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Abstract

Gauge theory with a finite gauge group (or with a gauge group that has dis-
connected components) is systematically studied, with emphasis on the case of a
non-Abelian gauge group. An operator formalism is developed, and an order param-
eter is constructed that can distinguish the various phases of a gauge theory. The
non-Abelian Aharonov-Bohm interactions and holonomy interactions among cosmic
string loops, vortices, and charged particles are analyzed; the detection of Cheshire
charge and the transfer of charge between particles and string loops (or vortex pairs)
are described. Non-Abelian gauge theory on a surface with non-trivial topology is
also discussed. Interactions of vortices with “handles” on the surface are discussed
in detail. The electric charge of the mouth of a “wormhole” and the magnetic flux
“linked” by the wormhole are shown to be non-commuting observables. This obser-
vation is used to analyze the color electric field that results when a colored object

traverses a wormhole.
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Chapter 1: Introduction

It is well known that a classical black hole can carry only a few kinds of hair. They
are the mass, angular momentum and electric charge. This is the “no hair theorem.”
However, a black hole may also carry quantum hair if there is a gauge symmetry
that is spontaneously broken™ The simplest model has U(1) gauge symmetry and
two charged scalar fields. One scalar has charge N and the other has charge 1. If
the charge N field condenses, the gauge symmetry will be broken from U(1) to Zy.
All U(1) charges will be screened modulo N. This means that a particle that has
charge n + N will behave the same as a particle with charge n after the symmetry
breaking. The black hole now can carry Zy charge. Since the unbroken gauge group
is discrete, there is no low energy local excitations of the gauge field. We could
conclude that classically the black hole carries no charges. We have to rely on the

quantum interference to detect the Zy charge.

Let us recall the Aharonov-Bohm effect' When we do a double slit experiment
using electrons instead of photons, we would observe the interference patterns similar
to the case of photons. If we put a long solenoid between the slits, the interference
patterns will be shifted according to the magnitude of the magnetic flux inside the
solenoid. This is because the wavefunction of the electrons will acquire different
quantum phases for different paths around the solenoid. The phase difference will
depend on, apart from the geometric setup, the magnetic flux. If we deform the
paths continuously without crossing the solenoid, this part of the phase difference
does not change. It is a topological interaction. From the relation between the phase
shift and the magnetic flux inside the solenoid, we can deduce the charge of the
electrons. This is a quantum effect and it does not depend on whether the gauge

group 1s discrete or not.

In the model discussed in the first paragraph, there is a stable topological line
defect (in 3+1 dimensions), called a cosmic string'” carrying the Zy magnetic flux. By
the Aharonov-Bohm effect, we can detect the Zy charge of the black hole by sending
the black hole around the cosmic string and observing the interference pattern. As
discussed above, this is a quantum effect and has no classical counterpart. The Zy

charge also affects the Hawking temperature of the black hole!” As expected, when



the black hole carries only a few units of Zy charge compared to N, increasing the

charge will decrease the Hawking temperature.

The unbroken gauge group of the above model is Abelian;"*" it could be non-
Abelian for other models””*"** We can also consider 2+ 1 dimensional spacetime or
even spacetime with non-trivial topology. And the role of the black hole in the above
model is to illustrate that we don’t have to “touch” the tested object to find out its
charge. The argument applies to any charged particles. Thus, we now consider a
more general model which, at high energy, has continuous gauge symmetry. At low
energy, the gauge symmetry is spontaneously broken to a symmetry with finite gauge
group or a gauge group with discrete components. There will be stable topological
defects. In 3+ 1 dimensions, the defect is one-dimensional, and called a cosmic string.
In 2+ 1 dimensions, the defect is pointlike, and called a vortex. The cosmic string or

vortex will have Aharonov-Bohm interactions with the charged particles.

If the unbroken gauge group is Abelian, the physics will be similar to the physics
of the black hole and the cosmic string discussed above. If the unbroken gauge group
is non-Abelian, there will be the non-Abelian analogue of the Aharonov-Bohm effect
which means that a charged particle winding around a cosmic string loop or a vortex
will be transformed by an element of the unbroken gauge group. Also for the non-
Abelian theory, a cosmic string loop or a pair of vortex-antivortex may carry electric
» 18]

charge, the “Cheshire charge.
the Aharonov-Bohm effect.

It has no localized source but can be detected by

Besides the interactions with the string loops or vortices, charged particles could
have similar interactions with the non-trivial topology of the space.[m] This can be
easily visualized in 2 + 1 dimensional spacetime because the topology of surfaces is
well understood. The handles of a surface can carry magnetic flux and Cheshire
charge. A charged particle that travels through a handle will be transformed just as

if it has wound around a vortex.

The 3 + 1 dimensional analogue of a handle is a wormhole. The above analysis
applied to a wormhole tells us that the electric charge of a wormhole mouth and the
magnetic flux “linked” by the wormhole are not commuting observables'! We can

specify the values of one or the other to fully specify the state of the wormhole.



In this thesis, the main topic is non-Abelian discrete gauge theory. The inter-
actions between vortices, charged particles and the topology of the space will all be
considered. In chapter 258] a charge operator is constructed for quantum field theory
with non-Abelian discrete gauge symmetry. A non-local order parameter is formu-
lated to distinguish the various phases. The construction of the operators in a lattice
is explicitly described. Also, we investigated the Aharonov-Bohm interactions be-
tween string loops or vortices and charged particles, holonomy interactions between
string loops, transfer of Cheshire charge, decay of domain walls and the Aharonov-
Bohm interactions of magnetic monopoles with electric flux tubes. The chapter is a

generalization to the non-Abelian theory of the work done on the Abelian theory in
Ref. 5.

In chapter 3,[9] we will concentrate on the detection and the transfer of Cheshire
charge. In particular, we will describe the transfer of electric charge from a particle
to a string loop, and will describe the detection of the Cheshire charge on that loop,

using the language of gauge-invariant correlation functions.

We consider the effect of the topology of the space in chapter 4" Since the
topology of two-dimensional space is easier to understand, we investigate the inter-
actions of vortices on surfaces. If the genus of the surface is greater than zero, the
handles can carry magnetic flux and Cheshire charge. The motion of the vortices can
be described by the braid group of the surface. How the motion of the vortices affects
the state is analyzed in detail. We also describe the symmetry algebra, the quantum

double, and the most general point like excitations, dyons, allowed by the theory.

In chapter 5,[11] we use the technique of chapter 4 to resolve some puzzles in
wormhole electrodynamics and chromodynamics. We discuss how to measure the
charge and flux of a wormhole by the Aharonov-Bohm effect. We find that after a
colored object traverses a wormhole, its state will be entangled with the state of the
wormbhole. This is related to the fact that the charge and flux of a wormhole are not

commuting observables.

There is also some final remarks in chapter 6.
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Chapter 2: Non-Abelian Strings and Vortices

In many cases, a gauge theory that undergoes the Higgs mechanism will con-
tain topologically stable defects. Among the defects that can occur are line defects

(“cosmic strings”) in 341 dimensions, and pointlike vortices in 241 dimensions"

If the symmetry breaking pattern and the matter content of the theory are suit-
able, the strings or vortices may have long range interactions with various particles.
These interactions are a consequence of the Aharonov-Bohm phenomenon—the wave
function of a particle acquires a non-trivial phase when the particle is covariantly

transported around the string.[z’al

This simple observation has interesting implications.[4_6] Because the Aharonov-
Bohm interaction has infinite range, and no local operator can destroy an object
that has an infinite-range interaction with another object, gauge theories with such
interactions always respect non-trivial superselection rules. The structure of the su-
perselection sectors can be invoked to distinguish among the various possible phases
of a gauge theory. Furthermore, the existence of infinite range interactions that are
fundamentally quantum mechanical exposes the limitations of the “no-hair” theorems
of black hole physics. Though a black hole may have no classical hair, it can carry
quantum numbers that are detectable by means of the interaction between the black

. . ,7—=
hole and a cosmic strlng.[4 K

The “Aharonov-Bohm phase” acquired by an object that circumnavigates a string
is, in general, a gauge transformation contained in the unbroken gauge group. When
the manifest gauge symmetry is non-Abelian, this gauge transformation might not lie
in the center of the group. In that case, we say that the string is “non-Abelian.” fol
The physical properties of a non-Abelian string are qualitatively different from the
properties of an Abelian string.[s’e’u_lsl In particular, a loop of non-Abelian string (or a
pair of non-Abelian vortices, in 241 dimensions) can carry a non-trivial gauge charge,
so that the loop has an Aharonov-Bohm interaction with other strings. Moreover,
non-Abelian Aharonov-Bohm interactions involve transfer of charge between string
loops and charged particles. Remarkably, the charge carried by a loop (which has a
topological origin) cannot be localized anywhere on the string loop or in its vicinity.

Following Ref. 13, we will refer to such unlocalized charge as “Cheshire charge.”



If we are to appeal to the Aharonov-Bohm effect to probe the phase structure of
a gauge theory, or to investigate the quantum physics of black holes, we must be able
to discuss interference phenomena in a language that does not rely on weak-coupling
perturbative methods; we need a framework that (at least in principle) takes full
account of the effects of virtual pairs and of the fluctuations of quantum fields. Such
a framework was erected, for Abelian strings (or vortices), in Ref. 5. There, operators
were constructed that create a loop of string, or that introduce (as a classical source)
the closed world sheet of a string. The correlation functions of these operators can
be studied to investigate the properties of the strings, and their Aharonov-Bohm

interactions in particular.

Our main objective in this chapter is to generalize the work of Ref. 5 to the case
of non-Abelian strings. Because of the subtle and elusive physics of non-Abelian
strings, this generalization is not entirely straightforward.m] Our primary motivation
comes from two considerations. First, we seek assurance that the exotic physics of the
non-Abelian Aharonov-Bohm effect, previously inferred in the weak-coupling limit,
actually survives in a fully quantum field-theoretic treatment. Second, we hope to
construct (non-local) order parameters that can be used to classify the phases of a

gauge theory.

Let us formulate the order-parameter problem more explicitly, and in so doing,

review some of the principal results of Ref. 5.

A gauge theory can have an interesting phase diagram. Depending on its Higgs
structure and on the parameters of the Higgs potential, the theory may be in a
Coulomb (massless) phase, a Higgs phase, or a confinement phase. A Higgs phase is,
roughly speaking, characterized by the existence of stable magnetic flux tubes, and a

confinement phase by the existence of stable electric lux tubes.

Non-local gauge-invariant order parameters can be devised that distinguish among
the various phases. The expectation value of the Wilson loop operator[m] exhibits
area-law behavior if there are stable electric flux tubes, and perimeter-law behavior
otherwise. The expectation value of the 't Hooft loop opera,tor[m] exhibits area law

behavior if there are stable magnetic flux tubes, and perimeter-law behavior otherwise.

These order parameters are not sufficient, however, to distinguish among all pos-



sible phases of a general gauge theory. Consider, for example, the case of an SU(N)
gauge theory with matter in the fundamental representation. In this theory, the Wil-
son loop always obeys the perimeter law, because an electric flux tube can break via
nucleation of a pair. An 't Hooft loop operator can also be defined, but always obeys
the area law. Yet the theory can have a non-trivial phase diagram. Using adjoint
Higgs fields, it is possible to break the gauge group down to its center Zy. This

phase, which admits free Zy charges, is distinguishable from the confinement phase.

In Ref. 5, an order parameter was described that can distinguish the free-charge
phase from the confinement phase in an SU(N) gauge theoryir The idea is that the
free-charge phase supports stable magnetic flux tubes (cosmic strings), and these
strings have an infinite-range Aharonov-Bohm interaction with Zy charges. No such
interaction can exist if Zy charges are confined, or if Zy is spontaneously broken
by a Higgs field that transforms as the fundamental representation. (Indeed, the
confinement phase and the “Higgs” phase with Zy completely broken are not distin-

guishable;[lg] this is an instance of “complementarity.”

To construct the order parameter, we must first devise an operator F(X) that
introduces a cosmic string world sheet on the closed two-dimensional surface . (As
we will discuss later, this operator is closely related to the ’t Hooft loop operator.)

Then consider the quantity

FE)W(C)

AEC) = Ty W)

(2.1)

where W(C) is the (fundamental representation) Wilson loop. In the free-charge

phase, we have
. 2me
lim (A(Z,C)) = exp (Wk(2,0)> . (2.2)

Here the limit is taken with ¥ and C' increasing to infinite size, and with the closest

approach of ¥ to C also approaching infinity; (¥, C') denotes the linking number of

% This is actually an oversimplification of the status of the ’t Hooft loop, as we will discuss in
Sections 4, 6, and 8.

1 This order parameter was actually discussed earlier by Fredenhagen and Marcu in Ref. 17. See
also Ref. 18.



the surface ¥ and the loop C. On the other hand, if there are no free Zy charges,

then we have
lim (A%, C) =1. (2.3)

The non-analytic behavior of A(X, ') guarantees that a well-defined phase boundary
separates the two phases. We will refer to A(X,C) as the “ABOP,” or “Aharonov-

Bohm Order Parameter.”

One of our objectives in this chapter is to generalize the above construction, and
to further explore its consequences. In general, it is not sufficient to determine the
realization of the center of the gauge group, in order to distinguish all possible phases
of a gauge theory. For example, SU(N) might break to a discrete subgroup H that
is not contained in the center. Different unbroken groups (including non-Abelian
ones) can be distinguished according to the varieties of cosmic stings that exist, and
the nature of the Aharonov-Bohm interactions of these strings with free charges. To
probe the phase structure more thoroughly, we need to construct a more general F(X)
operator. And we will need to consider carefully the interpretation of the behavior of
the corresponding A(Y, C') operator. The interpretation involves subtleties associated

with the non-Abelian Aharonov-Bohm eflect.

In the example described above, there are other order parameters that can serve
to distinguish the free-charge phase from the confinement phase”™** But we believe
that the properties of strings and of their Aharonov-Bohm interactions provide a more

powerful method for classifying phases in more general cases.

The remainder of this chapter is organized as follows: Section 1 reviews the
formalism for describing configurations of many non-Abelian vortices or strings. We
emphasize the need to select an (arbitrary) basepoint for the purpose of defining
the “magnetic flux” of a vortex, discuss the holonomy interactions between vortices,
explain the origin of Cheshire charge, and note that non-Abelian strings generically

become entangled when they cross each other.

In Section 2, we discuss the properties of domain walls that are bounded by
loops of non-Abelian string, and observe that physically distinct strings can bound
physically identical walls. Hence when a wall “decays” by nucleating a loop of string,

several competing “decay channels” may be available.



Section 3 concerns Aharonov-Bohm interactions in Abelian gauge-Higgs systems.
We explore the screening of such interactions due to Higgs condensation. The obser-
vations in Section 2 concerning domain wall decay are invoked, in order to interpret

the results.

In Section 4, we begin our analysis of the effects of quantum fluctuations on
the non-Abelian Aharonov-Bohm effect. We find that non-perturbative fluctuations
cause ambiguities in the Aharonov-Bohm “phase” beyond those that occur in leading
semiclassical theory. We construct operators that create configurations of many non-
Abelian strings. Two types of operators are considered. One type introduces classical
string sources on closed world sheets. The other type creates (or destroys) dynamical

string loops.

A subtle aspect of the construction is that, for both types, the many string con-
figurations are coherent. This means the following: The “magnetic flux” carried by
a string can be characterized by an element a of the unbroken gauge group H. If
an object that transforms as the representation (v) of H is transported about this
string, the Aharonov-Bohm phase that it acquires, averaged over a basis for the rep-

resentation, is
—x"(a) (2.4)

where n, is the dimension of () and x(*) is its character’®”" Now if an a string and
a b string are combined incoherently, then the averaged phase acquired by an object
that traverses the two strings in succession is

%X(”)(a) LX(”)(b) : (2.5)

ny

that is, it is the product of the Aharonov-Bohm factors associated with the two
individual strings. But if the two strings are patched together coherently, then the

averaged phase becomes
1 14
n—x< Y(ab) . (2.6)

This property, that the Aharonov-Bohm factor associated with a pair of coherently
combined strings is not just the product of the Aharonov-Bohm factors of the two

individual strings, is a distinguishing feature of the non-Abelian Aharonov-Bohm
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effect, and one of the goals of our work has been to better understand how this
coherence is maintained when quantum fluctuations of fields are fully taken into

account.

Correlation functions of the operators constructed in Section 4 are used in Sec-
tion 5 to investigate Aharonov-Bohm interactions in a pure gauge theory, at both
strong and weak coupling. In Section 6, we use these operators to study the quantum-

mechanical mixing between different string states first discussed in Ref. 21.

Holonomy interactions between pairs of vortices, or pairs of string loops, are con-
sidered in Section 7. Correlation functions are used to demonstrate holonomy scatter-
ing and string entanglement. We also analyze a correlation function that realizes the
transfer of charge from a charged source to a loop of string, and the subsequent detec-
tion of the (Cheshire) charge on the loop by means of its Aharonov-Bohm interaction

with yet another loop of string.

In Section 8, we consider non-Abelian gauge-Higgs systems; we analyze the con-
sequences of the Higgs mechanism for the stability of strings, and for the screening
of Aharonov-Bohm interactions. We discuss how non-local order-parameters can be

used to explore the phase structure of such a system.

Section 9 concerns the properties of dynamical magnetic monopoles, in a confining
gauge theory. We construct generalizations of the Wilson and ’t Hooft operators for
a theory with dynamical monopoles, and use these operators to demonstrate the

Aharonov-Bohm interaction between monopoles and electric flux tubes**”"

The Appendix provides some additional details concerning some of the lattice

calculations that are mentioned in the text of the chapter.

2.1. NON-ABELIAN VORTICES AND STRINGS

We will briefly review the formalism ™ for describing configurations of many
vortices (in two spatial dimensions) or many strings (in three spatial dimensions).
Our purpose is to remind the reader of two peculiar features of non-Abelian strings.
First, there is an ambiguity when two or more loops of string are patched together

to construct a multi-string configuration. Second, a loop of string can carry charges,
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and can exchange charge with other objects by means of the non-Abelian Aharonov-
Bohm effect. An understanding of these features is needed in order to interpret the

behavior of the correlation functions that we will construct.

Many-Vortex Configuration We will consider vortices first, and discuss strings later.

A single isolated vortex can be associated with an element of the unbroken gauge

group H, according to

a(C,z9) = Pexp z'/A-d:v . (2.7)
C,.’Do

Here C is a closed oriented path, far from the vortex core, that encloses the vortex and
begins and ends at the point zg. This group element a(C, x¢) is invariant under de-
formations of the path C that keep z( fixed and that avoid the vortex core. An object
that transforms as the irreducible representation (v) of H acquires the “Aharonov-
Bohm” phase D*)(a(C, o)) when covariantly transported around the vortex. We
require a € H, because the Higgs fields that drive the symmetry breakdown must
return to their original values when so transported. The vortices can be topologically
classified, with the topological charge taking values in mo(H); that is, a vortex with
“flux” @ € H can be smoothly deformed to another vortex with flux b € H if and
only if @ and b lie in the same connected component of H." If H is a discrete group
(as we will usually assume in this chapter), then, the topological charge is specified

by an element of H.

Similarly, we may associate n elements of H with a configuration of n vortices.
To do so, we must choose n standard paths, all beginning and ending at the same

. . . . . 2
point zg, that circumnavigate the various vortices™

This description of the n-vortex configuration evidently suffers from some ambi-
guities. First, it is not gauge invariant. Under a gauge transformation that takes the

value h € H at the point z¢ (and so preserves the Higgs order parameter at that

* Here, we have implicitly defined H as the unbroken subgroup of a simply connected underlying
(spontaneously broken) gauge group. The global topology of the underlying group is irrelevant,
however, for the purpose of classifying the Aharonov-Bohm interactions of the vortices.
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point), the elements ay,az,...,a, transform according to
a; — haih_l . (2.8)

Thus, the configurations of a single vortex are labeled by the conjugacy classes of
H. But the gauge freedom for many vortices involves just one overall conjugation.
This means that specifying the positions and classes of all vortices is not sufficient to
characterize the multi-vortex configuration. Single vortices can be patched together

in various ways to construct different multi-vortex states.

Another ambiguity concerns the choice of the paths C; that enclose the vortices.
The paths that begin and end at z¢ and avoid the cores of n vortices fall into homotopy
classes; these classes are the elements of m1(My,,z¢), the fundamental group of M,
the plane with n punctures. (This group is Fy, the free group with n generators.)
By assigning elements of H to each of the generators of 71(My, o), we have defined
a homomorphism from #j(My,zo) into H. This homomorphism (modulo the one

overall conjugation) characterizes the configuration of n vortices.

But this homomorphism is still ambiguous, because the n generators can be chosen
in various ways. Consider in particular the case of two vortices, as shown in Fig. 1.
Standard paths o3 and g have been chosen in Fig. 1a that wind counterclockwise
around the two vortices. A topologically distinct choice for the path around vortex
1 is shown in Fig. 1c, and a distinct choice for the path around vortex 2 is shown in
Fig. 1d. Suppose now that vortex 1 winds around vortex 2 (in the sense defined by
the path a2), and returns to its original position, as in Fig. 1b. We may deform our
paths during the winding so that no vortex ever crosses any path; then each path is
mapped to the same group element after the winding as before the winding. But after
the winding, the final deformed path is not homotopically equivalent to the initial
path. Therefore, the homomorphism that maps 71 (Mj, 2¢) to the group has changed.

Suppose, for example, that initially oy is mapped to a; and oy is mapped to
az. We wish to determine the final values, after the winding, of the group elements
associated with the paths a; and ap. For this purpose, it is convenient to notice that,
during the winding, the path shown in Fig. 1c is “dragged” to a3. Therefore, the

group element associated with this path before the winding is the same as the group
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Fig. 1: (a) Standard paths oy and a3, based at 2, that enclose vortex 1 and vortex

2. (b) Vortex 1 winds around vortex 2. (¢) Path that, during the winding of vortex

1 around vortex 2, gets dragged to «y. (d) Path that gets dragged to a during the

winding.
element associated with ay after the winding. We see that this path can be expressed
as (a1az)ay(a1az)™!, where ajas denotes the path that is obtained by traversing ag
first and a; second. The initial homomorphism maps this path to a path-ordered

exponential with the value
ay = (a1az)a1(araz)™" . (2.9)
Similarly we note that the path shown in Fig. 1d is dragged during the winding to
ay. This path is (@jaz)az(1az)™!, and is mapped by the initial homomorphism to
ay = (ajaz)az(arag) ™! . (2.10)
We conclude that the final homomorphism after the winding maps o to @} and maps

az to aj. Winding vortex 1 around vortex 2 has changed the two-vortex state (if a1

and az do not commute)—both group elements have become conjugated by a;as.

This change in the two-vortex state is not a mere mathematical curiosity.
The physical interpretation is that there is a long-range interaction between non-

commuting vortices”™*! We refer to this as the “holonomy interaction.” It is a type
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of Aharonov-Bohm interaction, but we prefer not to use that name in this context.
The holonomy interaction is really a classical effect, while the term “Aharonov-Bohm”
is best reserved for an intrinsically quantum-mechanical interaction. When the num-

ber of vortices is three or more, these holonomy interactions can be quite complicated.

Finally, another source of ambiguity concerns the choice of the basepoint zg.
Winding the basepoint around some of the vortices (or some of the vortices around
the basepoint) also changes our description of the multi-vortex configuration. This
feature is not of much physical interest. When it is convenient, we will consider the
basepoint to be far from all vortices, so that winding of vortices around the basepoint

need not be considered.

The gauge-invariant content of the classical n-vortex configuration can be encoded

in the Wilson loop operators

W(")(C)znix(”) Pexp i}{A-dx , (2.11)
C

where y(*) denotes the character, and n, the dimension, of irreducible representation
(v). If C is a closed path around a single vortex, then W®)(C), for all (v), provides
sufficient information to identify the class to which the vortex belongs. Likewise,
W®)(C), for all (v) and all C' in 71(M,,) suffices to determine the n-vortex configura-
tion, up to one overall conjugation. It is not sufficient though, to know W®)(C;) for
all the generators C; of 71(My); this determines only the class of each vortex, but not
how the vortices are patched together. It is therefore more convenient and efficient to
fix the gauge at the basepoint and assign group elements to standard paths around

the vortices than to give a fully gauge-invariant description in terms of Wilson loops.

When the unbroken gauge group H is discrete, one sometimes says that the theory
respects a “local discrete symmetry.” (e=e20=2% Phig terminology is used because a field
that is covariantly constant outside the vortex core is typically not single valued—on
a closed path that encloses a vortex, a covariantly constant field is periodic only up
to the action of an element of H. (And, conversely, a field that ¢s periodic cannot
be covariantly constant.) But the phrase “local discrete symmetry” should not be

misunderstood. Often, when we say that a symmetry is local, we mean that all
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physical states are required to be invariant under the symmetry. That is not what
is meant here. Isolated H charges can exist, and can, in fact, be detected at infinite

range via their Aharonov-Bohm interactions with vortices.

Cheshire Charge Aside from their topological charges, vortices can also carry ordi-

nary H quantum numbers™*'® These are easiest to discuss if we consider a vortex-
antivortex pair, with trivial total topological charge. In this configuration, the vortex
is described by a group element a, and the antivortex by a~!. But under H trans-
formations, a mixes with other representatives of the conjugacy class to which it

belongs.

The action of H on the members of a class « defines a (reducible) representation
which we denote as D(®). In D(®) each element of H is represented by a permutation

of the class, according to
D@(R): |a) — Ihah—1> , a€a. (2.12)

This representation can be decomposed into irreducible representations of H. The
physical interpretation is that the vortex pair can carry H charge. This charge is
a property of the vortex-antivortex composite system and is not localized on either
vortex or antivortex. It can be detected by means of the Aharonov-Bohm interaction

of the composite with another vortex.

For each class o in H there is a unique state that can be constructed that is

uncharged (transforms trivially under H); it is the superposition of group eigenstates

\/117 ze;y la) (2.13)

(where nq denotes the order of the class). Let us consider what happens to this state

when an object that transforms as the irreducible representation (v) of H passes

between the two vortices.

