an infinity of solutions. Each of the self-consistent
solutions involves glancing collisions that only slightly deflect the ball’s trajectory,
and the solution can involve any number of wormhole traversals. Not only do
the dangerous initial conditions give rise to an infinite number of evolutionary
solutions; so do a wide variety of nondangerous initial conditions.

Research by others [14] shows that when one quantizes the billiard ball via a
sum-over-histories technique and then takes the semiclassical (WKB) limit, the
evolution becomes well behaved in a probabilistic sense: There is a definite and
computable quantum-mechanical probability for the billiard ball to follow each of
the classically allowed evolutionary solutions (trajectories), and the joint probabil-
ity to follow two such solutions in the same experiment is zero. This is pleasing.

Not so pleasing is the fact that the resulting quantum-mechanical evolution is

My own contributions to this study were the following: the key ideas underlying the structure
of the self-consistent solutions, as spelled out in Sec. II.B; the demonstration, in Appendix B,
that in general there are two classes of small-deflection solutions (depicted in Fig. 3); and
the demonstration that all dangerous initial trajectories have at least one or two self-consistent
solutions (Sec. IV and Appendix B).



typically nonunitary. {15]

Although the laws of physics seem to accommodate themselves to closed, time-
like curves moderately easily (aside from the issue of nonunitarity, which seems not
to be deadly), it now seems somewhat likely, though not certain, that diverging
vacuum fluctuations of quantum fields will prevent closed, timelike curves from

ever forming. [16]
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A deformed black hole produced in a cataclysmic astrophysical event should undergo damped vi-
brations which emit gravitational radiation. By fitting the observed gravitational waveform A (¢) to
the waveform predicted for black-hole vibrations, it should be possible to deduce the hole’s mass M
and dimensionless rotation parameter @ =(c /G)(angular momentum)/M?2. This paper estimates the
accuracy with which M and a can be determined by optimal signal processing of data from laser-
interferometer gravitational-wave detectors. It is assumed that the detector noise has a white spec-
trum and has been made Gaussian by cross correlation of detectors at different sites. Assuming,
also, that only the most slowly demped mode (which has spheroidal harmonic indices [ =m =2) is
significantly excited-—as probably will be the case for a hole formed by the coalescence of a
neutron-star binary or a black-hole binary—it is found that the one-sigma uncertainties in M and a
are AM/M =2.2p"'(1—a)"*%, Aa ~5.9p"'(1—0a)"%, where p=h,(rfS,) *(1—a)"*2, Herepis
the amplitude signal-to-noise ratio at the output of the optimal filter, A, is the wave’s amplitude at
the beginning of the vibrations, f is the wave’s frequency (the angular frequency @ divided by 27),
and S, is the frequency-independent spectral density of the detectors’ noise. These formulas for AM

and Aa are valid only for p 2 10. Corrections to these approximate formulas are given in Table IL.

L. INTRODUCTION AND SUMMARY

In 1971 Press showed' that black holes can vibrate,
and in fact have normal modes of vibration; and in 1974
Teukolsky and Press’ showed that the gravitational
waves emitted by a black hole will always be dominated,
after an initial transient period, by a superposition of the
outputs of a set of discrete normal (or quasinormal)
modes. Since then the vibration frequencies o of the nor-
mal modes and their radiation-reaction-induced damping
times 7 have been computed as functions of the hole’s
mass M and dimensionless rotation parameter a
=(c/G )(angular momentum) /M 2 by Chandrasekhar and
Detweiler,’ Detweiler,* Leaver, and others.

In 1977, when Detweiler's* calculations revealed that
for the most slowly damped mode of a rotating hole the
waves' parameters {w, 7} are a unique and invertible
function of the hole’s parameters { M, a}, the possibility
arose of being able to infer a hole’s M and g from the
waves it emits. This possibility is enhanced whenever,
among all the hole’s modes, the most slowly damped one
is preferentially excited. Detweiler® has argued that this
will be the case if the hole is rapidly rotating (if a is very
near unity). Moreover, it will likely be the case for the
most interesting and strongest emitting of all black-hole
events: the formation of a deformed hole by the coales-
cence of a neutron-star binary or a black-hole binary. The
reason is that during the coalescence the binary will have
a rotating shape corresponding to spheroidal harmonic
indices ] =m =2, and the most slowly damped mode has
precisely these indices.**

Although the idea of determining a hole’s M and a
from measurements of its gravitational waves has been
around since 1977, nobody has yet estimated the accura-
cy with which this can be done, i.e., the rms errors AM

40

and Aa due to the noise in the detectors to be expected in
such a determination. This paper is devoted to an esti-
mate of AM and Aa and their correlation.

Our estimate will rely on a number of assumptions.

{i) Which normal modes are present in the ringdown
waves and in what mixture? Motivated by the above dis-
cussion, we shall restrict attention to the case where only
the most slowly damped (fundamental), I =m =2 mode is
present.

(ii) What is the transient waveform that precedes the
ringdown? This transient, for a coalescing compact
binary system, should consist initially of periodic waves
whose frequency increases due to the spiraling orbital
motion that brings the two bodies together, and then 2
burst due to the start of the coalescence itself. We
suspect, but have not tried to prove, that AM and Ag will
be rather insensitive to that transient, provided we ex-
press them in terms of the signal-to-noise ratio p for the
ringdown waves and leave the initial transient out of p.
Furthermore, the signal-to»noisc ratio for the transient
waveform may be small in comparison with that of the
ringdown: in some model simulations this is true,” and for
rapidly rotating holes (a near unity) the high Q factor of
the ringdown enhances its signal-to-noise ratio. We shall
presume for simplicity that there is no transient; and,
more specifically, that the waves’ waveform is

—r—1,)/7,
e; Ae >0 sinao (¢

0 fort<t, .

—1,) fore2e,,

hil(0= (w1

Here e, is the polarization tensor, 4 is the amplitude, o,
and 7, are the normal-mode frequency and damping time,
and 1, is the waves’ arrival time. (The subscript s, stand-

3194 ©1989 The American Physical Society
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ing for “signal,” is used to distinguish this w,, 7,, and ¢,
from the values wg, 7o, ¢, that are estimated by the exper-
imenters and the values w;, 7, t; that the experimenters
use in their optimal filters; see Sec. II below.)

(iii) What is the spectral density S, (f) of the noise in
the detector? [For a detailed discussion of S;(f) see Ref.
8.] The most promising of all gravitational-wave detec-
tors are the multikilometer laser-interferometer detectors
(also called “interferometric detectors” or “beam detec-
tors”) that are being planned in the United States, Bri-
tain, Germany, France, Italy, Japan, and Russia; for a re-
view see Ref. 8. These are broadband detectors; and in
the frequency ranges of optimal sensitivity their noise is
likely to be white, S,(f) independent of f. Accordingly,
we shall assume white noise. Since black-hole waves have,
for the mode we have chosen, a quality factor **

0, =t0,7,=2(1-a)"%%22, (1.2)

the band of frequencies involved in the signal (1.1) is rela-

tively narrow, Af < f. This narrowness means that our

results should not be very sensitive to the white-noise as-

sumption. Note: the signal h (¢) which is to be compared

with S, (f) is the projection of h},:r on the unit vectors [;

and m; which point along the beam detector’s legs,
hit)= e Y sinw (¢t —t¢,) fort2t,,

0 fort<y,,

(1.3
hy= Aey (H1k~mim*) ;
see Ref. 8.

(iv) What are the statistical properties of the detector
noise? Individual detectors exhibit some excitations due
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to local, non-Gaussian noise——e.g., due to sudden strain
releases in the wires suspending the detector’s mirrors or
to inadequately shielded voltage fluctuations in the elec-
tric power lines. In order to have any likelihood at all of
successful detection of waves it is essential to remove
such excitations from the detectors’ output data. For-
tunately, the non-Gaussian noise comes in short spikes,
scparated by long intervals of purely Gaussian noise.
Those short spikes are uncorrelated between two widely
separated detectors and thus are easily removed by cross
correlation. Thus we shall assume, in accord with the ex-
perimenters’ past experience, that the remaining noise is
Gaussian.

(v) What method is used to analyze the data? Wiener
optimal filtering: more specifically, we shall assume that
the data are run through a set of filters, each of which is
optimized for detecting a signal of the form (1.3) but with
values of the frequency w,;, damping time 7, and arrival
time t, which differ from those of the signal. (The experi-
menters, of course, do not know in advance what w,, 7,,
and ¢, are.) The experimenters choose as their best esti-
mates of o, 7,, and ¢, those filter values w,, 7, and ¢,
which give the output with the largest signal-to-noise ra-
tio. We shall denote these best estimates by wg, 7o, and
to-

In a large number of different measurements with iden-
tical input signals, but with Gaussianly fluctuating noise,
this procedure will give different values of wg, 7o, and ¢t,.
These values will be Gaussianly distributed with means
@, Ty, and ¢,, if the signal-to-noise ratio is high enough.
Correspondingly, the values M, and a, of the hole’s mass
and angular-momentum parameter inferred from w, and
7o will be Gaussianly distributed, with means M and aq,
respectively. The bottom-line result of this paper is the
Gaussian probability distribution (integrated over start
times) for the inferred M, and a,:

(Mo—MP _ 2Cy, (Mo —M)ag—a)

Ma —1
P(Mg,aq)=
o S rAMAa(1—C ) 2 “p[m—c},,)

The variances AM and Ag of the inferred mass M, and
angular momentum g, turn out to be (Sec. IV)

AM/M=2.20"Y(1-a)*¥f\la),

(1.5a)
Aa=5.90" 1—a)"%f,(a), *

where fy, and f, are functions that are nearly equal to
unity and are tabulated in Table II, p is the amplitude
signal-to-noise ratio at the output of the filtet, and these
formulas are valid only for p* 10. Because the best infor-
mation about M and a comes from the waves’ frequency
(their ringdown time is less well determined), the fluctua-
tions of M, and a, away from the true values,
SM=M,—M and Sa=a,—a, are strongly correlated;
the correlation coefficient appearing in (1.4) is

CMa =0*976fMa(a) ’ (1.5b)

where f),, (tabulated in Table II) is very nearly equal to

mZ
r
unity throughout the range 0<a <1.

It is important to note that the signal-to-noise ratio p
at the output of the filter depends not only on the waves’
amplitude k, and the detector’s noise S;; it also depends
on how long the waves last, i.e., on their quality factor Q,

[Eq. (1.2)):

‘ p=h(w,S,) 20} 1+402)" 1
=h,[2/(0,5;))(1—a)""2f (a)
=h,S;VHGM /032

X2.26(1—a) % f,(a) .

(ay—a)
AN A +— . (14)

(1.6)

Here f, and f, are correction functions close to unity
that are tabulated in Table II. The faster the hole rotates,
the larger is its quality factor, and thus for fixed initial
wave amplitude h,, the larger is the signal-to-noise ratio p
and the better determined are the hole’s mass and angu-
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lar momentum. The determination improves not only due
to the increase in p. Expressions (1.5a) also show a direct
and larger improvement with increasing a in addition to
that produced by p. They also show that for slowly rotat-
ing holes, @ £0.8, the rotation parameter is less accurate-
ly determined than the mass, Aa>AM/M; but for
a = 0.8 it is better determined, Aa < AM /M.

The body of this paper, in which these and other re-
sults are derived, is organized as follows: Section II out-
lines, briefly, the theory of optimal filtering of signals that
are contaminated by noise. Section III uses that theory to
determine, for p2 5, the accuracies Aw, A7 with which
the parameters w,, T, of the waveform (1.3) can be de-
duced in the presence of the white, Gaussian noise Sj,.
Section IV translates those Aw and Ar into correspond-
ing accuracies (and Gaussian probability distributions)
for the inferred mass M, and rotation parameter a, of
the hole. Finally, Sec. V points the direction toward fu-
ture, followup research.

IL. GENERAL APPROACH

In this section we sketch, briefly, the application of
Wiener’s theory of optimal filtering to our problem.

The experimenters’ initial task is to estimate the signal
parameters ¢, ©,, and 7, from their experimental data —
data consisting of the signal (1.3) corrupted by detector
noise.

The simplest variant of the Wiener optimal filter deals
with a slightly different task: The parameters ¢,, w,, and
7, {and thence the full signal h(t)] are presumed known
in advance, and it is desired merely to determine whether
or not the signal is present. For this task the optimal filter
K (t) is the one which, when integrated against the noisy
signal, gives the largest integrated signal-to-noise ratio.’

More specifically, let the uncontaminated signal be h(t) .

(Eq. (1.3)] and let the noise (8 Gaussian random process)
be n(t). Then the value obtained as output of the optimal
filter is

w=[" KWh+nOdr=S+v, @
where
s=[° kwhwdr, v=[" Knnar, @2
and K (¢) (the optimal filter) is defined by

RH=hN/S (). @.3)

Here the tildes denote Fourier transforms, S,(f)
represents the spectral density of the noise n(t), and the
constant of proportionality is arbitrary. Note that, while
S is a constant, independent of the moment of detection
[because if k (¢) is shifted in time K (1) is shifted too}, v, in
a given experiment, is just an instance of a random vari-
able, and will be different if detected at a different time or
even by another identical detector at the same time, since
n(t) is a random process. The filter (2.3} is optimal in that
it gives the maximum possible value for the output
signal-to-noise ratio S /N, where N is the standard devia-
tion of v considered as a random variable, i.e., N=o .
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In our case, the signal’s parameters o, 7,, {;, and am-
plitude are unknown; and thus the experimenters cannot
know in advance the exact form for the optimal filter
function (2.3). However, since the general shape of h(2) is
known, and since the optimal filter gives the maximum
signal-to-noise ratio S/N on output for the signal it is
tailored to, we can (and shall) assume some arbitrary ini-
tial parameters (@, 7y, #;) for the filter function and then
perform a fine-tuning, changing these parameters in order
to maximize the output S/N. The maximum value of
S /N will occur when (w,, 74, 1, ) are equal to (w,, 74, t,).

This maximization of S /N cannot be accomplished ex-
actly in practice, since at the output of the filter we do
not know the output signal S and the output noise v sepa-
rately, but only their sum W. The best we can do is take
the total output W as an estimate of S, apply the above-
described procedure to maximize W /N, and thereby ob-
tain estimates (w,, 7q, 7o) Of the exact signal parameters.
Obviously, the weaker the noise (the higher S/N), the
closer these estimates will be to (w,, 7, £,).

In this paper we shall compute the uncertainties in (g,
To)—i.e., the amounts by which they are expected to de-
viate from (w;, 7,). Our computation will be based on the
statistical properties of the background noise and the
effect of the filtering and optimization processes on those
statistical properties and on the total (corrupted) signal.
We shall carry out this analysis analytically with ap-
propriate approximations for the weak-noise case (large
S/N). The same procedure, implemented numerically,
could give details of the uncertainties in w,, 7, for the
strong-noise case; but we shall not attempt such calcula-
tions.

Once the uncertainties in w,, 7 are known, these can
be (and will be) translated into corresponding uncertain-
ties for the mass and angular momentum of the black
hole. This can be readily performed using the known nu-
merical results that relate these two sets of parame-
ters.>1° We will also find the correlation between these
uncertainties.

IILI. SIGNAL PARAMETERS

The signal function we will use is the damped sinusoid
described by Eq. (1.3), which starts at ¢ =¢,. For ease of
calculation, we will choose ¢, =0, so that the estimate ¢,
will be distributed around zero, and h (¢) will have the
form

~-i/T, .
hge ”’smw,t if120,
0 ift<0.

h(t)= 3.

We will follow the process described in Sec. II to obtain
the estimates wy, 7, t, for g, 7, and ¢, =0 and to deter-
mine how much uncertainty is introduced in the process.

Now, since we assumed that the detector introduces
white noise, its spectral density will be constant:
S, (f)=S, for all f. Then, according to (2.3) the optimal
filter would be proportional to the signal k (¢). However,
since in practice we do not know the values of w,, 7, or
t,, we are forced to use, as our filter,
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=t M . .
Kk sinwg (1 1) if 121y,
K(t)=

0 ifr<yy , _(3'2)

where w,, 7, and 1, are the parameters that have arbi-
trary initial values, and are fine-tuned to maximize W /N.

By inserting Egs. (3.1} and (3.2} into (2.2), we obtain,
for the filtered signal,

s= [ K(h(nar

Lhe'HI_—1,) if 1, <0,

- in 3.3)
the MI_=J,) if 420,

with
I, =(rcoswyly + 0y sinoy ) /(1+ 0} ™) ,
(3.4
J, =(rcosw,t, F Po. sino, ) /(1+0i7) ,

where r=7,7,/(1, +7,) and 0, =0, To,.

We will now analyze v, the output of the filter when
the input is n (1). We can look at v in two very different
ways. First, we can consider it as just the real number ob-
tained, added to the useful output S, in one specific exper-
iment. Second, we can view it as the random variable cor-
responding to the different results that an ensemble of
identical detectors would give for the same experiment.
We must use the first viewpoint when we try to reproduce
the steps that would be followed in the analysis of the
data from an actual experiment, e.g., the fine-tuning of
parameters by maximization of the output signal-to-noise
ratio. We need, however, to use the second point of view
when we want to study the statistical variations that are
to be expected in actual experiments, given the fact that
n (t) is unpredictable.

From (2.2) and (3.2), v is given by

v= fj K(t)n(2)dt

= f:e_'/r“ sinogt n(t+e,)de . (3.5
Viewing this v as a random variable, we see that its distri-
bution is Gaussian, since it is a linear combination of the
Gaussian random variables n (¢ +1, ) (Ref. 11). As an aid
in evaluating the variance o,? of v we introduce the ran-
dom process

o= [° K@t—tm(ndt (3.6

so that v=9%0). The spectral density of this (') will
then be'?

S N=IRNIS,(N=S,|IRNI*. 3.7

Consequently, the variance of the random process 9(¢’)
will be
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o 2= [ " Syndf=s, [~ \R(Idf
=(s5,/2) [° |R(f)1af
=(5,/2) [ K¥ndt, (8

where the first e?uality follows from the definition of
spectral density,'”® and the last one from Parseval’s
theorem. However, the random variable v=9(0) is just
the value of the random process 9 at one specific time, so
their variances are the same: 03=a§. Hence,

N'=ol=()=(5,/2) [* K¥nd:

=(S,/8)0}ms A1+ wir) . 3.9)

We now want to perform the maximization of our
“best estimate” of the signal-to-noise ratio, W/N
=(S ++v)/N. It is impossible to do this analytically to ob-
tain an expression for the optimal values of w;, 7, and ¢
since the expressions (3.3) and (3.9) are not simple
enough. If, however, we restrict ourselves to the case in
which the noise is sufficiently low, i.e., S/N is big
enough, we can assume that the optimal values for the
filter parameters will be relatively close to the exact sig-

nal parameters. In this case we can write
op=o,(l+e), n=1(l+7),
e e (3.10
'k =C/0)_‘ S

where we need only consider values of €, %, and { much
smaller than 1. We can then show that, in this approxi-
mation, we get the simple expression

S/N=p(1—a,e2—an*—ay£?
+Bien+Bel+B3mk)

where the coefficients can be expressed in terms of the
quantities
QJ E%ml‘rl 4

g, =20,(1+40%) V2 =w 1, (1+alr) ',

s

3.1y

(3.12

which are dependent only on the product of the signal’s
frequency and damping time, and not on each scparately.
The parameter Q, is the resonance factor or quality fac-
tor for the damped wave. Note that g, can only take
values between O and 1, but for the values of w, and 7,
corresponding to the fundamental normal mode with
1=m =2 of Kerr black holes, Q, ranges from about 2 to
o [see Eq. (4.3)), so g, is always very close to unity. In
terms of these parameters the coefficients in (3.11) are

P=q:hs(T:/2sh )1/2 4
@ =4g!-igl+0Q

=1,4_3,243
=14, — 39 t%

a;=}¢,%, (3.13)
B=— q¢!+ql,
BZ=Q: ’

B3= —%Qx-l :
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We can do something similar with the noise contribu-
tion to W /N: we can construct a series expansion for vin
powers of €, 7, and { and keep the leading terms. In order
to do this, we note that from (3.5) and (3.10) the filter
function depends not only on ¢, but also on &, 7, and §;
i.e., it can be expressed as K (g,9,§,¢). Therefore, it can
be expanded in powers of g, 1, and £{. Keeping terms up
to first order, we get

foly+ e+ folthy+ f3(1)6 if 20,
K(e,n 0=

0 ifr<0, 3.14)

where

Solt)=e T sinw,t ,

—l/‘r,

fil=wgte -::ysw,t , .15

LHHn=us/r)e " sinegt,

f;(t)=e_'/f’(' ! sinwgt — cosw,t) .
Therefore, the expansion for v is

v=vgtvietvantvf, (3.16)
where

vi= [ faon(dr  for i=0,....3 @an

can be viewed as four Gaussian random variables in-
dependent of the filter. Next, taking into account the
dependence of N on €, 7, and {, we get

v/IN=blcytc,etecynp+esl), (3.18)
where

b=q,(8/5,7,)"",

=vy, c¢;=v—(1—g>v, (3.19

(5 =V2‘(';'_Qs2)"o y €33
Note that the c;, like the v;, are Gaussian random vari-
ables. By adding expressions (3.11) and (3.18) we obtain
W/N =(S§+v)/N.

Now, we are ready to maximize (S +v)/N. The values
(e,1,8)=(gg,mp.&o) for which

Ve d(S+¥)/N1=0 (3.20)

are our best estimate of (€,,;,,(, ) for a given experiment.
By imposing (3.20) with the help of (3.11) and (3.18) we
obtain the linear equations

S egmo)= ! L
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2a, =B, —B:| & €y
_Bl 2a2 _B3 Mo =p-lb Cy (3.21)
—B; —Bs 23| & €3

The solution of these linecar equations, rewritten usmg
(3.13) and (3.19), is

8(0_‘ /(D, EEo=k(d°V0+dl'V|+d2V2+d3V3) ’

81, /1 =my=k{egvote,v,tev,teyvs), (3.22)
with
do=—(3+ 50700 +(3+ 50,3472,
dy=¢1—(3+ 40, H+1g72
d;=—gl+},
dy=(0,+10, g}~ (30, +10, 12 +3Q, ,
eo=—(Q2+1)g2+1 Q3—3Q}q;2 , (3.22a)

_qs+3
=q}-(Q}+%)+2Qszqs-2 ;

e3=—(Q,+40, ¢! +(Q, + 10, gl —10; ,

k=4A"'/(h,q2r,),

- where A, the determinant of the 3 X3 matrix in (3.21), is
given by

A=—(Q2+ 1+ L0 Ng!
+(1Q2+1+ 10, Yg?

—(%Q, +1)+30%,72. (3.22v)
Analogous expressions can be obtained for £, but we do
not give them, since in this paper we are not interested in
the accuracy of the start time. (Qur only reason for in-
cluding {=w,t,; in the analysis was to take account of its
impact on the accuracy of read-out of w, and 7,.)

We should notice that g, and 7, will, in general, be
correlated, since they are ultimately dependent on the
same random process n (). Furthermore, since this pro-
cess is Gaussian and the dependencies are linear, they
will have a joint normal distribution, with probability
density

— 7z %P |~
2no 0, (1 r‘o"o)

2 2r, . Eg) 2
E, €4mp-0'10
N L S S (3.23)
2(l—r¢0,,0) o, %%, T
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where Tegn, 18 their correlation coefficient, and O and T

are the standard deviations of €, and 7, respectively
(after integrating over the other variable). Once we have
computed o, 0, , and 7, , We will know from (3.23) all
the statistical properties of €, and 7.

