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Abstract

This thesis deals with some exotic phenomena in non-Abelian gauge theories.
More specifically, we study aspects of non-Abelian vortices, non-Abelian Chern-
Simons particles, wormhole physics and electroweak strings. Non-Abelian vortices
are capable of carrying charges without apparent sources (Cheshire charge). They
obey exotic statistics—they generally form irreducible representations of the braid
groups of dimensions larger than one. Owing to topological interactions, two vortices
scatter non-trivially with each other even in the absence of any classical forces. As
a function of the scattering angle, the exclusive cross-section for the vortex-vortex
scattering process in the “group eigenstates” is generally multi-valued. Moreover,
there can be an exchange contribution even if the two vortices have distinct initial
quantum numbers. Thus, two vortices can be indistinguishable without being the
same! We also construct exact wave functions for systems of non-Abelian Chern-
Simons particles. In wormhole physics, we analyze the measurements of charge and
magnetic flux in a wormhole background and show that they are complementary ob-
servables. For one thing, this investigation illustrates clearly how charge is conserved
in the presence of a wormhole. Finally, we discuss the scattering of fermions from an

electroweak string.



“Little steps for tiny feet...”
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Chapter 1

Introduction

Quantum field theories and general relativity are the two cornerstones of twen-
tieth century theoretical physics. On the one hand, quantum field theories provide
a complete description of all non-gravitational physics. On the other hand, general
relativity is a tremendously successful theory of gravitation. Let us consider our first
cornerstone. As strong, weak and electromagnetic interactions are all gauge inter-
actions, the importance of gauge theories cannot be overstated. While some of the
amazing agreements between the predictions of quantum electrodynamics (QED) and
experimental data (e.g., the anomalous magnetic moment of the electron)[ll provide
textbook examples of what an exact science should ideally be, some fundamental
questions in elementary particle physics such as the confinement of quarks remain
unsolved. It would, therefore, be invaluable to explore the subtle aspects of non-
Abelian gauge theories, in the hope that insights gained from such scrutiny might
shed some light on these fundamental issues. It is in that same spirit that studies
of black holes, in particular the information loss paradox in black hole physics, have
been made. Incidentally, these two endeavors are not totally unrelated: one of the

5 [2]

original motivations for the study of “discrete gauge theories”™ was the search for

“quantum hair” on black holes™

Even though our discussion will be essentially conceptual, we would like to re-
mark that the subject matter of this thesis is not entirely devoid of experimental
relevance. For instance, there has been some recent interest in the global analogs
of the Aharonov-Bohm effect” ™™ and Cheshire charge.m Another related area of po-
tential phenomenological interest would be nonabelions proposed in the fractional
quantum Hall effect' It is conceivable that some of the exotic phenomena described
here, apart from illuminating some subtle aspects of non-Abelian gauge invariance,
will be found to occur in condensed matter systems, particle accelerators and the

early universe.

Even though gauge theories are virtually unheard of outside the physics commu-

nity, they arise naturally in various contexts besides the formulation of fundamental



physical laws. The motion of deformable bodies is a good example of how the ab-
stract concepts of gauge theories can provide a useful framework even for discussing

everyday realities.

“A cat, held upside-down by its feet and released at rest from a suitable height,
will almost always manage to land on its feet, ... , by executing a sequence of defor-
mations beginning and ending at the same shape, a deformable body with nothing to

push against and no angular momentum has undergone a net rotation.™”

A similar effect can be seen in the following example. “Hold your arm straight
against your side and point your thumb in the forward direction. Do not rotate your
thumb about your arm as you go through the following procedures: Lift your arm
sideways until it is level with your shoulder. Then rotate your arm forward so that it
sticks straight out in front of you. Finally, drop your arm back to your side. Notice
that your thumb no longer juts forward but points in toward your side. While your
arm has completed a trajectory and returned to its starting point, your thumb has
rotated through an angle of 90° relative to its original direction. It has been globally,
but not locally, changed.”[m]

In the above example, your thumb is coupled to a slowly changing environment,
your arm. By moving your arm, your thumb is “parallel-transported” with a non-
rotation prescription. Nevertheless, you find that a cyclic evolution of the environment
does lead to a net rotation of your thumb. In analogy, upon travelling adiabatically
around a topological defect, the state of a charged particle or another vortex will
also change. We call such a change in the state of the particle the holonomy (or
the geometric phase) associated with the path. This is interesting because in many
cases the charged particle does not experience any force. Yet its dynamics is severely
affected by this global effect. The geometric phase has recently shown up in chemical

reactions™” “If you ignore the geometric phase, you do so at your own risk.*"

This type of topological interaction will be the subject under study in this thesis,
the remainder of which is organized as follows: The concept of vortices (point-like
topological defects in two spatial dimensions) is introduced in Chapter 2 which also
contains a brief discussion on the topological classification of vortices and the concept
of quantum hair. In this thesis, we are interested in a special class of such objects

. . 1219 . PR . . .
(non-Abelian VOI‘thGS)[ ! which are shown to exhibit various exotic properties. For



example, a pair of vortices is capable of carrying charges without apparent sources.

13,14,20-22] .
! "in homage to the

This unlocalized charge has been called “Cheshire charge
Cheshire’s cat in “Adventures in the Wonderland”. The mechanisms for its existence
and its transfer between a pair of vortices and a charged particle will be the main
theme of our study in Chapter 3k

Owing to topological interactions, two vortices scatter non-trivially with each
other even in the absence of classical forces!”"* In doing so, they exchange their
quantum numbers. In Chapter 4, we compute the exclusive cross section for vortex-
vortex scattering”” It is found to be a multivalued function of the scattering angle.
(More precisely, it exhibits non-trivial monodromy properties.) Moreover, there can
be an exchange contribution to the vortex-vortex scattering amplitude that adds co-
herently with the direct amplitude, even if the two vortices initially have distinct
quantum numbers. The existence of an exchange contribution means that it is not
possible in principle to keep track of which vortex is which. In this sense, the vor-
tices are indistinguishable, but not the samer” We also show how the non-Abelian
statistics obeyed by the non-Abelian vortices fits into general discussions of quantum
statistics that have appeared in the literature™ It is interesting to note that our
formula for the differential cross section of the two vortex scattering process coincides
with the one derived for the scattering of two scalar particles in 241 dimensional

gravity.ps] Thus, it may not be too crazy to speculate upon a possible realization of

non-Abelian statistics in this context.

Another class of objects obeying non-Abelian statistics arises in theories with
non-Abelian Chern-Simons terms. In Chapter 5, we obtain exact wave functions for
N non-Abelian Chern-Simons particles using ladder operators.[%] In this example, our

insight with multivalued wave functions is used to solve the many-body problem.

In Chapter 6, we apply our concepts to resolve some puzzles in wormhole elec-
trodynamics and chromodynamics.m For one thing, our analysis shows us clearly
how charge is conserved as a charged particle falls into a wormhole and becomes out
of sight to an outside observer. Alternatively, the reader might prefer to envision
our space as a thin two-dimensional film, containing objects with Aharonov-Bohm **
interactions. It might actually be possible to fashion such wormholes in the labora-

tory. We hope to convey to the reader our belief that the concepts behind the exotic



phenomena discussed here are very natural consequences of non-Abelian gauge theo-
ries and our results truly lead us to a better understanding of the basic structure of

non-Abelian gauge theories.

Up to now, we have only considered the adiabatic transport of particles outside
the string core. However, in the case of fermions scattering off a cosmic string, it is
well-known that some partial waves of the fermionic wave function will blow up as we

approach the core. This may lead to an enhancement of processes which only occur

in the string core”™ We will discuss a similar effect in the context of electroweak

strings in Chapter 7¥
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Chapter 2

Some Comments on Vortices

2.1 Vortices

A vortex™ is a stable time-independent solution to a set of classical field equations
that has finite energy in two spatial dimensions”” Consider the Abelian Higgs model

with the Lagrange density:

1
L==7Ful" +|Dugl* = V(|4]), (1)
where ¢ is a charged complex scalar field, D, = 0, —teA, is the covariant derivative,

and
V(igl) = 2016 — ), )

where v is real and positive. The energy can be written as
1 : 4 .
B= [ 35 + BB+ DDl + V(). 3)

For the energy to be finite, each of the three non-negative terms must be finite. In
particular, for the third term to be finite, V'(|¢|) must approach zero at spatial infinity,
and [¢| must therefore approach v. We may think of two-dimensional space as being
bounded by a big circle at r = oco. Thus, we have

b(r,0) — ve' ), (4)

r—00

Associated with every finite-energy field configuration is a mapping from the circle at
spatial infinity to the circle defined by the phase of ¢, which has a winding number

defined by
1

e

[0(§ =27)—0c(8 =0)]. (5)

n

The winding number, being an integer, must be invariant upon smooth deformations
of the fields that preserve the finiteness of the energy. That is to say it is a topological
invariant. Unlike more familiar conservation laws, a “topological conservation law”

is not directly associated with any symmetry of the action.



For the radial part of the second term
10
2 -
/d r <r(’39 zeAg>¢

2

to be finite, we have

Hence, the gauge field is a “pure gauge” locally. (i.e., F,, — 0 as r — 00.)
However, the magnetic flux through the plane can be evaluated using Stokes’ Theorem

to be

6= fravde=Zlo2n) —o(0) = Tn,  m=0ELEo (9
€ (&

which is quantized. We can, in principle, construct a solition solution (a Nielsen-
Olesen vortex) by finding the configuration of lowest energy with, say, unit winding
number, and we see that for such a configuration the gauge field cannot be a pure

gauge everywhere because the magnetic flux through the plane is non-zero.

A non-singular field configuration with n # 0 has another important property:
the field ¢ must vanish somewhere. For if ¢ had no zeros, its phase o would be
well defined everywhere. Then, by smoothly shrinking the circle at infinity to an
infinitesimal circle around the origin, we could smoothly deform the mapping o(6),
which has winding number n # 0, to the trivial mapping ¢ = constant. This is clearly
impossible. We are forced to conclude that there is at least one point at which ¢ is

ill-defined, because ¢ vanishes.

2.2 General Classification of Topological Defects"

Let ¥ be a spatially dependent order parameter subject to a potential V(¥) and
let G be the symmetry group of the theory so that V(g¥) = V(¥) for any ¢ in G.
Suppose that V attains its minimum at ¥y and that G acts on Uy non-trivially. Then
the set of values of the order parameter M = {gV¥y|g € G} also minimizes V. For
U € M, we define the unbroken symmetry group

H(W) ={heGrY =¥} C G (9)

whose embedding in G depends on the choice of ¥, The vacuum manifold has the

same topology as the coset space. i.e., M = G/H.



We see in Section 2.1 that a Nielsen-Olesen vortex is classified by its winding
number. In the general case, the order parameter of a finite energy configuration
must take values in M except possibly in some compact regions C; which may be
regarded as the cores of topological defects (vortices in two spatial dimensions). Such
multi-vortex configurations are characterized by free homotopy classes of functions
from the spatial space with the cores of the vortices excised into the order parameter
space (the vacuum manifold). Intuitively, a free homotopy class of functions is an
equivalent class of functions under “smooth deformations.” One can also define based
homotopy classes of functions by choosing a base point g (respectively Wy) in the
physical space (respectively parameter space) and consider only functions which obey
f(z0) = . For a single-vortex in R?, this based homotopy is given by 71 (M, ¥p). It
has a group structure and is known as the fundamental group of M. One can easily
check that in the case of the Nielsen-Olesen vortex G = U(1), H is trivial, M = S!
and m1(S1) = Z.

For any W, it can be shown that one can associate with any path C connect-
ing o and VU, a natural group-theoretic path isomorphism between 71 (M, ¥y) and
71(M, ). However, the crucial point is that these isomorphisms are path-dependent.
In particular, for ¥ = Wy, they are inner isomorphisms. In going from free homotopic
maps to based homotopic maps, we gain a group structure at the expense of having
an ambiguity in the assignment of an element in 71(M, ¥y) to an element in the free
homotopy class. The reason is that f is freely homotopic to ¢ if and only if f = hgh™!
for some h € 71(M, Wy). i.e., conjugate elements in 71(M, ¥y) are freely homotopic.
Thus, f and g are equally good for association with a free element. Notice that no
matter how many vortices there are, there is still only one conjugation ambiguity. In
the case of a vortex pair, we choose two standard paths, beginning and ending at
the basepoint zg, and associate them with the group elements a and b respectively.

Under conjugation, we have

h:a— hah™ b— hbh™! (10)

Modulo an overall conjugation, we describe a n-vortex configuration with a group

homomorphism: .
Wl(z,l‘o) —>7T](M,\110). (11)

This is precisely the moduli space of flat connections modulo gauge transformations:



Hom(7((X), K)/K where K = m1(M, ¥g). This object has been under intense study

in the context of Chern-Simons theory.[sl

In three spatial dimensions, 71(M, W) is useful for the characterization of line
defects. Point defects are classified by free homotopy classes of functions from S? to
M. One can again obtain a group structure by considering based homotopy classes
mo (M, Wg). There is once again an ambiguity in going from free homotopy classes to

based ones which is given by the natural action of 71(M, ¥q) on m2(M, ¥y).

2.3 Quantum Hair

It is a widely held belief that the only distinguishing features of a black hole
exterior to the horizon are charges carried by massless gauge fields. These are mass,
angular momentum and (Abelian or non-Abelian) electric or magnetic charges. This
belief is often referred to as the black hole no-hair “ theorem”™ (Challenge to this
conjecture has, however, been made.]” In this section our concern is with the in-
teresting, but separate issue of “quantum hair”—characteristics of black holes which
can only be observed quantum-mechanically. The recent interests in discrete gauge
theorym are partly motivated by the possibility of quantum hair of discrete gauge
charges.lg] Suppose we introduce in the Abelian Higgs model another field 5 which
carries half of the charge as the Higgs field ¢ and does not form condensates. By

adiabatically transporting a n particle around a n = 1 vortex,

Dun = (O — ieAu/2)n =0 (12)
gives
27
16 = 27) = expliy [ Apd0)n(6=0) = —n(6=0) (13)

0

The phase acquired by the wave function of an 5 particle is half of that acquired by
a ¢ particle because its charge is half of that of ¢. Notice that one can detect the Z
charge of a particle by Aharonov-Bohm scattering[m] it with a vortex of unit flux, even
though there is no classical gauge field. Since this Aharonov-Bohm type interaction is
long-ranged, by causality, its result must be insensitive to any local physics. (e.g., the

charged particle might have fallen into the event horizon of a black hole.) This forms
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the basis of the study of quantum hair: black holes may carry quantum-mechanical

hair (in this case, Zy charges) that is classically undetectable.

2.4 Nematic Liquid Crystals

The order parameter of a nematic liquid crystal describes the local preferred
axis in a medium of long molecules with the symmetry of ellipsoids of revolution.
One way of specifying the order parameter is to use a unit vector but without an
associated direction. (i.e., 7 and —r are identified.) Consider the action of the rotation
group SO(3) on such a unit vector without an arrow. It is clearly invariant under
rotations about the molecular axis which can be chosen, without loss of generality,
to be the z-axis. This gives rise to a U(1) symmetry whose generator will be denoted
by ). Moreover, it is also invariant under “flips”, i.e., 180° rotations about axes
perpendicular to the molecular axis. If one arbitrarily chooses one of these axes and
denotes the corresponding 180° rotation by X, one can check casily that a rotation
by ¢ about the z-axis, followed by X is equivalent to the action of X followed by a

—¢ rotation about the z-axis. i.e.,

Xl — o—19Q x (14)

Hence, the unbroken subgroup, H, has two connected components {*#?|0 < ¢ <
27} and {Xe?|0 < ¢ < 2x}. It is a semi-direct product H = U(l) xg.p. Z, rather
than a direct product. One may, however, consider the original symmetry group to
be SU(2). In that case, the unbroken group which we denote by the same symbol H
still has two connected components {¢??]0 < 6 < 47} and {Xe??|0 < 0 < 47}.”

What are the vortices in this theory? From the topological classification scheme,
m(G/H) Z no(H) = Zy = {a,e}. (15)

(In the above, we have used the exact homotopy sequence and assumed that G is
connected and simply-connected.) Hence, we have a Z; vortex. Since m1(M) is

Abelian, as discussed in section 2.2, there is no distinction between free homotopy

* One should note that X2 = ¢!?"@ which is not the identity in SU(2). Hence, regarded as a
subgroup of SU(2), H is not a semi-direct product.
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classes and based homotopy classes. Notice that there is no way of continuously
defining everywhere a generator ) for the unbroken U(1l) in the background of a
vortex. As illustrated in Fig. 1, if one defines ) by putting an arrow in the order
parameter, one runs into difficulty along a line emanating from the vortex to the
spatial infinity. This shows that the generator ) for the U(1) symmetry cannot
be globally realized™ If one considers a vortex pair instead, the region where )
is undefined can be confined to a finite region enclosing the vortex pair. “Global
unrealizability” of unbroken symmetry also occurs when there are non-Abelian gauge
vortices or monopoles with non-Abelian magnetic charge. As will be discussed in
the next chapter, this gives rise to the Cheshire charge carried by a gauge vortex-

antivortex pair or a string loop.
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Chapter 3
Topological Approach to Alice Electrodynamics

3.1 Introduction

In a spontaneously broken non-Abelian gauge theory, charge conjugation can be
a local symmetry. That is, the unbroken gauge group H may contain both a U(1)
factor generated by (), and an element X of the disconnected component of H such
that XQ X! = —Q. Such a model contains topologically stable cosmic strings with
a remarkable property—when a charged particle is transported around the string, the
sign of its charge flips. (The sign of the charge is gauge dependent, but the feature
that the sign changes has an unambiguous and gauge—invariant meaning.) This string,
which acts as a charge—conjugation looking glass, was first discussed by A. S. Schwarz,
who dubbed it the “Alice” string.[ll (The possibility that charge conjugation could be

a local symmetry was noted earlier by Kiskis.[2])

A closed loop of Alice string can carry electric charge, and the charge lost by a
particle that winds around the string is transferred to the loop. A charged string loop
is a peculiar object. It has a long-range electric field, from which its charge can be
inferred, yet there is no localized source of charge anywhere on the string or in its
Vicinity.[3‘5] Such charge with no locally identifiable source has been called “Cheshire
charge.” “An Alice string can also carry magnetic Cheshire charge, and can exchange

. . . 3,6,7
magnetic charge with magnetic monopoles.[ .

The properties of Alice strings that carry Cheshire charge, and the processes by
which charge is exchanged between strings and point particles, have been analyzed

T In this analysis, it is very convenient to employ the unitary gauge.

previously.[4-
However, in the presence of an Alice string, the gauge transformation that imposes
the unitary gauge condition is necessarily singular; it introduces a gauge artifact
surface on which fields (the electric and magnetic fields in particular) satisfy nontrivial
boundary conditions. At the price of introducing this gauge-artifact singularity, one

arrives at an appealing and vivid description of the charge-transfer phenomenon.

In this chapter, we analyze Cheshire charge using a different approach. In the

case of magnetic charge, we note that the charge on a string is really a topological
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charge, and that the transfer of charge from magnetic monopole to string has an
essentially topological origin. The transfer of topological charge can be described in a
manifestly gauge-invariant way. By using global methods, one assuages the concern
that the conclusions of previous work were an unfortunate artifact of an illicit gauge

choice.

Even in the case of electric charge, global methods provide new insights. We
will trace the mechanism of electric charge transfer to a generic topological property
of non-Abelian vortices—namely, that when one vortex winds around another, the

quantum numbers of both are modified.

The rest of this chapter is organized as follows: In Section 2, we briefly review
the simplest model that contains an Alice string, and recall the analysis of Cheshire
charge in Ref. 4-7. In Section 3, we describe the long-range interactions between
non-Abelian string loops, and use the properties of these interactions to develop a

semiclassical theory of Cheshire charge and charge transfer.

In Section 4, we note the subtleties inherent in defining magnetic charge in the
presence of loops of Alice string. For the purpose of defining the magnetic charge
carried by a particular string loop, it is convenient to introduce an (arbitrary) “base-
point,” and a canonical surface (or homotopy class of surfaces) that encloses the
loop and is tied to the basepoint. In general, the canonical surface can be chosen in
topologically inequivalent ways, and the enclosed magnetic charge depends on this
choice. It is just this ambiguity that underlies the transfer of charge from a magnetic
monopole to a string loop. We will find that, as a monopole winds around a string
loop, the canonical surfaces that are used to define the magnetic charge of both the
monopole and the loop are deformed to new (topologically inequivalent) surfaces.
Therefore, the charges defined by the original canonical surfaces are modified; charge

transfer has taken place.

Section 5 contains some concluding remarks.

3.2 Alice Strings

The simplest model that contains an Alice string has gauge group SU(2) and
a Higgs field ® that transforms as the 5-dimensional irreducible representation of

SU(2). We may express ® as a real symmetric traceless 3 x 3 matrix that transforms
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according to

® - MOM™', MeSO®3). (1)
If & has an expectation value (in unitary gauge) that can be expressed as
(@) =v-diag [1, 1, -2], )

then the unbroken subgroup of SU(2) is H = U(1) Xgs.p. Z2. The unbroken group
H has two connected components. The component connected to the identity can
be pictured as rotations about a z-axis. Since SU(2) is a double cover of the ro-
tation group, this component, which is isomorphic to U(1), can be expressed as
H, = {exp[iQ] | 0 < 6 < 4x}, where @ is the SU(2) generator @ = 1o3. There
is also a connected component not connected to the identity of the form H; =
{X exp[t0Q] | 0 < 0 < 4x}. This component consists of rotations by 180° about
axes that lie in the zy-plane. (X is any such rotation.) Each element Y of Hy anti-
commutes with @, YQY 1 = —@Q; it is a “charge-conjugation” operator embedded

in the unbroken local symmetry group.

The elements of Hy represent the possible values of the “magnetic flux” of the
topologically stable cosmic string excitations of the theory in 3+1 dimensions (or
vortex excitations in 241 dimensions). In general, the magnetic flux carried by a
cosmic string is an element of the unbroken group H that encodes the result of parallel
transport along a closed path that encloses the string. To define the magnetic flux
we must specify a basepoint z¢ and a closed loop C that starts and ends at z and
encircles the string exactly once.(See Fig. 1.) Then the flux is given by the untraced

Wilson loop operator

h(C,20) = Pexp z'/dsci A | . (3)
(0,1?0)

The flux takes values in [ (zg), the subgroup of the underlying group G that stabilizes
the condensate at the point z¢ (since parallel transport around C' must return the

condensate to its original value).