The composite system consisting of the vortex pair and the charged projectile has
a well-defined H-charge; the composite transforms according to a representation of H
that could be inferred by studying the Aharonov-Bohm interaction of the composite

with other vortices. (It is to ensure this that we consider a pair of vortices with trivial
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total topological charge.) Interactions between the vortex pair and the projectile
cannot change this total H-charge. From this observation, we can infer how the
charge of the vortex pair changes when a charged object winds around one of the

. [30]
vortices.

It is convenient to imagine that the vortex pair actually interacts with a particle-
antiparticle pair, combined in the trivial representation of H, so that the total H-
charge of particles plus vortices is trivial. Then, if one particle winds around one
vortex as in Fig. 2, the charge transferred to the vortex pair is opposite to the charge
transferred to the particle pair; the vortices are in a state transforming as the repre-

sentation (u)*, if the particle pair transforms as (p).

a-l
D D

Fig. 2: A particle transforming as the representation (v) of H interacts with a vortex
pair. The particle and its antiparticle are initially prepared in an uncharged (gauge-
singlet) state. After the particle winds around the vortex, the particle-antiparticle
pair has acquired a non-trivial charge.

The charge-zero state of the particle-antiparticle pair has the group-theoretic

structure
1

N

(summed over i) where {egu)} denotes a basis for the vector space on which the

" @ egv>> : (2.14)

representation (v) acts, and n, is the dimension of that representation. After the

particle winds around a vortex with flux a € H, this state becomes

1 V)* 14 14
e @) D (a) . (2.15)

Vi

We may regard this state as a vector in the space on which the representation DWW g
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D) acts, expanded in terms of the natural basis ‘egy)* ® egy)>. This vector can also

be expanded in terms of the basis that block-diagonalizes the representation, as

1
DW(a) =Y cuyov. (2.16)
VIt Yy
Here, v(#)¥ is a unit vector in the irreducible subspace acted on by the representation
(1), y; the index y occurs because a given irreducible representation may occur in

D @ DW)* more than once.

We may interpret

Pu = Z lepyl? (2.17)

Y

as the probability that the final state of the particle pair transforms as D) corre-
spondingly, it is the probability that, after interacting with the projectile, the vortex
pair transforms as D{*)* (The |¢|’s do not depend on how the class representative a
is chosen.) Of course, p, can be non-vanishing only if DW* is one of the irreducible

constituents of D(®),

Thus we see that charge is transferred to the vortex pair, via the non-Abelian
Aharonov-Bohm effect, when a charged particle winds around the vortex;[5’12’13]
initially uncharged vortex pair becomes a non-trivial superposition of charge eigen-
states. This is “Cheshire charge.” The charge is a global property of the vortex pair,

and is not localized on the vortices.

Strings The above description of vortices is easily translated into appropriate lan-
guage to describe loops of string. A multi-string configuration can be characterized
by assigning elements of H to each of a set of standard paths (beginning and ending
at a basepoint z¢) that link the string loops. Again, the paths that begin and end at
z¢ and avoid the cores of all strings fall into homotopy classes; these classes are the

elements of m1(M, zo), where M now denotes R with all string loops removed.

Thus, when many strings are present, there is an ambiguity in the choice of the
“standard path” that links a given string, and a corresponding ambiguity in the
assignment of group elements to strings. The physics associated with this ambiguity

is that there is a long-range holonomy interaction between string loops.
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X

(a) (b)

Fig. 3: (a) Standard paths o and 3, based at zg, associated with the a string and
the b string. (b) Path that is dragged to the path 3 as the loop of b string winds
through the loop of a string (in the sense defined by «).

In Fig. 3a, standard paths a and 8 have been introduced that wind around two
string loops. Suppose that initially the homomorphism maps a to the group element
a, and maps 3 to the group element 5. Now suppose that the b string loops winds
through the a loop, in the sense defined by . During the winding, the path shown in
Fig. 3b is dragged to 3. Thus, the flux associated with this path before the winding is
the same as the flux associated with 3 after the winding. This path can be expressed
as afia™!, and so is mapped by the initial homomorphism to the group element aba™!.

We conclude that the final homomorphism after the winding maps 3 to
b = abat, (2.18)

and maps « to ¢’ = a. When a loop of b string winds through a loop of a string, its

flux becomes conjugated—it becomes an aba~! string.

For future reference, we remark that Fig. 3 has an alternative interpretation. The
path shown in Fig. 3b will also be dragged to § if the a string winds around the
basepoint zg, without the b loop passing through the a loop at all. Of course, the
basepoint zq is completely arbitrary, and selected by convention, so this process has
no actual physical effect on the b loop. Yet, the effect of parallel transport around
the path 8 will be different than before, after the a loop has lassoed the basepoint.

We will return to this point in Section 4.

Furthermore, a string loop, like a pair of vortices, can carry an H charge, and can

exchange charge with other charged objects by means of the Aharonov-Bohm effect.

Branching and entanglement Another property of strings will be relevant to our

subsequent analysis; namely, that strings can branch. This feature is illustrated in
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Fig. 4. There a string labeled by ¢ = ba splits into two strings with labels ¢ and
b. If the gauge group is non-Abelian, then the precise rules for composing the group
elements at a branch point depend on our conventions—these (arbitrary) conventions
assoclate each string with a path around the string that begins and ends at the

basepoint, as shown in Fig. 4.

Fig. 4: The branching of a ¢ = ba string into an a string and a b string. The
standard paths, based at zg, associated with each string are indicated.

Related to the branching phenomenon is another generic feature of non-Abelian
cosmic strings—strings that are labeled by non-commuting group elements become
entangled when they cross®” Fig. 5 illustrates that when an « string and a b string
cross, they become connected by a segment of ¢ string. The mathematics underlying
this entanglement is very similar to that underlying the holonomy interaction between

two non-Abelian vortices, in two spatial dimensions.

Let us calculate the flux ¢ carried by the string segment that connects the a string
and the b string, after the crossing. First, we establish our conventions by choosing
standard paths @, B, and v that encircle the string, as in Fig. 5a. The group element
c associated with 7 can be determined if we demand that the bridge connecting the
strings can be removed by re-crossing the strings. However, even once we have fixed
all our conventions, the element c is not uniquely determined—there are two possible
choices. This ambiguity arises because a crossing event involving two oriented strings
has a handedness. A useful way to think about the handedness of the crossing is to
imagine that the a and b strings are actually large closed loops. When the string

loops cross, they become linked. But the linking number can be either +1 or —1.
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Fig. 5: (a) The standard paths «, 3, and v associated with entangled strings. These

paths are mapped by the string homomorphism to group elements a, b, and ¢. (b)
The paths 3 and 8’ are both mapped to b, if the bridge connecting the strings can
be removed by crossing the strings. (c) Standard paths associated with the “upper
halves” of entangled strings. (d) The paths 8 and 8" are both mapped to b, if the
bridge can be removed by crossing the strings “the other way.”

(That is, we may consider a surface bounded by one of the loops. This surface inherits
an orientation from the loop, defined (say) by the right-hand rule. If the other loop
pierces the surface in the same sense as the outward-pointing normal, the linking
number is +1; otherwise, —1.) The two possible linking numbers correspond to the

two possible types of crossing events.

For one of the two types of crossings (the case in which the the loops have linking
number —1), the paths A and 4’ in Fig. 5b must be mapped to the same group
element. In terms of the standard paths defined in Fig. 5a, we have ' = a~1yfa.
(Recall our notation—in a composition of paths, the path on the right is traced first.)
We therefore find b = a~!cba, or

c=aba" b7t . (2.19)
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The connection with the holonomy interaction between vortices is clarified by Fig. 5c,

1 and vp are shown that wind around the “upper halves”

where standard paths ay~
of the entangled strings. Since ac™! = (ab)a(ab)™! and cb = (ab)b(ab)~!, the “Aux”
carried by the upper half strings differs from the flux carried by the lower half strings
by conjugation by ab (just as winding an a vortex counterclockwise around a b vortex

causes the flux of both vortices to be conjugated by ab).

For the other type of crossing (the case in which the loops have linking number
+1), the paths 8 and 8" in Fig. 5d must be mapped to the same group element. This
path is 8" = afya~1, so that b = abca™!, or

c=b"ta"tha . (2.20)

Now the upper half strings carry flux (ab)~'a(ab) and (ab)~1b(ab), which is just the
change in a two-vortex state that results from winding an a vortex around a b vortex

in the clockwise sense.

2.2. NON-ABELIAN WALLS BOUNDED BY STRINGS

If a gauge theory respects a local discrete symmetry G, then, as we have seen,
the theory admits cosmic strings that are classified by the elements of G. But if the
group G is spontaneously broken to a subgroup H, then some of these strings become
boundaries of domain walls”™” Here we will consider some of the properties of domain
walls bounded by strings. It is necessary to understand these properties, in order
to interpret the behavior of our correlation functions, and to use them to probe the

phase structure of a model.

In this section, as before, we assume that a standard choice of gauge has been
made at a standard basepoint. This choice allows us to assign a definite group element

to each cosmic string, and also fixes the embedding of the unbroken group H in G.

Classifying walls bounded by string If a discrete gauge group G is spontaneously

broken to a subgroup H, then the cosmic strings of the theory are classified by
elements of H. The elements of G that are not in H are associated not with isolated

strings, but rather with strings that bound segments of domain wall.
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There is not, however, a one-to-one correspondence between elements of G that
are not in H and the physically distinguishable types of wall. This is because a single
type of wall can be bounded by more than one type of string. As is illustrated in
Fig. 6, strings labeled by a and b can bound the same wall, if » = a~1b is in the
unbroken group H. The composite of the two strings is an object that does not end
on a wall, which means that the wall that ends on an a string must also end on
a b string (with conventions chosen as in the figure). Thus, no locally measurable
property distinguishes a wall that ends on an a string from a wall that ends on a b
string, if a=1b € H. In other words, walls are classified by the cosets {gH }of Hin G
(with the trivial coset corresponding to the trivial wall, i.e., no wall at all). Whether

the walls are labeled by left or right cosets is a matter of convention.

wall

(a) (b)

Fig. 6: (a) Standard paths that are mapped by the string homomorphism to ele-

ments a, b € G that are not in the unbroken group H. Each string is the boundary
of a domain wall. (b) A path that is mapped to a='b € H. This path does not
cross the wall.

Another way to think about this classification is in terms of the discontinuity of
the order parameter across the domain wall. Suppose that the Higgs field ® that
drives the breakdown from G to H transforms as the representation R of G, so
that D(®)(R)® = ® for h € H. Across the wall labeled by a, the order parameter
jumps from @ to D(R)(a)CD. This discontinuity is independent of the choice of coset

representative.

To avoid confusion, we should remark that the classification that we have just

described is not the usual classification of domain walls in a spontaneously broken
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gauge theory. The point is that we are not classifying the domain walls that are
absolutely stable, as in the standard analysis of topological defects in gauge theories.

Instead, we are classifying the different walls that can end on strings.

Notice that the criterion for two strings to be boundaries of the same wall is not the
same as the criterion for two strings to be (locally) indistinguishable objects. Strings
labeled by a and b have the same structure if ¢ and b are related by a = hbh™?! for
some h € H. Two elements of G can be in the same H coset without being related in
this way. Therefore, the same type of wall can have more than one type of boundary,

in general.

Wall decay The walls described above, those associated with elements of G that are
not in the unbroken group H, are unstable. Such a wall will decay by nucleating a

loop of string by quantum tunneling; the loop then expands, consuming the wall™.

As we have seen, it is possible for one type of wall to end on more than one type of
string. Hence, the wall may be able to decay in more than one way. Furthermore, if a
large segment of wall bounded by an « string decays, two different decay modes that
are locally indistinguishable may be globally distinguishable. For example, it may be
that & and ¥ are both in the same H coset as a, and also that & = Abh™!, for some
h € H. Then the wall can decay by nucleating either a b string or a b' string, and
the strings look the same locally. But a=!b and a~1#' need not be the same element
of H. Then the ribbon of wall that is produced by the nucleation of the loop (see
Fig. 6) is different in the two cases.

If a large loop of a string is prepared, which bounds a wall, then the wall can decay
in any of the available channels. The string with the lowest tension is the most likely
to nucleate, but all strings that can bound the wall nucleate at some non-vanishing
rate. Many holes eventually appear in the wall, and the boundaries of the holes (the

strings) expand due to the tension in the wall. Eventually the holes collide.

When an « hole meets a b hole, junctions form, and a ab™! string appears that
bridges the hole. (See Fig. 7.) It may be that the b string has higher tension than the
a string. Then the junctions will get pulled around the boundary of the hole. They

annihilate, liberating a ab™! string from the decaying wall system.
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- L v (b)

(c) (d)

Fig. 7: (a) Two holes appear in a domain wall, due to the spontaneous nucleation
of loops of a string and b string. (b) The holes meet and coalesce. A segment of
ab=! string appears that bridges the hole. (c) The b string has higher tension than
the a string, and so pulls the string junctions toward each other. (d) A loop of ab~1
string breaks free from the decaying wall.

This scenario shows that, when the wall bounding a very large loop of string
decays, we may regard the decay process as dominated by the strings on which the
wall can end that have the smallest possible tension. This insight will help us to
interpret the behavior of the order parameter A(X, C'). If an operator creates a world
sheet of an a string, which bounds a wall, then the Aharonov-Bohm interaction with
a charge whose world line winds around the string world sheet will be the same as the
Aharonov-Bohm interaction of the charge with the ab™* € H string, if the b string is

the lightest one that can nucleate on the wall.

For completeness, we note another structure that can arise in walls bounded by
strings. We have seen that a ba string can branch into an a string and a b string. It
may be that all three strings are boundaries of walls. Then a possible configuration

is shown in Fig. 8. Here the ba string is a vein in the wall, where the type of wall
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Fig. 8: A vein in a wall.

bounded by the a string joins the type of wall bounded by the b string.

2.3. THE ABELIAN ORDER PARAMETER

The “Abelian” order parameter introduced in Ref. 5 can be used to probe the
realization of the center of the gauge group. Here we will briefly describe how this
order parameter is used to distinguish the various phases of a Zy gauge-spin system

on the lattice.

The model we consider has gauge variables U; residing on the links (labeled by
I) of a cubic lattice, and spin variables ¢; residing on the sites (labeled by ). Both

gauge and spin variables take values in
Zy = {exp(2mik/N), k=0,1,2,...,N -1} . (2.21)
The (Euclidean) action of the model is
S = Sgauge + Sspin
where

Sgange = —B8 Y _(Up +c.c.) (2.22)
P

and

N-1
Sein =~ 3 4w 3. (67U +cec.) (2.23)
m=1 l

Here Up = []jcp U associates with each elementary plaquette (labeled by P) the
(ordered) product of the four Uy’s associated with the (oriented) links of the plaquette,
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and (¢71U¢)ij = qﬁi_lU,'quj, for each pair 7j of nearest-neighbor sites. In eq. (2.23),
we have introduced an independent spin coupling constant corresponding to each

non-trivial irreducible representation of Zy.

Now we must consider how the operator F(X) is to be defined in this lattice
model” Recall that inserting F (X) into a Green function is supposed to be equivalent
to introducing a classical cosmic string source on the world sheet ¥. On the lattice
(in 3+1 dimensions), we consider ¥ to be a closed surface made up of plaquettes of
the dual lattice. There is a set X* of plaquettes of the original lattice that are dual
to the plaquettes of 3. (See Fig. 9.) The operator F,(X) may be expressed as

F.(¥) = H exp (ﬂ(eZ””/NUp —Up+ c.c.)) : (2.24)

Pei
In other words, to evaluate the path integral for a Green function with an insertion of
F(¥), we modify the plaquette action on the plaquettes that are dual to ¥, according

to
Up — 2™/Nyp P ext. (2.25)

This transformation of Sgauge is equivalent to introducing n units of Zy magnetic

flux on each of the plaquettes in X*.

Fig. 9: The closed curve X in 241 dimensions. The dashed line is ¥, comprised of
links of the dual lattice. The plaquettes shown are those in *, which are dual to
the links of X. The links marked by arrows are those in Q*; they are dual to the
plaquettes in a surface Q2 that is bounded by ¥. (We may also interpret the dashed
line as a slice through the closed surface X, in 3+1 dimensions.)

* The analogous construction of the ’t Hooft loop operator on the lattice was first discussed in
Ref. 33 and Ref. 34.
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When the surface ¥ is large, the vacuum expectation value of F, behaves like

(Fn(X)) ~ exp (—fi,(fen)Area(E)) : (2.26)
We may interpret nﬁfe“) as the renormalization of the tension of the string source,

due to quantum fluctuations of the charged matter fields. Eq. (2.26) also has an
alternative interpretation. We may think of ¥ as a surface lying in a time slice,
rather than as the world sheet of a string propagating through spacetime. Then
Fo (%) is the operator

Fo(S) = exp (27;”@2) , (2.27)

where @y, is the Zy charge contained inside the surface ¥. Virtual pairs of charged
particles near ¥ cause the charge Qx to fluctuate. If the theory has a mass gap, then
the charge fluctuations near two elements of ¥ become very weakly correlated when

the elements are distantly separated. Thus, charge fluctuations cause the character-

istic “area-law” falloff of (F,,(X)) in eq. (2.26).

Consider the case 3 >> 1 and 7, << 1 (for all m). In this case, the gauge
variables are highly ordered, and so we expect that Zy charge is not confined. Fur-
thermore, the spins are disordered, so there is no Higgs condensate to screen Zy
charge either. Thus, free Zy charges should exist. We can check whether this expec-

tation is correct by using perturbative expansions to evaluate (A(%, C)).

Because the gauge coupling is weak, a frustrated plaquette (one with Up # 1)
is very costly. An insertion of F;,(X) tends to frustrate the plaquettes in £*. These
frustrations can be avoided, though, if the gauge variables assume a suitable con-
figuration. Choose a three-dimensional hypersurface Q! whose boundary is ¥. This
hypersurface consists of a set of cubes of the dual lattice. Dual to these cubes is a

set 2% of links of the original lattice. (See Fig. 9.) By choosing

U, = eZm'n/N’ leQ* ,

(2.28)
U= 1 , 140",

we can avoid frustrating any plaquettes. (This is the lattice analog of a “singular

gauge transformation” that removes the string “singularity” on ¥.) With the links
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in the configuration eq. (2.28), the fundamental representation Wilson loop operator

we) =] u (2.29)
leC

acquires the value exp(2mink/N), where k is the linking number of C and X. (See
Fig. 10.)

Q

Fig. 10: A slice through a closed surface ¥ that links once with the loop C. C
intersects the hypersurface € once.

Of course, this choice of link variables changes the nearest neighbor interactions
for each pair of spins that is joined by a link contained in Q*. But the spins are strongly
coupled and highly disordered, so that they are nearly indifferent to this change; it
is much more costly to frustrate a plaquette than to frustrate a link. Therefore, the
expectation value of the ABOP

(%) W(C)]”
(Fn(2)) ((W(CO)]")
is dominated by small fluctuations about the “background” eq. (2.28), and we con-
clude that <Agl)(2, C )> satisfies eq. (2.2). Thus, there is an infinite range Aharonov-
Bohm interaction, and free Zy charges exist. (Further details of this analysis may be
found in Ref. 5.)

AV (z,0) = (2.30)

If the gauge coupling is strong (# << 1), then there are no free Zy charges. The
Wilson loop introduces a Zy charge as a classical source, but confinement causes a
pair of Zy charges to be produced, so that the charge is dynamically shielded. We

expect that eq. (2.3) is satisfied, and this can be verified in the small-3 expansion[sl.
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It is also interesting to consider the case in which f is large and some of the
spin couplings <, are also large. Then the matter field is ordered and the matter

“condensate” screens the charge.

For example, suppose that

Yt >>1, m'=m,
(2.31)

Y << 1, m' #£m.
In effect, then, the operator ¢™ condenses, and Zy is broken down to the kernel of
the representation (m); this is Zjs, where M is the greatest common factor of N
and m. We anticipate, therefore, that the operator F,() introduces a stable cosmic
string world sheet provided that nm = 0 (modN) (so that the flux carried by the
string is in the unbroken group Zjs). Otherwise, the string introduced by Fy(X) is
the boundary of a domain wall. This wall is unstable and decays by nucleating a loop

of string.

If we assume that the flux of the string created by F5 (%) combines with the flux
of the nucleated string to give a trivial total flux, then we anticipate that the ABOP

behaves as

2miny

lim (Aq(,'/)(E,C)) = exp < k(E,C)) , mn=0 (mod N),

(2.32)
lim (A,(2,C)) = L, mn % 0 (mod N) .

From this behavior, we could easily infer that the unbroken symmetry is Zys; a string
has a non-trivial Aharonov-Bohm interaction with a charge if and only if the flux

carried by the string is in Zj;.

However, as we emphasized in subsection of wall decay, even if the string intro-
duced by Fj, is the boundary of a domain wall, and the wall decays by nucleating
a string loop, it need not be the case that the nucleated string combined with the
classical string source has trivial flux. Thus, eq. (2.32) does not, in general, correctly
describe the behavior of the ABOP in the limit eq. (2.31). To see what actually

happens, let us analyze the consequences of eq. (2.31) using perturbative expansions.

For vy >> 1, spins with non-trivial Zjs charge are highly ordered, and frustrating

these spins is very costly. Now there is a competition between the reluctance of the
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system to frustrate a plaquette (when # >> 1) and its reluctance to frustrate a Zys
spin. If the operator F,,(X) is inserted, then, as we have seen, frustrated plaquettes
can be avoided if the links of * are excited. But, if exp(27in/N) & Zjr, we can excite
the Up’s on these links only at the cost of frustrating the spins there. The number of
links in * increases like the volume enclosed by ¥, and the number of plaquettes in
3* increases only as the area of ¥. Thus, for ¥ sufficiently large, frustrated plaquettes
are favored over frustrated links. This is just a realization on the lattice of the decay
of a domain wall by nucleation of a loop of string, where the frustrated spins comprise

the wall, and the frustrated plaquettes comprise the nucleated string.

But as we discussed before, it is sometimes possible for a domain wall to decay
in more than one way. To illustrate the possibilities, we will consider two different

special cases.

Z4 — Z5 Consider, for example, a Z4 model. For f >> 1 and v >> 1, the Z4
symmetry will break to Z3. One finds, indeed, that <Agu)(Z,C)> behaves as in
eq. (2.32).

Understanding the behavior of Ag,,) and Agy) involves a subtlety. The n = 3
string is the anti-string of the n = 1 string; therefore, they both have the same
tension. Furthermore, exp(27:/4) and exp(—27i/4) belong to the same coset of Z
in Z4, so the n =1 and n = 3 strings are both boundaries of the same domain wall.
When the operator Fi(X) is inserted, the resulting domain wall can decay in two
different ways. One way, the composite string that is created has trivial Z5 flux; the

other way, it has non-trivial Zs flux.

Correspondingly, when Fi(X) is inserted, we may choose either Uy = 1 or Uj = —1
on the links of 0*; the weak spin coupling in the action (the 2 term) depends only on
U, 12, and so is not frustrated either way. But we also need to consider the dependence
on the strong couplings v; and 3. Expanding in these small parameters, one finds
that the effective tension of the composite string is renormalized by spin fluctuations.
The renormalization raises the tension of the composite string with non-trivial Z; flux
relative to that with trivial flux. Thus, the configuration such that the composite
string has trivial Zy flux really does dominate when F1(X) (or F3(X)) is inserted.
Therefore, Ag'/) and A:(;”) do behave as in eq. (2.32).
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Zg — Z3 Now consider a Zg model. For § >> 1 and 43 >> 1, the Zg symmetry will
break to Zs. Ag/) and AEIV) behave as in eq. (2.32); so do Ag'/) and Agy).

Now consider Agy). The n = 3 string that is introduced by F3 is the boundary of

a domain wall. But this wall can terminate on an n = 1 or n = 5 string, as well as
on an n = J string. Furthermore, the n =1 (or n = 5) string has lower tension than

the n = 3 string, so that nucleation of this string is favored.

In other words, the configurations that dominate, when F3(X) is inserted, have
Up = exp(27¢/3) (or Up = exp(—2ni/3)) for | € Q*. By exciting the links on *, we
reduce the degree of frustration of the plaquettes of ¥. And we do so at negligible

cost, because the m = 3 term in Sgpin cannot distinguish U; = exp(+27i/3) from

U= 1.

Thus, the nucleated string, combined with the classical string source, has non-
trivial flux. The combined flux can be either n = 2 or n = 4, and both occur with
equal probability. And, therefore, even though F3 inserts a string that decays, A

shows non-trivial behavior; we have

lim<AgV)(E, C)> = (ezﬂy/3 + 6_2“"/3) = cos(27v/3) (2.33)

L
2
(if £ and C have linking number k£ = 1).

Thus, for dynamical reasons, eq. (2.32) is not satisfied. Nevertheless, the behavior
of Ag’) has an unambiguous interpretation. For example, the v-dependence of <Ag”)>
shows that the effective string introduced by Fj has flux that takes values in the Z3

subgroup of Zg. The only possible interpretation is that the unbroken subgroup is
Z3.

Indeed, the behavior of < A%V)> always contains sufficient information to unam-

biguously identify the unbroken subgroup of an Abelian discrete local symmetry
group.

Other order parameters have been suggested that probe the realization of the

center of the gauge group” """’ We will comment on the efficacy of these in section 8.
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2.4. NON-ABELIAN STRINGS ON THE LATTICE

We have seen in the previous section how the Aharonov-Bohm effect can be
used to probe the phase structure of an Abelian gauge theory. We now want to
extend this procedure, so that it can be used in non-Abelian theories. The basic
strategy will be the same as before—we will introduce strings and charges as classical
sources, and investigate the dynamical response of the theory to these sources. But
the implementation of this strategy is more delicate in the non-Abelian case. The
main stumbling block is the problem of introducing non-Abelian cosmic strings in a

lattice gauge theory, which we address in this section.

We will also construct operators that create or annihilate dynamical string loops;

correlation functions of these can be used to study the dynamical properties of strings.