In order to compute Oy Onp and Pegny We must ex-
press €, and 17, as linear combinations of the values of

n(t) {i.e., as integrals over n (t)]. By combining equations
(3.17) and (3.22) we obtain the explicit expressions

o= f:s"’"“)» M= fo“’hmn(r) . (324
where

3
g(t)=k 2 dlfl(') ’

i=0

3 (3.24a)
h=k 3 e.fin) .

i=0

Then by analogy with (3.5) and (3.8) we bobtain, for the
variances,

(Aw, /o, )zsaﬁo=(c¢2,

=(S,/2) fo“’gm)d:
3
=(k?s,/2) 3 dd1;,
b0 (3.25)
(Af,/‘r,)zsaf,o-'—'(ng ’
=(5,/2) [ * h¥(n)dt
3
=(k25,72) 3 eel;,
ij=0
where
L= f:f,-(t)fj(t)dt . (3.26)

Here we have defined the “typical fractional errors”
Aw, /a, and Ar, /7, in the signal parameters to be their
standard deviations. [These standard deviations should
not be confused with the actual—but unknown—
fractional errors 8w, /0, =(wy~o,)/w, and &7, /7,

=(ro—7,)/7;.) Explicit calculation of the integrals I;
yields

Ip=474},

I, =47,0X(—4¢7+9¢}—6¢2+2),
Inp=1}7.qX49}—9g2+6),

Ty=1r,,

Iy =I,=47,q}(1—¢}),

Ip=Iyn=1irgX3-2¢}), 627
Ioy=13%=0,

I, =1, =11,QH —4¢8+11¢}—10g2+3) ,
Iy=I=—4r.Qq},

Iy=I,=11,0,(1-¢}) .
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To compute the correlation coefficient Tegn, W€ begin
by evaluating

TegnoTe” ,,o='( N
=( [ g 7 hamanar)
= fo dt fo de'g (0 (1) n(On (1))
= [7dt [T argnnens, /28 =)

=(8,/2) fo“’g(z)h(:)d: . (3.28)

Here we have wused the equality (n(¢t)n(t'))
=(S, /2)6(t —1’), which follows from the fact that the
noise’s correlation function C,(7)={n (t)n(t +7)) is the
cosine transform of its spectral density S,(f) (Wiener-
Khintchine theorem). Next, using (3.24a) and (3.26} in
(3.28) we obtain

(eomho) =regn 020w,
3

=(k2S,/2) 3 ed;l; .
ij=0

(3.29)

From (3.25) and (3.29) we can draw the conclusion that
the correlation coefficient Peotlo is a function of Q, only;

i.e., it does not depend on the frequency or damping time
of the signal separately. Moreover, it does not depend on
the noise level that is present in the detector or on the ini-
tial amplitude of the signal.

Using the fact that Q, >2 and ¢,~1, we can see that
only one or a few of the terms in the sums (3.25) and
(3.29) make significant contributions to Oy Ty and
Tegto’ By identifying and evaluating the dominant terms,
we can find the following analytical expressions for the
uncertainties in the signal parameters and their correla-
tion:

do,/o,=0, =p~'Q7'f,(Q)),

At /r,=0, =27 'f(Q,), .30

Cor, = Corr(8w, /w,; 01, /1,)
=l =107 furl)) -

Here p [Eq. (3.13)] is the signal-to-noise ratio, aside from
small corrections that are shown in Eq. (3.11); and f,
S+ for are “correction functions” which depend on the
quality factor O, and are very close to unity. These
correction functions are tabulated in Table 1.

These results can be summarized as follows: The frac-
tional uncertainties in the frequency and damping time
arc inversely proportional to the signal-to-noise-ratio p.
The uncertainty in the frequency is very nearly inversely
proportional to the signal’s quality factor, while the un-
certainty in the damping time is essentially independent
of the quality factor. Finally, the correlation coefficient,
which is independent of the signal-to-noise ratio, is nearly
inversely proportional to Q; and, given the numerical
values of Q, for the fundamental normal mode with



18

3200

TABLE 1. Corrections for the uncertainties and correlation
of the signal’s frequency and damping time as functions of Q,.
These corrections are defined in Eqgs. (3.30).

R Qs f w f T ‘ f o7
2.1 0.9480 1.1021 0.7517
5.0 0.9902 1.0196 0.9513

100 0.9975 1.0050 0.9876
15.0 0.9989 1.0022 0.9945
20.0 0.9994 1.0012 0.9969
25.0 0.9996 1.0008 0.9980
300 0.9997 1.0006 0.9986
350 0.9998 1.0004 0.9990
40.0 0.9998 1.0003 0.9992
450 0.9999 1.0002 0.9994
50.0 0.9999 1.0002 0.9995
550 0.9999 1.0002 0.9996
60.0 1.0000 1.0001 0.9996
65.0 1.0000 1.0001 0.9997
70.0 1.0000 1.0001 0.9997
75.0 1.0000 1.0001 0.9998
80.0 1.0000 1.0001 0.9998

1 =m =2 of Kerr black holes, the correlation coefficient
turns out to be small for all the range of interest, and ab-
solutely negligible for rapidly rotating holes (high Q,).
This means that the errors in the values of &, and 7, ob-
tained in one specific experiment will be essentially in-
dependent of each other.

From these results we can see that the condition
€,1<<1, on which our analysis relies, is satisfied if and
only if

p>1. (3.31)
By using the results obtained to check the errors in the
approximate expansions (3.11) and (3.14) for typical
values of €, and 7, it is found that with p=3$ these are

£10% for all -Q,, so the results can be considered valid -

forpzs. :

Let us now briefly look at the initial amplitude h, of
the signal. We will show how it can be determined from
the experiment, and why the lack of knowledge of its pre-
cise value does not significantly affect our knowledge of
the uncertainties and correlation coefficient of the fre-
quency and damping time.

From the experimental data, we have to take
W =S +v as our best estimate for S. Then, from this best
estimate, using (3.3) and using @, 7¢, o in place of oy,
Ty l, We obtain a best estimate of h;. Because of the
presence of vin W =S +v and the deviations of wg, 7, t,
from wy, 7,, t,, this procedure produces fractional errors
of order p~! in our estimated k. Similarly, there are frac-
tional errors of order p~' in our estimate W /N for the
value of p=S/N—and these errors produce fractional
errors of order p~! in our knowledge of the values of
Awg/w,, Aty /1, and C,, , [Egs. (3.30)]. For pX 5 we can

regard these errors as negligible.
1V. BLACK-HOLE PARAMETERS

We now describe the final step of our analysis: the
translation from the values and uncertainties for the sig-
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nal parameters w, and 7, into those of the mass M and
angular momentum parameter a of the black hole. In or-
der to make this translation, we need the functional rela-
tionship between the two pairs of variables (w,, 7,) and
(M, a). That relationship has been computed numerically
by Leaver® using the theory of small perturbations of
Ken-‘black holes. We shall write that relationship in the
form

o,=f(a)/M , 7,=gla)M , 4.1

where the functions f (a) and g (a) are plotted in Fig. 3(c)

of Leaver (Ref. 5); and we shall write the inverse relation
as

a=¢(Q,), M=y(Q,)/ o, . @.2)

The functions ¢(Q;) and y{Q,) can be determined from
tables of f{a) and g (a) (obtained by private communica-
tion from Leaver, since they are not tabulated in Ref. 5
for the case I =m =2),

It is interesting to notice that the angular momentum
parameter a depends only on the resonance factor Q,
and, furthermore, that this dependence is monotonic and
thus invertible. An analytical expression for the inverse
function is

Q= ju,7,=fla)g(a)
=21-a)""*f,(a),

where the approximate expression is corrected by fo,
which is close to unity, and is tabulated in Table II. For
the sake of completeness we also give an analytical ex-
pression for the function f(a), which determines the fre-
quency o,:

Fla)=[1-0.63(1-a)**]f f(a) ,

where the correction is also given in Table I1.

We now want to know how the uncertainties in the sig-
nal parameters are translated into the corresponding un-
certainties of the hole’s parameters. In order to determine
this we replace @, and 7, in (4.2) with the values e, and
7o Obtained by the procedure described in Sec. III, thus
obtaining approximate values a, and M, (the
experimenter’s best estimates) for the hole’s angular
momentum parameter ¢ and mass M. These can be writ-
ten as

a,=a+§,

4.3)

4.4)

My=M(1+p), @4.5)

where £ and p are the errors the experimenter makes.
Then, using expressions (3.10) and the approximations
€My << 1, we obtain linearized expressions for these er-
rors:

E=8a=Aey+Byg,

4.6)
p=8M/M=C£°+D7]o ’
with A4, B, C and D given by
A=B=0.4'(Q,),
0.41Q, 4.7)

D=C+1=041Q)/%Q,) .
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TABLE IL. Corrections for quality factor, signal-to-noise ratio, and hole’s mass and angular momen-
tum parameter as functions of a. These corrections are defined in Eqgs. (4.3), 4.4), (4.10), (4.11), and

(4.15).

a Sfo Sr Se Su Srte f p fa fu S L
0.0001 1.0501 1.0100 1.0237 0.9417 1.0000  0.9969 1.0044 09239 1.0192
0.1000 1.0402 0.9934 1.0165 0.9541 1.0000  0.9947 1.0097 0.9478 1.0067
0.2000 1.0297 0.9789 1.0094  0.9685 1.0000  0.9922 1.0162 09750 0.9933
0.3000 10182  0.9668 1.0026 0.9846 1.0001  0.9895 1.0242 10058  0.9789
0.4000 1.0057 0.9572 09954 1.0025 1.0001 0.9864 1.0332 1.0406 0.9634
0.5000 09918 09505 0.9870 1.0215 10002  0.9828 1.0429 1.0794  0.9464
0.6000 09763 09475 0.9762 1.0409 1.0001 0.9786 1.0521 1.1219  0.9278
0.7000 0.9587 09494  0.9605 1.0589 09997 09739 1.0585 1.1670  0.9074
0.8000 09389 09587 0.9442 1.0724 09990  0.9688 1.0666 1.2114  0.8853
0.9000 09184 09815 0.9233 1.0764 09977 0.9649 1.0679 1.2450  0.8646
0.9200 09149 09891 09215 1.0755 0.9973  0.9650 1.0689 1.2475  0.8621
0.9400 09124 09983 09171 1.0722 0.9969  0.9659 1.0644 1.2445  0.8616
0.9600 0.9121 1.0099  0.9036 10636 09963  0.9685 1.0441 1.2289  0.8655
0.9800 09187 1.0252  0.9246 1.0512 0.9959 09763 1.0468 1.1902  0.8832
09850 09236 10297 0.9285 10427 09958 09806 1.0383 1.1661 0.8942
0.9900 0.9326 1.0346  0.9408 1.0307 0.9956 0.9876 1.0304 1.1289 09131
09950 0.9523 10392 09695 1.0083 0.9955 1.0018 1.0169 1.0577  0.9533

Given the shapes of the functions ¢(Q,) and $(Q,), it is
found empirically that the linear expansion (4.6} is a good
approximation as long as the condition €47, <<1 holds.
More precisely: using Oer Ty from (3.30) as typical

values for €, 7, it turns out that the differences between
the exact £ and u [defined by (4.5)] and their approximate
values [defined by (4.6)] are <30% for pR 10. So we will
consider the results obtained below to be valid only for
p=10.

Finally, we need to determine the probability distribu-
tion of £ and u. Since €, and 7, have a joint Gaussian
probability distribution, £ and u, which are the linear
combinations (4.6) of €, and 7, also have a joint Gauss-
ian distribution'" with variances and correlation given by

2 42,2 2.2
or=A o£0+B a,,°+2ABreo,,°a£oo

L
op=Clo; + D%} +2CDr, 0.0, . 4.8)
= 2 2
ren00, = ACo; +BDoy +(AD +BC)r£o,,oo£°c,l0 .

Correspondingly, the typical errors in the estimated
black-hole mass M and angular momentum parameter a,
and the correlation of those errors, have the general form

Aa=0,=p~ 'F(Q))=p 'Fla),

AM/M=0,=p"'G(Q,)=p " 'Gla),

Cy, =Corr(8a;6M /M)
=rg,=H(Q)=HA),

where the functions F, G, H and F, G, B are computable
from Eqgs. (3.30), (4.2), (4.7), (4.8), and Leaver’s numerical
results for ¢(Q,) and ¢¥(Q,). It is important to note that
both the uncertainties Aa and AM /M are inversely pro-
portional to the output signal-to-noise ratio p, and that
their correlation depends only on a, and not on M. The

4.9)

author has evaluated the functions F, G, and A by the
above prescription. The numerical results can be ex-
pressed in the form

AM/M=2.2p"'(1—-a**f\la) , {4.10a)
Aa=5.9p"(1—a)"%f, (a), - (4.10b)
Cara =0.976f 4 (a) , (4.10¢)

where fy, f., and fy, are corrections that are close to
unity and are given in Table II.

Expression (4.10b) shows that, for a given p, the uncer-
tainty in the angular momentum parameter a decreases in
-a nearly linear way as g increases, vanishing for @ =1. If
we now take into consideration the multiplicative factor,
it turns out that to get a reasonable precision in an esti-
mate of a black hole’s angular momentum, the hole
would have to rotate very rapidly, or else we would need
a very high signal-to-noise ratio.

By contrast with a, the fractional error AM /M in the
mass does not decrease so rapidly with increasing rota-
tion of the black hole. However, the mulitiplicative factor
in (4.10a) is small enough that AM /M can be small for all
the range of a (including the Schwarzschild case, @ =0)
with just a moderate signal-to-noise ratio (p 2 10). There
is a crossover at a=0.8; above the crossover
Aa <AM /M, i.., ais better determined than M.

We should note the fact that p is not independent of a,
since it is defined in terms of 7, (or w,) and Q; [Eq.
(3.13)]. For fixed signal amplitude h; and detector noise
S, p increases with increasing a as given by
p=h12/(0,5,))'*1~a)""2f (a)

=h,S; VAGM /)1 72.26(1—a) "B f (@), @.11)

where in the last step we replaced w, with its dependency
on a and M as given by Eq. (4.1), and where f, and f,
are corrections given in Table II.
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The correlation between the two uncertainties [Eq.
(4.10¢)] turns out to be remarkably high: it is essentially
independent of the rotation rate and very close to unity.
This is due to the fact that 8a and 6M /M are a linear

* combination of the 8w, /w, and 87, /7, [Eq. (4.6)], and
since the damping time is much less well determined than
the frequency (8w, /w; <<87, /7,), the uncertainties in the
mass and angular momentum are produced almost entire-
ly by the uncertainty in the damping time. Thus, the er-
rors ba and 5M /M must be highly correlated. This high
correlation means that if the error is big (or small) in one
of the parameters a or M, it is highly likely that the error
in the other is also big (or small) and of the same sign.

We can quantify this statement a little better by study-
ing the pair of uncorrelated variables

=L yp_ba M

2= agiay AaiAM ’

which are linear combinations of 8¢ =£ and M /M =p.

Using the analog of Eq. (4.8), it can be shown that the

correlation of z, and z_ vanishes and that their stan-
dard deviations are given by

0, =VIEr,,). (4.13)

We see that, as we should have expected, one of these
variables, 2, is very poorly determined relative to the
other, since its standard deviation is nearly equal to 2 for
all a, while the other, z_, is very well determined, since
its standard deviation is very small, o, =0.22 indepen-

dent of a. This means that we can expect to have
|6a /Aa —~8M /AM|50.22 .

4.12)

4.14)

That is, for one specific experiment, the ratio of the actu-
al error ba that we make in our estimate of g to the typi-
cal error Aa does not differ from the ratio of the actual
error in the mass 8M to the typical error AM by more
than 0.22 typically. Thus, the errors in @ and M have al-
most the same relative magnitude and the same sign. This
might be of importance in case there is some independent
and more precise determination of either the mass or the
angular momentum but not both. Then we could readily
obtain an almost equally better estimate of the other pa-
rameter with very high certainty.

Finally, we reexpress AM /M and Aa of Eqs. (4.10) in a
form that depends solely on the signal’s amplitude 4., the
detectors’ spectral density of noise S, and the hole’s M
and a. This form is obtained by inserting expression (4.11)
for p(M,a,S,,h,) into (4.10). The result is

102 5,
AM/M=0.14 | | |
10M
X M® (1—a)*%f} (a) @.15a)
N 10°% 5,7
8a=037 |- Hm_z;m-m
10M
X M@ (1—a)2f!(a), 4.15b)
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where f}, and f; are correction functions tabulated in
Table II, and where one should keep in mind that the
waves’ frequency w, and damping time 7, are given in
terms of M and a by Eqgs. (4.1), (4.3), and (4.4).

V. ISSUES FOR FUTURE RESEARCH

This paper constitutes a first, approximate, study of the
problem of extracting black-hole parameters from broad-
band gravitational-wave data. Several issues not treated
here deserve future study.

This paper’s analysis is valid only for rather large
signal-to-noise ratios, pR 10. However, most gravita-
tional-wave bursts observed by future Earth-based detec-
tors are likely to have p=5 [see Eq. (34) of Ref. 8]. Our
analysis could be extended to such bursts (or even smaller
p’s) by using a numerical implementation of our optimal
filter algorithm, together with a numerical (Monte Carlo)
simulation of the detector noise. This could also be
achieved by evaluating exactly the uncertainties in the
black hole’s mass and angular momentum, instead of us-
ing a linear approximation [Eq. (4.6)], since we found that
it is this step that introduces the largest errors, reducing
the range of validity of the results from pX 5 to p= 10.
We should also note that the Monte Carlo approach
would be worthwhile in itself, since it would also make it
possible to analyze the effect on the accuracy of the esti-
mates due to arbitrary transient waveforms and other
changes in our initial assumptions.

In this paper attention was restricted to black-hole
events in which only the most slowly damped, I =m =2
mode is excited. While many black-hole events should
satisfy this restriction {(see the abstract and Introduction),
others will not. For example, axisymmetric collapse will

* excite only m =0 modes and is likely to excite several

such modes significantly.' It would be useful to extend
this paper’s analysis to such multimode situations.

This paper ignored the gravitational-wave transient
that precedes the ringdown waves. It would be useful to
redo the analysis with waveforms that include the tran-
sients. One especially important case would be the gravi-
tational waves from the spiraling orbital motion and the
coalescence of a two-hole binary system to form a single,
larger hole. In this case the full waveform would consist
of a Keplerian, spiraling portion (periodic with increasing
frequency) [Eqs. (42) of Ref. 8}, followed by a several-
cycle coalescence wave, followed by the ringdown wave.
Although the precise form of the coalescence wave is not
yet known (future supercomputer simulations will tell it
to us), a reasonable guess at it could be made for explora-
tory purposes. It would be interesting to sece how much
can be learned about the two initial holes and the final
hole, in the presence of detector noise, from the combina-
tion of the three pieces of the waveform: spiraling, coales-
cence, and ringdown. Such a study would constitute a
marriage and extension of this paper’s results and
methods, and those of Smith,'* who has studied the ex-
traction of information from the spiraling portion of the
waveform.
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Addendum to Chapter 2

Recently Finn [1] has developed a new method for extracting black-hole param-
eters from the output of a noisy detector, and for estimating the uncertainties in
the extracted parameters. This new method is more elegant and straightforward
than the Wiener optimal-filter method that I developed in the above paper [2], and
at first sight it looks rather different from my method. However, as I shall show
in this addendum, Finn’s method, although more general, is completely equivalent
to mine for this class of problems.

Finn’s new method is an adaptation of the method of maximum likelihood for
parameter estimation, as described in Ref. {3]. Using Finn’s notation it can be
stated as follows:

Let m(u®,t) be the uncontaminated signal, where u® is the complete set of
unknown signal parameters, of cardinality M. Let n(t) be the noise added to the
signal by the detector, and g(t) the noisy signal; i.e., g(t) = m(u°,t) + n(t).

Also, let m(u,t) be a signal template, which has the same form expected for the
signal, but with arbitrary parameter values y. Then the estimated parameters i
will be those that minimize the “distance” between the measured (contaminated)

signal and the template:
(g —m,g—m). (2.1)
Here the inner product is defined by Finn as
@b = [ anFnsT (. (22)
where the tilde denotes Fourier transform, the * denotes complex conjugation,
Sn(f) is the spectral density of the noise that contaminates the data, and f is the

frequency. In the special case of white noise, the spectral density is a constant;

therefore, using Parseval’s theorem, the inner product can be expressed as

{a,b) = 5! ]_oo a(t)b(t)dt. (2.3)



23

I will now prove that this method and the Wiener optimal-filtering approach
used in my method [2] are one and the same.
The minimization of Eq. (2.1) leads to the following algebraic equations for

the estimated parameters ji:
(g—m,m;)|u=;,=0, i=1,...,M, (2.4)

where
my = 2mlst) (2.5)
6#,’

Let us now take into account that for any unknown signal the amplitude is one of
the unknown parameters that has to be adjusted to minimize the distance (2.1).

We can do so by rewriting the template as
m(u,t) = hK (G, ), (2.6)

where K is a function of known amplitude, k is the unknown amplitude parameter,
and fi are the other M — 1 unknown parameters. (Such a parameter change is

always possible.) With this change of parameters, we can re-express the equations

(2.4) as

(g—hK,K;) =0 j=1,...,M—1, (2.7)
(g— hK,K) =0. (2.8)

These are algebraic equations for Finn’s maximum-likelihood estimates of the pa-

rameters h, fi;. From Eq. (2.8) we obtain the value of h in terms of the other

parameters, p;.

_ {9,K)

This value, when replaced in (2.7) gives the following equations for the f;:

(g’ I{) (I{’ I{]>

<gv I{J') - (I{, I()

=0, (2.10)

or equivalently,
(9. K;) (9, KNK,K;) _
KK~ (KK~ (2.11)
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which is the same as

2 (k)<
These equations state that one should maximize the ratio of the filtered signal
to the output noise, which is precisely my Wiener optimal-filtering method for
extracting the black-hole parameters from the noisy signal; see Eq. (3.20) of the
above paper (Ref. [2]). We thus conclude that the two methods are exactly
equivalent and therefore should produce the same results.

I shall now show explicitly that Finn’s formalism does reproduce the same
accuracies for the extracted parameters as I obtained in the above paper. I begin
with a brief sketch of Finn’s [1] derivation of the maximum-likelihood method’s
error estimate.

Finn denotes the errors in the estimated parameters by dy;; i.e.,

dpi = fui — g . (2.13)

Assuming that these errors are small, Finn expands
m(fi, ) = m(p°,t) + mi(p°, t)dp;, , (2.14)

and

mi(f,t) = mi(p°,t) + mi;(p°, t)dps, (2.15)
which, when replaced in (2.4) and keeping terms only up to first order in du, give
(nymg) — (mq,me)dp; + (n, my;)dp; = 0. (2.16)

Since the third term is an inner product of the noise with the signal, while the
second is an inner product of the signal with itself, the the second is larger than
the third by a factor of order the amplitude signal-to-noise ratio p = 1/2(m,m)
(see Ref. [2]), and therefore (because we are assuming that p > 1), the third
term can be neglected. [Note that this is equivalent to the neglecting of second-
order terms in the noise contribution to the optimal-filter method, in my paper

[2], Eqs.(3.14)—-(3.18).] Neglecting the third term leads to

(n,m;) = (mi, m;)dp;. (2.17)
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By inverting this linear equation and then performing an ensemble average to ac-

count for the randomness of the noise, Finn [1] obtains the following error estimate:
dﬂ,‘dﬂj = %Ai_jl, (218)

where

A;; = (my,mj). (2.19)
Equation (2.18) embodies the uncertainties in the estimated parameters, as well
as the correlation between any pair of them.

