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TABLE CF SYMBOLS

Cp specific heat at constant pressure
T température

V) velocity component perallel fo plete
~ velocity component normal to plate
A resultant velocity

coordinate normal to piate

thickness of boundary layer

thickness of laminar sublayer
density

viscosity

kinematic viscosity

shearing stress

coafficient of heat condustion

ratio of specific hest =% constant pressure
to that st constant volume

Mach number
Reynolds number
%/‘1]

drag wer unit span

o3 0 2 o2 > < XD nex

chord
Subseripts
0 denotes conditions in free stream
mr denotss conditions at the plate
) desnotes condition at the edge of the laminar sublayer
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SUMMARY

The effect of compressibility upon the boundary layer
thickness and wall sheesring stress on an insulated flat plate
parallel to the wind is investigated. Integral methods are
used to investigate both laminar and turbulent boundary layers.

In order tc simplify the calculations, only the limiting
cases of small Mach numbers and very large Mach numbers are
investigated in the laminar case. In the turbulent case only
small Mach numbers are considered due to the present lack of
understanding of supersonic turbulence,

It is found that in the subsonic leminar boundary layer,
the wall shear stress iz spproximately independent of Mach
nunber while the boundary layer thickness increases with Mach
number, For large Msch numbers in the laminar case it is found

- 24
that the wall shear stress is proportional to M, and the

176
boundary layer thickness to P4° .
In the turbulent case, where only small Mach numbers are

investigated, both the shear stress and boundary layer thick-

ness are found to decrease with Mach number.



INTRODUCTION
The provlen of the laminar boundary layer in compressible
flow has been thoroughly investigeted., Karman and Tsien have
solved the differentinl eouations by successive approximations
under the assumption thai the Prandtl number is equal t¢ one,
They found that the velocity nrofile was approximately linear,
Emmons and Brainerd heve extended the solution to include

5

the effect of varying the Prandil number, ZEckert and Drewitsz
have mede o sinmilar solubion tc the provlem,

All of the above soclutions are obtained by sctually
solving the differential eguations. This is possible only in
the case of laminar flow, where thers is & known relation be-

tween shearing strers and mesn veloveity. In turbulent flow,
the corresnonding relation is as yeb unknown. Until such a
relationship is discovered there can be no complebe solution
of the turbulent case., In order 4o obizin some informstion
about the boundary layérs in general, von Karmsn has devised
en alternative spprosch., This approach is known as the integral
method, and it ls essentially = generalizetion of this method
whieh is used here,

Ag orlginally set forth by von Karmen, the integral

method consisted of expressing the wall shesring stress in

two ways., First as

o 4 f/o v(y-v) a@a
a
~ dx
and sscond =8 &U
2;’ - /*‘ oy Jw
The asesurmntion was then made that tho velocliy prefiles at

varicus stzbtions downstream sre similer to one another,
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If this is true, the velocity parallel to the plate, U, may be
written as U= Uo{("l) whetre ”l" ,ﬁ/. . This allows T

to be expressed as

k3
T ou é;fﬁl-fu»z - p U g A
oy ( ¢l43 = y E& Es
A\ U @

Both A and B are dimensionless constants, so that combe
ination of the two expressions for o leads to equations for
*n‘ and T, in terms of these constanﬁseb Thos the general
nature of the variastion Of‘ﬁ‘ , and 'Ky with the distance downe
stream can be found without knowledge of the velocity profile
or of the relation between shesr sbtress and velocity. Further,
if some empirical expression for the velocity profile is assuned,
the constants A and B may be computed,

In the case of an incompressible turbuient boundary layer,
{

a funcﬁion‘F='17 represents the velocity profile over the
greater part of the bhoundary layer with reassonable accuracy.
Close to the wall, however, the flow will be lzminar, and tha
velocity crofile becomes aporoximately linesr. Further, such &
function gives sn infinite slove to the velocity profile at the
wall and consequently the well shear stress calenlated from i4%
will be infinite., 1% appears, then, that an alternstive method
for calenlsting the shear at the wall is necessary. Liepmznn
has suggested that it msey be caloulated by assuming the turbu-
lence level outside the sublayer to he proporticnal to the
velocity at the edgs of the sublayer, From this, together with
the assumption that the velocity profile in the sublayer is

linesr, he deduces that the Reynolds number of transition from



laninar to turbulent flow based on the sublayer thickness is
independent of the distance downstream, This gives him enough
informetion to compute 72, . He alsﬁ computes 1;. from
T, = /Ouoz é‘eﬂfﬂ«—?)o@f(
dx d

just as von Kermsn does. This resuvlt will be reasonably accur-
ate ever though the expression 'f: ”TT is incorrect for smell
7'5 . He has spplied this method to a turbulent boundary
layer in incompressible flow, although his work has not yet
been published, |