String calibration We consider a theory with (discrete) gauge group G. We are

interested in how the local G’ symmetry is realized. Specifically, we wish to identify
the subgroup H of G that admits free charges. (G quantum numbers may be confined,

or may be screened by a Higgs condensate.)

We investigate the realization of G by assembling a laboratory that is equipped
with cosmic string loops. As described in Ref. 21 we can calibrate the string loops
with a beam of particles that transform as some faithful (not necessarily irreducible)
representation (R) of G. We choose an arbitrary basepoint zg, and a basis for the
representation (R) at that point. We direct the beam from the basepoint to a beam
splitter, allow the two beams to pass on either side of the string, and then recombine

the beams and study the resultant interference pattern.

If the string is in a “group eigenstate” with flux (as defined in eq. (2.7)) a € G,
and |u) is the wave-function in internal-symmetry space of a particle at the basepoint,
then, when the particle is transported around a closed path that begins and ends at

zg, the wave-function is modified according to
lu) = DB (@) |u) . (2.34)
By observing the interference pattern, we can measure
(ul D) (a) [u) . (2.35)

By varying |u), we can then determine all matrix elements of D(®)(a), and hence a
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itself. Given our choice of basepoint, and a choice of a basis for DB this procedure

allows us to associate a well-defined group element with each string.

In the case where free G charges may not exist, we must be careful that the sep-
aration between the two beams remains small compared to any confinement distance
scale or Higgs screening length. At the same time, of course, the separation must be
large compared to the thickness of the string core; we assume that the core is small

compared to the characteristic distance scale of the dynamics that we wish to study.

Once we have calibrated the strings by measuring their Aharonov-Bohm inter-
actions with nearby charges, we probe the dynamics of the theory by measuring the
Aharonov-Bohm interactions of strings with distant charges. In this way, we hope to
learn what quantum numbers are confined or screened, and to infer the “unbroken”

subgroup H.

(As we have noted, each string loop associated with an element of G that is not in
H will become the boundary of a domain wall. Thus it might seem that a good way
to identify H is to observe which strings are attached to walls. Indeed, at sufficiently
weak coupling, this is a sensible procedure, because the walls are very long lived. But
at intermediate coupling this procedure may fail, because the walls decay rapidly by
nucleating string loops. The time scale for the decay may be comparable to the time

required to assemble and calibrate a string loop.)

Some problems with the calibration procedure should be pointed out. The first
is that a string loop associated with a definite group element is not an eigenstate of
the Hamiltonian of the theory. An a string and a b string will mix with each other
if @ and b are in the same H conjugacy class” and the energy eigenstates will be
linear combinations of group eigenstates that transform as definite representations of
the unbroken group H. (We will have more to say about this mixing in Section 6.)
But the time scale for this mixing increases exponentially with the size of the string
loop. For our purposes, it will usually be legitimate to ignore the mixing and regard

the strings as group eigenstates.

But there is another more serious problem. While the quantum fluctuations that
change the identity of a string loop are very rare (when the loop is large), there are

other, much less rare, quantum fluctuations that can change the Aharonov-Bohm
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phase that is detected. Suppose, for example, that a virtual b loop nucleates, lassoes
the basepoint z¢ and then reannihilates. Naturally, this process has no physical effect
on an a loop that is far from the basepoint. Yet it changes the Aharonov-Bohm phase
acquired by a particle in representation (v) that winds around the string, beginning
and ending at zo; we saw in Section 1 that the phase becomes D(*) (bab™!) rather than
D®™)(a). (This process is depicted, in 2+1 dimensions, in Fig. 11.) Such fluctuations
are suppressed at sufficiently weak coupling, but they are present, at some level,
for any finite coupling. They result in an ambiguity in the Aharonov-Bohm phase
associated with a string, even if we fix the basepoint and a basis for the faithful

representation (v).

(b)

Fig. 11: (a) Spacetime diagram (in 241 dimensions) showing a virtual b vortex-
antivortex pair that nucleates, winds around the basepoint xg, and reannihilates.
If the path based at zo at time t; is assigned the flux a, then the path at time
ty is assigned flux bab='. (b) The same process, but with 2y now taken to be a
fixed point in Euclidean spacetime. The flux of the classical a vortex is measured
to be bab~!, due to the effect of the virtual b vortex pair. Shaded areas are surfaces
bounded by the vortex world lines.

To avoid this ambiguity, we are forced to take a trace of the representation; the
character y* )(a) 1s unaffected by these fluctuations. Thus, the existence of free G

charges (and of an unscreened Aharonov-Bohm interaction) can be probed by the
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Wilson loop operator eq. (2.11). (And since W*)(C) is gauge invariant, there is no
need for the loop C to contain the basepoint zy.) Let Fy(X, zg) denote the operator
that inserts a string world sheet on ¥; the string is associated with @ € G, relative

to the basepoint zg. (We consider below how this operator is constructed.) Then we

may define the ABOP

Fou(2, z0)WW(C)

AR, 20:0) = . 2.36
0 ) = T (5, WO (O] (239
In a phase with free G charges, we expect that -

lim (A$)(3, 20 ) = -y )(aFEO)y | (2.37)

ny

where k denotes the linking number. (Even this statement requires a qualification,
for the loop C' must not be permitted to come close to retracing itself on successive

passages around X.)

We will consider in Section 8 how A&”)(E, z0; C) is expected to behave for other

realizations of the local G symmetry.

Inserting string world sheets Now we will consider in more detail the problem of

constructing an operator that inserts non-Abelian strings on specified world sheets.
The construction will be guided by the discussion in Section 1 of the general formalism,

and by the discussion above of the calibration procedure.

Given a set of disjoint closed two-dimensional surfaces ¥1, X2 .. ., this operator is
to introduce string world sheets on these surfaces, where the strings are associated
with the group elements aj,a2,.... As we have emphasized, the strings must be
referred to a common basepoint zp, and each associated group element depends on
the choice of a standard path that begins and ends at zyp and winds around the
string. The group elements ay, ag, . .. are defined up to one overall conjugation, which

corresponds to a gauge transformation at the basepoint xg.

Furthermore, the definition of our operator must be insensitive to the possible
confinement or screening of G quantum numbers; it must specify the short-distance

structure of the string, and leave it up to the dynamics of the theory whether the
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string can be detected at long range. It must realize the calibration procedure de-
scribed above, in which the short-range Aharonov-Bohm interactions of the string are

determined.

We wish to define an operator Fal,az,m,an(El,Eg,. .., Yn,Zo) so that an inser-
tion of Fy, 4,.....an(21,52,..., %0, Z0) in a Green function introduces strings on world
sheets X1,%9,...,%,. We will first describe the operator in heuristic terms, and
then give a more precise description in the context of lattice gauge theory. Loosely
speaking, an insertion of Fy, 45, .. 4,(21,%2,...,%s,%0) in a Green function imposes
a restriction on the gauge field configurations that are included in the path integral.
Make a choice of a standard path that begins at g, winds around the surface X1,
and returns to zo. Now consider a path P; homotopic to the standard path that runs
from =z to a point on Xj, traverses an infinitesimal closed loop that encloses ¥, and
then retraces itself, returning to zo. When Fy, 4,.... . (X1, 22,..., X, To) is inserted,

the gauge field configuration is restricted to satisfy

P expl: ]{ A-dz | =a1, (2.38)

Py zo

for any such P;. Similar restrictions apply for paths P, Ps,. .., P, that wind around
¥2,33,..., %y, as in Fig. 12. These restrictions on the path integral define the oper-
ator Falm,_,,,an(zl, Y0y D, 1:0).

) 3o Ta

Fig. 12: Paths P, P,, Ps used in the construction of the operator
Flayaz,05(X1, X2, Xg; 20).



37

The operator so constructed is not gauge invariant. Of course, if it is inserted
in a Green function with gauge-invariant operators, its gauge-invariant part will be
projected out. Alternatively we may obtain an explicitly gauge-invariant operator by

averaging over gauge transformations at the basepoint zg, obtaining
1
. Z Fgalg_l ,ga29~1 .. gang—1 (21, EZ, teey En, 550) ) (239)
e
geCG
where ng is the order of the group.

We may now consider the operator

Faz,az,...,an(zl, 22, ) En, xo)W(V)(C)

(Fay 3,00 (Z1, B2, -y Ty 20) WOV (C))
(2.40)

In a phase with free (¢ charge, if the loop C is homotopic to P;Pj P ..., we have

A((J,’:?a2,...,an(21) 227 ey En, 'TO; C) =

v 1
lim (A% (51,525, By 20, C)) = —x P (aiazag...) . (2.41)

ny

Thus, when a charge passes around several string loops in succession, the Aharonov-
Bohm phases acquired in each successive passage are combined coherently. The co-
herence is maintained because we have defined the various loops in reference to the
same basepoint zg. If different basepoints had been chosen instead, then the group
elements associated with the various string loops would have been averaged over

conjugacy classes independently. Since

L § DW)(gag™") = 1 x¥(a) 1 (2.42)
ng ny
geG

(which follows from Schur’s lemma), we find, for example,

lim

(Fas (1, 20) oo (B2, 90) WO(C)) _ 1 (1,
(Fay (31, 20) Foy (22, 90) (WX (C)) — EX( )(a1) EX( Naz) , (2.43)

if the loop C winds around world sheets ¥; and Y5 in succession.

If Fo,(X1,z0) and F,,(X2,y0) have distinct basepoints (zo # yo), then each by
itself introduces a gauge-singlet object. Inserting both operators combines two string

loops as (trivial) charge eigenstates, rather than as group eigenstates. This is the
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reason for the lack of coherence in the Aharonov-Bohm interaction characterized by
eq. (2.43). To combine two strings that are not both gauge singlets, we must include
in our operator some non-local construct that bridges the gap between the string
loops, just as a string of electric flux must be included in a gauge-invariant operator
that creates a widely separated quark-antiquark pair. In the case of two (or more)
string loops, this non-local connection between the loops is provided by referring the

loops to a common basepoint.

It 1s important, actually, that the Aharonov-Bohm interactions of an additional
loop combine incoherently with the Aharonov-Bohm interactions of existing loops,
when the group element associated with the additional loop is averaged over a con-
jugacy class. It is this incoherence property that ensures that the effects of virtual

string loops do not spoil the “factorization up to a phase” represented by eq. (2.41).
g y

We will now describe the construction of F,(X, o) in more detail, by specifying
how the construction is carried out in a lattice theory with discrete gauge group G. As
discussed in Section 3, ¥ is to be regarded as a closed surface consisting of plaquettes
of the dual lattice; these plaquettes are dual to a set X* of plaquettes of the original
lattice. For each plaquette P € ¥*, we choose a path /p on the lattice that connects
the basepoint z¢ to one of the corners of P. These paths are chosen so that each
closed loop [ pPl}_,1 is “homotopic” to the standard loop that links ¥. The various
paths may be chosen arbitrarily, except that the union of all the paths should not

contain any closed loops.

The effect of the operator Fy(X, o) is to modify the plaquette action on each
plaquette in ¥*. Suppose, for example, that the plaquette action is

Séflzge,l’ = _IBX(R)(UP) +c.c (244)

(where R is a representation of G that must be specified to define the theory). Then

an insertion of I,(X, o) modifies the action according to

S ep — —Bx® (VEPaV,;lUp) +ec, Pex, (2.45)

where

Vi =[[ U - (2.46)
lelp



39

Alternatively, we may write

Fo(¥,20) = H exp (ﬂX(R) (VIPaVI;IUp) ~ BxB(Up) + c.c.) . (2.47)
Pex~
The operator Fg, 45, a.(21,%2,...,Xn, o) that inserts many string loops is con-

structed by a straightforward generalization of this procedure.

As constructed, Fy(¥,20) is not gauge invariant. When inserted in a Green
function with gauge-invariant operators, though, it has the same effect as the explicitly

gauge-invariant operator in which a is averaged over a conjugacy class, as in eq. (2.39).

It is also instructive to consider the correlator of Fy(%, zg) with the operator

U(Ca0) = DY (H U;) , (.49

leC
where the product is taken over a closed set of links that begins and ends at zg. The
trace of U)(C, zg) is (n, times) the Wilson loop operator W)(C). But U®)(C, z)
itself, like Fy(¥,zp), is not invariant under a gauge transformation that acts non-

trivially at the basepoint zg.

In a phase with free G charges, and in the leading order of weak coupling pertur-

bation theory, one finds that™

Iim

(Fa(E,xo)U(V)(C, o)) _ _1_D(,,) (ak(g,c)) . (2.49)
(Fa(Z, 20))tr UMN(C,z0)) 1w

This equation merely states that, once a loop of string has been calibrated, the same
Aharonov-Bohm phase can be recovered again if another interference experiment is
subsequently performed. But we have already emphasized that quantum fluctuations
(such as the virtual string depicted in Fig. 11) can spoil this result. Indeed, when
higher orders in the weak coupling expansion are included, it is seen that the correlator
of Fu(2, z9) and UW)(C, zo) fails to “factorize” as in eq. (2.49), even when ¥ and C
are far apart. As stated before, we must consider the correlator of F,(%, zy) with the
gauge-invariant operator W )(C), in order to extract an Aharonov-Bohm “phase”
that depends only on the topological linking of ¥ and C (in the limit of infinite

separation).

* This calculation is described in more detail in Section 5 and in the Appendix.
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To conclude this section, we must ask how the operator F, (X, z¢) depends on the
basepoint z¢ and on the choice of the paths {{p}. (We consider correlation functions
of F, with gauge-invariant operators, so we regard F, as gauge-invariant, with a
averaged over a conjugacy class.) We note that, since the union Up Ip of all the
paths contains no closed loops, we can choose a gauge with Uy =1forall{ € [p. In
this gauge, the group element a is inserted directly on the plaquettes of ¥£*. Thus,
it is clear that the correlator of Fy(X,z¢) with any local gauge-invariant operator is

independent of the choice of basepoint and paths.

The correlator of Fy, 4,,...a,(21,22,...,2n,20) Wwith non-local gauge-invariant
operators (like Wilson loop operators) depends on the choice of path only to the
extent that we have already noted. That is, it depends on the choice of the “standard
paths” that enter the calibration of the string loops. We may change the paths
from the basepoint z¢ to the plaquettes of ¥%, by winding these paths around ¥,
as in Fig. 13. In effect, this change alters the group element assigned to the string
world sheet on ¥9; as becomes replaced by alagai‘l. As we noted in Section 1, this
ambiguity in Fg, g, a.(X1,22,..., X5, Zo) is the origin of the holonomy interaction

. . 24
between string loops (or vortices)”*"

% %,

Fig. 13: A different choice for the path P, from the basepoint 2y to the world sheet
2o,

Inserting string loops An insertion of the operator Fy(X,z¢) introduces a string on

the closed world sheet ¥. The string may be regarded as an infinitely heavy classical

source. Thus Fy (X, zg) is closely analogous to the Wilson loop operator W(")(C’); an
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insertion of W(*)(C) introduces an infinitely heavy classical source (in representation

(v)) on the closed world line C.

But we will also find use at times for an operator that creates (or annihilates) a
dynamical cosmic string. Such an operator can be obtained by a simple modification of
the construction described above—namely, the surface ¥ is chosen to be, rather than
a closed surface, a surface with non-trivial boundary C. (See Fig. 14.) Carrying out
the same procedure as before for such a surface, we arrive at an operator B,(C, X, zg)

that creates a string (or annihilates an anti-string) on the loop C. More generally, an

operator
Basaz,.,0,(C1, 21,02, 89, . .., Cr, Xy, 70) (2.50)
creates strings on the loops C1,C4,...,Cy, with all strings referred to a common
basepoint zg.
X
L
24

P Po [N~
2>

Xo

Fig. 14: The paths P, and P,, based at zo, and the open curves £; and ¥,
used in the definition of the *t Hooft operator Bg 3(z1,y1, 21, T2, Y2, X2, zg), in 2+1
dimensions.

This construction generalizes a construction devised by 't Hooft"'® and we will
refer to B as the “’t Hooft loop” operator. However, t Hooft considered the situation
in which the strings have no Aharonov-Bohm interactions with other fields. In that
case, the surface ¥ is an invisible gauge artifact, and B(C) depends on C alone. We
are interested in strings that have Aharonov-Bohm interactions, and in that case ¥

° . o e 5
is not invisible™



42

To better understand why the ’t Hooft operator Bq(C, ¥, z¢) must depend on the
surface ¥ as well as on the loop C, it is helpful to think about a theory defined in 2+1
spacetime dimensions. In that case, the operator By(z,y, X, zg) creates a vortex at z
and an anti-vortex at y; ¥ is a path connecting  and y. But no gauge-invariant local
operator exists that creates an isolated vortex at . Because a vortex can be detected
at infinite range via the Aharonov-Bohm effect, there is a vortex superselection rule.
Hence, the operator that creates a vortex cannot be local; it has a semi-infinite string
that can be seen by the fields of the theory. (Similarly, there is an electric charge
superselection rule in quantum electrodynamics. No gauge-invariant local operator
can create an isolated electron; the operator that creates an electron must also create

a string of electric flux that ends on the electron.)

Correlation functions such as (B, q¢,(C1,21,C2, X2, 20)) can be used to deter-
mine the tension of a dynamical string, or the amplitude for mixing between group

eigenstates, as we will describe in Section 6.

(As an aside, we remark that an ’t Hooft loop, like a Wilson loop, admits an
alternative interpretation. If a Wilson loop operator acts on a timelike slice, it is
natural to interpret it as an insertion of a classical charged source, as noted above.
But if the Wilson loop acts on a spacelike slice, we may interpret it as an opera-
tor that creates a closed electric flux tube. We have noted that we may think of
an 't Hooft operator acting on a spacelike slice as an object that creates a cosmic
string. Alternatively, we may interpret the ’t Hooft loop acting on a timelike slice
as an insertion of a classical magnetic monopole source. In the situation originally
considered by 't Hooft, the monopole satisfied the Dirac quantization condition, and
so its “Dirac string” was invisible. We are considering a situation in which the Dirac

string is visible; the surface X bounded by C' is the world sheet of this Dirac string.)

2.5. CLASSICAL STRINGS IN THE PURE GAUGE THEORY

We will now analyze the behavior of the operator A,(LV)(E, zo; C), using perturba-
tive expansions. Here we will consider the case of a pure gauge theory with (discrete)

gauge group G. In Section 8, we will consider the effects of introducing matter.
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Strong coupling Although our main interest is in the physics at weak gauge coupling,

we will make a few comments about the strong-coupling behavior of the pure gauge

theory.

The plaquette action of the theory is taken to be

Séfu)ge,P = ﬂ X(R)(UP) +c..c, (251)

where R is a representation of G. For f << 1, this theory confines sources that
transform as certain irreducible representations of G. The criterion for a source to be
confined is easiest to state in the case where R is irreducible. In that case, a source in
the irreducible representation (v) is not confined if and only if there are non-negative

integers k1 and kg such that
(2.52)

where R* denotes the complex conjugate of R, and (1) denotes the trivial represen-
tation. The point is that if eq. (2.52) is satisfied, then it is possible for a source in
representation (v) to be “screened by gluons.” In other words, the electric flux tube
that terminates on a (v) source can break due to glue fluctuations. (The criterion
eq. (2.52) generalizes the familiar notion that an adjoint representation source is un-
confined in a strongly coupled SU(N) gauge theory.) If (v) is confined, then the

expectation value of the corresponding Wilson loop operator decays for a large loop

C like

(W(C)) ~ exp (5 Area(0)) | (2.53)

where Area(C) is the minimal area of a surface bounded by C, and «(*) is the tension
of a flux tube that carries electric flux in the representation (v). (Of course, virtual
glue may partially screen the source; k() is the tension of the lightest flux tube that

can terminate on a (v) source.)

Since the gauge variables can see a classical string with “magnetic flux” a € G,

the quantum fluctuations of the gauge variables renormalize the tension of the string

(ren)

by an amount kg . Thus, the expectation value of the operator F' decays for a large
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surface ¥ like
(Fa(, 20)) ~ exp (—ng’e“)A(E)> , (2.54)

where A(X) is the area of ¥. The calculation of the leading contribution to n,(lren), for

B << 1, is described in the Appendix.

Now consider the operator A,(;/)(E,CEQ;C). Since there are no infinite-range
Aharonov-Bohm interactions in the confining phase of the theory, we might expect

that
lim (A% (2, 20:C)) =1 . (2.55)

This is indeed found for a representation (v) that is not confined (such that the electric
flux tube can break). Different behavior is found, however, for a representation (v)
that is confined. The operator A,(ZV) (2, z0; C) can have a non-trivial expectation value
because the electric flux tube stretched across C crosses the surface ¥ at certain
points. In the leading order of strong-coupling perturbation theory (and assuming
that no “partial screening” of the source occurs), each crossing contributes to A the

factor

L) (2.56)

ny
(or its complex conjugate, depending on the relative orientation of the flux tube and
2 at the point of crossing). Thus, even when ¥ and C are far apart, (A,(;/)(E, z9; C))
is not a purely topological quantity that depends only on the linking number of ¥
and C. Of course, in higher orders in the strong coupling expansion, the behavior of

A((,") becomes still more complicated.

Similarly, if a loop C' links with two different surfaces ¥; and X, the operator
A((ll;?@(El, Y9, z0; C) acquires a factor (l/n,,)x(”)(al) each time the electric flux tube
crosses »1 and a factor (1/n,,)x(”)(a2) each time it crosses ¥y (in the leading order
of the strong-coupling expansion). Because of confinement, the string world sheets
combine as trivial charge eigenstates rather than group eigenstates, even though both

are defined with respect to a common basepoint.

Weak coupling For # >> 1 there is no confinement, and the Wilson loop operator

exhibits perimeter law decay for any representation (v).
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The operator Fu(X,z¢) decays as in eq. (2.54). The calculation of the leading
behavior of /f,(,,ren) , for B >> 1, is described in the Appendix.

When the operator Fy(X,zo) is inserted, there is a configuration of the gauge
variables such that no plaquettes are excited. This configuration can be constructed
by choosing a set  of cubes of the dual lattice such that the boundary of Q) is .
Each cube in Q is dual to a link of the original lattice. The configuration with no
excited plaquettes is

Uy=a, 1,

(2.57)
U=e, 1¢gQ.

This configuration is unique up to a gauge transformation. (The gauge transforma-

tions are deformations of {).)

Weak-coupling perturbation theory is carried out by expanding in the number of
excited plaquettes, and in the degree of excitation. In the limit § — oo, the con-
figurations with the minimal number of excited plaquettes dominate. By calculating
the Wilson loop operator for the configuration with no excited plaquettes, we verify
eq. (2.37) in the weak-coupling limit. Thus we find, as expected, that G charges are
neither confined nor screened. Similarly, we may verify eq. (2.41) and eq. (2.49) in

this limit.

When higher-order corrections in weak-coupling perturbation theory are com-
puted, we find as anticipated that eq. (2.37) and eq. (2.41) continue to hold. But

eq. (2.49) does not survive. These corrections are further discussed in the Appendix.

We wish to make one other remark here about the weak-coupling expansion, which
might help to avoid confusion. To calculate the weak-coupling behavior of correlation
functions that involve the operator Fy, a,....a, (21,2, ..., 2n, Zo), We first construct
the configuration that has no excited plaquettes when Fy, 4, 4, (21, 22,..., X, o)
is inserted. This construction is a straightforward generalization of eq. (2.57). How-
ever, there are topologically inequivalent ways of choosing non-intersecting surfaces
Q,...,8Q,, that are bounded by ¥;,...,%, (as in Fig 15). Thus, one might get the
impression that there can be two (or more) gauge-inequivalent configurations that
both have no excited plaquettes. But this is not the case. To see why not, it is

important to keep track of the basepoint, and of the paths from the basepoint to
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the loops. If ) is distorted past Q2, as in Fig. 15, then Q crosses the paths from
the basepoint to ¥;. To avoid exciting any plaquettes, then, the links contained in

5 must now take the value alazai‘l. (This, again, is a reflection of the holonomy
interaction between string loops.) Therefore, a Wilson loop that crosses Q; first and
()2 second, in Fig. 15a, behaves exactly the same way as a Wilson loop that crosses
2 first and €3 second, in Fig. 15b. There is a unique gauge equivalence class of

configurations with no excited plaquettes, just as there should be.

Fig. 15: Two topologically inequivalent ways of choosing the hypersurface £; that
is bounded by ;.

2.6. DYNAMICAL STRINGS AND VORTICES

We will now consider how the ’t Hooft operator can be used to investigate the

properties of dynamical strings (in 3+1 dimensions) and vortices (in 2+1 dimensions).

String tension and vortex mass The operator By 4-1(C1,%1,C9, X9, z0) can be used

to compute the tension of a cosmic string that carries magnetic flux a (with a caveat
described below). This operator creates an a string on C; and annihilates it on Cs.

Thus, when the loops are large and far apart, we have
(Ba,a—l (017 Ela 027 22, CEO))

~ exp (=S (A(S) + A(S2))) exp (—™ a(cy, o) (2.58)

(ren)

Here k4 is the renormalization of the tension of a “classical” string source, and

n,(ldyn) is the tension of a dynamical string; A(Cy, Cy) is the area of the minimal surface
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with boundary C; U Cy. (See Fig. 16.) If the loops C; and Cy are chosen to be far
apart compared to the correlation length of the theory, but close together compared
to the size of the loops, then the dependence of (B, 4-1(C1, %1, C2,X2,z0)) on the

separation between the loops determines the tension Fc,(ldyn).

Fig. 16: Surface of minimal area bounded by the loops C; and C, (when the loops
are close together).

Actually, the same information can be extracted from the behavior of the simpler

operator B,(C, X, z¢). For a large loop C, we have
(Bo(C, %, z0)) ~ exp (—n,(lren)A(Z)> exp <—fi,(1dyn)A(C)> , (2.59)

where A(C) is the area of the minimal surface bounded by C. (See Fig. 17.) Since
A(X) and A(C) can be varied independently, £ can be determined. (Or, Fyo(Z, z0)
can be used to measure /it(,ren).) The calculation of /cgdy " in weak-coupling pertur-
bation theory is described in the Appendix. (In the strong-coupling limit, we have

x(I) = 0—there are no stable magnetic flux tubes.)