I shall now show that Finn’s error estimate (2.18), when applied to the black-
hole ring-down problem, gives precisely the same results as I obtained by my
method [2]. The signal parameters, in the notation of Ref. [2], are the black hole’s
pulsation frequency and damping time, the signal’s start time, and the signal
amplitude (ws, s, ts, hs). Among these, the two parameters whose errors and
correlation we seek are w, and 7,. The uncertainty and correlations involving the
start time ¢, and amplitude h, can be computed equally easily, but we are not
interested in them, since they play no role in the uncertainties for the black-hole
parameters.

We use the signal m(u,t) defined in Ref. [2], Eq. (1.3), for our calculations.
By performing the time integrations prescribed by (2.3) to obtain the matrix co-
efficients A;; defined in (2.19), and then inverting the matrix, we obtain for the

coeflicients that concern us:

_ 1-2Q2+8Q5) w;

-SRI (2.20)
_ 8 (5+4Q?

2 g (220
- 3—-4 QZ Wws

AL = L}ﬁ, (2.22)

where Q; =

= 2wsn,

With these results, and using (2.18), and the amplitude signal-to-noise ratio

- Vo = s 223)

(14 4Q?)w,’
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we can express the fractional uncertainties for the estimates of w; and 7, and their

correlation as

Aws — 1 1-— %Qs_z + %Qs—‘1 ~ 1 (1 _ lQ—2)

Wy PQs 1+ %Qs_z - PQs 4%e 1

AT, 2 [1+3Q:2 2 -

= G—— -1+ 5Q;
Te P 1+%Q§2 P(+2Q3)’
1-2Q;?
Cws‘f.s = ‘—2; 4Q3 = _25 (1 - %Qs—z) *
: \/(1 +32Q:9)(1 - 3077 + 307 ’

Here, in the approximate expressions, we neglect corrections of order Q4. Com-
paring these results with Eq. (3.30) and Table I of Ref. [2], we conclude that as
expected, the same results are obtained, including correction terms that correspond

exactly to the “correction functions” listed in the table.
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Chapter 3

Gravitational collapse of an infinite,

cylindrical dust shell
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Abstract

The evolution of an infinitely long, cylindrical shell of pressureless matter,
which collapses because of its own gravitational pull, is studied analytically at late
times and numerically for all times. The shell starts from rest and collapses in
finite time, as seen by all observers, to form a naked singularity. The singularity
is strong in the sense that observers riding on the shell experience, as they reach
the singularity, an infinite net stretch parallel to the symmetry axis and an infinite
net squeeze in the azimuthal direction. A strong burst of gravitational radiation,
which is emitted just before the singularity forms, creates stretches and squeezes in
opposite directions to those of the singularity itself: a squeeze along the symmetry
axis and a stretch in the azimuthal direction. The numerical analysis gives a
complete picture of the shell’s motion during the collapse and of the evolution
of the spacetime geometry and the emission and propagation of the gravitational

wave burst.
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1 Introduction

The gravitational collapse of a realistic massive body is not easy to study. The
results known so far have been obtained mostly for idealized cases, such as bodies
with spherical symmetry. It is hard to obtain results for asymmetric bodies because
a full 341 numerical simulation of the highly nonlinear Einstein equations is needed
to explore their evolution.

An interesting case to study is the collapse of a strongly elongated (prolate),
axisymmetric body. This type of collapse could occur in a real astrophysical sit-
uation, but it is also interesting in its own right, because (according to recent
numerical simulations [1], [2]) it is a possible candidate for violation of the Cosmic
Censorship Conjecture [3], and it gives insight into the Hoop Conjecture [4]. (The
Cosmic Censorship Conjecture states that no singularity can form without a sur-
rounding horizon; i.e., “naked singularities” are forbidden; the Hoop Conjecture
states that black holes with horizons form when and only when a mass M gets
compacted into a region whose circumference, in every direction, is C~dxr M 2

Studies of prolate collapse require full 2+1-dimensional numerical simulations.
However, a simpler approach that can give some insight into the properties of this
collapse at late times is the study of an idealized, infinitely long, cylindrical body
(141 dimensions). The simplest such body is the one analyzed in this paper: a
collapsing, cylindrical shell of dust. It may well be that the local behavior of a
collapsing, elongated body will be very similar to that of an infinite, cylindrical
one.

It has been shown analytically that the collapse of a cylindrical dust shell
terminates in a naked singularity [4]. In this paper we shall study in detail how
this singularity develops.

It has also been shown recently [5] that if the shell is endowed with any rotation
at all, centrifugal forces will halt the collapse at some nonzero, minimum radius,

and the shell will then oscillate until it settles down at some final, finite radius.
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Therefore, by assuming no rotation whatsoever, our analysis deals with a highly
idealized, unrealistic situation. Nevertheless, our analysis may provide informa-
tion that is useful in guiding and interpreting the much more difficult numerical
simulations of collapsing, prolate spheroids.

For example, our analysis reveals the nature and severity of the naked singu-
larity that develops at the end point of the collapse, and this may provide useful
insight for future numerical computations, along the lines of Ref. [1], which explore
the singularities that appear to develop at the sharp ends of imploding spindles and
along the spindles’ middles. Our analysis also gives information about the gravita-
tional waves emitted just before the singularity forms, information that may also
be of value in the study of collapsing spindles.

The dust shell that we study is idealized as infinitely thin and as having van-
ishing pressure. These idealizations lead to equations of structure and evolution
that are simple enough to admit approximate analytic solutions at late times, and
to permit rather tractable numerical simulations at all times.

Our analytic and numerical solutions reveal (not surprisingly) that as the col-
lapse nears its end point, the shell’s radial velocity gets closer and closer to the
speed of light, and the shell begins to behave as though it were made from “null”
dust (i.e., from particles that travel radially at the speed of light). Our approx-
imate analytic solutions treat not only the extreme, late-time, null-dust limit of
the collapse, but also the leading departures from null-dust behavior.

Our numerical simulations provide a complete description of the shell’s motion
and the evolution of the spacetime metric, from the initial moment when the shell
is released from rest, until a time very close to the singularity. However, the
numerical integration breaks down before the singularity is actually reached. At
late times our numerical solution agrees rather well with our approximate analytic
solution, if the free parameters of the analytic solution are chosen appropriately.

From the analytic solution, with the numerically determined parameters, it is

found that the singularity at the end point of the collapse is strong, in the sense
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that the double time integral of the physical components of the Riemann tensor, as
measured by an observer riding on the collapsing shell, diverges. In other words,
the observer experiences an infinite net stretch and squeeze: a stretch parallel to
the symmetry axis; a squeeze azimuthally.

The numerical solution reveals that a sharp burst of gravitational waves is
emitted by the shell just before the singularity forms (Fig. 8 below). The waves’
strain grows sharply as the retarded time of singularity formation is approached,
but it is opposite in sign to the singularity’s own strain: As the waves pass distant
observers, they squeeze parallel to the symmetry axis and stretch azimuthally. We
have no firm proof, but our numerical and analytical solutions strongly suggest
that the wave reaches a finite-amplitude peak shortly before the Cauchy horizon,
at which the singularity first becomes visible to the outside world. The peak is
strong in the sense that the wave’s dimensionless strain there is of order unity
when the peak passes the radius at which the shell started its collapse.

How this sharply growing stretch and squeeze terminate we cannot say, because
the singularity influences them in an unknown way.

This paper is organized as follows:

In Section II we present the basic equations that describe the cylindrical dust
shell and its evolution, including the spacetime metric, the wave equations arising
from applying Einstein’s equations to the metric, the junction conditions across
the shell, the boundary and initial conditions, and the equation of motion for the
shell.

In Section III we write down and discuss our approximate, late-time analytical
solutions of the evolution equations, and we estimate their range of validity.

In Section IV we analyze analytically the evolution of a null shell and compare
it with the analytic solutions of Section III.

In Section V we present the results of our numerical simulations and compare
them with our analytical solutions.

In Section VI we discuss the results from the previous sections and use them
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to infer the properties of the naked singularity.
The Appendix contains a full description of the numerical methods and algo-

rithms used in the computer simulation of the collapse.

2 The governing equations

2.1 Metric for a cylindrical geometry

In a cylindrical spacetime in which the stress-energy tensor satisfies Tg + T = 0,
it is possible to introduce a coordinate system in which the metric takes the form
[4, 5]

ds? = 209 (dr? — dt?) + e Wr2d¢? + e*d2?, (3.1)

where ¢ and v are functions of r and ¢, which satisfy the following restrictions

[obtained from applying Einstein’s equations to the metric (3.1)):

b =) (32)
Vor =r [(¢,T)2 + ("/’,t)z] s (3'3)
Ve o =2rpiby. (3.4)

Note the remarkably simple form of (3.2), it has exactly the same form as the
cylindrical wave equation for a scalar field in flat space. The equations for ~,

however, are nonlinear.

2.2 Time coordinates

The condition T + T7 = 0 on the stress-energy tensor can be satisfied only in
vacuum or in very special nonvacuum cases, such as null fluids moving toward
the axis or away from it. Therefore, we cannot expect to find a global coordinate
system covering both the interior and exterior of our collapsing shell, in which the
metric takes the form (3.1). Instead, we must use separate coordinate systems of

this type in the shell’s interior and exterior. We can adjust all the coordinates
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of the two systems so that they match at the shell, with the exception of the
time coordinate ¢t. Therefore, we will use a t_ coordinate for the interior and a
corresponding t, for the exterior. This mismatch of coordinate time between the
interior and exterior is a severe impediment to finding a full analytical solution
for the evolution of the fields ¢ and +, and the motion of the shell. Therefore, a
numerical solution becomes necessary for a full understanding of the collapse.

“~” and “4” subscripts will be used on variables

Henceforth in this paper, the
to indicate that they are to be evaluated on the inner or outer face of the shell,
respectively.

The interior and exterior time coordinates, t3 are related to the proper time 7

measured by an observer moving with the shell, by
dty/dr = Xg. (3.5)
Here X are defined by
X, = [e—z(u—d») + V2]1/2 : (3.6)

where the variables must be evaluated on the shell, i.e., at » = R(7), and V =

dR/dr.

2.3 Equation of motion and boundary conditions

We shall denote by A the shell’s conserved rest mass per unit z-coordinate length.
As discussed below, the shell collapses from rest, and we adjust the z coordinate
so that it coincides with proper length on the shell in the initial, static state.
Therefore, A is equal, numerically, to the shell’s initial rest mass per unit proper
length. An argument given in Ref. [5] shows that if A exceeds 1/4, the shell’s mass
is so great that it closes up space radially around itself. To avoid this, we shall
restrict attention to shells with mass per unit length A < 1/4.

Reference [5] analyzes the structure and evolution of a cylindrical dust shell in

which half the particles are rotating around the symmetry axis in a right-handed
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fashion and half in a left-handed fashion, with angular momentum per unit rest
mass . The dust shell analyzed in this paper is identical to that of Ref. [5], but

with no rotation, i.e., with a = 0.

The equation of motion for our collapsing shell, as obtained from [5] with @ = 0,

is

&R
=)
= -—%(—“- — R|(X2+V)(§2 +972) +4X_ szl-zp'_]
HX2 4+ VYL +2X V. (3.7)

Here and below, each dot represents a partial derivative with respect to coordi-
nate time (in this case ¢_, since all derivatives are in the interior), and the prime
represents a partial derivative with respect to the radial coordinate r.

The junction conditions arising from the jump in intrinsic curvature across the

shell can be expressed as [5]
Xy —X_=-4) (3.8)
and

Ypm— Yo =—2)R, (3.9)

where the derivatives (denoted “,”) are taken along the direction normal to the

shell in the shell’s rest frame, which means that ¢ , = Vzﬂ_;_ + X114/, and similarly

for ¥_ .
The requirement of integrability of (3.2) in the interior of the shell imposes the

conditions

P(r=0,t_) finite, (3.10)
P'(r=0,t-) =0. (3.11)

In addition, 7 has to be continuous across the shell:

o (r) = i (7). (3.12)
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Equations (3.9) and (3.12) can be rewritten in a more computationally useful form,

in terms of radial and time derivatives of 1, as follows:

(Xathy + Vi) — (X9 + VYl) =0, (3.13)

(Viho + Xsh) =~ (V- 4+ Xgl) =2, (3.14)

Requiring that spacetime be locally flat on the axis implies the condition
v(r =0,t_) = 0. (3.15)

We have chosen to study the collapse of a shell that has been at rest until
t. =ty = 7 = 0, the instant at which the collapse is allowed to start. The only
length scale in the problem is the shell’s initial radial coordinate Ry. We shall use
this initial radius as our unit of length (i.e., we shall measure r, ¢, and z in terms
of it); and by doing so we, in effect, are setting Ro = 1.

The shell’s initial, static state is described by the following static solution of

the Einstein equations [5]:

0 forr < Ry =1,
Y= N (3.16)
-5 nr forr > Ry =1,
Pp=0 everywhere, (3.17)
and
0 forr < Ry =1,
Y= a \2 (3.18)
(+25) Inr —In|1 — 4)| forr > Ry = 1.
Since gravitational waves cannot travel faster than the speed of light, 1 will satisfy
2
1/)(r,t+)=—1_—4)\ Inr, for r > ¢, + 1. (3.19)

This solution for % will serve as an outer boundary condition for our numerical
computations and will permit us to confine our computations to the region r <

ty + 1.
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3 Late-time analytical solution

As we have seen, a full analytic solution for the whole evolution of the collapse
does not seem possible. However, by restricting ourselves to the collapse’s late
stages, when it is close to the final singularity, we can find a class of approximate
solutions that depend on a set of unknown parameters, and we can then fix the
parameters by matching to our numerical simulation.

In our approximate solutions we shall use as our time coordinate the “time to
collapse” t = t._ — t_; here t._ is the value of the interior time coordinate ¢_ at
the end point of the collapse.

We are interested in the behavior of the system for ¢ < 1. At late times it
is reasonable to expect the shell to be moving at nearly the speed of light, i.e.,
along the curve r =, and correspondingly we expect that the r-dependence of 1
inside and near the shell will have a characteristic length scale of ¢. This suggests
that v(r,t) may approach a similarity solution that can be expressed as simple
functions of r/t and t. Using this ansatz, one arrives at the following late-time

solution for ¢ in the shell’s interior [6]:

$(r,?) = aln® (/D) + (aB/2) I’ (Q/DF(r/2). (3.20)

Here a, 3, and ) are constants that depend on the early-time evolution, which in

turn depends on the initial conditions, and
1—+1—22

[This is an asymptotic solution of the wave equation (3.2), valid only for the late-

F(z)=In4 —1In

. (3.21)

time evolution of %.]
Inserting this solution for ¥ into (3.3), and assuming that ¢ is small enough

that In(2/) > 1, we obtain, for +, the simple expression
v(r,?) = *F2 In*ED(Q/F) [~ In(1 — 2?) — F(z)], (3.22)

where £ = r/t. It can also be shown that (3.20) satisfies the wave equation (3.2).

Next, from the equation of motion, and assuming that o ~ 1, In®(§2/f) > 1, and
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In'~?(Q/#) > 1 (as will turn out to be true when we match to our numerical

simulation), we find that
R/T =1 — ¢~21?@/D (3.23)
Using this result to evaluate ¢ and v on the shell we obtain
¥s(?) = aln®(Q/7), (3.24)
71-(f) = 20° B2 ¥ ~2(Q/1), (3.25)
which implies that only for 0 < 3 < 2/3 does v_ goes to zero as t — 0. (We will
see in the following section why this is necessary; and in Sec. V, when we match
to our numerical simulation, we will see that § does indeed lie in this range.)

Using (3.23), plus the definitions V = dR/dr and (3.6), we obtain the additional

asymptotic expressions

X_=-V = (1/V20)ee @, (3.26)
X-+V =+/0/2, (3.27)

where o, like a, 3, and § is a constant to be determined by matching to the

numerical simulation. Finally, using the above relations plus Equétions (3.6) and

(3.8), we obtain for the jump in ~ across the shell, assuming v — 0 at the
singularity,

V4 — Y- — —--;— In(1 — 83/v20). (3.28)

How late in the collapse will the approximate solutions (3.20)-(3.28) to the

collapse equations be valid? The conditions we had to impose to be able to obtain

these simple solutions, namely,
In?(Q/8) > 1, W' P(Q/t) > 1, (3.29)

along with the constraint 8 < 2/3, imply that if @ ~ 1 (as will turn out to be the
case), these results will be valid only for £51072° — which means very late times
indeed. Thus, in order to match the above solutions to our numerical simulations
and determine the unknown parameters a, 8, {2, and o, we will have to evolve our

simulations until the shell is extremely close to the end of the collapse.
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4 The null-shell limiting case

As the cylindrical shell nears the end point of its collapse, it will asymptotically
approach the behavior of a null shell, that is, one made of a null fluid, which moves
along radial, lightlike geodesics. To gain insight into the consequences of this, we
shall briefly review some features of imploding null-fluid cylinders, as developed in
Ref. [7].

The stress-energy tensor for an imploding, cylindrical shell of null fluid has as

its only nonzero components

T,-,- = "‘tht = (330)

where u = (1/4/2)(t + r) and A(u) is an arbitrary function that describes the
radial profile of the shell’s energy density. This stress-energy tensor satisfies the
condition T7 + Tf = 0, which implies (as we mentioned in Sec. II) that one can
find a single, global coordinate system, valid across the shell, in which the metric
has the form (3.1).

Let us look at the behavior of the null shell during its inward radial motion.
Since we can find a globally valid coordinate system that satisfies (3.1), the evolu-’
tion equation for ¢, Eq. (3.2), is valid everywhere, which means that the evolution
of 1 is completely decoupled from the motion of the null shell [7].

If no gravitational waves are present in the initial data (i.e., if 1 vanishes
initially), then ¢ will vanish everywhere, and the solution for  will be determined
by [7]

o =424A), 7,=0, y(r=0)=0, (3.31)

where u = (1/v/2)(t + r), and v = (1/v2)(¢t — r). This means that v will be
identically zero in the interior of our shell of null fluid, and will abruptly jump to a
constant value outside the shell, since A(u) is zero everywhere except on the shell.

How do these results relate to our timelike dust shell? As our collapsing shell

approaches the axis, it should gradually and asymptotically begin to behave like a
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null shell. This implies that 1) should become asymptotically decoupled from the
shell, and its evolution should gradually become more and more dominated by the
field that was laid down in the early part of the collapse. Moreover, the interior
and exterior coordinate systems should asymptotically mesh together into a global
one.

We can verify that this is indeed the case for the timelike shell at very late times,
by proving that the radial and time derivatives of 1 on both sides of the shell,
though different during the early evolution, get closer and closer as the collapse
nears its end, and by proving that the fractional difference between X, = dt, /dr
and X_ = dt_/dr goes to zero.

From the junction condition (3.8) and the asymptotic form (3.26) of X_, it is
clear that the fractional difference between X, and X_ does asymptote to zero,
as claimed. In the junction conditions (3.13), (3.14), it is easy to see that for
late times, the A-dependent term becomes negligible compared to the other terms.
Then, using the results (3.26) from the preceding section for X, V , the derivatives
on the exterior side of the shell can be expressed in terms of those on the interior

side as

pr =1+ 4wy, (3.32)
A S (3.33)
22

These expression and the constancy of A would seem to imply that the derivatives
on the two sides are always different. However, from (3.24) and (3.23), it can be

seen that ¥_ and Y’ asymptote to the same absolute value, with opposite signs:
p gn:

o= b = Lt (/e on, (3.35)
P+ ¢.v_ = —02—? lnﬁ_l(Q/f). (3.36)

This means that the «x-dependent terms in (3.32) and (3.33) become negligible
compared to the remaining term, therefore implying that ., / o — 1, LYl — 1,
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as claimed.

In the next section we will see strong evidence that the gravitational waves
emitted by our collapsing, timelike shell reach a nondivergent peak amplitude
shortly before the singularity forms. The apparent lack of divergence may well be
related to the asymptotic decoupling of 9 from the shell, but we are not certain of
this. |

There is no question that our timelike shell forms a singularity at the end point
of its collapse (Ref. [4] and Sec. VI of this paper). However, Morgan [7] shows
that for a null shell no singularity (not even a conical one) develops, in the absence
of gravitational waves (v» = 0). That is, if one imposes the condition that 3 and
its time derivatives vanish at past infinity, which means that ¢ will always be zero
(since its evolution is completely decoupled from the shell’s evolution), then the
shell collapse and the evolution of v will lead the pulse to pass through the axis
and back out, with no singularity formed.

We suspect that the reason that our timelike shell, unlike a precisely null one,
is able to form a singularity is that our shell never gets fully decoupled from the
2 field, but only asymptotically decoupled; however, we are not certain that this
is the reason.

We have tried to produce a complete mapping between the asymptotic evolution
of our timelike shell at late times and that of a null shell, but we were not fully
successful. Our failure may be related to the fact that when dust particles with
nonzero rest mass are boosted to the speed of light, their 4-momenta diverge, but

the 4-momentum of any small patch of a truly null shell is finite.

5 Numerical simulation

We have developed a numerical simulation of the shell’s collapse, and have followed
its evolution and that of the gravitational waves it emits. (For a description of the

numerical methods used, see the Appendix.)
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It is easy to follow the evolution of the shell until it is close enough o the
singularity to determine, to a fraction of a percent accuracy, the total collapse
time. For a rest mass per unit length A = 0.1, the collapse times in units of the

initial radius (which we have set to unity in our formulas) are:
7. = 3.76, t.- = 4.26, tey = 2.76. (3.37)

Figure 1 shows how the collapse times vary as a function of A. Also plotted is the

collapse time predicted by Newtonian physics,
1
5 = (20)7V/2 / [—In(1 — 2)]7"%dz = 1.2533A71/2, (3.38)
0

As one might expect, the smaller the shell’s mass per unit length, the smaller
the difference between the proper time and the two coordinate times, and the closer
they are to the Newtonian time, but for the highly relativistic case (large 1), the
various times differ considerably. Notice also that for all cases, the proper time
for the collapse 7, is smaller than the Newtonian time 7. This might not seem
too surprising, since it is also true for a collapsing spherical shell that 7. > 7 (see
Ref. [8]); however, in the cylindrical case there are gravitational waves that are
not present in the spherical case, so it was far from obvious in advance that the
collapse times would behave similarly.

We were able to follow the collapse until ¢ ~ 107!2, which is very close to
the singularity and is adequate for matching to our analytic solution, though just
barely; see the last paragraph of Sec. III. Soon after £ ~ 10712, the simulation
started to break down. As a control for the accuracy of the simulation, we used
the fact that the integral of Vv around a spacetime loop outside the shell should
vanish. We evaluated this integral for a loop that has its bottom leg on the
initial constant-time slice, its top leg on the constant-time slice for the current
integration time, its left side along a curve parallel to the shell’s world line and
just a few grid points outside it, and its right side on a segment of the outer limit

of integration. We regarded the simulation as no longer reliable when the integral
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around this loop became larger than a few percent of the difference in 4 between
the shell and the outer boundary. This loss of reliability was usually followed by
a complete breakdown of the simulation, typically as a result of not being able to
solve Equation (3.56), which arises from the junction conditions on the shell.

In our numerical simulations, % in the interior of the shell always became
very uniform (independent of r) quite rapidly, but with its near-constant value
increasing with time. This agrees with the analytical solution (3.20), for which the
r-dependent term becomes less and less important as ¢ approaches zero.

For v in the exterior, the numerical evolution was a little more interesting.
Figure 2 shows the evolution for a shell with mass per unit length A = 0.1, which
is fairly relativistic. (Recall that A = 0.25 is sufficient to begin to close space up
radially.) The envelope in the figure represents the value 1, of 1 on the shell.