One can determine what happens to the charge of a particle that travels around

an Alice string by considering the behavior of the unbroken symmetry group H(z) as
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it is parallel transported around the string.Consider the situation depicted in Fig. 2,
with a single Alice string enclosed by a circle parameterized by ¢, 0 < ¢ < 27. At
each point on the circle labeled by ¢, there is a subgroup H(¢) embedded in G that
stabilizes the condensate ®(¢#) at that point. The gauge vector potential A, relates
these subgroups through the equation

H(¢)=U(¢)H(0)U(4)™" , (4)
where
¢
U(¢) = Pexp i/d¢A¢ . (5)

0

Note that U(27) = h(C,zo). It is certainly true that H(0) = U(27)H(0)U(27)~ !,
because H(2x) = H(0), but the analogous relation does not hold for the generators
of H. Since U(27) € Hy, we have

U(2r) QUER) ™ = —Q . (6)

An analogy can be made to the Mébius strip to make it apparent why @ is deformed
into —(@) upon parallel transport around the circle. The U(1) subgroups {H(¢)} of
SO(3) can be represented as undirected lines in % through the origin that coincide
with the axes of the rotation of the U(1) subgroups. Choosing a generator Q(¢) for
H(¢) at each ¢ is equivalent to choosing a direction for each of these lines. As ¢
varies from 0 to 27, the lines are twisted into a Mobius strip. There is no continuous

way to choose a direction on each of them.

The Mobius twist in the unbroken symmetry group H(z) described above may
be discussed more formally in terms of the “global unrealizability” of the unbroken
symmetry.[s'4’5] Let M denote the spatial manifold consisting of ®* with the cores of
the strings excised. At each point € M is defined the unbroken symmetry group
H(zx) that stabilizes the Higgs condensate ®(z). All these subgroups are isomorphic
to the same abstract group H. This structure is a fiber bundle £ with model fiber H
over the base manifold M. The structure group of the bundle is also H, and H acts
on the fibers by conjugation. Locally, in any contractable open subset U C M, the
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fiber bundle has the structure U x H. But generally there does not exist a continuous
mapping

fiMxH—E. (7)

This is because the open sets U, covering M can be patched together in a nontrivial
way using nontrivial transition functions. In more physical terms, a continuous map-
ping of the form f is a “global realization” of the unbroken symmetry H considered
as an abstract group. (In mathematical language, such a mapping is known as a
trivialization of the fiber bundle £.) Clearly, such a realization is not possible in the
presence of an Alice string, because such a mapping f would induce a continuous
choice of Q(¢) for 0 < ¢ < 27, and we just showed that no such continuous choice
exists. (“Global unrealizability” of the unbroken symmetry also occurs when there

are monopoles with non-Abelian magnetic charge.m)

The Mobius twist implies that a charged particle initially with charge ¢ will have
charge —q after winding around an Alice string. Of course, the sign of the charge can
be changed by a gauge transformation, and therefore has no unambiguous physical
meaning. But the statement that the sign changes upon transport around the string
is gauge invariant and meaningful. Suppose, for example, that two charges of like
sign are initially brought close together; they repel. (See Fig. 3.) Then one charge
travels around an Alice string while the other stays behind. When they are brought
together again, they attract. Yet the total charge, as measured by an observer far
away from the string loop and the point charges, cannot have changed. Where did

the missing charge go?

This puzzle is resolved by Cheshire charge.“’s] In order to understand what hap-
pened to the charge, it is convenient to choose a particular gauge—the unitary gauge
in which the Higgs field takes the value eq. (2) everywhere. However, the gauge
transformation that implements the unitary gauge condition is singular; it has a dis-
continuity, or cut, on a surface that is bounded by the string loop. (In other words,
one can transform to unitary gauge everywhere outside a thin pancake that encloses
the string loop. Inside the pancake, the Higgs field twists very rapidly, and the gauge
potential is very large. The singularity arises as the width of the pancake shrinks to

zero.) As a result, fields on the background of the string loop obey peculiar boundary
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conditions—the electromagnetic field changes sign on the cut, and charge of a charged

matter field flips there.

Because of the peculiar boundary conditions satisfied by the electromagnetic field
at the cut, there are solutions to the classical field equations in which the cut appears
to be a source of electric (or magnetic) charge, as in Fig. 4. There is not actually any
measurable charge density on the cut; the cut is an unphysical gauge artifact. Yet
the string loop is charged—it has a long range electric field that can be detected by a

distant observer. This electric field has no locally identifiable source; it is “Cheshire

charge.”

The charge transfer process is sketched in Fig. 5. The initial electric field of a
charge-¢ particle in the vicinity of a string loop is shown in Fig. 5a, and Fig. 5c—e
shows how the field changes as the particle travels around the path in Fig. 5b. When
the particle crosses the cut, its apparent charge flips from ¢ to —¢, and the cut seems
to acquire the compensating charge —2¢. It is clear from the final configuration in

Fig. 5e that charge 2¢ has been exchanged between the particle and the loop.

Yet there is no gauge-invariant way to pinpoint when the charge transfer took
place. The configuration of the electric field lines is gauge invariant, but the direction
of the arrows on the field lines is gauge dependent. We can move the cut by performing
a singular gauge transformation; this alters the apparent time of the charge transfer

without actually changing the physics of the process.

The charge transfer can be characterized in a gauge—invariant manner, as follows:
The nontrivial irreducible representations of H are two-dimensional, and can be la-
beled by the absolute value of the U(1) charge. The tensor product of two irreducible

representations decomposes into irreducible representations according to

lq1] @ lg2] = |1 + @2| @ |q1 — g2 - (8)

For the charge-loop system described above, the total charge is |¢|. This charge
determines (the absolute value of) the electric flux through a large closed surface
that encloses the system, and is of course conserved during the exchange process.
Initially, the loop is uncharged and the particle has charge |¢|. The exchange process
leaves (the absolute value of) the charge of the particle unchanged, but produces an

excitation of the loop with charge |2¢].
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So far, we have considered a particular model with Alice strings. Much of the
physics discussed in this chapter is independent of the details of that model. We will
briefly describe a more general class of models in which Alice-like behavior occurs'
Let the unbroken group H to be a subgroup of the simply-connected gauge group G.
Topologically stable cosmic strings occur only when 7¢(H) is nontrivial, so suppose
that H has several connected components. Groups of this sort may be constructed
as the semi-direct product of a continuous part H,., which is a connected compact Lie

group, and a discrete group D. The semi-direct product H, X g p D is a generalization

of a direct product, defined by a group homomorphism
w: D — Aut[H,] , 9)

where Aut[H,] is the group of automorphisms of H,. Group multiplication is defined

using the rule

(h1,d1) o (hz,dz) = (h1 - g, (h2),d1 - dz) . (10)

Strings will have Alice properties if the mapping ¢ is nontrivial.

In the example described earlier, D = Z; and the nontrivial automorphism re-
verses the sign of the generator @) of H, = U(1). As an example of generalized Alice

behavior, consider a model with
H = [SU(Q)] X SU(Z)Q] Xs.D. Z2 s (11)

where the nontrivial automorphism is a “parity” operator that interchanges the two
SU(2) factors. (With suitable Higgs structure, the gauge group G = SU(4) can
be broken to this H.) This model contains an Alice-like string. If an object with
representation content (R, Ry) under SU(2); x SU(2); is transported around this
string, its representation content is changed to (Rg2, R1), and the missing quantum

numbers are transferred to the string.

We should also note that a string might exhibit Alice-like behavior, for dynamical
reasons, even when such behavior is not topologically required.m That is, the flux of a
dynamically stable string might assume a value % that is not in the center of H, even
though there are elements of the center that lie in the same connected component as A.

Then only the subgroup of H that commutes with the flux A can be globally defined
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in the presence of the string. However, in this case, strictly speaking, the position
dependence of the unbroken symmetry group H(z) is not described by a topologically
nontrivial bundle. This is because we can trivialize the bundle by smoothly deforming
the flux h to an element of the center of H. The bundle is nontrivial only if no element
of the center is contained in the same connected component as the flux; that is, only

if the Alice behavior is topologically unavoidable.

3.3 Electric Charge

In this section, we describe the electrically charged Alice string, and the charge

. ] . [10]
transfer process, in semiclassical language.

In quantum theory, the electric charge of a state reflects the transformation prop-
erties of the state under global gauge transformations. The Alice string classical
solution is not a charge eigenstate, but it has a “charge rotor” zero mode. Semiclassi-
cal quantization of the zero mode is achieved by constructing linear combinations of
the classical string states that do have definite charge.“’sl We need to worry, though,
about what is meant by a “global” gauge transformation, since we have seen that
gauge transformations are not globally realizable. Fortunately, for the purpose of
defining the total charge of a state, it is sufficient to consider a gauge transformation
that is constant on and outside a large sphere that encloses all of the charged objects.
Inside the sphere, we may deform the gauge transformation so that it vanishes on the
core of each string, and on a surface bounded by each string.{sl There is no topological
obstruction to constructing this gauge transformation. Strictly speaking, since the
flux of a string is defined relative to a basepoint, we should think of the large sphere
not as a “free” surface, but rather as a surface tied to the basepoint zg. That is, the
gauge transformation takes the same value at zo as on the sphere. (If the total mag-
netic charge enclosed by the sphere is nonzero, then there is a further obstruction, so
that the gauge transformations in the disconnected component Hy cannot be defined
on the sphere.[gl. We defer the discussion of magnetically charged string loops until

the next section, and suppose, for now, that the magnetic charge is zero.)

The magnetic flux of the string, defined by eq. (3), takes values in the disconnected
component Hy of the unbroken group H(zo) that stabilizes the condensate at the

basepoint zg. In general, this flux transforms under a transformation ¢ € H(xzo)
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according to

h(C,z0) — gh(C,z0)g™" . (12)

In the case of an Alice string, let |§) denote the string loop state with flux A(C, zo) =
Xe®?. Under a global H transformation, the transformation property eq. (12) be-

comes

U(e?)]0) = 10 — 2w) (13)

U(Xe“?)|0) = |2w —6) , (14)
where U is the unitary operator acting on Hilbert space that represents the global
gauge transformation.

One can construct linear combinations of these “flux eigenstate” string states that

transform irreducibly under H. Let

o) = [ = o (13
0
(where () is an integer). It transforms as
U(e?) lq) = ™ q) ; (16)
U(Xe™?)|q) = ¥4 |—q) . (17)

The two states |¢) and |—¢) thus comprise the basis for an irreducible representation

of H.

Only integer-|q| representations of H occur in this decomposition; an Alice string
cannot carry half-odd-integer |¢|. String loops are invariant under the center of

SU(2), and so can have no “two-ality.”

The semiclassical quantization of the charge rotor of the Alice string is strongly
reminiscent of the corresponding treatment of bosonic superconducting strings.[u] But
the physical properties of the string are actually remarkably different. Alice strings
do not carry persistent currents. Instead, they carry electric charge (or magnetic

charge, as we will discuss in the next section).
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Now we will discuss the charge transfer process. It will be enlightening to imagine
that the charged object that winds through the string loop is itself a loop of Alice
string. Then the charge transfer can be regarded as a consequence of a topological
interaction between non-Abelian string loops. (We will see in the next section that

magnetic charge transfer results from a related topological interaction.)

Consider the system of two string loops C; and C; shown in Fig. 6a. Suppose that

each string is a flux eigenstate, with
h(Cr,20) = h1,
h(Ca,x0) = ha .
Now suppose that the loop Cy winds through C; as in Fig. 6b. To determine the

(18)

magnetic flux of the loops after the winding, it is convenient to consider the paths
C1 and C} in Fig. 6¢c. During the winding procedure, these paths are dragged back
to the paths Cj and (5. Therefore, the flux associated with the paths C; and Cs
after the winding is the same as the flux associated with the paths C{ and C before
the winding. One sees that C] = C} and C} = Ci7loCyo(y. (Our convention is
that C3 o €1 denotes the path that is obtained by traversing first Cq, then C3.) We

12-14]

therefore find that, after the winding, the flux carried by the string loops ist
h’(Cl,:C()) = h(oi,xo) = h] ,

/ ety -1 (19)
h (Cz,.’L‘o) = h(Cz,.’L'o) = h1 hghl .

In the case of Alice strings, we denote by |01,0;2) the two-string state with flux
h1 = Xe®1? and hy = Xe®2@. Then, if string 2 winds through string 1, eq. (19)

becomes
’01,92> — l91,291 — 92) . (20)

If we construct charge eigenstates as in eq. (15), we find from eq. (20) that the effect

of the winding is

|01, g2) — 12 10;, —gy) | (21)
and

91, q2) — lq1 + 2¢2, —q2) (22)

Just as in the classical analysis of Section 2, the sign of ¢z flips, and loop 1 acquires

a compensating charge.
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Of course, we can also analyze (somewhat more straightforwardly) the case in
which the charge that winds is a point charge rather than a charged loop. Then
eq. (21) follows directly from the gauge transformation property of the charged par-

ticle.

3.4 Magnetic Charge

3.4.1 Twisted Flux

In the above discussion of semiclassical quantization, we assumed that the mag-
netic flux was a constant along the string. But if the unbroken group H is continuous,
as in the Alice case, the flux can vary as a function of position along the string loop.
Furthermore, if H is not simply connected, then the flux might trace out a noncon-
tractible closed path in H. Then the string loop evidently carries a type of topological
charge. This charge is precisely the magnetic charge of the loop.

To define this charge carefully, we should, as usual, select an arbitrary basepoint
ro and consider the magnetic flux defined by eq. (3). As the path C is smoothly
deformed with the basepoint z¢ held fixed, this flux varies smoothly in a given con-
nected component of the group H(zy).To be specific, consider the family of paths
{Cys | 0 < ¢ <27}, shown in Fig. 7. These paths sweep out a degenerate torus that
encloses the string loop. This family {Cy} is associated with a closed path in H(zg)
that begins and ends at the identity; namely,

h(Cy,z0)h  (Comp,20), 0< ¢ < 27 . (23)

We have thus found a natural way of mapping a two-sphere that encloses the string

loop to a closed loop in H¢, the component of H connected to the identity.

By smoothly deforming the family {C}, we may obtain the family of closed paths
{C’(’ﬁ} shown in Fig. 8. Loosely speaking, h(Cg'é,:co) is the flux carried by the string
at the point where qub wraps around the core of the string. Thus we see that the
homotopy class of the path defined by eq. (23) describes how the flux of the string

twists as a function of position along the string.

On the other hand, the family {C; ngs_zlo} is equivalent to the family of paths {C}

shown in Fig. 9. But this is just the family of paths used by Lubkin™*"*? to define
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the topological H; magnetic charge inside a two-sphere. We learn that the element
of m1(H.) that characterizes how the magnetic flux of the string twists is the same as

the magnetic charge on the loop™**

More generally, in the presence of many string loops and pointlike monopoles, we
can define the magnetic charge inside any region R whose boundary dR is homeo-

morphic to S2. The result is a homomorphism
R mo[M, zo] — mi[Hc(20)] (24)

where M denotes the manifold that is obtained when all string loops and monopoles

are removed from R3.

3.4.2 Role of the Basepoint

We should now explain why it is important to specify a basepoint x( for the
purpose of defining the magnetic charge. Naively, it seems that it should be possible
to define the magnetic charge enclosed by a “free” surface that is not tied to any
basepoint, since the enclosed charge is just the magnetic flux through the surface.
But trouble arises if we allow the magnetic charges to move. We can deform the free
surface so that it is never crossed by any moving magnetic monopoles or string loops.
Nevertheless, the magnetic flux through the surface can change if the surface winds

through an Alice string loop.

It will be easier to keep track of charge transfer processes if we define magnetic
charge using a surface that is tied to a basepoint. As the charges move, we can
again deform the surface so that no monopoles or strings cross it, while keeping
the basepoint fixed (as long as no monopoles or strings cross the basepoint). Then
the magnetic charge enclosed by the surface remains invariant. However, when a
monopole winds around a string loop, the surface enclosing the monopole becomes
deformed to a new, topologically inequivalent surface. We can then find how the
charge of the monopole has changed by expressing the new surface in terms of the
old one. This procedure is closely analogous to our discussion in Section 3 of how the
flux of a loop is modified when it winds around another string. There we defined the
flux using a standard path that became deformed to a new path due to the winding.
We can analyze the exchange of magnetic charge using a similar strategy, except that

a surface, rather than a path, is used to define the charge.
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In order to define the magnetic charge enclosed by a free surface X that is homeo-
morphic to S?, then, we specify not just the surface, but also a path that attaches the
surface to the basepoint zq. Of course, this path can be chosen in many topologically
inequivalent ways; the different choices are classified by m1[M, z¢]. Thus, 71 [M, z¢]
classifies the ambiguity in associating a free surface with an element of m3[M, z¢].
There is a corresponding ambiguity in the value of the magnetic charge (given by the
homomorphism ~(?) defined in eq. (24)) that is associated with a free surface. We
resolve this ambiguity by simply choosing a standard convention for the path from
the free surface to the basepoint, and sticking with this convention throughout the

process under study.

The ambiguity is illustrated by Fig. 10, which shows two inequivalent surfaces X
and ¥’ with basepoint zy that are obtained by “threading” the free surface ¥ to the
basepoint in two different ways. As shown in Fig. 10d, the surface ¥’ can be deformed
to a degenerate tube, beginning and ending at z, joined to the surface ¥. Since the
degenerate tube is equivalent to a closed path #, we may say that the two surfaces

differ by an element of m1[M, xo].

The ambiguity in associating a free surface with an element of 73[M, z¢] can be

characterized by a natural homomorphism
7w [M, zo] = Aut (ma[M, z¢]) (25)

that takes (homotopy classes of) closed paths to automorphisms of m3[M, zg]. The
mapping 7 is defined in the following way: Let 4 € m1[M,zo] and ¥ € m2[M, zo).
(Below we use the symbols 8 and ¥ to denote both homotopy equivalence classes and
particular representatives of the classes.) Then 74 is an automorphism that takes ¥

to a new surface ¥/,
T80 LY, (26)

where X' is the surface ¥ with the degenerate tube 4 added on. More precisely, let
B(t), 0 <t <1 be a parametrized path, with 3(0) = 8(1) = z¢, and let (0, ¢), 0 <
§ < m 0 < ¢ <27 be a parametrized surface with 3(0,¢) = zo. Then the new
surface ¥/ is

B(26/x) it0<0< /2,

0,9) = {2(29—77,(;5) fr/2<0<n. (27)
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Now consider how changing the threading of a free surface to the basepoint mod-
ifies the magnetic charge enclosed by the surface. Recall that eq. (3) maps a path
that begins and ends at the basepoint to an element of the group H(zg). If the path
is deformed to a homotopically equivalent path, the group element remains in the

same connected component of the group. Thus, eq. (3) defines a homomorphism
h 71 [M, 0] — mo[H(z0)] - (28)

If the surface ¥ is changed to the surface ¥’ by adding the degenerate tube 3, then
the magnetic charge enclosed by the new surface is related to the magnetic charge

enclosed by the original surface according to
() = R0 (3)7 hD(2) KV (5) (29)

That is, A(?)(X') is the closed path in H, (beginning and ending at the identity) that
is obtained when h'(#) acts on the closed path A(¥) (%) by conjugation. In the case of
the Alice string, eq. (29) simply says that, if 3 is a path that winds around a string
loop, then the magnetic charges enclosed by ¥ and ¥’ differ by a sign.

3.4.3 Charge Transfer

Eq. (29) is the key to understanding the magnetic charge transfer process, as we
will show. First, though, we should recall that 73[M, z¢] has a group structure that

allows magnetic charge to be added. The group multiplication law,
o : mo[ M, zo] X ma[ M, zo] = T2[ M, z0] , (30)

can be defined as
S120,6)  HO<O</2,

$5(20 — 7, 8) ifn/2<f<m, (31)

(E103%2)(8,9) = {

where X1, ¥, and ¥; o ¥y are homotopy equivalence class representatives. Group
multiplication in 79 is commutative. Group inversion may be expressed in terms of

class representatives as

S7H0,¢) = B(r — 0, 9) . (32)

We turn to the situation depicted in Fig. 11. Two string loops C; and Csy are
shown. We denote by f; and (s two standard paths, beginning and ending at the
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basepoint zg, that wind around the string loops. (These are elements of 71[M, z¢].)
We denote by ay and az two standard surfaces, based at zg, that enclose the string
loops. (These are elements of m3[M,z¢].) The magnetic charges of the two loops,

given by the homomorphism eq. (24), are h(*)(a1) and h{?)(as), respectively.

Now suppose that the loop C; winds through the loop C; along the path shown
in Fig. 11b. We want to determine the magnetic charges of the two loops after this
winding. To do so, consider the surfaces a} and a), shown in Fig. 11c-d. During the
winding, these surfaces are dragged back to the surfaces a; and ag, if the surfaces
are deformed so that no surface ever touches a string loop. Therefore, the magnetic
charge enclosed by a1, after the winding, is the same as the magnetic charge enclosed
by a), before the winding. Similarly, the magnetic charge enclosed by as, after the

winding, is the same as the magnetic charge enclosed by a},, before the winding.

It remains to find the magnetic charges enclosed by a) and a}, before the winding.
Fig. 12a shows a deformation of af, that makes it manifest that @), can be expressed

as
az = 7p,(az) , (33)

where 74, is the automorphism of mo[M, z¢] defined by eq.(26)—(27). In Fig. 12b, the
surface @) is expressed as the sum of two surfaces. The first (outer) surface is just
a1 o az, the surface that encloses both loops. The second (inner) surface is (a})~1; it

is the same as al,, except with the opposite orientation. We see that
/ 1y—1
ay =ajoazo(az)” . (34)

Finally, we apply eq. (29) to find the magnetic charges after the winding; the result
is
!

(az)J - )
K (ag) = B (ah) = K (B1) 7! KO (az) KD(5y) .

W (@) = KO (a) = K (ar 0 az) [ (35)

Of course, the total magnetic charge is unchanged, because A(?)(aj0a2) = h(z)l(al 0ay).

In the case of the Alice string, the magnetic charge can be labeled by an integer

p—the charge in units of the Dirac charge. If the magnetic charges on the string loops
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are initially p1 and po, and then loop 2 winds through loop 1, eq. (35) says that the

charges become modified according to

|p17p2> - lpl + 2p27 _p2> 3 (36)

in accord with the analysis in Section 2.

3.4.4 Dyons

We may also consider dyonic Alice string loops, that carry both magnetic and
electric charge. The classical magnetically charged Alice string loop has a charge
rotor zero mode, just like the magnetically neutral loop considered in Section 3, and
we may proceed with semiclassical quantization in the same manner as before. The
only difference from the previous discussion is that, for the magnetically charged
loop, there is a topological obstruction to defining global gauge transformations in
the disconnected component of the unbroken group H, similar to the obstruction
discussed in Ref. 9. (The obstruction occurs because the automorphism that reverses
the sign of ) is incompatible the matching condition of a magnetic monopole.) Thus,
we obtain states that transform irreducibly under the connected component H, =

U(1), but the states do not transform as representations of the full group.