Obviously, the same procedure can be used to calculate the mass of a vortex, in

241 dimensions.

The existence of a stable string (or vortex) can itself be used to probe the phase
structure of the theory. In a confining phase, stable magnetic flux tubes do not exist;
they “melt” due to magnetic disorder. If the G gauge symmetry is spontaneously
broken to a subgroup H, stable a strings exist only if a € H. Otherwise, an a string

is the boundary of a domain wall, which decays as described in Section 2.
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z

class

Fig. 17: The classical world sheet X j.qs and the dynamical world sheet X4y, asso-
ciated with the t Hooft loop operator B, (C, Eciass, Zo).

If no stable a string exists, then B,(C, X, z¢) might not create a stable string. If

it does not, its expectation value will behave, for a large loop C, like
(Bo(C, %, z9)) ~ exp (—/f,(zren)A(E)) exp <——m((1ren)P(C)) , (2.60)

where P(C) is the perimeter of C. It may seem, then, that by measuring
(Be(C, X, x0)), and determining whether it decays as in eq. (2.59) or as in eq. (2.60),
we can find out whether a is contained in the unbroken subgroup H or not. However,
there are subtleties. One problem is that there may be tradeoff between the depen-
dence of (B,(C, %, z0)) on A(X) and its dependence on A(C). Eq. (2.60) will apply
if the domain wall bounded by ¥ decays by nucleating an a™! string that completely
cancels the flux of the classical string source on Y. But it may be that /fflren) can be
reduced if the nucleated string only partially screens the flux of the source. (We saw
an instance of this phenomenon in the Zg example that was discussed in Section 3.)

The advantage gained from reducing £ may more than compensate for the cost

of a non-vanishing &(49"); then B, will decay as in eq. (2.59), even though a ¢ H.

Another complication can arise if the unbroken subgroup H is not a normal
subgroup of G. For then a typical G conjugacy class contains both elements that are
in H and elements that are not in H. Recall that B,(C, X, z¢) is actually averaged
over the G conjugacy class that contains a. One particular H-class contained in
this G-class will dominate the asymptotic behavior of (B(C, X, z0)), and whether
eq. (2.60) or eq. (2.59) applies depends on which class dominates.
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We will return to the problem of finding a suitable order parameter, that can be

used to identify H, in Section 8.

Mixing If the discrete gauge group G is unbroken, then elements of G in the same
conjugacy class are associated with strings that transform into each other under the
action of GG. In the classical limit, these “group eigenstate” strings are degenerate
energy eigenstates. (There is also a further degeneracy associated with “parity,”
which changes the orientation, and so transforms the a string into the a=! string.)
Quantum mechanically, these states mix with one another, and the degeneracy is
lifted. The true energy eigenstates are “charge eigenstates” that transform according

to irreducible representations of G (and parity)™”

This mixing can be computed using the ’t Hooft operator. We consider a corre-
lation function in which an a loop is created on C; and a b loop is annihilated on
Cy, where b = gag™' for some g € G. It is crucial that the two strings be defined
with respect to the same basepoint z¢. Otherwise, we would average a and b over the
conjugacy class independently, and the correlation function would be dominated by
the propagation of an « string from C; to Cy, rather than the mixing of an a string

with a b string.

Let C1 and (2 be two congruent loops, one directly above the other as in Fig. 18.
The separation between the loops is large compared to the correlation length of the
theory, but small compared to the size of the loops. If the ab~! string is stable,
then, in the weak coupling limit, the correlation function will be dominated by the
configuration in I'ig 18a. In this configuration, the world sheets of the a and b strings
join, and the loop at which they join is the boundary of the world sheet of an ab—!

string. If this configuration dominates, then

Bup(C1, 1, Ca, Xz, w0) ~exp (=™ A(S) - K A(T3))

(2.61)
d

exp (—chb{?)A(Cl)>
But if the ab™! string is unstable, and decays to a widely separated a string and 57!

string, then the configuration in Fig. 18b will dominate. Here, the world sheets of
the dynamical strings are stretched tightly across C; and Cj. If this configuration
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dominates, then

Ba,b(cla E17 027 223 ‘TO) ~ exp (_ﬁt(lren)A(Zl) - h:l(;ren)A(Ez))

exp (_(ﬁ‘(zdyn) N KI()dyn))A(Cl)) (2.62)
Thus, the mixing amplitude in the weak-coupling limit is either
=5~ exp (—(uf™ + () A(Ch) (2.63)
or
e=Sen” ~ exp (—ng‘,f{‘;)A(Cl)) : (2.64)

whichever is larger.

(b)

Fig. 18: Two contributions to the mixing of an a string and a b string. In (a),

an ab™! string spontaneously nucleates, expands, meets the a string, and converts
it into a b string. In (b), the a string shrinks and annihilates, then the b string
nucleates and grows.

Actually, these are not the most general possibilities, for the ab™? string may be
unstable, and may prefer to decay in some other channel. If the ab™! string decays

to n widely separated stable strings that carry flux ci,co,. .., ¢n, then we find

e=Sen” ~ exp (— (Z A?Y“)) A(Ol)) . (2.65)

1

These results were previously derived in Ref. 21.
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2.7. INTERACTIONS

Entanglement and holonomy interactions The Aharonov-Bohm interaction between

a classical string source and a classical charged source was studied in Section 5.
Correlation functions can also be used to study the holonomy interaction between
two vortices (in 2+1 dimensions), or two strings (in 3+1 dimensions), and also the

entanglement of strings.

In 2+1 dimensions, two loops ¥ and X3 can link, as shown in Fig. 19. Then
the quantity (F,;(X1,%2,z0)) probes what happens when one vortex source winds
around another. As we noted in Section 1, there is a holonomy interaction between

25,24 .
5> This means

the vortices if @ and b do not commute; both are conjugated by a
that the vortex world lines cannot close (the vortex pairs cannot re-annihilate) unless

there is an exchange of topological quantum numbers between the two vortices.

21,3.

Fig. 19: Linked world lines X1 and X, of a classical a vortex and a classical b vortex.
If @ and b do not commute, then the classical vortices must exchange a dynamical
aba~1b~1 vortex. The exchange occurs along the path P, the shortest path that
connects the two world lines. (Compare Fig. 5.)

An (ab)a(ab)™! vortex becomes an a vortex, and an (ab)b(ab)~! vortex becomes

a b vortex, if the flux aba=161 flows from the b vortex to the a vortex. Therefore,

* Here we have used different conventions to assign group elements to the entangled vortex world
lines than the conventions used in Section 1 to assign group elements to entangled strings in
three spatial dimensions.
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the quantum numbers that must be exchanged are those of an aba~'b~! vortex. We

thus find, in the weak coupling limit,

(Fap(X1,22,0))

ren ren n 2.66
~ exp (—m((z )P(Zl) - ml() )P(Zz)) exp (—m,ﬁdbﬁ_lb_ll)(&, 22)) . (2:66)

Here m(®) is the renormalization of the mass of a classical vortex source, m(dyn) ig
the mass of a dynamical vortex, P(X) is the perimeter of ¥, and L(X1,%5) is the
length of the shortest path that connects ¥; and ¥j. (If the aba= 167! vortex is
unstable, then m‘(zdbzl_l)l y-1 is replaced by the sum of the masses of the vortices to which

it decays.)

The leading behavior of weak-coupling perturbation theory on the lattice is found
by identifying the configurations with the minimal number of excited plaquettes, as
we described in Section 5. To find the leading contribution to (F, (X1, X9, z¢)), we
choose surfaces {11 and 3 that are bounded by £; and X2 respectively, and construct
a configuration with U; = a on links in Q] and U; = b on links in Q3. But where Q;
and {2y intersect, there is a string of excited plaquettes with

(R)

gauge, P == ﬁ X(R)(aba_lb_l) + c.c. (267)

(See Fig. 20.) By choosing ) and €2 so that this string has minimal length, we
obtain eq. (2.66).

(If the aba~16~! vortex is unstable, then the dominant configuration in the weak-
coupling limit is found by a slightly modified procedure. Either ¥; or ¥, or both,
becomes the boundary of several surfaces Q’i, or Q% The link configuration is chosen
so that U; = ¢; on {’ and U; = dj on Q;j, where [J¢; = a and [[d; = b. These
surfaces intersect along several strings that connect the two world lines; thus, the

classical vortices exchange several separated dynamical vortices.)

In 3+1 dimensions, strings labeled by non-commuting group elements become
entangled when they cross, as we described in Section 1. String world sheets in four
dimensions generically intersect at isolated points. (A point of intersection is a type
of “instanton.”) Consider surfaces ¥ and L that cross at two points, as shown

in Fig. 21. Because the strings entangle, an @ world sheet on ¥£; and a b world
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Fig. 20: A plaquette (shaded) contained in the intersection of Q% and Q3.

sheet on Y3 become joined by the world sheet of an aba=!6~! string. Thus, in the

weak-coupling limit, we find

(Fop(21,X2,z0)

n ren n 2'68
~ exp (=kE A1) — i A(R) ) exp (—rl, L A, %)) (268)

where A(X1,¥2) is the area of the minimal surface that joins £; and Xs. Again, this

result is easily verified using weak-coupling perturbation theory on the lattice.

It is also instructive to consider <Fa,b(21, 22,w0)> where the surfaces ¥1 and ¥,
have the topology shown in Fig. 22. Here X1 is a torus that links once with the
sphere ¥3. As before, Q1 and Qs unavoidably intersect along a surface of frustrated
plaquettes; we find the leading behavior of <Fa,b(217 Yo, xo)> by choosing Q; and Q»
so that this intersection has minimal area. The result is again eq. (2.68). But now,
if the width of the torus is small compared to the size of the sphere, A(X1,%9) is the

area of the minimal slice through the torus.

To interpret this result, we recall the observation in Section 1, that when a loop

of a string winds around a loop of b string, it becomes a loop of bab™! string. We may
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aba'b™

Fig. 21: World sheets £, and X, of a classical a string and classical b string that
intersect at two isolated points. (Only a slice through ¥ is shown.) The indicated
shaded region is the world sheet of a dynamical aba=1b~! string that connects the

two classical strings.

Fig. 22: World sheets ¥; and X3 of a classical a string and a classical b string.
(Only a slice through X, is shown.) ¥; is a torus that links with £5. The shaded
region is the world sheet of a dynamical aba=16~? string.

regard Fig. 22 as a depiction of a process in spacetime, in which loops of ¢ and a1
string are produced, the a loop winds around the b string, and the a and a~! strings
then annihilate. But because of the Aharonov-Bohm interaction between the strings,
this process is disallowed; an a™! loop cannot annihilate a bab™! loop. Therefore,
<Fa,b(217 Yo, :co)> is suppressed by the amplitude for the bab~! string to become, via

quantum tunneling, an a string. Indeed, comparing with eq. (2.64), we see that
_ g(mix) .
e Saet ~ exp (—Ii((;;zl_lzb_lA(mm)(Zl)) (2.69)

is the suppression factor in eq. (2.68).
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Cheshire charge and the Borromean rings As discussed in Section 1, it is an in-

evitable consequence of the non-Abelian Aharonov-Bohm phenomenon that a loop
of string (or a pair of vortices) can carry charge, and can exchange charge with other
[5,12,1

charged objects. ' Let us see how this property is reflected in the behavior of the

. . . [30]
correlation functions of our string operators.

Consider the following process (in 241 dimensions), depicted in Fig. 23. First,
a pair consisting of an a vortex and its anti-vortex spontaneously appears; the total
charge of the pair is trivial. Then a charged particle in the representation (v) winds
counterclockwise around the a vortex; thus, charge is transferred to the vortex pair,
as described in Section 1. Next, a b vortex winds around the (charged) vortex pair,
acquiring an Aharonov-Bohm phase that is sensitive to the charge of the pair. Then
the (v) particle winds clockwise around the a vortex, discharging the pair. Finally,

the a vortex and anti-vortex reunite and annihilate.

| .
22 !@ ¥

2., a

17

Fig. 23: The Borromean rings. £, is the world line of an a vortex, ¥, is the world
line of a b vortex, and C is the world line of a charged particle that transforms as the
representation (7). The charged particle transfers charge to the a vortex-antivortex
pair, and the charge is subsequently detected via the Aharonov-Bohm interaction
of the pair with the b vortex.

If the vortices and charged particle are treated as classical sources, this process
is captured by the correlation function <Fa,b(21> Yo, o) W(”)(C)>, where the three
loops ¥y, Y2 and C' are configured as in Fig. 23. This is a topologically non-trivial
joining of three loops known as the “Borromean rings”; no two loops are linked, yet

the loops cannot be separated without crossing. Because this correlation function
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has the spacetime interpretation described above, we may anticipate that, when the
three loops are joined but far apart, <Fa,b(21, 2o, Z0) W(")(C)> differs from its value
for large unjoined loops by a topological multiplicative factor—the Aharonov-Bohm

phase acquired by the b vortex that winds around the charged vortex pair.

To calculate A‘(:g (21, X2, z0; C), we proceed, as usual, by finding the configuration
of the link variables such that, when Fy, ; is inserted, there are no frustrated plaquettes.
We pick surfaces Q;, bounded by ¥y, and 22, bounded by Y2, that do not intersect;
such surfaces are shown in Fig. 24. We then choose (up to a gauge transformation)

Uy=a, 1€},
Uy=b, 1€, (2.70)
Uy=e, 1gQIUQ5.
Now we compute W(”)(C) in this configuration. As is clear in Fig. 24, the loop
C' crosses first {11 in a positive sense, then 3 in a negative sense, then §; in a
negative sense, and finally 22 in a positive sense, before closing. The corresponding
path-ordered exponential is ba=1b"!a, and taking a trace yields fecl
lim (A%)(Z1, 32, 20:C) ) ~ ni P (aba~1871) | (2.71)
v

We should verify that the factor eq. (2.71) can be interpreted as the Aharonov-
Bohm phase acquired by a b vortex that winds around a vortex pair with Cheshire
charge. The interpretation is easiest if we explicitly average a over the representatives
of the class to which it belongs. If this averaging is not performed, then there is a
correlation between the choice of the class representative that is used to measure the
charge, and the choice of the class representative for the string that is being measured;
this correlation makes the interpretation of the measurement more complicated. Of
course, averaging a and b over class representatives independently is equivalent to
defining a and b with reference to distinct basepoints; we have

(FulZ1,20) (2,50 WO(C)) 1 4

it - Il (2] —lb -1 —lb—l )
1m <Fa(21’$0)> <Fb(22,y0)> <W(V)(C)> ng gzé;;ny X (gag ga g )

(2.72)

We recall from the discussion in Section 1 that, when a particle in representation

(v) winds around one of the vortices of a pair that is initially uncharged, the final
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Fig. 24: Non-intersecting surfaces {2; and Q5 that are bounded by the vortex world
lines ¥y and X,.

state of the vortex pair is a superposition of states with various values of the charge.
Eq. (2.72) gives the ezpectation value of the Aharonov-Bohm phase acquired by a b
vortex that winds around the charged pair. If p, is the probability that the vortex

pair transforms as the irreducible representation u, then we have

1
Zpu —X(") (b) = Z — X(")(gag—lbga_lg_lb_l) . (2.73)

n n
K GgEG v

Indeed, eq.(2.73) can be verified directly, with p, given by eq. (2.17) and (2.16).

Details will be presented elsewhere’™”

The above discussion can be applied, with hardly any modification, to the case
of charged string loops, in 3+1 dimensions. There is an analog of the Borromean
ring configuration, in which two disjoint closed surfaces are joined by a closed loop,
although the loop is not linked with either surface. Eq. (2.72) holds, if 1, are

surfaces, and C' is a loop, in this configuration.
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2.8. GAUGE-HIGGS SYSTEMS

Weak coupling In this section, we will consider models with Higgs fields coupled to

gauge fields. We wish to investigate the screening of gauge charges—and of Aharonov-

Bohm interactions—due to the Higgs mechanism.

For a gauge system with (discrete) gauge group G, we introduce a Higgs field ¢;,
defined on sites, that takes values in G. We then include in the action of the model

the term
Stiggs =~ 3w Y (X ((67109))) + ) | (2.74)
# {

where the sum runs over all irreducible representations (p) of G. (Compare eq. (2.23).)
Suppose that some of the v,’s are large (>> 1), while all others are small (or zero).

Then, we can analyze the behavior of this model using perturbative methods.

In the weak-coupling limit 7, — oo, ¢~1U¢ becomes restricted to the kernel of
the representation (u) at each link, and so Up is also “frozen” to the kernel at each
plaquette. Thus, G becomes “spontaneously broken” to the subgroup H = Ker(D(” )).
By choosing several of the ,’s to be large, we can break G to the kernel of a reducible
representation. Indeed, breakdown to any normal subgroup of G can be achieved in

this way, since every normal subgroup is the kernel of some representation.

Of course, we know from the usual continuum weak-coupling analysis that more
general patterns of symmetry breakdown are possible. In that analysis, the Higgs
field resides in the vector space on which a representation of G acts, and, in principle,
the unbroken subgroup could be the stability group of any vector in this space. In the
model with SHiges given by eq. (2.74), these more general patterns are not obtained
when all of the Higgs couplings either vanish or are very large. They might, of course,
be obtained at intermediate coupling. After suitable block-spin transformations are
performed, the effective theory that describes the infrared behavior of the model

4

would be a “continuum” theory for which the usual analysis could apply.

Anyway, with the breaking of G to a normal subgroup H implemented as de-
scribed above, we can proceed to calculate the ABOP A,(IV)(E, zo; C') in weak-coupling
perturbation theory, and so probe the fate of the Aharonov-Bohm interaction in the

Higgs model. The calculation gives the expected results. But there is one difficulty.
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The problem is that the irreducible representation (v) of G is typically a re-
ducible representation of the subgroup H. In general, just one of the irreducible
representations of H that is contained in (v) will dominate the asymptotic behavior
of W)(C) when the loop C is large. So it is the Aharonov-Bohm interaction of this
H representation with an a string that is probed by A,(zy). In fact, if (v) contains the
trivial H representation, then this will dominate at weak coupling, and < A,(z'/)> will
behave trivially even though (v) may contain other H representations that do have

Aharonov-Bohm interactions with the string.

We have encountered a general problem with the interpretation of <A,(ly)> that

arises whenever (G is non-Abelian and is partially broken. If <A((;’)> behaves non-
trivially for some choice of a, then we know that an unscreened charge must dominate
W) by varying a, we can obtain information about the representation according to
which this charge transforms. But if <A,(z") > behaves trivially for all a, we know only
that W) is dominated by a screened charge. We have no a priori knowledge of how
this charge transforms, or of how other H representations contained in (v) interact
with strings. This problem complicates the task of inferring H from the behavior of

our correlation functions.

String stability We noted in Section 6 that, if G is a discrete group, then the existence

(or not) of a stable string with flux a € G provides a criterion for determining whether
a is contained in the unbroken group H. It may seem, then, that the operator
Bo(C, ¥, z0), which creates an a string, can be used to probe the realization of the G

gauge symmetry. But there are two problems.

First, when inserted in a Green function with gauge-invariant operators, B, is
actually averaged over the G conjugacy class to which a belongs. This class may
contain some elements that are in the unbroken group H and some that are not,

which complicates the interpretation of (B,).

Second, even if no element of the class that contains a is in H, Bo(C, 2, z9) may
nevertheless create a stable string. This can happen, as we saw in Section 3, due
to the competition between the renormalization of the tension of the classical string

that propagates on ¥ and the tension of the dynamical string whose world sheet is
bounded by C.
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Let us ignore the second problem for the moment, and address the first. We first
note that the situation is relatively simple if H is a normal subgroup of G. In that
case, a given (G conjugacy class is either entirely contained in H or is disjoint from
H. By studying B, for various class representatives, we can determine which classes

are contained in H, and so reconstruct H.

The general case is somewhat more complicated, and B, by itself is not sufficient
to completely determine the unbroken subgroup H. Instead, one way to proceed is

the following: If G = {a1,a2,...,ans} is a finite group of order ng, consider
<Ba1,a2,...,anG (Cla E17 CZa 227 ceey CnGa EnG7 xO)) ; (275)

in which all group elements appear. Choose the loops to be large and widely separated,

with their sizes ordered according to
A(Ch) >> A(Co) >> - >> A(Cyy) - (2.76)

Now By, a,,... s effectively averaged over gauge transformations at the basepoint, and

so may be replaced by
1
-@ Bgalg—l,gazg—l,...,ganGg—l(Cl’ ¥1,C2,82,...,Cng,y Xng, To) - (2.77)
geG

The expectation value is dominated by the configurations that minimize

ren d
Rl L A(Sy) + 0 A(CY) (2.78)
(where fs((ldyn) = 0 for ¢ ¢ H). This condition may not determine g uniquely.

Among those g that minimize eq. (2.78), the dominant configurations are such that
ﬂ,(zrzen)A(Eg) + ng‘iy“)A(Cz) is also minimized. And so on. Now by varying A(C) and
A(Y) independently, we find the group elements a for which Ké‘iﬁr_l)l = 0. We thus
determine the unbroken subgroup H up to one overall conjugacy H — gHg~!. This
ambiguity is expected; it corresponds to the freedom to change the embedding of H
in G by performing a gauge transformation. (Of course, the calculation of eq. (2.75)

involves an average with respect to this embedding.)

In passing, we have found the tension of all of the stable strings associated with

the various elements of H.
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If G is Abelian, as in the discussion in Section 3, then we can overcome the
second problem (that B, may create a stable string even for @ ¢ G) easily enough.
By measuring A,(;/), we can determine the Aharonov-Bohm interactions of the string
created by B,, and so identify the flux of the string as belonging to H. If G is
non-Abelian, though, life is more complicated. For as we noted above, we have no a
priori knowledge of what H representation dominates the asymptotic decay of W(¥).
While it seems altogether physically reasonable that the stability and Aharonov-Bohm
interactions of strings can be used to identify an unbroken gauge group H, it is not

so easy to specify how this should be done with gauge-invariant correlation functions.

The VOOP Another promising probe of charge screening in a gauge theory is
the “vacuum overlap order parameter” (VOOP) proposed by Marcu and Freden-
hagen.[”’m’ls] Let us compare and contrast the VOOP with the Aharonov-Bohm order

parameter that has been discussed in this chapter.

Suppose that an H gauge theory contains a matter field ®*) that transforms as
the irreducible representation (u) of H. If the local H symmetry is unbroken, and
the representation (u) is not confined or screened, then (loosely speaking) the field
&' should create a stable particle. We can express this in gauge-invariant language.
If  and y are distantly separated points, and Py, is a path from y to z, consider the

non-local gauge-invariant operator

KW (2,y, Py) = 0oWDW [ T] i] | o . (2.79)
lepP,,

If )T creates a free charge, then this charge must propagate between z and y, as

in Fig. 25. Thus, we have
<K(“)(x,y, P)> ~ exp (—Mr(éln) L(P)) exp (—Mégl)l |z — y|> , (2.80)

where M(g‘y‘l)l is the mass of the stable particle created by CD(”)T, and Mr(e”n) is the
renormalization of the mass of the classical source propagating along P. (Here, L(P)
is the length of P, and |z — y| is the distance from z to y.) Since Mr(é;) can be
determined independently by measuring <W(“)(C)> (or by varying L(P) with |z — y|
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fixed), eq. (2.80) can be used to find M(ggfl)l But if the representation (¢) is screened (or
confined), then <K )(z,y, P)> will become independent of |z—y| for large separation;
in effect, we have Mé?l)l = 0, with Mégi defined by eq. (2.80). Thus, Marcu and
Fredenhagen suggested that M é;?l > 0 if and only if ®WT creates a free charge.

P

>
X y

Fig. 25: The path P from y to 2 that is used to construct the gauge-invariant
correlation function K(“)(:I:, Y, P). A classical charged particle propagates along P,
and a dynamical charged particle propagates from z to y.

This construction is obviously closely similar to our discussion in Section 6 of
string stability, and it suffers from related problems. Suppose that, in a model with
gauge group (7, spontaneous breakdown to a subgroup H occurs. Then, an irreducible
representation (1) of G contains various irreducible representations of H. It may
be that among these representations are some that can exist as free charges, and
others that are screened. We might expect, then, that the screened charges dominate
<K (“)>, so that Mégf 1)1 = 0 even though (x) contains some unscreened representations
of H. Even this is not clear; because of the competition between Mgyyn and Mie, in

eq. (2.80), the free charges may actually dominate.

Because of these difficulties, it is not at all easy, in general, to identify the unbro-
ken gauge group H based on the behavior of <K(”‘)(:c, Y, P)>

Order parameters: Some concluding remarks The existence of stable cosmic strings

(or vortices), and of Aharonov-Bohm interactions between strings and free charges,
can be used to identify and classify the various phases of a gauge theory. Yet, because

of the problems discussed above, it proves difficult to formulate a general procedure
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that unambiguously specifies the realization of the gauge symmetry, e.g., the “un-
broken” subgroup. This is surprising (to us), but we are reluctant to attach any

fundamental significance to it.

In fact, though, just because of these problems, the phase structure of certain
gauge theories may be richer than one might naively expect. For example, if the
gauge group G is “spontaneously broken” to H, then, as we have remarked, just
one of the irreducible H representations contained in the G representation (v) will
dominate the asymptotic behavior of <W(” )(C )> On some surface in the parameter
space of the theory, a “crossover” may occur, where this H representation changes.
Thus, the order parameter A,(f) might be non-analytic on this surface—the surface

would be a sort of phase boundary, even though no change in symmetry occurs there.

For most of the discussion in this chapter, we have taken the gauge group G to
be a discrete group. There is no obstacle, however, to generalizing our results to the

case where GG is a continuous group.

2.9. ELECTRIC FLUX TUBES AND DYNAMICAL MONOPOLES

In this chapter, we have systematically discussed the Aharonov-Bohm interactions
between magnetic flux tubes and electric charges, which can occur in the Higgs phase
of a gauge theory. Central to the discussion has been the effect of quantum-mechanical

electric charge fluctuations on the interaction.