In our late-time analytic solutions (Sec. III), there are several relationships that
are independent of the (as yet) unknown constants «, 3, ©, and o. Figures 3 and
4 show two such relationships as predicted by the approximate analytic solutions
and as produced by our numerical simulation for A = 0.1. The agreement between
the analytic and numerical solutions is reasonably good.

Figures 5 and 6 depict quantities, X_ + V and 4 — 74—, that are predicted
by our analytic solutions to approach constants that depend only on the unknown
parameter 0. The numerical solutions do indeed seem to be approaching constants,
and the numerical values of both constants agree very well with the analytical
values if o has the value 1.186.

Figure 7 plots the numerical results for ¢ on the shell as a function of the
“time-to-collapse” ¢, and also the analytical result (3.24) for the best-fit values
of the parameters, a = 0.3262, § = 0.4999, and Q = 1.009. The least-squares
method used for the parameter fit turned out to have a very sharp dip around
these values, giving very precise results, especially for 8 and € (precision much
better than 1 percent). These best-fit values strongly suggest that 8 and  have

exact values of 1/2 and 1, respectively, and therefore only « and ¢ really depend on
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the initial conditions. Note that for these values of the parameters, the numerical
and analytical results coincide fairly well at late times.

The final piece of information obtained from our numerical analysis is the grav-
itational waves (the ripples in ) emitted by the collapsing shell just before it
creates the singularity. To compute the waves, we start from the numerical results
obtained for ¢(r) at a time very close to the singularity (Fig. 2). Then, after
subtracting the static solution [Eq. (3.16) extended down to the shell’s radius at
that time], we evolve 1 analytically, using its wave equation (3.2). Let to be the
value of ¢, at the moment we start this analytical evolution. Then for any later

time 61 = ¥ — Ygqtic Will be given by
Sup(r 1) = / dkJo(kr)[A(E) cos k(ts — to) + B(K)sink(ts — )],  (3.39)

where, assuming R(fo) < 1, the functions A(k) and B(k) are given by

AR) =k /R :)rJo(kr)éw(r,to)dr, (3.40)
B(k) = /}: )rJo(k'r')5'¢,t+ (r,to)dr. (3.41)

Of course, this waveform is valid only at radii r that are outside the domain of
influence of the singularity; i.e., it is valid only for r > R(fo) + t+ — to; and the
waveform will vanish outside the domain of influence of the shell’s initial location,
ie,atr>1+41,.

The waveform 81(t,,r) was computed by numerical integration of Eqgs. (3.39)-
(3.41), using for 8% and 8, at time to, the results of our numerical simulation.
The resulting waves are shown in Fig. 8.

Because the waves have §1 negative, they stretch objects along the azimuthal
(¢) direction and squeeze objects parallel to the symmetry axis (z direction); cf.
Eq. (3.1). As we shall see in the next section, these directions of stretch and
squeeze are opposite to those produced by the singularity.

Notice that, as one would expect from geometric optics and energy conserva-

tion, once the waves have propagated to radii r large compared to the wavelengths
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they contain, the shape of the waveform ceases to change, and its amplitude dies
out thereafter as 1/+/7 (see Fig. 9).

One might have expected the peak amplitude of the gravitational waves to
grow higher and higher, without bound, as the time slice on which we start our
wave-evolution calculation gets closer and closer to the end point of collapse. This
seems not to be the case. We found essentially the same gravitational wave pulse,
with the same peak amplitude at late times, independently of whether we initiated
the pulse’s evolution at to = 4. — 10~* or t;.—1078 or t;.— 1072, Moreover, when
we initiated the evolution at very late values of ¢, there actually seemed to be a
rounded peak in the initial data rather than a monotonic peak (see the leftmost
curve in Fig. 9). [This is not terribly surprising, since our analytic solution for
1,, the value of 1 on the shell, has the property that 61/)3\/R_/r goes to zero, for
fixed r, in the limit as the shell approaches the singularity ({ — 0 and R — 0),
which means that if the waves from the shell’s location itself, at the end point
of collapse, were to propagate along the Cauchy horizon in a geometric optics
manner, their amplitude at any finite » would be zero.] We regard this as strong
evidence that one will see the waves as having a finite, nonsingular behavior as one
approaches the Cauchy horizon (the location at which one first feels the influence

of the singularity).

6 Tidal forces at the singularity

We have found that as was expected, the shell collapses to form a singularity in
finite proper time.

It is interesting to study the properties of the singularity. One way to do this
is to determine the tidal forces and deformations experienced by an observer who
rides on the collapsing shell. The tidal forces are embodied in the equation for the

relative gravitational acceleration of two parts of the observer’s body that have a
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separation vector ¢ [9]
DX .
Dt? )

Here and below, the hats denote components as measured in an orthonormal frame

(3.42)

carried by the observer. As we shall see, the components of the Riemann curvature
tensor that enter into this tidal-force equation diverge as the collapse reaches its
end point, and correspondingly, the observer on the shell gets infinitely stretched
and squeezed.

One criterion for the severity of the singularity is the total deformation (the

total strain) that the observer experiences. This deformation is given by the double

/dT/dT'Ri3+,;. (3.43)

If this quantity diverges, then the net deformation that the observer experiences,

time integral

by the time he reaches the singularity, is infinite; that is what happens, e.g., as seen
by an observer falling into the singularity at the center of a Schwarzschild black
hole. [9]. If the double time integral does not diverge, then, even though the tidal
force becomes infinite, there is not enough time before the singularity is reached for
the observer to become infinitely deformed. This type of “whimper” singularity is
what occurs at the center of a realistic, old, Kerr black hole, according to classical,
general-relativistic perturbation calculations [10].

One can show from the approximate analytic solution of Sec. II that as ex-
pected, the Riemann curvature tensor does diverge at the end point of the collapse.
This, of course, is an explicit proof that the collapse produces a singularity, as ex-
pected. It follows from the form of the line element (3.1) and the forms of our
analytic and numerical solutions that the singularity is naked. (For a more rigor-
ous and complete proof of its nakedness, see Ref. [4].)

In order to study the nature of the singularity for our cylindrical shell, we would
like to compute the Riemann tensor components in (3.43) on the outside face of the

shell. However, as we showed in Sec. IV, for times very close to the final collapse
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time, the shell behaves more and more like a lightlike shell, and the distinction
between the inside and the outside vanishes (for example, the derivatives of
asymptote to the same value on both sides of the shell). Therefore, we expect the
Riemann tensor on the outside face of the shell to be the same, asymptotically, as
on the inside face; and we can compute it on the inside face rather easily, using
the analytic formulae that we obtained for the shell’s interior in Sec. III

We find, from such a calculation, that on the shell’s inside face, the only nonzero
components of the Riemann tensor as measured by an observer riding on the shell

are
R N . 1
Risrs = —R 55 = (V2 + X2)P2 4 2VX_¢pL ~ = InP~1(Q/f)e™. (3.44)

Recall that our numerical results strongly suggest that = 1 and 8 = 1/2, and
recall that ¥, = o In(Q/f), where a tiny correction has been neglected and where
a = 0.3262 when A = 0.1). Thus, the Riemann tensor diverges slightly more
rapidly than 1/#2. From di/dr = X_ = (20)~'/2¢*¥+ we infer that at late times, the
proper time to collapse, 7 = 7.— T, and the inner coordinate time to collapse, ¢, are
related by 7 = v/20te~22010°(®/) = \/25te=?¥>; and correspondingly, the Riemann
tensor as a function of proper time also diverges slightly more rapidly than 1/72.
This means in turn that the double time integral of the Riemann tensor, Eq. (3.43),
diverges slightly more rapidly than In7. This and the signs in Eq. (3.44) mean
that the observer riding on the shell will experience no deformation radially, but
will be stretched infinitely in the 2 direction, i.e., parallel to the symmetry axis,

and will be squeezed infinitely in the q3 direction, i.e., the azimuthal direction.
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8 Appendix: Description of the numerical method

The main problem faced when we try to perform a numerical simulation of the
collapse of the cylindrical dust shell is that it is necessary to deal with two different
time coordinates, one for the interior and a different one for the exterior. This
makes it very hard to use methods that require a fixed ratio between time step
and spatial step, since such methods would lead to two sets of constant-time slices,
one for the interior and one for the exterior, which will not match at the shell.

A second impediment to the simulation is that the location at which the two
coordinate systems meet (the shell’s location) moves with time, and this makes it
hard to apply the junction conditions,

In order to solve both problems we have used, at each step, a pair of slices: one
with constant ¢_ in the interior, and one with constant ¢, in the exterior, at times
chosen so that the slices match on the shell; and we have used an adaptive mesh
to follow the evolution of the shell.

The adaptive mesh allows us to have a constant number of grid points in the
interior and exterior parts of the slice, and it has the advantage of always keeping
the same grid point on the shell (actually two points, one just inside and one just
outside it), thus making it easier to apply the junction conditions. (See Figure 10.)

This choice of grid leads to a shrinking of the interior spatial step, and a
stretching of the exterior spatial step as time passes. We chose to use evenly
spaced points on the interior, while on the exterior slice the points right outside
the shell start with a separation matching that of the interior points, but their

separation increases (by a constant factor very close to unity) as they approach
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the outer limit of integration. This arrangement allows us to deal properly with
the increasingly fine detail inside the shell and in the near zone outside the shell.

This shrinking of the spatial step implies that we also have to keep reducing
the time step proportionally at each iteration, in order to maintain the At/Ar
ratio smaller than unity, to satisfy the Courant condition and to avoid numerical
instability [11].

In addition to the slices where ) was computed, we used another set of slices,
each of which falls betweeen two consecutive 1-slices (see Fig. 11). On this alter-
nating set of slices, we computed the values of £ = 1. In this way we can solve

the following set of two first-order equations:
o
bt = r 3.45
(3)  =erw (3.45)

3 1
(E)g,p, = -;(rx,b,r),r + vé,, (3.46)

where the subscript “g.p.” means that the time derivatives are taken at fixed grid
point, not fixed r. Here v = 9r/0t is the speed of the grid points, and the second
terms in both equations arise from the fact that these points are moving.

The difference equations used for the numerical evolution were an implemen-
tation of the Lax-Wendroff method [11]. Briefly, this method uses 3 points on one
slice to compute 2 points on an intermediate slice, and then uses these plus one
of the initial 3 points to compute one point on the next slice (see Fig. 11). When

applied to Equation (3.45) the difference equations for ¢ turn out to be

n+i n n g A n ntq At® n n
il = 3 (U7 +97) + %“H;At o1 2Ar; (54 —45), (347)
n n e ntd At™ nt+i n+3

Arj_l
2
where (3.47) gives the result for one of the intermediate (Lax) steps (the other one
is obtained from an analogous formula, but with j replaced by j — 1 everywhere),
and (3.48) gives the value on the next slice (“staggered-leapfrog” step).

In the above equations the superscript corresponds to the time slice where

the value resides (with integer n corresponding to the i-slices), and the subscript
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indicates the spatial location on the slice (with integer j corresponding to the grid
points).
Similarly, applying the Lax-Wendroff method to Eq. (3.46), we obtain for ¢:

N s S M- Ui GOt S
= H(ER 67 g (65 -6

,oar

2TJ+§(ATJ)

n-i -1 n—1 n—1

[ron (v —id) = (W52f =97 (3.49
nti n—}% Atn n n n
7= &7 (60— 6n)

At

e v Wi —9) —riy (8 — )], (350)
where, again, (3.49) results from one of the intermediate Lax steps (and the other
one is obtained by replacing j — j—1), and (3.50) results from the final staggered-
leapfrog step.

These equations allow us to evolve ¥ in vacuum. But we also need to apply
boundary conditions. First, on the axis, we know from Eq. (3.11) that the radial
derivative of v vanishes. In addition, we cannot have grid points right on the axis,
since Eq. (3.50) involves a division by the value of r at the grid point. Therefore,
we use a first grid point at half the size of a radial step from the axis (j = 0),
and another “mirror” point (j = —1) on the “opposite side” of the axis, and use
¥(r-1) = ¥(ro) (see Fig. 11).

Next, there is the issue of the outer boundary. Since we are mostly interested
in the evolution that occurs during the collapse — and this lasts a finite amount
of time — there is a radial limit past which no information from the collapse will
have arrived at the end of the collapse. Therefore, it is enough to choose an outer
limit of integration bigger than this limit.

Finally, we have to to deal with the junction conditions on the shell [Egs.
(3.13) and (3.14)]. For this, we used the method of characteristics [12]. Briefly,
this is a method to evolve numerically a partial differential equation from one

slice to the next by computing the value on one grid point by integrating along
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the “characteristic” curves that cross that point, starting with the values on the
previous slice. In our case the characteristics are the two diagonal lightlike lines
(dr = +£dt) that cross the slice at the given point.

This allows us to express the values of the variables (3 and derivatives) on the
grid point that lies on the shell as functions of the known values close to the shell
in the previous slice, and this in turn leads to an equation that can be solved for
¥ on the shell.

More specifically, from Fig. 12 and the equations for propagation along the

characteristics [12], we obtain

1

dy' — dip_ + —pldt. =0, (3.51)
|

and correspondingly, we obtain, by applying a first-order approximation to the

triangle PQR in the figure:
(¥ — ¥o-) — (e — Pp2) + oW + U5 )R ~40) =0, (3.59)
. . 1
~ (Vs = ¥ou) = (bRt — Yau) + o= (bhy + %0415 —1F)  =0. (3.54)

These equations plus those arising from the junction conditions [Egs. (3.13) and
(3.14)], evaluated at point R, allow us to obtain expressions for the radial and time
derivatives of ¢ at point R on the inside and the outside of the shell (¢¥%_, ¥g,,

¥r—, ¥ry). Finally, using the evolution equation for v along, say, PR
dyp = ¢l dr +¢_dt_, (3.55)
we obtain the following expression for ¢g:
Yr=Yp +3(p- + $r)(rR—P) + 3(Yp- + PR )(EE - D). (3.56)

Notice that in (3.53), (3.54), (3.13), and (3.14), the values X, depend on the value

of ¥r [Eq. (3.6)], and therefore this last expression is actually a nonlinear equation
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for 1R, which we solve by iteration, starting with an estimate based on the values

Yp and ¥q.

Notice also that the value of 4 at the shell is necessary for the junction condi-

tions. To obtain it we integrated (3.3) along each slice.
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FIG. 1. The proper time, interior and exterior coordinate times, and Newtonian time
elapsed from the start of collapse until the formation of the final singularity are here plotted

as functions of the shell’s mass per unit length A. These collapse times are expressed in
units of the shell’s initial radius Ro.
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FIG. 2. Shape of the potential ¥(r) outside the shell at different instants ¢, of the
collapse, for a shell with mass per unit length A = 0.1. The left-hand starting location of

each curve is the position of the shell, and the dashed envelope represents ,, the value of
1 on the shell.
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FIG. 3. Comparison between the analytical prediction (thin line) and the numerical
results (thick line) for 1 + dR/dt_ (difference between the shell’s actual coordinate speed
and the speed of light) as a function of t,. See Eqs. (3.23) and (3.24). Note that the

collapse proceeds along the curves from left to right. The shell has mass per unit length
A=0.1.
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FIG. 4. Comparison between the analytical prediction (thin line) and the numerical
results (thick line) for [V| = |dR/dr| as a function of %,. See Eqs. (3.26) and (3.24). Note
that the collapse proceeds along the curves from left to right. The shell has A = 0.1.
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FIG. 5. X_. +V as a function of the sheﬂ’s radius R, which should asymptote to the
constant shown in Eq. (3.27). The horizontal line is the asymptote for the value of the
parameter o that best fits this curve and that in Fig. 6: o0 = 1.186. The shell has A = 0.1
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FIG. 7. Comparison between the numerical results for 1, as a function of ¢ (thick curve)
and the approximate analytical relation (thin curve) (3.24) with parameters @ = 0.3262,
B = 0.4999, and Q = 1.009. The shell has A = 0.1.
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FIG. 8. The Gravitational waves (deviation 6% of 1 from the static solution) emitted

by the collapsing shell, plotted as a function of radius for different times. The shell has
A=0.1.
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FIG. 9. The Gravitational waves (deviation 6§ of 1 from the static solution) emitted
by the collapsing shell, scaled by the factor /7, plotted as a function of radius for different
times. The shell has A = 0.1.
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FIG. 10. Adaptive mesh used for the numerical integration of the wave equation.
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FIG.12. Method of characteristics applied on the shell with junction conditions to obtain
the derivatives of 1 on both sides.
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Chapter 4

Billiard balls in wormhole spacetimes
with closed, timelike curves: Classical

theory

(By F. Echeverria, G. Klinkhammer, and K. S. Thorne. Originally
appeared in Phys. Rev. D 44, 1077 (1991).)
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Billiard balls in wormhole spacetimes with closed timelike curves: Classical theory

Fernando Echeverria, Gunnar Klinkhammer, and Kip S. Thorne
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125
(Received 27 February 1991)

The effects of self-interaction in classical physics, in the presence of closed timelike curves, are
probed by means of a simple model problem: The motion and self-collisions of & nonrelativistic,
classical billiard ball in a space endowed with a wormhole that takes the ball backward in time.
The central question asked is whether the Cauchy problem is well posed for this model problem, in
the following sense: We define the multiplicity of an initial trajectory for the ball to be the number
of self-consistent solutions of the ball’s equations of motion, which begin with that trajectory. For
the Cauchy problem to be well posed, all initial trajectories must have multiplicity one. A simple
analog of the science-fiction scenario of going back in time and killing oneself is an initial trajectory
which is dangerous in this sense: When followed assuming no collisions, the trajectory takes the ball
through the wormhole and thereby back in time, and then sends the ball into collision with itself. In
contrast with one’s naive expectation that dangerous trajectories might have muitiplicity zero and
thereby make the Cauchy problem ill posed (“no solutions”), it is shown that all dangerous initial
trajectories in a wide class have infinite multiplicity and thereby make the Cauchy probiem ill posed
in an unexpected way: “far too many solutions.” The wide class of infinite-multiplicity, dangerous
trajectories includes all those that are nearly coplanar with the line of centers between the worm-
hole mouths, and a ball and wormhole restricted by (ball radius)<(wormhole radius)<€(separation -
between wormhole mouths). Two of the infinity of solutions are slight perturbations of the self-
inconsistent, collision-free motion, and all the others are strongly different from it. Not all initial
trajectories have infinite multiplicity: trajectories where the ball is initially at rest far from the
wormhole have multiplicity one, as also, probably, do those where it is almost at rest. A search
is made for initial trajectories with zero multiplicity, and none are found. The search entails con-
structing a set of highly nonlinear, coupled, algebraic equations that embody all the ball's laws of
motion, collision, and wormhole traversal, and then constructing perturbation theory and numeri-
cal solutions of the equations. A future paper (paper II} will show that, when one takes account
of the effects of quantum mechanics, the classically ill-posed Cauchy problem (“too many classical
solutions™) becomes quantum-mechanically well posed in the sense of producing unique probability

distributions for the outcomes of all measurements.

L. INTRODUCTION AND SUMMARY

A. Motivation

This is one of a series of papers that try to sharpen
our understanding of causality by exploring whether the
standard laws.of physics can accommodate themselves, in
a reasonable manner, to closed timelike curves (CTC's).

Previous papers have provided a natural spacetime
arena for such an exploration: The arena of spacetimes
that contain classical, traversible wormholes (i.e., multi-
ply connected spatial slices). Morris, Thorne, and Yurt-
sever [1] showed that genmeric relative motions of the
mouths of a traversible wormhole produce CTC’s that
loop through the wormhole’s throat, and Frolov and
Novikov [2] showed that generic gravitational redshifts
at a wormhole’s two mouths, due to generic external
gravitational fields, also produce CTC’s. (It is not clear
whether the laws of physics permit the existence of such
traversible wormholes; the attempt to find out is a sep-
arate line of research 1, 3-5], which we shall not discuss
here.)

A consortium [6] of researchers from Moscow, Milwau-
kee, Chicago, and Pasadena (henceforth referred to as

4

“the consortium”) has raised the issue of whether the
Cauchy problem is well posed in spacetimes with CTC’s,
and has explored many facets of the issue. This paper is
one of several that elaborate on the ideas raised by the
consortium [6).

Two examples of wormhole spacetimes with CTC's are
depicted in Fig. 1. Both of these spacetimes are fiat
and Minkowski, except for the vicinity of the wormhole
throat. The wormhole is arbitrarily short, and its two
mouths move along two world tubes that are depicted as
thick lines in the figure. The mouths are so small com-
pared to their separation that one cannot see in the figure
their finite size. Proper time r at the wormhole throat
is marked off along the mouths’ world tubes; points with
the same values of T are the same event, on the throat,
as seen through the two different mouths.

In Fig. 1(a) mouth 1 remains forever at rest, while
mouth 2 accelerates away from 1 at high speed, then re-
turns and decelerates to rest. Becpuse the motions of the
two mouths are like those of the twins in the standard
special-relativistic twin paradox, we shall refer to this
as the “twin-paradox spacetime.” The same relative ag-
ing as occurs in the twin paradox produces, here, closed
timelike curves that loop through the wormhole [1]. The

1077 ©1991 The American Physical Society
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FIG. 1. Two examples of wormhole spacetimes with
closed timelike curves. (a) The “twin-paradox spacetime,”
(b) the “eternal-time-machine spacetime.”

light-cone-like hypersutface H shown in the figure is a
Cauchy horizon. Through every event to the future of
this Cauchy horizon K there are CTC’s; nowhere in the
past of H are there any CTC's.

In Fig. 1{b) the two mouths are both forever at rest,
but with a time delay Ty between them that is greater
than the distance a separating them. Because there are
CTC’s looping through the wormhole throughout this
spacetime, the wormhole can be used in principle as a
“time machine” for traveling arbitrarily far into the past
or the future. For this reason, it has become conventional
to call this the “eternal-time-machine spacetime.”

Many aspects of the twin-paradox spacetime and the
eternal-time-machine spacetime have been studied else-
where in the literature [1, 6,3, 7]. Most importantly for
us, the consortium [6}, and Friedman and Morris {7] have
used these spacetimes as “testbed arenas” for studying
whether the Cauchy problem is well posed in the presence
of CTC's.

As the consortium has shown [6)], it is an exceedingly
delicate enterprise to pose initial data in a region of
spacetime that is threaded by CTC’s (the region to the
future of the Cauchy horizon in the twin-paradox space-
time; anywhere, except past null infinity, in the eternal-
time-machine spacetime). The delicacy is caused by the
absence of well-behaved spacelike or null hypersurfaces
in such a region, on which to pose the data. Various
aspects of this delicacy are discussed by the consortium
{6] and by Yurtsever [8), and we shall not in this pa-
per attempt to elucidate them further. Rather, we shall
confine attention to the more straightforward situation
of initial data that are posed in regions to the past of
all CTC's; i.e., data posed on a spacelike or null Cauchy
surface to the past of the Cauchy horizon % in the twin-
paradox spacetime, and data posed on past null infinity
in the eternal-time-machine spacetime. We shall ask (as
did the consortium [6]) whether the Cauchy problem is
well posed for such initial data, in the following sense:

ECHEVERRIA, KLINKHAMMER, AND THORNE

“

If one gives the same standard initial data as one would
do in a spacetime without CTC's, then for each choice
of those data does there exist a self-consistent, global so-
lution of the standard, local evolution equations, and if
so is the self-consistent solution unique? (The demand
for self-consistency has been discussed in depth by the
consortium [6].)