By decomposing the classical string with magnetic charge p into irreducible rep-
resentations of U(1), as in Section 3, we find states |¢, p) with electric charge ¢, where
q is any integer. Reanalyzing the charge transfer process, we find that, when loop 2

winds through loop 1, the charge assignments change according to

g1, p1; g2, p2) — a1 + 2q2, p1 + 2p2; —q2, —p2) . (37)

Naturally, both magnetic charge and electric charge are exchanged.

We will comment briefly on how the analysis is modified when the vacuum #-angle
is nonzero. The nonvanishing vacuum angle alters the U(1) transformation properties

of states with nonzero magnetic charge, so that eq. (16) is replaced by[m

U(e™?)|q,p) = exp [iw <q + %p)] g, p) (38)

where @) is the U(1) generator, and ¢ is the charge of the state defined in terms of the
electric flux through the surface at spatial infinity. Thus, for magnetically charged
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string loops, as for all magnetically charged objects, the charge spectrum is displaced
away from the integers by —fp/2x. But otherwise, the discussion of electric and

magnetic charge transfer is not altered; in particular, eq. (37) still applies.

3.4.5 Linked Loops

The homomorphism defined in eq. (24) assigns a magnetic charge to any region
whose boundary is homeomorphic to S?. But if two string loops link, the magnetic
charge on each individual loop is not well defined in general. Only the total magnetic
charge of the two loops can be defined. The magnetic field of a pair of linked loops

has some interesting properties that we will briefly discuss.

In general, two non-Abelian string loops can link only if the commutator of their
fluxes is in the connected component of the unbroken group.* This feature is a conse-
quence of the “entanglement” phenomenon. Suppose that a string loop with flux Ay
and a string loop with flux Ay cross each other, and become linked. After they cross,
a flux hihohy thy ! must flow from one loop to the other™* ™™ 1f this commutator
is not in the connected component of H, then the commutator flux is itself confined
to a stable string. Thus, the two loops must be connected by a segment of string
that carries the commutator flux. On the other hand, if the commutator is in the
connected component of H, then the commutator flux is unconfined, and the flux
will spread out uniformly over the h; and hg loops. The linked loops will have a
long-range magnetic dipole field, though the total magnetic charge of the linked pair

1s zero.

In the case of the Alice string, consider two linked loops that carry flux Xe*1@
and Xe'%29  respectively. The commutator flux e'2(#2=01)@ ig ip H,, so that linking is
allowed. The strength of the dipole field is proportional to 62 — 61 (mod 2x). If we
fix the positions of the loops and specify initial values for 6 and s, then, since the
dipole field costs magnetostatic energy, the angle 6 — 6; will oscillate and the dipole
field will become time dependent. These oscillations will cause emission of radiation,

and ¢y — 01 will decay, eventually approaching zero.

3.5 Concluding Remarks

% We thank Tom Imbo for a helpful discussion about this.
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3.5.1 Twisted Strings and Pointlike Monopoles

In any model in which a connected gauge group G breaks to a group H that has
a disconnected component, there will be topologically stable strings. If, in addition,
H contains noncontractible closed paths (and G is simply connected), then a string
loop can have a topological twist. We have seen that the topological charge that
characterizes the twist on the string is precisely the H magnetic charge. Indeed,
magnetically charged string loops exist in any model that contains both strings and

magnetic monopoles.

But it is not guaranteed that the twist will be stable. Even if the loop is held in
place so that it does not contract, it may be energetically favorable for the loop to
untwist and spit out a pointlike magnetic monopole. Or conceivably, the monopole
may prefer to stick to the string. In other words, the twisting may be localized in
the vicinity of a point on the string loop, so that the pointlike magnetic monopole is

a “bead” that can slide along the string.Jr

Unless there is a symmetry to enforce a degeneracy, vortices with different values
of the flux are generically expected to have different masses. Correspondingly, twisting
the flux on a string loop will generically increase the potential energy stored in the
core of the string. Thus, the flux will prefer to stay near the value that minimizes

the core energy, and will twist suddenly inside the “bead.”

A gradual twist on a string is expected to be stable, then, only if the flux on the
string stays in the orbit of the unbroken symmetry group of the theory. This symmetry
cannot be a global symmetry. The identity component of the global symmetry group
must commute with the gauge group, so the action of a global symmetry cannot
rotate the flux continuously. We conclude that, barring accidental degeneracy, stable
twists can reside only on Alice-like strings—that is, the unbroken gauge group must

act nontrivially on the flux of the string.

Even for an Alice string, there may be values of the magnetic charge that cannot

be carried by the string. To illustrate this point, consider a model with a hierarchy

T Here, in contrast to the beads considered in Ref. 22, the magnetic charge carried by the
monopole 1s unconfined.
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of symmetry breakdown
SU(3)-2550(3)-250(2) , w1 >> vy . (39)

At the large symmetry breaking mass scale v1, the gauge group SU(3) is broken to its
SO(3) subgroup, embedded so that the 3 of SU(3) transforms as the 3 of SO(3). At
the much smaller scale va, Alice symmetry breaking occurs, to the unbroken group
O(2). Thus, this model contains Alice strings with tension of order v2, and magnetic
monopoles with mass of order vy /e, where e is the gauge coupling. The properties of
these strings and monopoles can be accurately described in an effective field theory,
with the very-short-distance physics at scale vy integrated out. This effective theory

is essentially the model discussed in Section 2.

The new feature of this model, though, is that, because SO(3) is embedded in
SU(3), there is a heavy monopole with mass of order vj/e, that carries half the
magnetic charge of a light monopole. (The magnetic charge of a light monopole is
characterized by a noncontractible loop in U(1) that begins at the identity and ends
at a 47 rotation, a loop that is contractible in SO(3). The magnetic charge of the
heavy monopole is characterized by a loop that ends at a 27 rotation. This loop is
noncontractible in SO(3), but can be contracted in SU(3).) Therefore, the magnetic
charge carried by a twisted loop of Alice string is actually an even multiple of the
magnetic charge quantum in this model. Correspondingly, since all representations
of SU(3) are integer spin representations of SO(3), the string can carry the electric

charge quantum.

As our general discussion in Section 4.1 indicates, it is in a sense possible to
construct string configurations with a “half twist” that carry the magnetic charge
quantum. Outside this string, the Higgs field takes values in the SU(3)/0(2) vacuum
manifold. But unlike the case of a string with a full twist, the Higgs field does not
stay within the SO(3)/O(2) submanifold. Heavy Higgs fields (and gauge fields) are
necessarily excited in the core of the string. It is energetically favorable for the half
twist to shrink to a bead, of to form a heavy monopole that is ejected from the loop.
(Which of these scenarios is realized depends on the details of the model.) The stable
twists on the string can be correctly analyzed using the effective theory, in which the

higher scale of symmetry breakdown is disregarded.
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Even if v; and vy are of the same order of magnitude, so that there is no large
symmetry breaking hierarchy, the half twist is expected to be unstable in this model.
For the Alice string with a stable twist, the “vortices” that are associated with various
slices through the string are related by a symmetry, and so are degenerate. There
is no symmetry to enforce such a degeneracy for the string with a half twist. So

introducing a half twist generically increases the core energy, which destabilizes the

twist.

3.5.2 Stable Loops

A loop with Cheshire magnetic charge will have Coulomb energy of order

2

ECoulomb ~ 6—2—1—% ) (40)

where p is the charge in units of the Dirac magnetic charge, e is the gauge coupling,
and R is the size of the loop. When the charge p is large, classically stable string loop
configurations can be constructed, such that the Coulomb potential energy prevents
the loop from collapsing. If the charge is Cheshire charge, then the size R and mass
m of a stable loop are, in order of magnitude,

R~ <1—?) K2 , Mmoo~ <1—7> K2 , (41)

e e
where £ is the string tension. Though classically stable, these string loops are not
expected to be absolutely stable; they will emit elementary monopoles via a quantum

tunneling process, assuming that the emission is kinematically allowed.

3.5.3 Cosmological Alice Strings

Because a twisted Alice string carries magnetic charge, we see that a phase tran-
sition that produces Alice strings must also produce magnetic monopoles. This ob-
servation significantly restricts the role that Alice strings can play in cosmology. If
Alice strings ever appeared in the early universe, an unacceptably large abundance
of monopoles must have appeared at the same time™ Some subsequent mechanism
must have reduced the monopole abundance to an acceptable level; we should then
ask whether the strings could have survived. For example, if the phase transition
that produced the monopoles were followed by an inflationary epoch, the monopole
abundance would have been drastically reduced. But, of course, the inflation also

would have made Alice strings extremely scarce.
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One caveat should be mentioned. The remark in the previous paragraph ap-
plies to any model such that the unbroken gauge group H contains a U(1) factor
and a charge conjugation operator that acts nontrivially on the U(1) generator Q.
But it need not apply to models that exhibit the generalized Alice-like behavior con-
sidered at the end of Section 2. In particular, a model with the unbroken group
H = [5U(2)1 x SU(2)2] xs5.p. Z2 contains generalized Alice strings. But since H is

simply connected, this model contains no magnetic monopoles.

We should note another generic feature of realistic models that contain Alice
strings. Charge conjugation is not a manifest exact symmetry in Nature. So if charge
conjugation is a local symmetry (which must be exact), it must be spontaneously
broken. In a realistic model, then, Alice strings (at low temperature) are boundaries
of charge—conjugation domain walls. If Alice strings were ever present in the early
universe, they eventually became confined by walls. Soon after the appearance of the

walls, the string network broke up and disappeared.[24’25’6]

3.5.4 Global Strings and Monopoles

Finally, we remark that the discussion of magnetic charge transfer in Section 4
also applies to the line and point defects that arise when a global symmetry group G
becomes spontaneously broken to a subgroup H. (Such defects can occur in certain
condensed matter systems, such as nematic liquid crystals.[w]) By a standard argu-

[16,6,19]
ment,

the magnetic charge, classified by 71[H], is seen to be equivalent to the
topological charge of the order parameter ®, classified by 72[G/H] (assuming that G
is simply connected). Thus, our previous analysis applies, without modification, to
the transfer of topological charge between a “global monopole” and a “global Alice

string.”

Recently, Brekke, Fischler, and Imbo® have independently investigated the prop-

erties of magnetically charged Alice strings.
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FIGURE CAPTIONS

The curve C| starting and ending at the point zg, encloses a loop of cosmic
string.
A circle, parametrized by ¢, encloses an Alice string. Corresponding to each

point of the circle is an unbroken symmetry group H(¢) that stabilizes the
condensate (¢) at that point.

Initially two particles carry charge of the same sign. But after one of the

particles travels around the string, the particles carry charge of opposite sign.

The surface S is a cut at which the electric field changes sign. The loop in (b)

carries Cheshire charge.

A particle that initially has positive charge travels through a loop of Alice string
along the path shown in (b). The electric field during the process is indicated
schematically in (c)-(e).

The flux on the two string loops C; and Cy is defined with respect to the base-
point zg and the paths C; and (3. When Cy winds through C; as in (b), the
paths C] and C} are dragged to C; and Cb.

The family of closed paths {Cy | 0 < ¢ < 27} sweeps out a degenerate torus
that encloses the Alice string loop.

A family of closed paths {Cq'é} obtained by smoothly deforming the family {Cy}.

A family of loops C;’ that sweeps over the surface of a sphere. The loops C{f

and C)_ are degenerate.

The free surface 3 in (a) can be threaded to the basepoint z¢ in inequivalent
ways, two of which are illustrated in (b) and (c). The surface (c) can be de-

formed to (d), which differs from (b) by the degenerate tube 3 that begins and

ends at the basepoint.

The magnetic flux of the string loops C; and C; is defined in terms of the paths
$1 and (2 shown in (a), and the magnetic charges of the loops are defined in
terms of the surfaces a1 and ag; the paths and the surfaces are based at the

point zg. When Cy winds through C; as in (b), the surface a} shown in (c) is
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dragged to a1, and the surface a, shown in (d) is dragged to a;. The arrows on
g 2 gg

the surfaces indicate outward—pointing normals.

Deformations of the surfaces shown in Fig. 11c-d. In (a), the surface a), has
been deformed to the degenerate tube 31 plus the surface ag. In (b), the surface

a) has been deformed to the surface a; o ap that encloses both loops, plus the

inverse of a}, (that is, a, with the orientation reversed); the surface (a})~?! is

the sum of the degenerate tube (1)~ and the surface (az)?.
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Chapter 4
Non-Abelian Vortices and Non-Abelian Statistics

4.1 Introduction

It is well known that exotic generalizations of fermion and boson statistics are
possible in two spatial dimensions. The simplest, and most familiar, such general-
ization is anyon statistics. ') When two indistinguishable anyons are adiabatically
interchanged (or one anyon is rotated by 27), the many-body wave function acquires
the phase ¢, where 0 can take any value. An instructive example of an object that
obeys anyon statistics is a composite of a magnetic vortex (with magnetic flux @) and
a charged particle (with charge ¢). [ Then the anyon phase arises as a consequence of
the Aharonov-Bohm effect, with e = €%, Furthermore, anyon statistics is actually
known to be realized in nature, in systems that exhibit the fractional quantum hall
effect. [l

It is natural to consider a further generalization: non-Abelian statistics. ™7 A
particular type of non-Abelian statistics is realized by the non-Abelian vortices (and
vortex-charge composites) that occur in some spontaneously broken gauge theories.
Loosely speaking, the unusual feature of the many-body physics in this case is that
the quantum numbers of an object depend on its history. In particular, if one vortex
is adiabatically carried around another, the quantum numbers of both may change,
due to a non-Abelian variant of the Aharonov-Bohm effect. Thus, whether two bodies
are identical is not a globally defined notion.

There is no firm observational evidence for the existence of objects that obey
this type of quantum statistics. Perhaps such objects will eventually be found in
suitable condensed matter systems. (Analogous non-Abelian defects associated with
spontaneous breakdown of global symmetries are observed in liquid crystals [ and
3He. 1) In any event, the physics of non-Abelian vortices is intrinsically interesting
and instructive. For one thing, it forces us to carefully consider some subtle aspects
of non-Abelian gauge invariance.

In this chapter, we will focus on the Aharonov-Bohm interactions of a pair of
non-Abelian vortices. This is, of course, much simpler and much less interesting than

the problem of three or more bodies. Nevertheless, an important conceptual point
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will be illuminated by our calculation of the vortex-vortex scattering cross section.
We will see that this cross section is in general multivalued. While we have learned
to be undisturbed, at least in certain contexts, by multivalued wave functions, a
cross section is directly observable, and so is ordinarily expected to be a single-valued
function of the scattering angle. But the multivaluedness of the cross section for
vortex-vortex scattering follows naturally from the ambiguity in assigning quantum
numbers to the vortices.

Indeed, multivalued scattering cross sections are a generic consequence of the
non-Abelian Aharonov-Bohm effect—they arise in the scattering of a charge off a
vortex as well. It is useful to consider the case of the “Alice” vortex, 1713 which
has the property that when a positively charged particle is adiabatically transported
around the vortex, it becomes negatively charged. When a positively charged particle
scatters from an Alice vortex, the scattered particle may be either positively charged
or negatively charged. Thus there are two measurable exclusive cross sections,” o (9)
and o_(6). Though the inclusive cross section i, = 04 + o_ is single valued, the

exclusive cross sections are not; they are double-valued and obey the conditions
o4(0+2r)=0_(0), o_(0+2r)=04(0). (1)

The double-valuedness of the exclusive cross sections is an unavoidable consequence
of the feature that a charged particle that voyages around the Alice vortex returns
to its starting point with its charge flipped in sign. We might imagine measuring
the #-dependence of the cross section by gradually transporting a particle detector
around the scattering center. But then a detector that has been designed to respond
to positively charged particles will have become a detector that responds to negatively
charged particles when it returns to its starting point. Alternatively, we might catch
the scattered particle, and then carry it back along a specified path to a central
laboratory for analysis. But then the outcome of the analysis will depend upon the

path taken. While we may (arbitrarily) associate a definite path with each value of

“Strictly speaking, these cross sections do not exist, because there are no asymptotic
charged particle states in two-dimensional electrodynamics; see section 7 for further

discussion.
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the scattering angle, this path cannot vary continuously with 6. A convention for
choosing the path artificially restricts the exclusive cross sections to a single branch
of the two-valued function, and introduces a discontinuity in the measured cross
sections. As we will discuss in more detail below, the cross sections for non-Abelian
vortex-vortex scattering have similar multivaluedness properties.

In the case of vortex-vortex scattering (unlike the case of scattering a charged
particle off of a vortex), effects of quantum statistics can be exhibited. That is, there
may be an exchange contribution to the scattering amplitude that interferes with
the direct amplitude. The existence of an exchange contribution means that the two
vortices must be regarded as indistinguishable particles—it is not possible in principle
to keep track of which vortex is which. The unusual feature of non-Abelian vortex-
vortex scattering is that exchange scattering can occur even if the initial vortices
are objects with distinct quantum numbers. The vortices are different, yet they are
indistinguishable.

Much that we will say in this chapter has been anticipated elsewhere. That the
quantum numbers of non-Abelian vortices cannot be globally defined was first empha-
sized by Bais. ' (The corresponding observation for defects associated with a spon-
taneously broken global symmetry was made earlier, by Poénaru and Toulouse. %)
Wilezek and Wu ! and Bucher [ discussed the implications for vortex-vortex scat-
tering. E. Verlinde '8 worked out a general formula for the inclusive cross section
in Aharonov-Bohm scattering, in terms of the matrix elements of the “monodromy”
operator, and Bais et al. 7] developed a powerful algebraic machinery that can be
used to compute these matrix elements (among other things). The main new contri-
butions here are a computation of the exzclusive cross sections for the various possible
quantum numbers of the final state vortices, and an analysis of vortex-vortex scat-
tering that incorporates the exchange of “indistinguishable” vortices. (Wilczek and
Wu ] attempted to calculate the exclusive cross sections, but because they missed
the multivaluedness properties of these cross sections, they did not obtain the correct
answer.) Once properly formulated, the calculation of these exclusive cross sections is
very closely related to the analysis of scattering in (2+1)-dimensional gravity, which
was first worked out by ’t Hooft ¥ and Deser and Jackiw. 19

The remainder of this chapter is organized as follows: In section 2, we review

how the the quantum numbers of non-Abelian vortices are modified by an exchange,
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and we extend the discussion in section 3 to the case of vortices that also carry
charge. We recall the general theory of the quantum mechanics of indistinguishable
particles in section 4, and describe how the special case of non-Abelian vortices fits
into this general theory. In section 5, we calculate the exclusive cross sections for
non-Abelian Aharonov-Bohm scattering of a projectile off of a fixed target. The case
of vortex-vortex scattering is analyzed in detail, and we emphasize and explain the
multivaluedness properties of these cross sections. The case of two-body scattering in
the center-of-mass frame is discussed in section 6. This calculation includes the con-
tribution due to the exchange of “indistinguishable” vortices. In section 7, we extend
the previous discussion to the case where the unbroken gauge group is continuous,

such as the case of the “Alice” vortex. Section 8 contains our conclusions.

4.2 Non-Abelian Flux and the Braid Operator

We consider, in two spatial dimensions, a gauge theory with underlying gauge
group G, which we may take to be connected and simply connected. Suppose that
the gauge symmetry is spontaneously broken, and that the surviving manifest gauge
symmetry is H. We will assume for now that H is discrete and non-Abelian. The
case of continuous H will be briefly discussed in section 7.

This pattern of symmetry breaking will admit stable classical vortex solutions. A
vortex carries a “flux” that can be labeled by an element of the unbroken group H.
To assign a group element to a vortex, we arbitrarily choose a “basepoint” zy and
a path C, beginning and ending at z¢ that winds around the vortex. The effect of

parallel transport in the gauge potential of the vortex is then encoded in

a(C,zo) = Pexp (z /C,xo A) € H(zo) . (2)

This group element takes a value in the subgroup H(zo) of G that preserves the Higgs
condensate at the point zq, since transport of the condensate around the vortex must
return 1t to its original value. If H is discrete, then a(C, zo) will remain unchanged as
the path €' is smoothly deformed, as long as the path never crosses the cores of any
vortices. (The gauge connection is locally flat outside the vortex cores, with curvature
singularities at the cores.)

The flux of a vortex can be measured via the Aharonov-Bohm effect. 2921 We can

imagine performing a double slit interference experiment with a beam of particles that
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transform as some representation R of H. If we then repeat the experiment with the

vortex placed between the two slits, the change in the interference pattern reveals
<u(R)]D(R)(a)Iu(R)> , (3)

where [u(f)) is the internal wave function of the particles in the beam. (The shift in the
interference fringes is determined by the phase of this quantity, and the amplitude
of the intensity modulation is determined by its modulus.) By measuring this for
various [u!®)’s, all matrix elements of D (a) can be determined, and hence, if the
representation is faithful, a itself.

However, the flux of the vortex is not a gauge-invariant quantity. A gauge trans-
formation h € H(zo) that preserves the Higgs condensate at the basepoint transforms

the flux according to
h: a— hah™'. (4)

(This gauge transformation is just a relabeling of the particles that are used to perform
the measurement of the flux.) Since the gauge transformations act transitively on the
conjugacy class in H to which the flux belongs, one might be tempted to say that
the flux of a vortex should really be labeled by a conjugacy class rather than a group
element. But that is not correct. If there are two vortices, labeled by group elements a
and b with respect to the same basepoint o, then the effect of a gauge transformation

at zg 1s
h: a— hah™ , b— hbh™'. (5)

Thus, if a and b are distinct representatives of the same class, they remain distinct
in any gauge.

More generally, we can imagine assembling a “vortex bureau of standards,” where
standard vortices corresponding to each group element are stored. If a vortex of
unknown flux is found, we can carry it back to the bureau of standards and determine
which of the standard vortices it matches. (Alternatively, we can find out which
antivortex it annihilates.) Thus, though there is arbitrariness in how we assign group
elements to the standard vortices, once our standards are chosen there is no ambiguity

in assigning a label to the new vortex.
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We might have said much the same thing about measuring the color of a quark.
Although the color is not a gauge-invariant quantity, we can erect a quark bureau
of standards in which standard red, yellow, and blue quarks are kept. When a new
quark is found, we can carry it back to the bureau and determine its color relative to
our standard basis. However, in the case where there are light gauge fields, curvature
of the gauge connection is easily excited. We may find, then, that the outcome of
the measurement of the color depends on the path that is chosen when the quark is
transported back to the bureau.