There is another type of Aharonov-Bohm interaction, which can occur in the

confining phase of a gauge theory—the interaction between an electric flux tube and

{22,23,5,6)

a magnetic charge. The existence of such interactions has been noted previously,

as have the implications concerning the “magnetic hair” carried by black holes”™ But
the effects of quantum-mechanical magnetic charge fluctuations on this incarnation

of the Aharonov-Bohm phenomenon have not been analyzed before.

In this section, we will develop a quantum field-theoretic treatment of electric
flux tubes in a confining gauge theory that contains dynamical magnetic monopoles,
and will investigate the interactions of flux tubes with monopoles. This treatment, of

course, will be closely similar to our theory of magnetic flux tubes, in a Higgs phase.
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First, we will describe (following closely the work of Srednicki and Susskindml)
how dynamical magnetic monopoles are introduced into a lattice gauge theory. Then
we will construct a generalized Wilson loop operator that creates an electric flux
tube that has Aharonov-Bohm interactions with the monopoles. By studying the
properties of the correlation functions of this operator, we will investigate the effect

of magnetic charge fluctuations on the Aharonov-Bohm effect.

Magnetic Monopoles on the Lattice

For definiteness, we will consider a gauge theory with gauge group SU(N). A
pure SU(N) gauge theory (no matter), or a theory with the matter fields transform-
ing trivially under the center Zy of SU(N), admits magnetic monopoles with Zy
magnetic charges. (Fields that transform under Zy would be able to see the Dirac
string of such a monopole; that is, the monopole with minimal Zy charge would
not satisfy the Dirac quantization condition.) If SU(N)/Zy is actually the unbro-
ken gauge symmetry of an underlying theory with simply connected gauge group
G D SU(N)/Zy, where G is broken via the Higgs mechanism, then such monopoles
arise as topological solitons. For example, there are models with G = Spin(N? — 1)

broken to SU(N)/Zx that contain Zy monopoles.

The (usual) ’t Hooft loop operator B(C) inserts a world line of a Zy monopole
along the closed loop C'. But the monopole introduced by an ’t Hooft loop is a classical
source, not a dynamical object. We wish to elevate the monopoles to the status of
dynamical degrees of freedom, and introduce a coupling constant that controls the

effects of virtual monopoles.

It is most convenient to choose the dynamical variable to be a “Dirac string field”
that is summed over in the path integral. On the lattice, this field associates with
each plaquette P a quantity np € Zy, which may be regarded as the Zy magnetic
flux carried by a Dirac string that pierces that plaquette. If the total magnetic flux
entering a cube of the lattice is non-trivial, then a magnetic monopole resides in that
cube. Of course, since the Dirac strings themselves must be unobservable, this theory
should respect, as well as the usual SU(N) local symmetry, an additional Zy local
symmetry that deforms the Dirac strings (without, of course, changing where the

monopoles are).
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The construction of this theory was described by Srednicki and Susskind® In

the absence of matter fields, it has the action

S = —ﬂZtr(nPUp) - A Z ne +c.c., (2.81)

plag cubes
where
Ne = H np (2.82)
Pec
is the product of the six np’s associated with the oriented faces of the cube c; in other

words, 7. 1s the Zy magnetic charge inside c.

The extra Zy local symmetry respected by this theory is defined on links; it acts

according to

n: Uy — 62””/NU1 ,

N (2.83)
np— e ™ Nyp P>,

where n = 0,1,2,..., N — 1. This transformation moves the Dirac strings without

changing the magnetic charge 7, or the magnetic flux npUp that appears in the

gauge field plaquette action. (The quantity Up is not invariant under the extra local

symmetry, and so is unphysical; it can be interpreted as a fictitious magnetic flux

that includes a contribution from the (unobservable) Dirac string that crosses P.)

The coupling constant A controls the strength of the effects of virtual monopoles.
For A << 1, magnetic charge fluctuations occur copiously, but for A >> 1, magnetic
charge fluctuations are strongly suppressed. In the limit A — oo, the monopoles

freeze out, and eq. (2.81) becomes the usual Wilson action.

Matter fields can be coupled to the gauge theory in the usual way. For example,

if ¢; € SU(N) is defined on sites (labeled by 1), we may define
Smatter = =7 Y XxB ((671U¢)) +cec. . (2.84)

links

This is invariant under the local symmetry eq. (2.83) only if Zy is contained in
the kernel of the representation (R). Of course, this is just the Dirac quantization
condition—the matter fields must be chosen so that the string of a monopole is
invisible. We may introduce matter ficlds that are only invariant under some subgroup

of Zy, but then we must restrict the np’s to take values in that subgroup.
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Wilson Loop Operator Now we want to define a Wilson loop operator W(* )(C ) that

creates an electric flux tube on the loop C'. But the usual construction

W)= —xW) (H U,) (2.85)

leC
is not invariant under the local symmetry eq. (2.83) unless Zy is contained in the ker-
nel of the representation (v). The operator W(*)(C) is physically sensible, then, only
if the string created by it has no Aharonov-Bohm interaction with a Zy monopole.
In fact, in the SU(N) theory defined by eq. (2.81), this operator does not create a
stable flux tube at all—even at strong coupling (5 << 1), glue fluctuations cause the
string to break.

An operator that creates a stable electric flux tube that does have Aharonov-
Bohm interactions with monopoles cannot depend on the loop C alone; it must also
depend on a surface ¥ that is bounded by C. After our discussion of the 't Hooft
operator in Section 4, this comes as no surprise. A (naive) Wilson loop operator,
in the presence of monopoles, is a multi-valued object, for it acquires a non-trivial
Aharonov-Bohm phase when the loop winds around a magnetic charge. To construct a
single-valued object, we introduce a branch cut on the surface ¥, so that the operator
jumps discontinuously when a monopole crosses ¥. We augment the naive Wilson
loop operator, then, by a factor that counts the total magnetic flux of the Dirac

strings that cross X, obtaining
W, ) = —x(")<(H U,) (H np)> . (2.86)
leC Pck
This operator is invariant under eq. (2.83), for any representation (v) of SU(N), and
of course it reduces to W*)(C) if (v) represents Zy trivially.

We may also consider the degenerate case in which the loop C shrinks to a point.

If (v) represents Zy faithfully, then the operator

o= 10 (I ) oo

Pcy
inserts the world sheet of a tube with minimal Zy electric flux, as a classical source,

on the surface ¥. (Of course, if (v) represents Zy trivially, then the flux tube is
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invisible, and the operator is trivial.) If we think of the surface ¥ as lying in a time
slice, then G(X) has another interpretation; it is a magnetic charge operator that
measures the total Zy magnetic flux through 3. Obviously, G(¥) is the magnetic
analog of the operator that we called F'(X) in Section 3.

Note also that if matter is introduced as in eq. (2.84), an operator can be con-

structed that creates a separated particle-antiparticle pair; it is
XB Lo | T U] ¢ ) (2.88)
IEPi,]

where P; ; is a path from the site ¢ to the site j. This operator is invariant under the

local symmetry, if (R) represents Zy trivially.

't Hooft Loop Operator We can also construct an ’t Hooft loop operator By, (C); it

inserts on the world line C' a classical monopole source with Zy magnetic charge
n=1,2,...,N —1. Alternatively, we may interpret B,(C), acting in a time slice, as

an operator that creates a loop of magnetic flux tube on C.

The construction of this ’t Hooft operator may be carried out in much the same
way as in a gauge theory without dynamical monopoles. We regard C' as a closed loop
composed of links of the dual lattice, and we chose an arbitrary surface ¥ (composed
of plaquettes of the dual lattice) whose boundary is C'. Dual to the plaquettes of ¥ is a
set X* of plaquettes of the original lattice. Now, if there are no dynamical monopoles,
we regard the np’s as classical (non-fluctuating) variables. Then, to evaluate a Green
function with an insertion of B,(C'), we modify the plaquette action on the plaquettes
in X*, by choosing

77P — 627rz'n/N , P e E* .

(2.89)
np= 1 , P¢gxr.

When there are dynamical monopoles, however, and the np’s are in the configuration
eq. (2.89), the cubes that are dual to the links of C' are frustrated. Thus, this
configuration represents a dynamical monopole propagating on the world line C. Since
we want the operator B,(C') to introduce a classical monopole source, we should

modify the cube action so that the configuration eq. (2.89) does not frustrate any
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cubes. Thus, we evaluate a Green function with an insertion of B,(C) by changing

the cube action according to

Ne — eZm'n/NTIC . c€ c* . (290)
Equivalently, we have
B,(C) = H exp ()\(62“"/]\/770 — e + c.c)) . (2.91)
ceC*

This operator is the magnetic analog of the Wilson loop operator.

In the weakly-coupled gauge theory without dynamical monopoles, the 't Hooft
loop operator creates a stable magnetic flux tube, and (B,(C)) exhibits area-law
decay. But when there are dynamical monopoles, B,(C) always exhibits perimeter-
law decay. The interpretation is clear. For any finite A, a Zy magnetic flux tube is

unstable, for the tube can break via nucleation of a monopole-antimonopole pair.

Note that the operator defined by eq. (2.91) makes sense even if C is an open
path rather than a closed loop. That is, we may define in like fashion an operator
By(F; ;) = H exp (A(ezWi”/Nnc — e+ c.c)) , (2.92)
cePr,
where ¢ and j are sites of the dual lattice, and P;; is a path connecting these sites.
This operator creates a monopole-antimonopole pair, connected by a Dirac string; it
can be used to compute the mass of a dynamical monopole. Obviously, it is closely

analogous to the operator eq. (2.88).

Having now in hand the operator By, (C') that introduces a classical Zy monopole
on the world line C, and the operator G(*)(X) that introduces a classical Zy electric
flux tube on the world sheet ¥, we are ready to construct the operator, analogous
to Aglu)(E, C), that probes the Aharonov-Bohm interaction between monopoles and
electric flux tubes; it is

v G)(D) By(C
Wz, 0) = <G(V)(é)>) (Bi(é» . (2.93)

If there is an infinite range Aharonov-Bohm interaction, the expectation value of this

operator will have the asymptotic behavior
: v 1 v Tin k(%)
lim < ¢ )> = n—,,X( ) ((ez /N) ) , (2.94)

where k(X, C) is the linking number of ¥ and C.
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Finally, we remark that it is straightforward to generalize the construction in
Section 4, and define an operator that creates a loop of non-Abelian cosmic string,
in a theory that contains dynamical monopoles. We need only be cognizant of the
change in the plaquette action that occurs when dynamical monopoles are included;

a string that carries flux a € SU(N) is now created by
Bu(C,S,20) = [] eXp{ﬁ(tr(V}Pavl;lnpUp) — t(7pUp) ) + cel,  (295)
Pexr

where ¥ is a surface on the dual lattice, bounded by the loop C'. When C shrinks to
a point, we obtain the operator Fy(X, zo) that introduces a classical string source on

the closed world sheet X..

Monopole Condensation A pure SU(N) gauge theory, without dynamical

monopoles, is confining at strong coupling. For f << 1, gauge field fluctuations
are unsuppressed, and the resulting magnetic disorder gives rise to stable electric flux
tubes. We want to explore how dynamical magnetic monopoles modify the physics
of this theory.

First, we consider the parameter regime 8 << 1 and A << 1, so that virtual
monopoles are unsuppressed. It is easy to anticipate what will happen. A “monopole
condensate” will form, which, in effect, will spontaneously break the local Zy symme-
try of the theory. Thus, the electric flux tube will become the boundary of a domain
wall. As usual, this domain wall will decay by quantum tunneling—an electric flux
tube will spontaneously nucleate, and expand, consuming the wall. Thus, there will
be no stable electric flux tubes, and no infinite range Aharonov-Bohm interaction

between flux tubes and monopoles.

We can check whether this expectation is correct in strong-coupling perturbation
theory. We proceed by expanding e~ in powers of 4 at each plaquette, and e~ Seuve
in powers of A at each cube. Roughly speaking, the terms that survive when the U;’s
and np’s are summed are ones such that a set of “tiled” cubes forms a closed (three-
dimensional) hypersurface, or else the tiled cubes form an open hypersurface that is
bounded by a (two-dimensional) surface of tiled plaquettes. In other words, strong-
coupling perturbation theory can be interpreted as a sum over histories for (heavily

suppressed) domain walls bounded by electric flux tubes.
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Consider, now, the behavior of GU)(X), where (f) denotes the defining represen-
tation of SU(N). If § = 0, then the leading contribution to <G(f)(2)>, for A << 1,
is obtained by tiling the minimal hypersurface that is bounded by ¥; thus we have

<G(f)(2)> ~ (2)Volume(S) (2.96)

The interpretation is that G(f )(E) is the boundary of a domain wall, where the wall
tension is ¢ ~ —e 3 In(1/)) (e is the lattice spacing). But for 8 > 0, this domain
wall is unstable. When the surface ¥ is very large, a much larger contribution to

<G(f)(2)> is obtained by tiling the plaquettes of ¥; this contribution is

(GOE)) ~ (B/NyArexE) (2.97)
(As B — 0, the electric flux tube becomes arbitrarily heavy, and the domain wall is

arbitrarily long-lived.)

Accordingly, the operator W(f )(C, Y)) does not create a stable electric flux tube.
The leading behavior of its expectation value, too, is found by tiling the plaquettes
of ¥, so that

<W(f>(c, z)> ~ (B/N)Area(E) (2.98)

There is no dependence on the area of the minimal surface bounded by C' (com-
pare eq. (2.59)), signifying that the dynamical flux tube created by W(f)(C, Z) has

vanishing tension.
It is obvious that the leading contribution to <G(f )(E)> is unaffected by an
insertion of B,(C), even if C and ¥ link. So we have
lim <E,§f)(z,0)> =1; (2.99)
there is no long-range Aharonov-Bohm interaction.
Incidentally, we could have chosen the cube action to be
Se=— )™ +c.c. (2.100)

Then, in effect, for A << 1, charge-m monopoles condense; this breaks the local
symmetry to Zy, where M is the greatest common factor of N and m (compare
Section 3). In other words, W(”)(C,Z) does create a stable flux tube, if a source
transforming as the representation (v) has no Aharonov-Bohm interaction with a

charge-m monopole, and if (v) represents Zy; non-trivially.
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Magnetic Hair Now we consider the regime 8 << 1 and A >> 1. In this limit, virtual

monopoles are heavily suppressed. We anticipate that quantum-mechanical magnetic
charge fluctuations will not wipe out the infinite-range Aharonov-Bohm interaction

between monopoles and electric lux tubes.

Again, we can check this expectation against perturbation theory. Weak-coupling
perturbation theory, for A >> 1 is an expansion in the number of frustrated cubes.
The frustrated cubes form closed loops that we may interpret as the world lines of
virtual monopoles. The expansion in 3, as before, is an expansion in the number
of tiled plaquettes. The tiled plaquettes form closed surfaces that we may interpret
as the world sheets of electric flux tubes. Perturbation theory, then, is a sum over

histories for (heavily suppressed) magnetic monopoles and electric flux tubes.

For example, consider < el )(E)>. The leading non-trivial contribution arises
from a configuration such that (in a particular gauge) np = eX27/N for a single
plaquette P contained in ¥*, while np = 1 for all other plaquettes. Flipping one

plaquette frustrates four cubes, so this contribution gives
27 4
(f) ~ 27rzn/N . _
<G > 1+ngi1< ) (exp{ 2A (1 COS(N))J) . (2.101)

Summing disconnected contributions causes the result to exponentiate; we find

<G(f)(2)> ~ exp (—n(ren)Area(E)) , (2.102)

where
2(ren) 2 (1 — cos(2r/N)) exp <—8A [1 — cos (%’)D (2.103)

(and ¢ is the lattice spacing). The interpretation is that, because of the Aharonov-
Bohm interaction between monopoles and flux tubes, inserting G/ )(E) modifies the
contribution to the vacuum energy due to virtual monopole pairs that wind around

%, resulting in a renormalization of the tension of the classical string source.

When we compute <W(f )(cC, E)>, a similar renormalization of the tension of the

classical string on X occurs. But in addition, for § << 1, the configurations that
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contribute have a surface of tiled plaquettes bounded by C. The leading behavior,

then, is

<W(f)(072)> ~ (B/NYATO) expy (—n(re“)Area(E)> _ (2.104)
We conclude that W{)(C, £) creates a stable electric flux tube with string tension

¥~ _In(B/N) . (2.105)

When the operator By, (C') is inserted, it tends to frustrate the cubes in C*. But,
as we already noted in subsection of ’t Hooft loop operator, frustrated cubes can
be avoided if the np’s assume a suitable configuration. We may choose an arbitrary
surface T on the dual lattice whose boundary is C'. Dual to the plaquettes of T is a

set of plaquettes T* of the original lattice. The desired configuration (in a particular
gauge) is
np = 627rin/N : PeT* ’

(2.106)
np= 1 , Pg&T".

(The local symmetry transformation eq. (2.83) deforms the surface T, but leaves its

boundary intact.)

By summing over gauge field fluctuations about the configuration eq. (2.106), we

find the leading behavior
(Bn(C)) ~ exp <—M7(1ren) Perimeter(C)) , (2.107)

where

2mn

MY ~ 2N2(3/N)® <1 — cos (T)) (2.108)

is the renormalization of the mass of the classical monopole source. This renormal-
ization is associated with virtual electric flux tubes whose world sheets link the world
line of the monopole, and arises because of the Aharonov-Bohm interaction between

monopole and flux tube.
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When the operator By(F; ;) is inserted, a line of frustrated cubes connecting @

and j cannot be avoided, and so we find the leading behavior
(Bu(Pij)) ~ exp (—M,Edy“) Distance(s, j)) exp (-M,(Je“) Length(P)) . (2.109)

where
M~ 2) (1 — cos (%Tn>) : (2.110)

Evidently, for A >> 1 and # << 1, we have MO s> M, Indeed, (B,(C)) is
dominated by small fluctuations about the configuration eq. (2.106) for precisely this
reason—the renormalization of the classical source is much less costly than screening

the source with dynamical monopoles.

With the 7p’s in the configuration eq. (2.106), the operator G(f)(X) assumes the
value exp(2rink/N), where k is the linking number of £ and C. Furthermore, except
on the loop C, this configuration is locally equivalent to the trivial configuration with
np = 1 everywhere. Thus, as we expand in the small fluctuations about eq. (2.106),

we find, to each order of the expansion,
. K(Z,C)
lim <E,§f)> = (62“"/1") . (2.111)

We see that, at least to each order of perturbation theory, our expectation is con-
firmed. In a confining theory that contains weakly coupled dynamical magnetic
monopoles, there is an infinite-range Aharonov-Bohm interaction between monopoles

and electric flux tubes.

2.10. APPENDIX

In this appendix we consider in more detail some of the lattice perturbation
theory calculations mentioned in the body of the text. Specifically, we calculate, in a
pure gauge theory, the behavior of (F, (X, z¢)) and (B.(X, C, z0)) in leading order in
both strong and weak coupling perturbation theory. We demonstrate that (F5(X,z¢))
exhibits an area law decay in both limits, and that only in the weak coupling limit
does (B,(X,C, z¢)) create a dynamical string on C. We also consider the problem
that arises when one attempts to use the untraced Wilson loop operator eq. (2.48) to

construct an Aharonov-Bohm order parameter.
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Pure gauge theory: strong coupling We start with the calculation of (F, (%, z¢)) and

(Ba(X,C, z0)) in the strong coupling regime (8 << 1) of the pure gauge theory defined
by the plaquette action eq. (2.44), namely

Séfx?ge,P = _ﬁX(R)(UP) +c.c. (2112)

For definiteness we will assume that the representation (R) that defines the theory
is irreducible, and that it satisfies the constraints that R @ R does not contain the

trivial representation, while R @ R* contains it exactly once.

The expectation value (F, (X, z¢)) is given by

(Fu(S, 20)) = SFalE:20)))

S (2.113)

where the unnormalized expectation value of an operator X is defined by

() =] / a0y (X [T exe(~Sp)). (2.114)
(1) P

To find the renormalized string tension we need to calculate the leading behavior

of both ((Fo(X,20))) and ((1)). The perturbation expansion in the strong coupling

regime is of the form of a sum over closed surfaces, in which surfaces of greater area are

suppressed by powers of # compared to smaller ones. Formally, the strong coupling

expansion proceeds by performing a character expansion on the exponentiated Wilson

action,

(B (Up) + X" UR)) = N(B)(1+ CBXIUp)).  (2115)
(n)#1

The link integrations then select out closed surfaces S, each formed by “tiling” §
with factors of x")(U p) for each plaquette P € S. The leading non-trivial contribu-
tion will be from the smallest surfaces, which furthermore are tiled with characters
whose associated factors of C'* )(ﬂ ) have the lowest non-trivial dependence on 8. The
factors C(*)(8) are found by multiplying eq. (2.115) by X(V*)(UP), summing Up over

the group, and using the character orthogonality relations along with the assumed
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properties of the representation (R), giving
cBB) =1++0(8%), CENB)=1+8+0(82), (2.116)

with all other irreducible representations acquiring their first non-trivial 8 dependence
at O(B?). Therefore, the leading contribution will come from surfaces tiled with

characters in the representations (R) and (R*).

In the evaluation of (Fg), we must, in addition, identify the leading contribution
that is sensitive to the presence of Iy, and hence does not cancel between ({(F,)) and
((1)). All closed surfaces that do not intersect ¥ are unaffected by the presence of
Fy. Therefore, we factorize both ((£,)) and ((1)) in eq. (2.113) into contributions
from surfaces “on- ¥” and “off-X,” the off-¥ dependence canceling between them.
The dominant on-¥ contribution is shown in Fig. 26, where all six faces are tiled with
factors of either x®), or y(&"). This results in a contribution to ((Fy)) from Fig. 26
of

2(8/ng)* |xP(a)|%, (2.117)

where ng is the dimension of the representation (R). The factor of (ng)~% comes
from the six non-trivial link integrations, and the factor of 2 from the two equal
contributions of either y(#) or y(£"). Since the number of possible positions of this
elementary cube on the surface Y. is given by the area A(X) of ¥ (measured in terms of
the size of the elementary plaquette €2), to get the contribution of a single elementary

cube located anywhere on X, we should further multiply (2.117) by A(%).

~0-H b

Fig. 26: The leading contribution to (F,(X, zg)), in the strong-coupling limit of the
pure gauge theory, arises from tiling a cube (shaded) that contains two plaquettes
of X*.

The area law decay of (/) arises from considering an arbitrary number of such

elementary tiled cubes on the surface ¥, rather than just a single contribution. In
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the “dilute gas” approximation where we can ignore correlations between the various
elementary cubes, this leads to an exponentiation of the above result with an overall
factor of A(X). Finally, the “on £” contributions to ((1)) lead to a similar exponential
dependence on A(X), except that the group element a is replaced by the identity
element. Putting these together yields the result

(Fa(%, 20)) = oxp (2(8/n0)° (W P(@F ~nk) A(D) . (2118

In other words, the renormalized classical string tension defined in eq. (2.54) is given
by
(ren) B\° PN
kg ~2 (E) <n%3 - \X( )(a)‘ ) (2.119)

to lowest order in 3.

The calculation of (B,(X,C,z¢)) proceeds in a very similar way; the only ques-
tion concerns the behavior at the boundary curve C. Here there exist contributions
to (Bq(X,C, o)) similar to those of Fig. 26 except only one plaquette P € £* is
contained in the cube. This leads to an additional decay of (B, (X, C, z¢)) depending
on the length P(C') of the perimeter (eq. (2.60)),

(Ba(%,C,z0)) ~ exp (—/-c,(lren)A(E)) exp (—m&ren)P(CD , (2.120)
with
/3 6
emT™ ~ 2 (—) (n% — ngrRe X(R)(a)) : (2.121)
ng

Since the configurations that dominate the expectation values of F, and B, do
not extend deep into the volume enclosed by ¥, we find that there are no stable
dynamical strings (or vortices) in this regime and, therefore, that there is no long-

distance Aharonov-Bohm interaction between flux tubes and charges.

Weak coupling

This is the regime in which we expect to find A,(ly)(E,wg; C) displaying a non-
trivial Aharonov-Bohm interaction. To start we need to discover which configurations

dominate the behavior of (F,(X,z0)). When 8 >> 1, frustrated plaquettes (ones
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with non-minimal gauge action) are highly suppressed. However, as described in
Section 5, an insertion of Fy(X,z¢) tends to frustrate the plaquettes in ¥*, unless
the link variables assume a suitable configuration. The configuration that leaves
no frustrated plaquettes, and thus acts as the “ground state” in the presence of Fjy
is illustrated in Fig. 9. It consists of a “forest” of links inside ¥ that have value
U; = a. Specifically, we choose a three-dimensional hypersurface {2 made up of cubes
of the dual lattice that has boundary ¥. Dual to these cubes is a set of links Q* on
the original lattice. The configuration with no excited plaquettes is then given by
eq. (2.57), namely U; = a for | € Q*, and U; = e otherwise. The area law decay of
(Fo(X, o)) in the weak coupling regime arises from fluctuations of the link variables

around this state, which are sensitive to the presence of the non-trivial background.

The leading such contribution to the decay of (Fg(X,zo)) in the pure gauge the-
ory is shown in Fig. 27a. (For simplicity we discuss the situation for vortices in three
Euclidean dimensions.) It consists of a configuration that has nine excited plaquettes,
and is constructed by considering two neighboring plaquettes in ¥*. These plaquettes
are connected with four links with U; = b to make a cube, with b summed over the
group. In this configuration, there are eight excited plaquettes with plaquette action
proportional to SRe x(b) (the unshaded plaquettes in Fig. 27b). But, in addition,
there is an excited plaquette (if ¢ and b do not commute) with action proportional
to SRe x(aba=1671) (the shaded plaquette in Fig. 27b). This extra excitation distin-
guishes the contributions of Fig. 27 to ((F,(X,z¢))) and ((1)). Changes of variable

can move the ninth excited plaquette around, but cannot get rid of it.