Ioitsianskii has proposed a somewnat more slegent integral
method and has applied it to the laminar boundary layer. He
starts by integrating the differential equations of nmotion fterm
by term. He points out that an infinite set of such integrael

gquations may be obtained by multiplying the differential

4,

equaticn by various powers of U before integrating. Solving this

infinite set of integral equetions is equivalent Yo solving the
differential éqneﬁion of motion. In practice, however, he uses
only one of the equations together with the ides of similarity
tc obtein expression forﬁ, and ’):.,. He =spplies the method %o
the laminar boundary layer only, but states that 1t can be
extended to cover the turbulent case as well.

Neither von Kermen nor Loitsianskii have applied their
methods %o compressible flow, The purpose of this paper is to
investigate both lanminar and turbulent boundary layer on an
ingniated flzt plate pérallel to the wind in compressible flow,
In the first part the laminar boundary layer will be investi-
gated by a method somewhat similar fo Loitsianskii's. In the

compressible case, however, there is an equation of thermal



energy to be integrated, as well azs the mechsnicsl equation of
motion. It is found thet these equations, together with the
egquation of continulity, czn be combined, after intagration,
inte one integral equstion., The second part of this paper
deals with the turbulent boundary layer in compressible flow,
and ir this part Liepmsnn snd Laufer's methcd is spplied. The

golution ig of such a nature that the laminar boundery layver

e

s given as & speclel case of the more general solution.
Throughcat this paper it is assumed that the Prandtl

number is equal to one. This is equivalent %o assuming that

widths of the thermal and kinemetic boundsry layers are equal.

An examinstior of the results of Emmong and Breinerd indicate

that the error involved here is small.
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PART I
LAMINAR BOUNDARY LAYER IN COMPRESSIBLE FLOW
After the usual boundary layer apnroximations are mads,
the equations governing compressible laminar boundary layer
flow become:

AUp) , dlpwd)

=0 Y Continuit
oX Qa (1) Continuity

Y,

- oV
P U + /aA}' 'a ga </U- Qa ) (2) Momentum

U&(cpT) +(0”"" (CPT) 9 ( &AA )-(—/“( )1(.3) Thermel Energy

Since the pressure is apbrommc..tely constant,
P = ,o. L (4)
With regard %o the varm.tm‘u of OP’/‘L’ and )\ y the fellow-
ing essumptions will be made throughout this paper:
1. Cp is constant,
2. M and/ll. are functions of temperszture only,
and are tsken to be the same function of temperature
Cp
in order to make thes Prendil number, —ff s &
constant,
3. In accordance with experimenial results, the follow-
ing relations are used:
M
T N T
ez g (L) Xe A(3) @
To o
where N is appreximately .76,
Only the case in which no heat is transferred to or from the
wall will be considered. TFor this case, the enerzy content per
. w? T 1A
unit mass, Y "'Cp , is constant throughout the flow Tield,

Consequently:

3-1 w2
T b+ 2 e (6)



Zntegratlng the continuity equation (1) gives:
l

Q
__fL_> &13 -+ /94r:] = 0
o
By Leibniz's rule this becomes:

2fpvdy v+ vpm =0

Expressing the density in terms of the temperature by (4) lezds

e | R
axj JJ To ax To © (7}

The momentum equation (2) mey be written as
a
‘D_(.C_E-)_Ua—(f—g)+ w) a__f__)- (,u. )
X X 34 oY
By conﬁlnaity the 2nd and 4%h terms cancel, Inte??etlng and
apblving Leibniz rule gives

S pmt () - p Ul -0

Flnﬁlly substituting expressions {(4), (8), and (6) gives

9
DECRE 1 *'no)(fg)”— gf{:\( (@)
The energy equation msy be written as
2 S (epTpv) ~ 72 ((w)»rQ (T + Cp TR (pu) = 2 (A %) 3)
&galn the 2nd and 4th term carncel by continuity. Ivtegrs%lng
and using Leibniz's rule
2 Fompotyr angi3 s e < 23] (@)%
The 1st term on the R.H.S. is zero in this case since
no heat is transferred t¢ or from the wall,
Now if equations (4) snd (5) are introduced, the energy squation

may be written as
1]

‘” n 2
éfudg-u-u iy = Yo J‘(I) (%Y)% ()
CF1; ° To ‘3
The quanﬁity'Az mey be eliminated from the energy and

momentum equations, (8) and (9) by use of the continuity equation

.