In the case where the unbroken gauge group is discrete, there are no light gauge
fields. The measurement of the flux of a vortex is unaffected by a deformation of the
path that is used to bring the vortex to the bureau of standards, as long as the path
does not cross the cores of any other vortices. But when other vortices are present,
there is a discrete choice of topologically distinct paths, and the measured flux will
in general depend on how we choose to weave the vortex among the other vortices
on the way back to the bureau. This ambiguity in measuring the flux is the origin of
the “holonomy interaction” among vortices, ' and of Aharonov-Bohm vortex-vortex

scattering. (67

To characterize this interaction, we consider how the fluxes assigned to a pair
of vortices are modified when the two vortices are adiabatically interchanged, as
depicted in Fig. 1. Here o and 3 are standard paths, beginning and ending at the
basepoint o, that are used to define the flux of the two vortices; the corresponding
group elements are a and b respectively. When the two vortices are interchanged (in
a counterclockwise sense), these paths can be dragged to new paths o/ and 4, in such
a way that no path ever crosses any vortex. Thus, the group elements associated with
transport along o' and 3’ are, after the interchange, still @ and b respectively. But
the final paths are topologically distinct from the initial paths; from Fig. 1b we see
that

o =p—a, B =Ftaf—b. (6)

(Here, in order to be consistent with the rules for composing path-ordered exponen-
tials, we have chosen an ordering convention in which a8 denotes the path obtained
by first traversing 3, then «.) We conclude that, after the interchange, the effect

of parallel transport around « is given by the group element aba™'. The effect of
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the interchange on the two vortex state can be expressed as the action of the braid

operator R, where

R: |a,b) — |aba™", a) . (7)

Naturally, the braid operator preserves the “total flux” ab that is associated with
counterclockwise transport around the vortex pair, for this flux could be measured
by a particle that is very far away from the pair, and cannot be affected by the inter-
change. If the interchange is performed twice (which is equivalent to transporting one

vortex in a counterclockwise sense about the other), the state transforms according

to
R*:  a,b) — |(ab)a(ab)™?, (ab)b(ab)™?) ; (8)

both fluxes are conjugated by their combined “total flux” ab.

This result has a clear, gauge-invariant meaning. Suppose that two vortices are
carried from their initial positions to the vortex bureau of standards along the paths
shown in Fig. 2a, and are found to have fluxes « and 6. Then if they are carried to
the bureau along the alternative paths shown in Fig. 2bc, the outcome of the flux

measurement will be different, as expressed in Eq. (8).

4.3 Flux-Charge Composites

The above discussion can be generalized to the case of objects that carry both
flux and charge. But there is one noteworthy subtlety. The “charge” of an object is
defined by its transformation properties under global gauge transformations. If the
object carries flux, however, there is a topological obstruction to implementing the
global gauge transformations that do not commute with the flux. 221113 If the flux
is @, only a subgroup of H, the centralizer N(a) of the flux, is “globally realizable”
acting on the vortex. Thus, the charged states of a vortex with flux a transform as a
representation of N(a) rather than the full group H.

We can understand the physical meaning of this obstruction if we think about
measuring charge via the Aharonov-Bohm effect. The charge can be measured in a
double slit interference experiment, by observing the effect on the interference pattern
when various vortices are placed between the slits. But if the particles in the beam

carry flux a, and the vortex between the slits carries flux b, then no interference
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pattern is seen if ¢ and b do not commute. The trouble is that, due to the holonomy
interaction, the objects that pass through the respective slits carry different values
of the flux when they arrive at the detector, and so do not interfere. (See Fig. 3.)
Even more to the point, the slit that the object passed through becomes correlated
with the state of the vortex that is placed between the slits, because both fluxes
become conjugated as in Eq. (8). Thus, the superposition of particles that passed
through the two slits becomes incoherent, and there is no interference. There will be
an interference pattern, and a successful charge measurement, only if the flux between
the slits commutes with the flux a carried by the particles in the beam. Hence only
the transformation properties under N(a) can be measured.

Since the global gauge transformations that can be implemented actually commute
with the flux, a non-Abelian vortex that carries charge behaves much like an Abelian
flux-charge composite. If the vortex carries flux @ and transforms as an irreducible
representation (R(*)) of N(a), then, since a lies in the center of its centralizer N(a),

it is represented by a multiple of the identity in R(®) (by Schur’s lemma),
D(R(a))(a) = ewR(“) ].R(a) . (9)

Thus, the charged vortices are anyons, and e’z is the anyon phase. A spin-statistics
connection holds for these anyons, [2?% in the sense that an adiabatic interchange of
a pair is equivalent to rotating one by 2r—we have 2™/ = ¢"r(«)

The non-Abelian character of the vortices becomes manifest when we consider
combining together two flux-charge composites, and decomposing into states of defi-

nite charge. The decomposition has the form
|a, R9) @ |b, R®)) = @p|ab, R@Y) | (10)

where R(®) denotes an irreducible representation of N(a). The nontrivial problem
of decomposing a direct product of a representation of N(a) and a representation of
N(b) into a direct sum of representations of N(ab) is elegantly solved by the represen-
tation theory of quasi-triangular Hopf algebras, as described in the beautiful paper
of Bais et al. 17 (see also Refs. 25 and 26). This decomposition also diagonalizes
the monodromy matrix M = R? that acts on the two vortex state when one vortex

winds (counterclockwise) around the other: (2723

M =R? = exp [i (Opas — Opa) — Opm)] - (11)
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Eq. (11) follows from Eq. (9) and the spin-statistics connection for anyons, for the
action of the monodromy operator is equivalent to a rotation of the vortex pair by 27,
accompanied by a rotation of each member of the pair by 27 in the opposite sense.
A remarkable property of this decomposition is that a pair of uncharged vortices
can be combined together to form an object that carries charge. 111217 This is called
“Cheshire charge,” in homage to the Cheshire cat; the charge can be detected via the
Aharonov-Bohm interaction of the pair with another, distant, vortex, but it cannot be
localized anywhere on the vortex cores or in their vicinity. Charge can be transferred
to or from a pair of vortices due to the Aharonov-Bohm interactions of the pair with
another charged object that passes through the two vortices. [?%2%21 Since the pair
generically carries a fractional spin given by e?™/ = & angular momentum is

also transferred in these processes. 3%

4.4 Non-Abelian Quantum Statistics

In this section, we will briefly describe how the non-Abelian statistics obeyed
by non-Abelian vortices fits into general discussions of quantum statistics that have
appeared in the literature.

In general discussions of the quantum statistics of indistinguishable particles, the
following framework is usually adopted: Suppose that the position of each particle
takes values in a manifold M (like R?). For n distinguishable particles, we would take
the classical configuration space to be M" = M x M x --- x M. For indistinguishable
particles (other than bosons), we must restrict the positions so that no two particles
coincide, and we must identify configurations that differ by a permutation of the

particles. Thus, the classical configuration space becomes
Co=[M"-D,]/S,, (12)

where D, is the subset of M" in which two or more points coincide, and S,, is the
group of permutations of n objects. In general, this configuration space is not simply
connected, m;(C,) # 0.

We may now imagine quantizing the theory by using, say, the path integral
method. The histories that contribute to the amplitude for a specified initial config-
uration to propagate to a specified final configuration divide up into disjoint sectors

labeled by the elements of 71(C,). We have the freedom to weight the contributions
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from the different sectors with different factors, as long as the amplitudes respect the
principle of conservation of probability. In general, there are distinct choices for these
weight factors, which correspond to physically inequivalent ways of quantizing the
classical theory. 1

We can now define an “exchange operator” that smoothly carries the final particle
configuration around a closed path in C,. Although this exchange does not disturb the
positions of the particles, it mixes up the different sectors that contribute to the path
integral. Since these sectors are weighted differently, in general, the exchange need not
preserve the amplitude. This means that the amplitude need not be a single-valued
function of the n positions of the final particles. The effect of the exchange can be
expressed as the action of a linear operator acting on the amplitude, and because the
total probability sums to one, this operator is unitary. By considering the effect of two
exchanges performed in succession, we readily see that the exchange operators provide
a unitary representation of the the group =;(C,). Thus, a unitary representation of
71(C,) acting on amplitudes (or wave functions) is a general feature of the quantum
mechanics of n indistinguishable particles. (The weight factors appearing in the path
integral also transform as a unitary representation of =1(C,).)

If the manifold is B¢ for d > 3, then 71(Cn) = S,, and the exchange operators
provide a unitary representation of the permutation group S,. In addition to the
familiar one-dimensional representations associated with Bose and Fermi statistics,
non-Abelian representations (“parastatistics”) are also possible in principle. But it is
known that, in a local quantum field theory, parastatistics can always be reduced to
Bose or Fermi statistics by introducing additional degrees of freedom and a suitable
global symmetry that acts on these degrees of freedom. ¥ For d = 1, in this frame-
work, no exchange is possible—the particles cannot pass through each other—and
there is no quantum statistics to discuss.

The case d = 2 is the most interesting. Then m(C,) is B,, the braid group on
n strands. This is an infinite group with n — 1 generators 01,02, -+, 0,_1, where o,
may be interpreted as a (counterclockwise) exchange of the particles in positions j

and j 4+ 1. These generators obey the defining relations
0;0r = 0k0; , ]j—k!EQ, (13)

and
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0j0410; = 044100541 , j:1,2,--~,n—2 (14)

(The Yang-Baxter relation). It follows from the Yang-Baxter relation that, in a one-
dimensional unitary representation of the braid group, all of the ¢;’s are represented
by a common phase €. This is anyon statistics. But non-Abelian representations
of the braid group may also arise in local quantum field theories. Indistinguishable
particles in two dimensions that transform under exchange as a non-Abelian unitary
representation of the braid group are said to obey non-Abelian statistics.

Our discussion of non-Abelian vortices fits into the general framework outlined
above, but with an important caveat. If the vortex flux takes values in an unbroken
local symmetry group H(zo), we treat two vortices with flux ¢ and b as “indistin-
guishable” if b = hah™' for some h € H(xg), and if both vortices have the same charge
(transform as the same irreducible representation of the centralizer N(a) & N(b)).
The philosophy is that the particles are regarded as indistinguishable if an exchange
of the particles can conceivably occur (in the presence of other particles with suitable
quantum numbers) without changing the quantum numbers assigned to the many-
particle configuration. The caveat is that these “indistinguishable” particles are not
really identical. For example, two vortices with flux a and b are distinct—e.g., the a
vortex will not annihilate the antiparticle of the b vortex—if @ # b, even if a and b
are in the same conjugacy class.

This classification of the different types of “indistinguishable” vortices can also be
described in terms of the representation theory of a quasi-triangular Hopf algebra, or
“quantum double”. 172528 The quantum double D(H) associated with a finite group
H 1s an algebra that is generated by global gauge transformations and projection

operators that pick out a particular value of the flux. A basis for the algebra ist
{Pua, h,acH), (15)

where P, projects out the flux value h, and a is a gauge transformation. Since the

projection operators satisfy the relations

Pth = 5h,gPh , aPha,"l = Foha—1 » (16)

"In Ref. [17,25], the notation "l is used for Pha.

i
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the multiplication law for the algebra can be expressed as
(Pha) . (Pgb) - 6h,aga‘1 (Phab) . (17)

An irreducible representation of the quantum double D(H) can be labeled ([a], R),
where [a] denotes the conjugacy class that contains a« € H and R(® is an irreducible
representation of the centralizer N(a) of a. This is the induced representation of D(H)
generated by the representation R of N(a). The space on which this representation
acts is a space of charged vortex states that transform irreducibly under the global
gauge transformations. In order for an exchange contribution to an amplitude to
interfere with the direct amplitude, the two vortices being exchanged must belong to
the same irreducible representation of the quantum double.

(If a Chern-Simons term is added to the action of the underlying gauge theory, the
situation becomes somewhat more complicated. 171 The Chern-Simons term distorts
the charge spectrum of vortices with a specified value of the flux, and unremovable

17,2533 The vortex

phases can enter the multiplication law of the quantum double. !
states may then transform as a projective (ray) representation under gauge transfor-
mations.)

Consider a state of n “indistinguishable” vortices, all with flux conjugate to a, and
all transforming as the representation R(*) of the centralizer N(a) (in other words,
all of the vortices belong to the irreducible representation ([a], R(*)) of the quantum
double). A basis for these states can be constructed, in which, at each vortex position,
we assign a definite flux, and a definite basis state in the vector space on which the
representation R(*) acts. Under exchange, these states transform as a representation
of B, that is in general non-Abelian and reducible. This reducible representation can
be decomposed into irreducible components. Each irreducible component describes
an n-particle state obeying definite “braid statistics.”

The point that we wish to emphasize is that the exchange operator will typically
modify the quantum numbers that are assigned to the n particle positions. Thus,
physical observables, such as transition probabilities or cross sections, need not be
invariant under exchange. Instead, the exchange relates the value of the observable
for one assignment of quantum numbers to the particle positions to the value of the
observable for another choice of quantum numbers. Correspondingly, as we stressed

above, the observables are not single-valued functions of the particle positions. Only a
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subgroup of the braid group returns the quantum numbers to their original values, and
so preserves the values of the physical observables. (It is possible to restore the single-
valuedness of the many-body wave functions by introducing on the configuration space
a suitable connection with nontrivial holonomy. The existence of such a connection
does not alter the essential physical point, which is that “indistinguishable” vortices
may have distinct quantum numbers that can really be measured by an observer.)

Even distinguishable vortices have non-trivial Aharonov-Bohm interactions, so it
is appropriate to broaden this framework slightly. We may consider a many-particle
state containing ny particles of type 1 (with the type characterized by the class of
the flux @, and the charge R(*), or, in other words, by the irreducible representation
([a], R®) of the quantum double), ny particles of type 2, and so on. Then an exchange
of two particles is permitted only if the particles are of the same type, and the wave
function transforms as a unitary representation of the “partially colored braid group”
B, ... 10

Within this framework, a general connection between spin and statistics can be de-
rived, assuming the existence of an antiparticle corresponding to each particle. [35:23:24
The essence of the connection is that, if two particles are truly identical (carry ezactly
the same quantum numbers), then an exchange of the two particles can be smoothly
deformed to a process in which no exchange occurs, but one of the particles rotates
by 2. 39 (The reason that the quantum numbers must be the same is that, for the
deformation to be possible, it is necessary for the antiparticle of the first particle to
be able to annihilate the second particle.) It follows from the connection between
spin and statistics that the effect of an exchange of two objects that are truly iden-
tical must be to modify the many-body wave function by the phase ¢/, where J is
the spin of the object. We have already remarked in section 3 that this is true for
non-Abelian vortices with the same flux and charge. Thus, we find that non-Abelian
statistics is perfectly compatible with the connection between spin and statistics.

There are deep connections between the theory of indistinguishable particles in two
spatial dimensions and conformally invariant quantum field theory in two-dimensional
spacetime. These connections have been explored most explicitly in the case of (2+41)-
dimensional topological Chern-Simons theories, *®l but appear to be more general. 124
There is a close mathematical analogy between the particle statistics in two spatial

dimensions that we have outlined here, and the field statistics in two-dimensional
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conformal field theory. In the latter case, all correlation functions can be constructed
by assembling “conformal blocks,” and the conformal blocks typically transform as
a non-trivial unitary representation of the braid group when the arguments of the
correlation function are exchanged. (See Ref. [37] for a review.) However, in discus-
sions of conformal field theory, it is usually the case that observables of interest (the

correlation functions themselves) are invariant under exchange.

4.5 Vortex-Vortex Scattering

The holonomy interaction between vortices induces Aharonov-Bohm vortex-vortex
scattering, as pointed out by Wilczek and Wu ! and Bucher. 7 Suppose that a vortex
that initially carries flux b is incident on a fixed vortex that initially carries flux a.
Let us suppose, for now, that the vortices are uncharged.

To understand the behavior of the b vortex propagating on the background of the
fixed a vortex, it is convenient to adopt a path integral viewpoint. Consider the two
possible paths shown in Fig. 4. If the vortex follows the path that passes below the
scattering center, it will arrive at its destination with flux b. But if it follows the path
that passes above the scattering center, it arrives carrying the flux aba™!. Thus, if
the flux of the scattering center and the flux of the projectile do not commute, the
contribution to the path integral from paths that pass below does not interfere with
the contribution from paths that pass above. Therefore, a plane wave propagating on
the background of the fixed vortex does not remain a plane wave—there is nontrivial
scattering.

More generally, the paths can be classified according to how many times they
wind around the scattering center (relative to some standard path). The flux of a b

vortex that winds around an a vortex k times is modified according to
|b) — |(ab)*b(ab)™*) = |k) (18)

Since the unbroken gauge group H is assumed to be finite, the flux eventually returns
to its original value, say after n windings.

The flux of the scattered vortex, then, can take any one of n values. The amplitude
for the vortex to arrive at the detector in the flux state |k) defined in Eq. (18) can
be found by summing over all paths with winding number congruent to £ modulo n.

Since only every nth winding sector is included in the amplitude 1 for flux channel
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k, this amplitude is not a periodic function of the polar angle ¢ with period 2r;

rather, the period is 2rn. The n amplitudes are related by the nontrivial monodromy

property
Yr(ry ¢ + 27) = trpa(r, @) (19)

(where Ypin(r, @) = Yir(r,¢).) Similarly, the exclusive cross section for flux channel

k is also multivalued:
or(8 — 27) = op41(0) , (20)

where § = 7 — ¢ is the scattering angle. The inclusive cross section

n—1

Oinc(0) = Z o (0) (21)

k=0
is single-valued.

As we stressed in the introduction, the multivaluedness of the exclusive cross scc-
tions is natural and unavoidable in this context. Whenever we assign a flux to a
non-Abelian vortex, we are implicitly adopting a conventional procedure for measur-
ing the flux. For example, the procedure might be to carry the vortex to the “vortex
bureau of standards” and analyze it there by performing Aharonov-Bohm interference
experiments with various charged particles. Then the multivaluedness arises because,
if we carry a vortex in the flux state |k) once around the scattering center (counter-
clockwise) before returning it to the bureau of standards, the analysis will identify it
as the flux state |k + 1).

For each value of the scattering angle, we might choose a standard path along
which the vortex is to be returned to the bureau for analysis after the scattering
event. For example, we might decide to carry it home through the upper half plane
for € [0,7) and through the lower half plane for § € [—,0), as shown in Fig. 5.

Then the exclusive cross sections are single-valued, but are discontinuous at = 0:
ox(0=0") =031 (0 =07). (22)

The choice of a standard path amounts to an arbitrary restriction of the n-valued
exclusive cross sections to a single branch.
In a sense, the multivaluedness of the wave functions, and of the exclusive cross

sections, arises because we have insisted on expressing the flux of the vortices in




62

terms of a multivalued basis—that basis defined by parallel transport of the flux in
the background gauge potential of the scattering center. The propagation of the
projectile on this background is really non-singular, and the multivaluedness of the
amplitudes actually compensates for the multivaluedness of the basis. This is quite
analogous to the “singular-gauge” description of ordinary Abelian Aharonov-Bohm
scattering. There, expressing the phase of the electron wave function relative to
a basis defined by parallel transport is equivalent to performing a singular gauge
transformation that gauges away the vector potential and introduces a discontinuity
in the wave function. The difference in the non-Abelian case is that the discontinuity
corresponds to a jump in observable quantum numbers of the projectile, as explained
above. It is natural to use the multivalued basis because it reflects what a team of
experimenters would really find if they brought their detectors together to calibrate
them alike.

Mathematically, finding the Aharonov-Bohm amplitude for a vortex propagating
on the background of a fixed vortex is equivalent to finding the amplitude for a
free particle propagating on an n-sheeted surface. (The closely related problem of
a free particle propagating on a cone has been discussed in connection with 2 + 1
dimensional general relativity. (') The most convenient way to solve the problem

> since for the elements of this

is to transform to a basis of “monodromy eigenstates,’
basis the scattering reduces to Abelian Aharonov-Bohm scattering. If the ¢;’s obey

the monodromy property Eq. (19), then the monodromy eigenstate basis is

1 n—1 )
Y = % Z 6_27r2kl/n7,bk , (23)
k=0
with the property
xi(r, ¢+ 2m) = € xi(r, ) . (24)

These monodromy eigenstates correspond to states of the two-vortex system that have
definite charge, in the sense that they are eigenstates of the gauge transformation
ab € H, where ab is the total flux.

We may think of the wave functions x; as the coefficients in an expansion of a
single-valued wave function in a multivalued basis. That is, we can express a single-

valued wave function as
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) =2 Iré, O(r, ¢, 1l4) (25)
¢,

where the basis |r, ¢, ) is “twisted” according to
Iry ¢ +2m,0) = e "r, 6,0) (26)

The coeflicients x;(r, ¢) = (r, ¢, |1)) inherit the property Eq. (24) from the property
Eq. (26) of the basis.
By standard methods, ¥ we can find the solution to the free-particle nonrela-

tivistic Schrodinger equation that obeys the condition

Xa(@+2m) = e%mXa(¢) , 0<a<l, (27)

and matches a plane wave incoming from ¢ = 0. The asymptotic large-r behavior of
this solution is
eip'r

\/}‘

fa(¢) 3 —7T<¢<7T7 (28)

—i5R
Xo ~ e FF +

where
e—i7r/4 1 ) i )
— g —tom o
ful)) = o (1) ™ (7= 7) L 0<asl. (29)

Here e~**" is the phase shift for the partial waves with non-negative integer part of
the orbital angular momentum and e**” is the phase shift for the partial waves with
negative integer part of the orbital angular momentum. The semiclassical interpre-
tation is that wave packets that pass above and below the scattering center acquire
a relative phase €?™*  the Aharonov-Bohm phase.

There are two subtleties concerning Eq. (28) and (29) that deserve comment. The
first subtlety (which is not very important for what follows), is that there is an order
of limits ambiguity in the evaluation of the amplitude—the limit r — oo does not
commute with the limit ¢ — 4. B9 In Eq. (28) and (29), we have taken r — oo
for fixed ¢ between —m and 7. Thus, x, actually satisfies Eq. (27), although the
first term in the asymptotic form Eq. (28) appears not to. (For large r, the phase
of the plane wave in Eq. (27) suddenly advances by €™ as ¢ increases through a
narrow wedge near ¢ = m. Of course, if we construct localized wave packets, then

the unscattered wave has support at ¢ = 0, +7 as r — oo, and the form of the plane
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wave away from the forward direction is of no consequence anyway.) The second
subtlety, which is very important for what follows, concerns the a dependence of
the amplitude. The monodromy condition Eq. 27 depends only on a — [a], where
[a] denotes the greatest integer less than or equal to a. Thus, as one can explicitly
verify, the amplitude f,(¢), when « is not restricted to lie in the range [0,1), takes
the same form as Eq. (29), but with « replaced by « —[a]. The somewhat surprising
feature is that, as a function of «, f,(¢) is not differentiable when « is an integer.
The form Eq. (29) for the scattering amplitude in the monodromy eigenstate
basis is readily generalized to an arbitrary basis, if we express it in terms of the braid
operator R, the square root of the monodromy operator M. The general monodromy

condition satisfied by the wave function can be expressed as

(¢ +2m) = My(g), (30)

where M is a unitary matrix acting on internal indices. Then the basis-independent
form for the scattering amplitude is
e—ir/4

foutlf()in) = = (155

where R is defined by R? = M, and [in), |out) denote the incoming and outgoing

) (out|R#/™ (R™1 = R) [in) , (31)

wave functions in internal space. This definition of R leaves an ambiguity in R(#/7F1),
and it is important to resolve this ambiguity correctly. Acting on an eigenstate of M

with
M = eZﬂ’ia : (32)
we define
R&/TFL) — cila—[a)(dFm) (33)
In Eq. (31), the state |in) is expressed in terms of an arbitrary basis, and we have
assumed that the state |out) is expressed in terms of a basis that is obtained by
parallel transport of the in-basis. This out-basis is multivalued, so we have in effect

evaluated the amplitude in a “singular gauge.”