Of course, the process illustrated in Fig. 27 is only one of a set of similar processes
where instead of summing over the same value b for each of the four connecting links,
we sum independently over their values ;. These differ from the contribution of
Fig. 27 in two ways: there will either be a greater number of excited plaquettes leading
to a subdominant contribution, or, if some of the b; are taken to be the indentity,
changes of variable on the remaining, independent b; show that the a-links have no
physical effect. This is why, for instance, we do not consider the less suppressed, and

apparently non-trivial, contribution arising from the excitation of just two joining

links.

We can understand this in physical terms. The contribution to (Fy(X, z¢)) reflects



78

b
. A
" A
=7
b

(b)

Fig. 27: The leading contribution to (Fy(X, zp)), in the weak-coupling limit of the
pure gauge theory. The cube shown contains two plaquettes that are in ¥*, and
the link variables assume the indicated values. (Unmarked links have the value
U; = 1.) There are altogether nine excited plaquettes—eight (unshaded) plaquettes
with Up = b and one (shaded) plaquette with Up = aba=15"1.

how the non-trivial boundary condition introduced by the vortex (or string) affects
the quantum fluctuations of the gauge fields. To see the effect, we must consider
processes in which virtual gauge field excitations (with gauge quantum numbers that
Aharonov-Bohm scatter off the inserted string of flux @) propagate around the string.

The process illustrated in Fig. 27 is the leading one of this type.

The end result of these considerations is a renormalization of the classical string
tension (or vortex mass in three dimensions) leading to an area law (respectively,
perimeter law) decay of (F, (X, z¢)) as in eq. (2.54). An estimate of the renormalized

vortex mass in the weak-coupling regime arising from Fig. 27 is
n 1
m((fe ) ~ % Z(exp{ —168)[ng — ReX(R) )]} X
b#1 (2.122)
(1 —exp{(—28)[ng — Re X(R)(bab a” )]})),
where we require more information about the group G to explicitly evaluate the sum.

Also, note that we have found area law decay of (Fy(X, o)) in both regimes of

the pure non-Abelian gauge theory described by eq. (2.112) (when @ is not in the
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center of (). This differs from the situation in a pure Abelian gauge theory where a
change of variables shows that (F, (X, z¢)) = 1 This is to be expected since the pure
non-Abelian gauge theory contains excitations that, via the Aharonov-Bohm effect,

are sensitive to the introduction of flux on ¥.

To see that there exist stable dynamical strings in this regime of the pure gauge
theory, we must consider (B, (X, C, z¢)), rather than (Fy(X, z¢)). Since the surface &
now has a boundary, the three-dimensional hypersurface  must also end on a two-
dimensional surface S. This surface is dual to a set of plaquettes S* on the original
lattice that must be frustrated, since only one of their links is contained within 0*.
Clearly the dominant configuration is the one in which S is the minimal area surface
with boundary C'. Each such plaquette is suppressed relative to the corresponding

vacuum configuration that dominates ((1)) by an amount
exp(26(Rex®(a) — ng)). (2.123)
In other words (B, (%, C, z0)) behaves as in eq. (2.59)
(Ba(X, C,20)) = exp(—rS™A(E)) exp(—&{T™ A(C)), (2.124)

where A(C) is the area of the minimal surface S, and /sgdy“) is the dynamical string

tension of the stable string with flux in the a conjugacy class,

€25\ 26 (nR — Re X(R)(a)) . (2.125)

In some situations it is possible that Be(X,C,z¢) creates not just one dynamical
string, of flux @, on C, but instead creates a number of strings of varying fluxes
ai,...,ak, where ajaz...ar = a. The corresponding link configuration would be a
“forest state” of links of value U; = a that terminates gradually in a number of steps
rather than dropping to the indentity across a single plaquette. This is the more
favorable configuration if the total area law suppression of the multiple strings is less
than that for the single string. This translates into the condition (in the pure gauge

case, and ignoring perimeter corrections that vanish in the infinite size limit)
k
(k—1)np + Re X(R)(a) - Z Rex(R)(a,') <0. (2.126)
=1

As an example of this, consider the expectation value, in a pure Zg gauge theory, of

the operator B3 (X, C, z) that attempts to create a dynamical string with flux ¢ = &?
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on C (where w = exp(27:/6)). The dominant process in this case is not the creation
of an w3 string, but instead that of three w strings, since, substituting into eq. (2.126),
we find 2 + (—1) — 3(1/2) < 0.

We now turn to the order parameter AE{’)(E, zo; C'), which is defined (eq. (2.36))
in terms of F(2) and the Wilson loop operator W(*)(C). F,(X) has been described

above, so we will now discuss the Wilson loop operator, and demonstrate eq. (2.37).

First, let us consider the untraced Wilson operator U®)(C, ) (eq. (2.48)). It
is easy to calculate the leading behavior of the expectation value of U(")(C’, zo) at
weak coupling: as above we factorize the contributions from links on-C and off-C,

and cancel the off-C' contributions,

(UOC, ) T Lu, DU+ UL) TTE, exp (4DBRe xB(U))
(o S0+ Lo, [T exp (4DBRe XD (1))

(2.127)
where we work in D 4 1 Euclidean dimensions, and U; for : = 1... L are the links in
C. (In eq. (2.127), we sum over all values of the link variables contained in C, but
keep all other link variables fixed at U; = 1.) Because we have not traced the Wilson

loop, the multiple summations factorize. We then use

1 3" D (g)xW(g) = igﬂﬂq(”), (2.128)
ng ny
geCG

where I(*) is the identity matrix. Along with eq. (2.115) this implies that

) t
M) 1®). (2.129)

ny

(U(C, ) = (

If we repeat the calculation in the background created by a string insertion operator
Fa (X, z0) then the only difference is that for each time C links ¥ there is a link in C
that is multiplied by a. Neither Fy(X,zo) nor U®)(C,x0) is gauge-invariant, but a
gauge transformation conjugates both a and U®*) by the value of the transformation
at g, so these conjugations cancel, and the gauge-invariant result is that I®*) is
replaced by D) (a*(Z:)) where k(X,C) is the linking number of the two curves.
This proves eq. (2.49), and by taking a trace it proves eq. (2.37).
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However, there is a major caveat that limits the usefulness of the untraced Wilson
loop: there are corrections to eq. (2.49) that do not go to zero as C' and X become
large and well separated. Recall that F,(X,z¢) corresponds to a thought experiment
in which a specific group element a (not just a conjugacy class) was associated with
a string, using an arbitrary basis at a point zg. As described in Section 4 this means
that in defining F, (3, z¢) we give each plaquette in X* a long “tail” of links that
stretches back to zg. The problem manifests itself (in a particular gauge) when we
take into account configurations in which some (but not all) of the links coming out
of x¢ are excited. In these configurations the inserted flux may be conjugated, but

not the measured group element (or vice versa).

Concretely, the leading contribution, in weak coupling perturbation theory, that
causes problems for the untraced Wilson loop is simply the excitation of a single link
U; = b on the path that connects zg to X. In the three-dimensional case this leads
to the excitation of four plaquettes, and is thus suppressed relative to the ground
state configuration by a factor of exp(83(Re x(f)(b) — ng)). However, the action of
these configurations, though large at weak coupling, is completely independent of the
size and separation of ¥ and (', and so remains finite as ¥ and C become large and
far apart. Their effect on the untraced order parameter is to conjugate the inserted
flux (and thus the flux measured by U*)(C, z¢)). Therefore, there are corrections to
eq. (2.49) that occur at finite order in weak coupling perturbation theory that render

the measured flux uncertain up to conjugation.

The physical interpretation of these configurations is that the path connecting g
to X is linked by a virtual vortex-antivortex pair of flux b. In four dimensions there ex-
ist analogous processes where a virtual cosmic string links the connecting path. These
effects do not correct the leading behavior of the ABOP given by eq. (2.37), because
the traced Wilson loop is gauge-invariant, and so is not sensitive to conjugation of

the inserted flux.
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Chapter 3: Detecting Cheshire Charge

In a spontaneously broken gauge theory, if the unbroken gauge group H is a
discrete subgroup of the underlying continuous gauge group G, then the theory will
contain topologically stable strings (in 3+1 dimensions) or vortices (in 2+1 dimen-
sions). If H is non-Abelian, the strings have remarkable properties. In particular, a
closed loop of string can carry a non-trivial H charge. Oddly, this charge is a global
property of the string that cannot be attributed to any locally defined charge density.
Yet the charge is physically detectable, for the charged string loop has an infinite
range Aharonov-Bohm interaction with other strings. Furthermore, if a pointlike
particle carrying H charge winds through a string loop, the particle and the loop can

exchange charge.

» BTt was

Charge with no localized source has been called “Cheshire charge.
first discussed for the case of the “Alice” string.m A loop of Alice string can carry
electric charge, and have a long-range electric field, even though the electric charge
density vanishes everywhere.[g'l’ﬂ Processes in which electric (or magnetic) charge is
exchanged between string loops and point particles were discussed in Ref. 1, 4-6.

In this chapter, we analyze the purely quantum-mechanical version of Cheshire
charge”’ﬂ that arises in a theory with a non-Abelian discrete local H symmetry.[s’gl
The semiclassical theory of discrete Cheshire charge was formulated in Ref. 4 and
elaborated in Ref. 10, 11. Here we extend the theory further, in several respects. We
describe how a charge operator can be constructed, such that the expectation value of
the operator in a state specifies the transformation properties of the state under global
H transformations. We then study processes in which charge is exchanged between
string loops and point particles, and derive general formulas for how the expectation

value of the charge of the loop is altered by the exchange. Finally, we explain how the

charge exchange processes can be probed using gauge-invariant correlation functions.

The charge operator and correlation functions are also treated in Ref. 12, where

lattice realizations of operators and correlators are extensively discussed.

The rest of this chapter is organized as follows: In Section 1, we briefly review the

basic properties of non-Abelian strings and the concept of Cheshire charge. We con-
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struct the non-Abelian charge operator in Section 2, and analyze the charge exchange

process in Section 3. Section 4 contains a final comment.

3.1. NON-ABELIAN STRINGS

Let us briefly recall some of the properties of non-Abelian strings in three spatial

dimensions (and vortices in two spatial dimensions).

If a simply connected gauge group G is broken to a discrete subgroup H, then
strings are classified by elements of H. To assign a group element to a loop of string,
we fix an (arbitrary) basepoint zg, and specify a path C, beginning and ending at g,
that winds once through the string loop. (See Fig. 1.) The assigned group element is
then

a(C,zo) = P exp i/A-d:v . (3.1)
C,:l)o

We refer to a(C,zo) as the “flux” of the string; it encodes the effect of parallel
transport around the path C. The flux takes values in H(zg), the subgroup of G
that stabilizes the Higgs condensate at the point zg (since parallel transport around
C must return the condensate to its original value). Since H is discrete, the flux
a(C, zg) is unchanged by deformations of C' that leave z¢ fixed, as long as C never

crosses the core of the string.

Xo

Fig. 1: The path C, starting and ending at the point zq, encircles a loop of string.
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For a configuration of many string loops, we specify a standard path for each
loop, where all paths have the same basepoint. Evidently, the flux associated with the
product path C2 o C1 obtained by traversing first C; and then Cj is just the product
a(C2,z0) - a(C1,z0) of the two fluxes associated with C; and C. Thus, a(C,zo)
defines a homomorphism that maps m1(M, z¢) to H, where M is the manifold that

is obtained when the cores of all strings are removed from R3.

The flux assigned to a path is not gauge invariant. The gauge transformations
at the basepoint zg that preserve the condensate at the basepoint, and so preserve
the embedding of H in G, take values in H(zg). Under such a gauge transformation

h € H(zp), the flux transforms as
a(C,zg) — h a(C,z0) K71 . (3.2)
In a many-string configuration, the flux of each string becomes conjugated by A.

In the presence of strings, the embedding of the unbroken group H in G neces-
sarily depends on the spatial position z. If the strings are non-Abelian, this position
dependence is described by a non-trivial fiber bundle. The base space of the bundle
is the spatial manifold M, the fiber is H, and the structure group is also H, which
acts on the fiber by conjugation. The bundle is twisted: Upon transport around the
path C, the group element h € H(z¢) becomes conjugated by a(C,z¢). This twist
prevents the bundle from being smoothly deformed to the trivial bundle M x H. One
thus says that the unbroken H symmetry is not “globally realizable”;[w’l'q there is
no smooth function of position that describes how the unbroken group is embedded
in G. Only the subgroup of H that commutes with the flux of all strings is globally

realizable on M.

To define the H-charge of a state, we will want to consider how the state trans-
forms under global H transformations. Fortunately, these global gauge transforma-
tions can be implemented, even though a topological obstruction prevents H from
being globally realized. The point is that it is sufficient to be able to define an H
transformation on and outside a large surface ¥ (homeomorphic to S?) that encloses
all of the string loops. The transformation cannot be smoothly extended inside the
sphere if it is required to take values in H(z). However, one may relax this require-

ment and allow the gauge transformation to take values in G inside of ¥; then a
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smooth extension is possible. It makes no difference what extension is chosen, for
gauge transformations of compact support act trivially on physical states. (In two
spatial dimensions, the only global H transformations that can be implemented are
those that commute with the total flux; i.e., the flux associated with a path that

encloses all of the vortices.)

If the basepoint zq lies outside the surface ¥, then, under the global gauge trans-
formation h € H, the flux of a string transforms as in eq. (3.2). Thus, the H
representations mix up the string loop state labeled by a € H with string loop states
labeled by other group elements in the same conjugacy class as a. Let [a] denote the
conjugacy class that contains a. The action of H on the members of the class [a]
defines a (reducible) representation that we denote as DD, In DD each element

of H is represented by a permutation of the class, according to
DUD(n): |y — |hd'h™Y) | o' €d] . (3.3)

This representation can be decomposed into irreducible representations of H. For
each class [a] there is a unique state that can be constructed that transforms trivially
under H; it is the superposition of flux eigenstates

05[a]) = —— 5 |d) (3.4)
€[a]

V]

where n[,) denotes the order of the class. The other states contained in the decom-
position of DU carry H -charge. This is “discrete Cheshire charge,” for the charge
of the loop has no localized source. (Note that the charged string states transform

trivially under the center of H, since D% represents the center trivially.)

The splitting between the charge-0 string state eq. (3.4) and the lowest charge
excitation of the string is of order exp(—«A), where & is a string tension, and A is
the area of the string loop.[11'12] It is a remarkable property of Cheshire charge that,
in the presence of a large string loop, the gap between the ground state and the first
charged excitation is much less than the corresponding gap when the string is absent.

Indeed, the gap approaches zero very rapidly as the size of the loop increases.

The above discussion of the discrete Cheshire charge carried by a string loop also

applies, in two spatial dimensions, to the charge carried by a vortex pair, if the total
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flux of the pair is trivial. In fact, in two dimensions, there is a somewhat more general
notion of Cheshire charge. We may consider a pair of vortices with flux a; and as,
such that the total flux atot = @1a2 is a non-trivial element of H. Then the global
gauge transformations that can be implemented belong to the normalizer N(aiot),
the subgroup of H that commutes with the total flux. Unless a1 and a2 commute
with all elements of N(atot), the two-vortex states will transform as a non-trivial
representation of N(atot), which can be decomposed into its irreducible components.

Thus, there are two-vortex states that carry non-trivial N (atot)-charge.

3.2. CHARGE OPERATOR

The discrete charge of an object, including a charged string loop, can be detected
at long range by means of the Aharonov-Bohm effect™  Let |u) denote the wave-
function in internal-symmetry space of an object located at ¢ that transforms as the
irreducible representation D) of . Then when the particle is transported around
the closed path C that begins and ends at z¢, the wave-function is modified according

to
) — DY) [a(C, z0)] |u) ; (3.5)

if the string is in the flux eigenstate |a), then the Aharonov-Bohm phase that can be

measured in an interference experiment is
(u] D¥)(a) [u) . (3.6)

But if the string is in the charge-zero eigenstate |0;[a]) given by eq. (3.4), then the

expectation value of the “phase” D®)(a) becomes

1Zwai%ZMWmﬂ:#M@L (3.7)

a] a'€[a hel 27
where ny is the order of the group, n, is the dimension of D®), and ) is the
character of the representation. The second equality follows from Schur’s lemma.

In principle, the charge inside a large region can be measured by means of a

process in which the world sheet of a string sweeps over the boundary of the region.
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If the string is in the charge-zero eigenstate |0;[a]), and the object enclosed by the
world sheet transforms as the irreducible representation (v) of H, then the amplitude
for this process will be weighted by the Aharonov-Bohm factor (1/n,)x®)(a). The
charge (v) of an unidentified object can be determined by measuring this factor for

each class [a].

A gauge-invariant operator Fj,)(X) can be constructed that inserts, as a classical
source, a string world sheet in the state |0; [a]) on the closed surface ¥.. The realization
of this operator in a Euclidean lattice gauge theory was described in Ref. 4 in the
case where H is Abelian (see also Ref. 15), and in Ref. 16, 12 for H non-Abelian. (It
is closely related to the 't Hooft loop operator.[m) If the surface ¥ is chosen to lie in
a time slice, then the operator F,)(¥) measures the charge enclosed by ¥. To define
the charge of an isolated object, we consider a surface ¥ that encloses the object, and
whose closest approach to the object is large compared to the correlation length of
the theory. Let |1} denote the quantum state of the object. Then we have

(| Fla)(2) |¥)
(F [a](z)>0 -

where p(*)(1; %) is the probability that the object carries charge (). By measuring

> P E) x(a) (3.8)

Fq)(%) for each class, we can determine all of the p)’s. (It is necessary to divide by
the vacuum expectation value { F] [a](2)>0 to remove the effects of quantum-mechanical

vacuum charge fluctuations near the surface 2.[4])

The Aharonov-Bohm interaction makes it possible to detect H-charge at arbi-
trarily long range. Thus, a theory with discrete local H symmetry obeys a charge

superselection rule—no gauge-invariant local operator can create or destroy H-charge.

We have
(WO]@)=0, (u)# ), (3.9)

where O is any local observable, and |(v)) denotes a state that transforms as the
irreducible representation (v) of H. We can construct a projection operator that
projects out a given superselection sector of the Hilbert space. It is
n
P = =23 " \W(a)* U(a) , (3.10)

n
H acH

where U(a) represents the global H transformation a € H acting on the Hilbert space.
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This projection operator can be expressed in terms of the operators F,)(X), for it

follows from eq. (3.8) that

> Ud), (3.11)

as the surface ¥ approaches the surface at spatial infinity.

We can also use the operator F{,) to construct an “Aharonov-Bohm Order Param-
eter” (ABOP) that probes whether non-trivial superselection sectors actually exist.
Let

W(")(C) = LX(") P exp i/A -dz (3.12)
n
Y C
denote the Wilson loop operator in the irreducible representation (). This operator

introduces a classical source with charge () propagating on the world line C. The

ABOP is defined by

_ Rg(®) WW(e)
 (F(E)) (WO,

Az, 0)

i (3.13)

If H quantum numbers can indeed be detected at infinite range, then we expect that

<A(”)(E,C)>0 — Lx(”)(a’“():"’)) , (3.14)

[a] Ty

in the limit in which ¥ and C increase to infinite size, with the closest approach of &
to C also approaching infinity. Here k(3, C) is the linking number of the surface ¥
and the loop C. (In the Abelian case, the ABOP was first described in Ref. 15, and
was further elaborated in Ref. 4. The non-Abelian generalization was introduced in
Ref. 16, and its properties were extensively discussed in Ref. 12.)

In two spatial dimensions, the classification of superselection sectors is richer than
in three dimensions'” The Aharonov-Bohm interaction makes it possible to measure
the magnetic flux of a vortex (up to conjugation) at arbitrarily long range; therefore,

no local observable can change the conjugacy class of the total magnetic flux. The

magnetic flux (up to conjugation) of an object can be measured by the Wilson loop
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operator W(*)(C). We choose the loop C' to lie in a time slice, such that its closest
approach to the object is large compared to the correlation length of the theory. Then

(| W(C)
(WO(C))

P l

D) 3 m(#:€) —xa) (3.15)
0 g

where pjg)(; C) is the probability that the state [s)) has flux [a]. By measuring

W®)(C) for each irreducible representation (), we can determine all of the Pla)’s-

As we noted in the beginning of this chapter, if the total flux of a state is ayof,
then the charge of the state is specified by an irreducible representation of the nor-
malizer N(atot). This is because the only global gauge transformations that can be
implemented acting on this state are elements of the normalizer. In more physical
terms, the charge of an object is measured by means of its Aharonov-Bohm interac-
tion with a distant test-vortex. Such a measurement can be carried out only if the
flux of the test-vortex commutes with the flux of the object. Otherwise, the flux of
the test vortex changes when it circumnavigates the object, due to the holonomy in-
tera,ction,[lg’m] and this obscures the interference pattern. Thus, superselection sectors
are labeled by the class [atot] of the total flux, and an irreducible representation of
the normalizer N(atot). (The abstract group N(atot) is independent of how the class

representative aot is chosen.)

The operators [},)(X) and Af:])(E, C) can also be constructed in two spatial di-
mensions. Then ¥ becomes a closed curve that can be interpreted as the world line
of a vortex-antivortex pair. But for the purpose of measuring the charge of a state in
two dimensions, it is convenient to generalize the construction of the operator F; [a](Z).
If the state has non-trivial flux, the charge is a representation of the normalizer of
the flux, and there is a charge-zero vortex pair associated with each class of the nor-
malizer. There are gauge-invariant operators that, in effect, insert such charge-zero

pairs (as classical sources) on the world line X.

To construct these operators, we must specify a basepoint zy. Then a projection
operator P(a)(E,:co) can be constructed that projects out states that have flux a
associated with the path ¥ that begins and ends at zg. There is also an operator
F(b)(Z,a:o) that introduces a fluz eigenstate vortex pair on X, where the flux b is

defined with respect to paths that begin and end at zg. These operators are not
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invariant under H gauge transformations; under a gauge transformation h € H(zo),

they transform as

h . P(a) — P(hah_l) 1y F(b) — F(hbh—l) . (316)
But the combination
1 .
Fio (B, 0) = — > Pan-1)(Z, 20) Fpn-1)(Z, 20) (3.17)
Hpch

is gauge invariant. (It is unchanged if a and b are conjugated by the same element of
H, and is also independent of how the basepoint z¢ is chosen.) Were it not for the
flux projection operators, the left-hand side of eq. (3.17) would be just the operator
Fl)- And, indeed, if a is the identity, we have

Fiep) = Fip Pley 5 (3.18)

just our old F' operator times a projection onto the trivial flux sector.

Now suppose that ¥ lies in a time slice, and that we evaluate the expectation
value of F[,;(¥) in a state with non-trivial flux. Suppose, to be specific, that the
flux contained inside X is in the same H conjugacy class as a. Then the projection
operator will restrict the sum over h to the elements of the normalizer of the flux.
Furthermore, the contribution to the expectation value due to terms in which hbh~!
does not commute with the flux will be heavily suppressed when ¥ is large and far
from the object that is being measured. To see this, note that, if a vortex-antivortex
pair with flux ' winds around a vortex with flux ¢/, and @’ and ¥ do not commute,
then the pair cannot reannihilate unless flux is exchanged between the pair and the o'
vortex. (This consequence of the holonomy interaction was discussed in Ref. 12.) In
effect, then, hbh™1 is restricted to the normalizer of the flux of the state (because the
other contributions are suppressed by F ), and ranges over precisely one class of the
normalizer (because of the projection operator P). Therefore, if the state |[a], (v4))
transforms as the irreducible representation (v4) of the normalizer N(a), and if a and

b commute, we find

(la], (va)| Fra (D) [la], (va)) 1 )
<F[a,b](2)>0 B n(Va)X (b) , b€ N( ) : (319)
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But if @ and b do not commute, or if the flux of the state is not in the class [a], then

([c], (ve)| Frap(2) Hlel, (ve))
(Flag(2))g

(in the limit where ¥ becomes very large). By measuring the expectation value of

=0, c¢la] or b¢ N(a) (3.20)

Fig ) for all commuting a and b, we can determine the flux and charge of a state.

3.3. CHARGE TRANSFER

We will now consider the non-Abelian Aharonov-Bohm interactions between
string loops and point particles, and demonstrate that exchange of H-charge can

occur.

The total H-charge of a composite system consisting of a string loop and a charged
particle can be measured by studying the Aharonov-Bohm interaction of the compos-
ite with other, much larger, string loops. Obviously, then, the total H-charge of the
composite must be conserved; it cannot change when the particle winds through the

loop. Charge exchange is an inevitable consequence of charge conservation.

To see this, it is convenient to imagine a composite of a string loop and a particle-
antiparticle pair, where, initially, both the loop and the pair have zero charge (trans-
form trivially under H). Suppose that the particle transforms as the irreducible
representation D) of H; the antiparticle transforms as the conjugate representation.
Let {egy) | ©=1,2...n,} denote an orthonormal basis for the vector space on which
D®) acts. Then the initial state of the pair has the group-theoretic structure

W)= 7=

(summed over ¢). The initial state of the loop is the state |0; [a]) defined in eq. (3.4).

e @ e§">> (3.21)

Suppose that the particle and antiparticle are initially at the point zg. Then the
particle traverses a path C' that winds through the string loop and returns to z.
After this traversal, the state of the pair and the state of the loop are correlated. The
total charge is still zero, but in general the pair and the loop both have a non-trivial
charge. We can infer the final charge on the loop by calculating the final charge
carried by the pair. In fact, the final charge of the pair is actually independent of
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the initial charge of the loop; it depends only on the class [a]. Thus, to calculate the
final charge of the pair, we may take the state of the loop to be the flux eigenstate |a)
(where the flux is defined in terms of the path C as in eq. (3.1)). It does not matter

how the class representative a is chosen.