Comblning continuity and momentum in this way gives

N au
u" Y &2y (Y
da J'a + 20+ 5N =0
o o 9
i !0( < h s (10)
Likewise eliminating between contlnulty end energy gives:

2 (¢ > (Y, - y (a o)
X S; UJ’& = To 5% j: T dﬁ - cho (r) 'JJ (1‘1‘13
Finslly (10) and (11) can be combined by ellmlnzting 2 5 "I'QAE

'betws-en them, This gives

&xY U(LJ %&S%}Jj - (%) (”‘.M’ Ye S}rﬁ) 3. JE) (12,

d

At this point, the similarity conditions are introduced,
Since (12) invelves only and as dependent varisbles,

it is necessary %o meke only two similarity assumptions. They ares
V= U, ‘F(’?) T= (Te- To)J»('Y) + To

where ,7 = -ﬁ_

L
The value of '7 for & given g' or '-l'l is assumed to be a
"% (] (-]

function of neither X nor My, while 43., is & function of both,
By use of (6}, the second similarity equation may be

expressed as

I - 1+ %‘Mji("?)

[~
When the similarity expressions are substituted in (12),

there resultﬁ“

v 9 £

Ve 3?(‘ K'M"I + —v, X '3'5 |+""H. 7

112 (M)""J'(‘ ”N"L)-flol = (i+ *—“1 ) (18)

N

Because of the awkward form of the Znd and 3rd integrals, it has
been decided %o investisate only those cases in which Mo is very
large or very small,

1st case-— M, larse:



To investigate this case, (12) is rewritten ass

t ‘F '
%%?yu’( * %o '4')‘ T do - %(‘-}f‘ he) J:Z. £

° ° d H”)
3‘ “

In modifying the R,H.S5., the approximetion wss made that, for
gufficiently lerge Mo » " | m 2
i i2
J‘ (14 %’M:,L)“-F aea? —_— (23 N:) J;/g. § ﬂg"(
(]

This is obvicusly true if b does not aporoach zerc,
At the outer edge of the wake, however, L-’O and rﬁok is
no loager much greater than one, However, st the edge of
the weke, 'f"’ alsc approaches zerc so that the contribution
of the terms in which l.-'o tc the value of the entire integral
is very small. Consequently, the sbove relation between entire
integrals ig Justified,

The integral in the 2nd ferm presents a more serious prob-
lem, One would feel that it might approsch ‘MH.;S 1’7
However, this 1g¢ not immediately obvious because when L-bo s
BN. —v\. is not lsrge compared to one, snd since the numerator

.8 tis 16, & gine o Y

of tre mt@p‘and approaches one as  approaches zers, 1t is not
obvious that the contribution to the integrel is smalli., To ine-
vestigate this, the intesgral is differeniiated with ‘respact to

M.

« Denoting the imegral by I is seen thati
4l _ J’ —a§* Y M, JZ, 7
dMs T o (14 mrza,)*
As Mg beccmes 1arve, it is apparent that this approaches
S
,_, -af
=T s ol

The case in which ,Q,-'D ie nct serious here because the presence

of ﬂ., in the numerator insures that the contribution to total

integral under this condition is small, ZReintegrating the
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gpproximate expression for the int‘egml gives
l £*
L, = &) 21
2 % ‘%
a8 was suspected.

So, as Mo becomes arbitrarily large, sgustion (13) assumes

this formi
(]

d o 3 mt ot £

— .—-%-| brerym A~ -‘- = M ) + ")

VX (H- *—_—{!“:) AJ.( 2 (‘ L,
o

wherse and p sre constents., Agein if Mo ie large enough
X L.
%‘M: and e will be small compared to 1 and can be neglected,
=y
Consequently

'3
;) M o M+l
Yo s L L ( - Mo)

V, oXx Pk

which on integration yislds

"3\ ~ (%Mt)%ﬁo—f

The constent integration is found to be zero, since when X=o s '3"' 0

)
for a1l M,9.

Finally, for large Mach numbers
Mm.H . X
T o U, (14)

To compute the shezr on the wall, equation (10) is solved
. (é,\_l)
or .