From Eq. (31), we obtain the cross section

Tinout(9) = | ()" = 271rp <4cosl2 ¢/2) ’(out|7€¢’/7r <R‘l - R) ’in>l2 . (34)
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By summing |out) over a complete basis, we obtain the inclusive cross section

1 1\ 1 o
Oin—an(f) = 5rp (sin2 6/2) 5 (1 — Re(in|R |1n>) , (35)

where § = © — ¢ is the scattering angle; this is the formula derived by Verlinde. [¢]
For monodromy eigenstates with M = 2™, Eq. (34) reduces to the familiar form
of the Aharonov-Bohm cross section,

ou(8) = — (Sinzm), (36)

- 2—71?5 sin? /2

which is a single-valued function of the scattering angle. But the recurring theme of
this chapter is that it is often convenient to express the scattering states in terms of
a basis other than the monodromy eigenstate basis. Then the exclusive cross sections
are in general multivalued, but the inclusive cross section (summed over all possible

final state quantum numbers) is always single-valued.

Returning to the special case of (uncharged) vortex-vortex scattering, we obtain
the amplitude in the flux eigenstate basis by coherently summing the monodromy

eigenstate amplitudes with appropriate phases,

(HAG)IE = 0) = = 3 20y, (4)
1=0
e~im/4 1y sin(7/n)
— - . 37
V2rp (Qn) sin [ (6 4 (2k + 1)m)] sin [ (6 + (2k — 1)) (37)
This formula has the expected monodromy property
(k[f(¢+2m)lk = 0) = (k+ 1]f(¢)|k = 0) . (38)

(Eq. (37) is actually a special case of the the formula derived in (2+1)-dimensional
gravity by 't Hooft ['®¥ and Deser and Jackiw. [19])

This amplitude has the infinite forward peak that is characteristic of Aharonov-
Bohm scattering. For ¢ = =, the infinite peak occurs in the flux channels k£ = 0, —1
and for ¢ = —7, it occurs in the channels £ = 1,0. For ¢ near 7, the leading behavior

of the amplitude is

e~im/4 z
=0k = 0) ~ ~( = —ls(a) =0 ~ S (1) @
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This leading behavior has a simple interpretation. From a path integral viewpoint, the
forward peak is generated by paths that pass above or below the scattering center with
a large impact parameter, without any winding around the center. If the projectile
passes above, it is detected near ¢ = 7 as a k = 0 vortex (or near ¢ = —7 as a
k = 1 vortex); if it passes below, it is detected near ¢ = 7 as a k& = —1 vortex
(or near ¢ = —7 as a k = 0 vortex). Near ¢ = w, the amplitude in the k = 0, —1
channels is equivalent to the diffraction pattern generated by a “sharp edge,” since
paths that wind n times around the scattering center make a negligible contribution.
The near-forward amplitude in the £ = 0 channel comes from summing all of the
partial waves with non-negative angular momentum, and the near-forward amplitude
in the £ = —1 channel comes from summing the partial waves with negative angular
momentum. Thus, the forward peak in each channel is half as strong as the forward
peak for “maximal” (o = 1/2) Abelian Aharonov-Bohm scattering.

The inclusive cross section (obtained by summing over all possible final flux chan-
nels) can be immediately read off from Eq. (35). If the projectile is a flux eigenstate,
and the scattering center is a flux eigenstate whose flux does not commute with that
of the projectile, then we have (in|R?|in) = 0, and the inclusive cross section takes

the universal form

1 1 1
Ofux eigenstate—»all(a) - <§> % (W) ) (40)

that is, half the cross section for maximal Aharonov-Bohm scattering.

So far, we have assumed that the vortex that is being scattered carries no charge.
Let us briefly comment on how the analysis is modified when the scattered vortex is
charged.

Suppose that the vortex with flux a transforms as some irreducible representation
DE® of N (@), and that the vortex with flux b transforms as some irreducible repre-
sentation D® of N(b). And suppose as before that the fluxes return to their original
values after the monodromy operator acts n times (that is, after the b vortex winds
around the a vortex n times). For charged vortex states, although M™ preserves the
flux values, it acts on the vortex pair as a nontrivial N(a) ® N(b) transformation.

Specifically, we have

M™:a) @ |b) — DEO[(ab)"a"]|a) ® DO [(ab)"b™"]|b) . (41)
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Note that, since by assumption (ab)"a(ab)™ = a and (ab)"b(ab)™™ = b (because M"
preserves the fluxes), (ab)"a™™ € N(a) and (ab)"b™™ € N(b).
For the case of scattering a b vortex off of a fixed a vortex, we consider the states

|k) defined by
k) = MF[b), k=0,1,2,...,n—1, (42)
with
M7k = 0) = DR[(ab)"b~"]|k = 0) . (43)

To diagonalize the monodromy operator, we first diagonalize the unitary transforma-
tion DE®[(ab)"6~"]. Corresponding to each cigenstate of this operator with eigen-

value e?™# are a set of monodromy eigenstate wave functions

1 n—1 ik
- —2mik(I4+08)/n
Xip=—=2_¢ Ve (44)
\/ﬁ k=0
with the property
Xi(r, ¢+ 2m) = 2 O/my g(r, 6) (45)

For particular charged states with specified flux, we may evaluate Eq. (31) by coher-

ently superposing the Aharonov-Bohm amplitudes for these monodromy eigenstates.

4.6 Indistinguishable Vortices

The effects of quantum statistics can be seen in the two-body scattering of indis-
tinguishable particles, because exchange scattering can occur; it is possible to lose
track of “who’s who.” In the case of non-Abelian vortices, the exchange effects are
more subtle than for Abelian anyons—in general, whether two vortices behave like
identical or distinct particles when they are brought together depends on their history.
Suppose that two identical vortices each carry the flux « € H. If one of the vortices
should voyage around another vortex with flux b, and then return to its partner, it
would then carry flux bab™!. Hence, if ¢ and b do not commute, it would now be
distinct from the other a vortex.

For exchange effects to occur in vortex-vortex scattering, the braid operator must

have an orbit of odd order acting on the two vortex state. That is, R" must preserve
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the two vortex state for some odd n. If so, there will be a contribution to the vortex-
vortex scattering amplitude in which the two vortices change places, that interferes
with the direct amplitude.

As a simple example, consider the permutation group on three objects Ss, where
the fluxes are two distinct two-cycles. Then the braid operator defined by Eq. (7) has
the orbit

—1(12),(23)) , (46)

of order 3. (See Fig. 6.) Thus, there is an exchange contribution to the scattering of
a (12) vortex and a (23) vortex. (In this case, the centralizer of the total flux is Zs,
and the braid eigenstates are the linear combinations of these three states that have
definite Z3 charge.)

Two vortices whose flux belongs to the same conjugacy class of the unbroken
group H have the same mass, and we can easily derive a formula for the vortex-
vortex scattering amplitude in the center of mass frame, using the same methods as
in the previous section. This formula will incorporate the exchange effects whenever
the braid operator has an odd orbit acting on the two-vortex state. The two-body

wave function in the center of mass frame will now have the property

'(ﬁ(?", ¢+ 77-) = Rd)(ra ¢) ) (47)

where the braid operator R is a unitary matrix acting on the internal indices of the
wave function. The problem is to solve the free-particle Shrédinger equation subject
to this condition.

If the two-body state is a “braid eigenstate,”
Xa(rs ¢+ 7) = ™ xa(r,d), 0<a<?2, (48)

then the problem is equivalent to anyon-anyon scattering, with statistical phase ¢ =
e'™. We can find the solution to the free-particle Schrodinger equation that obeys
Eq. (48) and matches plane waves coming from ¢ = 0 and ¢ = w. The asymptotic

large-r behavior of this solution is [0
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o L ipr
Xa ™~ <e“2p~q; + ezaﬂ'ez .r) + E\]_;fa(gﬁ) y 0 < ¢ <7 5 (49)
where
6—i7r/4 2 ' ' ‘
— g —tam Qo
fa(¢)_m<1_e2z¢>e (6 — € ) 3 0§a<2. (50)

(As in our discussion of scattering off a fixed target, we remark that the limit r — oo
does not commute with the limit ¢ — 0, 7. % Thus, v, actually satisfies Eq. (48),
although the first term in the asymptotic form Eq. (49) appears not to.) In an

arbitrary basis, in which the braid operator is not necessarily diagonal, we have

e——-m/4

foutlf()fm) = < (1 _2621. ¢) (out|R¥" (R = R) |in) (51)

where |in), |out) denote the incoming and outgoing two-body wave functions in inter-
nal space. As in our discussion of scattering off of a fixed center, there is an ambiguity
in the evaluation of R(¥/™¥1) and we must now resolve this ambiguity slightly differ-
ently than before. If o is not restricted to the range [0,2), then @ must be replaced
by a —[[¢]] in Eq. 50, where [[@]] denotes the greatest even integer less than or equal

than «. Thus, acting on an eigenstate of R with eigenvalue

R =e"™ | (52)
we define R(#/7F1) by
RG/mF1) _ ile=[la])(¢Fm) (53)
The cross section is
_ 2 1 1 ¢/7 (=1 ]2
Tinmont(9) = 1F Q) = 5 | o ) [(ut RY™ (R = R)fim)|" . (54)
By summing |out) over a complete basis, we obtain the inclusive cross section
1 1 o
Oin—an(f) = 5 (;1-112—9> 2 (1 — Re(in|R [m)) , (55)

where § = 7 — ¢ is the scattering angle.
The general problem can be solved by expressing the two-body state as a linear
combination of braid eigenstates, and then coherently superposing the anyon-anyon

amplitudes. In the case of (uncharged) vortex-vortex scattering, if the initial state is
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a vortex with flux a coming from ¢ = 7 and a vortex with flux b coming from ¢ = 0,
then let us denote by |k) the state obtained when the braid operator R defined by
Eq. (7) acts on the initial state k& times

k) = R¥|a,b) . (56)

Suppose that the two-vortex state returns to the initial state after R acts n times.
(Note that, in a departure from the notation of the previous section, k£ and n now
denote the number of times the braid operator acts on the initial state, rather than

the monodromy operator M = R2.) Then,

n—1

X?l/n — Z e-—27rz'kl/n|k> (57)
k=0

is a braid eigenstate with eigenvalue '™ = e2™/" and the scattering amplitude in

the flux eigenstate basis is

1 n—1

(k[f($)|k =0) = - > F R (9)

=0

_ e~/ 1 sin(2x /n) 53
V2rp (n) sin H—((;S—I-(k—i-l)ﬂ')] sin [%(¢+(7€—1)7r)] ' (58)

This formula has the desired property
(klf(¢+m)lk=0) = (k+1]f()|k =0). (59)

Eq. (58) applies for any value of n, but there is an exchange contribution to the
amplitude only for odd n. (Note that, if n and £ are even, Eq. (59) precisely coincides
with Eq. (58), as one would expect.)

The amplitude has the expected infinite peak at ¢ = 7 in the channels k = 0, —2
and at ¢ = 0 in the channels £ = £1. As in our discussion of scattering off of a fixed
center, these peaks are generated by paths in which the two vortices pass one another
with a large impact parameter, without any winding. If the vortex incident from the
right passes above the vortex incident from the left, then, with our conventions, a
k = 0 state is detected near ¢ = =, and a k = 1 state is detected near ¢ = 0. If
the vortex incident from the right passes below, then a & = —2 state is detected near

¢ =m,and a k = —1 state is detected near ¢ = 0.
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4.7 Continuous Symmetry: The Alice Vortex

So far, we have assumed that the unbroken local symmetry group is a discrete
group. In this section, we will briefly consider the properties of non-Abelian vortices
when the gauge group is continuous.

If the unbroken gauge group has a non-Abelian Lie algebra, then the gauge inter-
action is presumably confining. In fact, even if the Lie algebra is Abelian (a product
of U(1)’s), then charge is logarithmically confined in two spatial dimensions. That is,
the Coulomb energy of a charged object is logarithmically infrared divergent. Nev-
ertheless, we might be interested in the Aharonov-Bohm interactions of vortices and
charged particles on distance scales that are small compared to the confinement scale,
or under circumstances where the Coulomb energy can be safely neglected.

Strictly speaking, there is no Aharonov-Bohm amplitude for the scattering of
a charged particle off of a vortex, because there are no asymptotic charged states.
Still, the formalism discussed in this chapter finds some application. We can imagine
placing a compensating charge far away from the scattering center, and consider the
scattering of a wave packet in a bounded region that is small compared to the distance
to the compensating charge (or small compared to the confinement distance scale).
Furthermore, the charge of a particle behaves like e, where e is a (classical) gauge
coupling, so Coulomb effects are of order (he)?, and are higher order corrections
to Aharonov-Bohm scattering in the semiclassical (small %) limit. Under suitable
conditions, the deflection of the wave packet is described to good accuracy by our
general formula for the Aharonov-Bohm amplitude, Eq. (31).

The case of vortex-vortex scattering is more complicated. We can imagine scat-
tering two vortices that are flux eigenstates. (More properly, in the case of continuous
gauge symmetry, we should consider narrow “flux wave packets,” superpositions of
flux eigenstates with small dispersion.) However, a pair of flux eigenstates does not
have definite charge; when the state of the pair is decomposed into charge eigenstates,
the states of nonzero charge have infrared divergent Coulomb energy. Again, there
is a need for a compensating charge. But in this case, the value of the compensating
charge must be correlated with the state of the vortex pair. If we trace over the state
of the compensating charge, we obtain a density matrix for the vortex pair that is an
incoherent superposition of charge eigenstates. Thus, the “scattering cross section” is

an incoherent sum of the cross sections for the various charge (or braid) eigenstates,
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and Eq. (31) does not apply.

To make the discussion more definite, let us consider the simplest model that
exhibits these features, the “Alice” model. '3 The unbroken symmetry group in
this case is the semi-direct product of U(1) with Z;. The group has a component
connected to the identity, the U(1) subgroup, that can be parametrized as

{e“?, 0<w<2r}, (60)

where () = o3 is the U(1) generator. There is also a component that is not connected

to the identity,
{igee™?, 0<w<2rn}. (61)

Each element of the disconnected component anticommutes with Q). Thus, the Alice
model can be characterized as a generalization of electrodynamics in which charge
conjugation is a local symmetry.

An “Alice vortex” carries flux that takes a value in the disconnected component of
this group. The monodromy operator associated with transport around this vortex,

acting on the defining representation of the group, is
M(w) = e w9/ 25,/ (62)

Because M anticommutes with (), when a charged particle is transported around
the vortex, its charge flips in sign. This monodromy property induces Aharonov-
Bohm scattering of the charge eigenstates. Using the prescription Eq. (33), it is
straightforward to compute

cos /4 —sin /4
sing/4  cos¢/4

From Eq. (31), we thus obtain the cross section for scattering of charge eigenstates

R (R = R) = e/ (—iy/2) 42 ( ) /2 (63)

off of a fixed Alice vortex,

oi(0) = I 1+sin6/2

~ 27p 4sin?0/2 (64)

here, o, denotes the cross section when the scattered charge has the same sign as

the original projectile, and o_ is the cross section for charge-flip scattering. Note
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that these exclusive cross sections respect the relation Eq. (1) anticipated in the

introduction.

The case of a charged particle scattering from an Alice vortex is quite similar to
the case of vortex-vortex scattering considered in section 5, where the orbit of the
monodromy operator has order n = 2. There is an important difference, however—the
monodromy operator Eq. (62) squares to —1 rather than 1. The property M? = —1
holds whenever the charge of the projectile is odd, and hence the cross section Eq. (64)
applies for any odd charge. The vanishing of o_ in the backward direction is easily
seen to be a consequence of M? = —1; the trajectories with positive and negative
odd winding number interfere destructively at § = #. If the charge of the projectile is
even, then M? = 1, and the cross section is given by Eq. (37) for n = 2, with k = 0
corresponding to o4 and £ =1 to o_.

Now consider the case of vortex-vortex scattering, in the flux eigenstate basis. We
denote by |w) the vortex state with flux i0,e™?. According to Eq. (7), the effect of

an exchange on a state of two vortices, each with definite flux, can be expressed as
R |wi,we) = 2w — wa,wy) . (65)

The exchange preserves the “total flux” i0,e™1%i0,e™2? = !(@2=41)Q = i@ g0 an

alternative notation is
R : |w1§wtot) - |w1 - wtot;wtot> > (66)

with the flux we = wior + wi of the second vortex suppressed.

The two vortex state can be decomposed into states with definite transformation
properties under the centralizer of the total flux, which is U(1). These charge eigen-
states also diagonalize the braid operator. The action of U(1) on the flux eigenstates

is
9 |13 Wiot) — |w1 — 26 Wiot) (67)
and the charge eigenstates are
1 2 1 _tquw’ I
lq, wiot) = 7_;/0 dw'e" ™ 2w wiot) (68)

where the charge ¢ is an even integer. The braid operator acts on the charge eigen-

states according to
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1qWiot

¢, Wot) - (69)

R: lq’wtot> — €

Formally, we can find the amplitude for a vortex with flux w; to scatter from a fixed

center with flux wy = wior + wy by applying Eq. (31). The result is

( wi;Wior out|f(@)|wr;wior in) (70)
—ir /4 1 1 . . :

— € - ig{w’~w) (i(gwior—[gwiot])(¢/n—1) _ _i(quiot—[qwiot]}{#/m+1) 71
V27p <1+e"¢> qu:e (e ‘ ) (1)

where ¢ is summed over even integers. We note that it is essential to subtract away
the integer part of quiot in order to obtain the correct result. For example, if wio
is rational, then the amplitude has support only for discrete values of w’ — w. This
would not have worked if the integer part had not been subtracted.

However, as noted above, this analysis is moot, because of the need to deal with
the infrared divergent Coulomb energy of the states with ¢ # 0. One way to screen the
charge is to place another vortex pair far away, such that the four-vortex system carries
total charge zero. But however we arrange to screen the charge, the state of the vortex
pair we are studying will be correlated with the state of the compensating charge
(unless the vortex pair is in a charge eigenstate). For example, our flux eigenstate

becomes
1 —iqw
jwis o) = —= 3 e g wi0r) @ | = g; screen) (72)
q

where | — ¢;screen) is the state of the screening charge. The vortex pair is actually

in the mixed state
1
P = . Z |5 Wot) (45 Weot | - (73)
q

The probability distribution for the scattered vortex will be the incoherent sum of

the probability distributions for the braid eigenstates.

4.8 Conclusions

This chapter has two recurring themes, relating to the non-Abelian Aharonov-
Bohm effect and non-Abelian statistics. The first theme is that the non-Abelian
Aharonov-Bohm effect provides a natural setting for multivalued physical observ-

ables. A particle that travels around a closed path returns to its starting point as a



75

different kind of particle with different quantum numbers. This means that transition
probabilities are not single-valued functions of the positions and quantum numbers
of the particles in the final state. We have calculated cross sections that exhibit this
multivalued character.

The second theme is that two particles that are “indistinguishable” need not be
the same. The hallmark of non-Abelian statistics is that there can be an exchange
contribution to an amplitude that interferes with the direct amplitude, even if the
two particles that are exchanged are distinct objects with different quantum numbers.
We have calculated cross sections that include such exchange effects.

These considerations illuminate some subtle aspects of non-Abelian gauge invari-
ance. How do they relate to real phenomenology? There is no firm evidence that
objects that obey non-Abelian statistics (called “nonabelions” in Ref. [41]) exist in
nature. But 1t is surely conceivable that nonabelions will eventually be found, in

64147 or other frustrated quantum many-body

strongly correlated electron systems, !
systems. An important question, then, is how would such objects be recognized in
laboratory experiments? Much remains to be done to explore the many-body physics

of nonabelions. Even the problem of three bodies is not very well understood.
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FIGURES

FIG. 1. Exchange of two vortices. (a) The paths « and 3 are two standard paths, both
beginning and ending at the same basepoint z,, that are used to define the flux of two

vortices. (b) When the vortices are interchanged, these paths are dragged to the new paths

B =plaf and o' = 3.

FIG. 2. Vortices can be carried along specified paths to the “Vortex Bureau of Stan-
dard,” where their flux can be measured. If the two vortices are carried along the paths
shown in (a), the fluxes are measured to be a and b, respectively. But if the b vortex goes
counterclockwise around the a vortex before voyaging to the Bureau, as in (b), its flux is
measured as (ab)b(ab)~'. If the a vortex goes counterclockwise around the b vortex before

voyaging to the Bureau, as in (c), its flux is measured as (ab)a(ab)~? .

FIG. 3. The charge of a particle can be measured via the Aharonov-Bohm effect in a
double-slit interference experiment. (a) When a vortex of known flux b is placed between the
two slits, the change in the interference pattern measures (u| D" (b)|u), where |u) denotes
the internal state of the charged particle, and (R) is the representation according to which
the charged particle transforms. However, if the charged particle is itself a vortex with
flux a, there is a restriction on the charges that can be measured. If the ¢ vortex passes
through the left slit, as in (b), it arrives at the screen with flux a, and the vortex between
the slits remains in the flux state b. If it passes through the right slit, as in (c), it arrives
at the screen with flux (ab)a(ab)~!, and the flux of the vortex between the slits becomes
(ab)b(ab)~'. Thus, no interference is seen if @ and b do not commute. Because interference
occurs only when a and b commute, this experiment can measure only the transformation

properties of the charged projectile under the subgroup N(a) that commutes with a.
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FIG. 4. Two paths that contribute to the amplitude for a b vortex propagating on the
background of a fixed a vortex. If the b vortex passes below the a vortex, it arrives at its
destination with flux b; if it passes above the « vortex, it arrives at its destination with flux

aba~!. Thus, these two paths do not interfere if ¢ and b do not commute.

FIG. 5. A convention for measuring the flux of a scattered vortex that is single-valued
but discontinuous. If the vortex is scattered into the upper half plane (0 < § < 7), it is
carried back to the “Vortex Bureau of Standards” above the scattering center; if the vortex
is scattered into the lower half plane (-7 < 6 < 0), it is carried back to the Bureau above
the scattering center. With this convention, the scattering cross section is discontinuous
at @ = 0; the cross section in the “k” channel at § = 0% matches the cross section in the

“k+1” channel at 8 = 0~.