One can ask about the well posedness of the Cauchy
problem for a variety of types of evolving systems in
spacetimes with CTC's. The first step, carried out by
Friedman and Morris (7], was to study the evolution of
a classical, massless scalar field ¢. Friedman and Mor-
ris showed rigorously that the Cauchy problem is well
posed for such a field in the eternal-time-machine space-
time: Every arbitrary initial value of the field ré (where
r is radial distance), posed at past null infinity (limit as
T —r — —00), gives tise, via the standard local evolution
equation O¢ = 0, to a unique, globally self-consistent
field ¢ throughout the eternal-time-machine spacetime.
It seems highly likely that this behavior is prototypical
in the sense that, for any zero-rest-mass, noninteracting,
classical field (e.g., the vacuum electromagnetic field) in
any stable wormhole spacetime with CTC’s, the Cauchy
problem will be well posed [1,6, 7].

It seems probable that the well posedness of the
Cauchy problem for the field ¢ results from the fact that
¢ has no self-interactions. More likely to produce peculiar
results is a system that, after traveling around a nearly
closed timelike world line, can interact with its younger
self (e.g., a person who tries to kill his younger self). The
simplest such classical system is a single, classical particle
that carries a hard-sphere, repulsive potential and has no
internal degrees of freedom (a “billiard ball”), and that
travels with a speed small compared to light so special-
relativistic effects can be ignored. The purpose of this
paper is to study the Cauchy problem for such a billiard
ball in the twin-paradox and the eternal-time-machine
spacetimes.

Other papers in this series study the well posedness
of the Cauchy problem for systems that embody other
pieces of physics: A companion paper to this one (pa-
per 11 [9]) studies the effects of nonrelativistic quantum
mechanics on the Cauchy problem for this paper’s bil-
liard ball; Novikov and Petrova [10] are currently study-
ing a classical billiard ball that has huge numbers of in-
ternal degrees of freedom and thus can behave inelasti-
cally when it collides with itself, and Novikov [11] has
examined, semiquantitatively, a number of complicated
classical systems (e.g., a bomb that explodes in response
to a trigger signal, sending explosive debris through a
wormhole and backward in time where it tries to trig-
ger the explosion before the explosion actually occurs).
For his complicated classical systems, Novikov shows that
it is plausible that there always exists at least one self-
consistent solution, no matter how paradoxical the ini-
tial data may appear. Unfortunately, for such compli-
cated systems it seems hopeless to obtain firm results.
Accordingly, in this paper, in a quest for firmness, we
examine the simplest system we can think of that has
self-interactions: the perfectly elastic, nonrelativistic bil-
liard ball.
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B. The Cauchy problem for classical billiard balls

In this paper we pose our initial data (initial billiard
ball trajectory, by which we mean instial path and speed),
in the region of spacetime that is devoid of CTC's: before
the Cauchy horizon for the twin-paradox spacetime [Fig.
1(a)}, or at past null infinity for the eternal-time-machine
spacetime [Fig. 1(b)]. For the twin-paradox spacetime,
we confine attention for simplicity to initial trajectories
that take the ball into the vicinity of the wormhole long
after mouth 2 has returned to rest. This permits us,
throughout the calculation, to ignore the early-time, rel-
ative motion of the wormhole mouths and to treat the
twin-paradox spacetime as though it were the same as
the eternal-time-machine spacetime, i.e., the same as Fig.
1(b).

The structure of this (common) spacetime can be
understood easily s follows [6]: Take ordinary, flat,
Minkowski spacetime, cut out of it the world tubes of
two balls that are at rest in a chosen Lorentz coordinate
system (T, X,Y, Z), and identify the surfaces of the balls,
with a time delay Ty between them. The surfaces of the
two balls are the mouths of the wormhole, and because
they have been identified with each other, the wormhole
is vanishingly short.

We shall denote by D the separation between the cen-
ters of the two mouths as measured in the Lorentz frame
where they are at rest, by b the radii of the two mouths
(radius of curvature of their surfaces), by Ty the time de-
lay between the two mouths, and by r the radius of the
billiard ball. Throughout this paper we shall measure
spatial distances in units of D (so the wormhole mouth
separation is unity) and times in units of Ty (so the time
delay between the two mouths is unity); and we shall de-
note by B = b/D and R = r/D the wormhole radius and
the billiard ball radius, measured in these units, and by
v the billiard ball speed, measured in these units (units
of D/Ty).

The identification we shall use for the two wormhole
mouths is one in which diametrically opposed points
(points obtained by reflection in the plane half way be-
tween the two mouths) are identical. Stated more pedes-
trianly (see Fig. 2): Adjust the Lorentz frame’s spatial,
Cartesian coordinates so the line of centers between the
two mouths lies on the X axis. Then set up a right-
handed spherical polar coordinate system (©,®) on the
right mouth with the polar axis pointed in the —-X di-

al

/,
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|

FIG. 2. The identification of points on the two mouths of
the wormhole.
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rection (along the line of centers, toward the left mouth)
and with @ = 0 along the -Y direction; and set up a
left-handed spherical polar coordinate system (6, %) on
the left mouth with polar axis pointed in the +X direc-
tion (along the line of centers, toward the right mouth)
and with & = 0 along the =Y direction. Then points
on the two mouths with the same values of © and & are
identified.

In our study of the Cauchy problem for a billiard ball
in the above spacetime, we shall focus on the issue of the
multiplicity of solutions to the ball’s equations of motion.
For each initial trajectory (initial path and speed) we de-
fine the multiplicity to be the number of self-consistent
solutions of the equations of motion that begin with that
trajectory. Not surprisingly, it will turn out that each
initial trajectory has a discrete set of solutions, and thus
has multiplicity zero or one or twoor .. .. In the absence
of CTC’s, all trajectories have multiplicity one, which is
just a fancy way of saying that the Cauchy problem is well
posed. From exposure to science-fiction scenarios (e.g.,
those in which one goes back in time and kills oneself),
one might expect CTC'’s to give rise to initial trajectories
with zero multiplicity—a severe form of ill posedness for
the Cauchy problem. However, we have searched hard for
initial trajectories with zero multiplicity and have found
none. On the other hand, our search has not covered all
initial trajectories (see especially Sec. V), so we cannot
guarantee the nonexistence of zero-multiplicity trajecto-
ties.

The only trajectories that have any possibility for zero
multiplicity are those which, when followed assuming no
collision, produce a collision. We call such trajectories
dangerous. A trajectory can be dangerous only if it leads
the ball into the wormhole, and this can happen only if
the trajectory is nearly coplanar with the line that con-
nects the centers of the wormhole mouths—more specif-
ically, only if it is within a distance B =(mouth radius)
of being coplanar with the line of centers. For this rea-
son, in this paper we restrict attention to nearly coplanar
trajectories. The analysis of the billiard ball motion is
fairly manageable when the initial trajectory is precisely
coplanar (Secs. I1, 111, and IV); and the slightly noncopla-
nar case (within a distance € B of coplanar) can be
treated using perturbation theory (Sec. V). However, we
have not found a manageable way to analyze the case of
coplanarity to within a distance ~ B.

For the slightly noncoplanar case, and for R € B «
D = 1 (ball small compared to mouths and mouths small
compared to separation of mouths), we shall derive a
rather remarkable result (Sec. IV A): All dangerous initial
trajeclories have infinite multiplicity. What a contrast
with one’s naive, science-fiction-based expectation of zero
multiplicity.

Figure 3 gives insight into two of the infinite set of
solutions in the precisely coplatar case. Figure 3(a) is
the self-inconsistent solution which tells us that the ini-
tial trajectory, labeled a, is dangerous. When, as in Fig.
3(a), we assume that the ball travels freely along a with-
out suffering a collision, it passes through the wormhole,
emerges along A before it went in, and hits itself so hard
that it knocks itself along o', preventing itself from go-
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FIG. 3. Spatial diagrams showing a prototypical example of initial data that produce two self-consistent solutions to the
billiard-ball equations of motion. Each diagram shows the bali’s spatial trajectoty, and also shows the ball itself (young version
in black and old version in grey) at the moment of self-collision. (a) The self-inconsistent solution which arises if one assumes
the ball does not get hit before traversing the wormhole. (b) A “class-I” self-consistent solution in which the ball is speeded up
and deflected rightward slightly by a collision before entering the wormhole. (c} A “class-II” self-consistent solution in which
the ball is slowed and defiected leftward slightly by a collision before entering the wormhole.

ing through the wormhole. Figure 3(b) is what we call
a “self-consistent solution of class I” for this same ini-
tial trajectory a. The ball, while traveling toward the
wormhole on a, gets hit gently on its left rear side and
is speeded up a bit and deflected rightward a bit (along
trajectory a’); it then enters the wormhole and reemerges
before it went down (trajectory B), it tries to pass behind
its younger self, but gets hit a gentle, glancing blow by its
younger self and deflected slightly (along trajectory §').
Figure 3(c) is what we call a “self-consistent solution of
class II” While traveling toward the wormhole, the ball
(trajectory a) gets hit gently on its front right side and
is slowed a bit and deflected leftward a bit (along trajec-
tory a'), it enters the wormhole and reemerges before it
went down (trajectory ), it passes in front of its younger
self and, just before getting all the way past, it gets hit
a gentle, glancing blow by its younger self and deflected
slightly (along trajectory §’). We shall study the details
of such coplanar class-1 and class-11 solutions in Sec. IV
and in Appendixes A and B-—and shall do so not only
for R € B € D =1, but also for wormholes with large
mouths and balls with large radii.

The class-1 and class-II solutions are small perturba-
tions of the self-inconsistent solution, in the sense that
the ball’s path is displaced by only enough (typically of
order the ball’s radius R) to permit the ball to undergo
a glancing collision rather than a head-on collision. By
contrast, the other self-consistent solutions are quite dif-
ferent from the self-inconsistent one. They (or at least
the ones studied in this paper) involve a collision that oc-
curs somewhat farther from the wormhole than for class
I and class II, and correspondingly the distance the ball
travels, from its first encounter with the collision to its
second, is rather larger than in the class-1 and class-If so-
lutions. This means the ball must travel farther back in
time to achieve such a solution. It does so by undergoing
several wormhole traversals. In Sec. III we shall exhibit
a self-consistent solution corresponding to each value of
the integer n = (number of wormhole traversals); and we
shall do so not only when the initial trajectory is danger-
ous, but in fact for almost all coplanar initial trajectories
with speeds v; > D/Ty = 1. Figure 9 (in Sec. I1I) is an
example with eight traversals.

Our analysis of these multiple-traversal solutions, by
contrast with our analysis of the class-1 and class-II solu-
tions, is restricted to R € B « D = 1. This restriction
permits us to ignore the details of the balls’ relative ge-
ometry during the collision event (aside from proving, in
Sec. I, that the necessary geometry exists). By decou-
pling the details of the collision geometry from the rest
of the solution, we bring the multiple-traversal analysis
into an elegant geometric form that contrasts with the
complicated algebraic calculations used to analyze the
class-] and class-II solutions. This diflerence motivates
our presenting the multiple-traversal analysis (Sec. [II)
before the class-I-class-II analysis (Sec. IV).

This paper restricts attention, for simplicity, to solu-
tions that entail a single self-collision. There presum-
ably are also multiple-collision solutions, and we spec-
ulate about some possible, rather strange ones in the
paragraph containing Eq. (3.11). Such solutions can only
increase the tendency of initial trajectories to have high,
even infinite, multiplicity.

Having identified this tendency toward high multiplic-
ity, we ask ourselves in Sec. IIIC whether there exist
any solutions with multiplicity 1; and in Secs. IV and
V, whether there exist any with multiplicity zero. Our
search for multiplicity zero comes up empty handed;
all initial trajectories that we have examined have self-
consistent solutions. By contrast, there is at least a small
(measure-zero) class of initial trajectories with unit mul-
tiplicity: those in which the ball is initially at rest far
from the wormhole. We suspect, but have not proved,
that the (finite-measure) initial trajectories with speeds
vy € D/Ty =1 and with impact parameters A > D=1
also have unit multiplicity; see Sec. III.

The above conclusions are derived for the precisely
coplanar case in Secs. II, I11, and IV; and they then are all
extended to the slightly noncoplahar case in Sec. V. This
extension is accomplished by demonstrating (via pertur-
bation theory) that for each slightly noncoplanar initial
trajectory there is a one-to-one correspondence between
its self-consistent solutions and those of a nearby, pre-
cisely coplanar initial trajectory.

This 'paper's principal conclusion, that the Cauchy
problem is ill posed for classical billiard balls in the
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eternal-time-machine spacetime, suggests at first sight
that the laws of physics might not be able to accommo-
date themselves in any reasonable way to CTC’s. How-
ever, the laws of classical mechanics are only an approx-
imation to the more fundamental laws of quantum me-
chanics, and in paper II [9] it will be shown that quan-
tum mechanics can cure the multiple-solution ill posed-
ness (and can also cure a zero-multiplicity ill posedness,
if it occurs): For each initial quantum state of a nonrel-
ativistic billiard ball, posed before the region of CTC'’s,
the sum-over-histories formulation of quantum mechan-
ics predicts unique probabilities for the outcomes of all
sets of measurements that one might make in the region
of CTC’s.

C. Outline of this paper

We begin our quantitative analysis of coplanar solu-
tions in Sec. II, by laying some foundations. In Sec.
I1 A we derive simple “wormhole traversal” rules for the
change of a billiard ball’s velocity when it goes through
the wormhole. Then in Sec. IIB we analyze the kine-
matics of a billiard ball’s self-collision when there is only
one collision event along the ball’s world line. Our anal-
ysis simplifies subsequent calculations by embodying all
the kinematics (energy conservation, momentum conser-
vation, and friction-free billiard-ball contact at the col-
lision event) in one simple rule: the collision must pro-
duce either a direct “velocity exchange,” or a “mirror
exchange” of velocities.

In Sec. III, by combining the wormhole traversal rules
with velocity-exchange and mirror-exchange collisions,
and restricting attention to R € B <« D = 1, we show
that multiple solutions to the billiard ball’s equations of
motion are ubiquitous. More specifically, we show that a
finite measure of such (coplanar) initial trajectories pro-
duce not only multiple solutions (Sec. IIL A), but in fact
an infinity of solutions (infinite multiplicity; Sec. 11l B).
We then show that not allinitial trajectories have infinite
multiplicity; there do exist some with only one solution
(unit multiplicity; Sec. IIIC).

In Sec. IV we turn our attention to dangerous, copla-
nar initial trajectories. We begin in Sec. IV A by prov-
ing, as a corollary of the Sec. IIIB analysis, that for
R € B € D = 1almost all such trajectories have infinite
multiplicity. Then we extend our search for multiplicity
zero to balls that are large enough for the geometry of
the collision to couple significantly into the rest of the so-
lution, R & B. In Appendix A and Sec. IV B we derive a
set of highly nonlinear, coupled equations governing self-
consistent solutions with such collisions. Those equations
are valid not only for R #& B, but also for B& D= 1.
However, in Appendix B and Sec. IV C we return to the
restriction B € D and there search for solutions of the
equations. We find analytic, perturbation-theory solu-
tions of classes [ and II for almost all initial trajecto-
ries; and we construct numerical solutions for some typ-
ical initial trajectories in the extreme regions where the
perturbation-theory solutions fail. Our spot checks in
these extreme regions have not turned up any initial tra-
jectories for which numerical solutions do not exist.
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In Sec. V, using perturbation theory, we extend to
slightly noncoplanar initial trajectories all the coplanar
results of the previous sections.

II. FOUNDATIONS: WORMHOLE
TRAVERSALS AND SELF-COLLISIONS

In this section we give brief analyses of coplanar worm-
hole traversals and billiard-ball self-collisions—analyses
that produce simple rules for use in subsequent sections.

A. Coplanar wormhole traversals

For nearly all the wormhole traversals encountered in
this paper, the ball’s trajectory is coplanar with the line
of centers of the wormhole mouths, and the ball enters
mouth 2 and exits from mouth 1, thereby traveling back-
ward in time. In this section we shall confine attention
to such traversals.

For all traversals, we shall presume that the ball is
small enough (ball radius R sufficiently small compared
to mouth radius B) that we can ignore the impulsive
tidal force exerted on the ball’s hard-sphere potential by
the concentrated spacetime curvature at the wormhole
throat. Just how small R must be for this depends on
one’s model for the internal structure of the ball.

In this paper our model for the ball will have the fol-
lowing features. (i) We shall refuse to consider collisions
that occur while the center of the ball is on one side of
the wormhole throat and its colliding surface is on the
other; thereby we shall avoid worrying about instanta-
neous tidal deformations of the ball’s hard-sphere poten-
tial during the traversal. (ii) We shall assume (for sim-
plicity and definiteness) that, even if R is as large as, say,
B/2, the ball’s center moves through the wormhole in the
same manner as would an arbitrarily small ball. (iii) We
shall assume that, even for R as large as B/2, the ball
recovers from its tidal distortions and resumes its radius-
R, spherical shape arbitrarily quickly after a traversal.
These features of our model are sufficient to permit R to
be as large as B/2. (Our choice of B/2 rather than B/4
or 98/10 is quite arbitrary.)

Since the ball’s center moves through the wormhole
in the same manner as would an arbitrarily small ball,
its motion must be on a straight line and with constant
speed, as seen by an observer at rest on the throat. Such
motion guarantees energy and momentum conservation
during the traversal, as seen by the observer. (We pre-
sume that the wormhole recoils negligibly; i.e., we treat
the ball as a “test object” that moves through the fixed
wormhole geometry.)

Since the wormhole mouths are both at rest in the ex-
ternal space, constant speed as seen on the throat implies
that the speed of the ball, as measured in the exterior, is
unchanged by the traversal: vy, = vj,.

Straight-line motion, as measured on the throat, im-
plies that the ball’'s outgoing velocity vo, makes the
same angle 8, with the outgoing mouth’s outward nor-
mal, as the ball’s ingoing velocity v, makes with the
ingoing mouth’s inward normal. This in turn implies (cf.
Fig. 4) that the angle ¥ from the mouths’ line of centers
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(the X axis) to the ball’s velocity vector changes during
the wormhole traversal from ¢ = 8+¢ toy = 0 —¢. Here
¢ is the angular location of the traversal on the wormhole
throat as depicted in Fig. 4 (not to be confused with the
@ of Fig. 2).

These conclusions are summarized by the following
“wormhole traversal rules”:

Vout = ¥in ,

(2.1a)

¢wt = Yin — 2¢ . (2'1b)

Here and throughout, an italic v denotes the magnitude
(speed) of the velocity v.

B. Coplanar self-collisions

In this section and throughout this paper we restrict
attention to self-consistent solutions that involve a single
self-collision. We shall denote by v; the ball’s velocity
as it enters the collision the first time, by vj its velocity
as it leaves the collision the first time, by v; its velocity
as it enters the second time, and by v} its velocity as it
leaves the second time. In other words, the sequence of
velocities as measured by the ball itself is vy, v}, v, v5.

No matter how many wormhole traversals the ball may
make between its two visits to the collision event, the
“speed in equals speed out” wormhole traversal rule im-
plies that : -

Bw=v; (2.2a)

and this, combined with energy conservation, implies
that

V=0 .

(2.2b)

These two speed relations, together with the collision’s
law of momentum conservation,
vi+vi=vi+v,, (2.2¢)

are a complete set of conservation laws for the ball’s ve-
locity.

mouth 1

mouth 2

FIG.4. The “wormhole traversal rules” [Eqs. (2.1)], which

govern coplanar wormhole traversals from mouth 2 to mouth
1.
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velocity exchange

mirror exchange

(a) (b)

FIG. 5. The two solutions to the self-collision equations:
“velocity exchange” [Eq. (2.3a)), and “mirror exchange” (Eq.
(2.4a)}

These conservation laws can be satisfied in precisely
two ways (Fig. 5): (i) velocity ezchange,
vi=va, vi=vy,

(2.3a)

for which the relative position of the balls at the moment
of collision (the vector separation of their centers) is

Vz — Vi

r; —r; = 2R——m 2.3b
1 2 Ty ( )
and (ii) mirror ezchange,
Vll = (V3)reftected in line parsllel to vi+vy o
¥y = (V1)eeflected in line paraliel to vi4vj » (2.4a)

for which the relative position of the balls at the moment
of collision is

vz + vy
jva+wy|’

where s = sign(v—v;). [The relative position of the balls
when they collide, Eq. (2.3b) or (2.4b), is determined by
the fact that the momentum transfer v{ — v; must be
along the balls’ line-of-centers direction r; — r3, and the
centers must be separated by a distance 2R\

In summary, all the constraints on velocity that a
self-collision must satisfy are embodied in the simple
statement that either the balls undergo velocity ezchange
(2.3a), or they undergo mirror ezchange (2.4a).

rn—r3=2Rs (2.4b)

II1. UBIQUITY OF MULTIPLE SOLUTIONS
FOR COPLANAR INITIAL TRAJECTORIES

In this section we shall use the geometry of the veloc-
ity exchange, mirror exchange, and wormhole traversal
rules to show that multiple solutions to the billiard ball’s
equations of motion are ubiquitous. Our discussion will
be confined to coplanar initial data. However later, in
Sec. V, we shall see that all coplanar solutions are stable
(continue to exist) when one perturbs the initial data in
an arbitrary but infinitesimal, noncoplanar way. In our -
discussion, as in Sec. I, we shall refer to the number of
solutions that an initial trajectory produces as its “mul-
tiplicity.”

We begin in Sec. III A by showing that all coplanar
initial trajectories that are aimed between the wormhole
mouths have multiplicity at least two. One solution is
unperturbed straight-line motion, and a second is com-
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posed of a wormhole traversal and a velocity-exchange
collision. Then in Sec. IIIB we show that there is a
wide variety of coplanar initial trajectories (a set of finite
measure) with infinite multiplicities. Each of the solu-
tions we exhibit, for these initial trajectories, has a single
mirror-exchange collision, together with some number n
of wormhole traversals; n ranges over positive integers up
to infinity. Finally, in Sec. IIIC, we show that a ball ini-
tially at rest far from the wormhole has only one solution
to its equations of motion: the trivial solution where it
remains forever at rest. We also argue, but do not prove
firmly, that there is only a single solution for any ball
with (i) an initial speed that is sufficiently slow but not
zero, and (ii) an initial path of motion that, if extended
forever, remains far from the wormhole.

A. Multiplicity larger than 1 is generic

Consider a ball whose initial path is coplanar with
the mouths’ line of centers and is directed between the
mouths, and whose initial speed is arbitrary but nonzero.
An obvious solution to the ball’s equation of motion is
collision-free, wormhole-traversal-free, straight-line mo-
tion [Fig. 6(a)). A second solution is shown, for the case
of an arbitrarily small ball, in Fig. 6(b). The ball is hit
as it crosses the mouths’ line of centers and gets knocked
radially into mouth 2. Regardless of the bali’s initial
speed vy, it is hit with just the right impulse to give it
a speed v} = (D - 2B)/Ty = 1 = 2B. It travels through
the wormhole and returns to its impact point at just the
right moment to hit itself and be deflected back onto its

mouth 1 mouth 2

(a)

FIG. 6. Solutions to the equations of motion for a copla-
nar initial trajectory that is directed between the wormhole
mouths. The ball’s speed is arbitrary. (a) The trivial so-
lution. (b) A solution with one wormhole traversal and a
velocity-exchange collision. (c) Modification of solution (b)
when the radius of the ball is not negligible.
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original trajectory. Since the wormhole traversal rules
(2.1) are trivially obeyed, and the ball has obviously un-
dergone a velocity-exchange collision, all the equations of
motion are satisfied.

If the ball’s radius is not arbitrarily small, both so-
lutions, (2) and (b), still exist. However, the details of
solution (b) are modified slightly, as shown in (c). The
collision still entails a precise velocity exchange, and the
wormbhole traversal rule is still satisfied (but not quite so
trivially as before). However, there is now an offset of
the various pieces of the ball’s path (solid lines) relative
to the previous path (dotted lines).