YL,
When this is combined with (5) and the similarity conditions there

is obtained 1

kS
5 f
Wy . 1 §_ K..__...._._.J - = d ,
t, e ol op 0 Sl e Y
For large Mach numbers this gives:

|
=
2

T .
ﬁ.,(lo“ oX

.
M, (16)
Using equation (14) for 'z‘ » T mey now be computed by differentia-

tion. This gives



1i.

e~
o= | M
1"—’— ~ M° Yo, - (17}
IOO U;’ Uax R*

Since m is spproximately .76, the resulis for large Mach numbers

become: DL C
Mo Mo ¥y,

0
Towr =2
U:' d ] U°X
oY

Te check the result for o , Karman =nd Telen's results
are replotted against '3/}1:1‘ !‘%‘ in Fig. II. It can be
seen that the curves for Hg' 8 and 10 are substantially identical.
The originsl Karman and Tslen results are shown in Figs, I and II.
2nd case~— My small.

In this case, equation (13) will be modified by expanding
(H- )%!H:L)-‘ and (l+ % M:ﬁ.)ﬂand neglecting squares and
higher powers of %”:1. It should he remembered thatl‘_ is
never greater than one. To this approximation (13) may be

written as

[ W,,( N i(ﬁ,j‘mq 9 f o 4117)]
X [“*“’n f”? 2 (14 %'m:)]

From which, if integrals of functions of '7 are considered

constants, there resulis:

o 2 (s K) ~ 2 (0w )
X

L
or
3=l Nl)
Vo 99 o L (14w F Mo
% 9x ’a'
Integrating

AJ'NV_U:(H-CU%MO) (18)



3u
To compute ?:, R eqa&%i@n {10} is solved for e‘a - .

Then 7;_ is computed ez /uw (Q_Q) . The result fcr small

éa v
Maeh numbers ises

L [ ML) ) dq
(]

n

Tl N A |
T, 2 (l-é‘3_'“o)
] Up* X

Using the value of aa. given in (18} and differentiating, the

shear stress is found to be
(Vo & M2
/)——:!1 Ar Ze. ( | + £ -I Mo (19)
Fo Y% Uy X ’
As yet the sign of & is unknown, sc that it is not known

whether 2:, increases or decreases with Mach number,

&g
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PART 11

In Part II an attempt will be made to find “ and  Ta
ag functions of X and P4° in the case where the boundary layer
ig turbulent, In addition to this, it will be possible o
arrive ai aprproximate values of the unknown constanis in (18)
and (19).

Again it will be necessary to assume sinilsrity with re-
spect to X and Mg . Becauss of the presence of the leminar
sublayer, complete similarity across a turbulent boundary layer
does not exist, This difficulty will be hsndled in the manner
sugzested by Liepmann and Leufer, That is, when Z;,is to be
calculated from the integral of momentum defect, similarity

across the entire lsyer will be assumed, dbut when it ie cal-

v
C o

sublayer will be 2ssumed, Their result that the Reynolds num-

e

culated from ( a linear velocity profile in the laminar

°l

ber of transition from leminer to turbulent flow is independent
of distance downetream will be retained, In addition i% will
be assumed thet this Reynolds number is independent of Msch
number, for small Mach numbers at least.

Whether or not it is allowable to assume similarity with
respect to Mach number in turbulent flow is unimown at present
end can be determined only by experiment. However, the fact
thot similarity with respect to Mech number was found to exist
for sm=ll Mach numbers in laminer flow, makes it seem possille
that the ssme may be true in turbulent flow,

In addition to the sssumption of similarity, & definite
form for the veriastion of velocity and temperature distributions

is assumed, Neamely, velocity and temperature are expressed by:



14,

P
_/7'. I=|+ ESM:(‘—‘?)

v

U To (20)
The above assumption of similarity is equivalent to assuming
that F 2nd P are independent of X and Mp . Preston has found
experimentally that P varies slowly with ?x’ but this variation
is neglected here, No information was found on the varistion
of ¢ with M, or of @ with either X or Mo . The caleculation
is restricted to subsonic Mzch numbers in thst (";‘_\ M:)
and higher powers is neglected and slso beceuse the present
lack of knowledge of supersonic turbulence makes any analysis
such as this seem groundless.