Using eq. (3.5), we find that the state of the pair after the traversal is

uia) = 7= [ e ) DY e (322

This state
but it can, of course, be decomposed into states of definite H-charge. The probability

7,[)1(;;1), a> does not transform as a definite irreducible representation of H,

p(#) that the H-charge is (1) can be extracted by using the projection operator Pk
defined by eq. (3.10). We find

Pl (v, la]) = <W> a| P \w(?,a>
= EX(M) (a)<eg)*®egp

nyny
ZX(") bab a” by

" @ ) D ()DY (5) DY (a)

~ nong
(3.23)
As we anticipated, this result is unchanged if a is replaced by a’ € [a].

If the total H-charge is zero, then the composite of string loop and pair has a

wavefunction of the form
‘d’[(:])> = Z \/pggr [loop, p*) ® |pair, i) . (3.24)
)

Thus, the probability that the loop carries charge (¢) is given by

Ploop (1)) = Pt (v [a]) = plom (v, [a)) = plaog ([a ™) . (3:29)
Of course, this probability is non-vanishing only if D is contained in DW* @ D)
and represents the center of H trivially.

We can directly verify that detectable Cheshire charge now resides on the string

loop by studying an appropriate gauge-invariant correlation function. Consider the
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process depicted in Fig. 2. This process is shown in 2+1 dimensions for ease of
visualization, but the generalization to 341 dimensions is straightforward. At time 2,
a vortex-antivortex pair is created. The flux of the vortex lies in the class [a], and the
(initial) H-charge of the vortex pair is trivial. At time ¢z, a particle-antiparticle pair
is created. The particle has H-charge (), and the pair is (initially) uncharged. Then
the particle winds counterclockwise around the [a] vortex, transferring charge to the
vortex pair. Next, another vortex-antivortex pair, with flux lying in the class [b], winds
around the (now charged) [a] vortex pair, acquiring an Aharonov-Bohm phase that is
sensitive to the charge of the [a] pair. Then the charge-(v) particle winds clockwise
around the [a] vortex, discharging the [a] pair. Finally, the particle-antiparticle pair

is annihilated at time {3, and the [a] vortex-antivortex pair is annihilated at time 4.

t, t,

——

C
t, L °

Fig. 2: The Borromean rings. C is the world line of an [a] vortex, C5 is the world
line of a [b] vortex, and Cj is the world line of a charged particle that transforms
as the representation (v). The charged particle transfers charge to the [a] vortex-
antivortex pair, and the charge is subsequently detected via the Aharonov-Bohm
interaction of the pair with the [b] vortex.

If the vortices and charged particles are treated as classical sources, this process

is described by the correlation function

<F[a](01) Fg)(C2) W(”)(C3)>0 : (3.26)

where C] is the world line of the [a] vortex, Cy is the world line of the [b] vortex,
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and Cj3 is the world line of the charged particle. As shown in Fig. 2, the three loops
(4, C9, and C3 are joined in a topologically non-trivial configuration known as the
»,[19]

“Borromean rings”; " no two loops are linked, yet the loops cannot be separated

without crossing.

By considering the case where the loops are large and far apart, and comparing
with the case where the loops are unjoined, we can isolate the Aharonov-Bohm factor
acquired by the [b] vortex pair that winds around the charged [a] vortex pair. The
calculation of eq. (3.26), using weak-coupling perturbation theory on the lattice, is
described in Ref. 12. We will not repeat the details of the calculation here, but it is
easy to explain the main idea. Loosely speaking, inserting a classical vortex with flux
a on the closed path (' is equivalent to performing a singular gauge transformation
on a surface Sp that is bounded by Cj. The path has an orientation, which induces
an orientation of the surface. The effect of the singular gauge transformation on the
Wilson loop W()(C3) is to insert the factor D(*)(a) where C3 crosses Sj in a positive
sense, and to insert the factor D(")(a_l) where ('3 crosses 51 in a negative sense. In
Fig. 3, we see that the loop (3 successively crosses Sy in a negative sense, Sy in a
negative sense, S9 in a positive sense, and S in a positive sense, before closing. Due
to the path ordering of the Wilson loop, the factor due to a later crossing appears
to the left of the factor due to an earlier crossing. These crossings therefore modify
<W(”)(Cg)>0 by the factor (1/n,)x*) (aba=16~1) compared to the case where Cj is
unjoined with €y and (2. Recalling that a and b are averaged over a class when Fig

and Fy) are inserted, we find that

<F[a](01) Fiyy(C2) W(V)(Cg)>0 X ,
— — N O hah bha A Y
<F[a](01)>0 <F[b](02)>0 <W(u)(03)>0 nH};{nyX (hah™ bha™ R b7")

(3.27)

when the loops are large, far apart, and joined.

In 341 dimensions, there is an analog of the Borromean ring configuration, in
which two disjoint closed surfaces ¥; and X are joined by a closed loop C3 that does
not link with either surface. For this configuration, eq. (3.27) still applies, with C;
and C replaced by ¥; and Y3. We can decompose the right-hand-side of eq. (3.27)
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Fig. 3: A deformation of the rings shown in Fig. 2. The gauge field is singular on
the surfaces S; and S; that are bounded by the loops C; and Cs.

into characters as

1
D Plep (1)) —xW(), (3.28)
% w
where pl((‘:gp(l/, [a]) is the probability that the charge carried by the [a] string loop, and

detected by the [b] string loop, is (¢). (Compare eq. (3.8).) Using the orthogonality
of the characters, we find from eq. (3.27) and (3.28) that
n —1\ (v 1,
p (v, [a]) = =2~ 3" xW (b1 (aba 1Y) | (3.29)
nynyg
beH

in agreement with eq. (3.25) and (3.23). Thus, the charge lost by the particle pair has
indeed been transferred to the [a] string loop. (Note that, in order to get the right
answer, it is important to choose consistent orientations for the world sheets ¥ and
Yo—the [a] string must pass through the [] string in the same sense that the Wilson

loop passes through the [a] string. Otherwise, we would in effect be measuring the

charge of the [a] string with a [67'] string, rather than a [b] string.)

We will now derive eq. (3.27) by a different method that invokes the “holonomy
interaction” between string loops. Consider two flux-eigenstate string loops that
initially carry flux @ and b. Now suppose that the b loop sweeps around the a loop and
returns to its original position. After this process, the flux of the b loop is unchanged,

[18,10,6]

but the flux of the a loop has been altered; it has become a bab™! loop. (Here
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again, we must be careful about the orientations of the string loops. The a loop
becomes a bab~! loop if it passes through the b loop in the same sense as the path
C that is used to define the flux of the b loop. If it passes through the b loop in the

opposite sense, it becomes a b~ ab loop.)

Return now to the Borromean ring process. Suppose that two string loops are
initially in the flux eigenstate |a,b). Then a particle-antiparticle pair is created, and
the particle winds through the a loop; the new state of the string loops and the

particle-antiparticle pair can be expressed as

1
VA3

(Compare eq. (3.22).) When the b loop sweeps around the a loop, the state becomes

a,b,e* ® eg”)> D¥(a) . (3.30)

1
ANy

due to the holonomy interaction. Now the particle winds back through the bab™! loop

bab~!, b, e @ eg.”)> pW(a), (3.31)

Jt

(in the opposite sense), and the state becomes

1

N

bab~!, b, e @ eg”)> DY) (b7 D (a) . (3.32)
Finally, the particle-antiparticle pair annihilates, and we have

1

n—x(”)(aba_lb“l) |67 1ab, b) . (3.33)
To reproduce eq. (3.27), we must take the initial string state to be |0;[a], 0;][5]),

in which the [a] and [b] loops are both uncharged. Thus, we average both a and b over

a class. We find that the effect of the particle-antiparticle pair on the string state is

105 [a], 0;[8]) —> (i ) ix@)(hah‘lbha-lh—lb—l)) 0; [al, 03 [8]) . (3.34)

n Ve’
Hoycn'™v

By creating the initial string state and annihilating the final string state, we obtain
eq. (3.27).
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3.4. SOME FINAL COMMENTS

We described in Section 2 how a charge-zero string loop can be used in an
Aharonov-Bohm interference experiment to measure the charge of an object. It seems
that charge could also be measured using strings that are in flux eigenstates rather
than charge eigenstates. This alternative measurement process was discussed in detail
in Ref. 11, and in some respects it is simpler than the process that we described. So

our insistence on using charge-zero string loops requires a word of explanation.

Part of the answer is that the gauge-invariant charge operator that we constructed
in Section 2 can be interpreted in terms of a process involving a charge-zero loop. In
this process, a tiny string loop is created, and is stretched to a large size. The loop
then winds around a region, shrinks, and reannihilates. The Aharonov-Bohm factor
acquired by the loop is sensitive to the total charge inside the region. This string loop
must be in a charge-zero state, rather than a flux eigenstate, because otherwise charge

conservation would forbid the creation of the loop and its subsequent annihilation.

Another point is that the notion of a flux eigenstate string suffers from an am-
biguity. Of course, flux eigenstates are not energy eigenstates, so there is quantum-
mechanical mixing between flux eigenstates that are in the same H conjugacy class.
The authors of Ref. 11 note that the time scale for this mixing is of order exp (kA),
where « is the string tension and A is the area of the loop. Therefore, the mixing can

be easily turned off by choosing the string loop to be sufficiently large.

But this is not quite the whole story, for there is another type of “mixing” that
should be considered'™ Recall that to define the flux of a string, we must choose
an arbitrary “basepoint” zg, and a path C, beginning and ending at z¢, that winds
around the string. Suppose that a virtual string loop nucleates, lassoes the basepoint,
and then reannihilates. If the string is initially assigned the flux «, and the virtual
string has flux b, then this process changes the flux to bab™!, due to the holonomy
interaction. In physical terms, we may prepare a string in a flux eigenstate, and then
measure its flux later by doing an Aharonov-Bohm interference experiment. We may
find that the flux has been altered, not because of the mixing of flux eigenstates,
but rather because of quantum fluctuations that are independent of the size of the

loop. Of course, virtual string loops are strongly suppressed at weak coupling; the
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amplitude for such a process is of order exp(—C/e?), where e is the gauge coupling.
But it is a significant point of principle that quantum fluctuations render ambiguous
the notion of the flux of the string. No such ambiguity afflicts the conjugacy class of
the flux, or the charge carried by a loop.

For these reasons, we have used charge-zero strings in our discussion of the charge
measurement process. We can imagine doing a double-slit experiment with a beam
of particles of unknown charge, where a string loop in the state |0; [¢]) surrounds one
of the slits. By observing how the shift in the interference pattern depends on the
class [a], we can determine the character of the representation according to which the

particles in the beam transform, and so infer their charge.

However, the phenomenon of charge transfer raises a puzzle. If a particle passes
through the slit that is surrounded by the string, it transfers charge to the string. By
measuring the charge on the string loop later, we can find out which slit the particle

passed through. Thus, no interference pattern should be seen.

The resolution of this puzzle is that there is a non-vanishing probability, in general,
that no charge transfer takes place. This probability is given by eq. (3.29) in the case

where (u) is the trivial representation (0); we then have

2

(3.35)

1 14
Ploop ( a]) = | —x"")(a)

14

Therefore, as long as the character does not vanish, it is possible for the particle to
slip through the string loop without being detected, and an interference pattern is
observed. From the interference pattern, the phase of the character, as well as its

modulus, can be deduced.
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Chapter 4: Vortices on Higher Genus Surfaces

When a gauge symmetry is spontaneously broken, in general there will be stable
topological defects™ What types of defects will be created depend on the spacetime
dimension and the topology of the vacuum manifold. In two spatial dimensions, if
the fundamental group of the vacuum manifold is non-trivial, there will be point
defects which are called vortices. A charged particle winding around a vortex will be
transformed by an element of the unbroken gauge group. This is the (non-Abelian)
Aharonov-Bohm effect® ™" 1t is long range and topological. This means that the
gauge transformation will not depend either on how far apart the particle and the
vortex are or on the exact loops the charged particle travels along as long as their
linking numbers with the vortex are the same. We will say that the vortex carries

(non-Abelian) magnetic flux.

Another way to look at it is that in the presence of the vortices, the funda-
mental group of the surface is non-trivial™ After a charged particle travels along a
non-contractible loop around a vortex, it will remain the same only up to a gauge
transformation. The element of the unbroken gauge group associated with that trans-
formation is the magnetic flux carried by the vortex. However, the fundamental group
of the surface may be non-trivial even without any vortices. For example, there may
be handles on the surface. There are two non-equivalent non-contractible loops asso-
ciated to each handle. Then, by the same argument, we expect we can assign group
elements to the two loops and the handle can carry magnetic flux; therefore, the
handles will have topological interaction with the vortices and the charged particles.
If we interchange two vortices or let a vortex go along a non-contractible loop, the
magnetic flux carried by the vortices and the loop will be changed. This kind of mo-
tion of the vortices can be described by the braid group of the surface’ ™ We then
have a natural action of the elements of the braid group on the states of the vortices

and the surface.

If the surface is compact, there is one relation between the generators of the
fundamental group of the surface and the group elements assigned to the vortices,
and the non-contractible loops must satisfy a relation induced from that relation.

This restricts the possible magnetic flux carried by the vortices and handles on any
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compact surfaces. The simplest example is that we cannot put a single non-trivial

vortex on a sphere.

In semiclassical approximation, a pair of vortex and anti-vortex may carry electric

B 1t $urns out that the properties of a handle are similar

charge, “Cheshire charge.
(but not equal) to the properties of two vortex-antivortex pairs. In particular, a
handle can carry Cheshire charge. If the size of the handle is very small, an observer
outside the handle will see a “particle” that carries both magnetic flux and electric
charge, a dyon.m (The term “dyon” is originally for a particle that carries both electric
and magnetic charge in 341 dimensions. We stretch its meaning to 2+ 1 dimensional
spacetime.) In fact, any particle that carries magnetic flux and/or electric charge falls
into the representations of the quantum double associated with the gauge group.[lg’ul
In the language of quantum double, we have a unified treatment of the magnetic flux
and electric charge. There is also a restriction on the configurations of the dyons on

any compact surfaces.

In Section 1, the basic properties of vortices will be briefly reviewed. The purpose
of this section is to establish conventions. In Section 2, the braid group of a surface
will be described and the topological interaction between vortices and handles will be
analyzed. We will find out that locally, there is no restriction on the assignment of
group elements to the non-trivial loops of a handle. In Section 3, we will give a semi-
classical analysis of the theory. The argument that the handle can carry Cheshire
charge is given. We also explain what a quantum double is and why it is relevant. In
Section 4, the most general formulation of dyons on a surface is given. (The analysis
of the previous sections is a special case in this formulation.) We give the conclusions
and some comments in Section 5. There is also an appendix to explain how to measure
the flux of vortices using charged particles and how to measure the charge of particles

using vortices.
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4.1. NON-ABELIAN VORTICES

We assume that for our theory, in high energy regime, the gauge group is a simply
connected Lie group. In low energy regime, the symmetry is spontaneously broken
by the Higgs mechanism, say, to a finite group, G. Then in 2 + 1 dimensions, the
point defects will be classified by 7o(G) = G From now on, we only consider the
unbroken gauge group and its representations. The original broken gauge group plays
no role in the following discussion. If the energy scale of the symmetry breaking is
very high, the size of the vortices will be very small. Low energy experiment usually
cannot probe the core of vortices. Then the space that a low energy particle sees is

the original space with the points where the vortices are removed.

We can assign a group element to any isolated vortex to label the flux by the
following method. Let us consider vortex 1 in Fig. 1. Choose a fixed but arbitrary
base point, zg (away from the vortex), and a loop around it. Then, calculate the

untraced Wilson loop,

a(C1,x0) = Pexp i/A-dx , (4.1)
C1,z0

where P denotes the path ordering. The orientation of the loop, C1, is only a con-
vention. We adopt the convention indicated in the figure. Then, if a charged particle

in representation (v) of G is transported along the loop Cj, it will be transformed by

D¥)(a(C1, o)):" ™
v — DW)(a(Cy, zo))p™) (4.2)

Since the unbroken gauge group is discrete, there is no local low energy gauge
excitation. The group element a(C1,z¢) is invariant under continuous deformation
of the loop C'. This is how the fundamental group of the space comes in. We have
assigned a group element to a generator of the fundamental group of the space with

punctures.

If there are two or more vortices, we have to choose a standard loop for each vortex

as in Fig. 17" Then we can assign group elements to the loops. The combined
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magnetic flux, for example, of vortex 1 and vortex 2 is the product of the group
elements associated to them. Here we adopt the convention that the product of two
loops, C1C%, in the fundamental group means that the particle will travel Cy first

and then Cj. So, the combined magnetic flux, in this convention, is a(C1C, z9) =

a(Ch,z0)a(Cy, zp).

Cl C2 C3

Fig. 1: The vortices in this figure are represented by circles and crosses. We choose
a base point 2y and a standard path C; around each vortex to measure its flux.

Let us consider what will happen if we interchange two vortices. Let the flux
of vortex 1 and 2 be h; and hy respectively. If we interchange the vortices coun-
terclockwise, Ilig. 2a, the magnetic flux of them will change. We have to find two
loops such that after the interchange, they will deform to the standard loops. Then
the group elements associated to them are the magnetic flux of the vortices after the

interchange. From Fig. 2b, we find that

hi — hy hzhl_l

4.3
hy — hy . (4:3)

We will rely on this kind of loop tracing method to calculate various processes in the

coming sections.
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‘ . &
2) b)

Fig. 2: In a), the two paths are the standard paths based on the same based point.
The dark curves with arrows represent the interchange of the two vortices. In b),
the two paths will deform to the standard paths after the interchange of the two
vortices. So the flux associated with them are the flux of the two vortices after the

interchange.

4.2. VORTICES ON HIGHER GENUS SURFACES

The basic element of a surface with genus greater than zero is a handle”” All
compact surfaces can be classified according to the number of handles they have. For
a single handle, there are two generators in the fundamental group. We can choose
the generators to be the loops o and § in Fig. 3. Then it is easy to see that the loop
in Fig. 4 is equal to afa~ 1571

a) b)

Fig. 3: The wide curves represent a handle that stands out of the paper. The two
standard paths of the handle are the o in a) and 3 in b). Part of 3 is under the
handle.
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Fig. 4: We can use this path to calculate the flux of a handle. The path is equal to
afa~1p7L

Since @ and B are non-contractible, a charged particle transported along them
may be transformed by an element of the gauge group. By sending charged particles

along the loops, we can measure the group elements associated to them; for example,

o a

b (4.4)

where a, b € G.

What will happen if a vortex winds around the loops? We expect that the mag-
netic flux of the vortex and group elements associated with the loops will change. We
can calculate the changes by the loop tracing method as in section 1. This means that
we have to find loops such that after the traveling of the vortex, these loops deform

to the standard loops we used to measure the flux.

If the vortex with flux A winds around the loop in Fig. 5a, we will say that it
winds around «. It implicitly means that we have chosen a path (in this case, the
path can be a straight line segement) from the position of the vortex to the base
point and the vortex goes along this path, then the a defined in Fig. 3 and finally
that path again in reverse. If also the elements associated with o and 8 are a and b

respectively, from Fig. 5b, ¢ and d, we find that they will change to

h — aha™!
a — ahah ta™! (4.5)

b— aha 'h lbah a1 .
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If the vortex winds around # in a similar sense, from Fig. 6, they will change to

h — h~Ybhb~ 1R
a— ah (4.6)
b— hlbh .

¢ ¢

a)

d ¢

Fig. 5: The motion of the vortex is represented by the loop in a). It is also called
the « loop. After the motion of the vortex as in a), the path in b) will deform to
the standard path in Fig. 1. The path in ¢) will deform to the standard path « in
Fig. 3a. The path in d) will deform to the standard path 8 in Fig. 3b.

Is it possible to assign arbitrary group elements to o and 8?7 The answer is yes, at

least locally. From (4.5) and (4.6), it is easy to see that even if the group is Abelian
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c) d)

Fig. 6: Similar to Fig. 5, the loop in a) represents the motion of the vortex. Paths
in b), ¢) and d) will deform to the standard paths in Fig. 1, « and 3 in Fig. 3

respectively.

and initially the elements associated with the loops are identity, after the winding
of a non-trivial vortex, the group elements are no longer trivial. So, we can transfer
the magnetic flux from a vortex to the handle by sending the vortex to go along «
or . To excite the handle to a state with a — a and 8 — b, consider the following:
We assume that vortices with arbitrary flux exist and initially the group elements
associated with o and 8 are identity. And we send an ab~la™! vortex to go along a.
Then, we send an a vortex to go along 8. By (4.5) and (4.6), we have

& = €& — € — a

1 (4.7)

8 — e — aba — b
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Thus, after the vortices execute the prescribed motion, the loops o and 3 are associ-

ated with the desired group elements a and b, respectively.

If the throat of the handles is small or we ignore the internal structure of the
handle and there are no pointlike vortices hiding inside the handle, we can measure
the flux of the “particle” by the loop in Fig. 4. The flux is aba=16~!; the flux carried

by a handle must be in this form.

Now let us formulate the theory in precise mathematical terms. Let the space be
an orientable connected surface, ¥. If there are n vortices on it, we have to consider
the fundamental group of the surface with n punctures and a base point, 71 (X(n), o).
The combined magnetic flux (or group elements) of vortices or handles follows from
the multiplication rule of the fundamental group. Any classical state of the vortices

and the surface is a homomorphism from m1(X(n),z0) to G,

p:m(XE(n),z0) — G . (4.8)

If the surface is also compact, there is one relation between the generators of the

fundamental group. For example, the relation for a surface of genus g, ¥, st

arfray Bt .agﬂgag_lﬁg_l =ec. (4.9)
For the compact surface of genus g with n punctures, £4(n), the relation is
—1,5-1 —1,5-1 —-
ooy By By B 0. .Cr =€ (4.10)

where our convention of the loops is shown in Fig. 7.

The flux of the vortices and handles must satisfy this relation. For example, the

relation associated with a single vortex on a sphere is
Ci=e. (4.11)

It is inconsistent to put a single non-trivial vortex on a sphere. Also, the relation of

a torus without any vortex is

alﬂlaflﬁfl =c. (4.12)

Therefore, the group elements associated with the two loops must commute.
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Fig. 7: A compact surface is represented by a large sphere with handles here. We
choose the standard positions of the n vortices and the g handles as in this figure.
We also choose a standard path for each vortex and the two standard paths o and 8
for each handle. The positions and the paths are consistent with Fig. 1 and Fig. 3.

This is a global constraint on the possible flux. We have seen that we can excite
the handle to any state locally. We will show that it is possible to construct the state
corresponding to any homomorphism, p : 71(X(n),zp) — G. We assume that we can
create vortex-antivortex pairs with arbitrary flux; to construct the state corresponding
to p, we create two sets of vortex-antivortex pairs. The first set consists of n pairs.
They contain exactly the n vortices that we want. Then we have n antivortices left.
Push the antivortices to some simply connected region. The second set of vortex-
antivortex pairs contains 2¢g pairs with appropriate flux. By sending them to go
along the a’s and the (’s, we can excite the handles to the desired states. After
they go along the loops, their flux will be changed. Now, the combined magnetic
flux of the resulting second set of totally 4¢ vortices will not be trivial. Let us push
them to the same simply connected region that contains the n antivortices. We claim
that the combined magnetic flux of first set of antivortices and the second set of
vortices is trivial. Since the surface is compact, a loop wrapped around that region
can be deformed to a loop that wraps around all handles and the n vortices. The
magnetic flux measured along this loop must be trivial because the flux assigned by

p satisfies the relation (4.10). This means that the combined magnetic flux of the
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leftover vortices is trivial. They can completely annihilate each other and the state
of the surface with the n vortices is given by p. We conclude that the space of all
states is Hom(71(2(n), zo), G).

When we consider the kinematics of the vortices on the surface, at low energy,
they are not allowed to collide with each other. And because the magnetic flux we
measure depends on the loops we choose, to determine the flux after any motion, the
vortices must be brought back to some standard positions. This kind of motion is

exactly described by the braid group of the surface.

If collision of particles is not allowed, the configuration space of n distinguishable
particles on a surface, ¥, is ¥™ — A where A is the subset of ¥” in which at least two
points in the Cartesian product coincide. The permutation group S, has an obvious
action on this configuration space. The configuration space of n indistinguishable
particles is then (X" — A)/S,. The definition of the braid group of » points on the

. [17,18,22,23]
surface is

Ba(2) = m1((S" — A)/S,) - (4.13)

Notice that although the definition of the braid group involves n indistinguishable
particles, it does not matter if the vortices are distinguishable or not because we
assume that they do not collide or after quantization, the position part of their wave-
functions do not overlap during the motion. Of course, if they are not identical, the
total wavefunction of the vortices must be a representation of the corresponding color
braid groupoid™ We use the elements of the braid group to describe the motion
of our n vortices. They will become operators of the Hilbert space of states of the

vortices and the surface after quantization.

If the surface is the plane, R?, the braid group Bn(R?) is the usual braid group
with n — 1 generators which interchange adjacent points. In Bn(Xy), there are 2g
more generators. They are the o; and #;, 1 < ¢ < g as shown in Fig. 8* (We use
the same symbols o and 3 to denote the loops in the fundamental group and the

generators of the braid group as explained above (4.5).)

* We use a different convention from Ref. 17 because his a’s involve all handles.
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These generators are not independent. They satisfy, in our convention, the rela-
tions
0i05 = 0505 li—j]>2,
Oi0i410; = 044100441 1<:<n-2,
alﬂlal_lﬂl_l .. .agﬂgag_lﬂg—lan_l ... a% e Op—1 =€,
a,'alai—lal_lze 2<:<n-1, 1<Il<yg,

azﬂlai—lﬂflze 2<i1<n—-1, 1<Il<yg,

alapal_lal = a101ap01—1 - 1<p<i<y, (4.14)
01801 B = Boifport 1<p<i<y,
T10pT10p = QpT1Qp0] 1<p<y,

Ulﬂpalﬁp:ﬁpalﬂpal I1<p<yg,
apoTtflor = o7 e,  1<p<i<yg,

5p0]-1a101 = ai‘lalalﬁp 1<p<li<yg,

g10p018p = Bporayoyt  1<p<g.