It is not hard to convince oneself that, when the ball
is given a finite but small size R < B, all the solutions
described in the remainder of Sec. III remain valid with
tiny modifications similar to those in Fig. 6(c). However,
for ease of presentation we henceforth in Sec. III shall
keep the ball’s size infinitesimal.

B. Infinite multiplicity is generic

As a first step in demonstrating that infinite multiplic-
ity is generic (i.e., that all the initial trajectories in a
set of finite measure have infinite multiplicity), consider
the highly symmetric initial trajectory showa in Fig. 7.
The ball’s initial speed is arbitrary, and its initial path
is coplanar with and perpendicular to the line of centers
and is directed half way between the two mouths. Fig-
ures 7(a)-7(d) are four self-consistent solutions for this
initial trajectory, and they obviously are generalizable to
produce an infinite set of solutions. Yet another solution
is that of Fig. 6(b), which involves velocity exchange by
contrast with the mirror exchange of Fig. 7.

The solution shown in Fig. 7(b) was pointed out to
us by Forward (12] (and it motivated our discovery of
the infinite multiplicity of solutions). In this solution
the ball experiences a mirror-exchange collision, which
knocks it radially into mouth 2. It then emerges radi-
ally from mouth 1, earlier in external time by precisely
the right amount Ty = 1 to enable it to return to the
collision event. The wormhole-traversal rules (2.1) are
trivially satisfied (¢in = @, Your = —¢; vj = v3), and
the mirror-exchange rule is satisfied with the mirror line
parallel to the line of centers (horizontal dashed line).
Since the mirror line must be along v, + v3, the speed
v must be v3 = vy /sinyy (where ¢, as shown in the
figure, is the ¢;, of the wormhole-traversal rule). The
total distance traveled by the ball between collisions (in
the limit, for simplicity, that B < 1) is 1/ cos ¥, so the
total time lapse as measured by the ball between colli-
sions is (1/ cos ¥)(1/v2) = tany/vy. This ball-measured
time lapse must be equal to the amount of backward time
travel, Ty = 1, during the ball’s wormhole traversal, in
order that the ball return to the collision event. Corre- -
spondingly, the value of ¥ must be given by

tany = vy . (3.1)

Notice that there is no constraint whatsoever on the
initial speed v;. All the equations of motion are satisfied
in Fig. 7(b), when ¢ has the value (3.1), regardless of
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how large or how small v; might be.

In the limit as vy goes to zero, the ball is initially at
rest on the mouths’ line of centers; it gets hit and knocked
radially into mouth 2 at speed vy = 1; it travels backward
in external time by T4 = 1 while traversing the wormhole;
and it then emerges radially from mouth 1, travels to the
collision event, hits itself, and comes to rest. Note that
this solution is really a continuous infinity of solutions:
the time T of the collision is completely arbitrary.

The solution in Fig. 7(c) involves two wormhole traver-
sals. As measured by the ball, using its own local time,
the sequence of events is the following: (i) initial path
a, (ii) mirror-exchange collision, (iii) path § from colli-
sion to mouth 2, (iv) first wormhole traversal, (v) path y
from mouth 1 to mouth 2, (vi) second wormhole traver-
sal, (vii) path & from mouth 1 to collision event, (viii)
path ¢ (opposite to initial path).

As seen by external observers, the sequence is quite dif-
ferent. It is straightfoward to verify, by the same method
as was used in solution (b), that in the limit B < 1 the
angle ¢ is given by

mouth 1

@

FIG. 7. A specific example of an initial trajectory with
an infinite number of solutions (infinite multiplicity). (a) The
trivial solution. (b) Solation with one mirror-exchange col-
lision and one wormhole traversal. (c) Solution with one
mirror-exchange collision and two wormhole traversals. (d)
Solution with one mirror-exchange collision and three worm-
hole traversals. Solution (b) was pointed out to us by Forward
[12]) and motivated our discovery of solutions (c) and (d) and
their generalizations.
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siny +tany = 2, , (3.2)

and that the sequence of events is as follows. (i) At time

= —1/(1 + cos ) before the collision, the ball emerges
from mouth 1 and starts traveling along § toward the col-
lision event, while (in its younger incarnation) it is also
traveling up a. (ii) At time T = —cos /(1 + cos ), the
ball emerges from mouth 1 and starts traveling along v
toward mouth 2; there are now three incarnations of the
ball present. (iii) At time T = 0, the collision between in-
carnations a and § occurs, knocking incarnation a along
B and incarnation § along ¢; the third incarnation is still
traveling along 7. (iv) At T = cos /(1 + cos ¢), the ball
on v enters mouth 2 and disappears, leaving just two
balls: one on ¢, the other on 8. At T = 1/(1 + cos ¥),
the ball on f enters mouth 2 and disappears, leaving just
one ball, traveling along the final trajectory ¢.

Figure 7(d) involves three wormhole traversals. The
sequence of paths as measured by the ball is in Greek al-
phabetical order. It is left as an exercise for the reader to
compute the angle ¢ in the limit B < 1 and compute the
detailed timings of events as seen by external. observers.
The reader should also be able to verify (perhaps with
the aid of Fig. 9 below and the associated discussion)
that the wormhole-traversal rules and mirror-exchange
rules are satisfied.

The generalization of the solutions of Fig. 7 to an ar-
bitrarily high number of wormhole traversals should be
obvious. We shall examine, in Fig. 9 below, the details
of the sequence of wormhole traversals involved in that
generalization.

The generalization of these mirror-exchange solutions
to arbitrary coplanar initial trajectories is not quite so
easy as in the velocity-exchange case of Fig. 6. The
method of generalization, for a one-traversal solution, is
shown in Fig. 8. The steps in the method are as follows:
(1) Specify the initial path a, but not the initial speed v;;
the initial speed will be calculated as the last step in the
method. Specify, instead of the initial speed, the location
P along the initial trajectory a at which the collision oc-
curs. (ii) By trial and error find a path that takes the

FIG. 8. Trial-and-error method of generating a one-
tnverul., mirror-exchange solution for an arbitrary, coplanar
initial trajectory.
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ball from point P to mouth 2, then through the wormhole
in accord with the wormhole-traversal rule, then back to
point P. That the trial and error will produce precisely
one path of the desired type is demonstrated by the se-
quence of trials 8, v, §,..., «. The wormhole traversal
rule (2.1b) guarantees that the modest displacements of
the path into mouth 2, in going from S to vy to ... to 4,
will produce the large swing of the path around mouth 1
that is shown in Fig. 8. This large swing, in fact, is an ob-
vious consequence of the “diverging-lens” property of any
wormhole mouth (13,1]. And this monotonic, “diverging-
lens swing” will obviously produce precisely one path of
the desired form: path § in Fig. 8. (iii) From the collision-
to-collision travel distance along path & and the backward
time travel Ty = 1 of the wormhole traversal, compute
the speed vz = v} with which § must be traversed. This,
together with the path §, gives the velocities v; and v}.
(iv) From the fact that these v; and v} must be the re-
flection of each other in the mirror line, infer the mirror
line’s orientation. (v) From the fact that the mirror line
must be parallel to v; 4 v;, and from the known value
of v, and direction of v, (along @), compute the ball’s
initial speed vy. (vi) From the initial speed and direction
infer the initial velocity v,. (vii) Reflect this v, in the
mirror line to get v5. All details of the solution are now
known, and all the ball’s equations of motion have been
satisfied. .

This same method can be used to produce solutions
with one mirror-exchange collision and an arbitrary num-
ber of wormhole traversals:

For simplicity, restrict attention to a ball with radius
R and a wormhole with mouth separation D = 1 and
mouth radius B satisfying

R«B«L. (3.3)
Consider an arbitrary coplanar initial trajectory, as
shown in Fig. 9(a). It is characterized by the ball’s ini-
tial speed vy, the angle y4 that its initial velocity makes
with the mouths’ line of centers, and its initial impact
parameter h with respect to the center of mouth 2. (The
subscript A is used on ¢4 because, in the limit that the
collision point is infinitely far from the wormhole, the
angle t5, at which the ball first hits mouth 2, asymp-
totically approaches y4; cf. Eq. (3.10) below: v, is the
asymptotic value of ¥p.) By suitabie choices of these pa-
rameters in the range 0 < v; < 00,0 < ¥4, < 7, and
~00 < h < 00, we can describe all possible coplanar ini-
tial trajectories. (Trajectories with —x < ¥4 < 0 are
obtained from those with 0 < ¥4 < = by reflection in
the line of centers.) As we shall see, to obtain an infinite
number of solutions, each with a single mirror-exchange
collision and all with the same initial trajectory, we need
only place two constraints on the initial trajectory:

Ya>B. (3.4)

There typically will be solutions (e.g., the class-I and
class-Il solutions of Fig. 3) in which the collision occurs in
the vicinity of the wormhole. However, in this section, in
order to demonstrate the existence of infinite numbers of
solutions, we can and shall restrict attention to collisions

v > 1,
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that occur far from the wormhole, i.e., at

L>»1 and L>»h, (3.5)

where L is the distance, along the initial trajectory, from
the collision to the point of closest approach to mouth
2; cf. Fig. 9(a). As was the case in Fig. 7, for a fixed
incoming trajectory, the location L of the collision will
turn out to depend on the number n of wormhole traver-
sals, and in the limit n — 0o, L will become arbitrarily
large. In the discussion associated with Fig. 8, we re-
garded the initial path and L as fixed, and solved for the
initial speed v,. Here we shall regard the initial path and
speed (i.e., ¥4, h, and v;) as fixed and shall solve for L
in terms of Y4, A, v1, and n.

Because L P 1, the velocity vi with which the ball

Vi ¥ (c)

FIG. 9. A solution to the equations of motion for R <
B <€ 1, with an arbitrary number n of wormhole traversals.
The figure is drawn for n = 8. The initial trajectory, charac-
terized by vy, ¥4, and A, is arbitrary except that v; > 1 and
va > B. (a) The large-scale geometry of the solution. (b)
The sequence of wormhole traversals as the ball works its way
up toward the line of centers. (c) The sequence of traversals
as the ball works its way back down from the line of centers.
The angles ¥24 and ¢3141 arze given by the diverging-lens map
(3.6).
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heads toward the wormhole and the velocity v, with
which it returns are very nearly antiparallel. Since these
velocities must be the reflections of each other, the mir-
tor line (which is along v, + v;) must be very nearly
orthogonal to v,, and correspondingly, the speeds must
be related by

vg = vy = vy cos(h/L) = vl — 3(h/L)?Y], (3.6)

where we ignore corrections of higher order in h/L. In
its sequence of n wormhole traversals, the ball goes back-
ward in time by AT = —nTy = —n. Correspondingly, in
order to return to the collision point at the moment of
collision, it must travel a total distance nv;. The total
distance traveled, for large L and n, is easily seen from
the diagram to be 2L + n (aside from unimportant frac-
tional corrections of order h2/L?). By equating these
distances to each other and using the value (3.6) for the
speed vy, we obtain the relation

2L
i gy 7y e @7
This is the promised relation which determines the loca-
tion L of the collision in terms of the initial trajectory
(characterized here by h and v;) and the number n of
wormhole traversals.

Notice that this relation cannot be satisfied, for arbi-
trarily large n and positive L, unless v; > 1. This is the
origin of the first of constraints (3.4) on our initial tra-
jectory. The second of those constraints, ¥4 > B, is re-
quired to ensure that, for arbitrarily large L and n [which
means for Y4 = g = 24, in Fig. 9(b), see discussion be-
low], the ball can reach mouth 2 on its after-collision
inward trajectory, without first running into mouth 1.

For a wide class of initial trajectories, there is a lower
bound on the number n of wormhole traversals that can
produce a self-consistent solution. In the regime of our
analysis (n 3 1, L >» 1, L > h) this lower bound shows
up as the fact that n viewed as a function of L with fixed
vy and A [Eq. (3.7)] has a minimum:

_ 32

Nmin = _("l — 1)3,3

As the initial speed v, decreases toward unity (with h
fixed), the minimum number of traversals ny,;, increases
toward infinity.

To recapitulate, for every choice of initial conditions in
the range v; > 1 and ¥4 > B, there is an infinite num-
ber of solutions (labeled by n) to (i) the laws of energy
and momentum conservation in the billiard-ball collision
{embodied in Eq. (3.6) which produces mirror-exchange],
and (ii) the condition that the ball return to its collision
point at the same time T as it left it [Eq. (3.7)]. We can
be sure that each n > npi, gives a full solution to the
equations of motion as soon as we have verified one more
thing: that there is a path leading from the collision point
of Fig. 9(a), to mouth 2, then through the wormhole n
times [and obeying the rules (2.1) ot each traversal], then
out of mouth 1 and back to the collision point. We shall
now demonstrate that this is so.

We shall label the wormhole traversals by odd integers

IA] . (3.8)
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1,3,5,...,2n — 1, and shall label the path up to mouth
2, the paths between traversals, and the path back to the
collision point by even integers 0,2,4,...,2n. Figure 9
is drawn for n = 8, 2n = 16. The location of traversal
2k - 1 is described by its angle ¢3:~, on the wormhole
mouths relative to the line of centers, and the direction
of path 2k is described by the angle ¥2; from the line of
centers to the path’s velocity direction. The wormhole
traversal rule (2.1b), in this notation, reads

VYansz — VY2 = =294y for 0SSk <n-1; (3.9a)

and the expression for the slope of path 2k in terms of the
locations of its end points reads (for B € 1 s0 || € 1)

sindarsy —Sindg. = --‘%—" for1<k<n-1.

(3.9b)

For all except the first and last traversals, the angle ¢
is small compared to unity. Therefore, in (3.9b) the
8in @954 can be approzimated by $q441, ezcept for sin ¢,
and sin ¢z

Equations (3.9a) and (3.9b) constitute a map from the
direction ¥ of the ingoing path to the direction ¥3, of
the outgoing path. This map embodies all the equations-
of-motion constraints on the trial-and-error search for the
desired ingoing path. In this map we are to take g as
fixed by our chosen location for the collision

Yo=va+h/L (3.10)

[cf. Fig. 9(a)], and we are to adjust the location ¢; of the
ingoing path so as to produce n wormhole traversals fol-
lowed by an outgoing path with direction 3, = ¥g — 7.
The diverging-lens behavior of the wormhole guarantees
that ¢, can be 30 adjusted: By elementary geometric op-
tics it should be clear that the correct route must work
its way up toward the mouths’ line of centers in the man-
ner of Fig. 9(b) during the first half of its trip, and must
then work its way back down in the manner of Fig. 9(c)
during the second half. In order to do this successfully,
the paths on the upward route must have Yar42 € ¥
and, correspondingly [cf. Eq. (3.9a)], éars1 = 22 —or,
as one sees from a more precise study of the map (3.9a)
and (3.9b), d2a41 = 2¥au(l + O(B)], where O(B) de-
notes a k-dependent quantity of order B. In particular
(choosing k = 0), ¢; must be equal to 4%o[1 + O(B)].
We can understand qualitatively (but not quantita-
tively), with the aid of Fig. 8, how the pattern of paths
in the vicinity of the hole changes as the trial-and-error
value of ¢, is gradually decreased toward and then past
the fixed $¢o. Initially, for ¢; = x/2, there is just one
wormhole traversal and the outgoing path at mouth 1
has the form g of Fig. 8. As ¢, is decreased, the out- .
going path at mouth 1 swings from g to v, which is the
desired path in our present trial-and-error search [point
P very far down path ¥ as in Fig. 9(a)]. We thereby
obtain a solution with one wormhole traversal. As ¢;
is further decreased, the output path at mouth 1 swings
through § and ¢ and up to {. Suddenly at { the output
path plunges down mouth 2 and emerges from mouth 1
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along 8. A further decrease of ¢, swings the output path
around to v, the desired position. We now have a solution
with two wormhole traversals. By continuing to decrease
the trial-and-error ¢; toward 2y, we cause the output
path to swing again from 7 to {, there enter the wormhole
a second time and emerge on B, then swing down to 7,
producing a solution with three traversals, then continue
its swing to produce solutions with four traversals, five
traversals, six traversals, ... . Ultimately, as ¢, decreases
through the singular limit point of an infinite number of
traversals [¢; = a certain value dyeris = %% + O(v¥oB)),
the output path flips over to path n, which passes just
above mouth 2; and further decreases of ¢; cause it to
swing through a pattern 0, 8, 1, reduction of traversals
by 1; then 5, 6, ¢, reduction by 1; ... until the number
of traversals is reduced to zero. During this reduction
sequence we get no acceptable solutions because the out-
put path is not swinging through the required position

This completes our demonstration that for each copla-
par initial trajectory with vy > 1 and ¥4 > B (and for
a ball and wormhole satisfying R € B < 1), there ¢x-
ists an infinite number of solutions of the billiard-ball
equations of motion, one corresponding to each value
% > Nmin of the number of wormhole traversals. To
construct the solution with n traversals one can (i) spec-
ify the initial trajectory (the parameters ya, h, v1), (ii)
then compute the location L of the collision from Eq.
(3.7), and (iii) then find the location ¢, at which the ball
first enters mouth 2 by the above geometrical trial-and-
error method. (Readers who seek higher rigor than we
do might worry that our analysis has examined only the
leading-order effects in the small parameters B, R/B,
1/L, and h/L and has not proved rigorously that higher-
order corrections are negligible. We are not worried.)

C. Initial trajectories with only one solution

In this section we turn attention from initial trajecto-
ries with infinite multiplicity (an infinite number of so-
lutions), to the issue of whether there exist trajectories
with only one solution: collision-free motion. As in the
last section, we shall restrict attention to initial trajecto-
ties that are coplanar with the wormhole’s line of centers
and shall describe them by the parameters vy, h, and ¥4
of Fig. 9(a).

We learned in the last section that for speeds vy > 1 the
multiplicity is almost always infinite. This suggests that
we should seek unit multiplicity in the regime v; < 1.
Moreover, it seems intuitively clear that a good strategy
for avoiding collisions is to keep the initial trajectory far
from the wormhole, i.e., to choose A3 1.

That h 33 1 and v; € 1 are indeed likely to produce
unit multiplicity we can see from the following: If there
were a solution with one or more collisions, the first col-
lision encountered by the ball presumably would have to
be of the type depicted in Fig. 9(a): the old incarnation
of the ball flies out from near the wormhole and knocks
the young incarnation inward, toward it, and then the old
incarnation flies away never to collide again. Such a colli-
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sion can only be of the mirror-exchange type and not the
velocity-exchange type. Moreover, even if the ball en-
counters many additional collisions near the wormhole,
energy conservation in the entire sequence of collisions
implies that v3 = v} in the ball’s first, distant collision;
and this, together with the argument preceding Eq. (3.6),
implies that

vp=vl s vcos(ho~va) < 1. (3.11)

In other words, after its first collision, the ball heads
toward the wormhole with a speed v} = v very small
compared to D/Ty = 1, and after it has finished all its
near-wormhole activity, it heads back out toward its first
collision with the same tiny speed. This implies, in turn,
that the ball must travel backward in time, via wormhole
traversals, by a huge amount, AT > 2hfv; > 2h/y; >
2h % 1. Since each traversal produces a backward time
travel of only Ty = 1, and there is a forward time travel
of at least D/v = 1/v between traversals, the only way
the ball can achieve such an evolution is by a peculiar
sequence of multiple collisions near the wormhole that
build up speeds v > 1, temporarily, followed (from the
ball's viewpoint) by multiple wormhole traversals into the
past at these high speeds, and then followed (from the
ball’s viewpoint) by collisions that reduce the ball back
to vy < 1 and send it back out toward its first collision
event. We have searched cursorily for such peculiar solu-
tions, without success, and we suspect they do not exist.
However, we have no proof.

On the other hand, in the limit that the ball’s initial
velocity is precisely zero, and the ball’s initial location is
far from the wormhole mouths, it is easy to prove (with
one caveat; see below) that there is only one solution, the
trivial one where the ball remains always at rest. The
proof makes use of a sequence of nested convex surfaces
that enclose the wormhole mouths, which for concrete-
ness we take to be ellipsoids of revolution (Fig. 10). The
ellipsoids ace labeled by a generalized radius r which in-
creases outward. We require that the ball initially reside
at a radius rg larger than that, rpin, of the ellipsoid which
barely encloses both wormhole mouths.

Now, suppose that there were a solution to the equa-
tions of motion other than the one in which the ball re-

Imin
o
rmax
FIG. 10. Nested ellipsoids of revolution surrounding the

wormhole, which are used to prove that a ball initially at rest
sufficiently far from the wormhole must always remain at rest.



78

mains at rest. In this solution, the ball would have to
undergo one or more self-collisions. There are two pos-
sibilities: (i) As seen by the ball there is an infinite se-
quence of self-collisions that goes on and on forever. We
have not been able to rule out such a solution rigorously,
but it seems exceedingly unlikely that one could exist.
(ii) As seen by the ball there is a last collision. We re-
strict ourselves to this case.

After completing all its collisions, in order to conserve
energy (cf. Fig. 5 of Ref. [6]), the ball would have to
teturn to rest. Let rp,, be the largest radius the ball
reaches while it is in motion. Since rmax > ro > rmin,
this largest radius must lie outside the wormhole, and
there thus must be a collision at this rmax, for otherwise
the moving ball would be at larger radii momentarily
before or after it is at rma. However, the object that
the ball collides with, as it rises to rmax and then gets
defiected back downward, can only be the ball itself (since
there exist no objects in this problem except the ball and
the wormhole), on a path that is coming downward from
radii » > rmax. We thus reach a contradiction; ryy, is
not the ball’'s maxium radius. Therefore, there exist no
solutions except the trivial one.

Note that this proof fails if the ball is initially at rest
inside radius rp;,, since the maximum radius then can lie
at the wormhole mouth, and the wormhole rather than
a collision can be responsible for deflecting the ball back
inward toward smaller radii. A specific example of a non-
trivial solution of this type is the one where the ball is
initially at rest on the mouths’ line of centers, gets hit
and knocked into mouth 2, emerges earlier from mouth
1, hits itself and returns to rest; cf. the second paragraph
after Eq. (3.1).

IV. SEARCH FOR COPLANAR INITIAL
TRAJECTORIES WITH NO
SELF-CONSISTENT SOLUTIONS

We now turn attention to the issue of whether
there exist coplanar initial trajectories with vanishing
multiplicity—i.e., initial trajectories that have no self-
consistent solutions whatsoever. If there are such initial
trajectories, they must be of the “dangerous” type, i.e.
they must be trajectories that, when followed assuming
no self-collision, produce a self-collision; cf. the discussion
in Sec. IB.

Qur search for gero multiplicity among the dangerous
trajectories will be carried out in three pieces. In sub-
section A we shall consider the restrictive case of a ball
and wormhole satisfying R € B < 1, and shall show
that in this case all (coplanar) dangerous initial trajec-
tories have infinite multiplicity. In Sec. IVB and Ap-
pendix A, we shall completely relax these restrictions,
and require only that B < 4 so the wormhole mouths
do not overlap each other, and R/B < 4 so the ball can
pass through the wormhole and we can ignore the effects
of tidal forces on the ball during and after its traver-
sal (cf. Sec. I1A). For this case we shall derive a pair of
coupled, highly nonlinear algebraic equations that gov-
ern self-consistent solutions. These equations have solu-
tions in all regimes we have examined (the multiplicity
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is nonzero), but their high nonlinearity has prevented us
from proving definitively that there always is a solution.
In Sec. IVC and Appendix B we shall examine the inter-
mediate case R/B < 4 but B < 1. In this case we shall
show that for a wide range of dangerous initial trajecto-
ries there is always at least one self-consistent solution,
and we shall argue that this is probably so for all ini-
tial trajectories, i.e., the multiplicity is probably always
nonzero.