The first step is to compute 'I:, from the distance rate

of change of the momentum defac:t.
>

T = pol ) S# 1~ 2) Jj
L (‘o
Introducing similarity *bls becones

3 ( '7."-)"3‘
To = U ox), ﬁ B (i- ")M

which upon integrstion gives:

2 A, M 1)
= : +0 = M .
2 Ve ¥ (v TH (1)
where: o = I i
T i a2r+i
L IS H ‘
ﬁ = ar+y P rePe | 2e+P+1

is now ecalculated from /u” ‘_"5 by asguming & linear

velocity 4i strlbutlon in the laminar sublayer. To do thig,

o

use is made of the foob that K. is taken %o be constant,

]
~
0n
]
(9}
[+
r4
v
.-;

r
Introducing ¥ §
US = o
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M|
T\
and -V‘ = 1/0 -l-‘:

there is obtained

M4
ey - (%)

Kl . R Y
Using (20) to express _.r_‘ and neglecting terms of ) _Q_,‘ M,
T pl
this becomes 3
2y =l M
Y - &‘_ [l-l-(m--n)"“Mo]
= = R <
or 43 -L 46‘
rel
n ¥-l M2
jl R‘a =Y + | (22)
!

Iverything necessary to calculate 7:, is now available,

From the definition of RS s it is sesn thet
B;‘.. = —VS RS
) st "
The veloe of § is obtained from (32). Alsc = w)
a ————
Aur M T

After combining and simplifying there results:

r A - r =
- - MoV, LU arm t r- —"M]
Lhs e Yy D" e 2] ea)

Rs’ﬁ%
The two expressions for 7; given in {21} snd (23) are equated and

an expression relating ‘z' to X and Ho results. When solved this

leads to

) ar 3‘_"._*-" v .
e Y 4l + h-
ara\> _33“' X A L+ (a————“ L _ & *—“M’“ (24)
== =7 4! 3raill  r+ o) 2 °
“3' ) Uy Ram o3 '

)

7;.,, is now obtained by returning to (21) or (23) and substitut-

ing (24) to eliminate 4, . This gives
ar ar - £ 2
T - _‘_ Vo \arai/ Fei\3re) 2° |+ "_*_‘)al"m.ﬁ-" \ + arg !:IM (58
— = (=P = ol 3r+) 3retl Py e °
Cao Uy E;’H i\ Vpx S3ra) B A

Equations (24) and (23) ars the desired resnlts. The laminar
boundary layer mey be investizated as a spscial case of thess
v
squations., In this case 2 + ('.‘pT is constant throughout

the field and from this reletion it may easily be shown that P=z=aw,



If the velocity distribution is taken t0 be spproximsiely linear

in the laminar case, it cean be said that P=l and Pxra . Sub-

ituting these into (24) end (28) gives

q - av3 [ (1+ 140 m])
P a_’v__a_vg (1+ 00c MZ‘)

2
o Yo
In ordsr %0 check this expression for‘n‘ , the regulis of

/71
e

and

Karman and Tasien which are shown in Fig. I have been replotted
sgainst a new coordinate defined as '7-‘- % . The effect of
this change in parametsr is shown in Pigs., IIL and IV, It is
aprarent thait there is similarity with respect to 43: over

the grester portion of the boundary layer for Mach number as
high as two.

It is interesting to nots, in connection with the expre

2 . . s
for %{%U s, thet in a lasinar boundary layer, the wall

2

shearing stress iz almost independent of Mach number, for amall

rated over & plate of length 1, one obtains

D 1SS
 Us™ = (l+ 00k Mo)
2 (R

This cen be compared with von Karman's aporoximate rassult which

is based on the assummtion ¢f a linear velocity profile., A

plot of his result is given in Fig, V., It is ssen that the two

expressions agree for N,==o and that both indicate that the sh

o

‘Mﬁ-

[e3
o

stress is spvroximstely independent of Mach number for smsll Mach

m

numbers.

he apvroximation Tor lerze Msech numbers is elso shown



in Fig, V, Since this result 4id not depend on an assuned

<5
1]
[
Q
[¢]
e
ot
<
o
=
[¢]
Hy
[N
bt
-]
-*
o

t is comparsd with the more axact results
of Kerman and Tsien, instead of Karmen's first approximaiion,