FIG. 6. Paths contributing to the amplitude for the propagation of a pair of vortices.
The initial vortices carry flux taking the values (12) and (23) in S3. If the vortices braid
once as in (b) or twice as in (c), the quantum numbers of the pair are modified. But
if the vortices braid three times as in (d), the final quantum numbers match the initial
quantum numbers. Thus, paths (a) and (d) add coherently in the amplitude, although the

two vortices change places.
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Chapter 5

Non-Abelian Chern-Simons Particles

5.1 Introduction

It is now well-known that anyons—particles with arbitrary statistics can exist
in 2+1 dimensions” Owing to the topological gauge potential, even non-interacting
two-anyon states are not (symmetrized) tensor products of single anyon states”” Thus
the quantum mechanics of systems of many anyons presents a challenge to field the-
orists”” In general, the center of mass motion of the system is not sensitive to the
statistics and can be factored out. For two anyons, the relative coordinates present
us with a one-body problem which can be solved in many cases. For NV anyons, there
are N —1 relative coordinates, whereas there are N(N —1)/2 pairs of particles. These
two numbers match only when NV = 2. For N > 2, the various pair-separation coor-
dinates (in terms of which the statistical gauge potential is easy to write down) are
not independent of each other. For this reason, not a single three-anyon system has
been completely solved. The many-anyon system has been studied in the mean field
approach.[“ Other methods that have been employed include the semi-classical ap-
proximation,[sl numerical studies,m perturbative analysis from the bosonic or fermionic
ends,m and the most interesting of all, the ladder operator approach: In the last couple
of years, a substantial subset of the exact multi-anyon wavefunctions in a magnetic
field has been found with this systematic analysis.m This soon generalized to free
anyons[gl and anyons of multi-species.[w] While a lot of states are still missing, all the
states in the lowest Landau level are obtained by this method.

In this chapter, we apply the ladder operator approach to non-Abelian Chern-
Simons (NACS) particles which may be regarded as a generalization of anyons.[“] In
the gauge that the Hamiltonian is a free Hamiltonian, the wavefunctions (which have
more than one component) are multivalued with non-trivial monodromy properties
given by monodromy matrices!” By introducing statistical gauge potentials, one
has the liberty to work with single-valued wavefunctions. However, since we find
multivalued wavefunctions convenient to work with, we will stick to them in the rest

of this chapter.
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In section 2, we review the ladder operator formalism as applied to anyons. This
helps to highlight the differences between the cases of anyons and non-Abelian C-S
particles, the object under study in section 3. In particular, of the operators used for
anyons, only a subclass of operators, which preserve the monodromy properties of the
wavefunctions, are allowed to act on the C-S particles. Nonetheless, our wavefunctions
do cover the lowest Landau level. As an application of our formalism, we compute the
second virial coefficient of NACS particles. The same set of ladder operators apply
to free NACS particles with minor modifications. We also consider systems of multi-
species NACS particles. Finally, the relevance of our work to systems of vortices of

finite gauge groups is also discussed.

5.2 Anyons

The Hamiltonian for NV anyons with charge e and mass m moving on a plane with

a constant magnetic field B (perpendicular to the plane) is given by
A
z——: ——E — iaa - iGA)z, (1)

where the external gauge field A* = ——%Be"jxj in the symmetric gauge and the sta-

tistical gauge potential
(2)

By a singular gauge transformation, we can remove a, from the Hamiltonian at

the expense of using a multivalued wavefunction

Pnew(X1,. .., XN) = exp (il/ > 0aﬂ> Yotd(X1, - -, XN), (3)

a<f

where 0,5 = arctan(z2 — %)/(;z:1 ——;z:l) Using the complex notation z = z! 4422 7z =
the .

R az,B = -(%, gauge transformed Hamiltonian becomes

N
2 - e?B: L\ eB
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where J is the angular momentum operator in the singular gauge

N
J = Z (2000 — 2,0 (5)
a=1

Its eigenvalues are shifted from those in the symmetric gauge by a constant %I/N(N —
1). (See (10.a).) It is convenient to extract a factor exp(—teB Zivzl |za|?) from the

wavefunction. Then the eigenvalue problem becomes

A A

i1 = (B~ SN}, (6.0)

T = jib, (6.b)

(with w = %?) where the new Hamiltonian  and wavefunctions 1 are defined by

N
T = Z (——8 On + Egzaé > (7@)
a=1

i = eap(“L YLl ) (1.5)

Note that the ground state energy is shifted by %Nw. We impose two physical re-
quirements for the wavefunctions. First, they must vanish at points of coincidences
if v # 0 due to the centrifugal potentials (hard-core requirement). Second, they form

Abelian representations of the braid group.

Now we introduce the operators

jr = 8(17(101 = 8&7 (8&)

2 _
bi: a7 T /Ye 0o = Uy .
Zo = =00 b = Da (8.b)

which satisfy [aq, a;] = [bas b;g] = 0qp, all other commutators being zero. With respect

to these operators, the Hamiltonian H in (7.a) and the angular momentum J in (5)



can be rewritten as

N
Jil :wZalaa, (9.a)
a=1
N
J =3 (bhba - alad). (9.)
a=1

It is trivial to construct two distinct base states (for 0 < v < 2) with energy and

angular momentum eigenvalues:

B = T (20 = 28",

a<lf
E? — %Nu), (10(1)
1
.7? = —Q-VN(N—'l)a
2(0 _ o \2—
¢§]) = H(Za —Zﬁ)z V,
a<f
o _ 1 2—-v (10.5)
EII—§NUJ+ N(N—l)(.d, )
2—v
=N -

The general strategy of the ladder operator approach is to construct multi-anyon
wavefunctions by acting with step operators on the base states in (10.a) and (10.b).
We must, however, respect the statistics and hard-core requirements for the resulting
wavefunctions. In order to respect the statistics, we use only symmetric combinations

of the step operators. Consider the symmetric operators

N

Cin =) ab bl (11)

a=1

where /,n are non-negative integers such that { + n < N. (These operators form a
basis in the ring of symmetric polynomials in 2N variables.) They are step operators
in energy and angular momentum which respect the statistics properties of the base

states

[H,Clp) = wlCip, (12.a)
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[, Cin] = (n — [)Chy. (12.b)

They may, however, produce singular states (states with non-vanishing wavefunctions
at points of coincidences) which have to be excluded by hand. We must identify which
particular Cy, produce regular states. These operators can be safely applied to the

base states. Consider Cyy first. With (8.b), we have

N
Condl” = (3 229, (13)

a=]1

Thus they can be safely applied. For Cy,,, we have

N
Cimd” = 3 (20— Oa) (20 — 8a) ™)

N X N
=D 20 Bady” 3 (2 — mzl B,
a=1 a=1

where we set e B = 2 for simplicity. The seemingly singular first term is in fact regular

because

N m m

. 0 2l — 27,
) 20 a P = l(r =v) :z—jz—ﬂ%bi(ro)- (15)
a=1 a=1 ,87601 a<f ¢ p

By a similar proof, one can apply a sequence of operators of the form Cj,, followed by
a sequence of operators of the form Cy,, to 1/350) without generating any singularities.

Moreover, states of the form

p0 = [](za— 20+ 1=12,... (16)

a<f

are obtained from the action of Cy, on 1&}0). We can apply a string of operators
Chimi Crngmy « - - Crym, with 2321 n; < 2 to 1[)}) without generating singularities,
because such a string contains at most derivatives of order 23:1 n; with respect to

Za-
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Thus we see that under suitable conditions, the step operators C}, can be safely
applied to the base state 7,[3}0) to generate regular new wavefunctions. A similar
analysis holds for the other base state 1/39). Furthermore, closed-form eigenfunctions
generated by the action of combinations of operators Cyy, Cig and Corm, only have been
found, and they can be expressed in terms of the Laguerre functions!” In particular,
they do not involve the operators Cj,, with m > 1, which however are allowed to act

on 1[)50) to produce regular wavefunctions.

One should also note that the step operator approach only generates a subset
of the whole spectrum of wavefunctions'™ If we naively set v to be zero or one, we
obtain only a subset of the bosonic and fermionic wavefunctions. Unlike the states
generated by the step operators, the energies of the missing states show non-linear
dependence on the statistical parameter v in recent numerical studies'” However,

this 1s unimportant for what follows.

5.3 Non-Abelian Chern-Simons Particles

Recently, there has been much interest in the non-Abelian generalization of
anyons. Non-Abelian Chern-Simons (NACS) particles carry non-Abelian charges and
interact with each other through the non-Abelian Chern-Simons term. It has been
argued that they may have applications in the fractional quantum Hall effect® Con-
sider a system of N particles each of which carries a statistical charge corresponding
to a representation R, ,a = 1,..., N of a non-Abelian gauge group, which for definite
we take to be G = SU(2). In the holomorphic gauge, the dynamics of N free SU(2)

[14][12]

NACS particles is governed by the Hamiltonian

Yo
Z o Vzavza + Vzavza)
My
a=1
T8
Vi= 24 3 s (1)
0
Vi, = —,
0z,

where k, a positive integer, is a parameter of the theory and Ty are the SU(2)-

generators in the representation R;_.
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The wavefunctions take values in the tensor product of these representations.
VeR, ®...0R,. (18)

We expand the single-valued wavefunction ¥ in terms of the conformal blocks F; e
R;, ®...® Ry, (which satisfy V4 F; = 0):

U= ik, (19)

The Hamiltonian acting on the new wavefunction is just the free Hamiltonian. How-
ever, the complexity of the problem is hidden in the multivaluedness of the wavefunc-
tions ;. (In fact, it is more “natural” to work with the multivalued wavefunctions Y
than the original single-valued wavefunctions ¥, partly because in the holomorphic
gauge the Hamiltonian is not hermitian with respect to the usual inner product. In-
stead, the inner product is defined in the singular gauge and transformed back to the
holomorphic gauge by a non-unitary transformation function which has to be taken

into account in the definition of the inner product.[m)

From now on, we stick to the singular gauge. Consider N NACS particles in
the same irreducible representation R; of SU(2) moving in a uniform external mag-
netic field B. We introduce operators aa,al,ba,bi as in eqn.(8) of section 2 and
find that the Hamiltonian is again given by eqn.(9). The only difference lies in the
constraints of the monodromy properties of the wavefunctions. In the case of anyons,
the wavefunctions have only one component and monodromy leads to acquisition of
phases, whereas NACS particles have multi-component wavefunctions whose mon-

odromy properties are given by matrices.

We define

2 a a
Qup = —k-ZTaTﬂ. (20)

Note that Za<ﬂ Qap, J and H commute with each other and are thus good quantum
numbers. (J — >a<p Qap is the angular momentum operator in the holomorphic
gauge.) We will discuss the diagonalization of Ea(ﬂ Q04 later. For the time being,
let us assume this has been done and let v € Ri, @ R, ® ... ® Ry, be a (position-

independent) eigenvector of 3 a<p Slap With eigenvalue Q. In analogy with the anyon
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case, we propose applying the same ladder operator approach with the following base

states which are expressed as path-ordered line integrals:[w]

PO, 2y) = Pexp(/z (Qg — 2mapl)dIn(zq —zﬂ)>¢], (21)

F Cl/<,6

20z, zw) = Pexp</ > (2nag] — Qag)din(ze — zﬂ)>¢], (22)

a<f
where ' is a path in the N-dimensional complex space with one end point fixed
and the other being ¢ = (z1,...,2x). The myg (nap) depend on ¢y and are the
maximal (minimal) integers which make the wavefunctions non-singular at the points
of coincidences. This is analogous to the requirement 0 < v < 2 in the anyon
case. Modulo the terms involving the identity matrix, the first integrand is just

U1 whereas the second is related to its

the flat Knizhnik-Zamolodchikov connection
antiholomorphic analogue. One can easily check that these base states have the

desirable monodromy properties. From (5),(6) and (7.a), we have

P =,
EY = -;—Nw,
— 2my,gl
O Z Z 8 )¢§ )
a=1 f#a “F
23
= Z af = 2magp) ¢1 (23)
a<f
= (-2 mag)dl”,
a<f
3 f? = 00

a<f

and

(2n05T — Qu
H;b[”—Ze 23 s ﬁ)%(U)

a=1 B#a o= 2p
e
= Z m —(2nqapl — Qaﬂ)l/)]]
a<lf

eB .
= —[2) nag — ]

a<f
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N
~(0 _ (2710,,3.[ - Qaﬂ) ~(0
Y =3 3 sl Ry
a=1 [« @ A
= (—2nap + Q)Y
a<f (24)
(0
= [_2 Z Nag + Q]lp}])a
a<f
~(0 ~(0
Z Qaﬂlﬁ}z) = Q‘/’Ez)a
a<pf
where we have used the relation™”

D Qs Qye] =0, (25)
a<p
and the fact that ;7 is an eigenstate of the operator Za<ﬂ QN p. Mathematically,
these commutator relations are just consequences of the integrability condition' (in-
finitesimal pure braid relations) satisfied by the connection. Physically, they follow
from the fact that  is related to the angular momentum J which is invariant upon

monodromy.

Now that we have found the analogous base states, we will apply the ladder op-
erators to them to generate new states. As before, the new states have to respect
the statistics. (The NACS particles in the same irreducible representation are re-
garded as indistinguishable.jm Thus, we may only use symmetric combinations of
step operators. Also, we have to check that the wavefunctions produced are regu-
lar at points of coincidences. There is, however, one crucial difference between the
cases of anyons and NACS particles. Even with symmetric step operators, there is no
guarantee that the monodromy properties of the wavefunctions are preserved. Any
combination of step operators which does not preserve the monodromy properties of

the wavefunctions is to be rejected.
First of all, let us consider Coy,. As before, we get

N

Com&}” = (Z zz> 1/;§0)- (26)

Sa=1

This shows that Cy, can be safely applied to g[A)gO) without changing its monodromy
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properties or producing singularities. Next we consider Cy,.

N
Cmdh”) = 3" (Za — Oa) 2l
a=1
N . N .
=2 wby) + > (el - ) (27)
- - 2m N 0
S Z aB — 2maﬂ1) il zﬁg )4 Z(EQZ? —mzy )z/)( )
a<f %8 a=1

For m =0,
N
Croy Z (28)

which clearly preserves the monodromy property of 7,[)50) . When m =1, we have

N
Cudpl®? = =3 (Qap = 2masg DD+ (Zaza — 1)

a<lf =1

- Q+2Zma5+22aza 0).

a<f

(29)

This shows that Cy1 can be safely applied to the base state. We can say more: strings
made up of combinations of the operators Cp,, (n=1,2,...), C1p and C1; act on the base
state to generate physical states. On the other hand, the operators C1y, with m > 1
and Cpm with n > 1 generally change the monodromy property of base state. There
is no obvious way of constructing an admissible combination of operators involving
them which would preserve the monodromy property of the base state. We therefore
reject them as being unphysical and restrict the admissible set of operators to those

generated by Cy,,C19 and C1;.

The crucial reason why the argument for Cip, (with m > 1) and Cpyp (with
n > 1) as physical operators for anyons do not carry over to the case of non-Abelian
C-S particles is that the the various monodromy matrices do not commute. In other

words,
Qg Qrs] # 0. (30)

As in the anyon case, there are again missing states in the spectrum. However, our
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wavefunctions do cover the entire lowest Landau level as they involve the operators
Con only.
We now consider the construction of closed-form eigenfunctions. In the case of

anyons, for P(z1,...,2N,%1,.--,2N) [[4<g(2a — 25)” to be an eigenfunction of H,it

follows that the function P has to satisfy a modified differential equation.

N — —
aal_a

Z(-zaa B, )a P-—Q-Z< ﬂ)w:(E—wﬁ)P (31)

P m m ma<ﬂ Zo — 28 2

An ansatz has been made to construct closed-form eigenfunctions. All the solutions
constructed can be expressed in terms of the Laguerre polynomials. They are gen-
erated by strings of operators Cp,,C19 andChy only. For NACS particles, we get a
similar equation for P, but with v replaced by Q.5 —2m,g. Nevertheless, since these
operators are chosen to preserve the monodromy properties of the states. There is
every reason to believe that the construction of closed-form solutions will go through

with 2N(N — 1)v replaced by Q — 23 a<s Map:

Finally, we come to the diagonalization of Za<ﬂ Qqp. Consider the identity

N
DA +Tg+ .. + TR+ Tg+ ...+ Tfy) = ZTngJrzZTgT;. (32)

a a<f

For SU(2), the left-hand side gives the Casimir operator J(J + 1) of the “spin” of the
composite made up of the IV particles, and the first term on the right-hand side gives
the sum of the Casimir operators Egzl Jo(Jo + 1) of the “spins” for the individual
particles. (Here we abuse the word “spin” for the internal SU(2) symmetry group.
The physical spin (which is a scalar in 2+1 dimensions) of a NACS particle in the j
representation is given by £J(J + 1). Thus, for SU(2), we have

szgaﬂz— (J+1) - o(Ja +1)] (33)

a<fl

an

We just decompose the composite state into irreducible representations and
> a<pQap would be diagonal in that basis. Actually, we can do better than that.
It is easy to check that the operator T7 + T + ... + T§ commutes with H, J and
Za<,8 Qap. Thus they can be simultaneously diagonalized.
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5.4 Second Virial Coefficient and the Large k Limit

In this section, we compute the second virial coeflicients for some simple systems

of NACS particles. To do so, we need to know all the two-particle states only.

First of all, consider two identical NACS particles in the j = % representation of
SU(2). From the addition rule for angular momenta, we find that the resulting states
consist of a triplet with Q = i and a singlet with = ——5‘%. For N = 2, Q plays the
role of the anyon phase, v. Let us recall the formula derived by Arovas et al™ for the

second virial coefficient of anyons,
B(V:21+5,T):/\ZT(—ZLI——}-I(S[——%éz), (34)

where |§] < 2. Note that it has a cusp at Bose values v = 2[. By taking the average
over the four two-body states, the second virial coefficient of the NACS particles is

given by
1 3 3

T)=3p[-7+ % 8?]' (35)

B(j =
(y I

1
27
For two particles with j = 1, the resulting states have “spins” 2, 1, and 0 (with

Q= %, —%, and —% and degeneracies 5, 3 and 1 respectively). We remark that all

these states are bosonic if £ = 1. When k£ = 2, the singlet is a bosonic state whereas
others are fermionic. For k& > 4, all the states are anyonic with |v| < 1. For k£ > 1,

we have

. 120 8
B(J=1»T):)‘:21“[-Z+9—k—§;€'§]- (36)

Now we come to the large k£ limit. For two particles belonging to a representation

2
J with limi—n)o 7= = a < 1, we approximate the sum over all the resulting “spins”

r < 25 by an integral. For example, the |¢| term is given by

— 00

23
m;(% + 1)%“7‘(7’ +1) = 2j(j +1)]]

V2j
Né / —r(r2 —2j2) (37)
r=0
_J?
k Y

where in the second line we approximate the sum by an integral and divide it into

two parts (which happen to be equal) according to the sign of r* — 252. The §2 term
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can be evaluated in a similar manner. Hence, we get
B= M7+ 7 — 5l = Ml-7+a-—]. (38)

If a — 0, the last term may be discarded and the second virial coefficient of the
NACS particle in the j representation (with physical spin %](] + 1)) is the same as

that of an anyon with half of the physical spin as its statistical parameter.

5.5 Concluding Remarks
(1) The N-free-NACS-particle problem can be solved by a similar method. The

free Hamiltonian in the “anyon” gauge is given by
N
2
Z ~= (39)
— m

The subtlety is that our base states become unnormalizable”” Let us define r =

(25:1 lZaIQ)% and consider

M)l = 1 x [d?/dﬂ +(1/r)2N —1+20 -4 mag)|M(r). (40)

a<f

We have eigenfunctions of the form
M,(r) =r=*J,(kr), (41)

(where p =2(N =14+ Q=23 _smqap)) with eigenvalues h2k2/2m for H.

(2) Let us now consider the construction of C,, for multi-species non-Abelian
C-S particles (particles in various irreducible representations). In this case, when we
construct Coy, we do so for each irreducible representation R and symmetrize over
particles in this irreducible representation only.[w] Let us call the resulting operator
CO}EL. If we construct C’l% and C’ﬁ in a similar manner, we find that these operators
have to be rejected: They do not preserve the monodromy properties of the base
states because [Q,4,{2ys] # 0, and we are no longer summing over all the particles.
Therefore, for C1p and C1; we do sum over all the particles in the various irreducible

representations.



97

(3) Note that Co1 and C'1p represent center of mass excitations. The operator Cyg
was also analyzed by Johnson and Canright,[m] while Cy7 is directly related to the Lie

(19]

group generator of SU(1,1).

(4) We remark that the operators of Ci,, and Cpm (m,n > 2) do preserve the
monodromy property of the base state, if ¢; in eqns.(20) and (21) is chosen to be a
simultaneous eigenstate of all (5. The statistics is “Abelianized” in this case. This
situation occurs, for example, for some models of non-Abelian vortices of finite gauge

groups such as the quarternion group.

(5) The same ladder operator approach may well apply to non-abelian vortices of
finite gauge groups.{”m] Unfortunately, we generally do not know how to construct

“smooth” connections which would produce the desirable monodromy in this case.

(6) In a recent paper,m] Dasnieres de Veigy and Ouvry derived the equation of
state of an anyon gas in a strong magnetic field at low temperatures. The idea is that
at sufficiently low temperatures, excitations to higher Landau levels can be neglected.
Thus one may consider only the lowest Landau states of the anyons, which are covered
by the step operators. In fact, apart from the statistical phase factor, the multi-anyon
states in the lowest Landau level are tensor-product states of the individual anyon
states. By regularizing the grand partition function with a harmonic potential, the
equation of state can be obtained. The same decoupling principle should apply to
NACS particles. For a fixed base state, modulo the statistical term involving Q,g,
the multi-particle wavefunctions in the lowest Landau level are again tensor products
of individual particle states. Therefore, in principle, one should be able to derive the

equation of state of NACS particles in a strong magnetic field at low temperatures.

Note added. After this manuscript was accepted for publication, it came to our
attention that the symmetry group SU(1,1) had also been used for the discussion of
two anyons interacting with a Coulomb potential®™ Besides, an anyon can arise as
a composite of magnetic flux with a Dirac particle”™ In going from the Schrédinger
to the Dirac equation, the Zeeman interaction of the spin with the magnetic field
has to be included. This may give rise to extra delta function potentials at points
of coincidences which can possibly make the hard-core requirement inappropriate.
Thus, in some cases, for 0 < v < 1, the second base state 1@1(?) should be replaced

by [14<s(2e — 23)™" and is singular at points of coincidences. [See [23] for details.]
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Nevertheless, the ladder operator approach goes through with this minor modification.