Fig. 8: These are the conventions for the braidings of the vortices with each other
and with the handles. They are equal to the braidings in Fig. 2a, Fig. 5a and
Fig. 6a.
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There is a natural action of the braid group of surface with n points on the
fundamental group of the surface with n punctures defined as follows. If 7 € B, (%)
and v € 71(X(n),zo), define 7(y) to be the loop such that after the motion of the
n points according to 7, the loop will deform to 7. By the calculation in (4.3), (4.5)
and (4.6), we find that the non-trivial actions for B,(¥4) are

! (4.15)

It is easy to check that this definition satisfies the relations (4.14). This action induces
an action of the braid group on the states of the vortices and surface. And this is

exactly how the state will be changed after the motion of the vortices.

4.3. SEMI-CLASSICAL ANALYSIS

We are going to argue that if we specify the flux of o and 8 of a handle, we know
the quantum state of the handle completely. (Of course, a general quantum state of
the handle could be a linear combination of the flux eigenstates of o and 3.) The
scheme is as follows. We try to find out a complete set of commuting observables
by first choosing an observable, say A, and find out its eigenstates. In general,
there are more than one independent eigenvectors with the same eigenvalues. So, we
find another observable, B, which commutes with A. Then we can decompose the
eigenspaces of A with respect to B. If the dimensions of the simultaneous eigenspaces
of A and B are still greater than one, we find yet another observable which commutes
with both A and B and decompose the eigenspaces and so on. This process will stop

if all the simultaneous eigenspaces are one-dimensional or we run out of observables.
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In our case of discrete gauge theory, there are not many observables. First of all,
the theory is topological. We don’t have any local excitations and the only things
that we can measure are the magnetic flux and the electric charge bounded by a loop.
For a handle, we can send charged particles to go along o and 8 to measure the flux
of them. The measurement of one loop does not affect the flux of the other; therefore,
these two observables commute. Let us denote the state of a handle that a maps to
a and B maps to b by |a, b, X) where X specifies any other quantum numbers needed
to completely specify the state of a handle. Our objective is to prove that no such
X is needed. Now, the only other possible degrees of freedom, X, are the charge
bounded by the two loops. It turns out that we cannot measure the charge bounded
by «, say, without messing up the flux of 3. The charge measurement of o does not
commute with the measurement of the flux of 8 and vice versa. Since these are all
the observables in the theory, the flux of @ and 8 form a complete set of commuting

observables and we do not need any X.

We now explain why we cannot measure the charge bounded by o without af-
fecting the flux of 8. The only way we can measure the charge bounded by a
loop is to send vortices along the loop and deduce the charge from the interfer-
ence pattern.[sl (We explain how to measure flux of a vortex by charged particles
and how to measure the charge of a particle by vortices in the appendix.) If the
handle is in the state |a,b, X) and the flux of the vortex is h, the initial state is
|h) ® |a,b,X). Now, suppose that the vortex winds around the loop «, from (4.5),
the final state is |aha™!) ® |[ahah™la™!, aha h~bah a1, X') where the quantum
number X may change to X' after the winding of the vortex. The interference term
is (hlaha=1)(a,b, X |ahah™ta=!, aha 1 h~tbah™1a~1, X'). The first factor is non-zero
if ¢ and h commute, but then the second factor is (a,b, X|a,bh™1, X') which is zero
for non-trivial h; there is no interference and we cannot know the charge bounded by

.

Notice that in some state of the handle, a can bound some well defined electric
charge. For example, in the state ), .~ |e,b), the charge bounded by a can be
measured and it is trivial. Some other linear combinations will give non-trivial charge;

however, none of these a-charge eigenstates are §-flux eignestates.

Recall that if the state of the handle is |a, b), it carries magnetic flux aba=1571.
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In the neighborhood of such a handle (in general, in the neighborhood of a vortex
with non-trivial magnetic flux), it is impossible to implement a global gauge trans-
formation A if A does not commute with the flux of the handle. It is because when
we try to extend a local gauge transformation % along a loop around the handle, the
transformation will be conjugated by the flux of the handle at the end of the loop.
There is no way to solve this inconsistent boundary condition. It is called the global
color problem.[251 We can only consider global gauge transformations that are in the
normalizer of aba™1b6™1, Nyp,-13-1. Under such a gauge transformation &, the state is

transformed to

|a, b) — |hah™L, ALY . (4.16)

Semi-classically, linear combinations of these states are physically attainable. The
vector space spanned by all these states of a handle can be decomposed to a direct
sum of irreducible representations of Ngp,-15-1. These irreducible representations are
the possible Cheshire charges that a handle can carry. Notice that the mathematical
structure of this vector space is equal to the structure of the states of two vortex-

antivortex pairs. They can carry the same kinds of Cheshire charge.

It seems possible that a handle as a whole could carry ordinary electric charges
belonging to some representations of Ngp,-13-1 in addition to the Cheshire charge.
However, this is not true because in order to measure this electric charge, we could
only send vortices around the handle as in Fig. 4. This path is equal to afa=1571
and the measurement is equivalent to the measurement of a and 3 in the appropriate
order. Another way to say this is if an observer does not care about the topology of
the space, he or she may think that the handle is “two pairs of vortex-anti-vortex.”
There is no electric charge associated to any single “vortex.” The total electric charge

can only be built up from the Cheshire charge and not something else.

Particles that carry both magnetic flux and electric charge are called dyons. The
mathematical tool to classify them is the quantum double of a group and its represen-
tations. We will give a brief review of the necessary details here. Interested readers

19,14,26
can look up the references for a full account! :

The difficulty of classifying dyons is that when a dyon carries magnetic flux a, we

can only consider electric charges which fall into the representations of the normalizer
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of a, N,. If there are two dyons with flux ¢ and b, their electric charges will be
classified by NV, and N respectively. However, when we consider the two dyons as a
whole, the total magnetic flux will be ab (in some convention) and the electric charge
must be a representation of N,;. We will find out that vectors in the irreducible
representations of the quantum double have exactly this property. The irreducible
representations of a quantum double are labeled by the conjugacy classes of flux and
an irreducible representation of the normalizer of the flux in that conjugacy class.
(All normalizers of the flux in the same conjugacy class are isomorphic.) There is
a basis in each irreducible representation consisting of vectors that represent states
of dyons with definite magnetic flux. A tensor product of two such vectors in two
irreducible representations can be decomposed to a direct sum of vectors in irreducible
representations of the normalizer of the total flux. There is also an element in (the
tensor product of two copies of) the quantum double to implement the braiding

operation.

Let us begin by recalling some properties of representations of a group. Any

representation of a group G on a vector space V is a homomorphism
¢:G — End(V) . (4.17)
This homomorphism can be extended linearly to the group algebra C[G] by

$(>_ kiki) = > kig(hi) (4.18)

where k; € C. When we consider the tensor product of two representations, ¢ =

®1 X ¢9, we have
¢(h) = ¢1(h) ® a(h) (4.19)

if h is a group element. In order to lift to the group algebra, we define the comulti-

plication A : C[G] — C[G] ® C[G], by

A(Z kih;) = E kih; @ h; . (4.20)

Then, ¢(h) = (¢1 ® #2)A(h) where now A can be any element in the group algebra.
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The meaning of the comultiplication is that when a system consists of two sub-
systems, comultiplication bridges between the transformation of the whole system
and the individual transformations of the subsystems. In general, if the symmetry
transformations of a theory form an algebra, we expect there is a corresponding co-
multiplication to relate the symmetry transformations of the whole system and the

subsystems.

Now, consider the gauge theory of a finite group G in two spatial dimensions.
From the above discussion, we expect to have the following operators. For each
element, a, of G, there is the gauge transformation operator of a. We can implement
this operator by sending an a vortex around the base point (in some convention).
The system does not change but the basis we used to measure the flux and charge
has changed by a gauge transformation. It is equivalent to relabel everything in
the system. For example, if the flux of a vortex is initially labeled by h, after the
transformation, it is labeled by aha™!. We denote this operator by the same symbol,

a.

An observer far away from the system can also measure the total magnetic flux
of the system relative to some fixed gauge choice. We also have a projection operator
P,, for each a € G, to project to the subspace of the total flux, a. The algebra of
operators, D(G), is generated by a and P, where a and b € G.

The multiplication of a, b in D(G) is same as the multiplication in the group.

Since P, is a projection operator,
PPy =é4P, . (4.21)

After a gauge transformation of a, the magnetic flux of the system changes from b to

1. 50 we have

aba™
aPy = Pyg-1a . (4.22)
We have completely determined the algebraic structure of D(G).

The comultiplication, A : D(G) — D(G) ® D(G), of elements of G is the one we

discussed before
Ala)=a®a . (4.23)

If the system is composed of two subsystems and the magnetic flux of them is b and



119

¢, then the flux of the whole system is be. Conversely, if the total flux is a, the flux

of the two subsystems can be any b and ¢ as long as bc = a, giving us

A(P)=) BoP.. (4.24)

be=a

In this equation, we have implicitly assumed some standard paths are chosen. Then

for general elements in D(G), the comultiplication is”™

A(Pyb) = A(P,)A(b)
=(Q_P®P)(bDY)

=) (Peb) ® (Pyb) -

cd=a

(4.25)

Fig. 9: This is essentially the same as Fig. 2. The shaded areas are the locations of
the subsystems. Region X and Y are bounded by dotted lines.

Let us consider the two subsystems, S and S2, located in region X and region
Y respectively. Our convention is that the first factor in D(G) @ D(G) acts on the
system in region X and the second factor acts on system in region Y. What will

happen if the two subsystems interchange positions as in Fig. 97 If the magnetic flux

*x P,bin Ref. 19 and 14 is written as “IT.
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of Sy is b, the effect of the braiding is that apart from the position change, S; does

not change its state but S2 will be changed by a gauge transformation b,
51) ® [S2) — (b]52)) ® [S51) - (4.26)
If S7 is not in magnetic flux eigenstate, we have
151) ® |S2) = > (b]S2)) ® (PslS1)) - (4.27)

beG
If we define 7 to be the operator to interchange the two factors in a tensor product
and R =), P, ®b € D(G) ® D(G), then the above action can be described by an
operator R = 7 o R because

R(IS1) ® 52)) = 7(D_(F]51)) ® (b]52)))

beG

= (b]S2)) ® (B)S1)) -

beG

(4.28)

It is easy to show that R™! = 3", P, ® b~! and for any P,b € D(G),
RA(PL)R™! = R(AP,)(Ab)R™!
=) (P@)(P®P)(bRb)(P®d
c,d

hk=a

= Z P.PLbP; ® CPkbd—l

= Z PPy Pygp-1b® Py bd~1

= 3" Pb @ hPb(Bh ) (4.29)
hk=a

= Z Prb® Phpp—1b
hk=a

=) Pb® Pyb
hk=a

= 1(A(PD)) .
The meaning of this equation is the following. If an operator d € D(G) acts on
the whole system, we can calculate its effect on the subsystems either by directly
applying the comultiplication or by the following procedure. First, interchange the
two subsystems in clockwise direction. Then, apply the comultiplication and, finally,

interchange the subsystems (counterclockwise) back to their original positions.
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With the multiplication, comultiplication and the R operator (and some other
structures), the algebra D(G) is called the quantum double associated with the group
GP" We have seen that quantum double is a generalization of the group algebra, and

we expect the states of dyons will fall into representations of the quantum double.

Now we describe the irreducible representations of D(G).[lgl Let the set of all
conjugacy classes of G be {4C}. The conjugacy class contained a will be denoted
by [a]. For each class, fix an ordering of the elements {AC} = {4g1,...,4gx}. Let
AN be the normalizer of Ag;. Choose elements, 4z, . .. Az € G, such that 4¢; =
A:vfgfl:c;l. We take Az1 = e. Consider the vector space, VA, spanned by the vectors
[4g;,%vi), j = 1,.. ..k and i = 1,...,dimv, where {*v;} is a basis of the v irreducible
representation of A N. This vector space carries an irreducible representation, II4, of

D(G) defined by

5 (Pab)| g, vi) = Sapagpr [b2gib71, DY (A2 6%a;) i) (4.30)
where 4z; is defined by 4¢; = bAgjb_l. Notice that Aa:l_le:vj is in AN. The gauge
transformation b is “twisted” into the normalizer of the flux. It can be shown that
these representations form a complete set of irreducible representations of D(G). Any
representations of D(G') can be decomposed to direct sum of these representations. In
|Agj, ¥v;), the conjugacy class labels the magnetic flux of the dyon, the representation

of AN labels the electric charge. We can use the comultiplication to define the tensor

product of representations of D(G).

The state of an ordinary electrically charged particle is |e,”v), where now, v is
an irreducible representation of G. The state of a single vortex in a group eigenstate
is |h,1) relative to some standard path, where the 1 is the trivial representation. It
is found that H[lh] ® H[lh_l] = H,[,e] @ - -- where v is a non-trivial representation of G
and this is the Cheshire charge that a pair of vortex-antivortex can carry.[M] If we
consider the handle in a state |a; b) as a particle, it has magnetic flux aba~16~1. And
the operator h changes its state to |hah™ hbh~1). The state of the whole handle as

a vector of the representation of the quantum double is
la,1) ® 16,1) @ [a™1,1) @ [671,1) (4.31)

because they have the same transformation properties under the quantum double. For

example, we can calculate the possible Cheshire charge of a handle by decomposing
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—1 -1
the tensor product H[la] ® H[lb] ®H[1a l® H[lb ], We must be careful about the meaning
of the expression in (4.31). It is originally for the state of four vortices or dyons. In
this case, it represents the state of a single handle. For example, we cannot apply the

braiding operator to it.

4.4, DYONS ON HIGHER GENUS SURFACES

For any surface ¥ with n dyons on it, we can specify the state by choosing standard
paths for the dyons and the handles and associating a vector in some representation
of the quantum double for each path. One may expect that there is a correspondence
between the multiplication of paths in the fundamental group and the tensor product
of vectors in representations of the quantum double. However, the correspondence
does not exist. To illustrate this, consider the product C;Cy 7! in Fig. 1. It is trivial in
the fundamental group. The state associated with it must be the vector in the trivial
representation, but if the state associated with Cp is |h1,1), the state associated
with ;! is |h7%,1). The tensor product |h1,1) ® |h71,1) transforms as a linear
combination of charge eigenstates, not as the vector in the trivial representation.
The reason why it does not work is that there is in general no “inverse” of a vector

in any representation of the quantum double.

This also occurs in ordinary spacetime. For example, consider QCD in 3 + 1
dimensions. When we say that there are two units of red charge inside a closed
surface, we mean that we have chosen the outward normal of the surface, and after
we integrate the color electric field on the surface relative to this normal direction,
we get two units of red charge. If we consider the product of the surface and itself
with inward normal in the second homotopy group, and the tensor product of the

corresponding charge, we run into the same difficulty as described above.

However, the tensor product does give us the combined state of two subsystems.
In 3 +1 dimensions, we have to choose the outward normal (or inward normal) for
both surfaces and determine the states corresponding to these surfaces. Then the
state of the combined system is given by the tensor product. In our case of dyons,
the orientations of the standard loops must be in the “same sense.” For example, if

the states associated with C'; and C3 in Fig. 1 are |hq,1) and |h2,1) respectively, the
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state associated with C1Cs is |h1,1) ® |hg, 1).

For compact surface ; with n dyons, if we choose the conventions in Fig. 7.
The states of the dyons can be measured by charged particles and vortices traveling
around C; (see appendix). We can denote the state where o; maps to a;, #; maps to

b; and Cj maps to |hj,"v) by
la1,b1,...,aq,bg; h1," v;. .. Ay, ""0) . (4.32)

A general state will be linear combination of these. Here we assume that the vortices
are distinguishable as explained below (4.13). If some of them are identical, the state
must satisfy some other relations; for example, it must be symmetric if they are

bosons.

If we send vortices or charged particles along the path on the left-hand side of
(4.10), we will conclude that the flux and the electric charge enclosed by the path are

trivial for any state. This means that for the state

Zk a7, 6075 b i) (4.33)

717]7

where k, are constants, the following tensor product
>kl @ 1) @ ) D o )

2.0 1) e b, e ) e @My (439

® [ T) o) @ - @ BT, )
must transform as the trivial representation.

We can also consider the motion of the dyons. Similar to the discussion in Sec-

tion 2, there is an action of the braid group on the states of the surface with dyons.

For B,(Xy), the action of the o’s are given by the R operator as discussed above!

From (4.15), we also have
ajlaj,bj; b1, v) = |ajhiahT el ajhiai ke ket
® I8 (a)) Ay, "0) (4.35)
Bilaj, bjs by, o) = |ajha, by biha) @ T (R 65) by, P10) .
One can also check that this definition satisfies the relations (4.14). Notice that the

action of the a’s and (’s cannot be written as the action of some element of the
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quantum double because the flux of o and g are not just conjugated. This represents
the fact that if we do see the internal structure of the handle, its state is not in the
Hilbert space of the states of a particle. If every dyon does not carry electric charge,
the representations v; are trivial. All formulae here then reduce to the corresponding

formulae in section 2.

Let us consider an example. Suppose the group G is the quaternion group @ =
{£1l,+%i,£7,+k}. There are five conjugacy classes: {1}, {—1}, {x:}, {£s} and
{£k} where, for example, 17 = k. And there are four one-dimensional irreducible
representations: the trivial representation 1 and 1, 1y,1, where in 1;, say, £1,+:
are represented by 1 and the others are represented by —1. There is also a two-
dimensional irreducible representation. Notice that the normalizer of —1 is the whole
group. So, if a dyon has flux —1, its electric charge can be labeled by representation

of the whole group.

Assume the space is a torus and there are two vortices and one charged particle.

A possible state is

1
|U> - 5('27]7 ka 1a k71a 1a116> + |Zv '—‘j; “k’ 1) _kal; 1a 1::3)

(4.36)

In each term, the first two factors label the flux carried by « and 8 (¢ and £j). The
third and fourth factors are the flux (+k) and the charge (trivial) of the first vortex.
The next two factors have the same meaning. The final two are the trivial flux (1)
and the charge (1) of the charged particle. The state of the handle and the states of
the vortices are entangled, but if we consider them as a whole, they are in the state

|1,1z), so together with the charged particle, they satisfy (4.34).

If the first vortex winds around 8, by (4.35), we have

1 . ..
ﬂ|v> :‘—2'(' *]7‘—];k71; ka 1) 17135) + I]v]; —ka 1, "kal; 1, 1z>
- | _ja *j;—kal; —k71; 171$> - ,]a]7k717k’17 1a1:€>)
1 . .
=5 =d= =MoL ekl - -k1)e|-k1)&1,1.) .
(4.37)
Now, the first factor in the above tensor product is the state of the handle, the

second factor is the state of the two vortices and the last factor is the state of the
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charged particle. The handle carries magnetic flux —1 and Cheshire charge 1,. The
two vortices together carry flux —1 and charge 1,. There is magnetic flux transfer

between the handle and the pair of vortices.

What will happen if a charged particle winds around a loop of a handle? As we
have seen in the beginning of section 3, if the handle is in flux eigenstate, the state of
the particle will be transformed by the flux of the loop, and the state of the handle
will remain the same. If the handle is in some linear combination of flux eigenstates,
something interesting will happen. For example, let the state of the charged particle
be |v), and assume the state of the handle is D ;. le, ). If the charged particle winds
around 3, then

V) ® ) le,b) = > [D(b)v) ® [e, b) . (4.38)

belG beG

If we now introduce an h vortex to measure the charge bounded by «, the state

changes to > ;o |D(b)v) ® |e,bh™1), then the interference term is proportional to

> (e, 0 (D(¥)v|D(b)v)e, bh~1)

bb'eG

-1
= Y (oD b)[v) 6y s (4.39)
b eG

= (v[D(h)J) .
belG
The charge bounded by « is v and the flux of « is identity. We see that the charge
of the particle is transferred to the ingoing mouth of the handle. However, the state
of the particle entangles with the state of the handle and can no longer be specified
by a single vector. This kind of charge transfer between mouths of wormholes or
handles and charged particles also occurs in 3 + 1 dimensions and for continuous

gauge groups e,
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4.5. CONCLUSION

We have argued that in 2 + 1 dimensions, non-trivial topology, the handle, can
carry magnetic flux classically. If the unbroken gauge group is finite, we can actually
assign arbitrary group elements to the two non-equivalent loops associated to the
handle. Semi-classically, the state of a handle can be specified by the flux of the two
non-trivial loops. It can also carry Cheshire charge. On the other hand, a general
particle will fall into representations of the quantum double, an algebra constructed
from the gauge group. If the surface is compact, there is a relation between the
generators of the possible flux and charges of the handles and the dyons on that

surface. If the surface is non-compact, no such relation exists.

There is topological interaction between the dyons and the handles. The motion
of the dyons is described by the braid group of the surface. Then, the topological
interaction can be described by an action of the braid group on the states of the
handles and the dyons. This action, and hence the topological interaction, can be
completely determined by the path tracing method explained in section 1. A similar
classical analysis in 3 + 1 dimensions for cosmic string has been done by Brekke et
al”and the classification of dyons has been generalized to theories with Chern-Simons

15
terms.[ ]

4.6. APPENDIX

In this appendix, we will recall how to measure the flux of a beam of identical
vortices by charged particles  and how to measure the charge of a beam of identical

charged particles by vortices.

Assume that we have a beam of identical vortices with unknown flux, k, and we
have charged particles in any desired states. We can send the charged particles in a
particular state around the vortices and then observe the interference patterns. If the

state of the particles is |v) in some representation v, the interference gives us
(| DP(R)[v) . (4.40)

If we replace |v) by |v) + A|Jw) in the above equation where X is an arbitrary complex
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number and subtract (v|D®) (h)]v) + (w]|D®) (k)|w) from it, we have
Mo DB (R)|[w) + X (w| D) (R)|v) . (4.41)

Put X to be ¢ and 1 in succession, we know the values of two expressions. A linear

combination of them gives us
(v]| DO (R)|w) . (4.42)

We can determine (v|D®*)(h)|w) for arbitrary |v), |w) and v and hence the matrix rep-

resentation of h. If we choose v to be some faithful representation, we can determine

h.

Now assume that we have a beam of charged particles in some unknown state,
|v), in some unknown irreducible representation, v, and we have vortices with any
desired flux. We also assume that (v|v) = 1. Then a similar interference experiment

will give us
(v| D@ () |v) (4.43)

for arbitrary h. Because v is irreducible, the vectors, D®)(h)[v) for h € @, will span
the whole representation space. We know the inner products of these vectors because
(D®) (hq)v| D@ (he)v) = (v|DW)(hy~ hg)[v). By Gram-Schmidt’s orthogonalization,

we can form a basis, {|e;) : 7= 1,...d}, such that |e;) = |v) and

lei) = > ch|[DW(R)v) . (4.44)
heG
Notice that the coeflicients, c%, depend only on the numbers (v[D(")(h')|v>. We also
have |[D®)(h)v) = ¥, bl |e;) for some coefficients b2,

Now we have a basis, so we can calculate the character of the representation and

hence determine the representation itself.

Suppose that there is another vector, |w), in the same representation space such
that for all b in G, (w|D™ (h)|w) = (v|D¥)(h)|v). We are going to prove that lw) is
equal to |v) up to a phase. If this can be done, we can uniquely determine the state
of the beam of charged particles by only sending vortices around them and observing

the interference pattern.
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Let |el) = > hcq ¢ [D) (h)w). Since the coefficients, ct, depend only on the
numbers (v| D) (K)|v) = (w| D) (h')|w), |e}) form a basis. Then there is an operator
L such that [e}) = Lle;). We claim that LD®)(h) = D®)(h)L for all h in G. First of
all, we have |w) = |e}) = Lle1) = |[v). Then, DW)(h)L|v) = D¥)(h)|w) = 3, bl|el) =
S b L|e) = LY btle;) = LD®(R)|v). We have

DW(h)Lleiy = DY (h)lel) = > ch DO (hh')|w)

heG
= oy DO () w) = 3 oy DO(R) L) (4.45)
hea heG
=LY D (H)|v) = LDY) (B)|es)

he@
This proves the claim. Since v is irreducible, by Schur’s lemma, L is the product of

a constant and the identity operator and [w) = e®|v) because (w|w) = (v|v) = 1.

For a beam of dyons, we can first measure the magnetic flux by sending charged
particles around them. After we know the flux, we can measure their charge by using
vortices with flux which commutes with the flux of the dyons. Then, we completely

determine the state of the dyons in some representation of the quantum double.

This analysis can be generalized to the measurement of a single particle or parti-

cles in reducible representation (with some limitation)™
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Chapter 5: Complementarity in Wormhole Chromodynamics

Many years ago, Wheeler" and Misner and Wheeler" proposed that electric field
lines trapped in the topology of a multiply-connected space might explain the origin
of electric charge. Consider a three-dimensional space with a handle (or “wormhole”)
attached to it, where the cross section of the wormhole is a two-sphere. On this space,
the source-free Maxwell equations have a solution with electric field lines caught inside
the wormhole throat. One mouth of the wormhole, viewed in isolation by an observer
who is unable to resolve the small size of the mouth, cannot be distinguished from
a pointlike electric charge. Only when the observer inspects the electric field more
closely, with higher resolution, does she discover that the electric field is actually

source free everywhere.

It is also interesting to consider what happens when a charged particle traverses
a wormhole.” (Of course, this “pointlike” charge might actually be one mouth of a
smaller wormhole.) Suppose that, initially, the mouths of the wormhole are uncharged
(no electric flux is trapped in the wormhole). By following the electric field lines, we
see that after an object with electric charge ) traverses the wormhole, the mouth
where it entered the wormhole carries charge (), and the mouth where it exited
carries charge —@). Thus, an electric charge that passes through a wormhole transfers

charge to the wormhole mouths.

In this chapter, we will address two (closely related) puzzles associated with this
type of charge transfer process. Our first puzzle concerns the quantum mechanics of
charged particles in the vicinity of a wormhole. We can compute the amplitude for
the particle to propagate from an initial position to a final position by performing
a sum over histories. Naively, one would expect this sum to include histories that
traverse the wormhole, and that the contribution to the path integral due to these

histories should be combined coherently with the contribution due to histories that

* Note that we are assuming that the wo