To summarize, our search will turn up no evidence at
all for initial trajectories with zero multiplicty.

As a by-product of our search, we shall obtain a de-
tailed understanding of the class-I and class-II solutions
depicted in Fig. 3, above.

A. Ball and wormhole with R B £ 1

When R € B < 1, we can infer from the analysis given
in Sec. IIIB above that all dangerous initial trajectories
have infinite multiplicity. The argument goes as follows.

Each dangerous initial trajectory, if followed assum-
ing no self-collision, must travel backward in time by a
mouth-2 to mouth-1 wormhole traversal so as to produce
a self-collision. This means that it must hit mouth 2 upon
nearing the wormhole, and not be blocked from doing so
by mouth 1, which in turn means that the angle ¥, in
Fig. 9(a) must be larger than B:

Ya>B (4.1a)

[¢f. Eq. (4.7) below with ¥4 = @ + ¢]. Moreover, it is
easy to see that, if n is the total number of mouth-2 to
mouth-1 wormhole traversals that the (self-inconsistent)
trajectory undergoes before hitting itself, then the to-
tal distance it travels from its first encounter with the
event of self-inconsistent collision to its second encounter
is Al > nD = n. Since the wormhole traversals produce
a backward time travel of AT = —nTy = —n, the de-
mand that there be zero external time lapse between the
first and second encounters, Al/vy + AT = 0, implies
that the ball’s initial speed is

n>l. (4.1b)

Since each dangerous initial trajectory satisfies condi-
tions (4.1a) and (4.1b), all dangerous initial trajectories
are in the class for which we proved infinite multiplicity
in Sec. IIIB; cf. Eq. (3.4).

B.B<ilandR/B<1}

Turn next to s wormhole whose size is constrained only
by B < 4 (mouths do not overlap) and R/B < 1 (tidal
forces ignorable during traversal; cf. Sec. I1A).

As in the extreme case of R € B <€ 1, 0 also here, all
dangerous initial trajectories must extend directly from
infinity to mouth 2, so as to initiate their backward time
travel. This makes it advantagecus to label the initial
trajectories by a different triplet of parameters than those
of Fig. 9(a) above. The previous parameters were the
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initial speed vy of the ball’s center, its impact parameter
h, and its angle ¥4 relative to the wormhole mouths’ line
of centers. Our new parameters are v, and the two angles
8, ¢ shown in Fig. 11. The two sets of parameters are
related by h = —Bsinf, ¢4 =0+ ¢.

In order to make progress in the search for self-
consistent solutions in this weakly constrained case of
possibly large B and R/B, we have confined our search to
self-consistent solutions (i) with just one collision, which
(ii) is of the mirror-exchange type, and (iii) in which the
ball first encounters the collision event before any worm-
hole traversal and then encounters it again after only one

222 [sine - sin (044 - 252))]

i

Bsin asin

+ sin #sin

Bsin (a;ﬁ -8~ ¢) (sin a + sin B) + Bsinfsin(a ~ B) - sin Fsin(a — § — ¢) = —~dsinasin §,

where

- sinfi(a + B)]
iy (442)
d=2sR/(14p* +2pcosa)'/?, s=sign(d); (4.4b)

and if one is interested in the ball’'s speed between colli-
sions, it is given by

FIG. 11. Geometry of a self-consistent solution with one
wormhole traversal and one billiard-ball collision. More de-
tails of this geometry are depicted in Figs. 17 and 18 of Ap-
pendix A. By convention all angles and distances (eg., o, 8,
and d) are positive when their orientations are as shown here.

°2p{-in(o+¢)_3 sM“Lf'i"("M'Fm-ﬂ)]} = (0 +dysin 232
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traversal. We shall characterize such a self-consistent so-
lution by (among others) the two angles a and § shown in
Fig. 11; 8 is the ball's deflection angle when it first passes
through the collision event, and « is the angle between
the two incoming balls (old incarnation and new incarna-
tion) at the collision event. In Appendix A we show that,
corresponding to each nonspurious solution (a, 8) of the
following two equations, there exists a self-consistent so-
lution of the full equations of motion for the billiard ball,
and we give in Appendix A equations for computing all
features of that solution. The two equations for & and
are

sinasinf, (4.2)

2 2

(4.3)

I

m=unp. (45)

The parameter d is shown in Fig. 11; it is the distance
that the ball’s younger incarnation must travel past the
point of intersection of the two incoming trajectories, to
reach the collision event. One can choose its sign s ar-
bitrarily in a search for solutions. If s = +1 (the case
shown in Fig. 11), the ball’s older incarnation passes be-
hind the younger, the younger is deflected to the right
(8 > 0), and we call the collision “class I” [cf. Fig. 3(b)).
If 8 = -1, the older incarnation passes in front of the
younger, the younger is deflected to the left (8 < 0), and
we call the collision “class II” [cf. Fig. 3(c)}

Equations (4.2) and (4.3) for a and § have the fol-
lowing set of spxrious solutions that were introduced by
manipulations carried out in Appendix A:

(e,8) =(0,0), (x,0), (0,%), (x,x), (26,0), (4.6a)
any solution with p <0, (4.6b)
any solution with sign(8) # sign(d) = . (4.6¢)

Equations (4.2) and (4.3) for o and § are so horri-
bly nonlinear that we can say only one thing definitive
and universal about their solutions: since there are two
equations for two unknowns, the solutions must form a
discrete set. It is far from obvious, just looking at the
equations, whether there exist values of the wormhole
and ball radii B, R and initial-trajectory parameters v;,
@, ¢ that produce zero solutions. Numerical exploration,
and the analytic considerations of the next section, have
not turned up any such zero-multiplicity trajectories.
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C.B<1and R/B<}

To make further progress in our search for dangerous
initial trajectories with no self-consistent solutions, we
shall retain R/B < 4, but shall specialize to a worm-
hole with mouth radii small compared to their separation,
B « D = 1. (Note that these relations imply R < 1.)
We shall also limit ourselves to a large but not com-
plete set of dangerous initial trajectories: those whose
self-inconsistent solutions have the same form as the self-
consistent solutions analyzed in the last section: the ball
comes in from infinity, passes through (and ignores) ita
collision event, traverses the wormhole just once, and
then hits its collision event a second (self-inconsistent)
time. The parameters of such initial trajectories lie in
the range

B/2<¢<x/2, B-¢p<O<¢, Vimin < ¥1 < Vimax

@7
where ’
iein | _ 088, _ 2R
v‘m“} = cos¢(l 2Bcos¢) F ey d (4.8)

The 8, ¢ part of this dangerous region is the interior of
the thick-lined triangle of Fig. 12. We shall call this the
“dangerous triangle.” The constraint § > B ~ ¢ (lower
left edge of dangerous triangle) is required so the ball
will avoid entering mouth 1 before it reaches mouth 2;
parameters (0, 4) near this edge correspond to incoming
trajectories that skim past mouth 1, go down mouth 2,
emerge from mouth 1, and then collide sell-inconsistently
near mouth 1. The constraint ¢ < x/2 (right edge of
dangerous triangle) is required so the ball’s path will in-
tersect itself after passing through the wormhole; near
this edge the outgoing path emerges from the wormhole
nearly antiparallel to the ingoing path, thereby produc-
ing a self-inconsistent collision far from the wormhole.
The constraint § < ¢ (upper left edge of dangerous tri-
angle) is required to make the collision occur before the
ball enters mouth 2 a second time; for (0,4) near this
edge, the self-inconsistent collision occurs close to mouth
2. The constraint (4.8) on vy (not depicted in the figure)
guaraatees that the ball returns to the collision region at
the right time to produce a self-inconsistent collision.

In Appendix B we carry out a search for self-consistent
solutions throughout this range of dangerous initial tra-
jectories. The strategy of the search is based on the phys-
ical idea that, because R < B/2 < 1, the ball travels a
distance huge compared to its size R between its first and
second encounters with the collision. This means that a
very tiny deflection, |8] ~ R < 1, can significantly al-
ter the geometry of the collision, and possibly change it
from the self-inconsistent form of Fig. 3(a) to the class-I
or class-II self-consistent form of Figs. 3(b) and 3(c). A
tiny value of |3] goes hand in hand with a tiny change
of o from its self-inconsistent-solution value 2¢ (which is
dictated by the wormhole traversal rule shown in Fig. 4).
This motivates us to search for solutions in the parameter
range
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1Bl €1, el €1, where ez a~2¢. (4.9)

In Appendix B we search in this range by expanding
Eqs. (4.2) and (4.3) for a, 8 in powers of € and 8. In
order to obtain real solutions, rather than just the spuri-
ous solutions of Eq. (4.6a), the equations are expanded to
quadratic order, and they then are combined to yield one
quadratic and one linear equation, Eqs. (B2) and (B12)
{in which A; is as defined in Eq. (4.10) below]. These
equations have simple analytic solutions throughout the
regime (4.7) of dangerous initial trajectories (through-
out the interior of Fig. 12's dangerous triangle), except
near the triangle’s left corner and near its lower left edge.

0
72

B Solutions
(4.12), (4.13)

“W2+B

FIG. 12. Parameter space for the ball’s initial trajectory
when B € 1, R/B < 4. The interior of the thick-lined trian-
gle is the region of dangerous initial trajectories that produce
a self-inconsistent collision after one wormhole traversal {Eq.
(4.7)). We call this the “dangerous triangle.® Equations (4.2)
and (4.3) govern solutions throughout this dangerous trian-
gle. Simple analytic solutions of these equations are given,
in the indicated shaded regions of the dangerous triangle, by
the indicated equations. Analytic solutions cannot be derived
by the techniques of Appendix B for the white regions of the
triangle (left corner and lower left edge), but numerical solu-
tions have been found in spot checks throughout that white
region, Figure 14 below shows, as an example, a solution
(part analytic, part numerical) all along the upper left edge
of the dangetous triangle, including the left corner.
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Near this corner and edge, tiny changes of the incoming
trajectory produce huge changes in the location of the
self-inconsistent solution; and correspondingly, it turns
out that self-consistent solutions there typically have a
large value of €. This causes the power-series expansion
of Appendix B to break down. However, near this corner
and edge one can go back to the exact, nonlinear equa-
tions (4.2) and (4.3), and find solutions numerically. At
all points near the left corner and lower left edge where
we have tried, we found numerical solutions. Thus, it
seems likely that solutions exist everywhere in the dan-
gerous triangle.

The simple analytic solutions in the horizontally
shaded central part of the triangle (i.e., for collisions not
close to either mouth; cf. Fig. 12) are interesting and in-
structive. In describing these simple solutions we shall
give formulas not only for # and € (a surrogate for the
angle a), but also for the ball’s speed v; between col-
lisions. Other parameters describing the solutions can
be inferred from the equations in Appendix A. To sim-
plify notation in the solutions, we shall characterize the
initial speed v, and the speed between collisions v, by
parameters A, and Az defined by

V1 = Vimin + At(Yimax = Vimin) o (4.10)

Y2 = Vimia + A2(Vimax ~ Vimin) - (4.11)

Note that the dangerous initial trajectories have 0 <
A1 < 1. In the central region of the triangle (¢ — 0 > B,
¢+0— B> R, and x/2- ¢ > B) there are two simple
solutions to the quadratic and linear equations (B2) and
(B12): one of class I, the other of class II. The class-I
solution (s = +1) is

8sin ¢

b= s T PN (4.12)

= ﬁfﬁ%xm : (4.12b)

dy = (1 + m':%fmqa) A (4.120)
‘The class-II solution (s = ~1) is

f=-— 0(“2;‘:2 g PRA-N), (1)

= _:i-:%%(l - MR, (4.13b)

1=2g= (1+ﬁ?:‘;ﬁs)(l-x,). (4.13¢)

These solutions, which when viewed as functions of A;
(i.e., of v;) are linear, actually extend out of the region
0 < A; < 1 of dangerous initial trajectories: The class-
I solution is valid for R~ » A; > 1, as well as for
0 < A; < 1, but it is spurious for A; < O since there
it predicts opposite signs for § and s; cf. Eqs. (4.12a)
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and (4.6¢). Similarly, the class-II solution is valid for
—R V€ 2 <0, as well as for 0 < A\; < 1, but for
A1 > 1 it predicts opposite signs for § and s and thus
is spurious. At the point A; = 0 or 1 where one of the
solutions stops (becomes spurious), it actually joins onto
(converts over into) a valid, collision-free solution in a
manner depicted in Fig. 13.

These simple solutions for the interior region of the
dangerous triangle (Fig. 12) break down near the trian-
gle’s upper left and lower left edges. There, in solving the
coupled linear and quadratic equations (B2) and (B12),
one must keep nonlinear terms. It is straightforward to
do so, and thereby obtain solutions valid near the upper
left edge, but not near the left corner or lower left edge.
In Appendix B we analyze the region near the upper left
edge (collisions that occur near mouth 2): 0 < ¢—-6 < B,
¢ > B. By combining Eqs. (B2) and (B12), we ob-
tain a quadratic equation [Eq. (B28)], with rather sim-
ple coefficients, for the incoming ball’s deflection angle
B. Some of the solutions to this quadratic equation are
spurious (wrong sign of 8 for a chosen sign of §). In
Appendix B it is shown that, throughout our chosen re-
gion (0 < ¢ — 8 < B, ¢ » B), there is a nonspurious
class-I (s = +1) solution, Eq. (B32), but in some parts
of that region there is no nonspurious class-II solution.
We suspect, but have not proved, that the missing class-
11 solution actually exists, but the ball first encounters
its collision shortly after passing through the wormhole,
rather than before, and therefore this solution is beyond
the domain of validity of our analysis.

On the upper left edge of the dangerous triangle (at
¢ = 8), the class-1 solution (B32) has the form depicted
in Fig. 14. This figure is drawn for A, = {, B = 102

Regular solution
ithout collision

Regular soluton
without collision

Solution with
collision (class )

FIG. 13. Billiard-ball speeds for the two self-consistent
solutions (4.12) and (4.13) in the central region of Fig. 12's
dangerous triangle. (This central region represents collisions
that occur neither very close to a wormhole mouth nor at huge
distances {from the wormhole.) The parameters plotted, A,
and ), are proportional to the speeds v; and v, [Eqs. (4.10)
and (4.11)), and the dangerous range of incoming speeds is
0 < A3 < 1. At each edge of the dangerous range, one of the
solutions joins continuously onto a collision-free solution, and
the other continues to exist as a solution with collision.
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and R = 10~% (though the solution is valid also when R
is close to B). Notice the sharp change in the deflection
angle as one passes from ¢ > x/4 to ¢ < /4, and from
¢>VB=01tod < VB =01 At ¢ > x/4, the
deflection angle 8 is of order R = 10~% [This is rather
larger than in the central region of the triangle, where it
is of order BR; cf. Eqgs. (4.12a) and (4.13a)]. At VB <
@ < x/4, P is of order B = 10~2. As ¢ decreases toward
zero (as one moves toward the left corner of the dangerous
triangle), ¢ grows large and the power series expansion
of Appendix B begins to break down. We have solved
numerically the full, nonlinear equations (4.2) and (4.3)
for a and g in this corner region and have verified that
a solution continues to exist right up to the corner.

The analytic solution (B32) takes on especially simple
forms for a very small ball (Rtan? ¢ € B), very near the
upper left edge of the dangerous triangle (|¢—0|tan? ¢ <
1), and away from the regions of rapidly changing 8: At
¢ > VB and x/4 - ¢ > B the solution becomes

cos 2¢ cos? ¢
sin¢
and at ¢—x/4 > B (but x/2—¢ > \/R/Band x/2-¢ >
16 — 8]1/2), it becomes
_4-sin ¢
cos 2¢

These approximations to the solution are plotted as
dashed lines in Fig. 14. :

To recapitulate, self-consistent analytic solutions with
18] € 1 and |e] € 1 exist throughout the dangerous re-
gion of Fig. 12, except its left corner and lower left edge;
and we have found numerical solutions in spot checks of

B =singcos2B, €= B; (414

B=e= RA, . (4.15)

102 T

103
B
10
10-5 1 1 L
001 025 =4 2
=0
FIG. 14. A combination numerical and analytic solution

for the ball’s deflection angle 8 as a function of ¢, along the
upper edge @ = ¢ of Fig. 12’s dangerous triangle. This is
the class-I solution (8 > 0); the ball and wormhole radii are
R =10"% and B = 10~7; and the incoming speed is at the
center of the dangerous range, vy = %(vxmu +Vimin) (A1 = %;
cf. Eq. (4.10)}.
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that corner and edge. We find no evidence, when B < 1
and R/B < 4, for initial trajectories with zero multiplic--
ity.

V. NONCOPLANAR TRAJECTORIES

In this section we shall extend most of the coplanar
results of Secs. III and IV to initial trajectories that are
slightly noncoplanar. Thereby we shall accumulate evi-
dence which suggests, but does not really prove, that all
noncoplanar initial trajectories have multiplicity larger
than zero (i.e., have self-consistent solutions to the equa-
tions of motion). Throughout our discussion we shall
confine attention to a wormhole with B « 1. [This same
restriction was imposed throughout Sec. IIf and in all of
Sec. IV except in the fully nonlinear equations of motion
(4.2) and (4.3)]

As a first step, we shall ask ourselves how nearly copla-
nar a trajectory must be in order to be dangerous, i.e., in
order to produce a seif-inconsistent collision, if followed
assuming no collision. -

Consider an arbitrary initial trajectory. Define the
wormhole’s “equatorial plane” to be the unique plane
that is parallel to this initial trajectory and contains the
wormhole’s line of centers. At any point along the ball’s
trajectory, denote by z the height of the ball’s center
above the equatorial plane, denote by [ the distance the
ball has traveled (from some arbitrary origin) parallel
to the equatorial plane, and denote by 2/ = dz/dl the
inclination of its trajectory to the equatorial plane. Our
definition of equatorial plane guarantees that initially the
trajectory has z = const = z; and 2’ = 0. However, z'
will be made nonzero by the first collision or wormhole
traversal the ball encounters.

Now, follow the ball’s initial trajectory assuming no
collisions. In order for the trajectory to be dangerous,
it must traverse the wormhole. The wormhole traversal
will convert the trajectory’s inclination from z{ = 0 to
z3 = cosOtanf2arcsin(z)/B)); cl. Fig. 15(a). Here 0 is
the angle at which the trajectory’s equatorial projection
intersects the equatorial normal to the wormhole mouth
(as in Fig. 11 above). If it travels a subsequent distance
Al = L, parallel to the equatorial plane and then collides
with itself (inconsistently), the height of its center at the
collision will be z3 = 2z, 4 L2 cos 8 tan{2arcsin(z,/B)]. To
guarantee a collision, we must have |z3 ~z;| < 2R. Thus,
the initial trajectory will be dangerous only if

z1 < Bsin[}arctan(2R/ L cos9)} . (5.1)

For typical dangerous initial trajectories, Lj cosé will be
of order unity, and thus much larger than B, which in
turn is a little larger than R; so the danger criterion
(5.1) reduces to z; < RB. This means that the danger-
ous initial trajectories differ from coplanarity by no more
than a fraction B € 1 of the ball’s radius R.

We have not found a good way to analyze dangerous
initial trajectories near the boundary of the region (5.1).
However, for z; < Bsin[}arctan(2R/L; cos8)}, the ball’s
motions.parallel to the equatorial plane (its “in-plane mo-
tions”) decouple from its motions perpendicular to the
equatorial plane (its “out-of-plane motions”), and this
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mouth 1 mouth 2
2 { cos@
4‘!‘ j: T
n =sin' @ /B
(a)

FIG. 15. Change in a noncoplanar trajectory’s inclination
2’ when it traverses the wormhole from mouth 2 to mouth 1:
(a) for a ball that does not collide before the traversal; (b)
for a ball that collides and is vertically deflected before the
traversal. (The change of inclination is a manifestation of the
wormhole’s “diverging-lens” effect.) The left and right halves
of these two-dimensional diagrams are the projection of the
ball’s trajectory onto a plane that (i) is orthogonal to the
equatorial plane (i.e., is vertical), and (ii) passes through the
mouth’s center and through the intersection of the trajectory
with the mouth. The angle between the trajectory and this
projection plane is #, and correspondingly, horizontal distance
along the projected trajectory is [cos#.

permits us easily to extend to such trajectories most of
the results of Secs. IIl and IV. We shall demonstrate this
explicitly for self-consistent solutions that have just one
wormbhole traversal and one collision, and then shall ar-
gue that it is true also (though with a change in the al-
lowed range of z,) for all other self-consistent solutions.

Consider, then, a self-consistent solution in which the
ball gets hit by itself, travels down mouth 2 and out of
mouth 1, and then hits itself. We shall seek conditions
on the degree of noncoplanarity that permit the in-plane
motions to decouple from the out-of-plane motions.

Denote by z; and z; the out-of-plane displacements of
the ball's younger and older incarnations at the moment
of collision. Because the balls are round, the in-plane
locations of the balls’ centers are influenced by the out-
of-plane displacements by amounts

Al ~ R(1 - cos ) = R¥*/2 = § Ri(23 — u1)/2R]?

(5.2)
where ¢ is the angle shown in Fig. 16. Similarly, if the
ball’s center passes through the wormhole mouths at a
height Zmoun, that height will influence the ball’s in-
plane motion in the same manner as would a decrease

):] 3

B = T2 3)
in the wormhole’s radius. The back action of the out-
of-plane motion on the in-plane motion will be negligible
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FIG. 16. Back action of a billiard ball’s out-of plane mo-
tion on its in-plane motion.

in the collision and traversal if Al €« R in (5.2) and
§B/B & 1in (53),ie.,if

lza—z1] €K R and Zmoun € B . (5.4)

We now ask what values of z; lead to self-consistent solu-
tions that satisfy this decoupling condition. [To keep for-
mulas simple, we shall write them in approximate forms
valid for the regime (5.4).)

In the collision, the z component of momentum trans-
fertoball 1is

2y — 23

Ap: =35

where Ap; = kmv; 8 (with k typically of order unity) is
the momentum transfer in the plane, m is the mass of
the ball, v, is the ball’s speed before the collision, and §
is the defiection angle in the plane. This z-momentum
transfer changes the inclination of the ball’s trajectory
from z{;, =0 to

Apl [ (55)

n-—nldp_un-n
2R /] 2R

Tlout = k<1,

(5.6)

where py = mu; is the momentum in the plane. After
traveling a distance L; from the collision point, the ball
arrives at mouth 2 with height

Zmouth = 21 + zllwg[ll <B.

(5.7)

The wormhole’s diverging-lens effect causes the ball to
emerge from its traversal with inclination [Fig. 15(b))

22Zmoutn C08 §
B <1.

T
3= Zow t+

(5.8)

The height z3 that the ball reaches after traveling through
the wormhole and returning to the collision point is

(5.9)
Combining Eqs. (5.6), (5.7), (5.8), and (5.9), we obtain

23 = Zmouth + 'lzLQ .