An evaluation of the second virial coefficient has also been performed in a recent

preprint by Taejin Lee™

10
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Chapter 6

Complementarity in Wormhole Chromodynamics

6.1 Introduction

Many years ago, Wheeler™ and Misner and Wheeler™ proposed that electric field
lines trapped in the topology of a multiply-connected space might explain the origin
of electric charge. Consider a three-dimensional space with a handle (or “wormhole”)
attached to it, where the cross section of the wormhole is a two-sphere. On this space,
the source-free Maxwell equations have a solution with electric field lines caught inside
the wormbhole throat. One mouth of the wormhole, viewed in isolation by an observer
who is unable to resolve the small size of the mouth, cannot be distinguished from
a pointlike electric charge. Only when the observer inspects the electric field more
closely, with higher resolution, does she discover that the electric field is actually

source free everywhere.

It is also interesting to consider what happens when a charged particle traverses
a wormhole.” (Of course, this “pointlike” charge might actually be one mouth of a
smaller wormhole.) Suppose that, initially, the mouths of the wormhole are uncharged
(no electric flux is trapped in the wormhole). By following the electric field lines, we
see that after an object with electric charge ) traverses the wormhole, the mouth
where it entered the wormhole carries charge @), and the mouth where it exited
carries charge —(). Thus, an electric charge that passes through a wormhole transfers

charge to the wormhole mouths.

In this chapter, we will address two (closely related) puzzles associated with this
type of charge transfer process. Our first puzzle concerns the quantum mechanics of
charged particles in the vicinity of a wormhole. We can compute the amplitude for

the particle to propagate from an initial position to a final position by performing

* Note that we are assuming that the wormhole is traversable. This assumption would be valid
for a non-dynamical wormhole three-geometry, but it is in conflict with the “topological censor-
ship” theorem ®l that can be proved in classical general relativity (with suitable assumptions
about the positivity of the energy-momentum tensor). The traversability of the wormhole
might be enforced by quantum effects. Alternatively, the reader might prefer to envision our
space as a thin two-dimensional film, containing objects with Aharonov-Bohm interactions.
Such wormholes might actually be fashioned in the laboratory!
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a sum over histories. Naively, one would expect this sum to include histories that
traverse the wormhole, and that the contribution to the path integral due to these
histories should be combined coherently with the contribution due to histories that
do not traverse the wormhole. In fact, the histories can be classified according to
their “winding number” around the wormhole, which can take any integer value, and
one expects that all of the winding sectors should be combined coherently. Upon
further reflection, though, one sees that, for charged particles, this naive expectation
must be incorrect. Long after the final position of the particle has been detected, an
observer can measure the charge of one of the wormhole mouths. If the mouth was
uncharged initially, and carries charge n@) finally, then the observer concludes that
the charged particle must have entered that mouth of the wormhole n times. Because
the winding sectors are perfectly correlated with the charge transferred to the mouth,
the amplitudes associated with different numbers of windings cannot interfere with
one another. The puzzle in this case is to understand more clearly the mechanism

that destroys the coherence of the different winding sectors.

Our second puzzle arises in a non-Abelian gauge theory, such as quantum chro-
modynamics. Suppose that a wormhole initially carries no color charge, and consider
what happens when a “red” quark traverses the wormhole. (We can give a gauge-
invariant meaning to the notion that the quark is red by establishing a “quark bureau
of standards” at some preferred location, and carefully preserving a standard red (R)
quark, blue (B) quark, and yellow (Y) quark there. When we say that a quark at
another location is red, we mean that if it is parallel transported back to the bureau
of standards, its color matches that of the standard R quark. This notion is especially
simple if we assume that there are no color magnetic fields, so that parallel transport
is unaffected by smooth deformations of the path.) An observer who watches the
red quark enter one mouth of the wormhole concludes that the mouth becomes a red
source of color electric field! But the other mouth of the wormhole is initially in a
color-singlet state, and it cannot suddenly acquire a long-range color electric field as

the quark emerges from the mouth. Thus, after the traversal, the quark and mouth

t We are assuming that the wormhole is being examined on a sufficiently short distance scale
that the effects of color confinement can be neglected.
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must be in the color-singlet state

1 _ _ _
B~ |R>quark & ’R>mouth + [B>quark ® ‘B>mouth + |Y>quark ® [Y>mouth : (1)
V3

The puzzle in this case is to understand why the quark that emerges from the worm-
hole is not simply in the color state [R), and how the correlation between the color

of the quark and the color of the mouth is established.

The resolution of these puzzles involves some peculiar features of the Aharonov-
Bohm effect™ on non-simply connected manifolds. The essential concept is the mag-
netic flux “linked” by the wormhole. If a particle with charge @ is carried around a
closed path that traverses a wormhole (in a U(1) gauge theory), it in general acquires
an Aharonov-Bohm phase €'9® where ® is the flux associated with the path. (This
flux is defined modulo the flux quantum ®¢ = 27 /e, where e is the charge quantum.)
If magnetic field strengths vanish everywhere, this flux is a topological invariant, un-
changed by smooth deformations of the path. The crucial point is that the flux ® and
the charge of a wormhole mouth are complementary observables—if the mouth has
a definite charge (like zero), then the flux does not take a definite value. Summing
over the different possible values of the flux generates the decoherence of the winding
sectors described above, and also (in the non-Abelian case) causes the red quark that

traverses the wormhole to emerge in the state Eq. (1).

6.2 Wormhole complementarity

Let us now analyze these Aharonov-Bohm interactions in greater detail. We will
use a notation that is appropriate when the gauge group G is a finite group. This
will serve to remind the reader that our analysis applies to the case of a local discrete
symmetry.[sql For the case of a continuous gauge group, one need only replace sums
by integrals in some of the expressions below. When the gauge group is discrete (and
also when it is continuous), the electric charge of an object, including a wormhole
mouth, can be measured in principle by scattering a loop of cosmic string (or a closed
magnetic solenoid) off of the object. For ease of visualization, we will carry out our
explicit analysis for the case of two spatial dimensions, so that charges are measured

by scattering magnetic vortices. The analysis in three spatial dimensions is similar.

There are actually two types of topological magnetic flux associated with a worm-

hole in two spatial dimensions, for there are two topologically distinct paths for which
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Aharonov-Bohm phases can be measured, as shown in Fig. 1. The path « encloses
one mouth of the wormhole, and we will denote the group element associated with
parallel transport around this path as a € . The path S passes through both
wormhole mouths, and we denote the associated group element as b € . We refer
to these group elements as the a-flux and g-flux of the wormhole, and denote the
corresponding quantum state of the wormhole as |a, b) o mpoe- (Of course, in three
spatial dimensions, the analog of the path « is contractible, if the cross section of the

wormhole is a two-sphere, and there is no topological a-flux.)

Now, we can measure the electric charge of a wormhole mouth by winding a vortex
around the mouth, and observing the Aharonov-Bohm phase acquired by the vortex.
However, winding the vortex around the mouth will also change the state |a,b) of
the wormhole. For our purposes, it will be sufficient to consider the special case in
which a = e, the identity. (A more general analysis of non-Abelian Aharonov-Bohm
interactions on topologically nontrivial spaces can found in Ref. 8). As shown in
Fig. 2, we may enclose the vortex with a closed path v; we denote the group element
associated with transport around ~ as h € (7, and refer to it as the flux of the vortex.
As the vortex winds counterclockwise around the wormhole mouth, the path By~1 is
deformed to 8. (Here, By~! denotes the path that is obtained by tracing 4~ first,
followed by £.) Thus, when the vortex winds around the mouth, the flux associated
with 8y~! before the winding becomes the flux associated with 8 after the winding;

we conclude that the state of wormhole and vortex is modified according to

le7 b>wormhole ® lh>vortex - Ie’ bh—1>wormhole ® |h>vortex . (2)

Eq. (2) is the centerpiece of our analysis. It says that if the wormhole is in the “flux
eigenstate” |e,b), then any attempt to use Aharonov-Bohm interference to measure
the electric charge of one mouth is doomed to failure. If we scatter a vortex off of the
mouth (with vortex flux & # ¢), whether the vortex passed to the left or the right
of the mouth is perfectly correlated with the state of the wormhole, and therefore
no interference is seen; the probability distribution of the scattered vortex is the
incoherent sum of the probability distributions for vortices that pass to the left and

pass to the right.

However, by superposing the wormhole states of definite 3-flux, we can construct

states with definite charge. (We need only decompose the regular representation of
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(7 into irreducible representations.) In particular, in the state

l0>wormhole - Z Ie b wormhole (3>
bEG

(where ng is the order of the group (), each mouth of the wormhole has zero charge.
To see this, consider carrying the h-vortex around one mouth of this wormhole. It
is easy to see that the state of the wormhole is unmodified, so that the Aharonov-
Bohm phase acquired by the vortex is trivial. On the other hand, suppose that we
try to measure the S-flux of the wormhole by carrying a charged particle along the
path #. Let us denote the initial state of the particle as lv)particle’ and let (v) be
the irreducible representation of G according to which the state transforms. Then if
we carry this particle around the path g where the wormhole is initially in the state

10) wormnoles the state of particle and wormhole is modified according to

|initial> = |v>particle ® |0>w0rmhole -
4
Iﬁnal E T ZD ”) I’U partlcle ® le b)wormhole ’ ( )
bEG

thus the overlap of the final state with the initial state is

1 1, if (v) = trivial ;
(final [initial) = — " (v| D¥)(b) |v) :{ W) , ’ (5)
ng 0, otherwise .
€G ’
Unless (v) is trivial, the state of the particle that has been carried through the
wormbhole is orthogonal to the original state. Hence we recover our earlier conclusion
that, for charged particles propagating on the wormhole geometry, paths that traverse

the wormhole add incoherently with paths that do not.

We see that the wormhole cannot simultaneously have a definite B-flux and a
definite charge. We call this property “wormhole complementarity.” It is intimately
related to the complementary connection between magnetic and electric flux that was

first emphasized by ’t Hooft,tg] and was generalized to the non-Abelian case in Ref. 10.

By decomposing the regular representation Eq. (2) into irreducible representa-
tions, we obtain states in which the wormhole mouth has a definite charge. The
charge of a mouth should not be confused with the “Cheshire charge” © carried by

the whole wormhole. To measure the charge of the whole wormhole, we would wind
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a vortex around both mouths of the wormhole. In this process, the state of vortex
]

and wormhole is modified according tol"
|a7 b)wormhole @ ih>vortex -

|hah™", hbh™1) ® {h (aba™'67Y) h (aba~ 1Y) h“1> (6)

wormhole vortex '

Note that aba=1671 is the “total flux” of the wormhole, the flux associated with a path
that encloses both mouths. Charge measurement is possible only if the initial and
final vortex states are not orthogonal, so that interference can occur. Therefore, the
flux h of the vortex must commute with the total flux of the wormhole—the charge
that can be detected is actually a representation of N(aba=1b71), the centralizer of
the total flux"*"" States of definite Cheshire charge are obtained by decomposing

the wormhole states |a,b) into states that transform irreducibly under the action

Eq. (6), where h € N(aba=1b71).

Of course, to an observer with poor resolution, the wormhole mouths look like
pointlike particles, and the Cheshire charge of the wormhole coincides with the
Cheshire charge of vortex pairs that has been discussed elsewhere™ ™ For ex-
ample, if b = e then the mouths appear to be a vortex with flux ¢ and an anti-vortex
with flux =1, In the case a = e that we have considered, neither wormhole mouth

carries any flux, and the states |e, ) are transformed as

wormbhole

|67 b>wormhole & |h>vortex - |6’ hbh—1>wormhole ® Ih)vortex (7)

when the vortex winds around the wormhole. The states of definite Cheshire charge
are obtained by superposing the flux eigenstates |e, b) . .poe> With b taking values in

a particular conjugacy class of (G. Specifically the states

1
Z ’ € bl>wormhole (8)
b’ efb]

"]

1 0 ’ [b] >w0rmhole =

(where [b] denotes the class containing b, and np) is the order of that class) have

trivial total charge, although each wormhole mouth carries charge in these states.

The peculiar behavior we found for Aharonov-Bohm scattering off of a wormhole
mouth, when the wormhole is in a flux eigenstate, can be given a more conventional

interpretation if we think of the wormhole as a pair of charged particles in a particular
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(correlated) state. For example, the flux eigenstate |e, €} ormnole can be decomposed
as

le’ e)wormhole = IO’ [6]>wormhole
=30 ey @), SIGP =1 (9)
. i \/m 3 79 5 - )

where the |e;, v)’s are a basis for the space on which the irreducible representation
(v) acts, and n, is the dimension of this representation. This is a superposition of
states in which the two particles (the mouths) have nontrivial charges, and are in
a combined state of trivial charge. Experiments involving one of the mouths are

described by a mixed density matrix of the form
1
p=> G —1,, (10)
v My

and Aharonov-Bohm scattering of the h-vortex off the mouth enables us to measure

, h=e;
(= 3G k) = { | 1)

0, otherwise ,
v

where y(*) denotes the character of the representation. (The second equality in
Eq. (11) follows from the property Eq. (2).) From the group orthogonality relations,
we see that |Cy|? = n2/ng. Thus Aharonov-Bohm scattering enables us to determine
the probability that the wormhole mouth carries charge (v), but does not determine
the relative phases of the C,’s™ When we think of it as a point particle, the unusual
thing about a wormhole mouth is that it is natural to consider a state such that the

mouth is in a superposition of particle states with different gauge charges.

6.3 Charge transfer

Now let us suppose that, after the wormhole in the initial state |0) .. ihole 1S

traversed by the charged particle in the initial state |v) we attempt again to

particle>
measure the charges of the two mouths. If an h-vortex is carried around the mouth
that the charged particle entered, then the state of wormhole, particle, and vortex is

modified according to

1 v
\/HE I)EZGD( )(b) ]U>Particle ® |6, b>wormhole ® ‘h>vortex -

1 . |
\/T—LE [,Z:_(:;D(V)(b) lv>partic1e ® ’6’ bh >wormhole ® |h>V0IteX ’

(12)
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so that the overlap of the initial state with the final state is

overlap = — Z (o] DYDY (b) |v) - (e, ] e, 6h7) = (0] DV (R) |v) . (13)
b Wbed

This is exactly the same as the overlap we would have obtained if the vortex had

been carried around the initial charged particle. Thus, as we anticipated, the charge

of the particle has been transferred to the mouth of the wormhole.

But if we measure instead the charge of the other mouth, we obtain a rather
different result. It is actually most instructive to consider carrying the h-vortex
around both the charged particle and the other wormhole mouth. A variant of the
argument given earlier shows that carrying the vortex counterclockwise around this
mouth changes the wormhole state |e, b) to |e, hb). We thus find that the state of

wormhole, particle, and vortex is modified according to

1

Z D(U) (b) lv)pa,rticle 24 Ie’ b>wormhole ® Ih>vortex -

14)
1 (
D@ (R D@ () v ® |e, hb ® |k :
\/@é ( ) ( )I >part1cle I >wormhole l >vortex
and that the overlap of the initial state with the final state is
1
overlap = — z (] DV DW) (hb) |v) - (e,b'| e, hb) = 1. (15)
n

Gyvea

Thus the Aharonov-Bohm phase is trivial, and we conclude that the charged particle

and mouth are combined together into a singlet state, again as anticipated.

Eq. (1) is a special case of this result. We now understand that if the wormhole
mouth initially carries no color charge, that means that the color holonomy associ-
ated with traversing the wormhole does not take a definite value. Thus the red quark
emerges from the wormhole mouth carrying indefinite color, but with its color per-
fectly anti-correlated with the color of the mouth. Furthermore, after the (initially)
red quark passes through the wormhole, the wormhole state is a superposition of a
color octet and color singlet, so that Cheshire charge has been transferred to the

H
wormbhole.

* SU(3)cotor Cheshire charge has also been discussed recently by Bucher and Goldhaber
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In summary, we have seen that the -flux “linked” by a wormhole and the charge
of a wormhole mouth cannot simultaneously have definite values. We call this prop-
erty “wormhole complementarity.” If the 3-flux has a definite value, then each worm-
hole mouth is in an incoherent superposition of charge eigenstates, and there is no
Aharonov-Bohm interference when a vortex (or cosmic string) scatters off the mouth.
If the charge of each mouth has a definite value, then the wormhole is in a coher-
ent superposition of B-flux eigenstates. Thus, after a colored particle traverses the
wormbhole, its color is correlated with that of the wormhole mouth from which it

emerged.
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FIGURE CAPTIONS

Two non-contractible paths a and 3, beginning and ending at an arbitrarily
chosen basepoint g, on the wormhole geometry. The group elements associated
with parallel transport around these paths are the a-flux and f-flux of the

wormbhole.

2) A vortex winds around one mouth of the wormhole, as shown in (a). If the

path y~! shown in (b) is deformed during the winding of the vortex, so that

the vortex never crosses the path, 8y~ evolves to the path f.
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FIG. 1

FIG. 2



111

Chapter 7

Scattering from Electroweak Strings

7.1 Introduction

Some years ago, Callan™ and Rubakov™ (see also Wilczekm) showed that a
grand unified monopole may catalyze baryon number violating processes with strong
interaction cross sections rather than the much smaller geometric cross sections. This
enhancement effect can be understood as a consequence of a large amplification of

. . . . 4
the fermionic wave functions near the location of the monopole.[ :

A similar enhancement of cross section also occurs for cosmic strings with frac-
tional fluxes:" Alford, March-Russell, and Wilczek™ studied the fermion number
violating process in a cosmic string core due to a Yukawa coupling. In their model,
there are two fermions with equal U(1) charges and two scalar fields. The first scalar
field, n, acts as the Higgs field and thus condenses outside string core. The second
scalar field, ¢, which has a Yukawa coupling to the two fermion fields, condenses
within the core. In the limit AR < vR <« 1, where k is the momentum of the inci-
dent fermion, R is the size of the core and v = A < ¢ > (X being the Yukawa coupling
constant), they found generic enhancement by large factors over the naive, geometric

cross section. Maximal enhancement occurs when Z_g ~ %

A prominent feature of their results is that while a large enhancement of the
fermion number violating process is a general phenomenon, its actual magnitude is
extremely sensitive to the U(1) charge of the fermions. For instance, changing the
charge from a = 1/2 to @ = 1/4 results in a diminuation of the inelastic cross
section by around 15 orders of magnitude. By assigning baryon numbers to the
fermions and scalars, their results imply that the exact magnitude of the baryon
number violating process is very sensitive to the details of the grand unification model
under consideration. Since there are uncertainties in our experimental determination
of low energy parameters such as the Weinberg angle, it might be hard for us to say for
sure whether a model is phenomenologically feasible. The point is that a slight error
made in our determination of the values of such parameters leads to a huge variation

in the rate of baryogenesis and may render a feasible model unfeasible and vice versa.
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For this reason, we would like to ask the following question: Is this sensitivity a
generic feature or is it model-dependent? In other words, can we construct a model

where the inelastic cross section is less sensitive to the values of the parameters?

A hint to the answer to this question comes from the investigation made by
Perkins et al' In their paper, the cross section for a baryon number violating process
was derived using first order perturbation theory in quantum field theories. The
transition matrix element between an initial state [¢0) and a final state |¢') is given
by A = (¢'| [ d*zL(z) |). The computation was divided into two steps. Firstly,
they evaluated A using free fermion spinors, resulting in the “geometric” cross section.
In the second step, they solved the Dirac equation with the appropriate boundary
conditions to determine the amplitude of the spinor at the core radius R and defined
the amplification factor A as the ratio of the amplitude of the actual spinor to that of
a free spinor. Since the cross section is proportional to .42 and since A4 involves two
spinors, the catalysis cross section is enhanced by a factor A* over the geometric cross
section. This argument relies on the fact that the amplification factor for the initial
state is the same as that for the final state. It might be possible for us to construct
models with different amplification factors for the initial and final states. If the two
amplifications have opposite dependence on the parameters, the overall amplification,
which is the product of the two amplification factors, will then be insensitive to the

parameters in the model.

In this chapter, we study the scattering of a charged fermion from an electroweak
string. We show that for 0 < sin?8,, < 1/2 (6, =Weinberg angle), w ~ k ~ m.
and kR < 1, the helicity flip differential cross section for electrons is of the order
m7 1. A delicate cancellation of the dependence of the two amplification factors on
the Weinberg angle indeed occurs within this regimé. We would like to remark that
the differential cross section in this regimé is dominated by a single partial wave and

is thus independent of angle.

Incidentially, our results illustrate that the analysis of the enhancement effects
for cosmic strings can be extended to a wider class of string defects: the semi-local
strings™ and the electroweak strings™ These recently discovered defects occur in
theories where the fundamental group of the vacuum manifold is trivial. Thus, they

are at best metastable” While Z-flux carrying electroweak strings are unstable in
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the Weinberg-Salam model, various mechanisms for stabilizing a Z-flux string have
been proposed. First, one can add a linear time dependence of the Goldstone boson
to obtain a stable spinning vortex solution™” Second, fermions that are massive
outside the core become massless inside. It is clear that there are superconducting
zero modes in the core. These bound states tend to stabilize the non-topological

]

solitons™  Another possibility would be to consider extensions of the electroweak

model or topological strings carrying Z-flux which are formed in an earlier phase

PR 12
transmon.[ ]

Baryogenesis during the weak phase transition is particularly interesting as it
may eventually be experimentally verifiable. Consider the following wild speculative
scenario: non-topological electroweak strings are formed at the electroweak phase
transition. They are stabilized by some mechanism (either one of the above or a
combination or some other means). Baryogenesis occurs inside their cores. Baryo-
genesis due to electroweak strings in the two-Higgs model has been discussed in the
literature™™™ It would be interesting to understand the relevance of our results to

baryogenesis in future investigations.

After the completion of an earlier version of this chapter, we received a revised
manuscript by Davis, Martin and Ganoulis™" which also discussed electrons scattering
off electroweak strings for 0 < sin? 8, < 1/2 and k£ < m or k > m. In this chapter,
we consider the whole parameter space 0 < sin®6, < 1 in the regimé m ~ k. In

particular, our analysis applies to semi-local strings, which correspond to sin® 6, = 1.