The undetermined constent of proportionslity is chosen arbi-

d

rily 8o thet the curve passes threagh 1.0 at H, = 10,

o

s

~

. t
The expression for ,ﬂ(- may be compared with the results of

Eckert and Drewitz. They find that there is spproximate simi-
larity with respect to the paramster /J/"'wa » where Y 1is
Ve
the value of V at the wall. Using {4) end (5) it is easily
seen that, for small Mech numbers
*?
Vx| wtl B ) o B (140170 M)
= —_ |+ Y 2 e = )
UO ‘/o (-
z h) .
which compares with ‘\"@5 (l-\- 146 Mo) y the apvroximate
Vs

result obtained here, For large Mach numbers
~al
-— M
Y, X A=z
e X 5 ()72 M,
<
Vo
which agrees with the result obtalined for laree Msch numbers in

Part Io
Lack of knowledge of the value of P in turbulent flow

iinders the investigation of the turbulent boundary layer,

¥

However, if the turbulent energy is relatively small compared
to the enthalpy and the energy of the mean velocity, one might
still take P roughly equal to @t . The value of ¥ in incompresse
ible turbulent boundary layers has been found experimentally to

A + i 2 . R o .
be about 7 If ks 7 and Pa '.T are substituted in (24) and

(25), there results

]
. w )\ L l—.0354 M"')
'—?{ = 1718 ((—/:;() ?3/4 ( 0

'
Lo 1)
S —, —,
/V“"m = .600 (V") . (l 1034 Mo
P U, X s



These indicate a decreass of 72.,. = 4 a! with Mach number
for a turbulent boundary layer

As a partial check to see whether K; may be asgumed cone
stant, both of the above formulas may be compared with Prandtl's

incompressible results, By means of these formulas H% may Dbe

o

beck computed from Prandtl's formalas for wall shearing stress
end boundary layer thickness. In order %o compare the sbove
shear siress expression with Prandtl's results, it is necesssry
to integrate it with respect to X and thus obtain an expression
for draz per unit span of s flat plate parallel to the wind,

If this is done , it is essily shown that:

D - S .,e00 (7, r; kY
= 2 (_° (1—.1034 Mo)

U ¥ I
(Vs 0 R \u, L (263
Prandtl's equations are
D _ . 072 4 « 37
ﬂgﬁb}g - !?&3‘ X ES
& 2
Comparing thess with the above exprsssions it is seen that
S .6oo 1718
2 ?/4 = .0‘71 —R—?d - 37
When golved for RS these give: 3
RS t 3 10.8’ \ 6 = 2—0.7

If Prendtl's results are regzarded as being ot least good epprox-

t>

imetions to experimental date, it appears that the sssumption

ot
il?

incompressible flow,

o
s}

that Rs is consteant 1s Justified

O

Whether this is also true in compressible flow is unknown at
present,
To see the nature of the turbulent result, the drag coeffic-

ients cslculated from (26) have been plotted in Fig, VI,



CONCIUSIONS

For a laminar boundary layer in an insulated flat plate

parsllel to the wind in compressible flow, the following results

have been obtainedfrem this anaiysis !

1)

fab]
R

3)

5)

The boundary layer thickness at s given location on
the vlate incresses with Mach number iz & manner
( 2 )
proportional to (\+4 L1765 Mg ) for Mach numbers less
then ons,
The well shear stress coefficient is sporoximetely
independent of Mach number for small Mach numbers.
For large Mach numbers, the thickness of the boundary
layer &% a given location increases in a manner pro-
L76
portional to ° .

For large Mach numbers, the well shear stress coef-

ficient at 2 given location decresses with Mach number
_ -.a.‘l
in & manner proportional to rk .

At a given Mach number, the ratio of the thickness of

the layer to the distsnce downstream from the nose,

yde

increases with distance downstream in & manner pro-

- . WX
portional to the Blausins parameter, v i3~ .
°
At a given Mach number, the wall shear stress coef-
ficient decreasss with distence downsbtreanm in 2

menner inversely proportional bto the Blausins para-

meter,

For the turbulent compressidle boundery lsyer, the following

approximete results were obtained, for subsonic Mach numbers:

1)

The boundary layer thickness at & given location

decreases with Mach number in a mamner proporiionsl to

|~.035 Mg



2)

3)

20,

The wall sheer stress coefficient at a given laeation
decreases with Mach number in & menner proportional
to iI-.lo34 IW:H

At a given Mach number, the ratio of the thickness

of the boundary layer to the distance dowasiream of

the nose increases with distance downstream in a

4
S

manner proportional to Cﬂi?)
¥ >

At a given Mach number, the wall shear stress co~-

sfficient decreazges with distancej?ownstréam in 2
. v, x\' I
manner proportional to ( jL?)
Ve
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