- (2L2 co8 0/B)Z|
A= T (kB/2R) (L1 + L2 + 2L, Ly 088/ B)
(5.10a)

22

and correspondingly
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oo L+ (B/2RYIy + La)lay
mouth = T (kBJ2R)(Ls + L3 + 2Ly Ly cos§/B)

(5.10b)

Note that, whatever may be the values of the pa-
rameters Ly, L3, #, and B, there always is a height 2,
that makes z; — 2; and Zpoueh Small enough to satisfy
the decoupling criteria (5.4). For the typical case of
¢—6 > B, the distances of the collision from the mouths
are Ly ~ Ly ~ 1 and the in-plane deflection angle in the
collision is # ~ BR [Eq. (4.12a)], so

3=z ~2z1/B and zZmouth ~ 21 , (5.11)
and both decoupling criteria (5.4) are satisfied if
2 € BR. (5.12)

Unfortunately (and not surprisingly), this decoupled
range is a small portion of the full range of dangerous ini-
tial trajectories z; < Bsin[Sarctan(2R/L; cos )] ~ RB.
Thus, we can say nothing about the existence of solutions
over the full range. However, in the decoupled range we
can infer the following from the above analysis. (i) The
in-plane motion is affected negligibly by the out-of-plane
motion. (ii) If there exists & solution to the equations
of motion for the in-plane motion, then there is also a
solution for the out-of-plane motion, and it is described
by the above equations. (iii) The in-plane motion is de-
scribed by the same equations as for coplanar initial tra-
jectories. (iv) Therefore, to each solution for any slightly
noncoplanar initial trajectory there corresponds & sols-
tion for the corresponding coplanar trajectory, and con-
versely. We have derived this conclusion only for the
case of solutions with a single collision and single worm-
hole traversal. However, it should be clear that the same
method can be used to derive the same final conclusion
for all self-consistent nearly coplanar solutions, regard-
less of the number of collisions and traversals. There
will be a change in the precise criteria for decoupling
of the in-plane motions from the out-of-plane motions,
but there will always be some out-of-plane neighborhood
of coplanar initial trajectories for which the conclusion
holds true.

This implies that the results of Secs III and IV for
coplanar trajectories are also valid for slightly noncopla-
nar trajectories. Specifically: (i) When R € B « 1 all
initial trajectories have multiplicities greater than zero
(i.e., have self-consistent solutions), and all dangerous
initial trajectories have infinite multiplicity. (ii) When B
is allowed to be of order unity (but no larger than ), and
R/B is constrained only to be small enough to neglect
tidal forces, the extensive set of dangerous initial trajec-
tories investigated in Sec. IV and Appendix B all have
self-consistent solutions even when they are perturbed
slightly in a noncoplanar way.

To recapitulate, these conclusions hold only for a
neighborhood of coplanarity (typically z; € BR) that
is much smaller than the full range of dangerous initial
trajectories (typically zy < BR). However, these conclu-
sions make us suspect that even when 2, ~ BR, all initial
trajectories will have at least one self-consistent soiution.
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VI. CONCLUSIONS

We have found that the Cauchy problem for a billiard
ball in a wormhole spacetime with closed timelike curves
is ill posed in the sense that large, generic classes of initial
trajectories have multiple, and even infinite numbers of
self-consistent solutions to the equations of motion. On
the other hand, we have seen no evidence for a stronger
type of ill posedness: generic initial trajectories with no
self-consistent solutions. In paper II [9] it will be shown
that a sum-over-histories version of quantum mechanics
restores well posedness to the Cauchy problem: Quan-
tum mechanics predicts definite probabilities for a nearly
classical billiard ball to follow this, that, or another of its
classical solutions.

These results give a first glimpse of the behavior of
interacting systems in wormhole spacetimes with closed
timelike curves. It will be interesting to study more re-
alistic, albeit more complex, classical and quantum sys-
tems, as some researchers are currently doing [10]. How-
ever, our results suggest that in general there might be
no deep conflict between the existence of closed timelike
curves and the standard laws of physics.
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APPENDIX A:
DERIVATION OF EQUATIONS FOR
COPLANAR SELF-CONSISTENT SOLUTIONS

In this appendix we derive a complete set of equa-
tions that govern self-consistent, coplanar solutions with
B« %. R/B small enough to neglect tidal forces, and a
single collision that the ball first encounters before any
wormhole traversals and encounters the second time af-
ter just one traversal. The bottom line of our derivation
will be a proof that, to each nonspurious solution of Eqs.
(4.2) and (4.3) there corresponds a solution of the com-
plete equations of motion.

Our derivation involves the geometric parameters de-
picted in Fig. 17, which is a more detailed version of Fig.
11. The first phase of our derivation is to construct a
full set of equations of motion. The equations in our
full set will be numbered; other equations along the way
will be unnumbered. The full set consists of (i) three
“main equations,” which can be thought of as coupled
equations for three unknowns, a, 8, and v, in terms of
the wormhole and ball radii B, R and the parameters
vy, 0, ¢ of the ball’s initial trajectory, and (ii) a set of
auxiliary equations, which express various geometric pa-
rameters appearing in the main equations in terms of the
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FIG. 17.

Full geometry of a self-consistent solution with
one wormhole traversal and one billiard-ball collision. This is
the same as Fig. 11, but with many more details shown. By
convention, all angles and distances (e.g., a, 8, d, and d;) are
positive when their orientations are as shown here.

unknowns a, 8; v; and the knowns B, R, v,, 8, ¢.

We begin by constructing the three main equations.
They are based on and embody the laws of mirror ex-
change (which guarantee conservation of momentum and
energy), the geometry of the balls relative to each other
and relative to their trajectories at the moment of colli-
sion, and the demand that the ball return to the event of
collision at the same external time T as it left it. (These
are all the laws of motion except for the wormhole traver-
sal rules and the law of straight-line motion between col-
lisions and traversal; those remaining laws are embodied
in the auxiliary equations.)

The laws of mirror exchange (2.4a) can be rewritten as

vi=vy, Vix(vitvi)=-vax(v +vy),

vp=v;, vix(vi+vy)=-=v;x(v;+v;)

(together with the requirement that we reject the spuri-
ous solutions v{ = —v3, v = —v;). The first pair of
these determine v} in terms of v; and v, and will be
crucial to our analysis. The second pair determine vj,
which is of no interest, and thus we can and shall ig-
nore them. The first relation v; = vz we shall sutomati-
cally use throughout the analysis without even writing it
down; i.e.,, nowhere will v{ appear; we shall always write
vy in its place. The second relation v} x (v, + v3) =
=v3 X (v1 + v3), which then becomes our sole embod-
iment of mirror exchange and hence of energy and mo-
mentum conservation, we rewrite in terms of the speeds
and angles shown in Fig. 17:

vasin(a — ) = vi(sina +sin g) .

In order to free this equation from its spurious solution
a—fB = x (ie, vi = —v;), we divide both sides by
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2cos 4(a — B), thereby obtaining

vzsind(a - f) = vysind(a+4) . (A1)

This is our first main equation.

Turn, next, to the geometry of the collision. Letting
the collision occur at time T = 0 and introducing a suit-
able origin of coordinates, we can write the incoming tra-
Jjectories as

= = _gspatva
ry(T) =T, roT) = voT 23Rlvl re
cf. Eq. (2.4b). These two trajectories intersect spatially
(r1 = r2) at times T} = —d/v; and T3 = d;/vz, where d
and d; are the distances shown in Fig. 17. By equating
the above expressions for r,(T}) and r3(T3), we obtain

va vy vi+ V3
~dy + ~—d = 2§ R |
v v vy + val

By forming the scalar products of this equation with
vi —v; (v} -va2)vs (i.e., the component of v} orthogonal
to v3), and with v, —vl"(vz -vy)vy (i.e., the component
of v, orthogonal to v,), we obtain several important re-
lations: (i) our second main equation

[d}/v1 = 2R[|vy + vai
=2R/(v} 4 v} + 2u1v3cosa)'/? ;
(ii) the relation
dzfv2a =dfu ,

which we shall use below to eliminate d; from our third
main equation; and (iii) the signs of d and d,

(A2)

sign(d;) = sign(d) = s .

[Recall that s was originally defined as the sign of va—vy;
cf. Eq. (2.4b).] These signs are also the same as that of

sign(f) = sign(d) = &

[a telation embodied in the text’s Eq. (4.6¢)], as one
can see from the following: The geometry of any colli-
sion dictates that the momentum transferred to ball 1
be along the line of centers from ball 2 to ball 1, i.e.,
vi = vy 11 r; — rp (where {1 means “points in the same
direction as”). Combining this with Eq. (2.4b), we see
that v —v; 11 s(va+v;). Taking the cross product with
vy we see that v{ x v, 11 sva x vy, which with the aid of
Fig. 17 (and the fact that always sin a > 0) implies that
sinf = s.

Consider, next, the law that the total time lapse be-
tween the ball’s first and second encounters with the colli-
sion must vanish. From Fig. 17, we see that the vanishing
total time lapse is given by the time needed to travel the
distances a’ and ¢ — d; both at speed v;, minus the time
delay AT =1 introduced by the wormhole traversal:

al

vq va

c—dz

~1=0.

Using the preceding equation to eliminate dz, we obtain
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our third main equation:
_ d+e
1+ dfv, ’

The auxiliary equations, which embody the laws of
straight-line motion between collisions and wormhole

traversal, and also embody the wormhole traversal rules,
are

= Sn(0+9) (1 —2Bcosg + 2850 (¥/2)cosm ")
sino sin 3

v

(A3)

_2B sin (¥/2) cos 73

sin vy ! (A4)

d=—a+".“—"'(1-2Bcos¢+23_31n(¢{2)cos71) |
sina sin s

(AS5)

a = =2 (sin(6 — ) - sin#] (A6)
sinf8 ' .

,_ cosl(0+ 8+ 0’)/2!
I EXD 7 K “o
¢=0—ﬂ—a', (As)
n=40-30-5), (A9)
n=40-0-0+¢, (AL1)
e'=¢+o-°';ﬁ, (A12)

These auxiliary equations can be derived as follows: _

It should be clear from Fig. 17 that PQ = a and PQ’ =
o', and that Q and Q' form an isosceles triangle with
the center of the right-hand wormhole mouth. Hence,
QQ' = 2Bsin(¥/2) and 7 = (¥ — ¥)/2. The interior
angles of the triangle PQQ’ must add up to »:

B+(x=n-0)4+(x-n+8)=x.

When 1 is reexpressed in terms of ¥, this immediately be-
comes Eq. (A8). Furthermore, applying the sine theorem
to the triangle PQQ’ yields (i) the relation

a o

sin(r — n+ &) = sin(r—-n-0)"’
which implies Eq. (A7); and (ii)

a 2B sin(y/2)
sn(xr—n+6)  sng '

which implies

2sin[(8 — B — 8')/2] cos[(8 — B + 6')/2) = % sing,
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which, by a well-known trigonometric formula, implies
Eq. (A6).
Summing up the interior angles of the triangle TQQ",
we find
(¢+¢-0)+(+0)+(x—a) =7,

which, when Eq. (A8) is used, yields Eq. (A12). Figure
18 expands on some details of Fig. 17. Applying the sine
theorem to the triangle Q”SS’, we find

_ . sin(n+ 6')

h= 2Bsm(¢/2)sin(¢+ v —6)

and
sin(n — ¢)
sin(p+ 9 —6)
For the triangle TQQ" the sine theorem implies
sin(¢ + 9)

sin{r — a)

I3 = 2Bsin(¥/2)

c+la=(1-2Bcosd+1)
and

_ sin(¢ + v — 8')
a+d=(1-2Bcos¢ +1,) sn(r—a) '
where we have used the relation ?Q' =1-2Bcos¢. If,
in the last two equations, we eliminate [,, {3, n, and ¥
by using the relations found so far, we obtain Eqs. (A4)
and (AS5) with the auxiliary definitions (A6)-(A11). This
completes our derivation of the auxiliary equations (A4)-
(A12).

The next phase of our analysis is a derivation of the

FIG.18. Some details of Fig. 17 near the wormhole’s left
mouth (mouth 1).
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text's equations (4.2) and (4.3) for the angles « and 8.
These coupled equations follow from our main and aux-
iliary equations in the following manner: First we define

pP=vafny, (A13)
and reexpress Eq. (Al) as
_ sinf}(a + B)] (A14)

P=snlia-p)

Now, using Eq. (A2) d can be expressed in terms of p
and a as

d=2sR/(1+p* +2pcosa)'/?, (A15)

where s = sign(d). By combining Egs. (A7), (A6), and
(A12), it can be shown that

a’sin 8 = Blsin § - sin(8 + 6')]
=B[sin0-sin(0+¢—°;ﬁ)]. (A16)

From Eqs. (A9)—(A11) it can be seen that 7, = 7, +:',3,
and from (A10) and (A12) that a = § + ¢ + 75. Using
these in Eq. (A4), one can show that
csina =3in(d + ¢)(1 — 2B cos ¢)
—2Bsin(¥/2) cos(8 + ¢ + v3) . (A17)
Next, using (A12) in (A8)-(A11), we obtain all the aux-
iliary angles in terms of a and &:
v=—¢+{(a=-p), n=-0-3+3a+1is,
(A18)

T1=a-0-¢, nn=36+4(c-9).

Using these expressions and some trigonometric ma.nip;
ulations, Eq. (A17) can be simplified further, giving

csina =sin(6 + ¢)
-B [sin (o+¢+ ";”) +sin0] . (A19)

Finally, eliminating v; between (A13) and (A3), and
replacing p, @, and ¢ from (A14), (A16), and (A19), we
obtain the first of our equations for a and §: Eq. (4.2);
and we obtain the second, Eq. (4.3) by eliminating a
between (A5) and (A6), using the values (A18) and (A12)
of the auxiliary angles, and performing some algebraic
manipulations.

Notice that, in the process of deriving our two
equations (4.2) and (4.3), we multiplied them by
sin a sin A sin{(a—p)/2] [Eq. (4.2)], and by sin a sin 8 [Eq.
(4.3)). This introduced the first four spurious solutions
of Eq. (4.6a). The fifth spurious solution in (4.6a) is the
self-inconsistent solution. Since v, and v; are both posi-
tive by definition, p = vy/v, must also be positive, so any
solution for a and B which produces a negative p via Eq.
(A14), or equivalently via (4.4a), must be spurious. This
accounts for Eq. (4.6b). Finally, as was discussed follow-
ing Eq. (A2), the collision geometry rules out as spurious
any solutions with sign(8) # sign(d), which accounts for
Eq. (4.6¢).
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The last phase of our analysis is to explain why, to ev-
ery nonspurious solution of Eqs. (4.2) and (4.3) for a and
B, there exists a full solution of the billiard ball's equa-
tions of motion. The reason is that (i) the main and aux-
iliary equations (A1)—(A12) embody all the equations
of motion (as well as a lot of geometrical constructions);
and (ii) by regarding the auxiliary equations (A4)—(A12)
and the third main equation {A3) as definitions of other
variables in terms of , 8, B, R, vy, 8, ¢, and by insert-
ing a nonspurious solution of (4.2) and (4.3) into these
equations, we automatically produce a solution of the
remaining two main equations (A2) and (Al).

APPENDIX B:
SELF-CONSISTENT SOLUTIONS FOR B < 1

In this appendix we derive the properties of self-
consistent solutions quoted in Sec. IV C, for a wormhole
and ball with B € 1 and R/B < 1. We restrict atten-
tion to dangerous initial trajectories in the range (4.7)
{interior of the dangerous triangle depicted in Fig. 12,
and restrict our search to self-consistent solutions with
a single collision of the type shown in Fig. 17 and with
18] <« 1 and [e] € 1, where € = a — 2¢; cf. Eqs. (4.9).

We begin our derivation in Appendix B 1 by expanding
the highly nonlinear, coupled equations (4.2), (4.3) in
powers of § and ¢ to the leading orders that produce
nonspurious solutions. Then in Appendix B2 we derive
explicit solutions to those approximate equations for the
central region of the dangerous triangle, and in Appendix
B3 for the upper-edge region of the triangle.

1. Approximate equations

In this section we derive the approximate equations
for 2 and ¢ by power-series expansions of Eqs. (4.2) and
(4.3). To facilitate the expansion of Eq. (4.2), we first
divide it by sin(a/2) (a factor that appears in each term
in the limit of vanishing 8). When we then expand, the
resulting equations are homogeneous in § and ¢ and at
linear order admit only spurious solutions, so we move
on to quadratic order. Up through quadratic order the
expanded equations take the forms

Me+ N2+ P+ Qi8*+ $18e=0, (B1)

M€+N€2+Pzﬂ+azﬂ2+52ﬁ€=0. (B2)

for which the coefficients M and N of ¢ and €2 are iden-
tically the same in the two equations. The expressions
for all the expansion coefficients are

M = 1Bsin2¢cosf , (B3)

N= %B(cos2¢c030+ -}sin2¢sin 6y, (B4)

P, = - sin(¢ — ) — 2(4A; + s — 2)Rsin ¢
+ B [35in(2¢ - 8) - 4 sin(24 + 6) ~ sind] ,
(BS)
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Q1 =~ cosgcosd ~ 4 cot gsin(¢ + 0)
=2(2\ - 1)Rcos¢ + B[4(9cos® ¢ — 1) cos
+ 4sinfcot ¢(7cos? ¢ - 3)] , (B6)

S) =—cos2¢cosf/cos ¢
+ R[2(2); — 1)/ cos ¢ + (4 — 8, — 5) cos )
+ Blcos8(3 cos® ¢ — 1) + 4 sin24sin 4] ,
(B7)
Py = —sin(¢ — 8) + 2sRsin¢
+ B(-2sin 8 cos? ¢ + 1 sin2¢ cosd) , (B8)
Q:=—sRcos¢ + B(1 cosd — 25in2¢sind) , (B9Y)

Sz =—cos(¢—6)+sRcos¢é
+ B(cosf cos® ¢ + £ sin 85in 24) . (B10)

Here the notation is that of Sec. IV and Appendix A,
including the use of A; as a surrogate for the ball’s initial
speed v); cf. Eqs. (4.10) and (4.8) which imply

"= ;:7[(1 —2Bcosd)cosd+ 2R(2), — 1)} .  (B11)

By subtracting Eq. (B2) from Eq. (B1) and dividing
by #, we obtain the linear equation
QB+Sce+P=0,

where

(B12)

=~cos¢cosd — 1 cot $sin(4 +0)
~ (42, ~ 8~ 2)Rcos ¢
+ B(~cos8 + £ cos? ¢ cos @ + cos? ¢ cot ¢ sin 0) ,

(B13)
S = cosf/ cos ¢ ~ cos(¢ + 7)

+R[2(1 - 2),) cos 24/ cos ¢ — 25 cos ¢}

+B(—cosf + 4 cos 0 cos? § — sin2¢4sind) , (B14)
P = —4Rsin¢(2); +s-1). (B15)

We shall use Eqs. (B2) and (B12) as our approximate,
coupled equations for 8 and ¢. Since one is quadratic and
the other is linear, they can be combined to form a single
quadratic equation for A or for £, but the coefficients
in that quadratic equation are so complicated that we
shall not write it down explicitly except in special regimes
where the coefficients simplify.

The coefficients in our quadratic and linear equations
(B2) and (B12) change drastically (because R € 1 and
B <€ 1) as one approaches the edges of the dangerous
triangle (Fig. 12), 6 ~6 — 0, ¢+ 0 — B, ¢ — /2.
Correspondingly, the structures of the solutions change
drastically as one approaches the edges. In Appendix
B 2 we shall consider the central region (extending out to
the right edge), and in Appendix B 3, the upper-left-edge
region. Near the lower left edge and the left corner, ¢
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grows large, invalidating the power-series expansion that
underlies our quadratic and linear equations (B2) and
(B12), and thus the methods of this appendix are not
usable there.

2. Solutions in the central region

We specialize, now, to the central region of the danger-
ous triangle, ¢—~0 » B, ¢+0—B > R; and we retain our
previous assumptions, B €« 1, R/B < 4. In one of our
manipulations we shall require an additional constraint:
€ X ¢—0. Since § — 0 » B and ¢ has already been
assurmed small, this additional constraint is not severe.

These constraints on the parameters imply that in (B2)
the terms in €2, 2, and e can be neglected compared
to the first-order terms. The result is the linear relation

g= sin 29 cos§

= 2sin(¢ - 0)

Inserting this relation into our linear equation (B12), we
find that e is (very nearly) independent of B:.

c= 8cosd
- sin(0 + ¢)

Be<£e . (B16)

(A - )R, (B17)

0 ifs=+1
=d(1~-38)= '
s=3(l-9) {1 ifs=-1.

Inserting this back into Eq. (B16), we obtain

4sin2¢pcospcosh

sin(¢ — 0) sin(¢ + 0)
- 8sin ¢

~ cos(tan® ¢ — tan?9)

and by inserting these relations into Eqs. (A13), (A14),

and (4.11), we obtain the dimensionless parameter A;

that describes the speed v, of the ball between its en-
counters with the collision

(B18)

B= M\ -0)BR

(M - 0)BR, (B19)

cos® ¢ cos? g
2sin(¢ — 6) sin($ + 0) B] A -9)
2
= (1 + Eﬁ,—ae) (M -0). (B20)

Equations (B17)—-(B20) are the simple form of the so-
lutions for self-consistent collisions of class I (s = +1,
o = 0) and class II (s = -1, & = 1), which we quoted
and discussed in Sec. IV B [Egs. (4.14) and (4.15))}.

Az-d:[l-"

3. Solutions in the upper-edge region

We turn, finally, to the upper-left-edge region of the
dangerous triangle, 0 < ¢—9 < B; and in order to obtain
valid solutions with |f] € 1 and |¢} € 1, we bound
ourselves away from the triangle’s left corner—i.e., we
assume that ¢ 3 B. In our formulas we shall characterize
the difference ¢ — 6 by a dimensionless parameter

ne(é-0)/B. (B21)
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As in the preceding subsection, our constraints on ¢
and 8 make the ¢? and 82 terms in Eq. (B2) negligible
compared to the first-order terms; but now the Se¢ term
is not g priori negligible. As a result, Eq. (B2) takes the
form

kB + kze + ksfe =0, (B22)
where
k; = —puB + 2sRsin¢ — Bsingcos® ¢ , (B23)
ky = Bsindcos? ¢, (B24)
k3= 1. (B25)

Our other, linear, equation for ¢ and 8 [Eq. (B12)] also
simplifies; its coefficients become

Q=-2cos’¢, (B26)
S=2sin%¢, (B27)
P = -8Rsing(); - 7). (B28)

By combining our two equations and eliminating ¢, we
obtain the following quadratic equation for §:

B +pB+q=0,
with

(B29)

—

2
B =sin$cos26B, €= ﬁ%ﬂ%‘f
and

4si .
ﬂ=e=—ﬁm| ifé¢—x/4> +R) .
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B if¢—x/A € —R\,
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p= 2tan? ¢[2(A; — o) — ssing]R

—(sin ¢ cos 2¢ — utan?¢)B , (B30)
q¢= ~4BRsin?¢(\, - a) . (B31)

In discussing the solutions of this quadratic equation we
shall restrict attention to the region 0 < A\, < 1 of dan-
gerous initial trajectories.

By examining the signs of the coefficients in Eq. (B29),
it is easy to see that when s = +1 (class-I collision) there
always exist two real solutions for g, one positive and
thus acceptable; the other negative and thus spurious
(recall that 8 > 0 for class 1 and 8 < O for class If; <f.
Fig. 3). On the other hand, when s = —1 there is always
a range of ¢ where p?/4 — ¢ < 0 and there is no solution.
For R < 1 and u < 1, this no-solution region is ¢ ~ x/4.

Focus attention on the always existent class-I solution,
s = +1(and ¢ = 0). Since ¢ < 0 in this case, the solution
is

B=-p/2+ VP[44 (B32)
When one continuously varies ¢ in the range of our analy-
sis, ¢ 3> B, p passes through 0 at some point and changes
sign. Since ¢ is second order in the small radii B and R,
while p is first order, there is a sharp change in the form
of the solution (B32) at that point:

p= {-q/p if p» gl .
~-p ifp<—lgl.
When Rtan? ¢ < B and ptan? ¢ < 1, the change of sign

for p occurs very close to x/4, and the solution (B33) on
the two sidesof xf4 is

(B33)

(B34)

(B35)

Notice that in (B34) B and ¢ are independent of A;, while in (B35) they are proportional to it. These are the solutions

quoted in Eqgs. (4.14) and (4.15).
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