The plan of this chapter is as follows. In section 2, we review the subject of
the electroweak strings and describe a simple model of the field configuration that
we will be working with. Using a partial wave analysis, the differential cross section
for the helicity flip process of electrons for various values of 8, will be computed in
section 3. In particular, we show that the cross section is proportional to m_! for
0 < sin?6, < 1/2, w ~ k ~me and kR < 1. Moreover, the result for the semi-local
strings can be obtained from that of the electroweak strings by setting sin® 8, to 1.
In our concluding remarks in section 4, we also note that helicity is violated outside
the core of an axion string. Thus, it makes no sense to discuss helicity conserving

and helicity flip cross sections in this context.
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7.2 Extended Abelian Higgs Model and Electroweak Strings

Consider an extension of the Abelian Higgs model with N = 2 complex scalars
® with their overall phase gauged and an SU(2) global symmetry. The most general

renormalizable Lagrangian in four dimensions consistent with these symmetries is
1 2 1
2 2
L=|D,®° — 5A(|<I>| —7%)" - 7 E 1. (1)

The field ® acquires a vacuum expectation value of magnitude n and the symmetry
is spontaneously broken into a global U(1). It has also been shown that the Nielsen-
Olesen vortex solutions"” of the Abelian Higgs model (the case with N=1) carry over
to the extended Abelian Higgs model. However, the stability of such vortex solutions

becomes a dynamical question and depends on the ratio of the masses of the Higgs
and vector particles.[gl

Now the extended Abelian Higgs model is precisely the Weinberg-Salam model el
with the SU(2) charge set equal to zero. By gauging the SU(2) symmetry, one
obtains string solutions in the electroweak theory. Such electroweak strings are non-
topological and unstable in the minimal electroweak theory. They may, however, be

made metastable in some extended models.
Consider an electron moving in the background field of an electroweak string.
The relevant part of the Lagrangian is
L =ily"D,L +iegy*Dyer — fo(Lep® + 0lepl), (2)
where L = (,€1), f. is the Yukawa coupling constant, ® is the usual Higgs doublet,

and the covariant derivative has the form

D=0+ =57, 3)

where v = e/(sin 0y, cos 0y) (8 being the Weinberg angle) and the Z—coupling, «, is
given by[”]

a=-=2(T3 — Qsin2 Ow), (4)
where T3 is weak isospin and @) is electric charge. Note that for electrons and down

quarks,
ap =ap+1, (5)

and there 1s a marked asymmetry between left and right fields.
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For explicit calculations, consider the following simple model™ of the field con-

figuration.

o= (ot )= e ()
Zy = —v(r)/r

Zr =W=A=0

0 r< R
f(r):{_ﬂ_ r>R

V2
0 r<R
wﬂ:{gr>R (6

where Z and W are the gauge bosons and A is the photon field. We expect our results
to be insensitive to the detail of the core model. A discussion about this issue can be

found in Ref. 6.

0
Writing e, = (1/)) and e = (E), in the representation

o (0 1\ , /0 —oi\ , /1 0
7:<1 0)’7:(01 0)’7:<0 —1)’ )
the Hamiltonian is
_ <—iajD]R fe fe_ig)
fefe®  iolDE )
The equations of motion for ¢ and y are
wy +i0' Dy — fofe P =0
wp —ic' DIy —  fofex =0,

Note the phase ¢ and the coupling of 1 to x via the mass term. Inside the core,

(9)

there is no coupling and electron is massless. The helicity operator is given by

o-mp 0 —ig/ DR 0
suni= ( )= (). o
0 o7y 0 —w’DJ»

To see that helicity is not conserved, we compute its commutator with the Hamilto-

. . . . 18
nian and find it to be non-zero inside the core™™

0 ai(DjtpO)*)
0 D;®° 0 “

Note that helicity violating processes can only occur in the string core. They can,

m£4ﬂ=m( (1)

however, be enhanced by an amplification of the fermionic wave function at the core
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radius. In the following section, we perform a detailed calculation of the differential

cross section for such scattering processes.

7.3 Scattering Amplitude

We try the usual partial wave decomposition.

o= 3 (00, )
X\r,Y) = .
= zxé(r)e’a
= ﬂ(’") 1+1)6
W(r,0) = ( Z ) RISV (12)
2 Ling(ryee
Making use of
: 0 e~ (D, —iD
O'JD]' = ( " ] ( 0>> , (13)
e (DT + ZDg) 0
we substitute (12) into (9) to obtain
wxy + (o)X —fefup =0
wxi — (=) Xy —fefvl =0 "
why = (G =Y Ll =
o+ (frEomu nd
(a) Internal Solution (r < R)
In this region, f = v = 0, so the equations of motion (14) reduce to
od + (E-Dad =0
wxi = (FHE)xg =0 (15)
wiy = (=) =0
wii + () =

Thus, 1 and x are decoupled from each other in the string core. Combining the first

two equations and setting z = wr, we obtain

l;d_ ;d_ l_+_ il -I—O 16
zdz Zdz X1 22 X1 =Y (16)

This is none other than Bessel’s equation of order {. By regularity at the origin, the
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solution is
Xi = adi(wr). (17)
This together with the second equation implies
X = adiyi(wr). (18)

By a similar argument, 1/){ and zbé satisfy Bessel’s equations of order { + 1 and [ + 2

respectively and the internal solution is

ciJi(wr)
P i diJi1q (wr)e?? '
ileHg(wr)eQia

(b) External Solution (r > R)

Outside the string core, we decompose our wave functions into eigenfunctions of
the helicity operator. i.e.,
(0-7Rp)x = —iaijRX = +ky (20)
(0-7p)p =—io!Dip = Lk,
From eqn.(14), this gives
(wF k)x = feftp =mp

(21)
(wE k) = fofx =mx.

Defining
v=I1—ap (22)
and 2’ = kr, eqn.(20) yields
d v
l {
X2 =+ (@ - ;) X1 (23)

where — (4) is taken for a positive (negative) helicity state. Thus, the external

solution is

Zy(kr)
s +1Z kr)e .
GIED S B P (1)
1 = B=Z,(kr)e
+iBYZ, 1 (kr)e??

In the above, B = 4%, the superscript + in B denotes the helicity and =+ in the

front of the second and fourth components take the same sign as the helicity for
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Z, = Jy, N, and H, and opposite sign for Z, = J_,, N_, and H_,. Here N,
and H, are Neumann and outgoing Hankel functions respectively. Note that it is kr
rather than wr which appears in the arguments of our functions because electrons
are massive outside the core. Another point to note is that whereas the second and
third components of the internal solutions satisfy Bessel’s equation of the same order,
the corresponding components of the external solutions satisfy Bessel’s equations of
orders v+1 and v respectively. This relative shift in the order is due to the asymmetry

between left and right, i.e., o = arp + 1.
(¢) Asymptotic Solution

Consider performing a scattering experiment with an incoming plane wave of
positive helicity electrons. Since helicity is violated in the core, the scattered wave
consists of both positive and negative helicity components. We find that, as r — oo,

the external solution takes the form

(=)l 1 1
i 6”9 Z'(——-Z')ZJH_lei.a . fleikr ei(? | N gleikr _61‘9'
= Bt (=)' Je¥ vro | Bte? N B et?
l'B—{-(_Z')IJH_le?iH Bte2if — B2

(25)
It is easy to check that the second and third terms are the positive and negative

helicity components of the scattered waves respectively.
We divide the problem of matching the asymptotic wave functions into two cases.

(i) For v > 0 or v < —1, we take Z! = J, and Z,% = N,. The external wave

function is therefore

(wdy  + BN, 4+ Ad, o+ BN, )eil?
i(ardy+1 + biNy11 — ArJy1 _ BINVH)ez'(H-l)e
(wBtJ, + BBYN, + AB~J, + BB N,)ell+18 (26)
(@Bt 41 + WBTN,1 — AB J,41 — BiBTN,pp)ei(t2e

Making use of the asymptotic large x forms
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Ny(z) ~ 4/ —sin <;c BT —) ) (27)

ile ed:ikr

we match coefficients of e N in eqns.(25) and (26) to find

e/ (ap 4ib +A +iB) =1
v/t (ap —ib +A —iB) = (=)' + (fi + 9™ *V2rk
DT (g b —iA] +B) =-1
e~ (g by —idy —By) = (=1 4 (fi — g4V 2xk,

€

(28)

from which we deduce

A = —iB

a; = —ibj + e—w7r/2

- 1
_ —i(mfatvnf2) [ o
g =c \/ 27rk( 2 By). (29)

(ii) For —1 < v < 0, taking Z} = J, and Z2 = J_,, the external wave function is

(a1, + biJ_, + Ay + BiJ_,)e
t(ary41 — biJ_,_1 - A + BIJ_V_I)ei(l+1)6 .
(wB*J, + uBYJ_, + ABJ, + BB-J_,)el+1) (30)
(Bt Jys1 — BBYJ_,1 — AB J,41 + BIB—J_V_I)ei(Hz)()
We proceed as before and find
A= —6_iu7rBl
a = _e—imrbl + 6—i1/7r/2
1 - .
gr =4/ %e"(””/“"/“)zz sin(v7)By. (31)
Note that
do
@! =>_laf* (32)
{

|~ —
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(d) Matching at r = R

We have obtained the solutions inside and outside the core in (a) and (b). Now
we match them at r = K. Because of the difference in the masses in the two regions
and the discontinuous distribution of the string flux, there is a discontinuity in the
first derivatives of the wave functions. Nevertheless, the wave functions themselves

are continuous at r = R. This is the matching condition that we will use™ Once
again there are two cases.

(i) v 2 0 or v < —1: Substituting (29) into (26) and matching it with the internal

solution in eqn.(19), we obtain

—iH,b; - iH,B; =  Jig - e~ wT/2 ],
—iHypaby  +  iHyp B = Jja — e, (33)
—iBtH,b; — B H,B; = Jid — e %T/2Bt],
—iBYH,1by + iB H, 1By = Jiod — e % 2pt), .

In deriving the above equations, we have used the definition of outgoing Hankel
function: H, = J, 4+ ¢N,. Solving eqn.(33), we find

_ OB

B
=7A

(34)
where

Ap = B+e—iwr/2( )(']12—1-1 — 1 Ji42) (35)

2
kR
and

A =(B™ = BY) (Wil — Jy2Hy) = (B™ + BY)(JEy — Didige) Hy Hypa (36)

where H), 1s outgoing Hankel functions. Use has been made of the Wronskian formula

Ju41(z)Ny(z) = Jy(z)Nys1(z) = = in the derivation of eqn.(35).

Now we consider the regimé w ~ k ~ m and kR < 1 and perform small kR

approximation:
Ju~ O([kR"),  Hy, N, ~ O([kR]™). (37)

It is straightforward, but tedious to show that

(38)
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Note that the cross section may still be logarithmically suppressed when the

exponent in the suppression factor appears to be zero.
(i) —-1<v <0
Substituting eqn.(31) into (30) and matching it with the internal solution in

eqn.(19), we obtain the following equations.

P( b + B )= Jog - e~ /2],

QU & - B )= Jyug — e, (39)
P( B*w + B™By )= Jid — e wT2pty, 7

Q( BTy — BB )= Jiad — e ™2BtJ,.

where P denotes —e~"7J, + J_, and Q denotes —e~""J, 11 — J_,_1. Solving (39),
we find

Al
By = Tl,? (40)
where
2B+t sin(vr)e~7/2
= PR T s — ) (1)
and

A'=(B™ — BN Ju1(Jig2P? — JQ%) + (B~ + B (I — JiJi42) PQ. (42)

Use has also been made of the Wronskian formula J,J_,_1 4+ J_,Jy+1 = _ Zsin(vr) in

T
deriving eqn.(41).
We consider the regimé w ~ k ~ m and kR < 1. A straightforward calculation
shows that

Byoc § (kR 1< -2 (43)

We see immediately that when the last case occurs, the mode { = —1 (-1 < v < 0)
dominates the contribution from all other modes, and is of order 1. In that case, the
helicity flip process is maximally enhanced with a cross section of order 1/m, where m
is the mass of the incoming particle. Recalling that v = [ —ag, we see that this occurs
precisely when —1 < ap < 0 (and thus 0 < ap < 1.) For electrons ap = —2sin? 0,
and the condition reduces to 0 < sin® 8, < 1/2.
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Let us consider the changes in the helicity flip cross section as sin? 0y, increases

from 0 to 1 in the regimé w ~ k ~m and kR < 1.

Before embarking on a discussion about the various cases for electrons, we would
like to remark that the results for down quarks are similar. It is still true that
ar = ag + 1. The only difference is that ap = ~-§—sin2 0w for d quarks. Therefore,
there are just two cases. If sin?6, = 0, the result is the same as in case (1) for
electrons and the helicity flip scattering has, up to normalization, an Everett’s cross
section. (Cf. case (1) below.) If 0 < sin®#@,, < 1, there is a maximal enhancement
and the cross section per unit length ~ 1/mg. (Cf. case (2) below.) Now we turn to

electrons.

(1) For sin?0, = 0 (ap = 0), the | = v = —1 mode dominates and from eqns.

(29), (32) and (34)-(36), the differential cross section per unit length

do 1

A S 44
d0  kln®*(kR) (44)

which is, up to normalization, the cross section obtained by Everett"” for the scat-

tering of scalar particles off cosmic strings with integral magnetic fluxes.

(2) For 0 < sin’0, < % (=1 < ag < 0), from eqns. (31), (32) and (43), the

electron helicity flip process has a differential cross section

do 1
@ - O(me ) (45)
which is dominated by the mode —1 < v < 0 ([ = —1) and is thus independent of

angle. In this case, the helicity flip process remains unsuppressed as R — oo with
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k held fixed. Note that this maximal amplification occurs for a continuous range of
values of the parameter sin® #,,. This is in contrast with an analogous calculation on
baryon number violating processes due to cosmic strings which exhibit unsuppressed

. . [5.6]
cross section for only discrete values of fluxes.

(3) For sin6,, = 1 (ap = —1), the | = —1,v = 0 mode swamps contributions
from all other modes. Eqns. (29), (32) and (34)-(36) together implies that the cross
section is of the same order as in case (1).

(4) For % < sin® 0y, < % (=1.5 < ap < —1), the dominant mode is 0 < v < 0.5
(I =—1). From eqns. (29), (32) and (38), the differential cross section is given by

ill_g ~ k—l(kR)4V - k—l(kR)4(2 sin? Hw—l)’ (46)
(5) For sin?6,, = 3 (ag = —1.5), the two modes [ = —1 and —2 give comparable

contributions and we obtain from eqns. (29), (31), (32), (38) and (43) that

dO' 1 612

(6) For 3 < sin®fy <1 (=2 < ag < —1.5), we need to consider the contribution

from the [ = —2 mode only and obtain from eqns. (31), (32) and (43) that

do -1 8(1—sin? 8,,)
7 Kk~ (kR) , (48)
(7) For sin? 0y = 1 (ag = —2), the | = —2,v = 0 mode will dominate and the

differential cross section can be deduced from eqns. (29), (32) and (34)-(36):

do 1

d0 " kImi(kR) 49)

Note that the exponent of the logarithmic term is four, whereas in cases (1) and (3)
it is two. We note on passing that case (7) corresponds to semi-local strings, where

the SU(2) gauge charge is set to zero.

The most prominent feature of our result is the presence of a plateau: For sin® s,
between 0 and 1/2, we have maximal enhancement. Is there any heuristic way of

understanding its origin? In Ref. 6, the cross section for a baryon number violating
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process was derived using first order perturbation theory in quantum field theories.
The transition matrix element between an initial state |¢)) and a final state |¢') is
given by A = (¢'| [ d*aL1(z) |¢) . The computation is divided into two steps. Firstly,
we evaluate 4 using free fermion spinors, resulting in the “geometric” cross section.
In the second step, we solve the Dirac equation with the appropriate boundary con-
ditions to determine the amplitude of the spinor at the core radius R and define the
amplification factor A as the ratio of the amplitude of the actual spinor to that of a
free spinor. Since the cross section is proportional to A% and since A involves two
spinors, the catalysis cross section is enhanced by a factor A* over the geometric
cross section. Now we attempt a similar discussion for helicity flip due to electroweak
strings. The difficulty of such an approach lies in the decomposition of the Hamil-
tonian into helicity conserving and helicity violating parts. The point is that the
Yukawa coupling between the Higgs field and electrons, apart from giving rise to he-
licity violation, also makes electrons massive and it seems difficult to separate these
two effects. The simplest way out is to consider another object instead, namely the
commutator of the helicity operator with the Hamiltonian. This object is clearly pro-
portional to the transition matrix element that we are interested in.” From eqn.(11)
we see that this commutator couples the first component of a spinor with the fourth
and the second with the third, etc. In the same spirit as in Ref.6, we compute the
coefficients a;, b;, A; and By of our wave function. For the region 0 < sin?6,, < 1/2,
we find that the mode —1 < v < 0 have all coeflicients of order unity. It is a simple
matter to check that, at the core radius, the first and third components of the initial
(+ helicity) wave function are enhanced by a factor (kR)” and the second and fourth
by (kR)™*~!. A similar analysis holds for the final (— helicity) state. Now we have
the interesting result that all components are amplified by factors very sensitive to
the fractional flux of the string, but the first and third components have a different
amplification factor from that of the second and fourth such that when we take the
product of the amplification factors, we get an enhancement factor of (kR)™!, which

is independent of ag. This is the origin of the plateau.

* We thank Ming Lu and Piljin Yi for helpful discussions about this.
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7.4 Concluding Remarks

(1) We work in the regimé w ~ k ~ me and kR < 1. Using a partial wave
decomposition, we show that for 0 < sin® 0, < 1/2, electrons scattering off an elec-
troweak string have a helicity flip cross section (per unit length) of order m_ 1. This
huge cross section is due to an amplification of the fermionic wave function at the
core. Within this region of the parameter space, it is found that one partial wave
(the mode —1 < v < 0) dominates the contributions from all other modes, giving an

angle independent differential cross section (per unit length) o< m_ 1.

(2) Whereas baryon number violating processes are maximally enhanced only
for discrete values of the fractional flux, our results show that electroweak strings
have maximal amplified helicity flip scattering amplitude for a continuous region of
the parameter space 0 < sin®f, < 1/2. This is due to the asymmetry between
left and right and a subsequent delicate cancellation of the dependence of the overall
amplification factor on the Weinberg angle: We consider the commutator between the
helicity operator and the Hamiltonian. This commutator gives a coupling between
the first and fourth components as well as between the second and third components
of the spinor. By computing the coefficients of the wave function, one observes that
the first and third components are amplified at a factor which is very sensitive to the
string flux and is different from the amplification factor for the second and fourth
components. However, when we take the product of these two amplification factors
to obtain the total amplification factor, we find it to be independent of the string

flux, thus resulting in maximal enhancement for a continuous region of the parameter

space.

(3) The case 0 < sin? 8, < 1/2 has also been discussed in a revised version of Ref.
14. Can one rederive their results from our discussion? The answer is affirmative.
For 0 < sin?#,, < 1/2 and wR, kR < 1, one can deduce from eqns. (31), (32) and
(40)-(42) that
do 2 m? 2 . 9
75 <m> sin” Tap. (50)
(Here we have reinstated the mild sin? 7a g dependence that we have ignored in section

3.) In the limit £ < m, this gives

— ——ksin TOR. (51)
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In the opposite limit k£ > m,

do L /my% .,
7~ 5% (?) sin® Tap. (52)

We note that the vanishing of the differential cross section in the massless limit can
be deduced directly from eqn.(11). Similarly, for sin®8,, = 0 or 1/2, one deduces from
eqns.(29), (32) and (34)-(36) that

d_or T m? 2 (53)
dd "~ 8k \ww+k)) m*kR’
For k < m, this gives
do m 1
— R . 4
d9 ~ 8kln*kR (54)
For k > m, this gives
do 7w /rmy\% 1
do " 32k (?) n2kR (53)

These results are in good agreement with those of Ref. 14. (The authors gave zero as
their final answer to the case k > m, but it is clear from their arguments that they

had neglected (k/m)* terms.)

(4) The cross section for other values of @, are also computed. In particular, a

semi-local string is none other than an electroweak string with sin® 8, = 1.

(5) For axion strings, the covariant derivatives in eqn.(11) should be replaced by
partial derivatives. Therefore, helicity is violated outside the core and it makes no

sense to talk about helicity conserving and helicity flip cross sections in this context.

(6) It would be interesting to investigate the relevance of this work to electroweak

baryogenesis. Such scenarios are highly testible.
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Summary

Let us summarize our main results. Non-Abelian vortices have exotic properties.
They obey braid statistics, rather than the conventional fermion and boson statistics.
The exclusive cross section for vortex-vortex scattering is typically a multivalued
function of the scattering angle. There can be an exchange contribution to the vortex-
vortex scattering amplitude that adds coherently with the direct amplitude, even if the
two vortices have distinct initial quantum numbers. Furthermore, a vortex-antivortex
pair is capable of carrying charges without an apparent source. This unlocalizable
charge has been dubbed “Cheshire charge.” The mechanism for its existence and
topological transfer was discussed in Chapter 3. The measurements of charges and
fluxes in a wormbhole background are also considered. We show how the charges carried
by a wormhole mouth appear to be conserved when a charged particle traverses a
wormbhole from the perspective of an observer who is unable to resolve the small size
of the wormhole mouth. We also work on non-Abelian Chern-Simons particles and

electroweak strings.

All these sound novel, but how do they relate to phenomenology? We would
like to argue that those exotic properties described above are natural consequences
of non-Abelian gauge theories and it is conceivable that many of them do occur in
nature. For instance, our discussion on the topological transfer of magnetic charges
between a string loop and a monopole applies to nematic liquid crystals. Particles
obeying non-Abelian statistics (“nonabelions”) have been proposed independently by
condensed matter theorists. An important question, then, is how would such objects
be recognized in laboratory experiments? Much remains to be explored in the many-

body physics of nonabelions.

Another interesting recent development of the subject is the global analog of the
Aharonov-Bohm effect. This can have far-reaching phenomenological implications.
So far such an analogous effect has been carefully discussed only for the case of a
boson moving in a background of a global Z; string and is not without controversy.
It remains to be generalized to other patterns of symmetry breaking and to fermions.
These are highly non-trivial problems: generalization to other symmetry groups forces

one to deal with nonlinear differential equations whereas the equations of motion for
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fermions contain commutator terms. Also, Patrick McGraw has recently investigated
the global analog of Cheshire charge. One potential problem in such a formulation
which remains to be addressed in the future is the radiation of charged Goldstone
bosons. A global vortex-antivortex pair can, in principle, radiate away its charges by
the emission of charged Goldstone bosons. To make sense of Cheshire charge, one
must ensure that the radiation process occurs at an insignificant rate in the time scale
that one is considering. What exactly this requirement amounts to is something to

be worked out.

In our opinion, the greatest promise lies in the detailed study of the phenomenol-
ogy of non-Abelian cosmic and electroweak strings. Owing to their topological inter-
actions, they are expected to evolve and interact with charged particles in a manner
qualitatively different from the widely studied U(1) strings. An important question
to ask is whether they would be a good candidate for the formation of the large scale
structures in the early universe. Scenarios of baryogenesis due to electroweak strings

are also interesting because they are highly testable.

From a theoretical point of view, the many body theory of non-Abelian vortices
and a fully second quantized theory of non-Abelian vortices are very exciting funda-
mental problems in field theory. Immense courage and deep insight would be needed

for making progress in these areas.



